
IMPROVING AND AUGMENTING THE ANM MODEL FOR                                                                 

THREE-DIMENSIONAL VIRTUAL CONCRETE 

 

 

 

 

 

by 

Stephen Thomas 

 

 

 

 

 

A thesis 

submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science in Materials Science and Engineering 

Boise State University 

 

August 2018  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2018 

Stephen Thomas 

ALL RIGHTS RESERVED  



 

 

BOISE STATE UNIVERSITY GRADUATE COLLEGE 

 

 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 
 

 

of the thesis submitted by 

 

 

Stephen Thomas 

 

 

Thesis Title: Improving and Augmenting the Anm Model for Three-Dimensional 

Virtual Concrete 

 

Date of Final Oral Examination: 07 March 2017 

 

The following individuals read and discussed the thesis submitted by student Stephen 

Thomas, and they evaluated his presentation and response to questions during the final oral 

examination.  They found that the student passed the final oral examination.  

 

Yang Lu, Ph.D.    Co-Chair, Supervisory Committee 

 

Janet Callahan, Ph.D.    Co- Chair, Supervisory Committee 

 

Peter Mullner, Ph.D.    Member, Supervisory Committee 

 

The final reading approval of the thesis was granted by Yang Lu, Ph.D., Chair of the 

Supervisory Committee.  The thesis was approved by the Graduate College.  

 



 

 

iv 

DEDICATION 

To my wife Anuya and my children Thomas and Mathew without whom this 

thesis would have been much less close to my heart.



 

 

v 

ACKNOWLEDGEMENTS 

I would like to thank Dr. Yang Lu for giving me the opportunity to work with him 

and the guidance he provided during this research. I would like to thank Dr. E.J. Garboczi 

for his collaboration and contributions on this research. I would like to extend my 

gratitude to my exceptional colleagues who have positively influenced my academic and 

research experience in Boise State University: Mathew Swenson, Tony Valayil Varghese, 

Chad Watson, Dr. Will Hughes and many more. I would like to thank the Micron School 

of Materials Science and Engineering staff and the Department of Civil Engineering staff 

for the support they provided. Last, but not the least, I thank Dr. Janet Callahan and Dr. 

Peter Mullner for agreeing to be on my committee and guiding me. 

I also want to extend my thanks to Micron Technology’s fellowship program, and 

acknowledge the support of the Boise State University’s R1 supercomputing facilities in 

performing the numerical tests and simulations. Finally, I am grateful to Boise State 

University for providing me with the extraordinary opportunity to study here.



 

 

vi 

ABSTRACT 

The Anm model used for creating virtual concrete consisting of irregular shapes 

has been improved by integrating two existing algorithms: the extent overlap box (EOB) 

method for detecting contact between two irregular shapes and the uniform thickness 

shell algorithm. The EOB method has been compared with the previously used Newton-

Raphson method and shown to be able to detect inter-particle contact with better 

accuracy and with less computational cost. Two parameters that define the balance 

between accuracy and performance of the EOB method have been identified and studied. 

The uniform thickness shell has been used to specify the minimum inter-particle distance 

in the 3D model of irregular shaped particles. A clear relation between shell thickness 

and packing density has been established through a series of simulations. To further 

improve the performance of the Anm model, the performance bottlenecks in the code 

have been identified and data parallelism has been introduced with minimal amount of 

code change. Another variation of the Anm model has been explored where the uniform 

thickness shell overlaps with other uniform thickness shells and other particles. The 

overlapping uniform thickness shell model is representative of microstructures such as 

the interfacial transition zone (ITZ) present in concrete. Studying such processes that 

depend on the Euclidian distance from the particle surface in three dimensions can be 

challenging. A new method for obtaining two dimensional slices of this model has been 

developed and resultant images showing the spatial distribution of the different phases 

are analyzed. It has been observed that the apparent thickness of the shell in the 2D slices 
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can be larger than the prescribed normal distance from the particle surface and this is 

dependent on the angle between the slice and the particle surface normal. The 2D 

analysis has been shown to be useful to explain surface features observed in actual slices 

of concrete samples. The “wall effect” observed in the Anm model (and real concrete) is 

characterized with a radial distribution function utilizing the 2D slicing feature and the 

methods for performing this characterization is developed.
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CHAPTER ONE: INTRODUCTION 

This chapter consists of three sections. The first section describes the background 

and the motivation of this research. The second section describes the state of the art of 

this research area. In the third section, the research objectives are presented. 

1.1 Background 

Concrete is the most widely used man-made material today and humans used it as 

early as the ancient Greeks (Jackson et al., 2011). However, there is still much to be 

elucidated at the micro and nano scale of this material. At the nanoscale, the major phase 

of cement paste, the calcium-silicate-hydrate (C-S-H) phase is considered a 

heterogeneous material. The study of C-S-H is an active area of research (Pellenq et al., 

2009; Masoero et al., 2014). At the microscale, concrete is a heterogeneous material with 

either two or three phases. The two-phase model considers mortar as the matrix and 

coarse aggregates as the inclusions. The three-phase model considers cement paste as the 

matrix with both fine aggregates (sand) and coarse aggregates as the inclusions.  

A true understanding of concrete requires a multiscale approach. Robust 

predictive computer models are needed to be able to progress concrete design further and 

reliably predict the physical properties. The motivations for such a capability include the 

variability in material sources, mixing processes, and the time dependent evolution of the 

properties of concrete. Mechanical properties are of primary interest for concrete because 

of its extensive use as a structural material. The mechanical properties of interest are the 

linear elastic properties which govern the behavior at small strains, the viscoelastic 
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properties that govern the long-term deflections and the properties associated with failure. 

Even for linear elastic behavior of cementitious materials, theoretically predicting the 

composite elastic modulus tensor is non-trivial (Haecker et al., 2005).   

Irrespective of which type of physical property is of concern and the type of 

simulation method used, one of the important constituents of the microscale model is the 

microstructure. The microstructural model considers details such as phase volume 

fractions, particle gradation and porosity. Software packages such as CEMHYD3D 

(Bentz, 1997) and the Virtual Cement and Concrete Testing Laboratory (VCCTL) (Bentz 

et al., 2006; Bullard and Garboczi, 2006) use an initial microstructure as the input to 

predict various properties of cement and concrete. These predictions rely heavily on the 

accuracy of the input model. These software packages consider three dimensional models 

since unlike phase volume fractions which are same in two and three dimensions, 

connectivity and percolation of phases are different in two and three dimensions. Due to 

these factors, mechanical and transport behavior are predicted more accurately using 

three dimensional models.  

1.2 State of the art 

In general, the microstructural model can be obtained either by imaging a physical 

specimen of concrete using techniques such as X-ray computed tomography (CT) or by 

virtually building the model using a computer program. The former method has the 

advantage of being the exact representation of the actual physical sample. However, it 

must be noted that some information is usually lost during digitization while trying to 

reduce noise and due to limitations in resolution. Though not an exact replica of actual 

physical samples, the models generated using the latter method provide the flexibility of 
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varying particle size distribution (PSD) and packing density (PD) which are key factors 

describing the microstructure and have real-world implications. For instance, a less dense 

packing of aggregates requires more cement paste to fill in the voids, thereby increasing 

the cost of the concrete mix.  

Beyond the virtual model affecting the flexibility of varying PSD and PD, the 

virtual model also is computationally more efficient. The CT scanned models are usually 

voxel based 3D volumes where the entire volume of the specimen, including the matrix 

and inclusions must be digitally stored. In contrast, virtual microstructure models usually 

store just the positions, sizes, orientation, and the shape information of the inclusions. 

The hard-core soft-shell model (Bentz, Garboczi and Snyder, 1999) is an example of such 

a model. It is apparent that the shape information is trivial to obtain and store for regular 

shapes such as spheres and ellipsoids. Typically, the virtual models randomly pack the 

shapes into a given volume while making sure that the shapes do not overlap each other 

when the shapes represent inclusions such as aggregates. Again, it is obvious that 

functions for detecting contact are readily available for regular shapes.  

The microstructural models using regular shapes (Amirjanov and Sobolev, 2008) 

have the advantages of both computational efficiency and ease of implementation. 

However, the particle shape becomes important to consider for situations such as fresh 

concrete rheology, early age mechanical properties and fracture. Aggregate shape is also 

known to influence the workability of concrete (Quiroga and Fowler, 2004). Due to the 

lack of readily available mathematical methods to represent irregular shaped particles, 

most of the microstructural models relied on regular shapes until the recent development 

of the method that extracts shape of individual real aggregates from 3D volumes of multi- 
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aggregate samples followed by fitting the extracted shapes to spherical harmonic 

functions (Garboczi, 2002).  

The starting point for this method is a 3D volume such as shown in Fig. 1.1, 

acquired using X-ray CT scanning. The black voxels represent the matrix and unresolved 

fine aggregates whereas the white pixels represent the coarse aggregates. The individual 

particle voxels are then identified using a procedure called the “burning algorithm” 

(Garboczi, 2002) and extracted for spherical harmonic analysis. 

 
Fig. 1.1 3D volume of a multi aggregate sample obtained by X-ray CT scanning. 

Reproduced from (Garboczi, 2002) 
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Next, the distance 𝑅(𝜃𝑖, 𝜙𝑖) from the center of mass of individual particles to the 

surface along a finite number of angles (𝜃𝑖 , 𝜙𝑖) in the polar coordinate system are 

numerically obtained and recorded in a database. Once the surface points 𝑅(𝜃𝑖 , 𝜙𝑖) of a 

particle are identified, spherical harmonic analysis is applied to obtain a function for the 

shape as shown in Eq. 1.1. Here 𝑟(𝜃, 𝜙) is known from 𝑅(𝜃𝑖, 𝜙𝑖) and 𝑌𝑛
𝑚(𝜃, 𝜙) are a set 

of predefined functions known as the spherical harmonic functions as shown in Eq. 1.2 

where 𝑃𝑛
𝑚 is a set of orthogonal Legendre polynomials. Spherical harmonic analysis is 

the 3D equivalent of Fourier analysis in 2D and the spherical harmonic functions are 

readily available from software packages such as the Boost C++ library (Schaling, 2014). 

𝑟(𝜃, 𝜙) = ∑ ∑ 𝑎𝑛𝑚𝑌𝑛
𝑚(𝜃, 𝜙)

𝑛

𝑚=−𝑛

.

∞

𝑛=0

                                            1.1 

𝑌𝑛
𝑚(𝜃, 𝜙) = √(

(2𝑛 + 1)(𝑛 − 𝑚)!

4𝜋(𝑛 + 𝑚)!
)𝑃𝑛

𝑚(cos(𝜃))𝑒𝑖𝑚𝜙          1.2 

The coefficients 𝑎𝑛𝑚 are obtained for each particle by solving Eq. 1.1 for a finite 

value of n. Larger values of n gives a better approximation of the original shape. The 

error in approximation has been shown (Garboczi, 2002) to be negligible above n=12 for 

the aggregate shape shown in Fig. 1.2 which depicts the aggregate shape in voxel 

representation (top) and spherical harmonic expansion reconstruction (below). Spherical 

harmonic expansion coefficients have been determined for particles of various sizes, 

shapes and sources (Garboczi, 2011; Garboczi and Bullard, 2013). This method has a 

restriction that limits its usage to “star-shaped” particles which implies that a line passing 

through the center of mass will intersect the surface only two times. A violation of the 

star shape will be when the irregular shaped aggregate has an air void within it. 
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Fig. 1.2  Aggregate shape in voxel representation (top) and spherical harmonic 

expansion reconstruction (below). Reproduced from (Garboczi, 2002) 

The idea of mathematically representing irregular shapes and the ability to 

compute geometrical properties and manipulate the shape have been applied in the 

recently developed material mesostructure model called the Anm model (Qian, 2012; 

Qian et al., 2014). The Anm model introduces a framework for randomly packing a cubic 

volume with the irregular shapes. The input for the model includes the dimensions of the 

packing volume, desired packing density, number of sieves, volume density of each sieve 

and particle database to use for each sieve. Other important parameters include the 

periodicity of the boundary, number of random positions, sizes, orientations and shapes 

to use while randomly placing a single particle. Fig. 1.3 illustrates the algorithm used to 

randomly pack the particles. 
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Fig. 1.3. Flow chart illustrating the packing algorithm used by the Anm model. 

Reproduced from (Qian, 2012) 
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One of the most critical and time consuming steps in this algorithm is the one 

where the placed particle is checked for overlap with any existing particles in the packed 

volume. In practice, not all the existing particles are checked for contact. The volume is 

logically divided into spatial bins and each particle being placed is assigned a bin and the 

overlap check is only performed on particles that belong to the bin where the new particle 

is being placed. The method used by the Anm model to detect contact between two 

particles can be understood through a sphere contact problem illustrated in Fig. 1.4. 

 
Fig. 1.4. 2D contact problem involving two circles. Reproduced from (Qian, 

2012) 

Here the center of mass of sphere 1 and sphere 2 are 𝑂1(𝑥1, 𝑦1, 𝑧1) and 

𝑂2(𝑥2, 𝑦2, 𝑧2) and a contact point common to the two circles is 𝐶(𝑥𝑐, 𝑦𝑐, 𝑧𝑐). The 

Cartesian coordinates for the contact point 𝐶(𝑥𝑐, 𝑦𝑐, 𝑧𝑐) can be written in terms of the 
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polar coordinates of each sphere with their center of masses taken as the origins as shown 

in Eq. 1.3 and 1.4 where 𝑟1 and 𝑟2 are equivalent to the line segments 𝑂1𝐶 and 𝑂2𝐶 in 

Fig. 1.4. 

{

𝑥𝑐 = 𝑥1 + 𝑟1(𝜃1, 𝜙1) sin 𝜃1 cos𝜙1

𝑦𝑐 = 𝑦1 + 𝑟1(𝜃1, 𝜙1) sin 𝜃1 sin𝜙1

𝑧𝑐 = 𝑧1 + 𝑟1(𝜃1, 𝜙1) cos 𝜃1

                              1.3 

{

𝑥𝑐 = 𝑥2 + 𝑟2(𝜃2, 𝜙2) sin 𝜃2 cos𝜙2

𝑦𝑐 = 𝑦2 + 𝑟2(𝜃2, 𝜙2) sin 𝜃2 sin 𝜙2

𝑧𝑐 = 𝑧2 + 𝑟2(𝜃2, 𝜙2) cos 𝜃2

                            1.4 

Equating Eq. 1.3 and 1.4, a system of equations Eq. 1.5 is obtained which can be 

solved to obtain the unknowns 𝜃1, 𝜙1, 𝜃2, 𝜙2. 

 

{

𝑥1 + 𝑟1(𝜃1, 𝜙1) sin 𝜃1 cos𝜙1 = 𝑥2 + 𝑟2(𝜃2, 𝜙2) sin 𝜃2 cos𝜙2

𝑦1 + 𝑟1(𝜃1, 𝜙1) sin 𝜃1 sin𝜙1 = 𝑦2 + 𝑟2(𝜃2, 𝜙2) sin 𝜃2 sin𝜙2

𝑧1 + 𝑟1(𝜃1, 𝜙1) cos 𝜃1 = 𝑧2 + 𝑟2(𝜃2, 𝜙2) cos 𝜃2

                            1.5 

Since there are four unknowns in three equations, one of the unknowns (e.g. ϕ1 ) 

is assumed to have a value within its allowed range (0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 ≤ 2𝜋) and the 

other unknowns are then solved for using the Newton-Raphson iteration method. If a 

solution is obtained, the contact point exists and the two spheres are established as 

overlapping spheres. If a solution is not found, the two spheres are assumed to be non-

overlapping spheres. The same procedure is applicable to irregular shapes. A new method 

(Garboczi and Bullard, 2013) that detects overlaps more efficiently was developed later 

using the idea of the extent overlap box (EOB). This approach relies on first detecting a 

bounding box called the “extent box” for each of the two particles for which overlap 

detection is desired. The bounding box finding algorithm scans the six extremum points 

of the irregular shape by scanning a finite number of angles within the range. A 
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parameter called Next determines the coarseness of this scanning and hence accuracy of 

the bounding box.  It was found that an Next value of 40 was sufficient to reduce the error 

percent to less than 1% (Garboczi and Bullard, 2013). This method then checks whether 

the two bounding boxes intersect simply by checking their vertices. If the bounding boxes 

do not intersect, the EOB does not exist and the particles do not overlap. However, if an 

EOB exists, there is a possibility for overlap between the particles inside the EOB. This 

search algorithm is computationally more efficient than the Newton-Raphson iteration 

method used previously because it needs to scan only a sub-interval of the polar (𝜙) and 

azimuthal (𝜃) angles which are within the bounds of the EOB. Like the parameter Next 

which controls the resolution of the extent box scan, a parameter called Nbox controls the 

resolution with which the EOB is scanned for contact. Fig. 1.5 shows examples of two 

particles overlapping(left) and not overlapping(right) within the EOB. 

  
Fig. 1.5. 2D schematic showing particles overlapping(left) and not 

overlapping(right) within the EOB. Reprinted from (Garboczi and Bullard, 2013) 
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Fig. 1.6. 2D schematic showing the contact detection algorithm within EOB. 

 

A quick check for overlap is first performed along the line connecting the center 

of the two particles as shown in Fig. 2.5 to save computational cost. If there is no overlap 

along the line of centers and an EOB has been detected, the surface of particle 1 is 

scanned with a resolution of Nbox within the EOB and checked if the surface points are 

within the EOB. Though not very intuitive, it is possible that some part of the surface of 

the particles within the angle range of the EOB is outside the box and those points do not 

need to checked for overlap since it is not possible for those points to be overlapping the 

other particle. From each surface point on particle 1 which is inside the EOB, an 

imaginary line segment is drawn to the center of particle 2 (S1O2 in Fig. 1.6). Now the 

line segment is extended to the surface of particle 2 (S2O2 in Fig. 1.6). If S1O2 is less than 

S2O2 it can be concluded that the two particles overlap and vice versa. Clearly, this 
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method is purely a geometrical solution and does not rely on numerical iteration schemes, 

which are more straightforward and elegant. 

Another significant recent development to the method for mathematically 

representing irregular shaped particles using spherical harmonic expansions is the 

addition of the uniform thickness shell to the particles (Garboczi and Bullard, 2013). This 

feature has several important applications such as the ability to model the interfacial 

transition zone (ITZ) found in concrete. The uniform thickness shell for a sphere is 

straightforward to imagine and to determine mathematically. For any given angle (𝜃𝑖 , 𝜙𝑖), 

the radius of the uniform thickness shell is just the sum of the radius vector of the original 

sphere r(𝜃𝑖 , 𝜙𝑖) and the thickness vector t(𝜃𝑖 , 𝜙𝑖), since the thickness vector is always 

parallel to the surface normal of the sphere. However, even for shapes such as ellipsoids, 

the radius vector may not be parallel to the surface normal vector. Hence, a numerical 

method to determine the extension to the radius vectors was developed (Garboczi and 

Bullard, 2013) such that the thickness vector normal to any surface point can be a 

prescribed value. The procedure to obtain the uniform thickness shell involves setting up 

a system of vector equations as shown in Eq. 2.1 and solving them numerically using the 

Newton-Raphson iteration method. Fig.2.10 illustrates the vectors that form the system of 

equations in Eq. 2.1. These set of vector equations are solved for a set of angles in the 

range [0-2π] chosen according to a 120-point Gaussian quadrature scheme (Scarborough, 

1966). Though the angles could be chosen in a linear interval for solving these equations, 

using the Gaussian quadrature scheme reduces errors during numerical integration for 

calculating properties of the uniform thickness shell such as volume and surface area.  

 



13 

 

 

1.3 Research Objectives 

The EOB method and the uniform thickness shell method are two recently 

developed algorithms (Garboczi and Bullard, 2013) for the spherical harmonic 

representation of irregular shapes. It is identified that the integration of the EOB method 

to detect contact can potentially improve the performance of generating the Anm model. 

The ability to add uniform thickness shells to particles in the Anm model can be used to 

control the minimum inter-particle distance between particles by not allowing the 

uniform thickness shells to overlap. If the purpose of the uniform thickness shell is to 

control the inter-particle distance, the final model should not contain the actual shells. 

However, allowing the uniform thickness shell to overlap other shells and particles 

increases the applicability of the Anm model. One implication of adding this capability to 

the Anm model is that the shell also becomes part of the output data and hence data 

visualization will be affected. It was identified that data parallelism can be introduced 

into the Anm model to allow the program to take advantage of the multi-threaded, multi-

core processors available on most computers today and speed up the particle packing 

algorithm.  

The objectives of this research can be summarized as follows: 

(1) Integrate the EOB method into the Anm model and perform a quantitative 

study of the performance improvements. 

(2) Integrate the ability to add uniform thickness shells to particles into the Anm 

model and study how it can affect the packing density of the model. In the process, also 

identify any drawbacks of this new algorithms. 
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(3) Identify performance bottlenecks in the code, implement shared-memory 

parallelism in the code and study the performance improvement gained by adding 

parallelism to the code. 

(4) Introduce the ability to allow uniform thickness shells to overlap other 

particles and shells and explore data visualization techniques for overlapping shells using 

a 2D slicing method. 

(5) Characterize the wall effect observed in the Anm model using the 2D slicing 

method and quantify it using the radial distribution function (RDF). 

Objectives (1) to (3) have been previously accomplished and are published in a 

journal article and presented in Chapter 2. Objective (4) and (5) are presented in Chapter 

3. The conclusions of this research are drawn in Chapter 4 along with some thoughts on 

the outlook of this research for the future. 
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CONCRETE: ANM MODEL 

 

This chapter is published by ASCE (American Society of Civil Engineers) in the 

Journal of Computing in Civil Engineering and is referenced below: 

 

Reference: Thomas, S., Lu, Y., & Garboczi, E. (2015). Improved Model for 

Three-Dimensional Virtual Concrete: Anm Model. Journal of Computing in Civil 

Engineering, 4015027. JOUR. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000494



18 

 

 

 

 

 

IMPROVED MODEL FOR THREE-DIMENSIONAL VIRTUAL CONCRETE: 

ANM MODEL 

 

Stephen Thomas1 

Yang Lu, Ph.D., M.ASCE2 

E. J. Garboczi3 

Published in: 

Journal of Computing in Civil Engineering 

May 8, 2015 

 

1 Graduate Research Assistant, Department of Materials Science & Engineering, 

Boise State University, Boise, ID 83725, USA 

2 Assistant Professor, Department of Civil Engineering, Boise State University, 

Boise, ID 83725, USA 

3NIST Fellow, Applied Chemicals and Materials Division, National 

Institute of Standards and Technology, 325 Broadway MS 647, Boulder, CO 

80305, USA 

 

 

 

 

 

 

 

 



19 

 

 

Abstract 

Construction aggregate particles, fine or coarse, can be scanned by X-ray 

computed tomography and mathematically characterized using spherical harmonic series, 

and can then be used to simulate random parking of irregular aggregates to form a virtual 

mortar or concrete using the Anm model. Any other similar composite system of irregular 

(star-shaped) particles in a matrix can also be simulated. This paper integrates two new 

algorithms into the Anm model. The first new algorithm is the extent overlap box (EOB) 

method that detects interparticle contact, and the second is the capability of adding a 

uniform-thickness shell to each particle. Parameter analysis has shown that the EOB 

method leads to a more accurate detection of interparticle contact with a smaller 

computational cost than the previously used Newton-Raphson method. The uniform-

thickness shell provides a customizable tool to control the minimum intersurface distance 

of particles during the parking process, as well as to simulate processes and 

microstructure that are dependent on the Euclidean distance from a particle surface. For 

mortar and concrete, the uniform-thickness shell can represent the observed interfacial 

transition zone (ITZ) structure. A parallel processing application programming interface 

(API) was integrated into the Anm model to accelerate the particle placement process by 

parallel optimization, which results in significant improvements in the packing efficiency 

on multicore processor systems. This significant speedup as well as the improved contact 

function and new uniform-thickness shell algorithm greatly extend the range, size, and 

type of particle systems that can be studied. 
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2.1 Introduction 

Concrete is primarily composed of coarse aggregates, fine aggregates (sand), and 

cement paste. Software packages like the Virtual Cement and Concrete Testing 

Laboratory (VCCTL) (Bentz et al. 2006; Bullard and Garboczi 2006) use computer-

generated models to predict various properties of concrete. The accuracy of the models 

being used in the simulation plays an important role in predicting concrete behavior. 

Aggregate characteristics such as density and uniformity of aggregate packing and the 

corresponding particle size distribution (PSD) play a paramount role in strength and 

behavior of these concretes (Aïtcin 1998; Alexander and Mindess 2005; Neville 2011). 

Using realistic aggregate shapes instead of spheres (Amirjanov and Sobolev 2008) or 

ellipsoids can greatly improve the accuracy of such models in situations where aggregate 

shape is important, such as fresh concrete rheology, early-age mechanical properties, and 

fracture processes.  

Aggregate shape and grading can significantly influence concrete workability 

(Koehler and Fowler 2007). Excessively flat and elongated aggregates typically have a 

lower packing density (PD) than more equiaxed aggregates, resulting in more paste being 

required to fill the voids between aggregates. There is a clear relationship between shape, 

texture, and grading of aggregates and the voids content of aggregates (Dewar 1999; De 

Larrard 1999). In fact, flaky, elongated, angular, and unfavorably graded particles lead to 

higher voids content than cubical, rounded, and well-graded particles. Further, these 

kinds of aggregates exhibit increased interparticle friction, resulting in reduced 

workability. Therefore, concrete mixtures with excessively flat and elongated aggregates 

often have higher water and cementitious materials requirements than concrete made with 
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normal aggregates. The proper selection of aggregates can minimize the water and 

cementitious materials contents needed to ensure adequate workability. Dense particle 

packing reduces paste consumption, thereby also providing significant cost savings 

(Kwan and Fung 2009; Kwan and Mora 2001). Models for predicting concrete 

compressive strength also base their validation on producing concrete mixtures of 

optimum packing density (Lecomte et al. 2005). An in-depth understanding of the 

packing of aggregates in concrete is therefore essential in optimizing the mix 

composition. 

Typical models of concrete aggregates use spheres and ellipsoids as model 

aggregate particles, both because of the mathematical simplicity of defining these shapes 

and due to the lack of a sound method for determining the complete three-dimensional 

(3D) (real) shape of particles. Complete characterization of aggregate shape enables the 

use of real aggregate particles in 3D models. This is particularly important because it 

enables a controlled comparison of the different aggregate shape distributions. The 

characterization of aggregate shape is an important step towards the development of 

accurate particle packing models, which would otherwise not be possible. The evaluation 

of shape and texture is difficult and therefore the influence of aggregate shape and size 

has not been considered in ASTM or American Concrete Institute (ACI) concrete mixing 

standards. Some progress has been made regarding the problem of packing particles 

using regular shapes such as spheres (Sobolev and Amirjanov 2004) and ellipsoids (Xu et 

al. 2014a). Spheres with relatively smaller, equal-sized protruding hemispheres have also 

been used to model irregularly shaped dust particles (Goldasteh et al. 2012). Interparticle 

contact algorithms have been developed for polygons (Boon et al. 2012). With the 



22 

 

 

introduction of the method of using spherical harmonic series to represent and manipulate 

irregularly shaped particles (Garboczi 2002), it is possible to create more accurate models 

to simulate concrete microstructural behaviors and other complex particle systems. 

The random shapes of real aggregate particles can be extracted using a 

combination of X-ray computed tomography (CT) (Garboczi 2002) or laser detection and 

ranging (LADAR) (Garboczi et al. 2006) and spherical harmonic analysis (Arfken 1970). 

This method can represent only irregular-shaped particles referred to as star-shaped 

particles (Max and Getzoff 1988). Irregular shapes can be characterized as star-shaped 

when any line segment connecting the particle’s center of mass and a point on the surface 

is fully contained in the particle. Recently a material mesostructure model, entitled Anm, 

of mortar and concrete (Qian 2012; Qian et al. 2014) has been created using this idea of 

representing actual shapes of aggregate particles by spherical harmonic series. In this 

model, the irregularly shaped particles are randomly arranged in a cubic container where 

the packing algorithm is driven by PSD and PD. The PD is defined as the volume fraction 

of the aggregates within the simulation box. The particles are parked one at a time in 

decreasing order of size. Each particle is first assigned a random location within the 

container and checked for contact with any already parked particles. If an overlap is 

detected, a new location is attempted. If the particle could not be parked using a 

maximum number of locations, the particle shape is then randomly rotated for a 

predefined maximum number of attempts to find a location without overlap with other 

particles. If rotating the particle did not result in successful parking, it is rescaled within 

the current sieve size range. If the rescaling did not result in successful parking, a 

predefined number of alternate shapes are used to try and achieve successful parking. If 
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none of these attempts were successful in parking the particle from the current sieve, the 

next sieve is selected and this process is repeated. The Anm model can be used at several 

length scales. If the matrix is considered to be water, then the particles can be cement 

grains and the model represents fresh, fluid cement paste. If the matrix is cement paste, 

then the particles are sand grains and the model represents mortar, solid or fluid. If the 

matrix is considered to be mortar, then the particles are coarse aggregates and the model 

represents fluid or solid concrete. 

When placing a particle, it is not very efficient, when there are more than a few 

particles, to search for overlap with all the previously parked particles in the entire 

container. Therefore, the container is divided into equal parts along the length, width, and 

height where each section is called a bin. Using the dimensions of each particle and its 

center point, it is possible to determine the bins it touches. Because the particles touching 

those bins are known, only that subset of particles needs to be checked for overlap instead 

of all the particles in the simulation box. This method of reducing the search extent is 

also known as spatial decomposition and is extensively used in collision detection 

(Jiménez and Segura 2008) of geometric object such as complex polyhedra. Some of the 

methods that rely on hierarchical data structures based on recursive subdivision of space 

are Quadtrees in two dimensions, Octrees in three dimensions (Ayala et al. 1985), AABB 

trees (Bergen 1997), and sphere trees (Bradshaw and O’Sullivan 2004). 

The Anm model can use any arbitrary particle size distribution, described as a 

sieve analysis or sieve range. A certain volume fraction of the particles to be placed is 

located in each sieve size (e.g., 1 to 2 mm). Each sieve size is assigned a fraction of the 

total particle size distribution, such that the sum of volumes assigned to all the sieve 
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ranges add up to the total particle size distribution. In the Anm model, each sieve range 

volume must be occupied before placing particles from the next sieve range, starting from 

the largest sieve range. 

 

Fig. 2.1. Placing star-shaped particles to model material mesostructure of 

mortar or concrete. 

Fig. 2.1 is the visualization of the progress of particle packing in the container. In 

this illustration, three sieve ranges are assigned in the following order: 8 to 10 mm, 6 to 8 

mm, and 2 to 6 mm. The particle dimension used in the sieve range is the particle width 

(Erdoğan et al. 2007). The length of a particle is defined as the longest point-to-point 

distance in the particle, and the width is defined the same way except that it must be 

perpendicular to the length. Each sieve range is denoted by a parking group [parking is a 

synonym for placement (Cooper 1988), so there are three parking groups for this 

example, denoted big, middle, and small]. To achieve a higher packing density, the big-

particle group containing particles of size 8 to 10 mm are picked up and placed as the 

first parking group. The packing algorithm will generate a certain number of random 

attempt locations to park particles one by one if there is no contact with current particles 

in the box. When the limit on the number of attempts is reached, a preset parameter, and 

still no location is found in which to park the current particle, particle placement from the 

big parking group is not possible any more. If all the particles have been placed, the 



25 

 

 

algorithm will go on to the next size group (middle size particles), which will be selected 

and parked in the same manner. This procedure will be repeated until the final attempt 

has been finished for the particles belonging to the smallest size parking group. The Anm 

model allows placement of the particles according to either periodic or nonperiodic 

boundary conditions. In nonperiodic boundary conditions, no particles are allowed to 

extend beyond or even touch the sides of the unit cell, whereas when using periodic 

boundary conditions particles that would extend beyond a unit cell boundary are allowed 

and are checked against contact in the periodic direction. Ghost particles are created 

whenever a particle is placed that has some portion extending beyond the unit cell 

boundary (Qian 2012; Qian et al. 2014) 

An algorithm that has been found to be useful with star-shaped particles is the 

ability to coat a particle with a uniform-thickness shell (Garboczi and Bullard 2013). The 

uniform-thickness shell can be used to simulate the interfacial transition zone (ITZ) 

around aggregates in mortar and concrete. Results from Mondal et al. (2009) showed that 

the ITZ is a relatively weak component of normal portland cement concrete and study of 

networks formed by it can be critical for understanding failure. The uniform-thickness 

shell can also be an effective tool for studying the wall effect (De Larrard 1999) found on 

aggregate surfaces and for studying any process that depends on distance from a particle 

surface. For a spherical particle of radius R and coating thickness t, this is an easy task—

just place another sphere concentric to the particle but with radius R + t. The space 

between the two spheres has a uniform thickness t. For any other shape, making the 

coating of uniform thickness at all points of the particle surface is not so easy. This 

mathematical problem has been solved for star-shaped particles with a spherical 
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harmonic series representation. Such surface zones occur in many kinds of composite 

particle systems, so this algorithm, integrated into the Anm model, should have general 

utility. Henceforth, this uniform-thickness shell shall simply be referred to as shell in this 

paper. In addition, the ability to place shells around each particle means that the 

Euclidean distance from each particle’s surface at every point of the surface can be 

known so that processes that are a function of distance from a particle surface can be 

more easily simulated. 

In addition to the shell algorithm, two other important improvements to the Anm 

model, described and used in this paper, are establishing a new, faster, and more accurate 

particle contact algorithm, and adding a degree of parallelism into the Anm code so that it 

runs much faster than the original model (Qian 2012; Qian et al. 2014). Recently, the 

Anm model has been used to create high quality three-dimensional tetrahedral mesh (Lu 

and Garboczi 2014), demonstrating its applicability in microstructural corrosion 

modeling using finite-element analysis. The meshing method converts the 3D multiphase 

microstructure surface geometry created by the Anm model into a tetrahedral mesh 

without sacrificing the shape features.  

The rest of this paper attempts to study the effects of using the new particle 

contact method and shell in the concrete mesostructure model. “Integration of New 

Search Algorithm” discusses integration of the new contact function into the Anm model. 

The method of adding a shell to the irregularly shaped particles is discussed in 

“Integration of the Uniform-Thickness Shell Algorithm into Anm.” “Parallel 

Optimization of Anm Code for Faster Execution” briefly discusses the method to 

parallelize the algorithms, which greatly improve their efficiency. “Results and 
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Discussion” illustrates some results obtained with the improved Anm model. 

“Conclusions and Future Research” concludes the discussions and projects the direction 

of future research. 

2.2 Integration of New Search Algorithm 

Two spherical objects cannot overlap if the distance between their center points is 

more than the sum of their radii. In the case of irregularly shaped particles, the method 

for detecting contact is more complex. Previously, an analytical method, which solved 

nonlinear equations using the Newton-Raphson (NR) iteration method, was employed to 

detect contact between two spherical harmonic particles (Qian 2012; Qian et al. 2014). 

The NR method was time-consuming due to its iterative approach and if the searching 

tolerance was set too high, small overlaps could occur for some irregularly shape 

particles even when the algorithm indicated that they were not overlapping.  
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Fig. 2.2. Three-step algorithm for searching contact.  

The new method that has been added to the Anm model is called the extent 

overlap box (EOB) search algorithm (Garboczi and Bullard 2013). A three-step process 

as shown in Fig. 2.2 is followed in this algorithm with an increasing level of rigor to 

search for a contact between the two particles in question. This is designed to increase the 

throughput of the contact search process. The goal is to limit the most rigorous contact 

search algorithm to particles with very minimal overlap. For example, if two particles 

being considered have a large extent of overlap, overlap may be detected on the first or 

second step, which is computationally cheap. However, for a situation such as in Fig. 2.3, 

where there is only minimal contact between the particles, the contact is detected only in 
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the third step. 

 

Fig. 2.3. Two particles with minimal overlap.  

  
Fig. 2.4. Schematic representation of particles with overlap along line of centers 

shown in 2 dimensions. Here the sum of the individual radii ( 𝒓𝟏 ⃗⃗⃗⃗  ⃗ +  𝒓𝟐  ⃗⃗⃗⃗⃗⃗  ) is greater 

than the length of the line of centers.  
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Fig. 2.5. Schematic representation of two particles which do not overlap along 

the line of center points in 2 dimensions, but have a non-zero volume EOB. 

In the first step, the EOB algorithm attempts to search for an overlap along the 

line that connects the center point of the two particles. In order to do this, the radius of 

the particles along the direction given by the line joining the two center points is first 

calculated. If the sum of the radii is more than the length of this line, the particles are 

marked as overlapping, as is shown in Fig. 2.4. If they do not overlap along the line of 

centers, as schematically shown in Fig. 2.5, the extent box for both the particles are 

computed and an overlap in the extent boxes is identified if any exists. 



31 

 

 

 
Fig. 2.6. Extent box for an irregular shaped particle. 

The extent box is defined as a rectangular box surrounding the particle and 

touching it at only six points: the minimum and maximum values of x, y, and z on the 

particle’s surface. Fig. 2.6 shows the visualization of the extent box for a particle. The 

accuracy of the size of the extent box depends on the number of intervals of θ and ∅ used 

to search for the six extrema. Here θ and ∅ represent the polar and azimuthal angles, 

respectively, in the spherical coordinate system and their values range from 0 to π and 0 

to 2π, respectively. As the search intervals coarsen, there is a chance that certain parts of 

the particle go undetected and occur outside the extent box. This interval is controlled 

using a parameter called Next, which gives the number of angles to be used in both θ and 

∅. In order to determine the optimum value for Next, the change in the volume and linear 
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dimension of the extent box (Vbox) was observed as the value of Next was increased 

(Garboczi and Bullard 2013).  

If the extent boxes of two particles do not overlap each other, there is zero 

probability that the particles also overlap each other. But, if the two extent boxes do 

overlap, then the particles themselves can overlap only within the intersection of the 

extent boxes, which is itself a rectangular box called the EOB. The EOB is the only 

volume that needs be considered further to determine overlap or nonoverlap. 

 
Fig. 2.7. Illustration of Nbox value. 
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Fig. 2.8. A two-dimensional illustration of the Doverlap with respect to two 

overlapping irregular shaped particles. 

When two particles are found to have a nonzero volume EOB, the minimum and 

maximum values of θ and ∅ within the overlap box for each particle are determined. 

Then the surface points of the particle along those directions are scanned to check if any 

of those points are overlapped by the second particle. The accuracy and speed of this 

measurement is controlled using a parameter Nbox, which is the number of surface points 

scanned along the range of each of these angles. Fig. 2.7 illustrates how Nbox affects the 

contact search algorithm in a two-dimensional layout (considering only θ unlike the 

actual three-dimensional case with θ and ∅). Here because Nbox is equal to 5 between 

angles θ1 and θ2, only five surface points are checked for contact. If the value of Nbox is 

very small, the scanning is coarse and some overlaps may not be detected. As the value 
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of Nbox increases, the scan becomes finer but computationally more expensive. So, the 

value of Nbox determines the balance between the efficiency and the accuracy of this 

search. More quantitatively, the optimum value of Nbox can be calculated by studying the 

maximum distance, denoted Doverlap, between the surfaces of the overlapped particles in 

any direction from the center of one of the particles. This distance is schematically 

represented in Fig. 2.8. For two particles with no overlap, the value of Doverlap will be zero 

for any value of Nbox. But for two overlapping particles, Doverlap will have a nonzero value 

that is dependent on the value of Nbox. Once the value of Nbox is large enough, the value 

of Doverlap does not change any more. A further increase in the value of Nbox will not be 

useful because it will not increase the accuracy of the overlap determination. 

More detailed analysis in “Results and Discussion” of the two barely overlapping 

particles shown in Fig. 2.3 will serve to describe the optimum values found for Next and 

Nbox. 

The EOB contact algorithm (Garboczi and Bullard 2013) is then faster than the 

Newton Raphson method (Qian, 2012;Qian et al., 2014) because only the surface points 

on one particle that are also inside the EOB are checked for contact with the other 

particle. It is also more accurate than the Newton Raphson method because false 

negatives were not seen in an extensive series of visual checks.  

2.3 Integration of the Uniform-Thickness Shell Algorithm into Anm 

A uniform-thickness shell can be used to simulate the ITZ around aggregate 

particles in mortar and concrete. Crack development within normal portland cement 

concrete takes place inside the ITZs (Bentur et al. 2000; Ollivier et al. 1995). Results 

from Mondal et al. (2009) showed that the ITZ was found to be quite heterogeneous. A 
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higher concentration of large voids and cracks in the ITZ was observed. It was noted that 

the connectivity of the weaker areas such as large voids and cracks along the interface 

governs failure. 

 
Fig. 2.9. Adding a shell by increasing the length of the radius vector by different 

amounts at different original surface points. 

As was mentioned previously, a shell of thickness t added to a sphere with radius 

R has a radius R’ =  R + t because the surface normal of a point on the sphere surface is 

parallel to its radius vector. However, in the case of any shape other than a sphere, the 

surface normal is in general not parallel to the radius vector from the center of mass. 

From Fig. 2.9, it is obvious that the surface normal is not parallel to the radius vector in 

an ellipse. In a star-shaped particle, a shell can be added by extending the radius vector 

for each value of θ and ∅, such that the distance between the original surface and the new 

shell measured along a surface normal vector originating from the same point on the 

original surface is of length |t | (Garboczi and Bullard 2013). The length of the extended 

radius vector is in principle different for every value of θ and ∅.  
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Fig. 2.10. Illustration of the vector equation with three unknowns 𝜷, 𝜽′ 𝒂𝒏𝒅 ∅′. 

 
Fig. 2.11. Irregular particle with shell of thickness t = 0.2 % of particle length. 
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The length of the radius extension can be calculated by solving the vector Eq. 

(2.1) illustrated in Fig. 2.10, where t is the thickness and the unknowns are β, θ’, and ∅’. 

The three equations and three unknowns give rise to a system of equations that can be 

solved using the Newton-Raphson method for each choice of θ and ∅ (Garboczi and 

Bullard 2013)  

𝑟  (𝜃, ∅′) + 𝑡�̂�(𝜃′, ∅′) =  𝑟 (𝜃, ∅) +  𝛽�̂�(𝜃, ∅)                                                        (2.1)  

Fig. 2.11 shows a visualization of a shell around a single particle. The wired 

surface shows the shell, while the solid surface shows the original surface of the original 

irregularly shaped particle. Here particle length represents the largest surface-to-surface 

distance. 

Once a shell is added to the particle, the particle along with its shell can be placed 

in three different ways. In the first option, no shells are allowed to overlap other shells or 

particles. In this situation, the minimum surface distance between any pair of particles is 

2t. In the second option, the shells are allowed to overlap with other shells but not the 

other particles. In this situation, the minimum surface distance of two particles is t. In the 

third option, the shell can overlap with other particles, but still no contact is allowed 

between any two particles. In this situation, the minimum surface distance between two 

particles is zero. The second and third options are observed in particulate composites. 

The first option is implemented in the particle parking code in case it is needed. At a 

macroscale, these composite models are considered to consist of three phases: the star-

shaped particles themselves, which follow a specific particle size distribution, the 

interfacial layer or shell, and the matrix. Each volume fraction can be readily computed. 
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The volume fraction of the interfacial layer or shell in other types of composite materials 

can be a significant contributor to macroscopic physical properties (Xu et al. 2014b).  

The shell model, along with the original Anm model, has the potential to serve as 

a microstructural modeling tool in several areas of research that are difficult to do 

experimentally either due to the scale or due to the complexity of the materials. Two 

interesting studies that can benefit from this are the effects of ITZ on the electrical 

conductivity of mortar (Shane et al. 2000) and interfacial structures that have been found 

to have a significant effect on thermal conductivity of nanoparticle-fluid mixtures (Xie et 

al. 2005). More recently, the effect of ITZ on the diffusivity of chlorine in cementitious 

materials were also studied (Lu et al. 2012). In the chlorine diffusion research, the Anm 

model was employed to build a virtual mortar microstructure and a small surface crack 

was created on top of it to study the influence of crack on chlorine transport. The 3D 

multiphase microstructure meshing method (Lu and Garboczi 2014) was used to create 

3D tetrahedral elements. The created 3D mesh was included in finite-element analysis for 

chlorine diffusion simulation. 

2.4 Parallel Optimization of Anm Code for Faster Execution 

The Anm code contains many time-consuming loops. Because the original 

program was designed for serial execution, irrespective of the number of processors 

present in the computer, only one of them was being utilized effectively. The CPU 

utilization was measured when the particle packing was executed on the test system 

running an Intel Core i7-4700HQ CPU (National Institute of Standards and Technology, 

Gaithersburg, Maryland) operating at 2.40 GHz (eight processors) with 12 GB of RAM. 
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The average CPU utilization of the test program was measured to be 12.4% ≈ 1=8. A 

typical pseudocode in such programs is shown in Fig. 2.12. 

 
Fig. 2.12. Pseudo code for a typical serial code containing time consuming loops. 

 
Fig. 2.13. Pseudo code for time consuming loops after parallelization. 

The sequential code is not utilizing the maximum capacity of the multicore 

system. Parallel programming techniques can be used to allow the independent iterations 

to execute in parallel, utilizing the processors that are otherwise idle. For the purpose of 

this study, the authors chose to use the Microsoft Parallel Patterns Library (PPL) (Gebali 

2011) to enable parallel execution of the code. The PPL library provides “parallel_for” 

constructs, which can be used to replace normal “for” loops to easily achieve parallel 

processing. After parallelization, the preceding pseudocode will take the form shown in 

Fig. 2.13. 
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Significant improvements were observed in the execution of the test program after 

incorporating the PPL. The test program now had an average CPU utilization of 87.9%. 

This improvement in performance is achieved by distributing tasks within the 

independent iterations in the pseudocode among many threads generated by the operating 

system. These threads have the ability to utilize the individual processors of the CPU 

concurrently. For instance, the algorithm for rotating particles in the Anm model 

concurrently manipulates surface points along the azimuthal angle (θ) in random order 

unlike a sequential code where the surface points will be manipulated sequentially along 

angles 0 to π. In this function, the Anm data representing a single particle shape are 

manipulated concurrently using multiple processors to achieve its rotation. Apart from 

the particle rotate function, similar parallelism has been implemented to the particle 

contact algorithm and uniform-thickness shell algorithm. Two types of parallelism can be 

achieved using the parallel libraries, namely, data parallelism and task parallelism. The 

method used in the Anm model as explained previously is an example of data parallelism 

and requires only minimal change from the sequential code. Task parallelism, on the 

other hand, is more effective in saving time but involves domain decomposition and 

distributive processing of task on different processors or computers (Subhlok et al. 1993). 

Therefore, introducing task parallelism requires more rigorous examination of the 

algorithm and redesign of the code, so is a good opportunity for further development. 

2.5 Results and Discussion 

2.5.1 Particle-Particle Contact Function 

The EOB method is more efficient compared with the old NR method. The EOB 

method is faster than the NR method even without parallelization by approximately 19%. 
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The EOB method with parallelization (with eight processors) was found to be 

approximately 82% faster than the NR method (single processor). The simulation 

performed for this comparison packed particles from a coarse aggregate shape database 

into a cubic container of length 66 mm. The particle sizes were uniformly distributed 

from 7 to 11 mm. During the parking process, the authors recorded the time taken to 

check the overlap of 139 particle pairs for which the functions being compared were 

executed. A software timer was used to measure the time taken exclusively by the 

interparticle contact functions and the values were saved on a file by the program for 

analysis. The standard deviation of the execution time for the EOB method and NR 

method were 909 and 5,487 ms, respectively. The average execution times were 775 and 

4,354 ms, respectively.  

 
Fig. 2.14. The effect of the value of Next on Vbox for a single irregular shaped particle. 
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Fig. 2.15. The value of Doverlap increases as the value of Nbox increases for two particles 

with minimal overlap. The value of Next was fixed at 80 for this measurement. 

The efficiency of the EOB method depends on two key parameters, Next and Nbox. 

As explained in “Integration of New Search Algorithm,” the optimum values for these 

parameters have been found by performing a parameter analysis. It can be seen in Fig. 

2.14 that for values of Next > 40 there is very little change in the extent box volume. For 

values of Next < 40, the extent box volume still varies significantly with the value of Next. 

It can also be seen in Fig. 2.15 that beyond Nbox ≈ 90, there is very little variation in the 

value of Doverlap so that increasing the value Nbox beyond this point should not increase the 

accuracy of the overlap calculation. Thus, it is reasonable to use Next = 40 and Nbox = 90 

for the given sample particle database. With the optimum values of Next and Nbox used, 

the EOB method will maintain a balance between efficiency and contact detection 

accuracy. Even though these optimal values were determined for only one aggregate, the 
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structure of the spherical harmonic representation means that these values do not vary 

much across an aggregate type. 

2.5.2 Uniform-Thickness Shell 

The shell algorithm in “Integration of the Uniform-Thickness Shell Algorithm in 

Anm” considers only small values of shell thickness, t, so that there is no shell-shell or 

shell-particle overlap between the shell and the particle (Garboczi and Bullard 2013) 

when computing the shell for each particle. These kinds of overlaps introduce numerical 

instabilities. The authors have found that the thickness of a single shell, t, should be 

limited to 0.1% of the particle length to avoid this condition in the specific case of the 

several kinds of coarse aggregates studied so far. Parameter analysis has been performed 

with shell thickness from 0.1 to 2% of particle length. If a thick shell is desired, it is also 

more numerically stable to sequentially add several thin shells rather than using a single 

thick shell. 

An interesting question discussed earlier (Garboczi and Bullard 2013) was if there 

was any difference in creating a single shell of thickness 5t or five shells of thickness t. 

Shells were added to a particle, first as a single shell of 0.1% thickness, then 10 shells 

with 0.01% thickness each, and finally 100 shells with 0.001% thickness relative to the 

particle length. The authors observed that the volume of the new particle remains the 

same. The overall time taken to create the uniform thickness increased approximately 

linearly because a similar shell generation algorithm is repeated more times for the larger 

number of shells.  

Another interesting question that can be addressed is how the particle density of 

the Anm model is affected by different values of the uniform shell thickness used during 
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the parking when the shells are not allowed to overlap. The authors simulated a cubic 

container with an edge length of 66 mm and parked particles from a coarse aggregate 

shape database with sizes ranging from 7 to 11 mm. The gradation was defined by four 

sieves: Sieve 1 (particle width ranging from 10 to 11 mm), Sieve 2 (9 to 10 mm), Sieve 3 

(8 to 9 mm), and Sieve 4 (7 to 8 mm). The suggested fraction (volume fraction of total 

volume) of particles to be parked from each sieve is 0.25 and the suggested total PD of 

the simulation box is 0.25. The maximum number of random locations attempted with 

each sieve range is set to 2,000, whereas the number of random shape, orientation, and 

size attempts are all set to 1. The shell size was gradually increased from 0 to 2% of the 

particle length and its effect on the resulting simulation box was observed. 
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Table 2.1  Particle size distribution and achieved volume fraction by particles 

from individual sieves 

Shell 

thickness 

(%) 

Sieve 1 

(10-11mm) 

Sieve 2 

(9-10 mm) 

Sieve 3 

(8-9 mm) 

Sieve 4 

(7-8 mm) 

Total PD 

0 0.2569 0.2540 0.2519 0.2524 0.2632 

0.2 0.2569 0.2522 0.2503 0.2504 0.2619 

0.4 0.2569 0.2523 0.2511 0.2514 0.2623 

0.6 0.2575 0.2538 0.2530 0.2503 0.2631 

0.8 0.2575 0.2538 0.2523 0.2416 0.2607 

1 0.2505 0.2532 0.2524 0.2136 0.2514 

1.2 0.2503 0.2507 0.2526 0.2473 0.2595 

1.4 0.2503 0.2513 0.2525 0.1758 0.2411 

1.6 0.2503 0.2521 0.2521 0.2081 0.2496 

1.8 0.2501 0.2511 0.2511 0.2122 0.2501 

2 0.2501 0.2520 0.2514 0.1952 0.2460 

 

Table 2.1 describes the actual particle size distribution and individual PD 

achieved by each sieve. Generally, the PD is expected to reduce as the shell thickness 

increases because the particles with shell have a larger volume compared with particles 

without the shell. Due to this reason, the volume of particles that can be accommodated 

in the fixed-volume box is reduced. This lack of available space is first experienced by 

the particles parked last. It can be seen that Sieve 4, the smallest sieve, experiences a 

decreasing trend in PD. It is reasonable to assume that if the shell thickness is further 

increased this effect will be noticed on Sieve 3, Sieve 2, and so forth. 
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Table 2.2. Number of particles per sieve with respect to the change in shell 

thickness of the individual particles. 

Shell 

thickness 

(%) 

Sieve 1 

(10-11mm) 

Sieve 2 

(9-10 mm) 

Sieve 3 

(8-9 mm) 

Sieve 4 

(7-8 mm) 

Total 

0 50 67 89 126 332 

0.2 50 66 89 126 331 

0.4 50 66 91 125 332 

0.6 50 66 88 127 331 

0.8 50 66 89 124 329 

1 49 66 91 110 316 

1.2 49 65 89 125 328 

1.4 49 65 90 91 295 

1.6 49 65 89 107 310 

1.8 49 66 90 110 315 

2 49 66 90 100 305 

 

In this simulation, there are other factors influencing the packing of the particles. 

The random packing does not result in a reliable dense packing where all the particles are 

almost touching their neighbors. Without the shell, many particles are already parked 

separately by a distance larger than the thin shell. Therefore, only a fraction of the 

particles that are almost touching their neighbors is influenced by the shell and contribute 

to a reducing PD. Sometimes, such particles that fail to park in a particular location due 

to the presence of the shell may favorably alter the random packing sequence, resulting in 

a slight increase in the number of particles parked. This effect is noticed in Table 2.1, in 
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Sieve 4, for shell thickness of 1.2 and 1.6%. Table 2.2 shows the actual number of 

particles parked from each sieve.  

 
Fig. 2.16. Illustration of the (a) decreasing trend in PD and (b) number of particles 

packed with the increase in shell thickness. 

 
Fig. 2.17. Illustration of the linear increase in shell volume fraction with the increase in 

shell thickness. 

Fig. 2.16(a) illustrates the trend of PD and Fig. 2.16(b) illustrates the number of 

particles parked. Fig. 2.17 illustrates the trend in the total shell volume fraction for this 
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particular study. The total shell volume fraction increases. The overall packing density 

has a close correlation with the total number of particles packed. It is also observed that 

the volume fraction of the shell increased by ∼4.5%, the achieved PD dropped by ∼6.5%, 

and the total number of particles dropped ∼8% as the shell thickness is increased from 0 

to 2% of the individual particle length. Overall, the addition of shell will affect the PD. 

With the increase of the shell thickness, the PD will be reduced. The thicker the shell, the 

less particles can be packed. 

2.5.3 Effect of Random Locations on Packing Density and Particle Size Distribution 

In the Anm model, there are four internal particle placement parameters: the 

number of random locations attempted, the number of random orientations attempted, the 

number of particle widths in a given sieve range attempted, and the number of random 

shapes.  

In the Anm model, a particle with a specific shape, orientation, and width is 

selected and an attempt is made to place it at a random location within the container. If 

this attempt fails because of an overlap with another parked particle, a different random 

location is chosen within the container and an attempt is made to place it again. However, 

this cannot be done indefinitely. So, a maximum number of random locations are 

attempted before trying to use another random particle shape, width, or orientation. These 

are parameters for the maximum number of shapes, widths, and orientations allowed, 

thus it can be said that there are four sources of randomness in this algorithm. In 

principal, all four will contribute to the particle placement efficiency and the value of PD 

that is achievable. However, the authors identified the random location parameter as the 

most effective parameter for increasing PD based on their numerical particle packing 
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experience. Additionally, its low computational cost allows the use of many random trials 

with- out unreasonably increasing the execution time. In the following study, coarse 

aggregate shapes ranging from 4.75 to 11 mm were packed in decreasing order of size in 

a cubic container having an edge length of 66 mm. The intended value of the PD was 

0.355. Similar to the study that resulted in Table 2.1 and 2.2, the random locations 

parameter was varied while keeping the other random parameters fixed.  

Table 2.3. Changes in PD and PSD of the Anm model as the number of random 

locations attempted for each particle is increased. 

No. of 

random 

locations 

No. of 

particles  

packed 

Achieved 

PD 

Sieve 1 

10 mm to 

11 mm 

(0.18) 

Sieve 2 

9 mm to 

10 mm 

(0.18) 

Sieve 3 

8 mm to 

9 mm 

(0.18) 

Sieve 4 

7 mm to 

8 mm 

(0.18) 

Sieve 5 

6 mm 

to7mm 

(0.18) 

Sieve 6 

4.75 mm 

to 6 mm 

(0.10) 

30 380 0.207 0.183 0.174 0.054 0.064 0.018 0.087 

60 392 0.220 0.183 0.129 0.119 0.082 0.040 0.065 

90 354 0.214 0.183 0.129 0.182 0.026 0.018 0.063 

120 340 0.230 0.183 0.181 0.134 0.050 0.084 0.014 

140 348 0.240 0.183 0.181 0.180 0.028 0.092 0.010 

285 416 0.249 0.183 0.181 0.183 0.066 0.018 0.069 

450 426 0.255 0.183 0.181 0.183 0.066 0.042 0.063 

975 450 0.281 0.183 0.181 0.183 0.123 0.098 0.023 

1500 510 0.295 0.183 0.181 0.183 0.174 0.042 0.068 

 

In Table 2.3, contrary to intuition, the PD is reduced when the locations attempts 

were increased from 60 to 90. This phenomenon can be understood by analyzing the 

individual PD of Sieve 3. While attempting to pack the particles with 90 locations, Sieve 

1 and 2 particles packed exactly the same amount as that of 60 locations. But Sieve 3 

particles benefited from the increased number of attempted random locations and packed 

better. These particles filled up a significant amount of empty space, leaving the 

subsequent sieve particles less available space to pack. Upon careful examination of 

Table 3, it is noticed that this phenomenon is repeated further down in smaller sieves as 
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the number of random locations are increased to 140, 450, and 1,500. However, the 

overall PD does not decrease for these cases, as was seen when going from 60 to 90 

placement attempts, due to the smaller particle sizes (Sieves 4, 5, and 6) affected. The 

periodic packing method seems to generate a slightly denser packing compared with the 

nonperiodic packing method, which is expected because more efficient use would be 

made of regions near the edge of the cell when employing periodic boundary conditions. 

As the random location attempts were increased, it was observed that the larger particles, 

which are parked first, began to pack more densely and achieve the suggested volume 

fraction for their sieve range. The smaller particles, which are parked last, may require a 

larger number of random location attempts to reach their suggested volume fraction for 

each sieve due to higher PD of the particles from the prior sieves. Currently, all the sieves 

are assigned the same number of random location attempts and this value is usually a 

large value suitable for the last sieve being used. This raises a reasonable question about 

the possibility of using a different number of random locations for different sieves such 

that the last sieve is entitled to many more attempts than the first sieve. However, the 

program stops parking particles from a sieve when either the maximum number of 

random trials have been attempted or the suggested volume fraction has been parked. Due 

to this dual criterion for sieves, the sieves used in the beginning do not encounter the 

former condition if the suggested volume fraction of that sieve and the overall PD is 

reasonable. In contrast, the last sieve irrespective of the size of the particles in it will 

require a relatively large number of attempts due to the fact that the simulation box is 

already crowded with particles. 
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2.5.4 Performance Comparison 

This section compares the performance of serial processing to the parallel 

computing achieved using the PPL. The most time-consuming loops were identified in 

the existing program and were upgraded with the PPL. Figs. 2.18 and 2.19 show the 

comparative time (in milliseconds) taken to execute two different functions in serial and 

parallel. Fig. 2.18 indicates the comparison of time taken to rotate a particle using serial 

and parallel execution of the algorithm. The parallel version has accelerated the particle 

manipulation operations significantly. 

 
Fig. 2.18. Comparison of time taken to rotate a particle using serial and parallel 

execution (8 processors) of the algorithm. 
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Fig. 2.19. Comparison of the EOB contact searching algorithm using serial and parallel 

execution (8 processors). 

Fig. 2.19 shows comparison of the EOB contact searching algorithm using serial 

and parallel execution. The large variations of serial run time shown in Fig. 2.19 can be 

attributed to the fact that as the extent of the overlap between the two particles in question 

decreases, the overlap detection requires more computation time. The parallel contact 

function reduces the computational load to some extent by randomly scanning points on 

the extent overlap box. This random scanning process has a higher probability of finding 

an overlap faster when compared with the sequential and ordered scan in the serial code. 

Apart from this advantage, the parallel code utilizes multiple processors available to 

process the data, thereby reducing computational load.  

To analyze the advantage of using any parallel library over asequential program, 

two parameters are used, speedup and efficiency (Rauber 2010). While speedup provides 

a measure of benefit from using parallel libraries, efficiency gives an idea of the extent to 
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which a program is designed to be executed in parallel. The speedup parameter is defined 

by Eq. (2.2) 

𝑆𝑝(𝑛) =  
𝑇∗ (𝑛)

𝑇𝑝(𝑛)
                                                                                                                  (2.2) 

where Sp(n) = speedup; T*(n) = execution time of the best sequential 

implementation to solve the same problem of size n; and Tp(n) = execution time of the 

parallel execution using p processors. Linear speedup is achieved when 

𝑆𝑝(𝑛) =  𝑝 .                                                                                                                          (2.3) 

Efficiency is given by  

𝐸𝑝(𝑛) =  
𝑆𝑝(𝑛)

𝑝
 .                                                                                                              (2.4) 

Ideal speedup Sp(n) = p corresponds to an efficiency of 

𝐸𝑝(𝑛) = 1 .                                                                                                                         (2.5) 

 
Fig. 2.20. Efficiency of contact searching algorithm where the number of participating 

processors p=8. 

Using the parallel efficiency concept, the efficiency of the contact searching 

algorithm was investigated, where the number of participating processors (p) was 8. The 
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results shown in Fig. 2.20 indicate that a speedup of around 5 and an efficiency of close 

to 0.6 was achieved with the current parallel mechanism. This is a substantial 

improvement in performance compared with the sequential execution with a minimal 

amount of change in the code. The improvement in performance is not linear because 

only data parallelization has been implemented in the current version. Examples for data 

parallelism include the individual particle rotation function and two-particle contact 

function using the EOB method. However, there are other parts of the code, such as the 

particle parking function that parks one particle at a time sequentially. Parallelizing this 

function using task parallelism techniques such as message passing interface (MPI) is 

expected to produce a nearly linear performance improvement. 

2.6 Conclusions and Future Research 

Particle size distribution effects have been studied and standardized in ASTM 

standards (Lamond and Pielert 2006), but particle shape effects have not been extensively 

studied because of their complexity. The Anm model provides an effective method to 

simulate the proportioning of the aggregates considering real particle shape effects in 

concrete. The microstructure of mortar and concrete, or indeed any such composite 

material that can be modelled by star-shaped particles embedded in a matrix, can be 

simulated using the Anm model, which has been greatly improved and augmented. The 

following conclusions are made based on the results presented here:  

• The EOB method is more efficient and accurate for the detection of interparticle contact 

when compared with the NR method used by the first version of the Anm model. 

• The uniform-thickness shell provides a customizable tool to control the minimum 

intersurface distance of particles during the parking process. The shell also provides a 



55 

 

 

valuable method to simulate the highly heterogeneous properties of an interfacial 

transition zone around the particles. The two main factors that determine the effect of 

the nonoverlapping shells on achieved PD is the shell thickness t and the number of 

attempts to place the particles at random locations. 

• Using the parallel processing application programming interface (API) framework, a 

speedup of approximately 5 and an efficiency close to 0.6 was achieved with the current 

parallel mechanism. This is a substantial improvement in performance compared with 

sequential execution using only a minimal amount of code change.  

Future research will focus on more efficient parking methods that need to be 

devised to create more realistic models of the concrete microstructure, especially if size 

scales, like those between fine and coarse aggregate in concrete, are to be mixed. Task 

parallelization in addition to the present data parallelization will be studied. One of the 

focus areas will be to improve the parking density so that more realistically dense 

systems can be generated and studied. Applications will be generated as well as 

continually improving the Anm model, such as developing a new shell algorithm that has 

the ability to add shells of larger volumes. 

2.7 Author Justifications 

The research presented in this justification was a collaborative effort by Stephen 

Thomas, Dr. Yang Lu and Dr. E. J. Garboczi. Stephen took the responsibility of the lead 

author since he had the responsibility of preparing the code, testing it, performing the 

simulations and manuscript writing. Dr. Lu and Dr. Garboczi contributed to the research 

with detailed discussions and in-depth constructive feedback during the code 

development, simulation preparation, manuscript drafting and editing. Stephen Thomas’s 
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research contribution was a partial fulfilment of the requirements for a Master of Science 

degree in Materials Science and Engineering at Boise State under the advisement of Dr. 

Yang Lu. 
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CHAPTER THREE: IMPLICATIONS OF OVERLAPPING UNIFORM-THICKNESS 

SHELLS IN THE ANM MODEL 

3.1 Introduction 

As outlined in Chapter 1, the introduction of overlapping uniform thickness shells 

will significantly broaden the scope of the Anm model. The particle parking algorithm 

and the data visualization is adapted because unlike the previous version where the 

uniform thickness shell was not included in the final model, the shells need to be 

visualized along with the actual particles in the new version. Two potential challenges are 

identified as follows: 

(1) Since the shell and particle are hard to distinguish in the visualization, there 

must be some means to tell them apart. The input and output specifications need to be 

adapted to meet these needs.  

(2) Even if some means of distinguishing the particles and shells is devised, 

visualizing it in 3D will be a challenge even with translucent shells.  

The identified solution to the first problem is to assign different colors to each 

layer of shells added to the particles and to modify the output file format to allow the 

shells and particles to be treated separately for post-processing or visualization. To 

address the second problem, the capability of producing 2D slices of the 3D model is 

added to the Anm model. Images with custom resolution can be generated from any 

location within the model with this new feature. The method for generating 2D slices 

with overlapping shells is described in the remaining part of this chapter along with an 
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important application of this new feature. The application of the 2D slicing described 

here is a method to characterize the so called “wall effect” observed in concrete using the 

Anm model.  

3.2 Overlapping Uniform Thickness Shell 

The existing algorithm for adding uniform thickness shell to a single particle is 

used without any changes for overlapping shells. However, the particle parking algorithm 

needs to be carefully redesigned for this feature. In the previous version where non-

overlapping shells were assumed, the shells were added to every particle that could be 

parked without overlapping with any other particle, and rechecked if the shell overlapped 

with any other particles. If both conditions were satisfied, the original particle was 

retained. In a densely-packed specimen, this step turns out to be a time intensive step in 

the algorithm. This is because there will be many cases where the new particle does not 

overlap with other existing particles, but the shell does overlap and hence the original 

particle cannot be retained and a new particle placement attempt must be performed. This 

step is shown in Fig. 3.1 with dashed lines.  
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Fig. 3.1. Flowchart for parking procedure with non-overlapping shells.  

However, this step is not necessary during the parking progress for overlapping 

shells and only the particles need to be checked for contact with other existing particles. 

An important consideration for visualizing the Anm model is the memory requirement for 

densely packed models. If the size of the particles relative to the volume containing them 
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is large, the resolution of the particle shape is more important aesthetically than particles 

which are relatively much smaller than the containing volume. For instance, in a three-

phase concrete model, the size of aggregates and cement grains are three orders of 

magnitude apart. Using a lower resolution for the cement grain will greatly reduce the 

memory requirement of the visualization without affecting the aesthetics. Even with 

reduced resolution for smaller particles, it has been found that the Anm model with more 

than a few thousand particles becomes too large to visualize on standalone desktop or 

laptop computers with limited memory resources and require distributed rendering 

capabilities using cluster computing facilities. The addition of overlapping shells makes 

this problem even worse. A provision has been added to the model to skip adding 

overlapping shells to all the particles during packing and instead add the shells to just the 

particles that are part of a 2D slice. The 2D slicing method explained in the next section 

has been identified as a viable option to post process or visualize models which are not 

feasible to visualize in 3D due to memory constraints.  

In this variation of the Anm model, the particles do not overlap each other, but the 

shells can overlap other shells as well as other particles. This may not seem like a 

physically relevant scenario, but turns out to be a useful starting point as shown in the 

next section. User-defined colors specified for each shell layer in the input file are used to 

color-code the shells. The output file which is of VRML format (Carey and Bell, 1997) 

can either be a single file containing all the particles and shells, or it can be saved 

separately where all the particles are saved in one file and shells from each layer are 

saved in separate files. This will enable easy switching on and off a certain layer of the 

shell for all the particles at once. 
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3.3 2D Slicing and Visualization of The Anm Model 

Given that there can be one or more shells for each particle and the shell thickness 

is only marginally larger than the actual particle itself, visually analyzing the generated 

model in 3D can be a daunting task. The fact that visualization is usually done on a 2D 

screen compounds the problem. The difficulty of analyzing the 3D data presents itself 

even for computational analysis. Analyzing 2D representations in the form of slice 

images is proposed as a more viable option for both visual and computational analysis. 

For example, if some statistical measurement needs to performed within each layer, it 

might be possible to perform this measurement of the slices with preferred resolution and 

finally add up the individual slice measurements to get the 3D equivalent measure.  

Consider a particle with two uniform thickness shells added to it. Then the first 

shell can be called the inner shell and the second shell can be called the outer shell. For 

the purpose of these discussions it is assumed that the volume between the inner shell 

surface and the particle surface is classified as the volume occupied by the inner shell and 

the volume between the outer shell surface and the inner shell surface is the volume 

occupied by the outer shell.  The procedure for generating the 2D slice starts with 

defining the slice rectangle. The slice rectangle is constrained to be two dimensional and 

at least one of the dimensions must have a thickness of 0. However, it will be interesting 

to see what kind of measurements may benefit from having a finite thickness slice 

rectangle for which the data for each pixel in the resultant image would represent a 

statistical measure such as a mean along the direction normal to the slice plane. Each 

particle in the generated model is then checked for contact with the slice rectangle using a 

very similar method as the EOB method described in Chapter 1 and 2. In this scenario, 
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the extent box needs to be computed for the single particle in question and the other 

extent box is the slice rectangle which is flat (thickness of 0) along one of the 

dimensions. The limitations of the EOB method in terms of the limits imposed by Next, is 

applicable for this method also. Consequently, the recommendations for the optimum 

value of Next  stated in Section 2.5.1 may be followed for this method. Once the EOB is 

detected for a particle, the distance from each pixel position in the slice to the particle 

center is measured (O to p1 and O to p2 in Fig. 3.2). If this distance is more than the 

distance from the center of mass of the particle to the surface, the particle is classified as 

not overlapping the slice plane at that pixel position in the slice. In Fig. 3.2, the slice is 

parallel to the y-z plane and an EOB is detected. Position p1 in the slice is overlapped by 

the particle and position p2 is not overlapped.  
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Fig. 3.2  Schematic of a particle-slice overlap. Position p1 on the slice is overlapped by 

the particle. The dotted line shown part of the particle behind the slice. Position p2 is not 

overlapped by the particle. r1 and r2 are surface points on the surface of the particle along 

the direction of points p1 and p2. 

Like the interparticle contact detection method, this scan is only performed within 

an angle range given by the EOB extents in the two directions parallel to the slice plane, 

but the coarseness of the scan is governed by the image resolution parameter Ires which is 

given by dividing the slice rectangle dimension by the corresponding 3D volume 

dimension. If the pixel position is found to be overlapping with a particle or a shell, a 

corresponding label value is assigned to the pixel. To model physical phenomenon such 

as the ITZ layers in concrete, a few constraints were imposed while labelling the pixels: 

(1) A pixel position overlapped by a particle and a shell is labelled as particle. 
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(2) A pixel position overlapped by different shells from the same layer hierarchy 

gets labelled as that layer without any ambiguity. 

(3) A pixel position overlapped by a shell from two different layer hierarchies 

gets labelled as the inner layer. 

 
Fig. 3.3. 2D slice image of overlapping shells obtained from the Anm model (a) and the 

corresponding particles and slice (shown as the black curve) in 3D (b). 

This set of constraints can give rise to 2D slices as shown in Fig. 3.3. The black 

color in the 2D slice image (left) represents the particle and the green color represents the 

inner shell and the blue represents the outer shell. The corresponding region in the 3D 

Anm model is also presented on the right side of Fig 3.3 to clearly visualize the effect of 

slicing. The two apparently separate particles on the bottom-right side of the 2D slice are 

actually a single particle and this becomes obvious in the 3D visualization. Both inner 

and outer shells of the two apparently separate particles in the 2D slice appear to coalesce 

to form a single connected phase because of the constraints imposed on the pixel 

labelling.  
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Fig. 3.4. 2D slice image of varying thickness of the shells on high angle slice planes 

obtained from the Anm model (left) and the corresponding particles and slice (shown as the 

black curve) in 3D. 

Another interesting observation from the 2D slice analysis of the Anm model is 

the apparent thickness of the uniform thickness shell and how it varies based on the angle 

with which the slice plane intersects the particle and shells. This is clearly visible in Fig 

3.4 where two different slices (a) and (b) are presented with the slice image on the left 

and the corresponding 3D visualization on the right. A protrusion in the shell can be 

observed in the slice image on both Fig 3.4 (a) and (b). This increase in apparent 

thickness is attributed to the high angle between the slice plane and the surface normal. 
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One study estimated the increase in the apparent thickness of the ITZ to be an average 

“lengthening factor” of 1.2 (Crumbie, 1994). 

3.4 Characterizing the wall effect 

It is well known that the porosity around aggregates tend to be higher than the 

bulk porosity in concrete and this effect is often referred to as the “wall effect” in the ITZ 

(Bentz, Garboczi and Stutzman, 1993). The “wall effect” is an experimentally observed 

phenomenon that affects the packing density of fine aggregates and sand near the surface 

of coarse aggregates. This is purely a geometric effect and can be understood well from 

Fig. 3.5. 

 
Fig. 3.5. Illustration of the “wall effect”. A is a penetrable wall and B is an 

impenetrable wall. The packing density near wall B is lower than wall A. (Scrivener, Crumbie 

and Laugesen, 2004) 

 The extent of this low-density region is critical to the mechanical strength of 

concrete and is therefore important to characterize. Experimentally, the average packing 

density in the low-density region can be characterized by analyzing the backscattered 

electron (BSE) images of polished sections of concrete samples (Scrivener, Crumbie and 

Laugesen, 2004). One of the challenges of this technique is measuring the normal 
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distance from the aggregate surface in 2D sections. This problem is related to the 

apparent increase of the uniform thickness shell discussed in the previous section. 

Calculating the extent of the wall effect from the 3D Anm model will involve scanning 

the density around each coarse aggregate with a predefined resolution and averaging the 

obtained packing densities. Measuring this quantity from 2D slices is a more tractable 

solution to this problem. 

 One such measured property of the 3D Anm model is the packing fraction of the 

specimen (∅p) which depends on the aggregate shape, particle size distribution and 

simulation time. ∅p can be expressed as shown in Equation 3.1 where 𝑉p is the volume 

occupied by the particles and 𝑉Ω is the volume occupied by the specimen. In the context 

of the Anm model 𝑉Ω constitutes the volume of aggregates (𝑉a), volume occupied by the 

small particles (𝑉s) which could be sand particles or cement particles and volume of the 

matrix (𝑉m) which is the empty space in the Anm model. 

∅p =
𝑉𝑝

𝑉Ω
                                               3.1 

𝑉Ω = 𝑉𝑝 + 𝑉𝑚 ≡ 𝑉𝑎 + 𝑉𝑠 + 𝑉𝑚                                            3.2 

 

In 2D slices obtained from the Anm model, the exact extent of the uniform 

thickness shell is known in all directions and density of particles within this region can be 

measured with an accuracy limited by the resolution of the slice images. A very similar 

concept found in crystallography is the radial distribution function (RDF) which 

essentially measures the number density of atoms around each atom as a function of the 

distance from itself. The RDF provides useful information such as the first nearest-

neighbor distance and second nearest neighbor distance. Visual inspection of the RDF 
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can be used to understand whether the material is crystalline or amorphous. The RDF of 

crystalline materials tend to exhibit characteristic peaks whereas for amorphous materials 

the peaks are not seen away from the origin. The area under the RDF from zero to the 

first nearest neighbor peak gives the coordination number of the structure.  

An attempt is made in this research to represent the distribution of smaller 

particles near the surface of the coarse aggregates as an RDF and explore the useful 

information that can be extracted from it. This approach provides a method to 

characterize the “wall effect” seen in concrete. The smaller particles may be assumed to 

be sand particles or cement particles depending on the chosen size scale. The factors that 

can affect the RDF of the Anm model are hypothesized as (1) the coarse aggregate shape 

and (2) the packing fraction (∅𝑝). The low-density region near the aggregate surface in 

the Anm model cannot simply be equated with the ITZ zone which is a dynamic region 

that changes based on other factors such as temperature, water to cement ratio and age 

(Haecker et al., 2005; Zheng, Wong, & Buenfeld, 2009).  

The first factor can be tested by comparing the RDF of aggregate shapes that have 

very different shape characteristics. A previous study (Xu, Lv and Chen, 2013) using 

polydispersed ellipsoidal particles placed near flat walls have shown that shape does not 

contribute significantly to the wall-effect. However, ∅𝑝 is influenced by the particle 

shape and the particle size distribution of the system. Hence the effect of ∅𝑝 on the RDF 

can be studied to relate the PDS and particle shape to the RDF indirectly. Apart from the 

two model characteristics, numerical factors such as the resolution of the slice image (𝑅𝑠) 

and the slice density (𝜌𝑠) should also be considered while characterizing the RDF. The 𝑅𝑠 

units considered in the Anm model is typically mm/pixels. 𝜌𝑠 is unit less and is given by 



72 

 

 

Equation 3.3 where 𝑁 is the number of slices and 𝑁𝑚𝑎𝑥 is the maximum number of slices 

and 𝑁 ≤ 𝑁𝑚𝑎𝑥 such that 0 ≤ 𝜌𝑠 ≤ 1. There is no limit on the maximum number of 

slices, but it is convenient to let 𝑁𝑚𝑎𝑥 correspond to the value of 𝑅𝑠 so that the imaginary 

voxels formed by putting together the slices will be cubic in shape. Then 𝑁𝑚𝑎𝑥 is given 

by Equation 3.4 where 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are the extents of the slicing along the axis normal 

to the slice plane. 

𝜌𝑠 =
𝑁

𝑁𝑚𝑎𝑥
                                3.3 

𝑁𝑚𝑎𝑥 =
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

𝑅𝑠
                                3.4 

The slice density controls the frequency with which the specimen is sampled by 

slicing. These two numerical factors are important because 2D slices of the 3D model are 

used to measure the RDF as an averaged quantity. A higher image resolution (lower 𝑅𝑠) 

for the 2D slices results in a more accurate density calculation. Very low resolution slice 

images can result in missing particles in the image. A low slice density in a less densely 

packed specimen can result in a set of slices that does not sample the ITZ layer 

sufficiently. As the slice density increases, the resulting RDF is expected to converge for 

a given sample when the amount of sampling is sufficient to produce an averaged value 

which does not vary with more dense sampling.  

The RDF described here considers 𝑡 ≡ 𝑡. �̂�, the normal distance from the surface 

as the independent variable and 𝑔(𝑡) as the dependent variable where 𝑔(𝑡) is a unit less 

quantity representing the ratio of packing fraction at a distance 𝑡 from the surface to the 

packing fraction of the matrix described in Equation 3.6. Typically, the RDF uses 

distance from the center of a particle (𝑟) as the independent variable. But, in this context 
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𝑡 is used because it denotes the thickness of the uniform thickness shell or distance from 

the surface of the particle.  

The formulation of 𝑔(𝑡) is detailed here. Consider a cubic Anm model called 

Μ𝑠𝑎𝑛𝑑 with sides of length 20 mm, coarse aggregates occupying 𝑉𝑎 and sand particles 

occupying 𝑉𝑠. Also, consider a volume called “bulk volume” (𝑉𝐵) which is the volume 

that excludes the coarse aggregates. Then,  

𝑉𝛺 = 𝑉𝑎 + 𝑉𝐵 = 𝑉𝑎 + (𝑉𝑠 + 𝑉𝑚) ⇒ 𝑉𝐵 = 𝑉𝛺 − 𝑉𝑎 .                       3.5 

This space has a packing fraction called the bulk packing fraction (𝜙𝐵) which is 

given by Equation 3.6. 

𝜙𝐵 =
𝑉𝑠
𝑉𝐵

=
𝑉𝑠

𝑉𝛺 − 𝑉𝑎
 .                       3.6 

The “wall-effect” idea proposes that at 𝑡 = 0, the local packing fraction is zero 

and increases with 𝑡 and eventually reaches 𝜙𝐵.  𝑔(𝑡) is defined such that the local 

packing fraction is given by 𝑔(𝑡). 𝜙𝐵. Then, as the local packing fraction approaches the 

𝜙𝐵, 𝑔(𝑡) approaches 1.  

However, in this research, 𝑔(𝑡) is not calculated directly from the 3D Anm 

model. Instead, many 2D slices are analyzed and assumed to be equivalent to the 3D 

measurements. Consider a group of 𝑁 slices which is equivalent to Μ𝑠𝑎𝑛𝑑 described 

above. Let 𝑅𝑠 be 0.05 mm/pixel and consequently, 𝑁𝑚𝑎𝑥 is 400. The area of an individual 

slice 𝑖 is denoted as 𝐴𝑖 where 𝑖 ∈ 𝑁 and 𝐴𝑖 = 𝐴𝑚 + 𝐴𝑎 + 𝐴𝑠  where the notations are 

consistent with the volume counterparts. Let the number of uniform thickness shells in 

Μ𝑠𝑎𝑛𝑑, be 𝐾 and 𝐾 = 10. Then the area occupied by an individual shell 𝑗 in the 𝑖 slice 
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can be denoted as 𝐴𝑖𝑗. Since we assume the equivalence between the 3D volume and N 

slices, the volume of the 𝑗 shell in the 3D model (𝑉𝑗
𝑠ℎ𝑒𝑙𝑙 ) is given by  

𝑉𝑗
𝑠ℎ𝑒𝑙𝑙  = ∑𝐴𝑖𝑗

𝑁

𝑖

, 𝑤ℎ𝑒𝑛 𝑁 → ∞                     3.7 

The area fraction occupied by sand particles in the 𝑖𝑡ℎ slice (𝜑𝑖
𝑠) is given by 

Equation 3.8 where 𝐴𝑖
𝑠 is the area occupied by sand particles in the 𝑖𝑡ℎ slice. 

𝜑𝑖
𝑠  =

𝐴𝑖
𝑠

𝐴𝑖
   .                 3.8 

The area fraction occupied by sand in the 𝑗𝑡ℎ shell in the 𝑖𝑡ℎ slice is given by 

Equation 3.9. 

𝜑𝑖𝑗
𝑠  =

𝐴𝑖𝑗
𝑠

𝐴𝑖𝑗
   .                 3.9 

So far, only quantities in individual slices were considered. The quantity of 

interest of this study is the average packing fraction of sand in the 𝑗𝑡ℎ shell of all the N 

slices which is given by Equation 3.10.  

𝜑𝑗
𝑠  =

∑ 𝐴𝑖𝑗
𝑠𝑁

𝑖

∑ 𝐴𝑖𝑗
𝑁
𝑖

 .                 3.10 

When N is sufficiently large, Equation 3.11 is true. Care must be taken to avoid 

very small N such that there are no slices which cut through the 𝑗𝑡ℎ shell such that the 

denominator of Equation 3.10 is zero.  𝜑𝑗
𝑠  ≡  𝜑𝑗

𝑠(𝑡), since the area of the slice is 

dependent on the thickness of the uniform thickness shell. Equation 3.11 is one of the 

important conclusions of this section and the remainder of this section expects to 

numerically show this equality. 
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𝜑𝑗
𝑠

𝜙𝐵
 = 𝑔(𝑡)   .                 3.11 

Since 𝑔(𝑡) is calculated as an averaged quantity from N slices, the standard 

deviation of this quantity is used to determine the optimum number of slices.  

The numerical factors to be considered for calculating the RDF are explored now. 

An Anm model described before as Μ𝑠𝑎𝑛𝑑 is generated with the PSD described in Table 

3.1. The order of Anm coefficients used is 14 for Sieves 1 and 2. The order of Anm 

coefficients used for Sieve 3 is 5 to achieve better performance. It is assumed that the 

detailed shape of the sand particles will be less significant compared to the shape of the 

much larger coarse aggregates. The 𝜙𝑝 of the model is ~ 23%. 2D slices are generated 

normal to the x-axis where the images have 400 pixels each in the y-axis and z-axis. 

Thus, the 𝑅𝑠 is 0.05 mm/pixel and 𝑁𝑚𝑎𝑥 is 400 when the range of the slicing extent is the 

extent of the simulation box. 

Table 3.4 PSD and achieved volume fraction by 𝚳𝒔𝒂𝒏𝒅. The first column 

describes the minimum and maximum width of the particles in that sieve. 

Sieve # 
Prescribed 

Volume Fraction 

Achieved Volume 

Fraction 
Packed Particles 

Sieve 1 (9.9-10.0 mm) 0.20 0.13 2 

Sieve 2 (4.9-5.0 mm) 0.02 0.02 3 

Sieve 3 (0.15-0.25 mm) 0.08 0.08 202736 

 

Fig 3.6 shows the particles from Sieves 1 (blue) and 2 (green). The particles from 

Sieve 3 has been omitted from the visualization. The largest aggregate with a length of 

9.997 mm is chosen to study the RDF of a single particle. This particle will be referred as 

the RDF-particle. The RDF-particle is depicted in Fig. 3.6 with uniform thickness shells 
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around it, even though only the outer most shell (light blue) is visible. Ten uniform 

thickness shells were generated for this particle with the thickness ranging linearly from 

0.025 mm to 0.474 mm which corresponds to 0.5 to 5 % of the RDF-particle length. A 

2D slice normal to the x-axis and passing through the RDF-particle is shown in Fig. 3.7. 

The pixels representing the ten uniform thickness shells are assigned labels so that the 

label image can be used as masks for measuring density of sand particles within each 

shell. In Fig. 3.7, the shells are colored with pseudo colors and the mask image is 

superimposed on the slice image for illustration. 

 



77 

 

 

 
Fig. 3.6. 3D visualization of Anm model 1 where only particles from Sieve 1 (blue) and 

Sieve 2 (green) are shown. The particle for which the RDF is calculated is shown with the 

uniform thickness shell (light blue) around it. 
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Fig. 3.7. Illustration of a mask image superimposed on a corresponding 2D slice of the 

Anm model 1 passing through the coarse aggregate for which the RDF is measured. The ten 

uniform thickness shells are colored with pseudo colors and the particles are shown in black. 

The 𝑔(𝑡) is calculated by performing pixel counting on slice images obtained at 

different slice densities. The pixel counting algorithm involves counting black pixels 

within the mask region for each shell. The area fraction occupied by the sand particles is 

then calculated by dividing the pixel count for sand particles by the pixel count for the 

corresponding shell mask. Once the area fraction is obtained for each shell for many 

slices, the mean and standard deviation is calculated. The RDF is plotted as shown in Fig. 

3.8 where 𝜙𝐵   is obtained from Table 3.1 using Equation 3.6 as 0.09. The bar graph is 
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indicative of the fact that the RDF is calculated within each shell and the width of each 

bar is the thickness of the uniform thickness shell used in the simulation. The error bar 

indicates that the averaged g(t) is obtained from 𝑁 slices. 

 
Fig. 3.8. The RDF calculated for one coarse aggregate with a slice density of 1. 

As expected, the density is lowest near the aggregate surface and increases as a 

function of the distance from the particle surface. The sand density approaches 𝜙𝐵 at 

around 0.2 mm from the particle surface and fluctuates about 𝜙𝐵 beyond that distance 

from the surface. From Fig 3.7, it can be deduced that the low-density region extent for 

Μ𝑠𝑎𝑛𝑑 is ~0.175 mm. However, previous  studies suggests that the ITZ has a thickness 

less than 0.040 mm (Scrivener, Crumbie and Laugesen, 2004). It is important to note that 

Μ𝑠𝑎𝑛𝑑 does not explicitly consider cement grains. Including cement grains in the model 



80 

 

 

may increase the 𝜙𝐵. It is also reasonable to expect a thinner porous region in such a 

model. 

The high standard deviation is expected because of the low 𝜙𝐵 (~9%). Another 

possible reason for the high standard deviation could be the proximity of other particles 

to the RDF-particle. Due to this reason, slices with neighboring particles near the RDF-

particle will have a lower density than slices without such neighboring particles. This 

deviation cannot be avoided with higher sampling density. This concern may not be real 

for models with higher 𝜙𝐵 and a thinner porous region.   

 
Fig. 3.9. The RDF calculated for one coarse aggregate with four different slice 

densities. Slice density of 1 corresponds to 𝑹𝒔 of 0.05 mm/pixel.  

Fig. 3.9 shows how the RDF varies with three different slice densities (𝜌𝑠). The 

lowest 𝜌𝑠 plot corresponds to two slices which cut through the outer shells only on 
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opposite extremes of the particle along the x-axis. The RDF computed with a lower 𝜌𝑠 

shows large deviations from the bulk density at larger values of 𝑡.  compared to the RDF 

computed using 𝜌𝑠 of 1. The minimum number of slices necessary to reduce the standard 

deviation to a minimum is studied by taking four distances from the surface (𝑡) of the 

particle and considering the variation in the standard deviation of 𝑔(𝑡) as a function 𝜌𝑠 as 

shown in Fig. 3.10. 

 
Fig. 3.10. Variation in standard deviation of the RDF with increasing slice density(𝝆𝒔). 
Four distances from the particle surface is considered. Slice density of 1 corresponds to 𝑹𝒔 of 

0.05 mm/pixel. 

The inner shells corresponding to the blue curve (𝑡 = 0.02 𝑚𝑚) appears to 

experience the least standard deviation. The standard deviation of the outer most shell 

shows very large standard deviations at low 𝜌𝑠. This might be because of the wall effect 
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caused by the neighboring aggregates as seen in Figures 3.5 and 3.6. All the four curves 

appear to be converging at 𝜌𝑠 ~ 0.5. For the given Anm model, it can be concluded that a 

𝜌𝑠 of 0.5 is sufficient to calculate the RDF. This conclusion is justified further by 

observing in Fig. 3.9 that even for 𝜌𝑠 = 0.1, the RDF shows very little variation from the 

RDF for 𝜌𝑠 = 1. The particles in sieve 3 can be optimized for performance by assuming 

spherical shape. This is achieved by reducing the order of Anm coefficients from 5 to 0. 

Table 3.2 describes the packing density achieved using this optimization and Fig. 3.11, 

3.12 and 3.13 shows the RDF data computed for resultant model. 

Table 3.2 PSD and achieved volume fraction by 𝚳𝒔𝒂𝒏𝒅 where particles from 

Sieve 3 were assumed to be spherical particles by reducing the order of Anm 

coefficients used to 0 instead of 5. The first column describes the minimum and 

maximum width of the particles in that sieve. 

Sieve # 
Prescribed 

Volume Fraction 

Achieved Volume 

Fraction 
Packed Particles 

Sieve 1 (9.9-10.0 mm) 0.20 0.13 2 

Sieve 2 (4.9-5.0 mm) 0.02 0.02 3 

Sieve 3 (0.15-0.25 mm) 0.08 0.08 202852 
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Fig. 3.11. The RDF calculated for one coarse aggregate and spherical sand particles 

with a slice density of 1. 

 
Fig. 3.12. The RDF calculated for one coarse aggregate with four different slice densities 

with spherical sand particles. Slice density of 1 corresponds to 𝑹𝒔 of 0.05 mm/pixel. 
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Fig. 3.13. Variation in standard deviation of the RDF with increasing slice density(𝝆𝒔). 
Four distances from the particle surface is considered. Slice density of 1 corresponds to 𝑹𝒔 of 

0.05 mm/pixel. The sand particles in sieve 3 is assumed to be spherical in shape. 

 

3.5 Summary 

The impact of overlapping the uniform thickness shells is surprisingly broad and 

has given rise to many questions. A 2D slicing technique that leveraged the EOB idea 

previously developed for detecting overlap between two 3D particles has been 

implemented. This greatly eases the computational burden of the existing 3D 

visualization scheme when high density Anm models are generated and in some cases the 

2D visualization has proved to be the only viable option. 2D slice images have been 

compared with their corresponding 3D models and interesting geometric effects such as 

apparent increase in uniform thickness shell, single particle appearing to be multiple 

particles and the occurrence of patches of the uniform thickness shell have led to the 
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conclusion that 2D slicing gives rise to features that are clearly understood only when the 

3D structure is also visualized. This has been identified as a potential tool for guiding the 

inference of features from sliced experimental samples. Finally, a method for 

characterizing the wall effect observed in the Anm model was developed and preliminary 

analysis of this system was performed.  
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CHAPTER FOUR: CONCLUSIONS 

4.1 Innovative Contributions of this Research 

The most important contributions of this research are (1) improving the Anm 

model’s performance by integrating the EOB method for contact detection and the 

uniform thickness shell algorithm for irregular shaped particles, (2) introducing the 2D 

slicing feature for the Anm model, (3) combining the uniform thickness shell and the 2D 

slicing feature to develop a new framework to study the experimentally observed “wall 

effect” in concrete using the Anm model and (4) improving the computational 

performance of the Anm model code using shared memory parallelism. Furthermore, 

several opportunities for further research and development in this research has been 

identified. An illustration of the contributions of this research is presented in Fig. 4.1. 

 
Fig. 4.1. Illustration of the contributions of this research to the Anm model. 
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4.2 Summary and Outlook 

The Anm model for modelling virtual concrete was improved and augmented by 

adding the following features: 

(1) Integrating the EOB method for detecting overlap between star-shaped 

particles and comparing its performance with the previously used Newton-Raphson 

method. 

(2) Adding the feature to add uniform thickness shells to individual particle 

shapes being parked in the Anm model and using it to control the minimum inter-particle 

distance. The effect of this feature on the overall packing density of the model was also 

studied. 

(3) Identifying the computational bottlenecks in the Anm model code and 

introducing data parallelism so that the program can leverage the multiple cores available 

on most processors. The speedup achieved from this implementation was also studied. 

(4) Modifying the particle packing algorithm and data visualization to efficiently 

generate a variation in the Anm model where particles do not overlap each other, but 

uniform thickness shells can overlap other shells as well as other particles. 

(5) Developed a new feature for generating 2D slices from the 3D Anm model 

was developed.  

(6) Utilized the 2D slicing method to quantify the wall effect observed in the Anm 

model using a radial distribution function. 

These first three tasks were assimilated into one publication in a journal which is 

presented in Chapter 2. Tasks (4) to (6) were presented in Chapter 3. 
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The EOB method was found to be better than the Newton-Raphson method both 

in terms of computational efficiency as well as overlap detection accuracy. Even though 

the EOB method significantly improved the performance of particle parking, plenty of 

opportunity remains to further improve computational efficiency. The EOB method is 

currently restricted to checking if the particle being placed overlaps with one existing 

particle at a time. However, in dense packing scenarios, it must be computationally 

beneficial to concurrently check if the particle being parked has contact with multiple 

particles that are already parked in the vicinity. This parallel optimization opportunity is a 

potential candidate for data parallelism using libraries such as OpenMP. Other 

opportunities exist for task parallelism in the Anm model. For example, multiple particles 

can be attempted to park concurrently in different subdomains within the volume being 

packed. But packing multiple particles in parallel is a more complex task than detecting 

overlap of the newly placed particle with multiple already parked particles. The added 

complexity of parking multiple particles concurrently is partly because two concurrently 

parked particles have the potential to be overlapping even though they are placed in 

separate subdomains. This scenario happens when the two particles are being parked in 

adjacent subdomains. Furthermore, the particle being parked has the potential to be 

overlapping another already placed particle in the adjacent subdomain. 

The ability to add uniform thickness shell to individual particles significantly 

increases the potential applications accessible to the Anm model. When the shells are 

assumed to be non-overlapping as demonstrated in this research, the uniform thickness 

shells become a means to controlling the minimum interparticle distance. The uniform 

thickness shell is not retained in the final model per this assumption. However, other 
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applications such as the ITZ layer model might require the uniform thickness shell to be 

overlapping other shells and particles. It has been identified that the Newton-Raphson 

iteration method used to solve system of equations for creating the uniform thickness 

shell fails to converge when the shell thickness is more than ~2%. This presents an 

opportunity to improve the numerical stability of the program. 

The data parallelism implementation using the Microsoft PPL library has resulted 

in a speedup of ~5 and an efficiency of ~0.6. One disadvantage of the PPL library is that 

the program can only be compiled for Windows based operating systems. Other libraries 

such as OpenMP (Dagum and Menon, 1998) and Intel Threading Building Blocks (TBB) 

library (Willhalm and Popovici, 2008) which aim at providing shared-memory 

parallelism, also known as data parallelism can target Windows based OS’s as well as 

Unix based OS’s. Since most of the cluster computers accessible to universities are Unix 

based, implementing the parallelism using these libraries increases the accessibility of the 

Anm model in terms of the hardware capability. The libraries such as OpenMP and TBB 

provide the ability to distribute the load on multiple central processing units (CPU’s). 

However, other libraries such as the CUDA Toolkit (Nvidia, 2010) can distribute the 

computational load to graphical processing units (GPU’s) through shared-memory 

parallelism. Performing domain decomposition and parking the particles in subdomains 

in parallel has the potential to significantly improve the efficiency. This type of 

parallelism is called distributed-memory parallelism and involves significant amount of 

code change. The distributed memory parallelism can be implemented using API’s that 

distribute the load on the CPU’s or the API’s that distribute the load on GPU’s. The 

recommendations involving shared memory parallelization can be implemented with 
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minimal code change and provide the ability to utilize cluster computers. The 

recommendations involving distributed memory parallelization can be highly beneficial 

while trying to build models which contain large number of very small particles such as 

cement particles or fine aggregates. 

The 2D slicing feature is a useful tool to gain a perspective on the geometric 

effect of irregular shapes when observed on a 2D surface. A typical example of the 

geometric effect is where a single particle appears to be two separate particles when 

viewed in 2D (Fig. 3.3). The process of analyzing material microstructural feature using 

cross sections is a common practice in materials science. Tools such as Focused Ion 

Beam (FIB) are routinely used to cut slices of materials to be observed under 

microscopes. Much can be learned by carefully analyzing Anm model slices from 

different types of packing fractions and aggregate types. The slice images can also be an 

effective way to perform statistical analysis of packing densities and distributions as a 

function of the Euclidian distance from the particle surfaces. An example of such an 

analysis is presented in section 3.4 where the reduced packing density distribution near 

the aggregate surface is quantified. 

The current research exemplifies the use of the spherical harmonic expansion 

method to represent irregular shapes in the context of concrete mesoscale microstructure 

modelling. However, the applications of this technology are not limited to this material or 

scale or even the domain of materials modelling. Other potential material models that can 

use this idea could be the modelling of flow of red blood cells or macromolecules which 

generally tend to arrange in arbitrary shapes and other systems where shape tends to play 

in important role. Other domains that can benefit from this idea includes 3D data 
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visualization where large volumes of 3D data need to rendered. Since storage costs 

incurred by the current method are typically much lesser than voxel based representation 

of irregular shapes, this method has the potential to revolutionize 3D data storage and 

visualization demonstrating the broad impact of this research. The recent surge in the 

virtual reality and augmented reality further justifies the need for investing more 

resources in the field of 3D data and in this research topic. 
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