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ABSTRACT 

Great Lakes coastal wetlands are some of the most crucial ecosystems to 

biodiversity in the Great Lakes Basin, yet suffer increasing degradation due to invasive 

plants. Wetland plant invasions can be controlled in their initial stages, but early 

detection of invasive plants using field surveys are often untenable due to budget 

constraints. Remote sensing techniques offer solutions to management objectives during 

the early stages of invasion on a landscape scale due to their ability to cheaply create 

spatially explicit information about plant distributions. Some invasive plants, such as 

Typha x. glauca, are conspicuous on a large scale, and can be mapped to their current 

extent using new satellite and modeling techniques. Inconspicuous invasive plants 

however, such as Hydrocharis morsus-ranae, may be undetectable by remote sensing 

sources and require predictive strategies. In this thesis I explored the use of remote 

sensing in the management of a conspicuous and inconspicuous invasive wetland plants 

in the St. Mary’s River, MI.  I successfully classified the current extent of conspicuous 

Typha x. glauca and other wetland vegetation types to provide spatially explicit maps for 

early detection and management and examined methods that can be adapted for use in 

emergent wetlands worldwide. The habitat suitability of inconspicuous Hydrocharis 

morsus-ranae was also determined using novel fine-scale habitat covariates determined 

from lidar and radar. Habitat covariates derived from these sources should see wider use 

in species distribution modeling, particularly with wetland plants, to create better 

predictions of invasive plant expansions. Implementation of new and upcoming remote 
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sensing data sources and methods will allow for better invasive wetland plant 

management at greater spatial and temporal scales than field studies alone. 
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CHAPTER ONE: INTEGRATION OF RADAR AND OPTICAL SATELLITE DATA 

FOR FINE SCALE DETECTION OF AN INVASIVE PLANT IN GREAT LAKES 

COASTAL WETLANDS 

Abstract 

Great Lakes coastal wetlands have an ecological importance disproportionate to 

their size, and are extremely vulnerable to invasive plant invasions. Wetland plant 

invasions can be effectively controlled in their early stages, yet early detection of non-

native plants using traditional ground survey methods is time-prohibitive and costly. 

Remote detection can be effective but challenging due to small population sizes of 

invasive plants during the early stages of invasion and spatially coarse satellite data. New 

satellite data sources and analysis techniques offer promise for fine-scale detection of 

invasive wetland plants using remote sensing. In this study I used a C-band synthetic 

aperture radar (Sentinel-1) from three different dates with fine-scale multispectral optical 

imagery (RapidEye) to classify coastal wetland plant communities. I had particular 

interest in classifying and detecting invasive hybrid cattail (Typha x. glauca), which 

imperils the high quality coastal wetlands of the St. Mary’s River. I also compared 

classification accuracy between Maximum Likelihood and random forest algorithms. 

Using random forest, I calculated Mean Decrease Accuracy (MDA), which quantifies the 

relative importance of each variable for the classification. The MDA demonstrated that 

the early season (May 30th) synthetic aperture radar and the “red-edge”, green, and NIR 

(Near-Infrared) bands of RapidEye were the five most important variables to discriminate 
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between wetland plant communities. I successfully classified wetland vegetation types at 

an appropriate scale to guide early detection and management of Typha x. glauca 

invasions into other wetland plant communities. Furthermore, my methods can be used 

for repeat monitoring of hybrid cattail stands, and can be adapted for remote monitoring 

in other wetland environments. 

Introduction 

Wetlands are an ecosystem in peril. In the United States alone, over half of all 

historic wetlands have been lost since European colonization (Dahl 1990). Activities such 

as human-mediated dredging, draining, and filling are the major direct contributors to 

wetland loss and degradation (Gibbs 2016). These losses have important implications for 

the natural functioning of many ecosystems and of overall biodiversity because wetlands 

are an essential habitat for many types of wildlife, particularly migratory birds (Junk et 

al., 2006) and fish (Jude and Pappas 1992). Wetlands also provide humans with a variety 

of valuable ecosystem services, including improved water quality (Johnston 1991) and 

flood hazard reduction (Bullock et al., 2003). 

Next to direct habitat destruction, invasive plants are considered one of the 

primary threats to wetland ecosystems. Despite occupying only 6% of the terrestrial and 

freshwater surface of the earth, wetlands harbor 24% of the world’s worst invasive plants 

(Zedler and Kercher 2004). Invasive plant dominance can impact native wetland plant 

community diversity and architecture (Houlahan and Findlay 2004), alter sediment 

nutrient cycling (Templer et al., 1998), modify hydrology (Ayers et al., 2004), and 

degrade the ecological and societal value of the wetland (Holdredge and Bertness 2011). 

It has often been demonstrated that early detection and control of invasive plants offers 
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the best chance of effective management (Rejmánek and Pitcairn 2002). Invasive species 

also typically have a period of time after initial colonization and before dominance, 

where individual populations are small and management is most likely (Mehta et al., 

2007)   Yet, restoration and control efforts often target large, established invasive plant 

populations, and are often unsuccessful in their management goals (Martin and Blossey 

2013; Kettenring and Adams 2011). A major challenge to control is identifying the 

invasion in its early stages and mapping their spatial extent (Crooks et al., 1999). Because 

many wetlands are large and relatively inaccessible, field-surveying for invasive plant 

populations is often not practical or economical. 

Remote sensing imagery sources and analysis have increasingly been used to 

fulfill this management need by allowing for large landscapes to be analyzed, particularly 

with multispectral satellite imagery (Ozesmi and Bauer, 2002). Despite the potential 

utility of remote sensing in management, wetlands have historically been challenging in 

remote sensing efforts because of their unique characteristics (Hestir et al., 2008). In fully 

terrestrial systems, plants are traditionally differentiated with optical satellite data using 

their unique spectral signature, particularly their response to near-infrared wavelengths 

(Lass et al., 2005). By comparison, wetlands have heterogeneous plant communities that 

result in “mixed pixels,” i.e. fine-scale variability in plant composition (Gallant 2015). In 

addition, there can be a high amount of variability in spectral reflectance within a given 

species (Adam et al., 2010) and among spectrally similar groups of plant communities 

(Ozesmi and Bauer 2002). The commonly used Landsat series of satellites provides a 

spectral and temporal resolution that is often attractive to wetland mappers. However, 

Landsat has a relatively coarse spatial resolution (30m), which can lead to mapping errors 
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of smaller landscape units (Ramsey and Laine 1997). Several other imagery sources have 

been used for wetland remote sensing, each with benefits and limitations with regards to 

wetlands and invasive plant monitoring. For example, wetland communities have been 

mapped successfully using traditional aerial photography (Scarpace et al., 1981), 

hyperspectral imagery (Adam et al., 2010), Light Detection and Ranging (Brock and 

Purkis 2009), Synthetic Aperture Radar (Bourgeau-Chavez et al., 2001), unmanned aerial 

vehicles (Jensen et al., 2011), and Terrestrial Laser Scanner systems (Guarnieri et al., 

2009). Despite the ability of these data sources to characterize unique aspects of plant 

phenology, many of these sources can be prohibitively expensive for local management 

efforts, and may require dedicated technicians. 

Two recent satellite products provide an excellent opportunity to improve low 

cost wetland monitoring, and offer a potentially transformative solution to traditional 

early detection, which will contribute to control of invasive wetland plants. Sentinel-1, 

launched in 2014, is a constellation of two satellites that carry a C-band Synthetic 

Aperture Radar (SAR). SAR is a method of active remote sensing that measures returns 

from consecutive pulses of microwaves emitted from the sensor to illuminate the Earth’s 

surface. SAR imagery is useful in annual mapping efforts due to its ability to penetrate 

cloud cover and darkness, which multispectral imagery cannot. Two widely available 

SAR satellites, ESA ERS-1 and ERS-2 (European Remote-Sensing Satellite), launched in 

1991 and 1995, had C-band SAR that aided detection of inundation and biomass in 

wetlands due to its “double-bounce” effect on emergent vegetation (Bourgeau-Chavez et 

al., 2001). The now-retired ALOS-1 Phased Array type L-band SAR (PALSAR) multi-

temporal (multiple-date) imagery paired with Landsat multispectral imagery has been 
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used to accurately map wetland vegetation communities (Bourgeau-Chavez et al., 2015). 

Multi-temporal SAR imagery has previously been used with Landsat imagery to increase 

the accuracy of wetland mapping due to its ability to detect changes in inundation, 

phenology, and biomass (Bourgeau-Chavez et al., 2009; Corcoran et al., 2013). However, 

the 30-meter spatial resolution of Landsat limits its effectiveness for mapping invasive 

species at a scale to guide early detection and management. In comparison, the use of 

multi-temporal C-band SAR from the new Sentinel-1 has been relatively unexplored in 

wetland classification at more regional scales, and may be a complimentary resource 

when paired with higher resolution multispectral imagery. 

The second promising satellite product is RapidEye, a high resolution commercial 

multispectral satellite constellation launched in 2008 that includes a “red-edge” optical 

band that has been found to be effective in many measures of plant community 

delineation (Ramoelo et al., 2012; Hong et al., 2015; Tapsall et al., 2010). RapidEye’s 5m 

resolution allows for relatively low cost, fine-scale mapping. However, RapidEye has 

been seldom integrated with complementary SAR imagery for fine-scale wetland 

mapping. A hybrid approach that incorporates both X-band SAR and optical products has 

previously been used to map wetland communities in great detail (Van Beijma et al., 

2014), and RapidEye and Sentinel-1 SAR have been used to classify (categorize) crop 

types (Lussem et al., 2016). However, RapidEye has never been used with Sentinel-1 C-

band SAR to classify wetland plant communities. 

Typically, wetlands have been classified with supervised parametric approaches, 

particularly Maximum Likelihood Estimation (MLE) (Ozesmi and Bauer 2002), a user-

friendly technique included in commonly-used spatial analysis and GIS software (e.g. 
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ArcGIS, ENVI). However, machine-learning algorithms such as random forest (Liaw and 

Wiener 2002) have become more widespread in remote sensing studies in recent years 

due to advantages in robustness against overfitting models (Breiman 2001). Another 

desirable aspect of random forest is its generation of measures of variable importance. 

Variable importance allows for a more critical examination of which variables (such as 

imagery sources) are most important for discriminating the vegetation classes of interest. 

Wetlands have been previously successfully classified with random forest (e.g., Adam et 

al., 2014; Corcoran et al., 2013), but studies have typically produced coarse vegetation 

classes within large wetland complexes, rather than finer scale vegetation communities 

necessary for early detection and management of aquatic invasive plants. 

Given the importance of early detection of invasive plants within wetland 

ecosystems, the main objective of my study was to improve methods to monitor 

wetlands, and in particular acquire early detection of invasive wetland plant populations 

and the vegetation communities they impact, using new remote sensing data sources and 

analysis methods. Emphasis was placed on low cost, high resolution wetland mapping 

that could be performed annually. I conducted my research in the St Mary’s River of 

Michigan’s Upper Peninsula, which represents an ideal study area because of its diverse 

mix of coastal wetlands and high conservation value. The St Mary’s River is of particular 

interest because of the growing prominence of invasive Typha x. glauca, hereafter 

referred to as hybrid cattail, which is a hybridization of native Typha latifolia and exotic 

Typha angustifolia (Smith 1987). Hybrid cattail has a tendency to dominate many 

wetland plant communities (Frieswyk et al., 2007), having dramatic impacts on plant 

community richness, litter mass, and nutrient concentration (Tuchman et al., 2009). In 
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much of my study area, hybrid cattail is still in early stages of colonization, and thus 

accurate monitoring can guide timely management efforts and detect trends in expansion 

or contraction over other plant communities. My specific objectives were to compare the 

effectiveness of imagery source combination models in classifying hybrid cattail and 

other wetland communities. Once a best model for hybrid cattail and overall wetland 

accuracy was selected, I aimed to assess the relative importance of C-band SAR and 

RapidEye optical satellite data variables to suggest better methods for coastal wetland 

mapping. 

Methods 

Study Area and Species of Interest 

North America’s Great Lakes contain 20 percent of the world’s surface freshwater 

by volume and are globally important for biodiversity and ecosystem services 

(Rothlisberger et al., 2012), with many of these services dependent on Great Lakes 

coastal wetlands in particular ( Prince et al., 1992; Sierszen et al., 2017). Great Lakes 

coastal wetlands provide habitat for a portion of the life history for 80% of Great Lakes 

fish species (Jude and Pappas 1992), and are also especially important ecosystems for 

migratory birds (Riffell et al., 2001). Compared to many of the degraded southern coastal 

wetlands of Lakes Michigan, Erie, and Ontario, wetlands in Lake Superior and northern 

Lake Huron are minimally impacted by human disturbance (Cvetkovic and Chow-Fraser 

2011). The sole drainage of Lake Superior into the other lakes, and the location of many 

remaining high-quality coastal wetlands is the St. Mary’s River (Fig. 1.1). The St. Mary’s 

River is a large strait that facilitates high shipping traffic, while also supporting large 

intact wetland systems. While the St. Mary’s River supported largely native wetland 
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communities well into the late 1980’s, many formerly diverse plant communities are now 

dominated by hybrid cattail (Typha x. glauca), which has continued to expand via clonal 

propagation. 

 
Figure 1.1  Location of the St. Mary's River Study Site in North America’s Great 

Lakes Basin 

Hybrid cattail is predominantly an F1 hybrid between native broadleaf cattail 

(Typha latifolia) and exotic narrowleaf cattail (Typha angustifolia) which is native to 

much of Eurasia (Ciotir et al., 2013). The vigorous growth of hybrid cattail has allowed it 

to thrive in many habitats and accumulate more biomass compared to its parental species 

(Olson et al., 2009; Bunbury-Blanchette et al., 2015). In Great Lakes coastal wetlands 

such as those in the St. Mary’s River, hybrid cattail has negative effects on native plant 

biodiversity and community structure (Mitchell et al., 2011). To control hybrid cattail, 

treatment efforts must focus on small or recently established populations, as certain 
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harvest methods have proven effective in removing hybrid cattail and increasing native 

plant diversity (Lishawa et al., 2015). Remote sensing based monitoring and detection 

methods are superior to traditional land-based surveys in efficiently detecting these 

populations, as they can cover a larger area more economically and identify 

inconspicuous or inaccessible invasive plant populations. 

Remote wetland classification in the Great Lakes has typically focused on 

detection of Phragmites australis, an invasive plant structurally similar to hybrid cattail 

that outcompetes native wetland vegetation in many areas of the Great Lakes. However, 

few mapping efforts have focused on examining the fine scale dynamics of hybrid cattail, 

one of the principal invasive plants in the high-quality coastal wetlands of Michigan’s 

Upper Peninsula. To address the need for finer scale hybrid cattail monitoring and 

wetland management, maps must be produced at a more detailed scale to detect the 

dynamics of smaller populations, and do so at a low cost. In particular, avenues where 

freely available and/or low-cost imagery are desirable, as they reflect the realities of 

budget constraints in natural resource and management organizations. 

The study was conducted on a 721 sq. km area of the St. Mary’s river, containing 

much of the coastal wetlands along the waterway and representing a wide range of 

wetland plant communities. Previous maps of Great Lakes coastal wetlands focus on 

basin-wide trends in plant communities (Bourgeau-Chavez et al., 2015). However, many 

of the Cooperative Invasive Species Management Areas, and other independent 

management units in the Great Lakes operate and are funded at more regional operational 

scales.

Field Data 
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Field data for a reference dataset were gathered from the Sault Tribe of Chippewa 

Indian’s Inland Fish and Wildlife Department during summer 2016. Plant surveys 

consisted of an individual or team walking 300 meter transects along a wetland, and 

having a surveyor estimate cover percentages of different plant species in a one meter 

quadrat at 25 meter intervals (for a total of 13 quadrats sampled per transect). 25 transects 

were surveyed throughout the western extent of the study site, with a total of 325 

reference quadrats (Fig. 1.2). Overhead photos were taken one meter above the 

vegetation canopy at each quadrat in 19 of the 25 transects using a digital camera 

attached to a pole, with the photo absences occurring in transects located in terrain that 

made maneuvering the photo pole difficult. Photos were used to validate surveyor species 

identification. 
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Figure 1.2  Configuration of Transect Locations in the Study Site (Left) and 

Quadrat Points at Each 25 Meter Interval (Right) 

A total of 11 vegetation classes were established by differences in plant 

communities, considering physical structure, species composition, and water depth. 

These included 1) hybrid cattail, 2) mixed sedge, 3) open bulrush, 4) emergent/floating, 

5) wet grass meadow, 6) floating leaf, 7) wet shrub, 8) dry shrub, 9) field, 10) forest, and 

11) open water. 

 Reference data to train the models were derived from two sources, directly from 

the survey points along transects (or spaced along transects between reference sites of the 

same class), and indirectly based on interpretation of high resolution aerial (NAIP) and 

UAV imagery taken in summer 2016. UAV imagery was captured by a senseFly eBee, a 
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fully autonomous UAV system to produce multispectral imagery in four bands at five 

centimeter resolution. Some classes, such as hybrid cattail, mixed sedge, wet shrub, and 

dry shrub, had pixels largely derived from reference quadrats due to their inconspicuous 

spectral characteristics when observing aerial imagery. The other classes, open bulrush, 

emergent/floating, wet grass meadow, floating leaf, field, forest, and open water, were 

distinct enough in the imagery sources to create reference pixels largely independent 

from reference quadrats, and were spread out within the study area. A total of 1041 five 

meter reference pixels were created from these two methods, which were randomly 

partitioned into training and testing subsets (Fig. 1.3), with a minimum of 72 reference 

pixels assigned to a class (Table 1.1)
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Figure 1.3  Pixel Locations For All Classes in the Study Site, Partitioned Into 

Training (Red) and Testing (Blue) Sets (Left), and Example of Pixels Assigned to 

Reference Quadrats (Right) 

 

Table 1.1  Description of Wetland Community Vegetation Classes and Total 

Number of Reference Pixels in Each Class 

Name Acronym Major Genera Number of Reference Pixels 

    

Hybrid cattail HC Typha 101 

Mixed sedge MS Carex, Schoenoplectus 117 

Open bulrush OB Schoenoplectus 103 

Emergent/floating  EF Schoenoplectus/Nymphaea 80 

Wet grass meadow WG Calamagrostis/Phalaris 115 

Floating leaf FL Nymphaea/Nuphar/Potamogeton 76 

Wet shrub WS Myrica/Salix 74 

Dry shrub DS Cornus/Salix 72 

Field FD Various 101 

Forest FS Various 100 

Open water OW N/A 102 

 

Satellite Data and Processing 

A cloud free RapidEye image of 721 sq. km was captured on August 29th, 2016 

and delivered as an orthorectified product. RapidEye imagery is provided as 

orthorectified, multispectral data from a five-satellite constellation. The multispectral 

image contains five bands, each with a pixel size of five meters: blue (440-550nm), green 

(520-590nm), red (630-685nm), red-edge (630-685nm), and near-infrared (760-850nm). 
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I accessed SAR imagery from Vertex, a data portal operated by the Alaska 

Satellite Facility (Copernicus Sentinel data 2016. Retrieved from ASF DAAC 18 

December 2016, processed by ESA). Interferometric-Wide, Ascending Sentinel-1 SAR 

scenes in May, July, and August were included to capture the entire growing season of 

these plant communities before senescence. SAR data was processed using the Sentinel 

Application Platform (SNAP), with each SAR image (10 by 10 meter pixel spacing) 

subset to the study area and processed with thermal noise removal, radiometric 

calibration to sigma0, speckle filtering, and range-doppler terrain correction using a 

median filter (see Moreira et al., 2013) for details on the processing and calibration 

techniques). The C-band SAR imagery used in this study is available in two 

polarizations: VV (Vertical-transmit Vertical-receive) and VH (Vertical-transmit 

Horizontal-receive). Fig. 1.4 is an example of the RapidEye optical imagery compared to 

VH and VV SAR multi-date composites and their respective vegetation communities 

within the scene. 

 

 

   

 

http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus
http://www.asf.alaska.edu/
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Figure 1.4  Optical RapidEye (Top) Multi-Date Sentinel-1 VV SAR (Inundation) 

(Middle) Multi-Date Sentinel-1 VH SAR (Biomass). In Each Image, Labeled 

Examples of Wet Grass Meadow (A), Hybrid Cattail (B), Open Bulrush (C), and 

Open Water (D). Note Differences in Characterization of B) (Hybrid Cattail) and A) 

(Wet Grass Meadow) Between the VV SAR and VH SAR Images 

The six bands of SAR were resampled from their native resolution of 10 meters 

using bilinear interpolation to a working resolution of 5 meters in order to match the 

resolution of the RapidEye imagery. The resampled SAR and the five bands of RapidEye 

optical imagery were stacked into a composite, 11 band image. The values of these 11 

bands across the study area were subset to the pixel locations in our reference dataset, and 

exported to testing and training datasets.
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Classifications and Accuracy Assessment 

Random Forest 

Random forest is an ensemble learning method of  supervised nonparametric 

classification that generates decision trees, and predicts one of the specified classes based 

on a majority vote (Liaw and Wiener 2002). The random forest classification was 

performed using the “randomForest” package in R (Liaw and Wiener 2014) and imputed 

to output a spatial product based on the predictors generated (Crookston and Finley 

2008). Random forest was chosen because of its accuracy in land-cover classifications 

(Rodriguez-Galiano et al., 2012) and its ability to determine a ranking of variable 

importance. For the random forest models in this study, 500 decision trees were used, 

based on stabilization OOB error rate after this default number. The only parameter 

edited by the user in a random forest, other than the number of decision trees, was the 

number of parameters randomly sampled at each node. This value was set as 3 after 

iterative runs the model showed no decrease in accuracy with higher values. Cross 

validation is sometimes considered unnecessary in random forest models (Breiman 

1999), as the random forest by default sets aside 2/3 of the data for training and the 

remaining 1/3 for testing for an Out of Bag (OOB) error. This approach typically reduces 

the need for an independent validation set, but because of the need to compare the 

random forest to the Maximum Likelihood Estimation, reference pixels were randomly 

partitioned into training (70% of reference pixels) and testing (30% of reference pixels) 

datasets, to cross-validate each algorithm generated on the training dataset with the 

testing dataset. Variable importance was determined in the random forest by randomly 

permuting the OOB samples for each predictor and subtracting the predictor specific 
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OOB performance from the whole-model OOB accuracy. This calculation  produced a 

Mean Decrease in Accuracy (MDA) on which to rank the variables from most to least 

important in the creation of the decision trees, and thus their importance to the models 

(Liaw and Wiener, 2014). The relative ranking of these variables to each other was 

considered a more important measure than the magnitude of their values. 

Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) is a supervised parametric classification 

method whereby the maximum likelihood of a pixel belonging to a class is determined by 

parametric rules established by the training pixels. MLE was chosen due to its ease of 

use, common presence in geospatial software, and legacy use in land use classifications. 

Although MLE classifications are considered somewhat out of date in comparison to 

modern machine learning classifications, the process is more user-friendly in non-expert 

settings. The training (70%) and testing (30%) pixels came from the same dataset 

established for the random forest models, and were used to generate class and overall 

accuracy for the MLE.

Model Creation 

To assess the contribution of optical and SAR imagery, I created four random 

forest models with differing band combinations out of my 11 variables (5 optical and 6 

SAR) (Table 1.2). I performed five different classifications based on different 

combinations of input variables (i.e. image bands) and classification methods. Models 

included a full input MLE, and four random forest models. Random forest models 

included an optical-only, SAR-only, single-date SAR, and full-input model to determine 
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how different imagery combinations impacted class and overall accuracies. An overview 

of processing and analysis workflow is provided in Fig. 1.5.

Table 1.2  Input Variable Combinations in RF and MLE Models. “X” Denotes 

Inclusion of Variable Into Each Model 

Input Variable RF Model        MLE  

 RF1 RF2 RF3 RF4  

            

RapidEye blue band X  X X X 

RapidEye green band X  X X X 

RapidEye red band X  X X X 

RapidEye red edge band X  X X X 

RapidEye NIR band X  X X X 

      

August 22 VV SAR  X X X X 

July 17 VV SAR  X  X X 

May 30 VV SAR  X  X X 

August 22 VH SAR  X X X X 

July 17 VH SAR  X  X X 

May 30 VH SAR  X  X X 
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Figure 1.5 Processing workflow of RapidEye and SAR Imagery for Classification 

and Analysis
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Results 

Comparison of MLE and Random Forest Models 

Overall Model Comparison 

Out of the five total models tested (Table 1.3), the full-input random forest model 

(RF4) had the highest overall accuracy. The optical-only (RF1) and SAR-only (RF2) 

classifications were of similar overall accuracy, but the inclusion of the peak-phenology 

August VV and VH SAR data into the optical classification (RF3) resulted in an increase 

of 6.5% overall accuracy. While the MLE model used the same variables and reference 

data as the RF4, it was 4.9% less accurate overall. Full error matrices for all five models 

can be found in Appendices A.1.1:A.1.5.  

Table 1.3 Overall Classification Accuracy (Percentage of the Total Number of 

Testing Pixels Correctly Classified by the Training Classification) of All Models 

Model Overall accuracy (%) kappa Coefficient 

RF1 80.52 0.78 

RF2 78.57 0.76 

RF3 87.01 0.86 

RF4 90.26 0.89 

MLE 85.39 0.84 

   

   

Hybrid Cattail Classification Accuracy 

Results for model hybrid cattail accuracy differed from model overall accuracy 

(Table 1.4). The full-input random forest model (RF4) and the full-input MLE model 

(MLE) shared the top ranking with an identical hybrid cattail producer’s accuracy (Table 

1.4). Notably, the SAR-only model (RF2), had a high hybrid cattail producer’s accuracy 

that was identical to the single-SAR date combination model (RF3), and surpassed the 

accuracy of the optical-only model (RF1).  
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Table 1.4 Producer’s Accuracy of Hybrid Cattail Class in Each Model 

Model Description HC Accuracy (%) 

RF1 Optical-only 80.00 

RF2 SAR-only 86.67 

RF3 Single-date SAR 86.67 

RF4 Full-input 90.00 

MLE Full-input MLE 90.00 

 

Random Forest and Maximum Likelihood Individual Wetland Class Comparisons 

Because the full-input random forest model shared identical variable inputs to the 

MLE, comparisons of algorithm impacts could be made.  Class producer’s accuracy 

differences between the RF4 and MLE models (Table 1.5) ranged from 0-11.4%, with the 

largest difference found in mixed sedge, and identical accuracies in hybrid cattail and 
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floating leaf classes. Differences in accuracies between the two algorithms tended to 

favor the RF4, except in the case of the wet and dry shrub classes.  

 

 

 

 

 

 

 

 

 

Table 1.5 RF4 and MLE Producer’s Accuracies of Each Vegetation Class 

Vegetation Class RF4 Accuracy (%) MLE Accuracy (%) Difference (%) 

    

Hybrid cattail 90.00 90.00 0.00 

Mixed sedge 91.43 80.00 11.43 

Open bulrush 100.00 93.33 6.67 

Emergent/floating 95.83 87.50 8.33 

Wet grass meadow 94.11 91.17 2.94 

Floating leaf 86.36 86.36 0.00 

Wet shrub 68.18 72.72 -4.54 

Dry shrub 80.95 85.71 -4.76 

Field 96.67 86.67 10.00 

Forest 80.00 70.00 10.00 

Open water 100.00 93.33 6.67 

    

Mean class accuracy (%) 89.41 85.16  
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Importance of SAR and RapidEye Variable Contribution to Classification Accuracy 

Because the full-input random forest model (RF4) proved to be the most accurate 

model between overall and hybrid cattail accuracy, and contained all of the variables used 

in this study, it was used for further analysis of variable importance. I first calculated the 

Mean Decrease in Accuracy (MDA) which estimates a decrease in model accuracy when 

the individual variable is excluded. The ranking of all variables by MDA in the RF4 

model (Fig.1.6) indicated the top five variables consisted of three optical and two SAR 

bands.  In particular, both polarizations (VV and VH) of May 30th SAR were highly 

ranked compared to the July and August SAR dates.  
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Figure 1.6 Mean Decrease in Accuracy (MDA) Measure of Variable Importance 

in the Full Input Random Forest Model (RF4). In descending order of importance, 

RapidEye NIR band (NIR), RapidEye red-edge band (Red-Edge), May 30 VV SAR 

(MayVV) RapidEye green band (Green), May 30 VH SAR (MayVH), RapidEye red 

band (Red), July 17 VH SAR (JulyVH), July 17 VV SAR (JulyVV), August 22 VV 

SAR (AugustVV), August 22 VH SAR (AugustVH), and RapidEye blue band (Blue).  

When the RF4 classification of the study area was mapped (Fig. 1.7), it classified 

several circular colonies of hybrid cattail around 50 meters in diameter in Munuscong 

Bay region. In an area known as the Munuscong State Wildlife Management Area, some 

of these colonies occur in large, native mixed sedge areas. Large artefacts are usually 

where a single date of SAR measured a large moving object, such as large ships or 

planes. 
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Figure 1.7 Vegetation Community Classification Map of the Full-Input Random 

Forest Model (RF4) in the St. Mary’s River
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Discussion 

Classification Accuracies and Spatial Autocorrelation  

The full-input random forest model (RF4) was superior in overall classification 

accuracy to the MLE with identical full inputs (Table 1.5). This consistent with similar 

studies comparing MLE to machine learning techniques such as random forest and 

Support Vector Machines in crop delineations (Lussem et al., 2016; Nitze et al., 2012). 

When field data are extensive, such as in this study, random forest may perform better 

than an MLE, as a strength of the method lies in dealing with unbalanced or missing data 

(Cutler et al., 2007). In my study, training pixels were either selected on or adjacent to 

reference quadrats, or selected from high-resolution imagery if the class could be easily 

discerned. While utilization of one meter quadrats is typical of Great Lakes coastal 

wetland monitoring (Uzarski et al., 2017), scalability with the satellite imagery (5 and 10 

meters), and a lack of data across the extent of the study area (Fig. 1.2) may have resulted 

in spatial autocorrelation and inflated class accuracies. While spatial autocorrelation is an 

inherent element of natural physical systems (Legendre 1993), it should be considered 

when interpreting the validity of mapped classifications in areas where our data were 

poor, particularly the eastern extents of the river. 

Importance of Optical and SAR Variables 

By combining both SAR and optical imagery sources, classifications reached their 

highest accuracy in classifying hybrid cattail and other wetland communities than with 

either source of imagery used alone. SAR variables, in particular the May VV SAR, were 

some of the most important variables (Fig. 1.6). May SAR among the three dates may 

have been important due to the characteristics of emerging marsh vegetation in the 
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spring, before peak phenology later in August.  July at a similar latitude in the Mer Bleue 

Bog in Ottawa, Canada (Baghdadi et al., 2001). The importance of the May VV SAR, 

which ranked among the top 3 variables, was likely due to its measurement of emerging 

vegetation in inundated areas, which encourages specular reflection off of a water surface 

and again off vertical vegetation, resulting in strong backscatter (Bourgeau-Chavez et al., 

2009). In comparison, VH SAR is commonly utilized to measure biomass, especially in 

woody or terrestrial environments (Martinez and Le Toan 2007). Outside of May, SAR 

was not among the top 5 ranked variables, which may indicate a lack of ability to 

penetrate peak phenology canopies in the later season. Although HH (Horizontal-transfer 

Horizontal-return) polarization C-band SAR has been found to be superior to VV in some 

wetland classification efforts (Lang et al., 2008), and is offered as a Sentinel-1 product, it 

was unavailable for this region of the Great Lakes during the time of this study. 

The red-edge band that makes RapidEye a unique product from other 

multispectral sensors was among the most important variables in the full-input random 

forest model, and has been a commonly used indicator of plant vigor and other physical 

qualities due to the small amount of absorption and high amount of reflectance in plant 

leaves (Filella and Penuelas 1994; Delegido et al., 2011). Red-edge was ranked second in 

its MDA among the 11 variables only to the near-infrared band. Near infrared is similar 

to red-edge in that it is typically found to have a high reflectance value in healthy plants, 

with differences found due to plant structure, leaf chemistry, and disease (Knipling 

1970). 

In the combination of SAR and optical variables, qualities that may be missed by 

one type of imagery can be captured by the other. Wetland communities with similar 
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optical properties may have different polarimetric or structural properties that can be 

captured by the SAR imagery but missed in optical bands due to dense canopies, and 

optical bands may capture information about stress or senescence that may be lost in SAR 

backscatter. (Silva et al. 2008; Hess et al., 2003). In the present study, a combination of 

both in the single-SAR date combination (RF3) and the full-input random forest model 

(RF4) resulted in the highest overall accuracies for wetland classes (Table 1.3). 

Invasive Species Management Implications 

The combination of fine resolution optical and SAR data resulted in maps that 

detected small (50 meter) colonies of hybrid cattail in a wetland landscape, which would 

have likely mixed into pixels of coarser datasets such as Landsat (30 meters). In my best 

classification, I was able to map hybrid cattail with 90.00% producer’s accuracy (100% - 

omission error) (Table 1.3) and 90.00% user’s accuracy (100% - commission error). In 

land use classifications, simply stating an overall accuracy can be problematic for 

management interpretation. Both the perspective of the map user and map maker must be 

considered. For a surveyor in areas mapped as hybrid cattail for ground-truthing or 

management, a high user’s accuracy will signify that most pixels on the map are the plant 

population they claim to be on the ground. For a user creating hybrid cattail maps based 

on reference data, producer’s accuracy may be a more important consideration, as it 

signifies an agreement between the vegetation class of the reference plots and the newly 

created map. Considering that each type of accuracy provides different information, a 

focus on one may provide a misleading sense of accuracy that may compromise proper 

inference needed for management decisions. Creation of accurate maps to detect new 
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populations must consider both, so the map is seen as a worthy resource by the surveyor 

and in agreement with reference data by the map-maker. 

New detections of small patches of hybrid cattail offer an opportunity to remove 

or halt hybrid cattail expansion into native wet meadows and emergent marsh. Previous 

studies have found success in treating small patches of hybrid cattail with below-water 

harvesting techniques, ultimately resulting in decreases of hybrid cattail cover and 

increases in native vegetation recruitment (Lishawa et al., 2017). These methods also 

allows for more effective post treatment documentation of management outcomes 

without requiring detailed on the ground surveys in subsequent years following 

management actions. Additional studies of long term mapping are recommended to test 

the utility of detection of new or expanding populations of hybrid cattail over time. 

Annual Monitoring Recommendations  

Based on the results of this study and the maps I were able to generate, I 

recommend an approach for annual mapping of hybrid cattail and other wetland 

communities that incorporates a single optical scene with multiple SAR scenes 

throughout the growing season. Although many studies use multi-temporal RapidEye, the 

minimum cost to acquire imagery can run in the thousands of dollars, which can 

represent a significant investment for a regionalized management unit. SAR also has the 

benefit of detection ability under cloudy conditions that may severely limit or eliminate 

the viability of other imagery sources on a reliable basis necessary for dense time series 

analysis of multispectral imagery. In comparing strengths of MLE and random forest, 

random forest may be more flexible to the caveats that most regional management efforts 

face in terms of the quantity and quality of training data and validation datasets needed.  
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Random forest also gives an easy to conceptualize measure of variable importance, which 

may be beneficial for determining the usefulness of paid imagery sources to freely 

available ones and decreasing total computing effort. A downside to random forest is that 

it requires more knowledge of coding compared to MLE, which is a native function of 

common software such as ArcMap. 

For other invasive species that may not require the fine scale resolution of 

RapidEye, a combination of multi-temporal ESA Sentinel-1 SAR and Sentinel-2 optical 

imagery using the methods and variables outlined in this study may be ideal. While 

Sentinel-2 bands (10 meters RGB and NIR, 20 meters for red-edge) have a slightly lower 

spatial resolution than RapidEye (5 meters), the 14-day return time and free access makes 

it a worthy resource for future exploration in invasive plant detection and mapping in 

wetlands. Because these methods were designed for use by smaller scale natural resource 

management units, localized knowledge and a base understanding of image interpretation 

is critical to recruit such knowledge for classification supervision and the creation of 

helpful spatial products and analysis. 

Conclusions 

Meeting the challenge of detection of fine-scale vegetation dynamics and 

invasions is now possible with widespread imagery and techniques. The primary goal of 

this study was to highlight methods that produce reliable, ecologically relevant spatial 

data for the use of regional natural resource managers, with a focus on hybrid cattail. 

Mapping of hybrid cattail extent allows for more efficient and strategic management 

when maps are produced in annual series. I found that of RapidEye optical and Sentinel-1 

SAR imagery complement each other well in the classification of wetland communities in 
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the St. Mary’s River, and their dual use could have high transferability to invasive 

wetland plants and wetland landscapes in other regions. A random forest model with all 

optical and SAR variables allowed for the highest classification accuracy when compared 

to other combinations and the Maximum Likelihood Estimation. Through random forest, 

I also found that the optical and SAR variables co-dominated as the most important 

variables, as each had two representatives in the top 4 ranked variables. 

Worldwide, wetland habitats suffer destruction from development and the 

introduction of invasive species. When accurate, ecologically relevant maps and other 

spatial products are able to be created in widespread practice, resources and policy can be 

more efficiently directed to put those systems on a positive trajectory. The proliferation 

of these tools and methods will ultimately aid in immediate and long-term conservation 

plans to protect, maintain, and restore natural communities. 
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CHAPTER TWO: USE OF LIDAR AND RADAR DERIVED VEGETATION 

METRICS TO PREDICT THE SPREAD OF AN INCONSPICUOUS INVASIVE 

WETLAND PLANT 

Abstract 

Remote sensing has seen increased use as a resource for invasive plant mapping 

as data sources and processing methods become more abundant and accessible. Many 

animal habitat suitability studies have shown the usefulness of fine-scale, remote-sensing 

derived metrics for species-specific habitat requirements. In this study, I used fine scale 

elevation and habitat structure derived from lidar and Synthetic Aperture Radar to help 

predict the habitat suitability of an inconspicuous wetland invasive plant, European 

Frogbit (Hydrocharis morsus-ranae), in Munuscong Bay, Michigan, USA. Lidar-derived 

elevation was the most important covariate to predict frogbit habitat suitability, although 

biotic variables such as NDVI (Normalized Difference Vegetation Index), lidar-derived 

vegetation cover, and radar-derived marsh inundation change also contributed. These 

biotic variables decreased predicted habitat area where elevation detected the water 

surface level to be, detecting suitable habitat provided by sufficiently dense emergent 

wetlands. From the relationship between frogbit and lidar-derived vegetation cover, I 

determined that frogbit likely invades marsh sites with sufficient emergent vegetation 

density to protect from wave energy disturbance, but with sufficient light to recruit 

annual turions. A map of the potential frogbit habitat indicates that Munuscong Bay has 

several areas of suitable wetland for it to expand to, and continued expansion appears to 
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be largely limited by wave energy and dispersal constraints. Use of fine-scale habitat 

covariates determined from lidar and radar should see wider use in species distribution 

modeling to create better predictions of invasive plant expansions. 

Introduction 

Invasive species are a cause of dramatic change in ecosystem functionality and 

biodiversity from local to global scales (Molnar et al., 2008; Vitousek et al., 1997; Mack 

et al., 2000). In the United States alone, the economic losses attributed to invasive species 

have been valued at up to $120 billion per year (Pimentel et al., 2005). Biological 

invasions, once established, have played a major part in extinctions of native species 

across the globe, driving biological homogenization across ecoregions (Clavero and 

García 2005; Olden et al., 2004). Invasive plants in particular are known to have the 

potential to cause ecosystem level impacts such as changes in carbon and nitrogen cycles 

(Liao et al., 2006; Vitousek 1987), hybridization with similar native species (Ellstrand 

and Schierenbeck 2000), and outcompeting native plants (Hejda and Py 2009). Despite 

this risk, resources to combat invasive species are not often allocated optimally, and 

restoration and control efforts often fail management goals (Martin and Blossey 2013; 

Kettenring and Adams 2011; Leung et al., 2002). Optimal funding allocation to invasive 

species surveillance and management could therefore benefit from predictive models that 

incorporate a comprehensive risk analysis framework (Lodge et al., 2016). Such 

predictions of invasive populations may be most effective when identifying areas in the 

landscape where populations may be at a smaller extent, posing a more economically 

feasible target (Crooks et al., 1999). A study of invasive species have similarly found 
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prediction guided prevention to be a rational economic solution in a cost-benefit analysis 

(e.g., Keller et al., 2008). 

Species distribution models (SDMs) have been operationalized as a predictive 

resource that typically combine occurrence records of a species with environmental 

covariates to estimate their potential distribution across a landscape (Elith and Leathwick 

2009). They can be applied as a valuable risk analysis resource in invasive plant 

management by predicting the area where a species invasion is most likely to occur, 

refining surveillance efforts in the search area (Crall et al., 2013; Jiménez-Valverde et al., 

2011; Underwood et al., 2004; Villero et al., 2017). One of the earliest SDMs, BIOCLIM 

(Beaumont et al., 2005), focused on estimating the potential spread of invasive species 

through 35 biologically relevant climatic covariates. These covariates see continued use 

in continental scale estimates of invasive plant distribution, particularly in the context of 

species response to different projected climate change scenarios (Booth et al., 2014). 

However, due to the coarse spatial scale at which these abiotic climatic covariates are 

produced (1 km²) there has been criticism regarding the ability of these models to account 

for finer scale complexities in species interactions and dispersal patterns (Pearson and 

Dawson 2003). The integration of biotic interactions has been explored as technology 

allows for more spatially explicit covariates that can improve model performance (Wisz 

et al., 2013). In addition, subsequent inconsistencies have been found when comparing 

coarse and fine scale environmental variables, with serious implications of fine-scale 

habitat change being lost with models built incorporating coarser climate covariates 

(Franklin et al., 2013). As SDMs become more popular in conservation and management 

efforts, spatially explicit environmental covariates that better represent the scale that key 
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ecological processes occur at are needed to improve model inference (Guisan and 

Thuiller 2005). 

Remote sensing datasets allow for physical attributes of large landscapes to be 

analyzed, measuring a wide variety of environmental characteristics in an area and how 

those characteristics may change over time. The ability to utilize these measurements as 

metrics for covariates in SDMs has been noted (Kerr and Ostrovsky 2003), but the use of 

remote sensing data to provide covariates for biological relationships remains 

uncommon. Some studies have highlighted a need for the inclusion of more advanced 

remote sensing data, such as lidar, radar, and hyperspectral imagery metrics as covariates 

to characterize species habitat use (e.g., Ficetola et al., 2014; Rocchini et al., 2015; He et 

al., 2011). In particular, novel covariates characterizing habitat structure sourced from 

lidar and radar-derived metrics are uncommon in SDM literature despite their widespread 

use in remote sensing studies. Compared to often-used vegetation indices (e.g., NDVI), 

which measure plant productivity and leaf chemistry (Pettorelli et al., 2005), lidar and 

synthetic aperture radar (SAR) measure unique structural characteristics that may 

improve the performance of SDMs. Lidar sensors are an active method of remote sensing 

that can measure the three-dimensional structure of plant communities, providing 

estimates for vegetation height, cover, and heterogeneity (Cohen et al., 2002). While lidar 

has been used to characterize habitat in terms of animal-plant interactions (Valle et al., 

2011; Ficetola et al., 2014; Vierling et al., 2013; Jones et al., 2010; Vierling et al., 2008), 

metrics describing three-dimensional plant architecture have not been utilized as a proxy 

for plant-plant interactions to improve SDM predictions of invasive plant habitat and 

distribution. SAR is another method of active remote sensing that has commonly been 
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used in ecological contexts to measure characteristics of emergent vegetation and soil 

moisture (Lang et al., 2008) and forest biomass (Carreiras et al., 2013; Koch 2010). 

However, SAR has been seldom examined as a source for covariates in SDM’s, despite 

the potential to create habitat covariates from backscatter intensity measurements 

(Saatchi et al., 2008; Buermann et al., 2008). 

While remote sensing data are often used to detect the current extent of canopy-

dominating invasive plants, challenges remain in the direct detection of inconspicuous, 

understory invasive species. One approach that can be used in these instances is to model 

the habitat suitability of a below-canopy invasive plant using remote sensing derived 

ecologically meaningful habitat covariates derived by remote sensing. This approach also 

addresses some of the criticisms of continuous remote sensing derived covariates in plant 

SDMs, as they may measure the characteristics of the plant directly instead of its habitat, 

leading to the prediction of current rather than potential extent in canopy-dominant 

invasive plants (Bradley et al., 2012). Knowledge of the biological interactions of 

invasive plants with other species, how they may limit or promote establishment, and 

how they may be measured using remote sensing have previously resulted in successful 

extent mapping of inconspicuous below-canopy invasive plants (Joshi et al., 2006). 

However, these principles have not seen widespread use in inconspicuous invasive plant 

SDMs. 

The objective of this study was to improve the performance of an inconspicuous 

invasive plant SDM using lidar and SAR derived metrics that serve as proxies for 

species-specific habitat requirements. I used these covariates to map the potential 

distribution of the inconspicuous invasive wetland plant, Hydrocharis morsus-ranae 
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(European frogbit) in a freshwater coastal wetland complex in the Great Lakes Basin. In 

Great Lakes coastal wetlands, frogbit extent is limited by wave energy, leading to a 

strong understory association with emergent herbaceous wetland species such as fellow 

invasive Typha x. glauca, hereafter referred to as hybrid cattail (Lishawa, MISGP 2015). 

Because the vertical and above water structure of hybrid cattail can differ depending on 

age and water depth (Mitchell et al., 2011; Price et al., 2014), a superficially homogenous 

stand can represent a heterogeneous landscape of varying light availability and vertical 

structure. To measure the biological interactions between inconspicuous frogbit and 

conspicuous emergent wetland communities in a predictive SDM, I used topobathymetric 

lidar made available through NOAA’s Digital Coast data platform, ESA Sentinel-1 

Synthetic Aperture Radar (SAR), RapidEye multispectral imagery, and occurrence 

records through fieldwork and online databases. To my knowledge, this is the first time 

vegetation measurements from lidar and radar have been purposed to generate 

ecologically meaningful habitat characterizations in invasive plant distribution models. In 

particular, I was interested in testing two questions:  Which lidar, radar, and 

multispectral-derived biotic covariates are important in predicting frogbit habitat 

suitability, and how do their predictions compare to those made with only abiotic 

elevational data? And, how does frogbit habitat suitability change based on a gradient of 

lidar-derived marsh architecture? 

Methods 

Species and Study Area 

European Frogbit (hereafter frogbit) is an aquatic floating macrophyte of the 

family Hydrocharitaceae, native to Eurasian and North African wetlands and waterways. 
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In North America, frogbit has spread rapidly via vegetative growth and turions 

(overwintering buds) into ponds, canals, ditches, wetlands, and other areas with slow 

moving water (Catling and Dore 1982). First introduced in Canada as an ornamental 

garden plant in 1932 from a population in Zurich, Switzerland, it has spread from Ontario 

and the St. Lawrence River to the Great Lakes region (Zhu et al., 2018). When located in 

suitable habitat, frogbit creates floating mats of interlocking ramets, resulting in reduced 

native submerged plant diversity, clogged irrigation flows, and restricted water traffic 

(Catling et al., 2003; Eppers et al., 2008). However, Halpern et al., (2017) found that 

frogbit coverage, individual plant phenology, and propagule pressure varied depending 

on the vegetation characteristics of the wetland community it occurs within. Although 

there is a gap in experimental studies of the effects of frogbit in wetland communities, 

similar well studied invasive floating plants such as water hyacinth (Eichhornia 

crassipes), have found context-dependent impacts on invaded ecosystems at each invaded 

site (Villamagna and Murphy 2010). 

My study area was the coastal wetlands of Munuscong Bay (46.20°N, -84.16°W) 

in the St. Mary’s River, MI, USA (Fig. 2.1). The St. Mary’s River connects Lake 

Superior to Lake Huron, and serves as a transportation link for shipping routes in the 

Great Lakes. Munuscong Bay is located on the western bank of the river, and is home to 

hundreds of hectares of wetlands. Many of the marshes in these wetlands were historically 

characterized by native Schoenoplectus acutus (Hardstem bulrush) and Sparganium 

eurycarpum (Broadfruit bur-reed) (Duffy and Batterson 1987). In recent decades, much 

of the emergent marsh has been converted to stands of invasive hybrid cattail. Frogbit 

was first detected in Munuscong Bay in 2010, and quickly spread to adjacent hybrid 
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cattail and Schoenoplectus stands (Lishawa and Alberts, MISGP 2015). The sudden 

appearance of frogbit in Munuscong Bay and other areas in western Michigan caused its 

listing as an immediate and significant threat to Michigan’s aquatic ecosystems by the 

Michigan Department of Natural Resources. 

 
Figure 2.1 Location of Munuscong Bay in the St. Mary's River, MI 

Occurrences and Processing 

Occurrence records of frogbit presence in Munuscong Bay from 2014-2017 

(N=572) were acquired from the Midwestern Invasive Species Network (MISIN) and 

collected from surveying teams from Loyola University, the Three Shores Cooperative 

Invasive Species Management Area, and other sources contributing to the Great Lakes 

Coastal Wetland Monitoring Program (GLCWMP) while surveying wetlands in 

Munuscong Bay. Because of the variety of sources used, detection probability, which has 
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been known to influence plant distribution modeling (Chen et al., 2013), was not 

considered in our analysis. However, because the covariates used in this model were 

considered at a fine grain (5m), and observation of frogbit floating mats are easily 

observable at this scale, error in detection probability among survey sources was assumed 

to be minimal. Presence-only modeling was used due to a lack of meaningful absences 

collected by surveyors throughout the study area. While there has been criticism of the 

use of presence-only records in SDMs (Yackulic et al., 2013), models predicting the 

potential range of invasive species have had success with limited presence records, 

reporting similar accuracy to models incorporating true absences (Gormley et al., 2011; 

West et al., 2016). However, many presence-only models suffer from sampling bias due 

to occurrences that are opportunistically surveyed based on ease of surveyor access 

(Kramer-Schadt et al., 2013). To account for this error, I created a bias layer using the 

“kde2d” function from the MASS package in R (Ripley 2002). This function creates a 

kernel density estimation of surveyor effort, which was then implemented into the model 

before each run. I tested two separate models, one including all covariates, and one 

including lidar-derived elevational data, in order to compare habitat estimates between an 

abiotic “Fundamental niche” topographic model, and a “Realized niche” model 

incorporating biotic covariates (Soberon and Peterson 2005). The sampling period (2014-

2017) represented a return to long term water level averages in the Michigan-Huron basin 

after a 15-year low period (https://www.glerl.noaa.gov/ahps/mnth-hydro.html).

https://www.glerl.noaa.gov/ahps/mnth-hydro.html
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Imagery Acquisition and Processing  

Lidar 

Lidar data were obtained via the NOAA Digital Coast platform, hosted by the 

NOAA Office for Coastal Management. Data consisted of topobathy lidar collected at 10 

kHz that were classified into Non-ground, Ground, and Bathymetric point, at a reported 

19 cm vertical error. Data were collected by Coastal Zone Mapping and Imaging Lidar 

(CZMIL) over Munuscong Bay in July 2013. Although mean monthly water levels 

increased by roughly 70 cm from 2013-2017, St. Mary’s emergent wetlands have been 

observed to be historically resilient in community configuration during periods of 

moderate water-depth fluctuations (Duffy and Batterson 1987), and examination of 

Landsat images did not reveal changes in their spatial extent. Density of the pulsed lidar 

returns was reported to be roughly 8 points/m 2. Data were buffered to reduce artifacts 

using Boise Center Aerospace Laboratory (BCAL) lidar tools 

(http://bcal.boisestate.edu/tools/lidar), a grid-based classification algorithm that uses 

different interpolation methods based on the desired vegetation, intensity, or topographic 

raster product (Montealegre et al., 2015). Spatially explicit vegetation metrics using 

BCAL lidar tools have previously been used in terrestrial applications characterizing 

sagebrush canopy (Mitchell et al., 2011), and topography from lidar have seen use in 

wetland plant SDMs  (Sadro et al., 2007; Andrew and Ustin 2009). Buffered lidar point 

files were subsequently height filtered (Streutker and Glenn, 2006). Height filtered data 

were processed into vegetation and topographic raster layers at 5m resolution in Harris 

Geospatial ENVI software, and then exported to ArcMap to process for use as habitat 

covariates (Table 2.1). I created one abiotic and four abiotic covariates from these data. 

http://bcal.boisestate.edu/tools/lidar
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In addition, the abiotic covariate, minimum bare-earth elevation above sea level 

(EleMin), was included due to previous findings of elevation and other topographic 

variables as strong predictors in wetland plant SDMs (Long et al., 2017; Carlson Mazur 

et al., 2014). Biotic covariates were vegetation cover (VegCover), the % cover of lidar 

point returns automatically classified as vegetation in a pixel. Vegetation height 

(VegHeight), the median height of vegetation returns. Vegetation height (interquartile 

range) (VegInt), and vegetation absolute roughness (AbsRough), the standard deviation 

of vegetation return heights in a pixel.  These four covariates were included incorporate 

frogbit’s observed interactions with marsh architecture into the model. 
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Table 2.1 List and description of each covariate used in the models. (*) Denotes 

inclusion into the model after pairwise removal of correlated covariates   

(1) RapidEye Multispectral Imagery 

(2) NOAA Digital Coast Topobathy Lidar 

(3) ESA Sentinel-1 C-band SAR. 

Variable Habitat Characteristic Type  Source 

     

NDVI* Plant community differentiation Biotic  (1) 

NDRE Plant community differentiation Biotic  (1) 

EleMin* Bare earth minimum elevation Abiotic  (2) 

VegCover* Marsh stand architecture Biotic  (2) 

VegHeight Marsh stand architecture Biotic  (2) 

VegINT Marsh stand architecture Biotic  (2) 

AbsRough Marsh stand architecture Biotic  (2) 

VVChange* Inundation seasonality in marsh zone Biotic  (3) 

VHChange* Phenology change in plant canopies Biotic  (3) 

JanVV Shaded area marsh stands reducing frogbit recruitment Biotic  (3) 

 

Multispectral 

A multispectral RapidEye image of 721 sq. km in Munuscong Bay and the St. 

Mary’s River was captured on August 29th, 2016, and delivered as an orthorectified 

image at 5m resolution. RapidEye imagery contains five bands (blue (440-550nm), green 

(520-590nm), red (630-685nm), red-edge (630-685nm), and near-infrared (760-850nm). 

The red, red-edge, and near-infrared bands were used to create a Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) (Table 
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2.1), which are commonly used in ecological studies as a sign of generalized plant 

productivity (Pettorelli et al., 2005).  

Synthetic Aperture Radar 

ESA Sentinel-1 C-band SAR data were obtained from the Alaska Satellite 

Facility’s data portal. C-band SAR imagery from the Sentinel-1 comes in two 

polarizations, vertical transmit and receive (VV), and cross-polarized vertical transmit 

horizontal receive (VH). The VV polarization has shown in previous wetland remote 

sensing studies an ability to measure soil moisture and inundation due to a “double 

bounce” effect (Bourgeau-Chavez et al., 2005). The VH polarization in contrast has 

typically been utilized in ecological studies as a measure of biomass (Kasischke et al., 

1997). I created three covariates from metrics derived from these two polarizations: 

“VVChange”, “VHChange, and “JanVV” (Table 2.1). An individual VV scene on 

January 7th, 2017 (JanVV) was included based on field observations of permanent 

standing litter in shallow areas of hybrid cattail stands during the winter, and the absence 

of frogbit in such areas during the summer months (occurrence data included in 

Appendex B.1). The two other SAR covariates that were included (VVChange and 

VHChange) measured temporal change in inundation and biomass conditions via a ratio 

in backscatter intensity from May-August 2016 during the growing season. SAR change 

detection, especially using the VV polarization, has previously been used in remote 

sensing studies to determine the extent of flooding (Brisco et al., 2013), and ecotype 

classification (Simard et al., 2000). SAR data processing used the Sentinel Application 

Platform (SNAP), which included applying an orbital file, SI thermal noise correction, 

radiometric calibration to sigma0, a 3x3 window median speckle filter, and range-doppler 
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terrain correction. See (Moreira et al., 2013) for processing and calibration techniques 

used in SNAP. 

Covariate and Model Selection 

A priori, I identified 10 variables I hypothesized influenced the distribution of 

frogbit in Munuscong Bay, ultimately using five for the model runs: NDVI, minimum 

elevation (EleMin), vegetation cover (VegCover), marsh inundation seasonality 

(VVChange), and plant canopy phenology change (VHChange) (Table 2.1). To decrease 

multicollinearity, I created a pairwise correlation matrix (Pearson’s r) for all 10 

covariates (Appendix B.2), and removed covariates until all pairwise correlations were 

smaller than a recommended threshold of 0.7 (Dormann et al., 2013). An exception was 

made in the case of the two radar coherency covariates (VVCHANGE and 

VHCHANGE), as they were only slightly above the threshold (r = 0.706), and each are 

thought to both be ecologically meaningful based on field studies of frogbit cover in 

emergent wetlands (Halpern 2017). All covariates were resampled to a working 

resolution of 5 m. 

Habitat Suitability Modeling 

I used the Maxent SDM algorithm (Phillips et al., 2004; Phillips and Dudík 2008) 

to model the habitat suitability of frogbit in Munuscong Bay. Maxent uses species 

presence locations with a set of environmental predictors, and compares the conditions at 

these presence locations with background points containing no occurrences. Maxent has 

been widely used in SDM literature and was an ideal modeling algorithm for this study 

due to its use of presence-only samples and its robustness to field validation (West et al., 

2016). Maxent has shown to perform similarly to other niche modeling software (Padalia 
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et al., 2014; Renner and Warton 2013).   The regularization parameter, which acts as a 

penalty to model overfitting, was set as the default of 1, with product and hinge features 

removed, and 10 replicates (Merow et al., 2013). Training data was set as 70% of 

occurrences, with testing data at 30% to generate a mean area under the receiver 

operating characteristic curve (AUC) value among the 10 replicates. AUC is widely used 

as a measure of model performance in SDM studies, representing the probability that a 

random occurrence point is ranked higher in the model than a random background point, 

with a score of 0.5 indicating a neutral model (Fielding and Bell 1997). 

Model Evaluation 

Use of AUC values alone to generalize model performance has received some 

criticism for weaknesses in measuring actual model fit and determining a threshold in 

binary predictions of suitability (Lobo et al., 2008). To supplement AUC, I also evaluated 

each model with the True Skill Statistic (TSS = sensitivity (omission error) + specificity 

(commission error) – 1), to generate a presence/absence threshold of suitability (Allouche 

et al., 2006). Individual covariate importance and response were determined using 

Maxent’s intrinsic Jackknife function, which measures importance by running the model 

and testing the gain, a measurement of relative probability of presence locations to 

background points, using that covariate alone (Phillips et al., 2004). Both biotic 

“Realized” and Elevation-only “Fundamental” habitat models were projected into binary 

maps of habitat suitability using ArcMap using the threshold established by the model 

TSS to compare their predicted habitat extents. 
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Results 

Covariate Importance  

Among the five covariates used in the Biotic model, minimum elevation (EleMin) 

was the most important in predicting frogbit habitat suitability in Munuscong Bay, 

followed in descending order of importance by plant community differentiation (NDVI), 

vegetation cover (VegCover), marsh inundation seasonality (VVChange), and plant 

canopy phenology (VHChange) (Table 2.2).  

Table 2.2 Percent Contribution of Each Covariate in the Biotic “Realized” 

Habitat Model 

 

Covariate Percent contribution (%) 

  

EleMin 42.4 

NDVI 35.4 

VegCover 15.4 

VVChange 6.6 

VHChange 0.2 

 

Model Performance 

Mean AUC values across all 10 replicates were very high for both the Realized 

and Fundamental habitat models. Mean TSS scores were similarly high, indicating a high 

agreement between the training and testing sets of data across replicates.

Table 2.3 AUC and TSS Scores for Biotic and Elevation Models 

 

 Biotic Model Elevation-Only 



48 

 

 

 

   

AUC 0.943 0.932 

TSS 0.825 0.831 

 

Distribution Maps 

 The binary suitable/unsuitable habitat maps of frogbit for both models, using the TSS 

score (0.83) as a threshold, indicated large areas of wetland habitat suitable to frogbit 

expansion (Fig. 2.2). Predictably, the Elevation-only “Fundamental” model, while having 

a high AUC score in the context of the entirety of Munuscong Bay (Table 3.3), predicted 

frogbit habitat to a much greater extent than that of the Biotic “Realized” model. Both 

models predicted areas in the Munuscong Wildlife Management Area, historically diked 

to produce waterfowl habitat, as vulnerable to increased presence of frogbit (Fig. 2.2). 

Additionally, both models predicted suitable habitat that continues north of all known 

occurrences, indicating that frogbit is likely to continue to expand in Munuscong Bay 

wetlands beyond its known locations (Appendix B.1). 
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Figure 2.2 Predicted Habitat Suitability (Red) of Frogbit in Munuscong Bay 

(Chippewa County, MI, USA) in a Realized Habitat (Top) and Fundamental 

Habitat (Below) Prediction Model 
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Response Curve to Vegetation Cover 

Vegetation cover (VegCover) was the third most important covariate overall 

(Table 2.2), and the second most important biotic variable before NDVI. The response 

curve of frogbit habitat suitability to vegetation cover indicates a tendency of frogbit to 

prefer emergent marsh with 20-40% cover, declining sharply below and above this range 

(Fig. 2.3).  

 
Figure 2.2 Response Curve of Frogbit Habitat Suitability to Lidar-Derived 

Vegetation Cover (VegCover, %) 

Discussion 

Lidar and Radar Contribution 

The lidar-derived covariates, EleMin and VegCover, were the first and third most 

important covariates, respectively. Minimum elevation’s strength as a covariate is in 

agreement with other studies that have incorporated topography in wetland SDM’s (Long 

et al., 2017; Carlson Mazur et al., 2014). However, the relationship between minimum 
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elevation on the actual ecology of frogbit can be difficult to interpret. Minimum elevation 

predicted a narrow range of topography suitable to frogbit (roughly 175.3 meters above 

sea level) (Fig. 2.2). While this narrow elevation band identifies the coastal area frogbit 

recently established in, it could be lead to under prediction of habitat extent in upland 

palustrine wetlands during normal water level conditions. These results are in agreement 

with Andrew and Ustin (2009), that lidar-derived elevation is likely one of the few 

remotely sensed data sources with a vertical accuracy suitable for wetland plant SDMs. 

However, UAV’s have since become more commonplace in ecological monitoring, and 

may serve as an alternative source of topographical data at a scale relevant to wetland 

elevation gradients. 

Frogbit’s habitat suitability response to vegetation cover (VegCover) (Fig. 2.3) 

was similar to observations made in the field of frogbit’s association with hybrid cattail 

stands in the St. Mary’s River (Lishawa, MISGP 2015). Although frogbit has been 

observed in many coastal wetlands that represent an emergent wetland habitat, it has also 

been observed as a free-floating colonial mat with no emergent plant association (Catling 

and Dore 1982). Additionally, field studies by Halpern et al., (2017) observed differences 

in turion recruitment and growth depending on frogbit’s vegetation associations, 

highlighting the variety of growth forms frogbit populations can take. It may be that the 

range of vegetation cover that frogbit responded to in this model represents an ideal 

range, where vegetation density is sufficient enough to protect frogbit from wave energy, 

but sparse enough to allow for turion recruitment. 

Although one radar-derived vegetation covariate, marsh inundation change 

(VVChange) made a contribution to the model (Table 2.2), both radar-derived vegetation 
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metrics performed the poorest out of the five covariates. This result is likely due to the 

scale of the SAR imagery (at 10 meters) compared to the other covariates (which were 

processed to five meters). Due to the nature of the resolution at which the data are 

gathered in their raw form, SAR imagery tends to be “speckled” (Bamler and Hartl 

1998). Speckling may have resulted in a wide range of values for both radar-derived 

covariates, weakening their predictive ability in the SDM.  Nonetheless, radar should be 

continued to be explored for spatially-explicit habitat covariates, albeit at a coarser scale 

than this study. 

NDVI was the second-strongest covariate in the model of frogbit habitat 

suitability. However, caution should be exercised when generalized vegetation metrics 

such as NDVI are used in mapping potential habitat in SDMs, as they can instead act as 

correlates of current distribution rather than potential distribution (Bradley et al., 2012). 

For example, in my study area, large stands of invasive Phragmites australis that are 

found in southern Great Lakes coastal wetlands are absent. However, these Phragmites 

stands have become an associate of frogbit in coastal wetlands of Saginaw Bay, Michigan 

(CISMA manager, personal communication). If there is a possibility of frogbit invading 

novel marsh communities in the geographic extent of a modeling area, NDVI may under-

predict these communities as suitable habitat.  This consideration would have needed to 

be taken into account if this study was conducted in an area with extensive stands of 

Phragmites. 

Distributional Maps and Limitations 

While AUC and TSS values were similar for both the Biotic and Elevation-only 

model (Table 2.3), the Elevation-only model likely over-predicted frogbit habitat in 
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Munuscong Bay. While wetlands are naturally found at elevation sinks, or transitionary 

areas, Great Lakes coastal wetlands are also structured by wave energy and sedimentation 

(Albert 2003). Many of the areas predicted to be suitable for habitat for frogbit by the 

“Fundamental” elevation-only habitat model are sedge meadows that have limited 

inundation during the year. Sedges may outcompete frogbit for the light needed for turion 

recruitment, which would make these areas unsuitable for frogbit expansion. However, 

because the geographic extent of the modeling effort was the entirety of the bay, 

including aquatic and terrestrial habitats, AUC’s remained high. This has been noted as a 

limitation of AUC, as a restricted habitat range, such as a band of coastal wetlands, will 

produce naturally high values (McPherson and Jetz 2007). 

Due to a reliance on multi-source occurrence data that often suffers from spatial 

autocorrelation and sampling intensity issues, a Maxent bias layer was included to 

downsample areas with clustered sampling. However, this is by no means a perfect 

solution, and a model with more informed absences would be preferable. A balance must 

be met between accurate predictions and the strength of inference (Peters 1991). With a 

new invasion, it can be difficult to assume good absence data when current frogbit spatial 

extent may be constrained by dispersal variables that may operate on a year-to year basis 

in terms of sensitivity to inference (Vaclavik and Meentemeyer 2012). 

Management Recommendations 

Recent and ongoing experiments are exploring new ways to control large 

populations of established frogbit in Munuscong Bay, but management of small 

populations remains the optimal and most likely scenario to be effective. Managers 

seeking to control frogbit spread during early stages should determine if their population 



54 

 

 

 

is free floating, or associated with emergent wetlands, as each may have different growth 

habits and patterns (Halpern et al., 2017). Free-floating populations may be immediately 

detected when populations are large enough to be captured by the pixel size of the 

imagery used (Proctor et al., 2012). However, if frogbit is associated with emergent 

wetlands, and still inconspicuous to aerial imagery, I recommend the modeling 

procedures presented here to prioritize areas most suitable to frogbit expansion. 

Covariates which include biotic interactions (Such as marsh inundation and vegetation 

cover estimates from radar and lidar) will incorporate their ecological potential in a 

landscape, rather than a crude geographic estimate. 

Further investigation should focus on frogbit abundance and cover, and 

interrelatedness with shade and physical habitat structure. (Zhu et al., 2014) found that at 

certain shading thresholds, frogbit abundance decreases or is nonpresent. Fine tuning 

“occurrence” with “abundance” might explain more about the ecology of the species and 

help further delineate areas where the shading mechanisms of dense frogbit mats may 

have the most effect. Disperal covariates, such as distance to boat launches, may also 

warrant consideration for inclusion into models that predict frogbit habitat suitability and 

range expansion at scales larger than Munuscong Bay. 

Conclusions 

This modeling effort examined two novel data sources not commonly used in 

niche modeling at a landscape scale. By including lidar and radar-derived vegetation 

metrics, I was able to predict the future expansion of an inconspicuous invasive wetland 

plant. While lidar-derived elevation was an important covariate in the model, and in 

wetland SDMs in general, it appears to over predict the amount of wetland area at risk to 
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frogbit invasion. NDVI, vegetation cover, and marsh inundation shifts over the growing 

season were ecologically meaningful covariates that limited the predictions made by 

elevation to the species-specific habitat interactions of frogbit in coastal wetlands. 

However, because coastal wetland species may only be found in a narrow area of a 

landscape, geographic extent of the modeling effort must be considered when selecting 

meaningful covariates and inferring model performance results. 

Remote sensing continues to advance as a field, providing cost-effective products 

for ecological modeling efforts. In terms of ecological studies, the challenge becomes 

interpretation of those patterns by a user that has knowledge of general or local ecological 

conditions. Bridging these gaps and incorporating new technology (such as variables 

derived from UAV imagery/point clouds) into a modeling framework will allow SDMs 

and other predictive niche models to allow for more inference by ecologists than the 

broad climate-based variables that have been traditionally used in most SDM studies. 

Such an effort may contribute to both a better understanding of an ongoing invasion, and 

are likely to contribute to effective management of an invasion. 
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Chapter 1 Appendices 

Table A.1.1 Error Matrix for Optical-Only Random Forest Model (RF1) 

          Reference Class 

Prediction class DS EF FD FL FS HC MS OB OW WS WG Total User's Accuracy (%) 

Dry Shrub 17 0 0 0 2 0 3 0 0 3 0 25 0.68 

Emergent/floating 0 22 0 2 1 0 1 0 0 1 0 27 0.81 

Field 0 0 17 0 2 0 4 0 0 1 5 29 0.59 

Floating leaf 0 1 0 20 0 0 0 0 0 0 0 21 0.95 

Forest 3 0 1 0 22 0 0 0 0 0 0 26 0.85 

Hybrid cattail 1 0 0 0 1 24 2 0 0 1 0 29 0.83 

Mixed sedge 0 1 4 0 1 3 24 0 0 1 1 35 0.69 

Open bulrush 0 0 0 0 0 0 0 30 1 0 0 31 0.97 

Open water 0 0 0 0 0 0 0 0 29 0 0 29 1 

Wet Shrub 0 0 0 0 0 3 1 0 0 15 0 19 0.79 

Wet grass meadow 0 0 8 0 1 0 0 0 0 0 28 37 0.76 

Total 21 24 30 22 30 30 35 30 30 22 34 248  

Producer's Accuracy (%) 0.81 0.92 0.57 0.91 0.73 0.8 0.69 1 0.97 0.68 0.82   
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Table A.1.2 Error Matrix for SAR-Only Random Forest Model (RF2) 

   Reference Class 

Prediction class DS EF FD FL FS HC MS OB OW WS WG Total User's Accuracy (%) 

Dry Shrub 17 0 2 0 1 0 0 0 0 1 1 22 0.77 

Emergent/floating 0 14 0 1 0 0 0 0 0 0 0 15 0.93 

Field 0 0 25 0 0 0 0 0 0 1 3 29 0.86 

Floating leaf 0 3 0 15 0 0 0 4 0 0 0 22 0.68 

Forest 2 0 0 0 24 1 3 0 0 2 0 32 0.75 

Hybrid cattail 2 0 0 0 0 26 3 0 0 1 0 32 0.81 

Mixed sedge 0 0 0 3 1 0 26 0 0 5 0 35 0.74 

Open bulrush 0 5 0 3 1 0 0 23 0 0 0 32 0.72 

Open water 0 2 0 0 0 0 0 1 30 0 0 33 0.91 

Wet Shrub 0 0 0 0 0 3 2 0 0 12 0 17 0.71 

Wet grass meadow 0 0 3 0 3 0 1 2 0 0 30 39 0.77 

Total 21 24 30 22 30 30 35 30 30 22 34 242  

Producer's Accuracy (%) 0.81 0.58 0.83 0.68 0.8 0.87 0.74 0.77 1 0.55 0.88   
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Table A.1.3 Error Matrix for Single Date SAR (August VV and VH) Combination Random Forest Model (RF3) 

 

   Reference Class 

Prediction class DS EF FD FL FS HC MS OB OW WS WG Total User's Accuracy (%) 

Dry Shrub 18 0 1 0 1 0 1 0 0 1 0 22 0.82 

Emergent/floating 0 21 0 3 0 0 3 0 0 1 0 28 0.75 

Field 0 2 28 0 2 0 0 0 0 0 4 36 0.78 

Floating leaf 0 1 0 19 0 0 0 0 0 0 0 20 0.95 

Forest 2 0 0 0 24 0 0 0 0 0 0 26 0.93 

Hybrid cattail 1 0 0 0 1 26 1 0 0 1 0 30 0.87 

Mixed sedge 0 0 0 0 1 0 27 1 0 2 1 32 0.84 

Open bulrush 0 0 0 0 0 0 0 29 0 0 0 29 1 

Open water 0 0 0 0 0 0 0 0 30 0 0 30 1 

Wet Shrub 0 0 1 0 0 4 3 0 0 17 0 25 0.68 

Wet grass meadow 0 0 0 0 1 0 0 0 0 0 29 30 0.97 

Total 21 24 30 22 30 30 35 30 30 22 34 268  

Producer's Accuracy (%) 0.86 0.88 0.93 0.86 0.8 0.87 0.77 0.97 1 0.77 0.85   
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Table A.1.4 Error Matrix for Full-Input Random Forest Model (RF4) 

   Reference Class 

Prediction class DS EF FD FL FS HC MS OB OW WS WG Total User's Accuracy (%) 

Dry Shrub 17 0 0 0 2 0 1 0 0 2 0 22 0.77 

Emergent/floating 0 23 0 2 1 0 0 0 0 0 0 26 0.88 

Field 0 0 29 1 0 0 0 0 0 0 2 32 0.91 

Floating leaf 0 1 0 19 0 0 0 0 0 0 0 20 0.95 

Forest 3 0 0 0 24 0 0 0 0 0 0 27 0.89 

Hybrid cattail 1 0 0 0 0 27 0 0 0 2 0 30 0.90 

Mixed sedge 0 0 0 0 1 2 32 0 0 3 0 38 0.84 

Open bulrush 0 0 0 0 0 0 0 30 0 0 0 30 1 

Open water 0 0 0 0 0 0 0 0 30 0 0 30 1 

Wet Shrub 0 0 1 0 0 1 2 0 0 15 0 19 0.79 

Wet grass meadow 0 0 0 0 2 0 0 0 0 0 32 34 0.94 

Total 21 24 30 22 30 30 35 30 30 22 34 278  

Producer's Accuracy (%) 0.81 0.96 0.97 0.86 0.8 0.9 0.91 1 1 0.68 0.94   
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Table A.1.5 Error Matrix of the Full-Input Maximum Likelihood Estimation Classification (MLE) 

   Reference Class 

Prediction class DS EF FD FL FS HC MS OB OW WS WG Total User's Accuracy (%) 

Dry Shrub 18 0 0 0 8 0 1 0 0 0 0 27 0.67 

Emergent/floating 0 21 0 3 0 0 0 0 0 0 0 24 0.88 

Field 0 0 26 0 0 0 0 0 1 0 3 30 0.87 

Floating leaf 0 3 0 19 1 0 0 0 0 0 0 23 0.83 

Forest 2 0 1 0 21 1 3 2 0 0 0 30 0.70 

Hybrid cattail 1 0 0 0 0 27 3 0 0 3 0 34 0.79 

Mixed sedge 0 0 0 0 0 0 28 0 0 3 0 31 0.90 

Open bulrush 0 0 0 0 0 0 0 28 1 0 0 29 0.97 

Open water 0 0 0 0 0 0 0 0 28 0 0 28 1 

Wet shrub 0 0 0 0 0 2 0 0 0 16 0 18 0.89 

Wet grass meadow 0 0 3 0 0 0 0 0 0 0 31 34 0.91 

Total 21 24 30 22 30 30 35 30 30 22 34 263  

Producer's Accuracy (%) 0.86 0.88 0.87 0.86 0.7 0.9 0.8 0.93 0.93 0.73 0.91   
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Appendix A.2, Chapter 1 R Script 

###Partition the full ENVI subset into 70% training and 30% testing datasets### 

alldata <- read.csv(file.choose()) 

library(caret) 

library(randomForest) 

train.index <- createDataPartition(alldata$ROI_NAME, p = .7, list = FALSE) 

train <- alldata[ train.index,] 

test  <- alldata[-train.index,] 

write.table(x = test, file = "C:/testing.txt") 

write.table(x = train, file = "C:/training.txt") 

### Convert .txt to CSV### 

###Load in the training partition### 

RFtrain<-

as.data.frame(read.csv("Q:\\Chapter1Data\\TrainingTestingData\\TrainingRF\\trainingRF

.csv")) 

head(yourdata) 

###Prepare dataset for RF format### 

head(RFtrain) 

RFclean<-as.data.frame(RFtrain) 

head(RFclean) 

RFdata <- RFclean[,c(4:15)] 

RF<- randomForest(as.factor(name) ~., data=RFdata, importance=TRUE, 

na.action=na.omit) 
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RF 

RF$predicted 

RF$importance 

###Load package for error matrix### 

library(caret) 

###Prediction & confusion matrix### 

RFmatrix <- predict(RF, RFtest) 

confusionMatrix(RFmatrix, RFtest$name) 



81 

 

APPENDIX B



82 

 

Chapter 2 Appendices 

 

Figure B.1 Locations of Munuscong Bay Frogbit Presences  
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Table B.1 Pearson’s R Correlation between All a Priori Covariates. Bolded Numbers Identify a Correlation 

Coefficient above the 0.70 Threshold 

 

           

 VegCov NDRE JanVV VegHeight VVChange VHChange EleMin VegINT AbsRough NDVI 

VegCov 1 0.65889 0.63541 0.90871 0.07122 0.04955 0.68431 0.85945 0.9128 0.6755 

NDRE 0.65889 1 0.76534 0.59515 0.10555 0.07309 0.66006 0.60961 0.66069 0.98971 

JanVV 0.63541 0.76534 1 0.573 0.10254 0.06855 0.53639 0.58421 0.62306 0.77044 

VegHeight 0.90871 0.59515 0.573 1 0.05456 0.04194 0.6447 0.85585 0.91665 0.60699 

VVChange 0.07122 0.10555 0.10254 0.05456 1 0.70601 0.06572 0.05821 0.06274 0.10721 

VHChange 0.04955 0.07309 0.06855 0.04194 0.70601 1 0.03504 0.04221 0.04525 0.0747 

EleMin 0.68431 0.66006 0.53639 0.6447 0.06572 0.03504 1 0.68939 0.76664 0.67406 

VegINT 0.85945 0.60961 0.58421 0.85585 0.05821 0.04221 0.68939 1 0.96711 0.62408 

AbsRough 0.9128 0.66069 0.62306 0.91665 0.06274 0.04525 0.76664 0.96711 1 0.67556 

NDVI 0.6755 0.98971 0.77044 0.60699 0.10721 0.0747 0.67406 0.62408 0.67556 1 
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Appendix B, Chapter 2 R Script 

###Load packages### 

library(raster) # spatial data manipulation 

library(MASS) # for 2D kernel density function 

library(magrittr) # for piping functionality, i.e., %>% 

library(maptools) # reading shapefiles 

###Data preparation### 

Frogbitdata <- read.csv(frogbitfinal.csv) 

lonlat <- Frogbitdata[, c("X", "Y")] 

covdat <- brick(elemincovariate) 

occur.ras <- rasterize(lonlat, covdat, 1) 

plot(occur.ras) 

###Bias layer creation### 

presences <- which(values(occur.ras) == 1) 

pres.locs <- coordinates(occur.ras)[presences, ] 

density <- kde2d(pres.locs[,1], pres.locs[,2], n = c(nrow(occur.ras), ncol(occur.ras))) 

density.ras <- raster(density) 

plot(density.ras) 

writeRaster(density.ras, "filelocation") 


