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ABSTRACT

Screenability and strong screenability were both introduced some sixty years ago

by R.H. Bing in his paper Metrization of Topological Spaces. Since then, much work

has been done in exploring selective screenability (the selective version of screenabil-

ity). However, the corresponding selective version of strong screenability has been

virtually ignored. In this paper we seek to remedy this oversight. It is found that a

great deal of the proofs about selective screenability readily carry over to proofs for the

analogous version for selective strong screenability. We give some examples of selective

strongly screenable spaces with the primary example being Pol’s space. We go on

to explore a natural weakening of selective strong screenability in topological groups.

We conclude with an exploration of the difficulty in extending discrete families of sets

as well as giving several directions one might go in when continuing the exploration

of selective strong screenability.
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CHAPTER 1

INTRODUCTION

In 1951 in [9], R.H. Bing explored when a topological space is metrizable. In his paper,

he introduced several important types of spaces. Among these we find screenable and

strongly screenable spaces. A space is screenable if for each open cover U of the space

there is a sequence (Vn ∶ n <∞) such that for each n, Vn is a pairwise disjoint family

of open sets refining U and ⋃
n<∞
Vn is a cover of the space. Note that for families A and

B, we will use the notation A ≺ B, read “A refines B”, to denote that for each A ∈ A

there is a B ∈ B such that A ⊆ B. Recall that a family F of subsets of a topological

space X is said to be a discrete family if each point in X has a neighborhood which

has nontrivial intersection with at most one element of F . Bing called a space strongly

screenable if instead of each Vn being a pairwise disjoint family of open sets, each Vn

is a discrete family of open sets. Further, Bing showed that for metrizable spaces,

screenability is equivalent to strong screenability. It s natural to ask if the same is

true for the selective versions, introduced next.

In 1973 in [16], Haver introduced a covering property of metric spaces which he

called property C, but which we refer to as the Haver property. In 1978 in [1], Addis

and Gresham extended Haver’s property C to one for general topological spaces. A

topological space, say X, is said to have property C if for each sequence (Un ∶ n <∞)

of open covers of X there is a sequence (Vn ∶ n < ∞) such that for each n, Vn is a
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pairwise disjoint family of open sets which refines Un and ⋃
n<∞
Vn is a cover of X. In

2001 in [2], Liljana Babinkostova introduced the selection principle Sc(A,B), where A

and B are subsets of P(X). A topological space X is said to have property Sc(A,B)

if for each sequence (Un ∶ n < ∞) of elements of A, there is a sequence (Vn ∶ n < ∞)

such that each Vn refines Un, each Vn is a pairwise disjoint family of sets, and ⋃
n<∞
Vn is

an element of B. When A = B = O, where O denotes the collection of all open covers

of X, then Sc(O,O), read “ess see oh oh”, is what Babinkostova called selective

screenability. Selective screenability is the same as Addis and Gresham’s property C,

and so we now refer to their version of C-spaces as Sc(O,O)-spaces.

There is a great deal known about spaces that are selectively screenable. For

instance, see [1], [10], [11], [13], [14], [15], [?], [22], and [23]. However, there is much

less known about selective strong screenablity.

Definition 1: A topological space X is said to be selectively strongly screenable

if for each sequence (Un ∶ n < ∞) of open covers of X there exists a corresponding

sequence (Vn ∶ n <∞) such that

(i) For each n, Vn is a discrete family of sets open in X,

(ii) For each n, Vn ≺ Un, and

(iii) ⋃
n<∞
Vn is a cover of X.

We will often use Sd(O,O)-space in place of “selectively strongly screenable space”,

and other similar abbreviations. We will also summarize conditions (i), (ii) and (iii)

by saying that the sequence (Vn ∶ n <∞) is an Sd(O,O)-refinement (of (Un ∶ n <∞)).

With this in mind, we say that a topological space is Sd(O,O) if each sequence of

open covers of the space admits an Sd(O,O)-refinement.
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For this thesis, we set out to expand what is known about Sd(O,O)-spaces. To

this end, we examined some of the known results about Sc(O,O)-spaces and whether

their proofs would still hold if one replaced all occurrences of “pairwise disjoint family”

with “discrete family” (and other similar substitutions as necessary). In the majority

of the cases examined, we found that the proofs given for selective screenability would,

in essence, extend directly to a proof of the corresponding result for selective strong

screenability. Proofs that are not direct extensions of those given in the literature for

the selective screenable case will be indicated using a ⋆. For those that did extend

directly, we will include in a footnote for each proof providing both the author and

paper from which our extended proof came. Additionally, we will give some discussion

of what part of the proofs needed additional results, or where we had difficulties (and

failed in at least one important case) in proving the Sd(O,O) analog of a known

Sc(O,O) result. The culmination of this exploration came in showing that Pol’s

space, a space of importance in dimension theory, is selectively strongly screenable.

In the next chapter we will describe Pol’s space in more detail and work our way

towards proving that it is selectively strongly screenable.
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CHAPTER 2

POL’S SPACE IS Sd(O,O)

In 1981 in [25], R. Pol gave an example of a weakly infinite-dimensional compact space

that is not countable-dimensional. This space has come to be known as Pol’s space.

It builds on results of Mazurkiewicz and Lelek. In 1927, Mazurkiewicz constructed

a complete, totally disconnected, strongly infinite dimensional metric space, which

we will denote by M . In 1965, Lelek gave the existence of the compactification of a

complete metric space by a space, which we will denote by L, and is the countable

union of a family of compact, finite dimensional spaces. The result, M ∪ L, is Pol’s

space, denoted by P . In this chapter, we give the necessary theorems used in the

proof that Pol’s space is Sd(O,O), according to the following outline.

Let (Un ∶ n <∞) be a sequence of open covers of P . We will show that every finite

power of the reals is Sd(O,O), that each closed subspace of an Sd(O,O)-space is also

an Sd(O,O)-space, and then use the Menger-Nöbeling Theorem (see page 420 of [19])

to conclude that every compact finite dimensional metric space is an Sd(O,O)-space.

We then use a technique developed in showing that the countable union of compact

Sd(O,O)-spaces is an Sd(O,O)-space to find an Sd(O,O)-refinement of (Un ∶ n > 1),

say (Vn ∶ n > 1), whose union covers L. We then see that P /⋃(⋃
n>1

Vn) is a closed,

and hence compact, subspace of P , and more specifically of M . We then use that a

compact, totally disconnected metric space is zero-dimensional (Theorem 29.7 of [29])
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to see that P /⋃(⋃
n>1

Vn) is zero dimensional. Then we use the zero dimensionality of

P /⋃(⋃
n>1

Vn) to find an Sd(O,O)-refinement, V1 of U1. Taken together, (Vn ∶ n <∞)

is an Sd(O,O)-refinement of (Un ∶ n < ∞) witnessing that Pol’s space is selectively

strongly screenable.

2.1 Every finite power of the reals is an Sd(O,O)-space

The Hurewicz and Haver properties are well known and, as illustrated by Babinkos-

tova in [4], they can be used to determine if a space is Sc(O,O). A topological space

X has the Hurewicz property if for each sequence (Un ∶ n < ∞) of open covers of X

there is a corresponding sequence (Vn ∶ n < ∞) such that for each n, Vn is a finite

subset of Un and each element of X is in almost every ⋃Vn. Throughout, we use the

term “almost every” to mean “in all but finitely many”. A metric space (X,d) is said

to have the Haver property if for each sequence (εn ∶ n <∞) of positive real numbers

there is a corresponding sequence (Vn ∶ n <∞) such that: for each n, Vn is a pairwise

disjoint family of sets open in X; for each n, for each V ∈ Vn, the d-diameter of V is

less than εn; and, ⋃
n<∞
Vn is a cover of X. The theorems presented in this section are,

in essence, merely the corresponding strong version of many of the product theorems

(and lemmas needed for them) in [4].

For Sd(O,O), selective strong screenability, recall that we are merely working

with the strong version of Sc(O,O), selective screenability, i.e. we consider discrete

families instead of pairwise disjoint families in all corresponding definitions. Thus,

instead of the Haver property, we will look at the strong Haver property. A metric

space (X,d) is said to have the strong Haver property if for each sequence (εn ∶ n <∞)

of positive real numbers there is a corresponding sequence (Vn ∶ n < ∞) such that:
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for each n, Vn is a discrete family of sets open in X; for each n, for each V ∈ Vn, the

d-diameter of V is less than εn; and, ⋃
n<∞
Vn is a cover of X.

These properties, the Hurewicz and strong Haver property, are sufficient conditions

for a metric space to be an Sd(O,O)-space.

Theorem 1: If (X,d) is a metric space with both the Hurewicz property and the

strong Haver property, then it is an Sd(O,O)-space.

In §3.4, Theorem 14, we will see that a metric space (X,d) is selectively strongly

screenable if, and only if, it has the strong Haver property in each equivalent metric.

Thus, we see that for a metric space (X,d), the strong Haver property with respect

to the metric d is a necessary condition for the metric space to be an Sd(O,O)-space.

With Theorem 14 in mind, we then see that

Corollary 1: For a metric space (X,d) with the strong Haver property with respect

to the metric d, if X also has the Hurewicz property, then X has the strong Haver

property in all equivalent metrics.

Proof of Theorem 1: 1 Let (Un ∶ n <∞) be a sequence of open covers of X and define

Hn ∶= {B(x, ε) ∶ ε > 0, x ∈X, and (∃U ∈ Un)(B(x,2ε) ⊆ U)}.

Using the Hurewicz property on X, for each n we choose a finite set Fn ⊆ Hn such

that each element of X is in almost every ⋃Fn. We will represent each set as Fn =

{B(xni , ε
n
i ) ∶ i ∈ In}, where In is a finite indexing set for Fn. Define

1This proof follows that given by Babinkostova of Theorem 5 in [4]. The key property of pairwise
disjoint families used in Babinkostova’s proof is that a subset of a pairwise disjoint family is also
pairwise disjoint. Since discrete families also have the property that a subset of a discrete family is
also discrete, there was really little to do for this result.



7

εn ∶= min{εni ∶ i ∈ In}.

Now, partition the natural numbers into infinitely many sets, each of which is infinite,

say N = ⊍
k<∞

Jk. Apply the strong Haver property of X for the metric d on X to each

of the sequences (εn ∶ n ∈ Jk) to find for each k a sequence (Sn ∶ n ∈ Jk) such that

each Sn is a discrete family of open subsets of X, each of diameter less than εn, and

⋃
n∈Jk

Sn is a cover of X. For each n define

Vn = {S ∈ Sn ∶ (∃U ∈ Un)(S ⊆ U)}.

Since each Sn is a discrete family of sets open in X and Vn ⊆ Sn, we have that each

Vn is a discrete family of sets open in X and refining Un.

It remains to show that ⋃
n<∞
Vn is a cover of X. Let x ∈X be arbitrary. Since each

element of X is in almost every ⋃Fn, we pick an Nx ∈ N large enough that for each

n ≥ Nx we have that x ∈ ⋃Fn. By our choice of partitioning the natural numbers,

we pick a k ∈ N such that Nx < minJk. Since ⋃
n∈Jk

Sn is a cover of X, we pick an

m ∈ Jk such that x ∈ ⋃Sm. Now, we pick S ∈ Sm such that x ∈ S. Notice that since

Nx < minJk and m ∈ Jk we have that m > Nx, and thus x ∈ ⋃Fm. Next, we choose

i ∈ Im such that x ∈ B(xmi , ε
m
i ) ∈ Fm. Since Fm ⊆ Hm we pick U ∈ Um such that

B(xmi ,2ε
m
i ) ⊆ U . Consider any y ∈ S and notice that

d(y, xmi ) ≤ d(x, y) + d(x,xmi ) ≤ diamS + εmi < εm + εmi ≤ εmi + εmi = 2εmi .

Thus, we see that y ∈ B(xmi ,2ε
m
i ) ⊆ U . Therefore S ⊆ U and so S ∈ Vm, thereby

showing that ⋃
n<∞
Vn is a cover of X.
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Notice that a key to the above proof was the ability to partition the natural

numbers into infinitely many infinite sets. This technique is used frequently.

It is well known that

Fact 1: Each σ-compact space has the Hurewicz property.

This was proven by Hurewicz when he introduced this property in his 1927 paper,

[17]. It is also well known that

Fact 2: The set of reals with the standard topology is σ-compact, and each finite

power of a σ-compact space is σ-compact.

Taken together, this gives us that

Fact 3: Each finite power of the reals has the Hurewicz property.

It is straightforward to see that

Lemma 1: The reals have the strong Haver property.

Proof. Let (εn ∶ n < ∞) be a sequence of positive reals. Pick positive real numbers

ε < ε1 and δ < min{ε, ε2}. Then define

Vn ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{B (k (ε +
δ

2
) , ε) ∶ k ∈ Z} if n = 1

{B (
ε

2
+
δ

4
+ k (ε +

δ

2
) , δ) ∶ k ∈ Z} if n = 2

∅ if n ≥ 3.

Notice that each Vn is a discrete family of sets open in the reals and that each element

of Vn has diameter less than εn. Hence (Vn ∶ n <∞) witnesses that R has the strong

Haver property.
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For an example of the above construction of Vn, suppose that ε1 = 1 and ε2 = 1.

Then, Figure 2.1 illustrates V1 and V2, where we take ε =
3

4
and δ =

1

2

R
−3 −2 −1 0 1 2 3

⋯ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ⋯ V1

⋯ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⋯ V2

Figure 2.1: Illustration for Lemma 1.

Hence, by Fact 3 and Lemma 1 applied to Theorem 1 we see that

Lemma 2: The set of reals with the standard topology is an Sd(O,O)-space.

To see that all finite powers of the reals are Sd(O,O), we will need the following

theorem about when the product of two strong Haver spaces is again a strong Haver

space, which is analogous to Theorem 8 of [4].

Theorem 2: Let X and Y be metric spaces with the strong Haver property. If

either X or Y has the σ-discrete grouping property, then X ×Y has the strong Haver

property.

In [4] Babinkostova introduced the σ-disjoint grouping property for ease of han-

dling the Haver property. A topological space has the σ-disjoint grouping property

if for each sequence (Un ∶ n < ∞) such that each Un is a pairwise disjoint family of

open sets and for each x ∈ X there are infinitely many n with x ∈ ⋃Un, there is a

corresponding strictly increasing sequence (nk ∶ k <∞) such that for each x ∈X, for all

but finitely many k, x ∈⋃( ⋃
nk≤i<nk+1

Ui). For handling the strong Haver property, we

will use the σ-discrete grouping property, which is the corresponding strong version of

σ-disjoint grouping property. A topological space has the σ-discrete grouping property

if for each sequence (Un ∶ n < ∞) such that each Un is a discrete family of open sets
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and for each x ∈X there are infinitely many n with x ∈⋃Un, there is a corresponding

strictly increasing sequence (nk ∶ k <∞) such that for each x ∈ X, for all but finitely

many k, x ∈⋃( ⋃
nk≤i<nk+1

Ui).

Before proving Theorem 2, we need to show that the cover given by the strong

Haver property may be taken to be a large cover. Recall that a cover U of a space

X is said to be a large cover if each element of X is contained in infinitely many

elements of U . Further, recall for a topological space X that an element x ∈ X is

an isolated point if there is an open neighborhood Nx of x such that x is the only

element of Nx. In particular, notice that an isolated point has a neighborhood with

zero diameter.

Lemma 3: For a metric space (X,d) with no isolated points the following are

equivalent:

(1) (X,d) has the strong Haver property.

(2) For each sequence (εn ∶ n < ∞) of positive real numbers there is a sequence

(Un ∶ n <∞) such that each Un is a discrete family of open sets, each of diameter

less than εn, and ⋃
n<∞
Un is a large cover of X.

Proof. 2 To see that (1) ⇒ (2) do the following: Let (εn ∶ n < ∞) be a sequence of

positive real numbers. It may be assumed that this sequence is strictly decreasing

and that it converges to zero. To see this, notice that if (εn ∶ n <∞) is not decreasing

and convergent to zero, then we may define

δn =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

εn n = 0

1
2(min ({εi ∶ i ≤ n} ∪ {δi ∶ i < n})) n > 0.

2This proof follows that given of Lemma 7 in [4].
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Apply the strong Haver property to the sequence (δn ∶ n < ∞), which is strictly

decreasing, to obtain a sequence (Un ∶ n < ∞) of discrete families of open sets such

that for each n, the diameter of each element of Un is less than δn and ⋃
n<∞
Un is a

cover of the space. Since δn ≤ εn, this sequence of discrete families also works for

(εn ∶ n <∞).

Let ⊍
k<∞

Ik be a partition of the natural numbers into infinitely many infinite sets.

Apply the strong Haver property of (X,d) to each of the sequences (δn ∶ n ∈ Ik) to

obtain a sequence (Un ∶ n ∈ Ik) of discrete families of open sets such that for each

n, the diameter of each element of Un is less than δn and ⋃
n∈Ik

Un is a cover of X. It

remains to show that ⋃
n<∞
Un is a large cover of X.

Fix any y ∈ X and n ∈ N. Assume we have already selected sets U1, . . . , Un such

that for each j ≤ n there is an mj and Uj ∈ ⋃
i∈Imj

Ui with y ∈ Uj. That we can find a

first such set is clear since ⋃
n<∞
Un is a cover of X. To find Un+1 ∉ {U1, . . . Un} with

y ∈ Un+1 and Un+1 ∈ ⋃
n<∞
Un, do as follows.

First, set δ = min{diam (Uj) ∶ j ≤ n}. Choose k ∈ N such that δk < δ; this can

be done since (δn ∶ n < ∞) converges to zero and since δ > 0 (which follows from X

having no isolated points). Next, by our partitioning of the natural numbers, choose

` such that min (I`) > k. Since ⋃
i∈I`

Ui covers X, we choose Un+1 to be a member of

this cover which contains y. By our choice of ` we have that diam (Un+1) < δk < δ.

Therefore, we have that Un+1 ∉ {U1, . . . , Un}. Thus, we see that ⋃
n<∞
Un has infinitely

many distinct members containing y, and so conclude that ⋃
n<∞
Un is a large cover of

X.

That (2)⇒ (1) is clear since every large cover of X is certainly a cover of X.

In many of the proofs given about products of spaces for the Sc(O,O) case, it
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was used that the product of two pairwise disjoint families is also a pairwise disjoint

family. The corresponding version which allows the Sc(O,O) proofs to work for the

strong case is

Lemma 4 (⋆): For discrete families A and B of subsets of topological spaces X and

Y , respectively, the family C = {A × B ∶ A ∈ A and B ∈ B} is a discrete family of

subsets of X × Y .

Proof. Let A,B, and C be as given. Consider any (x, y) ∈X ×Y . Since A is a discrete

family of sets in X there is a neighborhood Nx of x such that at most one element

of A has non-trivial intersection with Nx. Since B is a discrete family of sets in Y

there is a neighborhood Ny of y such that at most one element of B has non-trivial

intersection with it. Notice that Nx×Ny is a neighborhood of (x, y) in X×Y . Suppose

there were distinct elements A ×B and A′ ×B′ of C such that their intersection with

Nx ×Ny were non-trivial. If A ×B and A′ ×B′ are distinct because A ≠ A′, then A

and A′ are distinct members of A which have non-trivial intersection with Nx. This,

however, contradicts our choice of Nx, which we found since A is a discrete family.

Hence we see that it must be that A = A′. Similarly, we see that B = B′, and so

A ×B = A′ ×B′, contradicting our assumption that they were distinct members of C

with nontrivial intersection with Nx×Ny, i.e. that C was not a discrete family. Hence,

we may conclude that C is a discrete family of sets in X × Y .

We are now ready to prove Theorem 2.

Proof of Theorem 2: 3 Let (εn ∶ n < ∞) be a strictly decreasing sequence of positive

real numbers. Since Y has the strong Haver property, by applying Lemma 3 to the

sequence (
εn
2
∶ n <∞), we obtain a sequence (Un ∶ n < ∞) such that each Un is a

3This proof follows that given by Babinkostova of Theorem 8 of [4].
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discrete family of sets open in Y , each of diameter less than
εn
2

, and ⋃
n<∞
Un is a large

cover of Y . Since each Un is a discrete family of open sets, each y ∈ Y is found in at

most a single element of Un. Hence, since ⋃
n<∞
Un is a large cover of Y we see that

each y ∈ Y is in ⋃Un for infinitely many n. By the σ-discrete grouping property of

Y applied to (Un ∶ n < ∞) we obtain a strictly increasing sequence (nk ∶ k < ∞) of

natural numbers such that each y ∈ Y is in almost every ⋃( ⋃
nk≤j<nk+1

Uj).

Now, for each k define δk =
εnk

2
. Since X has the strong Haver property, by

applying Lemma 3 to the sequence (δk ∶ k < ∞), we obtain a sequence (Vk ∶ k < ∞)

such that each Vk is a discrete family of sets open in X, each of diameter less than

δk, and ⋃
k<∞

Vk is a large cover of X.

Define the following families of sets:

Wi =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

{V ×U ∶ V ∈ V1 and U ∈ Ui}, i < n1

{V ×U ∶ V ∈ Vk+1 and U ∈ Ui}, nk ≤ i < nk+1.

By Lemma 4, we know that each Wi is a discrete family of sets open in X × Y . By

the standard product metric and use of the triangle inequality we see that for W ∈Wi

we have for i < n1 that

diamW =
√

(diamV )2 + (diamU)2 <

√

(δ1)2 + (
εi
2
)
2

=

√

(
εn1

2
)
2

+ (
εi
2
)
2

<

√

(
εi
2
)
2

+ (
εi
2
)
2

=

√
2

2
εi

and for nk ≤ i < nk+1 that
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diamW =
√

(diamV )2 + (diamU)2 <

√

(δk+1)2 + (
εi
2
)
2

=

√

(
εnk+1

2
)
2

+ (
εi
2
)
2

<

√

(
εi
2
)
2

+ (
εi
2
)
2

=

√
2

2
εi.

In either case the elements of Wi are of diameter less that εi. It remains to show that

⋃
i<∞

Wi is a cover of X × Y .

Let (x, y) ∈ X × Y . Since each y ∈ Y is in almost every ⋃( ⋃
nk≤j<nk+1

Uj), we pick

an N large enough that for each k ≥ N we have y ∈ ⋃( ⋃
nk≤j<nk+1

Uj). Since each Vk

is a discrete family of sets and since ⋃
k<∞

Vk is a large cover, we choose a k > N with

x ∈⋃Vk+1. Thus, we have (x, y) ∈ V ×U ∈ Vk+1 ×Ui ∈Wi for some i with nk ≤ i < nk+1.

Hence, ⋃
i<∞

Wi is a cover of X × Y . Therefore, we conclude that X × Y has the strong

Haver property.

To see that all finite powers of the reals have the σ-discrete grouping property, we

turn to the following facts and lemma. In [28] Scheepers showed that

Fact 4: If a topological space has the Hurewicz property, then it has the grouping

property.

A space X is said to have the grouping property if for each bijectively enumerated

large cover (Un ∶ n < ∞) there is a sequence n1 < n2 < ⋯ < nk < ⋯ such that each

element of X is in all but finitely many of the sets ⋃
nk≤j<nk+1

Uj. In [4] Babinkostova

showed that

Fact 5: The grouping property is equivalent to the σ-disjoint grouping property.

Since each discrete family is a disjoint family, it is evident that
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Lemma 5: The σ-disjoint grouping property implies the σ-discrete grouping prop-

erty.

With these facts and lemma in mind, we see that a space with the Hurewicz

property also has the σ-discrete grouping property. In particular, every finite power

of the reals has the σ-discrete grouping property. Hence, as a corollary to Theorem

2, we see that all finite powers of the reals have the strong Haver property. Thus we

see that

Theorem 3: Each finite power of the set of reals with the standard topology is an

Sd(O,O)-space.

Hence, as more general corollaries to Theorem 2 we have

Corollary 2: If X and Y have the strong Haver property and either X or Y has

the Hurewicz property, then X × Y has the strong Haver property.

Simple induction arguments then give:

Corollary 3: If X is a strong Haver space with the σ-discrete grouping property,

then all finite powers of X have the strong Haver property.

Corollary 4: If X has both the strong Haver and Hurewicz properties, then all

finite powers of X have the strong Haver property.

2.2 Compact, finite dimensional metric spaces are Sd(O,O)

Our next objective on the way to showing that Pol’s space is Sd(O,O) is to show

that every compact, finite dimensional metric space is an Sd(O,O)-space. The keys

to this are the Menger-Nöbeling Theorem and the following theorem.
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Theorem 4 (Closed Subspace Theorem, ⋆): Every closed subspace of an Sd(O,O)-

space is also an Sd(O,O)-space.

Proof. Let X be an Sd(O,O)-space and let C ⊆ X be closed. Let (Un ∶ n < ∞) be a

sequence of open (in the relative topology on C) covers of C. For each n and each

U ∈ Un fix an open set U ′ ⊆X such that U = C ∩U ′ and define

WU ∶= (X/C) ∪U ′.

Notice that since C is closed in X, X/C is open in X, and hence WU is open in X.

Next, define the family

Wn ∶= {WU ∶ U ∈ Un}.

Since for each U ∈ Un we have X/C ⊆ WU and U ⊆ WU , we see that each Wn is an

open cover of X. Applying Sd(O,O) of X to the sequence (Wn ∶ n < ∞) of open

covers of X, we obtain (Vn ∶ n <∞), an Sd(O,O)-refinement of (Wn ∶ n <∞). Now,

for each n define

V ′n ∶= {V ∩C ∶ V ∈ Vn}.

It is clear that for each n, V ′n is a discrete family of sets open in the relative topology

on C and refining Un. Further, since ⋃
n<∞
Vn is a cover of X, we have that ⋃

n<∞
V ′n is a

cover of C. Thus, (V ′n ∶ n < ∞) is an Sd(O,O)-refinement of (Un ∶ n < ∞), and so C

is an Sd(O,O)-space.

Having the Closed Subspace Theorem, we may now use

Theorem 5 (Menger-Nöbeling Theorem, pg 420 of [19]): Every separable metric

space of dimension n is homeomorphic to a subspace of R2n+1.
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Recalling that compact metric spaces are separable we have by the Menger-

Nöbeling Theorem that if C is a compact n-dimensional metric space, then C is

homeomorphic to a subspace, say C ′, of R2n+1. In particular, C ′ is compact, and

hence a closed subspace of R2n+1. By Theorem 3, R2n+1 is an Sd(O,O)-space. By

the Closed Subspace Theorem, C ′ is an Sd(O,O)-space. Thus, since it is clear that

Sd(O,O) is preserved by homeomorphisms, C is an Sd(O,O)-space. Hence, we have

Theorem 6: Every compact, finite dimensional metric space is an Sd(O,O)-space.

2.3 The countable sum of compact Sd(O,O)-spaces

From [1], we know that

If X is a metric space such that X = ⋃
n<∞

Xn and each Xn is an Sc(O,O)-

space (in the relative topology), then X is an Sc(O,O)-space.

In the proof given by Addis and Gresham, they use the idea that if X ⊆ Y and F

is a disjoint family of sets open in X, then F extends “nicely” to a disjoint family

of sets open in Y . More explicitly, they use what amounts to Theorem II.21.XI.2 of

[19], which states

Let Y be a metric space and X ⊆ Y . Given a family {Uι} of sets open in

X, there exists a family {Vι} of open (in Y ) sets such that X ∩Vι = Uι and

the condition Uι1 ∩⋯∩Uιn = ∅ implies Vι1 ∩⋯∩ Vιn = ∅, for every (finite)

system of indices ι1, . . . , ιn.

Unfortunately, we have not yet found a way to nicely extend discrete families in the

subspace topology to discrete families in the superspace topology. We will discuss

this in more detail in Chapter 4. Thus far, the closest we have come to an analogous

version of the countable union of Sc(O,O)-spaces theorem is
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Theorem 7 (⋆): If X = ⋃
n<∞

Xn where each Xn is a compact Sd(O,O)-space, then

X is an Sd(O,O)-space.

While this theorem will not be directly applicable in proving that Pol’s space is

selectively strongly screenable, the technique of its proof, and the tools discovered on

the way to proving it are very much applicable in proving that result. The key to

this theorem is the special case that each finite discrete family of sets in the relative

topology extends nicely to a discrete family of sets in the superspace topology. Note

that by ”superspace” we mean that if X is a subspace of a topological space Y , then

we say that Y is a superspace of X. Recall that a topological space X is said to be

normal if for each pair of disjoint closed sets C1,C2 ⊆X, there are disjoint open sets

U1 and U2 such that C1 ⊆ U1 and C2 ⊆ U2.

Lemma 6 (⋆): Let Y be a normal topological space and let X ⊆ Y be closed. For

F = {F1, . . . , Fn} ⊆ P(X), a finite discrete family of sets open in the relative topology

on X, there exists F ′ = {U1, . . . Un} ⊆ P(Y ), a discrete family of sets open in Y such

that Fi ⊆ Ui for each i.

Proof. Let X,Y, and F be as given. We proceed by induction on n, the number

of elements in F . If F is either empty or contains only a single set, then we can

take F ′ = {Y } and F ′ is as desired. So, suppose that n ≥ 2. We will construct

F ′ = {U1, . . . Un} recursively as follows. Since F is a discrete family of sets open in X,

we know that {FX
i ∶ 1 ≤ i ≤ n} is a pairwise disjoint family of sets closed in X. Since

X is a closed subset of Y , we also know that each FX
i = F Y

i and so is closed in Y . We

will now construct open (in Y ) sets U1 and U2 about F1 and F2, respectively, such

that UY
1 ∩UY

2 = ∅.
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We have that F Y
1 ∩F Y

2 = ∅. Since Y is a normal topological space, we find disjoint

open (in Y ) sets V1 ⊃ F Y
1 and V2 ⊃ F Y

2 such that V1 ∩ V2 = ∅. Since V1 ∩ V2 = ∅,

we know that V Y
1 ∩ V Y

2 ⊆ ∂V Y
1 ∩ ∂V Y

2 .4 Since F Y
2 ⊂ V2 and V2 ∩ ∂V Y

2 = ∅, we know

that V Y
1 ∩ F Y

2 = ∅ Again, using normality of Y , we find disjoint open (in Y ) sets

V3 ⊃ V Y
1 and V4 ⊃ F Y

2 such that V3 ∩ V4 = ∅. Since V3 ∩ V4 = ∅, we know that

V Y
3 ∩V Y

4 ⊆ ∂V Y
3 ∩∂V Y

4 . Since V Y
1 ⊂ V3 and V3 ∩∂V Y

3 = ∅, we know that V Y
1 ∩V Y

4 = ∅.

Recall that F1 ⊆ V1 and F2 ⊆ V4. Thus, taking U1 = V1 and U2 = V4 we have that U1

and U2 are disjoint open (in Y ) sets such that U1 ⊇ F1, U2 ⊇ F2 and UY
1 ∩UY

2 = ∅.

Assume now that we have constructed U1, . . . , Un−1 such that {UY
i ∶ 1 ≤ i < n} is

pairwise disjoint and Fi ⊂ Ui. Apply the argument of F1 and F2 case above with F Y
1

replaced with ⋃
i<n

UY
i and F Y

2 replaced with F Y
n to find a Un such that UY

n ∩⋃
i<n

UY
i = ∅.

Then, F ′ = {U1, . . . , Un} is as desired.

With this, we are now ready to prove the Countable Sum (Compact) Theorem.

Proof of Theorem 7: Let X = ⋃
i<∞

Xi where X is metrizable and each Xi is a compact

Sd(O,O)-space. Let (Un ∶ n < ∞) be a sequence of open covers of X. Partition the

natural numbers into infinitely many infinite sets, say N = ⊍
k<∞

Jk. Notice that each

(Un ∶ n ∈ Jk) is a sequence of open covers of X.

For each k, consider (Un ∶ n ∈ Jk) as a sequence of open covers of Xk. Applying

Sd(O,O) of Xk to (Un ∶ n ∈ Jk) we find an Sd(O,O)-refinement (Vn ∶ n ∈ Jk) of

(Un ∶ n ∈ Jk). Applying compactness of Xk to the open cover ⋃
n∈Jk

Vn we obtain a finite

subcover, say V = {V1, . . . , Vm}. For each n ∈ Jk define

4Note that for a set A of a topological space X, ∂A denotes the boundary of A, where ∂A =
A/IntA = A ∩ (X/A).
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V ′n ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∅, if V ∩ Vn = ∅

{Vi ∶ Vi ∈ Vn,1 ≤ i ≤m}, otherwise.

Notice that for each n ∈ Jk we have that V ′n is a finite discrete family of sets open in

Xk refining Vn, and so also refining Un.

By recalling that metrizable spaces are normal and that in metrizable spaces,

compact subspaces are closed subspaces, for each n ∈ Jk, we apply Lemma 6 to each

V ′n to obtain a finite discrete family Wn of sets open in X. For each V ∈ V ′n let WV

be the set in Wn such that V ⊆WV . Recall that since V ′n ≺ Un, for each V ∈ V ′n there

is a U ∈ Un, say UV such that V ⊆ UV . Since WV ⊇ V and UV ⊇ V are both open in

X, we have that WV ∩ UV is open in X, and moreover V ⊆WV ∩ UV . Doing this for

each V ∈ V ′n we find that W ′
n = {WV ∩UV ∶ V ∈ V ′n} is a discrete family of sets open in

X and refining Un. Hence (W ′
n ∶ n ∈ Jk) is a sequence of discrete families of sets open

in X, with each W ′
n ≺ Un. Since ⋃

n∈Jk

V ′n covers Xk and since ⋃
n∈Jk

W ′
n ⊇ ⋃

n∈Jk

V ′n we have

that ⋃
n∈Jk

W ′
n covers Xk. It is now clear that (W ′

n ∶ n < ∞) is a sequence of discrete

families of sets open in X such that for each n, W ′
n ≺ Un and ⋃

n<∞
W ′

n is a cover of

X.

2.4 Zero dimensional spaces

The only remaining tool needed for our proof that Pol’s space is Sd(O,O) is the

technique of the proof that

Lemma 7: Every zero-dimensional space is an Sd(O,O)-space.

The key to this is the well known result that every open cover of a zero-dimensional

space has a refinement which is a disjoint open cover. For instance, see Proposition
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4.2.1 on page 131 of [20]. Then, one observes that every disjoint open cover is a discrete

family of open sets. With these in mind, one readily sees that every zero-dimensional

space is an Sd(O,O)-space.

Proof. Let X be a zero-dimensional space. Let (Un ∶ n < ∞) be a sequence of open

covers of X. For each n, by zero-dimensionality of X, let Vn be a disjoint open cover

of X refining Un. Since Vn is a disjoint open cover of X, we see that each x ∈ X is

contained in a single element, say V , of Vn. Since x ∈ V and V is an open subset

of X, we see that V is a neighborhood of x. Since Vn is a disjoint family, it is clear

that V has trivial intersection with every other element of Vn. Hence Vn is a discrete

family of open sets. Since each Vn is a cover of X, it is clear that ⋃
n<∞
Vn is a cover of

X. Hence, we see that (Vn ∶ n < ∞) is an Sd(O,O)-refinement of (Un ∶ n < ∞), and

so X is an Sd(O,O)-space.

What we will use from this in the proof of Pol’s space is merely that

Fact 6: If U is an open cover of a zero-dimensional space, say X, then there is a V

refining U such that V is a discrete family of open sets which is also a cover of X.

This was shown in the process of proving Lemma 7. Now, we are ready to prove

that Pol’s space is an Sd(O,O) space.

2.5 The proof

Let P = L ∪ M be Pol’s space, as described at the start of this chapter. Let

(Un ∶ n < ∞), a sequence of open covers of P , be given. We will write L = ⋃
i<∞

Li

where each Li is a compact finite dimensional space, say of dimension ni. For each i,

by the Menger-Nöbeling Theorem, we have that Li is homeomorphic to a subspace,
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say Li of R2ni+1. Since Li is compact, so is Li, and hence Li is a closed subspace of

R2ni+1. By Theorem 3, we know that for each i < ∞, R2ni+1 is an Sd(O,O)-space.

Thus, by the Closed Subspace Theorem, we have that Li is an Sd(O,O)-space. Hence,

so is Li, since Sd(O,O) is preserved by homeomorphisms.

Now that we know that each Li is a compact Sd(O,O)-space, we will apply the

technique of Theorem 7. Partition the natural numbers such that N = {1} ∪ ⊍
i<∞

Ji

where each Ji is an infinite subset of N/{1}. For each i consider (Un ∶ n ∈ Ji) as a

sequence of open covers of Li. Apply property Sd(O,O) of Li to (Un ∶ n ∈ Ji) to obtain

(Vn ∶ n ∈ Ji), the corresponding Sd(O,O)-refinement (in the relative topology on Li).

Apply compactness of Li to ⋃
n∈Ji

Vn to obtain a finite subcover say V = {V1, . . . , Vm}.

For each n ∈ Ji define

V ′n =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∅ if V ∩ Vn = ∅

{Vj ∶ Vj ∈ Vn,1 ≤ j ≤m} othewise

For each n ∈ Ji we have that V ′n is a finite discrete family of sets open in Li and

refining Un.

Now, for each n ∈ Ji, we apply Lemma 6 to each V ′n to obtain finite discrete families

Wn of sets open in P . For each V ∈ V ′n let WV be the set in Wn such that V ⊆ WV .

Since V ′n ≺ Un, for each V ∈ V ′n we pick a UV ∈ Un such that V ⊆ UV . Hence we see

that W ′
n = {WV ∩UV ∶ V ∈ V ′n} is a discrete family of sets open in P and refining Un.

Further, we have that ⋃
n∈Ji

W ′
n covers Li, and so ⋃

i<∞

(⋃
n∈Ji

W ′
n) is a cover of L = ⋃

i<∞

Li.

Additionally, notice that W = ⋃(⋃
i<∞

(⋃
n∈Ji

W ′
n)) is an open set in P , and so P /W is

closed in P , and hence compact, since P is a compact space.

Since W covers L, we then see that P /W is a subset of M . Recall that M
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is a totally disconnected space. Since P /W is a subset of M , which is a totally

disconnected space, then by Theorem 29.3 of [29] we see that P /W is a totally

disconnected space. So P /W is a compact, totally disconnected space, and so by

Theorem 29.7 of [29] we see that P /W is zero-dimensional. Recall that we have yet

to use U1. We now do so. Since U1 is a cover of P it is also a cover of P /W. By

Fact 6 we find V1, a discrete family of open sets in P /W such that V1 ≺ U1 and is a

cover of P /W. Note that V1 is a pairwise disjoint cover, and so no proper subet of

it will be a cover. Hence, by compactness of P /W we see that V1 is a finite cover

of P /W. By Lemma 6 applied to V1, we obtain W1, a finite discrete family of sets

open in P . For each V ∈ V1 we let WV be the set in W1 such that V ⊆ WV . Since

V1 ≺ U1, for each V ∈ V1 we pick a UV ∈ U1 such that V ⊆ U . Hence, we see that

W ′
1 = {WV ∩UV ∶ V ∈ V1} is a discrete family of sets open in P , refining U1 and a cover

of P /W. Thus, we see that (W ′
n ∶ n < ∞) is a sequence of discrete families of sets

open in P such that for each n, W ′
n ≺ Un and ⋃

n<∞
W ′

n covers P . So we may conclude

that P is an Sd(O,O)-space.
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CHAPTER 3

OTHER RESULTS

In the process of examining selective strong screenability, we found additional results

not directly connected with showing that Pol’s space is an Sd(O,O)-space. Among

these are free sum theorems for spaces with the Hurewicz property, the Menger

property, and selective strong screenability. There are a handful of results about

a natural weakening of selective strong screenability for use in topological groups.

And, there are some results relating selective strong screenability to other selection

principles.

3.1 Generalizations of earlier results

In §2.2, we used the Menger-Nöbeling theorem in concluding that every compact,

finite dimensional metric space is an Sd(O,O)-space, Theorem 6. We may generalize

this to

Theorem 8 (⋆): Each finite dimensional metric space with the Hurewicz property

is an Sd(O,O)-space.

For this, we will need

Lemma 8: The strong Haver property is preserved under subspaces.

Proof. Let (X,d) be a strong Haver space and let Y be a subspace of X. Let
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(εn ∶ n <∞) be a sequence of positive real numbers. Apply the strong Haver property

of X to (εn ∶ n < ∞) to obtain a corresponding sequence (Vn ∶ n < ∞) such that:

for each n, Vn is a discrete family of sets open in X; for each n, for each V ∈ Vn,

the d-diameter of V is less than εn; and, ⋃
n<∞
Vn is a cover of X. For each n, define

Un = {V ∩ Y ∶ V ∈ Vn} and notice that (Un ∶ n < ∞) witnesses that (Y, d) has the

strong Haver property.

Proof of Theorem 8: Let X be an n-dimensional metric space with the Hurewicz

property, where n < ∞. By the Menger-Nöbeling theorem we know that X is

homeomorphic to a subspace, say X ′ of R2n+1. Since the Hurewicz property is closed

under continuous maps, see [17], we see that X ′ has the Hurewicz property. Since

R2n+1 is Sd(O,O) it is straightforward to see that R2n+1 has the strong Haver property

(see also Theorem 14 below). By Lemma 8 we see that X ′ also has the strong

Haver property. Since X ′ has both the strong Haver property and the Hurewicz

property, we conclude by Theorem 1 that X ′ is an Sd(O,O)-space. Therefore X is

an Sd(O,O)-space, since Sd(O,O) is preserved under homeomorphisms.

3.2 Sum theorems

As seen in §2.2, we have that the countable union of compact Sd(O,O)-spaces is again

Sd(O,O). As commented there, we have thus far been unable to extend that result

to one without the compact condition. However, we do have that

Theorem 9 (Free Sum Theorem): The free sum of Sd(O,O)-spaces is an Sd(O,O)-

space.

Recall that the free sum of two disjoint spaces, say X and Y , denoted X + Y is

the set X ⊍ Y with the topology such that U ⊆X + Y is open (in X + Y ) if, and only
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if, U ∩X is open in X and U ∩Y is open in Y . We denote by ∑Xn the set ⊍Xn with

the topology such that U ⊆ ⊍Xn is open (in ∑Xn) if, and only if, U ∩Xn is open in

Xn for each n. With the definition of a free sum in mind, we now prove Theorem 9.

Proof of Theorem 9: For each n ∈ N let Xn be an Sd(O,O)-space. Set X = ∑Xn. Let

(Un ∶ n <∞) be a sequence of open covers of X. Partition the natural numbers into

infinitely many infinite sets, say N = ⊍
k<∞

Jk. For each k, apply property Sd(O,O) of

Xk to (Un ∶ n ∈ Jk) to obtain (Vn ∶ n ∈ Jk) a corresponding Sd(O,O)-refinement (in

the relative topology on Xk). Since {Xn}n∈N is a pairwise disjoint family of spaces,

we have that each set open in Xk is open in X and that a discrete family of sets in

Xk is also a discrete family of sets in X. Hence ⋃
n∈Jk

Vn is an open (in X) cover of Xk.

Thus, we see that (Vn ∶ n <∞) is an Sd(O,O)-refinement (in X) of (Un ∶ n <∞). So,

X is an Sd(O,O)-space.

The same basic technique then gives the analogous result for strong Haver spaces

and Menger spaces.

Theorem 10: The free sum of strong Haver spaces is a strong Haver space.

Proof. For each n ∈ N, let Xn be a strong Haver space. Set X = ∑Xn. Let

(εn ∶ n < ∞), a sequence of positive reals, be given. Partition the natural numbers

into infinitely many infinite sets, say N = ⊍
k<∞

Jk. For each k, apply the strong Haver

property on Xk to the sequence of positive reals (εn ∶ n ∈ Jk) to obtain a sequence

(Vn ∶ n ∈ Jk) such that each Vn is a discrete family of sets open in Xk, each of diameter

less than εn, and ⋃
n∈Jk

Vn a cover of Xk. Since {Xn}n∈N is a pairwise disjoint family of

spaces, we have that each Vn is a discrete family of open sets in the topology on X.

Since the metric on X restricted to Xk is the same as the metric on Xk, we have that

the diameters agree. Thus, we see that (Vn ∶ n <∞) is a sequence of discrete families
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of sets open in X such that for each n and for each V ∈ Vn, V has diameter less than

εn and ⋃
n<∞
Vn covers X.

Theorem 11: The free sum of Menger spaces is a Menger space.

Recall that a space X is said to be Menger if for each sequence (Un ∶ n < ∞) of

open covers of X there is a corresponding sequence (Vn ∶ n <∞) such that each Vn is

a finite subset of Un and ⋃
n<∞
Vn is a cover of X.

Proof. Let X = ∑Xn where each Xn is Menger. Let (Un ∶ n < ∞) be a sequence of

open covers of X. Partition the natural numbers into infinitely many infinite sets, say

N = ⊍
k<∞

Jk. For each k, apply the Menger property on Xk to the sequence (Un ∶ n ∈ Jk)

to obtain (Vn ∶ n ∈ Jk) where for each n ∈ Jk, Vn is a finite subset of Un and ⋃
n∈Jk

Vn

is an open (in the relative topology on Xk) cover of Xk. Since {Xn}n∈N is a pairwise

disjoint family sets open in X we have that each set open in Xk is open in X. Hence

⋃
n∈Jk

Vn is an open (in X) cover of Xk. Thus, we see that (Vn ∶ n < ∞) is such that

each Vn is a finite subset of Un and ⋃
n<∞
Vn is an open cover X. So, X is Menger.

Note that the key to the free sum theorems was that both open sets and discrete

families are preserved when extended from the topology of the subspace Xn to the

topology on the space ∑Xn.

3.3 More product theorems

When proving that each finite power of the reals is an Sd(O,O)-space in §2.1, we

proved several product theorems about the strong Haver property. Here, we give

some product theorems more directly related to when a product of two spaces is an

Sd(O,O)-space. The first is the corresponding version of Theorem 12 of [4].
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Theorem 12: If X is a metrizable space with both the strong Haver property and

the Hurewicz property, and if Xn has the Hurewicz property, then Xn is an Sd(O,O)-

space.

Proof. This is a direct application of Corollary 4 to get that Xn has the strong Haver

property and then using Theorem 1 to conclude that Xn is an Sd(O,O)-space.

We highlight the role of compactness in establishing the next theorem.

Theorem 13: If X and Y are Sd(O,O)-spaces, at least one of which is compact,

then X × Y is an Sd(O,O)-space.

Proof. 1 Let X and Y be Sd(O,O)-spaces with Y a compact space. Consider a

sequence of open covers of X × Y , which we will write as (Um,n ∶ n ∈ N,m ∈ N). We

may assume that each cover Um,n is of the form

Um,n = {Aαm,n ×B
α
m,n ∶ α ∈ Γm,n}

where Aαm,n is open in X, Bα
m,n is open in Y , and Γm,n is an indexing set.

Fix m ∈ N and x ∈ X. For each n ∈ N, by compactness of Y , choose a finite

indexing set Γm,n(x) ⊆ Γm,n such that

Bm,n(x) = {Bα
m,n ∶ α ∈ Γm,n(x)}

is a cover of Y with x ∈ Aαm,n for each α ∈ Γm,n(x). By Sd(O,O) on Y , choose an

Sd(O,O)-refinement (Dm,n(x) ∶ n ∈ N) of (Bm,n(x) ∶ n ∈ N). Note that without loss

of generality, each Dm,n(x) may be assumed to be finite since each Bm,n is finite.

1This proof follows that given by Rohm in [26].
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By compactness of Y applied to ⋃
n∈N
Dm,n(x) we find finite Rm(x) ⊂ N such that

⋃
n∈Rm(x)

Dm,n(x) covers Y . Define the following open neighborhood of x:

Am(x) =⋂{Aαm,n ∶ n ∈ Rm(x), α ∈ Γm,n(x)}.

For each m ∈ N set

Am ∶= {Am(x) ∶ x ∈X}

to obtain a sequence (Am ∶m ∈ N) of open covers of X.

By Sd(O,O) onX we choose an Sd(O,O)-refinement (Cm ∶m ∈ N) of (Am ∶m ∈ N).

Since Cm ≺ Am, we choose a function φ ∶ Cm → X such that for each C ∈ Cm we have

that

C ⊂ Am(φm(C)),

and so for n ∈ Rm(φm(C)) and α ∈ Γm,n(φm(C)) we have that C ⊂ Aαm,n. Now, for

each (m,n) ∈ N ×N define

Vm,n = {C ×D ∶ (∃C ∈ Cm)(n ∈ Rm(φm(C))) and D ∈ Dm,n(φm(C))}.

Notice that C ∈ Cm means that C ⊂ Aαm,n for each α ∈ Γm,n(φm(C)). Since

D ∈ Dm,n(φm(C)) we have that D ⊂ Bα
m,n for some α ∈ Γm,n(φm(C)). Thus, for

some α ∈ Γm,n(φm(C), we have that C ×D ⊂ Aαm,n ×B
α
m,n ∈ Um,n. So Vm,n ≺ Um,n.

Now, we claim that since each Cm is a discrete family, as is Dm,n(φm(C)) for a

fixed C ∈ Cm, we have that Vm,n is a discrete family. To see this, fix x ∈ X. Let Nx

be a neighborhood of x witnessing that Cm is a discrete family. If all elements of Cm

have empty intersection with Nx then C ×D, for each D ∈ Dm,n(φm(C)), has empty

intersection with Nx × Y . Suppose C ∈ Cm is such that it is the only such element
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with nontrivial intersection with Nx. If an element of Vm,n were to have nontrivial

intersection with Nx ×Ny, for some open neighborhood Ny of y, then it must be an

element of {C}×Dm,n(φm(C)), which is a discrete family. In either case, we see that

Vm,n is a discrete family.

Lastly, we show that ⋃{Vm,n ∶ m,n ∈ N} covers X × Y . Let (x, y) ∈ X × Y .

Since ⋃{Cm ∶ m ∈ N} covers X, we pick m ∈ N and C ∈ Cm with x ∈ C. Since

⋃{Dm,n(φm(C)) ∶ n ∈ Rm(φm(C))} covers Y , we pick n ∈ Rm(φm(C)) and

D ∈ Dm,n(φm(C)) such that y ∈D. Thus, we have that (x, y) ∈ C ×D ∈ Vm,n.

3.4 Another relation between strong Haver and Sd(O,O)

As seen in §2.1, there is a strong connection between the strong Haver property and

selective strong screenability. The corresponding connection for the Haver property

and Sc(O,O) was commented on by Babinkostova in [4] and was followed up on by

E. Pol and R. Pol in [24] where it is stated that

A metrizable space X has property C if and only if for any metric d on

X generating the topology, (X,d) has the Haver property.

We found that

Theorem 14: A metrizable space X is Sd(O,O) if, and only if, for any metric d on

X generating the topology, (X,d) has the strong Haver property.

The reverse direction is proven using the same method as that given by E. and R.

Pol in comment (D) of [24]. It is a straightforward application of definitions to see

the forward direction.
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Proof. First, suppose that X is an Sd(O,O)-space. Let d be a metric on X generating

the topology. Let (εn ∶ n < ∞), a sequence of positive real numbers, be given. For

each n, let Un be the cover of X by open balls of d-diameter less than εn. Applying

Sd(O,O) of X to (Un ∶ n <∞) gives a sequence (Vn ∶ n <∞) such that:

(1) For each n, Vn is a discrete family of sets open in X;

(2) For each n, Vn is a refinement of Un;

(3) ⋃
n<∞
Vn is a cover of X.

Notice (2) gives us that for each n the diameter of elements of Vn is less than εn.

Thus, we see that (X,d) has the strong Haver property.

For the other direction, suppose that for any metric d on X generating the

topology, (X,d) has the strong Haver property. Let (X,d) be such a metric space.

Suppose that X does not have the Sd(O,O) property. Let (Un ∶ n <∞) be a sequence

of open covers of X which witnesses this. Then by Theorem 9.4 of Chapter IX,

Section 9 of [12], page 196, we find an equivalent metric ρ such that for each n,

Wn = {Bρ (x,
1

n
) ∶ x ∈X} refines Un. If (X,d) had the strong Haver property, then

we could find a sequence (Vn ∶ n < ∞) of discrete families such that for each n and

for each V ∈ Vn it happens that diamV <
1

n
and ⋃

n<∞
Vn is a cover of X. But, then we

would have that (Vn ∶ n <∞) is an Sd(O,O)-refinement of (Un ∶ n <∞), contradicting

that (Un ∶ n < ∞) witnesses that (X,d) is not Sd(O,O). Thus, X has the Sd(O,O)

property.

Recall from Lemma 3 that the cover given by the strong Haver property may

be taken to be a large cover, provided the space has no isolated points. Thus, as a

corollary to Theorem 14 and Lemma 3 we see that
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Corollary 5: If (X,d) is a selectively strong screenable metric space with no isolated

points, then for each sequence (εn ∶ n <∞) of positive real numbers there is a sequence

(Un ∶ n <∞) such that each Un is a discrete family of open sets, each of diameter less

than εn, and ⋃
n<∞
Un is a large cover of X.

3.5 Topological Groups

There is a natural weakening of the property Sd(O,O) for topological groups to the

property Sd(Onbd,O), read ”ess dee oh neighborhood oh”. A topological group is

a group with a topology such that the group operation and the inverse operation

are continuous. The corresponding version for selective screenability was studied by

Babinkostova in [6]. For (G,∗) a topological group with identity element e and U a

neighborhood of e we define O(U) = {x ∗ U ∶ x ∈ G}, which is an open cover of G.

We denote by Onbd the collection of all such open covers; explicitly Onbd = {O(U) ∶

U is a neighborhood of e}. With these definitions (which were given in [6]) in mind,

we now define the selection principle Sd(Onbd,O).

Definition 2: A topological group G is said to have property Sd(Onbd,O) if for each

sequence (Un ∶ n <∞) of elements of Onbd there is corresponding sequence (Vn ∶ n <∞)

such that

(i) For each n, Vn is a discrete family of sets open in G.

(ii) For each n, Vn ≺ Un.

(iii) ⋃
n<∞
Vn is a cover of G.

Many of the results discussed in previous sections also hold for Sd(Onbd,O) in

topological groups. For instance, the theorem of the previous section becomes
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Theorem 15: Let (G,∗) be a metrizable group. The group has property Sd(Onbd,O)

if and only if the group has the strong Haver property in all equivalent left invariant

metrics.

For this, we need the following theorem of Kakutani, as given in [6].

Theorem 16: Let (Uk ∶ k < ∞) be a sequence of subsets of the topological group

(H,∗) where {Uk ∶ k < ∞} is a neighborhood basis of the identity element e and

each Uk is symmetric (i.e Uk = U−1
k ), and for each k also U2

k+1 ⊆ Uk. Then there is a

left invariant metric d on H such that: d is uniformly continuous in the left uniform

structure on H ×H; if y−1 ∗ x ∈ Uk then d(x, y) ≤ (
1

2
)
k−2

; and, if d(x, y) < (
1

2
)
k

then

y−1 ∗ x ∈ Uk.

We now proceed with the proof of Theorem 15.

Proof. 2 (⇒) Suppose that (G,∗) has property Sd(Onbd,O). Let d be a left invariant

metric on G and let (εn ∶ n <∞) be a sequence of positive real numbers. For each n

choose an open neighborhood Un of the identity element e of G with diam d(Un) < εn

and set Un = O(Un). Notice that (Un ∶ n <∞) is a sequence of elements from Onbd(G).

Thus, applying Sd(Onbd,O) we find a sequence (Vn ∶ n <∞) of discrete open familes

with each Vn ≺ Un and ⋃
n<∞
Vn a cover of the space.

From the definition of Un and since Vn ≺ Un we see that for each n and V ∈ Vn

there is an x ∈ G with V ⊆ x ∗ Un. Thus, since d is a left invariant metric, we have

that diam d(V ) ≤ εn. Hence we see that (Vn ∶ n <∞) witnesses that G has the strong

Haver property.

(⇐) Assume that (G,∗) has the strong Haver property in all equivalent left

invariant metrics. Let (Un ∶ n < ∞) be an arbitrary sequence of elements from

2This follows Babinkostova’s proof of Theorem 3 of [6].
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Onbd(G). For each n we choose a neighborhood Vn of the identity element e of G

such that:

(1) For all n, Vn ⊂ Un.

(2) For all n, Vn ∗ Vn ⊂ Vn−1.

(3) {Vn ∶ n <∞} is a neighborhood basis of e.

By Kakutani’s theorem, we choose a left invariant metric d so that for every n:

(4) If y−1 ∗ x ∈ Vn then d(x, y) ≤ (
1

2
)
n−2

.

(5) If d(x, y) < (
1

2
)
n

then y−1 ∗ x ∈ Vn.

For each n, set εn = (
1

2
)
n

. By the strong Haver property on (G,d) applied to

(εn ∶ n < ∞) we find a sequence (Vn ∶ n < ∞) such that each Vn is a discrete family

of open sets, each of diameter less that εn and ⋃
n<∞
Vn is a cover of G. Notice that

for each n and V ∈ Vn there is an xV ∈ G with V ⊆ xV ∗ Vn ⊆ xV ∗ Un ∈ Un. Thus we

see that Vn ≺ Un. So we conclude that (Vn ∶ n < ∞) witnesses that G has property

Sd(Onbd,O).

In [6], Babinkostova presents the selection principle Smirnov − Sc(A,B). We

consider the strong version of this selection principle. For S an infinite set, and A

and B collections of families of subsets of S, the selection principle Smirnov−Sd(A,B)

is defined as: For each sequence (An ∶ n <∞) of elements of the family A there exists

a positive integer k < ∞ and a sequence (Bn ∶ n ≤ k) where each Bn is a discrete

family of sets refining An, n ≤ k and ⋃
j≤k

Bj is a member of the family B. Similarly,

[6] considers the finitary Haver property, which we also modify to the strong version.

A metrizable space X is said to be finitary strong Haver with respect to a metric d
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if there is for each sequence (εn ∶ n < ∞) of positive reals a positive integer k and a

sequence (Vn ∶ n ≤ k) where each Vn is a discrete family of open sets, each of diameter

less than εn, such that ⋃
n≤k

Vn is a cover of X. With these definitions in mind, we find

that the following analog of Theorem 15 also holds, and its proof is quite similar to

that of Theorem 15.

Theorem 17: Let (G,∗) be a metrizable group. The following are equivalent:

(i) The group has property Smirnov − Sd(Onbd,O).

(ii) The group has the finitary strong Haver property in all equivalent left invariant

metrics.

Proof. To see that (i)⇒ (ii), suppose that (G,∗) has property Smirnov−Sd(Onbd,O).

Let d be a left invariant metric of G and let (εn ∶ n <∞) be a sequence of positive real

numbers. For each n choose an open neighborhood Un of the identity element e of

G with diam d(Un) < εn and put Un = O(Un). Notice that (Un ∶ n <∞) is a sequence

of elements from Onbd(G). Thus, applying Smirnov − Sd(Onbd,O) we find a positive

integer k and a sequence (Vn ∶ n ≤ k) such that

(a) (∀n ≤ k)(Vn is a discrete family of open sets),

(b) (∀n ≤ k)(Vn ≺ Un), and

(c) ⋃
n≤k

Vn is a cover of G.

Now, for each n ≤ k and V ∈ Vn there is an x ∈ G with V ⊆ x ∗ Un. Thus, since d is

a left invariant metric, we have that diam d(V ) ≤ εn. Hence, we see that (Vn ∶ n ≤ k)

witnesses that (G,d) has the finitary strong Haver property.

To see that (ii) ⇒ (i), suppose that (G,∗) has the finitary strong Haver property

in all equivalent left invariant metrics. For each n, let Un be an open neighborhood of
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the identity element e of G and set Un = O(Un). For each n, choose a neighborhood

Vn of e such that:

(1) (∀n <∞)(Vn ⊂ Un),

(2) (∀n <∞)(Vn ∗ Vn ⊂ Vn−1), and

(3) {Vn ∶ n <∞} is a neighborhood basis of e.

By Kakutani’s theorem, we choose a left invariant metric d so that for every n:

(4) If y−1 ∗ x ∈ Vn then d(x, y) ≤ (
1

2
)
n−2

, and

(5) If d(x, y) < (
1

2
)
n

then y−1 ∗ x ∈ Vn.

For each n, set εn = (
1

2
)
n

. By the finitary strong Haver property on (G,d) applied

to (εn ∶ n <∞) we find a positive integer k and a sequence (Vn ∶ n <∞) such that:

(I) (∀n ≤ k)(Vn is a discrete family of open sets),

(II) (∀n ≤ k)(∀V ∈ Vn)(diam d(V ) < εn), and

(III) ⋃
n≤k

Vn is a cover of G.

Notice that for each n ≤ k and V ∈ Vn there is an xV ∈ G with V ⊆ xV ∗Vn ⊆ xV ∗Un ∈ Un.

So Vn ≺ Un. Hence, we conclude that (Vn ∶ n < ∞) witnesses that G has property

Smirnov − Sd(Onbd,O).

The relation between the Hurewicz property and selective strong screenability is

again evident in that

Theorem 18: For a topological group (G,∗) with the Hurewicz property, Sd(Onbd,O)

is equivalent to Sd(O,O).
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Proof. 3 Let G(,∗) be a topological group with identity element e. That Sd(O,O)

implies Sd(Onbd,O) is clear. For the other direction, assume that (G,∗) has property

Sd(Onbd,O). Let (Un ∶ n <∞) be a sequence of open covers of G. For each n and each

x ∈ G choose a neighborhood V (x,n) of e such that x ∗ V (x,n)4 is a subset of some

U ∈ Un. Put Hn = {x∗V (x,n) ∶ x ∈ G}. Apply the Hurewicz property to (Hn ∶ n <∞)

to obtain for each n a finite Fn ⊂ Hn such that for each g ∈ G the set {n ∶ g ∉ ∪Fn} is

finite. We will write Fn = {xni ∗ V (xni , n) ∶ i ∈ In} where In is a finite indexing set.

For each n define Vn = ⋂
i∈In

V (xni , n), and notice that Vn is a neighborhood of e.

Partition the natural numbers into infinitely many infinite sets, say N = ⊍
k<∞

Jk. For

each k, apply Sd(Onbd,O) to the sequence (O(Vn) ∶ n ∈ Jk) to obtain a sequence

(Sn ∶ n ∈ Jk), where each Sn is a discrete family of open sets with Sn ≺ O(Vn) and

⋃
n∈Jk

Sn a cover of G. For each n define Vn = {S ∈ Sn ∶ (∃U ∈ Un)(S ⊆ U)}, and notice

that Vn is a discrete family of open sets which refines Un.

Now, we seek to show that ⋃
n<∞
Vn covers G. Fix g ∈ G. Since each element of G

is in almost every ⋃Fn, we pick Ng ∈ N large enough that for n ≥ Ng it happens that

g ∈ ⋃Fn. Next, we pick kg ∈ N such that min(Jkg) ≥ Ng. Since ⋃
n∈Jkg

Sn covers G we

pick an m ∈ Jkg and an S ∈ Sm with g ∈ S. To finish, we will show that S ∈ Vm.

Since m ≥ Ng we have that g ∈ ⋃Fm. So we pick i ∈ Im with g ∈ xmi ∗ V (xmi ,m).

Since S ∈ Sm we pick hm ∈ G so that S ⊆ hm ∗ Vm = hm ∗ (⋂
i∈Im

V (xmi ,m)) ⊆ hm ∗

V (xmi ,m). Thus we see that g = xmi ∗ zg = hm ∗ tg for some zg, tg ∈ V (xmi ,m). So

hm = xmi ∗ zg ∗ t−1g . Lastly, consider any y ∈ S and choose ty ∈ V (xmi ,m) with y =

hm ∗ ty. So y = xmi ∗ (zg ∗ t−1g ∗ ty ∗ e). Since zg, t−1g , ty, e ∈ V (xmi ,m) we have that

y ∈ xmi ∗ V (xmi ,m)4, which is a subset of some U ∈ Um. Thus S ∈ Vm, as desired.

For a topological space X and a cover U of X, we say that U is an ω-cover of X if

3This follows Babinkostova’s proof of Theorem 5 of [6].
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X ∉ U , for each finite subset F of X there is a U ∈ U such that F ⊆ U . We denote by Ω

the collection of all ω-covers of the space X. Note that for a group (G,∗) with identity

element e and G not compact, we have Ωnbd = {Ω(U) ∶ U a neighborhood of e} where

Ω(U) = {F ∗U ∶ F ⊂ G finite}. So, as a corollary to Theorem 18 we have

Corollary 6: Sd(Ωnbd,O) does not imply Sd(Onbd,O).

In the analogous proof given in [6], the following facts are given:

Fact 7: (C,∗), the unit circle in the complex plane with complex multiplication, is

a compact metrizable group embedding the unit interval [0,1] as a subspace.

Fact 8: R × CN, where (C,∗) is the unit circle in the complex plane with complex

multiplication and R is the real line with addition, is a Hurewicz-bounded group and

has property S1(Ωnbd,O).

A topological group (H,∗) is said to be Hurewicz-bounded if there is for each

sequence (Un ∶ n ∈ N) of open neighborhoods of eH a sequence (Fn ∶ n ∈ N) of finite

subsets of H such that each element of H belongs to all but finitely many of the sets

Fn ∗ Un. Also, note that S1(Ωnbd,O) means that for each sequence (Un ∶ n < ∞) of

elements of Ωnbd there is a sequence (Un ∶ n <∞) such that for each n we have Un ∈ Un

and {Un ∶ n <∞} ∈ O.

Fact 9: The topological group R ×CN has the Hurewicz property.

Fact 10: [0,1]N embeds as a closed subspace into R ×CN.

Fact 11: [0,1]N does not have property Sc(O,O).

Proof of Corollary 6. 4 By Fact 8, R ×CN has property S1(Ωnbd,O). It is clear that

S1(Ωnbd,O) implies Sd(Ωnbd,O). By Fact 10, [0,1]N embeds as a closed subspace into

R×CN, call this closed subspace A. By Fact 11, since Sd(O,O) implies Sc(O,O), we

4The ideas here follow that of Babinkostova’s proof of Theorem 6 in [6].
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see that [0,1]N does not have property Sd(O,O). Hence, since [0,1]N is homeomorphic

to A, we see that A does not have property Sd(O,O). Since Sd(O,O) is inherited

by closed subspaces, and A is a closed subspace of R ×CN which is not Sd(O,O), we

see that R×CN does not have property Sd(O,O). Fact 9 lets us use Theorem 18 and

Fact 8 to see that R ×CN does not have property Sd(Onbd,O).

In [6], Babinkostova introduced the c-groupable property. The corresponding

strong version is called the d-groupable property. An open cover U of a topological

space X is said to be d-groupable if there is a partition, U = ⊍
n<∞
Un, where each Un is

a discrete family of sets open in X and each x ∈ X is in all but finitely many ⋃Un.

We will use Odgp to denote the collection of d-groupable open covers of the space.

d-groupability is a weakening of compactness, and so given the nice structure of

topological groups we obtain the following analogous version of Theorem 13.

Theorem 19: Let (G,∗) be a group satisfying Sd(Onbd,O). If (H,∗) is a group

with property Sd(Onbd,Odgp), then (G ×H,∗) also has Sd(Onbd,O).

Proof. 5 For each n let Un be an element of Onbd(G ×H). Each Un is of the form

Un = O(Un), where Un is a neigborhood of the identity element (eG, eH) of G ×H.

For each n, pick Vn ⊆ G, a neighborhood of eG and pick Wn ⊆ H, a neighborhood of

eH so that Vn ×Wn ⊆ Un. For each n, set Wn = O(Vn ×Wn) and notice that Wn ≺ Un.

For each n, put Hn = O(Wn), which is an element of Onbd on H. Applying

Sd(Onbd,Odgp) of (H,∗) to (Hn ∶ n <∞) we obtain a sequence (Kn ∶ n <∞) such that

Kn ≺ Hn, for i ≠ j, Ki ∩Kj = ∅, each Kn is a discrete family of open subsets of H such

that each h ∈H is in almost every ⋃Kn, and ⊍
n<∞
Kn is a cover of H.

5This proof follows that given by Babinkostova of Theorem 7 in [6].
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Likewise, for each n, set Gn = O(Vn), which is an element of Onbd on G. Applying

Sd(Onbd,O) of (G,∗) to (Gn ∶ n <∞) we obtain a sequence (Jn ∶ n <∞) with Jn ≺ Gn

and each Jn is a discrete family of open subsets of G such that ⋃
n<∞
Jn covers G and

for each g ∈ G there are infinitely many n such that x ∈ ⋃Jn.

For each n, define Vn = {J ×K ∶ J ∈ Jn and K ∈ Kn}. By Lemma 4, we have

that Vn is a discrete family of open sets. Since Gn = O(Vn) and Hn = O(Wn), and

since Jn ≺ Gn and Kn ≺ Hn, it is evident that Vn ≺Wn. Since Wn ≺ Un, we have that

Vn ≺ Un. It remains to show that ⋃
n<∞
Vn covers G ×H.

Let (g, h) ∈ G×H. Since each element of H is found in all but finitely many ⋃Kn,

we pick Nh ∈ N large enough that for all n ≥ Nh we have that h ∈ ⋃Kn. Since each

element of G is in infinitely many ⋃Jn, we pick Ng ≥ Nh such that g ∈ ⋃JNg . Now,

pick J ∈ JNg with g ∈ J and pick K ∈ KNg with h ∈ K. Thus (g, h) ∈ J ×K ∈ VNg and

so ⋃
n<∞
Vn covers G ×H.

As an analogue to Lemma 7 about zero-dimensional spaces being Sd(O,O), we

find that

Lemma 9: If (H,∗) is a metrizable zero-dimensional topological group with no

isolated points, then (H,∗) has property Sd(Onbd,Odgp).

The following lemma will be useful in proving this.

Lemma 10: Let X be a zero-dimensional space with no isolated points and let U be

a nonempty open subset of X. Then there exist nonempty sets U1 and U2 with empty

boundary (i.e. both closed and open, which we will call clopen) such that U = U1⊍U2.

Proof. Since X has no isolated points and U is nonempty, we know that U contains

at least two distinct points, say x1 and x2. Let δ = d(x1, x2). Notice that δ > 0 since

x1 ≠ x2. Since X is zero dimensional, x1 has arbitrarily small neighborhoods with
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empty boundary. Hence, we pick U1 a clopen neighborhood of x1 with diamU1 < δ.

Since U1 is clopen, so is U2 = U/U1. Since diamU1 < δ = d(x1, x2) we see that x2 ∉ U1.

Thus x2 ∈ U2. Thus we have found disjoint nonempty clopen sets, U1 and U2 whose

union is U .

Proof of Lemma 9. Let (H,∗) be a metrizable zero-dimensional topological group

with no isolate points. Since H is zero-dimensional, we have that each open cover

of H has a refinement by a disjoint open cover. Note that a disjoint open cover is

a discrete family of open sets. Thus, for a given sequence (Un ∶ n < ∞) for Onbd

for H we can choose for each n a disjoint open refinement Vn which covers H, and

by the previous comment each Vn is a discrete family of open sets. We will now

recursively construct a sequence (Wn ∶ n <∞) witnessing that ⋃
n<∞
Vn is d-groupable.

Set W1 = V1 and notice that W1 is a discrete family of open sets covering H. Set

W2 = (V2/W1) ∪ ( ⋃
V ∈W1∩V2

{V1, V2}V ) where for each V ∈ W1 ∩ V2 the set {V1, V2}V

is given by Lemma 10. Notice that W2 is also a discrete family of open sets cov-

ering H. Notice that by doing this we have that W1 ∩ W2 = ∅. Suppose we

have constructed W1,W2, . . .Wn, discrete families of open sets, such that {Wi}
n
i=1

is a pairwise disjoint family of open covers of H. Let Wn =
n

⋃
i=1

Wi. Set Wn+1 =

(Vn+1/Wn) ∪ ( ⋃
V ∈Wn∩Vn+1

{V1, V2}V ) where for each V ∈Wn ∩ Vn+1 the set {V1, V2}V is

given by Lemma 10. Notice that Wn+1 is a discrete family of open sets covering H

and that {Wi}
n+1
i=1 is a pairwise disjoint family of open covers of H. As constructed,

it is evident that ⋃
n<∞
Wn is d-groupable.

From a direct application of Theorem 19 and Lemma 9 we then also have
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Corollary 7: Let (G,∗1) and (H,∗2) be metrizable topological groups such that

(G,∗1) has Sd(Onbd,O) and H is zero-dimensional with no isolated points. Then

(G ×H,∗) is a group with property Sd(Onbd,O).

Recall that when working with selective strong screenability and the strong Haver

property, it was helpful to know that the cover given by the strong Haver property

could be taken to be a large cover.6 Similarly we find that

Theorem 20: Let (G,∗) be a metrizable topological group with no isolated points.

Then Sd(Onbd,O) is equivalent to Sd(Onbd,Λ).

Proof. 7 It clear that Sd(Onbd,Λ) implies Sd(Onbd,O). For the other direction, let

(O(Un) ∶ n < ∞) be a sequence in Onbd(G). Choose a sequence (εn ∶ n < ∞)

of positive real numbers converging to zero and such that εi > εi+1 for all i < ∞

and diam d(U1 ∩U2 ∩⋯ ∩Un) > εn for all n. Define (O(Vn) ∶ n < ∞) such that

diam d(Vn) ≤ εn for n <∞. Partition the natural numbers into infinitely many infinite

sets, say N = ⊍
k<∞

Jk. For each k, apply Sd(Onbd,O) to the sequence (O(Vn) ∶ n ∈ Jk)

to get (O(Tn) ∶ n ∈ Jk), an Sd(Onbd,O)-refinement of (O(Vn) ∶ n ∈ Jk). We seek to

show that ⋃
n<∞

Tn is a large cover of G.

Let g ∈ G and pick k1 ∈ J1 with g ∈ ⋃Tk1 . Next, pick W1 ∈ Tk1 with g ∈W1. Since

(εn ∶ n <∞) is a strictly decreasing sequence of positive real numbers which converges

to zero, we pick N1 such that for n ≥ N1 we have that εn < diam d(W1).

Now, pick J2 such that minJ2 ≥ N1. Then, choose k2 ∈ J2 with g ∈ ⋃Tk2 . Pick

W2 ∈ Tk2 with g ∈W2. Since k2 ≥ N1, we see that εk2 < diam d(W1). So, by definition

of O(Vk2) we have that diam d(W2) ≤ diam d(Vk2) ≤ εk2 < diam d(W1). Next, pick N2

6Note that for a topological space we denote the collection of all large open covers of the space
by Λ.

7This follows Babinkostova’s proof of Theorem 12 of [6].
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such that for n ≥ N2 we have that εn < diam d(W2), and continue in the same way as

we did with N1.

Continuing like this we find W1,W2,W3, . . . infinitely many distinct elements of

⋃
n<∞

Tn containing g.

3.6 Relation to other selection principles

We will follow the notation used in [27]. A topological space is said to have the

Rothberger property , denoted S1(O,O) if for each sequence (Un ∶ n < ∞) of open

covers, there is a sequence (Un ∶ n <∞) where (∀n)(Un ∈ Un) and {Un ∶ n <∞} covers

X. As indicated in the following diagram, the selective strong screenability property

is somewhere between the Rothberger property and selective screenability.

Sc(O,O)Sc(Onbd,O)Sc(Ωnbd,O)

Sd(O,O)Sd(Onbd,O)Sd(Ωnbd,O)

S1(O,O)S1(Onbd,O)Sd(Ωnbd,O)

Haver

Strong Haver

Hurewicz

-

-

-

�

�

�

�

�

�

6666

666

Figure 3.1: Relations between S1(O,O), Sd(O,O), and Sc(O,O)

Recall that in the previous section we examined the weakening of Sd(O,O) to

Sd(Onbd,O) for topological groups and saw by Corollary 6 that Sd(Ωnbd,O) does not
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imply Sd(Onbd,O). Note how this contrasts with the following theorem.

Theorem 21: For a topological space X the following statements are equivalent:

(i) X has property Sd(O,O)

(ii) X has property Sd(Ω,O).

Proof. 8 Since an ω-cover is an open cover, it is clear that X having property Sd(O,O)

implies that X has property Sd(Ω,O).

For the other direction, let (Un ∶ n < ∞) be a sequence of open covers of X.

Partition the natural numbers into infinitely many infinite sets, say N = ⊍
k<∞

Jk. For

each k < ∞, for each i ∈ Jk define Wi to be the set whose elements are of the form

⋃
f∈F

Uf , where F ⊂ JK is finite and Uf is an element Ui.

For the first case, if there is an i ∈ Jk for which X ∈ Wi, then X = ⋃
f∈F

Uf , where

F ⊂ JK is finite.

For each f ∈ F set Vf = {Uf}, and for j ∈ N/F pick Uj ∈ Uj arbitrarily and set

Vj = {Uj}. Then the sequence (Vn ∶ n < ∞) is such that each Vn is a discrete family

of open sets refining Un, and ⋃
n<∞
Vn ⊇⋃

i≤`

Vni
= {X}, and so is a cover of X. Thus, we

have shown that, in this case, X has property Sd(O,O).

For the other case, assume that for each n < ∞, X ∉ Wn. Then each Wn is an

ω-cover of X. Now, apply Sd(Ω,O) of X to (Wn ∶ n < ∞) to choose a sequence

(Tn ∶ n < ∞) such that each Tn is a discrete family of open sets refining Wn, and

⋃
n<∞
Tn is a cover of X. For each k and for each U ∈ Tk pick F (U) ∈ Wk such that

U ⊆ F (U). Fix for each such U a representation

F (U) = ⋃
i∈IU

Ui,

8This follows Babinkostova’s proof of Theorem 1 of [2].
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where IU ⊂ Jk is finite. Then Tk is used as follows to define a refinement for each Uj

with j ∈ Jk.

For each i ∈ Jk, we define Vi in the following way: If U ∈ Tk has i ∈ IU we put

Si(U) = U ∩Ui. Then we define Vi = {Si(U) ∶ U ∈ Tk and i ∈ IU}/{∅}.

Claim 1: For each k ∈ N, for each i ∈ Jk, Vi is a discrete family of open sets.

Proof: Fix k ∈ N. Fix i ∈ Jk. Let U ′ = {U ∈ Tk ∶ i ∈ IU}. Notice that U ′ ⊆ Tk. Since

Tk is a discrete family of open sets, so is U ′. Notice that Si(U ′) = U ′ ∩Ui ⊂ U ′, where

U ′ ∈ U ′. Further, notice that Vi = {Si(U ′) ∶ U ′ ∈ U ′}. For the sake of contradiction,

suppose that Vi is not a discrete family. Then for some x ∈X there is a neighborhood

of x, say Nx such that Nx has non-trivial intersection with at least two members of

VI , say A and B. Since A,B ∈ Vi there exists U ′
A, U

′
B ∈ U ′ such that A = Si(U ′

A) and

B = Si(U ′
B). Notice that A = Si(U

′
A) = U

′
A ∩ Ui ⊆ U

′
A and B = Si(U

′
B) = U

′
B ∩ Ui ⊆ U

′
B.

Since Nx ∩ A ≠ ∅ and A ⊆ U ′
A we have that Nx ∩ U ′

A ≠ ∅. Similarly Nx ∩ U ′
B ≠ ∅.

Hence, Nx has nontrivial intersection with both U ′
A and U ′

B, contradicting that U ′ is

a discrete family since U ′
A ≠ U ′

B. Therefore, we may conclude that for each k ∈ N, for

each i ∈ Jk, Vi is a discrete family of open sets.

Claim 2: ⋃
i<∞

Vi is a cover of X.

Proof: Let x ∈ X. Since ⋃
n<∞
Tn is a cover of X, there is a k ∈ N such that x ∈ ⋃Tk.

Pick U ∈ Tk such that x ∈ U . For some i ∈ N it happens that i ∈ IU ⊂ Jk and x ∈ Ui.

Thus, Si(U) = U ∩Ui ≠ ∅ and x ∈ Si(U) ∈ Vi ⊂ ⋃
i<∞

Vi. Therefore, ⋃
i<∞

Vi is a cover of X.

Claim 3: For each i <∞, Vi refines Ui.

Proof: This is clear by noting that each element of Vi is of the form

Si(U) = U ∩Ui ⊆ Ui ∈ Ui.

Thus, Claims 1, 2, and 3 show that (Vi ∶ i < ∞) witnesses that X has property

Sd(O,O).
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CHAPTER 4

OPEN QUESTIONS

AND WHERE WE GO FROM HERE

4.1 The Discrete Extension Question

Note that the proofs of most of the theorems given above are nearly identical to

those given in the literature for the analogous versions for selective screenability. For

the product theorems, we were able to do this because of Lemma 4. This gave us

that, just as the product of two disjoint families of sets is still a disjoint family, so

is the product of a two discrete family of sets again a discrete family. The main

difficulty that was encountered was in trying to show that the countable union of

Sd(O,O)-spaces is again an Sd(O,O)-space. The key to the Countable Sum Theorem

for Sc(O,O)-spaces is that each disjoint family of sets open in the subspace topology

extends nicely to a disjoint family of sets open in the superspace topology. More

explicitly, this idea is given by Theorem II.21.XI.2 in [19] as

Theorem 22: Let Y be a nonempty subset of a metric space X. Given a family {Uι}

of sets open in Y there exists a family {Vι} of sets open in X such that Y ∩Vι = Uι and

for every (finite) system of indices, ι1, . . . , ιn, the condition Uι1 ∩⋯ ∩ Uιn = ∅ implies

Vι1 ∩⋯ ∩ Vιn = ∅.

The case for families of pairwise disjoint open sets is an application of this theorem
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with n = 2. If there were an analogous version this theorem for discrete families of open

sets, then we would be able to prove the Countable Sum Theorem for Sd(O,O)-spaces

following the same basic technique as in the case for Sc(O,O)-spaces.

Originally, the Countable Sum Theorem for Sc(O,O)-spaces was given by Addis

and Gresham in [1]. In their paper, Addis and Gresham define a family {Fα ∶ α ∈ A}

of subsets of a space X to be separated if for each α ∈ A, Fα ∩ (⋃
β≠α

Fβ) = ∅ and

Fα ∩(⋃
β≠α

Fβ) = ∅. It should be noted that a separated family is not necessarily a dis-

crete family. For example in R with the standard topology, the family {(0,1), (1,2)}

is separated, but not discrete. However, it is clear that every discrete family is a

separated family.

They go on to call a space strongly completely normal if for every separated family

{Fα ∶ α ∈ A} in X there exists a disjoint open family {Uα ∶ α ∈ A} such that Fα ⊆ Uα for

each α ∈ A. Addis and Gresham then give the Countable Sum Theorem for C-spaces

(i.e. Sc(O,O)-spaces) as

Let X be a strongly completely normal space such that X =
∞

⋃
n=1

Xn and

each Xn is a C-space (in the relative topology). Then X is a C-space.

After their proof, they go on to note that the assumption of strong complete normality

of the space is necessary for their proof. It is unclear whether a condition analogous

to strong complete normality is needed for the Countable Sum Theorem for Sd(O,O)-

spaces.

The following definitions will be useful in discussing the discrete extension ques-

tion. For families A = {Aι}ι∈I and B = {Bι}ι∈I of a topological space, we say that A

is a precise refinement of B if A ≺ B and for each ι ∈ I, Aι ⊆ Bι. For Y a topological

space, X ⊆ Y and F a discrete family of sets open in X, we will say that G is a discrete
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extension of F in Y if G is a discrete family of sets open in Y such that F is a precise

refinement of G. Further, we say that X ⊆ Y has the discrete extension property if

every discrete family of sets open in X has a discrete extension in Y . Note that by

Lemma 6 we know that compact subspaces have the discrete extension property. The

discrete extension question can then be thought of either as

Question 1: For a topological space Y and X ⊆ Y , what conditions on X ensure

that X has the discrete extension property?

or as

Question 2: For a topological space Y , for what conditions on Y is it true that

each subspace of Y has the discrete extension property?

It is clear that if a topological space X is the countable union of Sd(O,O)-spaces,

each of which has the discrete extension property, then X is an Sd(O,O)-space. Is

this a necessary condition? Are there well known topological properties which taken

together are equivalent to the discrete extension property? It is also clear that if Y is

a discrete topological space and X ⊆ Y , then X has the discrete extension property.

Is there a weaker condition on Y than it being a discrete space that will imply that

each subspace of Y has the discrete extension property?

If we proceed by the technique used in the proof of Theorem 7, then the following

lemma shows that a subspace being closed is a necessary condition for it to have the

discrete extension property.

Lemma 11: For a metrizable space Y , with no isolated points, and a subspace X

of Y , the following are equivalent:

(a) Every discrete family of sets in X is also a discrete family of sets in Y .

(b) X is a closed subspace of Y .
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Proof. (⇐) Let X be a closed subspace of Y . Let F = {Fi ∶ i ∈ I}, where I is an

indexing set, be a discrete family of sets in X. Then F ′ = {F ∶ F ∈ F} is a pairwise

disjoint family of sets in X and for each J ⊆ I the set ⋃
j∈J

Fj is closed in X. Since X

is a closed subset of Y , being closed in X is the same as being closed in Y . Thus, it

is evident that F is a discrete family of sets in Y .

(⇒) Suppose that X is not closed in Y . Let y be a limit point of X such that

y ∈ Y /X. We will recursively construct a family F which is discrete in X but not in

Y . Let d be a metric generating the topology on Y . Choose x0 ∈X. Since y ∈ Y /X we

have that d(y, x0) = ε0 > 0. Define F0 = Bd(y, ε0 + 1)/Bd(y,3ε0/4). Since y is a limit

point of X, we know that (∃x ∈ X)(x ∈ Bd(y, ε0/2)). So, choose x1 ∈ Bd(y, ε0/2) ∩X

and notice that d(y, x1) = ε1 > 0. Define F1 = Bd(y, ε0/2)/Bd(y,3ε1/4). Notice that

{F0, F1} is a discrete family of sets in X. Since y is a limit point of X, we know that

(∃x ∈ X)(x ∈ Bd(y, ε1/2)). So, choose x2 ∈ Bd(y, ε1/2) ∩X and notice that d(y, x2) =

ε2 > 0. Define F1 = Bd(y, ε1/2)/Bd(y,3ε2/4). Notice that {F0, F1, F2} is a discrete

family of sets in X. Suppose that we have constructed {F0, F1, . . . , Fn} following this

method. Then, since y is a limit point of X, we know that (∃x ∈X)(x ∈ Bd(y, εn/2).

So, choose xn+1 ∈ Bd(y, εn/2) ∩X and notice that d(y, xn+1) = εn+1 > 0. Define Fn+1 =

Bd(y, εn/2)/Bd(y,3εn+1/4) and notice that {F0, F1, . . . , Fn+1} is a discrete family of

sets in X. Set F = {Fn ∶ n < ∞}. By the above construction, it is evident that F is

a discrete family of sets in X. To see this, let x ∈ X. If x ∈ F for some F ∈ F then

take Nx = F . If d(x, y) ≥ ε0 + 1 then take Nx = B(x,1). If d(x, y) ∈ [εn/2,3εn/4] for

some n ∈ N, then take Nx = B(x, εn+1/4). In each case, Nx has nontrivial intersection

with at most one element of F . Since (εn ∶ n < ∞), where εn = d(y, xn) with xn as

chosen in the above construction, is a strictly decreasing sequence of real numbers

which converges to zero, we see that F fails to be a discrete family of sets in Y since
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every neighborhood of y has nontrivial intersection with infinitely many elements of

F .

However, notice that even with this result, the type (open or closed) of discrete

family of sets in X is not preserved when viewed as a discrete family of sets in Y .

To see this, merely let Y = R and X = [0,1] and take F = {[0,1]} to be the discrete

family in X. F is clearly a discrete family of sets open in X, however, since X is

closed (and not clopen) in Y , F is a discrete family of sets closed and not open in Y .

Even so, it is clear that F has a discrete extension in Y , just take G = {R}. We may

preserve the type of discrete family in a discrete extension by first ensuring that the

subspace is clopen, as indicated in the following lemma.

Lemma 12: If Y is a topological space and X ⊆ Y is clopen, then every discrete

family of sets in X is also a discrete family of sets in Y , and the type of discrete

family is the same when viewed in Y as in X.

The following is a useful example illustrating why the subspace in Lemma 11 needs

to be closed.

Example 1: Consider (0,1] as a subspace of R with the standard topology. Let

F = {(
1

2n+1
,

1

2n
) ∶ n ∈ N is even}. It is straightforward to show that F is a discrete

family of open sets in (0,1]. Let x ∈ (0,1]. If x ∈ F for some F ∈ F , then F is a

neighborhood of x which has non trivial intersection with at most one element of F .

If x ∉ ⋃
F ∈F

F then either x = 1 or x lies between two successive elements of F since

(
1

2n
∶ n <∞) is a strictly decreasing sequence of real numbers. If x = 1, then take

Nx = (
1

2
,1]. If x lies between two successive elements of F then x ∈ (

1

2nx+1
,

1

2nx
)

for some odd nx ∈ N, so take Nx = (
1

2nx+1
,

1

2nx
). In either case Nx has non trivial
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intersection with at most one element of F and so F is a discrete family of open sets

in the relative topology on (0,1]. However, in R let N0 be any neighborhood of zero.

Then diamN0 > 0, so we choose a positive ε ≤ diamN0 such that Bd(0, ε) ⊆ N0. In

particular, we have that (0, ε) ⊂ N0. Since lim
n→∞

1

2n
= 0, we choose a positive integer k

so large that
1

2k
< ε. Thus for each even n > k it happens that N0 ∩ (

1

2n+1
,

1

2n
) ≠ ∅.

So N0 has nontrivial intersection with infinitely many elements of F . Since N0 was

an arbitrary neighborhood of zero, we see that F is not a discrete family in R.

The basic idea behind this example is that if the subspace X of Y with metric d

does not contain all of its limit points, then for ` a limit point of X we may construct

a discrete family, F of sets open in X such that inf {d(F,F ′) ∶ F,F ′ ∈ F} = 0 and

inf {d(`,F ) ∶ F ∈ F} = 0. Since inf {d(`,F ) ∶ F ∈ F} = 0, for each neighborhood N` of

`, it will happen that there are infinitely many elements of F which have nontrivial

intersection with N`.

In a footnote of [8], it is remarked that Sc(O,O) and Sd(O,O) are equivalent in

normal countably paracompact spaces, and hence in metric spaces. Combining this

with Addis and Greshams countable sum theorem as given in [1], it is readily seen

that the countable sum theorem for Sd(O,O)-spaces holds in spaces which are both

countably paracompact and strongly completely normal. Specifically, we have that

the countable sum theorem holds for Sd(O,O) metric spaces. Moreover, combined

with the Menger-Nöbeling Theorem, we then see that every countable dimensional

separable metric space is selectively strongly screenable.
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4.2 Topological Groups

The results given in §3.5 are merely extensions to the strong case of results given by

Babinkostova in [6]. There are two additional results from [6] that could be extended

by using the basic structure of the proofs given there if we were to first find a positive

answer to the question

Question 3: Does Lemma 10 of [6] hold in the strong case?

The strong case of this lemma would be

Conjecture 1: 1 The following statements are equivalent:

1. X has properties Sd(O,O) and Hurewicz.

2. For each sequence (Un ∶ n < ∞) of open covers of X there is a sequence

(Vn ∶ n <∞) such that:

(a) Each Vn is a finite collection of open sets;

(b) Each Vn is a discrete family;

(c) Each Vn refines Un;

(d) There is a sequence n1 < n2 < ⋯ < nk < ⋯ of positive integers such that

each element of X is in all but finitely many of the sets ⋃( ⋃
nk≤j<nk+1

Vn).

The result that would be obtained from proving the first conjecture is that

Conjecture 2: Let (G,∗) be a group which has property Sd(Onbd,O) as well as

the Hurewicz property. Then for any topological group (H,∗) satisfying Sd(Onbd,O),

(G ×H,∗) also satisfies Sd(Onbd,O).

1The original version of this lemma for the Sc(O,O) case was proven by Babinkostova and
Scheepers in [5].
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The first conjecture is merely a nice and neat way of presenting the combination

of selective strong screenability and the Hurewicz property for use in the proof of the

second conjecture. It should be noted that the first conjecture is likely not actually

necessary for the proof of the second conjecture. The key to the proof of the second

conjecture appears to be in being able to utilize the ”all but finitely many” part of the

Hurewicz property. Once we have the second conjecture, one may then use a simple

induction argument we then obtain

Conjecture 3: Let (G,∗) be a metrizable group which has property Sd(Onbd,O)

as well as the Hurewicz property. Then all finite powers of (G,∗) have property

Sd(Onbd,O).

Obtaining these results would complete examining sections 2 and 3 of [6]. What

would then remain to be examined in [6] is section 4, on games.

As shown in §2.5, Pol’s space is an Sd(O,O)-space. It is then natural to ask

Question 4: Is the topological group generated by Pol’s space an Sd(O,O)-space?

4.3 Relation to other Selection principles

There are numerous papers addressing the relation between various selection princi-

ples, for instance see [27] and [18]. As indicated in Figure 3.1 on page 43, Sd(O,O) fits

in somewhere between the selection principles S1(O,O) and Sc(O,O). In Theorem

3 of [8], it is noted that Balogh has an example of a space which is Sc(O,O) but

not Sd(O,O). Thus, one would expect that the more general selection principles

Sc(A,B) and Sd(A,B) will be quite different from one another. As such, one may

which to examine Sd(A,B) in a similar fashion to the treatment that has been done

with Sc(A,B) in [2].
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4.4 Topological Games

When the author began work on this thesis, there were three main topics to examine.

They were: examining selective strong screenablity, primarily in separable metric

spaces; examining the natural weakening of Sd(O,O) to Sd(Onbd,O) for topological

groups; and, examining the topological game related to Sd(O,O) and what relation,

if any, it has to dimension theory. The first two topics have been addressed to some

extent, but the third has not been explored here. The interest in the topological game

related to Sd(O,O) is that for both S1(O,O) and Sc(O,O) there is much known about

their respective topological games (see [21], and [3]) as well as relations between them

and dimension theory (see [27], [3], and[7]).

For a topological space X and an ordinal number α, the game associated with

selective strong screenability is denoted by Gα
d (O,O), see [8]. In this game, players

ONE and TWO play α innings. In inning β < α ONE chooses an open cover Uβ of X

and TWO responds with Vβ where Vβ is a discrete family of open sets and Vβ ≺ Uβ.

A play ((Uβ,Vβ) ∶ β < α) is won by TWO if ⋃
β<α

Vβ covers X. Else, ONE wins.

In [8] it was shown that while Sc(O,O) and Sd(O,O) are equivalent in separable

metric space, their corresponding games Gα
c (O,O) and Gα

d (O,O) are quite different

in separable metric spaces.

Question 5: What can be said about when player ONE or player TWO have (or do

not have) a winning strategy in Gα
d (O,O), beyond the results given by Babinkostova

and Scheepers in [8]?
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grouping property, 14

Haver property, 5

Hurewicz-bounded, 38

Hurewicz property, 5

isolated point, 10

Λ, 42

large cover, 10

Menger, 27

normal, 18

Odgp, 39

ω-cover, 37

Ω, 38

Ωnbd, 38

Onbd, 32

Pol’s space, 4

precise refinement, 47

property C, 1

≺, refines, 2

S1(O,O), Rothberger property, 43

screenable, 1

Sc(O,O), selective screenbility, 2

Sd(O,O), selective strong screenbility, 2

Sd(Onbd,O), 32

separated, 47

σ-disjoint grouping property, 9

σ-discrete grouping property, 9

Smirnov − Sd(A,B), 34

strong Haver property, 5

strongly completely normal, 47

strongly screenable, 1

topological group, 32
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