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DISSERTATION ABSTRACT 

Fitness landscapes or adaptive landscapes represent the mapping of genotype 

(sequence) to phenotype (function or fitness). Originally proposed as a metaphor to 

envision evolutionary processes and mutational interactions, the fitness landscape has 

recently transitioned from theoretical to empirical. This is due in part to advances in 

DNA synthesis and high-throughput sequencing. This allows for the construction and 

analysis of empirical fitness landscapes that encompass thousands of genotypes. These 

landscapes provide tractable insight into mutational pathways, the predictability of 

evolution or even the evolution of life. RNA enzymes (ribozymes) are an attractive model 

system for the construction of empirical fitness landscapes. Ribozymes function as both a 

genotype (primary RNA sequence) and a phenotype (catalytic function). To construct and 

characterize empirical RNA fitness landscapes, two high-throughput functional assays 

(self-cleavage and self-ligation), including a technique to improve data recovery from 

high-throughput sequencing using phased nucleotide inserts (Appendix A), were 

developed and implemented. Following fitness landscape construction, a stochastic 

evolutionary model was developed and employed based on the Wright-Fisher model. 

This model follows the principles of Darwinian evolution and allows a population to 

explore the fitness landscape by means of mutation and selection. These newly developed 

tools allowed for a novel approach to important evolutionary questions. 

Chapter 1 explored the evolution of innovation at the intersection of two ribozyme 

functions: self-cleavage and self-ligation. Evolutionary innovations are qualitatively 
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novel traits that emerge through evolution. Theories have suggested that innovations can 

occur where two genotype networks are in close proximity. However, only isolated 

examples of intersections have been investigated. The fitness landscape between the two 

ribozyme functions was explored by determining the ability of numerous neighboring 

RNA sequences to catalyze two different chemical reactions. This revealed that there was 

extensive functional overlap, and over half the genotypes can catalyze both functions to 

some extent. Data-driven evolutionary simulations found that these numerous points of 

intersection facilitated the discovery of a new function, yet the rate of optimization 

depended upon the starting location in the genotype network. This study constructed a 

fitness landscape where genotype networks intersect and uncovered the implications for 

evolutionary innovations. 

Chapter 2 determined the effect of higher sequence space complexity and 

dimensionality on evolutionary adaptation in RNA fitness landscapes. The complexity 

and dimensionality of landscapes scale with the length of the RNA molecule. For this 

study, complexity was defined as the size of the genotype space and dimensionality as the 

number of edges connecting each genotype (node) to other genotypes that differ by a 

single mutation. Low-dimensional ‘direct’ landscapes consisting of only two possible 

nucleotides at various positions were compared to higher-dimensional ‘indirect’ 

landscapes that had all four nucleotides at the same positions. Indirect pathways 

contributed to the ruggedness and navigability of landscapes. Increased dimensionality in 

RNA fitness landscapes had the potential to circumvent fitness valleys, however indirect 

pathways also harbored stasis genotypes isolated by reciprocal sign epistasis. 
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Chapter 3 applied ancestral sequence resurrection and fitness landscape 

construction to naturally evolved ribozymes. The CPEB3 ribozyme is highly conserved in 

mammals and has been linked to episodic memory. By predicting, ‘resurrecting’ and 

functionally characterizing ancient gene sequences, hypotheses about gene function or 

selection can be empirically tested in an evolutionary context. Using the extant ribozyme 

sequences found in a range of mammalian species as a basis for inference of ancestral 

sequences, a phylogenetic fitness landscape was experimentally resurrected and 

reconstructed. A single high-activity ancestral sequence was found to be highly 

conserved and purifying selection is expected to have reduced the accumulation of 

mutations through geologic time. Many of the extant mammalian ribozyme sequences 

had high ribozyme activity, however a few had relatively low activity. Yet, given the 

local fitness landscape, a selective pressure for functional ribozyme sequences was seen. 

A single nucleotide polymorphism (SNP) found in humans, reduced co-transcriptional 

ribozyme activity in vitro and might alter our understanding of the CPEB3 ribozyme’s 

biological function. 

Chapter 4 analyzed epistatic interactions in four published RNA fitness 

landscapes generated from high-throughput analyses. Two of the landscapes were 

assessed in vivo and two were assessed in vitro. Epistasis occurs when the effects of some 

mutations are dependent on the presence or absence of other mutations. The data allowed 

for an analysis of the distribution of fitness effects of individual mutations as well as 

combinations of two or more mutations. Two different approaches to measuring epistasis 

in the data both revealed a predominance of negative epistasis, such that higher 

combinations of two or more mutations are typically lower in fitness than expected from 



x 

the effect of each individual mutation. This finding differed from studies using 

computationally predicted RNA but is similar to mutational experiments in protein 

enzymes. 

The work presented here represents a significant contribution to our ability to 

construct and empirically characterize RNA fitness landscapes. The development of two 

high-throughput ribozyme assays opens the door for further empirical landscape 

construction. The implementation of data-driven stochastic evolutionary modeling allows 

for a clearer evolutionary characterization of the landscape. Understanding the 

connection between genotype and phenotype in RNA systems is important for designing 

RNA functions, improving in vitro selections and understanding the origins and evolution 

of new RNA functions (innovations). Applying these advances yielded valuable 

information about evolutionary innovations, the effects of higher dimensionality, 

evolution of extant ribozymes and the prevalence of epistasis in RNA fitness landscapes. 

Construction and analysis of empirical RNA fitness landscapes provides tractable insight 

into evolutionary processes, mutational pathways and the predictability of evolution. 
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DISSERTATION INTRODUCTION 

Fitness landscapes or adaptive landscapes are often called genotype-phenotype 

maps because they link the genetic sequence (genotype) to its corresponding function or 

fitness (phenotype). Landscapes are often depicted as three-dimensional surfaces with 

genotype space on the x- and y-axes and fitness on the z-axis. This results in a hilly 

topography where high-fitness genotypes occupy peaks and low-fitness genotypes 

occupy valleys. Catalytic RNA molecules (ribozymes) are an attractive model system for 

the construction of empirical fitness landscapes. Fitness landscapes offer powerful insight 

into evolutionary adaptation and mutational interactions. However, the construction and 

characterization of RNA fitness landscapes is difficult and limited on many fronts. This 

required the expansion of the fitness landscape toolbox by the development of novel 

high-throughput tools and evolutionary modeling techniques (Fig. 1). The work presented 

here developed new tools in the fitness landscape toolbox and applies these tools to 

answer important evolutionary questions. 
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Figure 1. Dissertation overview: Contributions to and application of the fitness 

landscape toolbox. 

The architecture and structure of fitness landscapes are a key determinant of 

evolutionary exploration and navigation (Beerenwinkel et al. 2006; de Visser and Krug 

2014). When the metaphor of a fitness landscape was first proposed in the 1930s, it was 

highly theoretical and the range of genotype space that was able to be characterized was 

severely limited (Wright 1932; Pigliucci 2008). However, due to advances in DNA 

manipulation during synthesis and major strides in high-throughput or deep sequencing, 

researchers are able to construct highly-complex fitness landscapes using empirical data 

(Hietpas et al. 2011; Jimenez et al. 2013; Bank et al. 2015). These complex fitness 

landscapes hold valuable information and can inform us about molecular and population 

genetic mechanisms that drive evolution (Hartl 2014). Fitness landscapes offer tangible 

glimpses into the complex nature of evolution and provide tractable insight into 

mutational pathways (Poelwijk et al. 2007; Kogenaru et al. 2009; Franke et al. 2011; Wu 

et al. 2016), the predictability of evolution (de Visser and Krug 2014; Lässig et al. 2017; 

Gorter et al. 2018) or the evolution of life (Athavale et al. 2014; Kun and Szathmáry 

2015). This information can be utilized in designing RNA functions, improving in vitro 
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selections, understanding the origins and evolution of new functions or even to predict or 

forecast future evolutionary directions. 

The construction of fitness landscapes requires selecting a model system. RNA is 

the only macromolecule that has the ability to function as both genotype and phenotype. 

For ribozymes, the genotype is the primary RNA sequence and the phenotype is the 

catalytic function that the ribozyme can perform. This allows for straightforward rapid 

construction of RNA fitness landscapes (Pitt and Ferré-D’Amaré 2010). The two most 

common ribozyme phenotypes are self-cleavage and self-ligation. Ribozymes have been 

shown to evolve from random genotype space (Ameta et al. 2014) and are often selected 

for using in vitro selection (Robertson and Joyce 1990; Bartel and Szostak 1993; 

Pressman et al. 2017). This supports the premise that life originated through the RNA 

World (Alberts et al. 2002; Orgel 2004; Pressman et al. 2015). Furthermore, synthetic 

DNA libraries can be designed that contain >25,000 unique sequences that can be 

transcribed and functionally characterized. This capability primes the ribozyme model 

system for the high-throughput construction of fitness landscapes. 

However, the construction and characterization of RNA fitness landscapes can be 

difficult and presents several obstacles that must be overcome. Due to the high 

complexity of fitness landscapes and the corresponding genotype space, high-throughput 

functional assays for ribozyme fitness were needed. These assays often rely on 

harnessing the power of high-throughput sequencing. Using high-throughput sequencing 

to determine the reacted state (cleaved/ uncleaved or ligated/ unligated) requires that the 

ribozymes chosen perform either self-ligation or self-cleavage reactions. Ribozymes that 

perform either 5’ self-cleavage or 5’ self-ligation were chosen for this work. One major 
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issue that had to be overcome is that the self-cleavage or self-ligation reaction leaves the 

5’ end of the RNA molecule variable due to the presence or absence of cleavage product 

or ligation substrate. This is important because in order to prepare the reverse-transcribed 

cDNA sample for high-throughput sequencing on Illumina platforms, PCR binding sites 

were needed on each end. To combat this issue, two high-throughput functional ribozyme 

assays were developed (Fig. 2).  

 
Figure 2. Overview of two high-throughput ribozyme functional assays. 

The self-cleavage assay allows for co-transcriptional self-cleavage followed by a 

unique template-switching reverse-transcription. This reverse-transcriptase allows for the 

ligation of a substrate to the 5’ end of the RNA during reverse-transcription. This 

substrate can then be used as a PCR primer binding site for the addition of Illumina 

adapters. The self-ligation assay, which was developed with a colleague and co-author 

James Collet, uses a post-transcriptional ligation reaction. The sample is then reverse-

transcribed and is followed by a selective ligation PCR, which amplifies only sequences 

that successfully ligated the substrate. The product then goes through a low-cycle PCR to 

add on the Illumina adapter. In order to calculate the fold enrichment of those that 
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successfully ligated, the RNA library in its entirety must also be sequenced. This is 

accomplished by taking a pre-selection sample and using the protocol developed for the 

self-cleavage assay. By overcoming this obstacle, two high-throughput functional 

ribozyme assays were added to the fitness landscape toolbox. 

The next barrier to the construction of fitness landscapes was that the cDNA 

samples generated using the high-throughput ribozyme assays were all of very low-

diversity. This is due to the limitations of high-throughput platforms. Although advances 

have improved the capacity of sequencing platforms, we are still limited in the amount of 

mutations that we can design into mutational libraries. This results in samples that only 

differ at a limited amount of positions. Low-diversity samples cause sequencing errors 

due to inability to locate clonal clusters on the sequencing plate. To combat this issue, 

custom phased nucleotide inserts were developed (Fig. 2). These inserts can be inserted 

into PCR primers or template-switching oligos and results in the sequences becoming 

phased from one another and alleviates the low-diversity issue. The application of this 

technique and its potential to reduce wasting sequencing space on the addition of PhiX is 

reported in great detail in Appendix A. 

The next issue encountered was the downstream sequence read analysis. High-

throughput sequencing generates 100s of millions of sequencing reads that need to 

assessed and analyzed carefully. Custom sequencing analysis pipelines were developed to 

clean the raw sequencing reads and generate useable ribozyme activity or fitness 

measurements for each genotype. This was done primarily using custom Python scripts. 

Once fitness measurements were determined, empirical RNA fitness landscapes were 

able to be constructed. Using pathway analyses from custom Python scripts, important 
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information about the accessibility of mutational pathways and epistatic interactions 

could be determined. This added more tools to the fitness landscape toolbox. 

The final major contribution made to the fitness landscape toolbox was the ability 

to simulate evolving populations on the newly constructed empirical fitness landscapes 

(Fig. 3). Using a Wright-Fisher model (Donnelly and Weber 1985), simulated evolution 

is stochastic and allows for evolutionary exploration. As populations evolve, higher 

fitness genotypes are more likely to survive, and the average fitness of the population 

increases. Furthermore, fitness valleys can be crossed by stochastic events. This results in 

a more accurate assessment of the dynamics of natural evolution.  

 
Figure 3. Evolutionary simulations using a Wright-Fisher model.  

With powerful tools in the fitness landscape toolbox, these tools were then 

applied to important evolutionary questions (Fig. 1). Chapter 1 explored the intersection 

of two RNA functions: self-cleavage and self-ligation. A previous study suggested that 

at-least a single genotype had the capability to perform both functions (Schultes and 

Bartel 2000). Theory suggested that genotype network intersections could give rise to 
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evolutionary innovations (novel function). Chapter 2 determined the effect of higher 

dimensionality on evolutionary adaptation. Recent work in protein landscapes suggested 

that indirect, non-parsimonious pathways facilitated adaptation (Wu et al. 2016). This 

analysis studied the effect of indirect pathways in RNA fitness landscapes. Chapter 3 

applied the principles of phylogenetics and fitness landscapes to naturally evolved 

ribozymes. The CPEB3 ribozyme is highly conserved in mammals and affects episodic 

memory (Vogler et al. 2009; Webb and Lupták 2011). The phylogenetic fitness landscape 

was resurrected and the local landscape was assessed where evolution occurred. Chapter 

4 applied the Python analysis from the fitness landscape toolbox to four published fitness 

landscape datasets: two in vitro and two in vivo. Epistatic interactions for each dataset 

were calculated and compared. Overall this work represents a significant contribution to 

the field of evolutionary biology, both in terms of new tools in the fitness landscape 

toolbox and new insights into evolutionary processes. 
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Abstract 

Evolutionary innovations are qualitatively novel traits that emerge through 

evolution and increase biodiversity. The genetic mechanisms of innovation remain poorly 

understood. A systems view of innovation requires the analysis of genotype networks – 

the vast networks of genetic variants that produce the same phenotype. Innovations can 

occur at the intersection of two different genotype networks. Here, we study the fitness 

landscape between the genotype networks of two catalytic RNA molecules (ribozymes) 

by determining the ability of numerous neighboring RNA sequences to catalyze two 

different chemical reactions. We find extensive functional overlap, and over half the 

genotypes can catalyze both functions to some extent. We demonstrate through 

evolutionary simulations that these numerous points of intersection facilitate the 

discovery of a new function, yet the rate of optimization depends upon the starting 

location in the genotype network. The study reveals the properties of a fitness landscape 

where genotype networks intersect, and the consequences for evolutionary innovations. 
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Significance Statement 

It has been proposed that evolutionary innovations can occur where two genotype 

networks are in close proximity. However, only isolated examples of intersection 

sequences have been demonstrated. Here we show that the genotype networks of two 

different RNA enzymes overlap extensively through numerous intersection genotypes. 

We applied two high-throughput RNA assays to the same sequences and found that over 

half of the 16,384 mutational neighbors studied perform both functions to some extent. 

We conducted data-driven evolutionary simulations, which show that adaptation rate 

depends upon the specific starting locations in the genotype networks. The extensive 

overlap suggest that functional divergence is likely to precede gene duplication in the 

evolution of RNA innovations, and that many new functional intersections are awaiting 

discovery. 

Introduction 

The mechanisms by which evolution produces new functions has intrigued 

biologists since the earliest formulations of evolutionary theory (1, 2). Random genetic 

changes and natural selection would seem to prevent novelty by keeping populations near 

genotypes at the peaks of fitness landscapes, preserving existing forms at the expense of 

novel mutants (3–5). Models to explain the origins of new functions often invoke gene 

duplication events, which create redundancy needed to allow either copy to eventually 

evolve toward a new function (6–9). However, the fitness landscape between old and new 

functions has been difficult to study largely because of the vast number of possible 

genetic variants for any given gene. As a result, models of innovation differ in the 

relative importance of neutral drift, environmental changes, the timing and type of 
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selection pressure, and the high-dimensional nature of sequence space (10). Our 

understanding of innovations will benefit from direct observations of the evolution of 

new functions (11–16). 

Macromolecular phenotypes such as enzymes can tolerate changes to their 

primary sequence without necessarily changing structure or function. As a consequence 

of this robustness to mutations, many genotypes have the same phenotype (17, 18). 

Natural populations of both organisms and macromolecules that appear the same 

phenotypically still harbor many genetic differences. Genotype networks are the 

collection of all genotypes with the same phenotype that are interconnected by mutational 

steps (19). Populations occupy finite regions of these vast networks, and it has been 

suggested that innovations can occur where two genotype networks are in close proximity 

(20) (Fig. 1.1A). To evaluate various models of molecular innovation, it is necessary to 

characterize the number of mutations that separate two networks and the fitness 

consequences of the mutational changes needed to move from one network to the other. 

Here, we report an experimentally constructed intersection of two genotype 

networks. For our study system we have chosen two distinct RNA phenotypes. The RNA 

molecules are ribozymes, structured RNA molecules that catalyze chemical reactions. 

One ribozyme phenotype is the naturally-occurring self-cleaving HDV ribozyme. The 

second phenotype is the class III ligase ribozyme that was discovered through artificial 

selection in a lab (Fig. 1.1B) (21). The two ribozymes share no evolutionary history, 

catalyze different chemical reactions, and fold into very different structures. Despite the 

differences between the two ribozymes, it was previously shown that the two genotype 

networks come in close proximity, and very few mutations could convert one ribozyme 
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into the other (22). This provides an experimentally tractable example of a molecular 

innovation. To characterize the fitness landscape between the two genotype networks we 

developed two high-throughput sequencing based assays to quantify both ribozyme 

phenotypes. We analyzed 16,384 neighboring sequence variants using both assays. For 

each sequence, we determined the ribozyme fitness for both activities, defined as the 

catalytic activity relative to a reference sequence. With these fitness values, we analyzed 

the billions of mutational trajectories between the two genotype networks, and used 

computational simulations to explore how these genotype networks facilitate or inhibit 

evolutionary innovations. 

Results and Discussion 

We obtained fitness measurements for all 16,384 RNA sequences for both RNA 

phenotypes. For visualization of the resulting genotype networks, we plot the data as a 

network graph, where each node is a unique sequence, nodes are connected if they differ 

by a single mutation, and the fitness is represented by the size of the node (Fig. 1.2A). 

Each node is colored based on the dominant activity, with HDV in red and Ligase in blue. 

Fitness values were normalized such that fitness = 1 for the reference ribozyme, 

previously referred to as the “prototype” (22). This representation of the data allows a 

visual appraisal of the proximity of the two genotype networks. In general, both networks 

are characterized by a decrease in fitness with distance from the reference. The region 

where the two networks are in closest proximity contains sequences with low activity for 

either function. Still, we find that numerous genotypes in the two networks are proximal, 

and numerous distance measurements are required to characterize the mutational distance 

between the networks. 



14 

 

To quantify the average distance between the two genotype networks, we 

measured the distance between every genotype on one network and the nearest genotype 

on the other network (Fig. 1.2B). We find that this distance depends upon whether or not 

a lower bound is set for genotypes to be considered a member of the genotype network. 

We find that the average distance between the networks decreases as the fitness cut-off is 

lowered (Fig. 1.2B). For example, if “wild-type” activity is required (fitness > 1), the two 

networks are separated by ~7 mutations on average. However, if molecules with 10% of 

wild-type activity or better are considered part of the network, then most genotypes are 

only 1-2 mutations from the other network. 

Surprisingly, if we do not set any fitness cut-off, and count all genotypes as being 

a part of a network as long as they were detected as catalytically active in all three 

replicates of our assay, we find that over half the molecules (9,032) can actually perform 

both functions (Fig 2C). Most of these dual-function intersection sequences have very 

low fitness for both functions, and not surprisingly, no single sequence had higher than 

wild-type fitness for both functions (log10(fitness) > 0). However, several sequences do 

show detectable levels of activity for one function and higher than wild-type fitness for 

the other function. Under many evolutionary scenarios, these genotypes would be the 

most likely to facilitate a molecular innovation because they would be favored if 

selection was acting on only one function, yet would already provide the new function as 

a suboptimal promiscuous function (23, 24). These results demonstrate that the genotype 

networks have substantial overlap with numerous intersection sequences. 

Next, we set out to evaluate the implications of these genotype networks for the 

evolution of molecular innovations. The networks are in fact high-dimensional, which 
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limits any intuitive interpretation. We therefore turned to computational simulations of 

populations of RNA molecules evolving on the networks. We modeled evolution using a 

Wright-Fisher model (25) with a fixed population size, a fixed mutation rate, and 

selection determined by the differences in the fitness of neighboring genotypes (see 

Materials and Methods). To simulate evolutionary innovations, we imagined the naturally 

occurring HDV genotype as the established function and the in vitro selected Ligase 

activity as the “new” function. We modeled a situation where the enzymatic function of 

the HDV ribozyme is first under selection, but gene duplication allows a copy of the gene 

to evolve under selection for Ligase activity. We therefore apply immediate selection 

pressure using the Ligase fitness measurements, with no further consequence for the 

changes in HDV activity. For these simulations, it is useful to think of the genotype 

networks as a three-dimensional fitness landscape, where the height of the landscape is 

determined by the fitness (Fig. 1.3A and Movie S1). Evolving populations will tend to 

move uphill towards the peaks in such a landscape. We started multiple simulations from 

different genotypes on the HDV network and challenged the populations to evolve on the 

Ligase fitness landscape. We recorded these simulations as movies to observe the process 

of evolution toward the new Ligase function (Fig. 1.3B and Movie S2-S5). 

We noticed that many of the individual simulations had periods where the 

population plateaus at a specific, often low average fitness for many generations (Fig. 

1.3B). To evaluate the average contribution of these periods of stasis, we measured the 

average fitness of the evolving population over time (Fig. 1.4A and Fig. S1.1) and did so 

for 100 replicate simulations from each of the different starting genotypes (Fig. 1.4B). 

We find that different genotypes on the HDV network result in different average rates of 



16 

 

adaptation to the new Ligase function (Fig. 1.4C). The fact that some genotypes promote 

very rapid adaptation supports the idea that neutral evolution that enables a population to 

explore a genotype network can facilitate evolutionary innovations (20, 26). 

Additionally, we find that there exist specific genotypes on the Ligase fitness 

landscape that cause these periods of stasis and slower average rates of adaptation (Fig. 

1.4D and Fig. S1.2-S3). These genotypes are characterized by very few pathways to 

higher fitness. Importantly, the genotypes that cause the slowest adaptation are 

characterized by extensive reciprocal sign epistasis, meaning that achieving higher fitness 

requires two or more mutational steps, but every initial step is deleterious. These 

genotypes are local fitness peaks with not a single beneficial one-mutation-neighbor in 

our data set. Different starting genotypes on the HDV network frequently stall at the 

same intermediate fitness level indicating that they are likely to encounter a specific 

stasis genotype. These results are encouraging for efforts aimed at forecasting 

evolutionary outcomes in cases where the underlying fitness landscape can be measured 

or accurately estimated (27, 28). 

Our results show that at regions of genotype space where two phenotypes 

intersect, there exist numerous evolutionary trajectories between functions. We 

demonstrate that this region enables rapid evolution of innovation. Mutational walks that 

maintain one function while approaching a new function are abundant, and dual-function 

sequences permeate this region of sequence space. The decrease in the fitness of both 

functions at this interface suggests that intermediate forms are disfavored over the 

sequences that can do one function well (10). The evolution of innovation in this 

sequence space is not only possible, but probable. However, it remains unknown whether 
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these characteristics are peculiar to these specific phenotypes. Further research 

advancements will be required to understand how functional intersections change over 

larger expanses of genotype space, and if historic evolutionary innovations found in 

natural systems have properties like the model system studied here. The high probability 

of finding a dual-function sequence at this intersection encourages the search for more 

genotype network intersections and motivates future research on the forecasting of 

evolutionary innovations. 

Materials and Methods 

Library Design 

For our experiments, we first identified an HDV and a Ligase reference sequence 

(Fig. 1.2). For this purpose, we chose sequence variants that were expected to have near 

wild-type ribozyme fitness and that were 14 mutations apart (29). We then set out to 

construct a library of ribozyme sequences that contained all the possible presence-

absence combinations of these 14 nucleotide differences. These sequence variants 

represent all the parsimonious intermediates on the evolutionary trajectories between the 

two reference sequences. Library construction was accomplished by chemically 

synthesizing a degenerate DNA oligonucleotide that would serve as a template for in 

vitro transcription with T7 RNA polymerase. At each position where the Ligase and 

HDV reference ribozymes differed, the synthesis used equal mixtures of two nucleotide 

phosphoramidites, generating approximately equal probability of both sequence variants. 

This creates 214 = 16,384 ribozyme variants. We synthesized two such libraries, one 

“HDV-library” with a 5’-leader sequence that is cleaved by variants with the HDV 

phenotype, and a second “Ligase-library” that begins at the 5’-end of the Ligase 
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ribozyme, so that variants with the Ligase phenotype could react with a separate substrate 

oligonucleotide (30). A common sequence was added to the 3’-end of both libraries to 

serve as a universal primer binding site for reverse transcription (31). Oligonucleotides 

used in this experiment are listed in Table S2.1. 

Co-transcriptional Cleavage Assay 

The sample preparation was done entirely in triplicate yielding three biological 

replicates. The ssDNA ultramer cleavage library used for in vitro transcription of the 

ribozyme mutants was annealed to the T7-TOP+ primer. 20 picomoles each of DNA 

template and primer were heated for 5 mins at 98C in 10 L final volume of custom T7 

Mg10 buffer (500 L 1M Tris pH 7.5, 50 L 1M DTT, 20 L 1M Spermidine, 100 L 

1M MgCl2, 330 L RNase-free water). The template and primer were then diluted 10-

fold and cooled to room temperature. 2 L of template and primer were then transcribed 

in vitro in a 50 L reaction with 5 L T7 Mg10 buffer, 1 L rNTP (25 mM, NEB), 1 L 

T7 RNA polymerase (200 units, Thermo Scientific) and 41 L RNase free water 

(Ambion) at 37C for 20 mins. The transcription was then terminated by adding 15 L of 

50 mM EDTA. Although the total amount of cleaved RNA increases during transcription, 

the ratio of cleaved to uncleaved remains the same, as long as the rate of transcription is 

constant, which is true for moderately short transcription times before reagents become 

limited (32). 20 mins was determined to be the optimal time for transcription by 

transcribing the library at multiple time points and measuring RNA levels using 

denaturing PAGE. 20 mins was selected as optimal because it was still during linear 

growth before reaching a plateau. The transcription reaction was then cleaned and 

concentrated with Direct-zol RNA MicroPrep w/ TRI-Reagent (Zymo Research) to 7 L. 



19 

 

The concentration of the RNA sample was then determined using a spectrophotometer 

(ThermoFisher NanoDrop) and the samples were normalized to 5 M. The transcribed 

and cleaned RNA (5 picomoles) was mixed with 20 picomoles of RT-library primer 

(Table S2.1) in a volume of 10 L and was heated at 72 C for 3 mins and then cooled on 

ice. 4 L SMARTScribe 5x First-Strand Buffer (Clontech), 2 L dNTP (10 mM), 2 L 

DTT (20 mM), 2 L phased template switching oligo mix (10 M), 1 L water and 1 L 

SMARTScribe Reverse Transcriptase (10 units, Clontech) were then added to the RNA 

template and RT primer. The phased template switching oligo mix consisted of four 

oligonucleotides that were phased by the addition of 9, 12, 15 or 18 nucleotides (Table 

S2.1). The mixture was then incubated at 42 C for 90 mins. The reaction was stopped 

and the RNA degraded by heating the sample to 72 C for 15 mins. The cDNA was then 

purified using DNA Clean & Concentrator-5 (Zymo Research) and eluted into 7 L 

water. 

Ligation Assay 

The ssDNA ultramer ligation library used for in vitro transcription of the 

ribozyme mutants was annealed to the T7-TOP+ primer. 20 picomoles each of DNA 

template and primer were heated for 5 mins at 98C in 10 L water. The template and 

primer were then transcribed in vitro in a 30 L reaction with 12 L rNTP (25mM, 

NEB), 3 L MEGAshortscript T7 Reaction Buffer (10X, Thermo Fisher) and 3 L 

MEGAshortscript T7 RNA Polymerase (Thermo Fisher) at 37 C for 2 hours. The DNA 

was then degraded using 2 L TURBO DNase (2 units/L, Thermo Fisher) and 

incubating at 37 C for 15 mins. The transcription reaction was then cleaned and 

concentrated with Direct-zol RNA MicroPrep w/ TRI-Reagent (Zymo Research) to 7 L. 
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The concentration of the RNA sample was then determined using a spectrophotometer 

(ThermoFisher NanoDrop) and the samples were normalized to 5 M. To assess the 

starting abundance of each genotype prior to in vitro selection, a portion of each sample 

was aliquoted and reverse transcribed using the template switching protocol identical to 

what was used for the HDV-library. The transcribed and cleaned RNA (25 picomoles) 

was mixed with 200mM Tris pH 7.5 in a volume of 10 L and heated at 65 C for 2 

minutes and then cooled to room temperature. 500 picomoles of ligation substrate (Table 

S2.1) were then added with 4 L MgCl2 (50mM) for a total volume of 20 L. The 

mixture was then incubated for 2 hours at 37 C. To reverse transcribe the samples, 10 

L of the ligation reaction were heated with 40 picomoles of RT-library primer and 

heated to 72 C for 3 mins and then cooled on ice. 4 L SMARTScribe 5x First-Strand 

Buffer (Clontech), 2 L dNTP (10 mM), 2 L DTT (20 mM), 1 L water and 1 L 

SMARTScribe Reverse Transcriptase (10 units, Clontech) were then added to the RNA 

template and RT primer. The mixture was then incubated at 42 C for 90 mins. The 

reaction was stopped and the RNA degraded by heating the sample to 72 C for 15 mins. 

The cDNA was then purified using DNA Clean & Concentrator-5 (Zymo Research) and 

eluted into 10 L water. To amplify the cDNA that had performed the ligation reaction a 

mix of phased selective ligation PCR primers were used. The PCR reaction consisted of 1 

L purified cDNA, 12.5 L KAPA HiFi HotStart ReadyMix (2X, KAPA Biosystems), 

2.5 L selective ligation primer, 2.5 L RT primer and 5 L water. To prevent bias 

during the PCR amplification, multiple cycles of PCR were examined using gel 

electrophoresis and an appropriate PCR cycle was chosen because it was still in linear 

growth (Fig S4). Each PCR cycle consisted of 98 C for 10 s, 63 C for 30 s and 72 C 
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for 30 s. The PCR cDNA product was then cleaned using DNA Clean & Concentrator-5 

(Zymo Research) and eluted in 12 L water.  

Illumina Adapter PCR 

In preparation for high-throughput sequencing, Illumina adapter sequences were 

added to the cDNA using PCR. Each of the nine samples (3 HDV, 3 ligated, 3 unligated) 

were each assigned a unique combination of The PCR reaction consisted of 1 L purified 

cDNA, 12.5 L KAPA HiFi HotStart ReadyMix (2X, KAPA Biosystems), 2.5 L 

forward, 2.5 L reverse primer (Illumina Nextera Index Kit) and 5 L water. To prevent 

bias during the PCR amplification, multiple cycles of PCR were examined using gel 

electrophoresis an appropriate PCR cycle was chosen because it was still in linear growth 

(Fig. S1.4). Each PCR cycle consisted of 98 C for 10 s, 63 C for 30 s and 72 C for 30 

s. The PCR cDNA product was then cleaned using DNA Clean & Concentrator-5 (Zymo 

Research) and eluted in 30 L water. The final product was then verified using gel 

electrophoresis. 

High-Throughput Sequencing  

In preparation for high-throughput sequencing, the three cleavage replicates, three 

ligated replicates and three unligated replicates each with unique Illumina adapter 

barcodes were pooled and sent to the University of Oregon Genomics and Cell 

Characterization Core Facility. The samples were sequenced using Illumina NextSeq 500 

Single End 150 with 25% PhiX addition. This generated ~125 million reads (Cluster PF 

Yield) across the nine samples.
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Data Analysis 

Sequencing data were analyzed using custom Python scripts. These scripts 

identified a universally conserved 3’ handle, determined the reacted state (ligated/ 

unligated or cleaved/ uncleaved) and isolated the 14 mutational nucleotides to determine 

genotype. This process was repeated for each replicate. A genotype was considered to be 

a part of the corresponding genotype network only if detected as catalytically active in all 

three replicates and had a catalytic rate above the uncatalyzed cleavage or ligation rate. 

The uncatalyzed cleavage rate is estimated to be 7e-7 min-1 (33). The rates of template-

directed, nonenzymatic oligonucleotide ligation are estimated to 2.4e-10 min-1 for 2’,5’-

linkage and 1.5e-8 min-1 for 3’,5’-linkage (34, 35). To determine the reproducibility of 

the sequencing, the three replicates were correlated with each other (Fig. S1.5) with high 

correlation coefficients. The distribution of HDV and Ligase sequencing read counts 

were also determined to verify sequencing quality (Fig. S1.6). 

Fitness Calculations from Sequence Data 

Fitness values for each genotype were determined from the sequence data. Fitness 

values for the HDV genotypes were calculated from the fraction of each genotype found 

in the cleaved form divided by the total reads of that genotype. These fraction cleaved 

values were normalized by dividing by the fraction cleaved for the HDV reference 

genotype, resulting in the HDV fitness values reported. The Ligase fitness was 

determined by the level of enrichment between the unligated and ligated samples. The 

relative abundance of each genotype was determined by dividing the reads corresponding 

to that genotype by the total number of reads in that replicate sample. The change in 

abundance was determined by taking the relative abundance of a specific genotype in the 
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ligated replicate sample and dividing it by the relative abundance in the unligated sample. 

This value was normalized by dividing by the change in abundance for the Ligase 

reference sequence, resulting in the Ligase Fitness values reported. We observed 

detectable Ligase activity for all 16,384 sequences. We note that even the lowest fitness 

Ligase genotypes were still observed as ligated more than 4 separate times in a given 

replicate, and more than 32 times across all three replicates. We detected HDV activity 

for 9,032 of the sequences. The least frequent genotypes in our data that showed HDV 

activity were observed as cleaved more than once in all three replicates, and uncleaved 

more than 108 times. Genotypes that were not detected as cleaved in a single replicate 

were not considered active. This approach provides a conservative estimate for genotypes 

belonging to a given network. 

Genotype Network and Fitness Landscape Construction 

In order to visualize the highly complex network of genotypes presented in this 

study, a genotype network (Fig. 1.2A) and a three-dimensional fitness landscape (Fig. 

1.3A) were constructed using Gephi software (36). Each node represents a unique 

genotype and edges connecting genotypes represent a single mutation. ForceAtlas 2 was 

used to approximate genotype repulsion using a Barnes-Hut calculation. The z-axis in the 

fitness landscape was generated using the Network Splitter 3D plugin. 

Evolutionary Simulations 

In order to computationally simulate the evolution of populations of RNA 

molecules on the Ligase genotype network, we used custom Python scripts that model 

evolution based on the Wright-Fisher approach14,25. The simulation started with 1000 

individuals of the same genotype. Every generation (update) a new population of 1000 
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genotypes was generated in the following way. First, a parent genotype from the 

population was selected at random. The fitness of the genotype was compared to a 

randomly selected value from a fitness range (between 0 and 1). If the genotype fitness 

was less than the random value, the genotype was not placed in the new generation. If the 

genotype fitness was greater than or equal to the random value, it was placed in the new 

generation, with a chance of mutating at a single, randomly chosen nucleotide position. 

The probability of mutation was proportional to the mutation rate that was set at the 

beginning of the simulation (µ = 0.01) and remained constant. This process was repeated 

until 1000 individuals were placed in the new generation. The simulation then repeated 

this process for 1000 generations. We repeated the simulation starting from all genotypes 

with HDV fitness  1 and did so for a total of 100 replicates for each genotype (n=17, 

Fig. S1.1). The 100 replicates for each starting genotype were averaged (Fig 4b) and the 

initial rate of adaptation and unique genotypes explored for each starting genotype were 

calculated (Fig. 1.4c). For each simulation, initial rate was determined by subtracting the 

population fitness at generation = 0 from the population fitness at generation = 200 and 

dividing this value by the 200 generations. This results in a per generation rate of initial 

adaptation.  
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Fig. 1.1 Evolutionary innovation from a network perspective.  

a, Each node represents a genotype. Genotypes with the same phenotype (genotype 

networks) have the same color and are interconnected by mutational steps (edges). Gray 

nodes are non-functional. Proximal genotype networks have neighboring genotypes with 

different phenotypes. Distant genotype networks have neighbors with the same function 

or that are non-functional. b, The two RNA phenotypes used in this study. Phenotypes are 

represented by the structure diagram of the antigenomic HDV ribozyme (HDV 

phenotype) and the class III ligase ribozyme (Ligase phenotype). Each phenotype is 

detected by the ability of a genotype to catalyze each specific chemical reaction that is 

shown beside each structure, which results in the removal (HDV) or addition (Ligase) of 

a short sequence (gray letters). These changes in length after a reaction can be detected in 

nucleotide sequence data. The two structures have the same nucleotide sequence and 

nucleotides are colored based on the secondary structure of the HDV phenotype.   
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Fig. 1.2 The experimental fitness landscape at the intersection of two genotype 

networks.  

a, The overlay of the HDV and Ligase genotype networks. Nodes represent individual 

sequences, and sequences are connected by an edge if they are different by a single 

nucleotide change. Nodes are colored based on their dominant activity (red = HDV; blue 

= Ligase), and the fitness is indicated by the size of the node. Boxes on the left (HDV 

reference) and right (Ligase reference) show the secondary structure for the reference 

genotypes, and all the mutational changes that were analyzed. The mutations in blue 

boxes convert the HDV reference to the Ligase reference. The mutations in red boxes 

convert the Ligase reference to the HDV reference. Genotypes used to start evolutionary 

simulations are indicated (a-p). Examples of stasis genotypes that were shown to impede 

evolution on the Ligase fitness landscape are indicated (I-IV). b, Distributions of shortest 

mutational distance between genotypes on different networks as a function of fitness cut-

off (blue = Ligase to HDV distances; red = HDV to Ligase distances). Inset shows the 

distribution at fitness cut-off = 1.3 as histograms; dashed lines indicate the sample means. 

The diagram illustrates the measurement of distance between the two functions. c, 

Intersection sequences with detectable activity for both functions. Color indicates the 

ratio of ligation fitness (blue) to HDV fitness (red).   
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Fig. 1.3 Computational simulation of evolutionary innovation reveal periods of 

stasis. 

a, Three-dimensional fitness landscape for both genotype networks. The height of each 

node indicates the relative fitness for the HDV phenotype (red) and the Ligase phenotype 

(blue). Fitness are normalized so that both graphs are similar heights. Nodes are 

connected if they are different at one nucleotide position. Starting genotypes (a,b,k,m) are 

indicated as examples that show different rates of Ligase adaptation. b, Frames from 

simulations of evolving populations. Genotypes present in the population (yellow nodes 

and edges) change over generation time due to mutation and selection. The corresponding 

mean fitness of these genotypes experience periods of stasis, followed by rapid increase 
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in fitness. During simulations the population size (N = 1000) and mutation rate (µ = 0.01) 

were constant.  

 
Fig. 1.4 Starting genotypes result in different rates of adaptation. a, Rates of 

Ligase adaptation from a single HDV genotype.  

Each trace shows the average fitness as a function of generation time for a separate 

simulation of 1000 individuals each. Inset shows minor fluctuations during periods of 

stasis. b, Average rates for multiple evolutionary simulations from different starting 

genotypes. Each trace represents a different starting genotype and shows the mean fitness 

of 100 simulations such as in a plotted as a function of generation time. c, Distributions 

of initial rates of adaptation and unique genotypes explored during simulations. Initial 

rate is determined as the per generation fitness increase over the first 200 generations (see 

Methods). Unique genotypes represent the total number of genotypes encountered during 

a simulation. d, The local fitness landscape of genotypes that cause periods of stasis show 
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sign epistasis. The fitness of the stasis genotype is plotted at mutations = 0 and marked 

with a dashed line. The fitness of neighboring genotypes that differ by 1 or 2 mutations 

are shown. The roman numeral above each graph corresponds to Fig. 1.2. 
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Supporting Information 

 
Fig. S1.1 Rate of adaptation for populations starting from different genotypes. 

Each trace shows the increase in population fitness over generation time for a single 

simulation of 1000 individuals. Each plot shows 100 simulations starting from the same 

genotype. All starting genotypes has HDV fitness  1. The letter above each subplot 

indicates the starting point from the network as shown in Fig. 1.3a. Letters were assigned 

alphabetically based on highest to lowest HDV fitness and genotype a represents the 

genotype with the highest measured HDV fitness. The graphs are ordered from fastest to 

slowest initial rates (Fig. 1.4a).  
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Fig. S1.2 Trajectories away from stasis genotypes.  

a, Each line leads from the stasis genotype (Mutations = 0) to one and two mutations 

away. All 69 stasis genotypes (peaks) in the Ligase fitness landscape are depicted. The 

number on each graph represents the number of two mutation pathways to higher fitness 

from each stasis genotype. Yellow box indicates the genotype with the highest measured 

Ligase fitness. b, The distribution of two mutation pathways to higher fitness genotypes 

from each stasis genotypes in the Ligase landscape. The dotted vertical line indicates the 

mean of the distribution.  
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Fig. S1.3 Characterization of stasis genotype I.  

Stasis genotype I from Fig. 1.4d is depicted in the center with each of the two mutation 

trajectories. None of the 182 two mutation trajectories lead to higher fitness than the stasis 

genotype (mutation = 0). The pathways two mutations from each of the 14 genotypes that 

are a single mutation away from the stasis genotype are individually depicted. In total, 42 

out of a possible 2,184 three mutation trajectories yield a higher fitness than the initial 

stasis genotype (dashed line).
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Fig. S1.4 Time-course PCR for sample optimization.  

a, Time-course transcription for total RNA yield using the developed co-transcriptional 

cleavage assay. Data points indicate the mean RNA yield of five replicates. Error bars are 

standard error of the mean. Samples were run on 10% denaturing polyacrylamide gel, 

visualized with GelRed (Biotium), and quantified by densitometry. The time chosen as 

optimal (20 mins) is indicated with a box. b, Time-course PCR was performed for the 

selective ligation PCR and each Illumina adapter PCR for each replicate (blue, green, 

red). Samples were run on 2% agarose gel, visualized with GelRed (Biotium), and 

quantified by densitometry. The black box indicates the PCR cycle that was determined 

to be optimal for each PCR reaction.  
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Fig. S1.5 Correlation of high-throughput sequencing replicates.  

Correlation of total HDV and Ligase reads for each of the three replicates. Each figure 

consists of all 16,384 genotypes presented in this study. Each data point represents the 

frequency that a specific sequence was observed in a particular replicate (y-axis) vs. 

another replicate (x-axis). Sequence kernel density estimation is also reported from each 

replicate in the jointplot (Seaborn). The number of reads on the x and y-axis are log10 

transformed.  
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Fig. S1.6 Distribution of sequencing read counts.  

Histograms indicating the average read counts for each individual genotype for the HDV 

and Ligase samples. The mean read count for each genotype in HDV and Ligase 

replicates was 369 and 230, respectively.  
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Table S1.1 Oligonucleotides used in this study. 

  

Name Sequence (5' - 3') Notes

HDV-library

GAACCGGACCGAAGCCCGATTTGGATCCGGCGAACCGGATCG

ATGSKCSTTAGYCTAGRRAAGRCTSTTCCTCCCTMGCSCAACTC

CCGCCGCSAGGAGGCGGMCCAGTCTAATGGGAKTCGAATGG

TCCTATAGTGAGTCGTATTAGCCG

HDV template oligonucleotide. 

Ribozyme sequence is bolded. 

Cleaved sequence is in red. 

Ligase-library

GAACCGGACCGAAGCCCGATTTGGATCCGGCGAACCGGATCG

ATGSKCSTTAGYCTAGRRAAGRCTSTTCCTCCCTMGCSCAACTC

CCGCCGCSAGGAGGCGGMCCAGTCTAATGGGAKTCCTATAGT

GAGTCGTATTAGCCG

Ligase template oligonucleotide. 

Ribozyme sequence is bolded.

T7-TOP+ primer CGGCTAATACGACTCACTATAG T7 transcription primer.

RT-library primer
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAACCGG

ACCGAAGCCCG
Reverse transcription primer

Phased TSO 1
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCATGCATG

CATGCATGCrGrGrG

Phased TSO 2
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCATGCAT

GCATGCrGrGrG

Phased TSO 3
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGCATGCA

TGCrGrGrG

Phased TSO 4
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCATGCATGCr

GrGrG

LIG-substrate AAGCATCTAAGCATCTCAAGCrArArArCrCrArGrUrC
Substrate for ligation reaction. rN 

indicates RNA bases.

Phased LIG primer 1
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCATGCATG

CATGCATGCAAGCATCTAAGCATCTCAAGCAAACCAG

Phased LIG primer 2
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCATGCAT

GCATGCAAGCATCTAAGCATCTCAAGCAAACCAG

Phased LIG primer 3
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGCATGCA

TGCAAGCATCTAAGCATCTCAAGCAAACCAG

Phased LIG primer 4
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCATGCATGC

AAGCATCTAAGCATCTCAAGCAAACCAG

Phased template switching 

oligonucleotides. Phased insert is 

bolded. rG indicates RNA bases

Phased selective ligation primers. 

Phased insert is bolded. rG indicates 

RNA bases
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Table S1.2. Starting Genotypes (HDV fitness  1) used in Evolution Simulations.  

Genotypes are represented by the unique combination of nucleotides in the 14 variable 

positions of the library. Binary Genotypes represent the nucleotides of the reference HDV 

genotype as “0”, and a nucleotide change as “1”. 

 

 

  

Starting Point Genotype Binary Genotype HDV Fitness

REF CGUCGUCCCCGGAC 00000000000000 1

a CGUCGUGUCCGGAC 00000011000000 1.37

b CAGCGUGUUCGGCC 01100011100010 1.34

c CGUCGUGUCUGGAC 00000011010000 1.31

d CAUCGUGCCCGGAC 01000010000000 1.3

e CAUCGUCCCCGGAC 01100001100010 1.25

f CGGCGUGUCUGGCC 00100011010010 1.24

g CAUCGUGUCCGGAC 01000011000000 1.24

h CAGCGUCUCUGGCC 01100001010010 1.23

i CAGCGUCUUCGGCC 01100001100010 1.23

j CAUCGUCUUCGGAC 01000001100000 1.19

k CAUCGUGCCUGGAC 01000010010000 1.15

l CAUCGUGUCUGGAC 01000011010000 1.13

m CAUCGUCUCCGGAC 01000001000000 1.11

n CAGCGUGUCUGGCC 01100011010010 1.1

o CGUCGUCCUCGGAC 00000000100000 1.08

p CAUCGUCCUCGGAC 01000000100000 1
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CHAPTER TWO: EVOLUTIONARY CONSTRAINT FROM HIGHER 

DIMENSIONALITY IN AN RNA FITNESS LANDSCAPE 
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1Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA. 

2Department of Biological Science, Boise State University, Boise, ID, USA. 

 

Abstract 

Fitness landscapes are a useful metaphor to understand and visualize the highly 

complex nature of sequence space. Sequence space is comprised of all possible genotypes 

and the phenotype corresponding to each genotype is often measured in terms of fitness. 

Fitness landscapes contain areas of higher fitness (peaks) which are generally separated 

from each other by areas of lower fitness (valleys). Due to difficulty in comprehensively 

characterizing empirical fitness landscapes, one important aspect that has yet to be fully 

understood is how does higher dimensionality affect evolution? Here, we study the 

evolutionary consequences of altering the dimensionality of an RNA enzyme (ribozyme) 

fitness landscape. We found that indirect pathways can contribute significantly to the 

ruggedness and navigability of a local fitness landscape. Our study suggests that 

increased dimensionality in RNA fitness landscapes has the potential to circumvent 

fitness valleys, however indirect pathways might also harbor stasis genotypes isolated by 

reciprocal sign epistasis.
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Introduction 

Fitness landscapes are a graphical representation of the mapping from genotype 

and phenotype (1,2). They have served as a tool that allows tangible glimpses into the 

highly complex nature of evolutionarily available sequence space. Sequence space is 

comprised of all possible genotypes and the phenotype is often measured in terms of 

fitness. For whole genomes the fitness can easily be derived as the probability of survival 

and reproduction. For catalytic biomolecules, such as enzymes or ribozymes (RNA 

enzymes), genotype fitness is often measured in terms of biochemical rate or activity. 

Fitness landscapes inherently contain areas of higher fitness (peaks) separated from each 

other by areas of lower fitness (valleys). Adaptive evolution combined with random 

mutations leads populations to explore these landscapes and potentially reach fitness 

peaks. These adaptive walks through evolutionary trajectories are dependent on the 

complexity, dimensionality and ruggedness of the fitness landscape (3–5). 

It is convenient to visualize fitness landscapes as three dimensional ‘surfaces’, 

however they are in fact high-dimensional objects. The complexity and dimensionality of 

landscapes grows significantly with the length (l) of the genome or biomolecule. For this 

study, we defined complexity as the size of the genotype space and dimensionality as the 

number of edges connecting each genotype (node) to other genotypes that differ by a 

single mutation. For example, for RNA with four possible nucleotides at each position, 

the complexity of genotype space is equal to 4l and dimensionality is equal to 3l. With 

advances in both sequencing and DNA manipulation capabilities, we can synthesize and 

characterize ever expanding regions of sequence space (6–9). However, there still exists 

limitations on the amount of sequence space that can be readily and accurately 
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characterized in a given study (2,6,10). For RNA molecules greater than ~25 in length, 

the high complexity and dimensionality preclude a comprehensive characterization of 

genotype space. Due to the uncomprehensive nature of empirical fitness landscapes, one 

important aspect that has yet to be fully understood is how does higher dimensionality 

affect evolution? 

Theory has predicted that fitness valleys may become unimportant once higher 

dimensional spaces are considered because evolution will find indirect pathways to 

higher fitness that go through nearly neutral or incrementally beneficial mutational steps 

(11,12). In agreement with this, a recent study found that indirect pathways facilitate 

adaptation in a protein fitness landscape (13). Direct pathways are governed by the law of 

parsimony (14,15) and imply that the shortest mutational path between two genotypes is 

the most probable. However, direct, equally parsimonious pathways have been shown to 

differ significantly in their evolutionary likelihood, suggesting that parsimony alone is 

not always an evolutionary determinant (16). Direct pathways in the protein landscape 

were shown to be constrained by pairwise epistasis, however indirect pathways allowed 

for escape from epistatic traps (13). Epistasis or non-additive mutational interactions are 

a driving force in the structure of fitness landscapes and the accessibility of mutational 

pathways (17–22). Pairwise epistasis can be categorized into three increasingly severe 

classes: magnitude epistasis, simple sign epistasis and reciprocal sign epistasis (23,24). 

Simple sign epistasis and reciprocal sign epistasis cause the ruggedness of a fitness 

landscape, which directly affects its navigability by evolutionary exploration (23). 

Here, we study the evolutionary consequences of altering the dimensionality of an 

RNA fitness landscape (Fig. 2.2.1a). Specifically, we distinguish between a ‘direct’ 
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landscape that includes only two possible nucleotides at various positions (2n), and an 

‘indirect’ landscape that has all four possible nucleotides at the same positions (4n). We 

chose the synthetic class III ligase ribozyme as our model system (25). In concept, 

indirect pathways in an RNA fitness landscape could facilitate adaptation by allowing for 

the escape from epistatic traps (as seen in protein) or could hinder adaptation by 

introducing more epistasis and creating additional evolutionary traps. We also sought to 

determine if the effects of higher dimensionality were the same for all regions of 

genotype space. We therefore identified two diverse regions of genotype space to 

position mutational libraries, each containing a direct and indirect landscape. Each 

mutational library started from a single reference genotype that had previously been 

shown to be at the intersection of two phenotypes (self-ligating and self-cleaving) and 

therefore could be considered a theoretical ancestral sequence (26). One region of 

sequence space was expected to contain a high-fitness peak and was therefore termed the 

Peak library. The second region was designed to occupy a region of sequence space with 

relatively low fitness genotypes and was therefore termed the Valley library. Each library 

encompassed 7 mutational positions, such that each direct landscape contained 128 (27) 

unique genotypes and each indirect landscape contained 16,384 (47) genotypes. We 

assigned a ribozyme fitness to each genotype using a previously developed high-

throughput sequencing based assay. In this assay, we define fitness as the enrichment rate 

of a ribozyme sequence during a single round of in vitro selection. This enrichment rate is 

dependent upon ribozyme activity and is calculated from how much more (or less) 

frequent a genotype is after a round of selection, analogous to the growth rate of 

competing microbial genotypes. We characterized each empirically derived fitness 
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landscape and used computational simulations of evolving populations to assess the 

effects of indirect pathways on evolutionary adaptation in these RNA fitness landscapes. 

Results 

Direct vs Indirect Pathway Landscapes in The Peak Library 

We obtained relative ligase fitness measurements for all 16,384 unique genotypes 

in the Peak library (Materials and Methods). We isolated the 128 genotypes that 

encompass the direct pathways present between the two anchor genotypes: the reference 

genotype and the genotype 7 mutations in the direction of the ‘wild-type’ ligase ribozyme 

(Fig. 2.2.1b). We used network graphs to represent both two-dimensional (Fig. 2.2.1c) 

and three-dimensional (Fig. 2.2a) representations of the fitness landscapes for both the 

direct (2n) and indirect (4n) pathway landscapes. Each node in the visualization indicates 

a single genotype and edges connect genotypes different by a single mutation. The size 

and color saturation of the node is representative of the relative fitness of that genotype, 

with high fitness values represented by large size and fully saturated color. The z-axis in 

the three-dimensional fitness landscapes represents the ribozyme fitness (Fig. 2.2a). 

Nodes that are found in the direct pathway landscape are on a grey-orange-red color 

scale, while those exclusively on the indirect pathway landscape are on a grey-green-blue 

scale. There are 128 genotypes in the direct landscape and 16,384 genotypes in the 

indirect landscape making the indirect landscape 128 times more complex. Similarly, the 

indirect landscape has a three-fold increase in dimensionality. Each genotype in the direct 

landscape is connected to 7 other genotypes, whereas in the indirect landscape the 

number of connections increased to 21. 
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The direct landscape contained of two fitness peaks with a total of 9 genotypes 

with fitness 0.1 (Figure 2.1-figure supplement 1). A fitness peak is defined as a 

genotype where every connecting genotype has lower fitness and therefore represents a 

downward step in the landscape. The indirect landscape had a total of 20 peaks and 464 

genotypes with fitness 0.1. The highest fitness genotype, or summit of the direct 

landscape had a relative ligation fitness of 2.47. Higher dimensionality in the indirect 

landscape introduced a new summit with a fitness of 3.11. The change in the summit 

value and genotype might have significant impacts on the evolutionary adaptation. 

Starting from each genotype in the two landscapes, we were able to computationally 

determine all accessible mutational paths to the summit of the respective landscape 

(23,27). A path was deemed accessible to the summit if the genotypes on the path had 

increasingly higher fitness from the start genotype to the summit genotype. Therefore, 

each mutation on the path is an upward step in fitness and downward steps are not 

allowed. We found that the direct and indirect pathways allowed for a proportionally 

equal number of genotypes within the landscape to have mutational access to the summit 

(67% for direct, 69% for indirect). Therefore, although the indirect pathway landscape 

has significantly more connections and results in billions of unique pathways (as 

compared to ~5,000 in the direct landscape), the new pathways still result in ~30% of 

genotypes being isolated from the summit by downward steps in fitness. 

Higher Dimensionality Introduced More Severe Pairwise Epistasis in The Peak Library  

Pairwise epistasis was found to be prevalent in both the direct and indirect 

landscapes in the Peak library. Two precise mutations can occur in either order, and are 

represented in our landscapes by subgraphs of four connected genotypes that we refer to 
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as “squares”. Analysis of the squares revealed that the distributions of epistasis severity 

in the direct and indirect landscapes were very similar, with the majority of epistatic 

interactions being of relatively low severity (Fig. 2.2b). The indirect landscape showed a 

proportionally higher amount of interactions with magnitudes less than 0.5 (~90% as 

compared to 79%) and the direct landscape had a higher proportion of interactions in the 

range of 0.5 to 1.5 (~18% as compared to 9%). However, a striking difference between 

the two distributions is the maximum magnitude of epistasis encountered. In the direct 

landscape the highest magnitude encountered was ~2.8, however in the indirect landscape 

there are more than 750 squares that exhibited higher epistasis than this and the 

maximum encountered was 3.9. 

The squares in the direct pathway landscape exhibited significantly higher 

amounts of pairwise epistasis. In fact, 91% of squares in the direct landscape exhibited 

epistasis, as compared to 63% in the indirect landscape (Table 2.1, Figure 2.2-supplement 

figure 1). The pairwise epistatic interactions were categorized into three classes: 

magnitude epistasis, simple sign epistasis, and reciprocal sign epistasis. 62% of mutation 

pairs in the direct landscape exhibited magnitude epistasis as compared to only 52% in 

the indirect landscape. Simple sign epistasis was found to be three times as prevalent in 

the direct landscape (~24%) compared to the indirect landscape (~8%). Likewise, 

reciprocal sign epistasis was twice as high in the direct landscape (~6%) as compared to 

the indirect landscape (~3%). We found that given the high prevalence of pairwise 

epistasis in the direct landscape, it was more rugged (0.35) as compared to the indirect 

pathway landscape (0.14). Therefore, although epistatic interactions may be more 
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prevalent in the direct landscape making it more rugged, as compared to the indirect, the 

severity of epistasis increases with higher dimensionality in the indirect landscape. 

Reciprocal Sign Epistasis in a Structurally Important Base Pair 

The base-pairing within RNA structures is expected to be a common source of 

epistatic interactions (28). As an illustrative example, we will describe the consequence 

of breaking and reforming a base pair through direct and indirect pathways in our data. 

First, reciprocal sign epistasis was observed between peak 1 and peak 2 in the direct 

pathway landscape. The two peaks are isolated from each other by two mutations that 

break and then repair a canonical Watson-Crick base pair. Peak 1 utilizes a C-G base pair 

in the terminal 3’ stem at positions 86 and 52, while peak 2 utilizes a G-C base pair at 

these positions (Fig. 2.2c). The two direct intermediates between the peaks break the base 

pair interaction and cause a decrease in relative fitness (Fig. 2.2d). Using indirect 

pathways, the number of genotypes between peak 1 and peak 2 increases from 2 to 14 

and the number of unique pathways increases from 2! = 2 to 4! = 24. The indirect 

pathways contain four new genotypes that are greater than the fitness of peak 1 (Fig. 

2.2d). The four new high-fitness genotypes contain either a canonical A-U base pair or a 

G-U wobble base pair and therefore retain the stem structure. The four genotypes appear 

to form a bridge between the two isolated peaks, however it should be noted that a 

downward step in fitness is still required in order to reach peak 2. The four genotypes in 

the direct landscape form a single mutation pair or square and the magnitude of epistasis 

within this square was calculated to be ~2.7 (Fig. 2.2e). The addition of 12 new 

genotypes available on the indirect pathways resulted in 71 new mutation pairs with a 

wide range of epistatic values all of which are less severe than in the direct landscape. 
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Therefore, the downward step that is required to reach peak 2 does not have to be as 

detrimental in the indirect landscape as compared to the direct landscape. This premise is 

emphasized in the local fitness landscape of peak 1 (Fig. 2.2f). Using direct pathways 

there exist only a pair of two-mutation pathways to higher fitness, as compared to 7 in the 

indirect landscape. 

However, it is important to note that not all base pair interactions exhibited 

predictable reciprocal sign epistasis that could be alleviated by indirect pathways. Using a 

different base pair on the terminal 3’ stem of the ribozyme at position 83 and 55 we see 

that the direct pathways exhibits only simple sign epistasis and not reciprocal sign 

epistasis (Figure 2.2-figure supplement 2). In this example, indirect pathways find a new 

local peak (U-A) with pathways that contain reciprocal sign epistasis. 

Higher Dimensionality Hindered More Than Facilitated Adaptation 

Stochastic evolutionary modeling offers novel insight into the navigability of 

genotype space. Modeling of evolution is computationally expensive and difficult to 

implement and therefore receives less attention in fitness landscape studies. However, as 

compared to static pathway analyses, evolutionary simulations are an improved 

representation of evolution in nature. This is due in part to the ability of simulated 

populations to traverse fitness valleys according to the valley depth and severity of 

epistatic interaction. We employed a Wright-Fisher model (29) to simulate populations of 

RNA molecules evolving on the direct and indirect pathway landscapes. We maintained a 

fixed population size, a fixed mutation rate, and allowed selection to be guided by the 

differences in the relative ligation fitness of the neighboring genotypes. We identified 84 

genotypes that were present in the direct and indirect landscapes that had a relative 
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ligation fitness 0.01. Using each one of these genotypes as starting points for a 

population of RNA molecules, we simulated adaptive evolution on either the direct 

pathway landscape or the indirect pathway landscape for 1,000 generations. Simulations 

were replicated 100 times for each starting genotype. During the simulation several 

metrics were tracked and recorded including, final fitness, final diversity, number of 

beneficial and deleterious mutations encountered, beneficial substitutions and the number 

of unique genotypes explored. 

In order to evaluate the rate of adaptation during simulations on the different 

landscapes, we recorded the mean population fitness of the population at each generation. 

Both the final fitness achieved at 1000 generations as well as the rate that the average 

fitness increases are metrics of how easily the population achieves higher fitness. By 

comparing these average fitness values from both landscapes, we can evaluate whether 

indirect pathways facilitate or hinder adaptation (Fig. 2.3a). We found that, on average, 

evolutionary adaptation in ~38% of genotypes were hindered or slowed by higher 

dimensionality in the indirect landscape. For ~45% of genotypes adaption saw no 

significant difference between direct and indirect pathways. Only ~17% of genotypes 

significantly improved adaptation as a result of using indirect pathways. The mean 

population fitness that encompassed the average of the 100 replicates, indicated that 

adaptation occurred rapidly on both landscapes and revealed several periods where the 

population plateaus at a specific fitness (Fig. 2.3a, b). For the direct landscape these 

plateaus in adaptation corresponded to the two fitness peaks in the landscape (~1.8 and 

~2.5). However, in the indirect landscape we saw several plateaus at lower levels of 

fitness. These plateaus corresponded to new fitness peaks in the indirect landscape that 
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are isolated by reciprocal sign epistasis. These stasis peaks impeded adaptation and 

prevented simulated populations from attaining higher fitness. This was displayed when 

following the mean population fitness for each replicate from a single starting genotype 

on the direct and indirect landscapes (Fig. 2.3c). 79 out of 100 replicates were able to 

obtain the summit (fitness2.5) on the direct landscape. However, none of the 100 

replicates starting from the same genotype on the indirect landscape were able to reach a 

fitness 2. Most (90%) of the replicates were isolated on a low-fitness stasis peak with 

reciprocal sign epistasis (Figure 2.3-figure supplement 1). Similar trends can be seen for 

each of the starting 84 genotypes by examining the final population fitness distributions 

on the direct (orange-red) and indirect (green-blue) landscapes (Fig. 2.3d). Of the 84 

starting genotypes for our simulations, 32 genotypes on average obtained higher fitness 

using only direct pathways, 38 genotypes showed no significant difference and only 14 

genotypes were significantly improved by the use of indirect pathways (Figure 2.3-figure 

supplement 2). 

To validate that the observed slower adaptation in the indirect landscape was 

interconnected to the cases of higher epistasis severity, we developed a simple simulation 

model that challenged populations to ‘escape’ from a sub-optimal peak isolated by 

reciprocal sign epistasis (Figure 2.3-figure supplement 7). We found a predominant trend 

that as the magnitude of the epistatic interaction increased, the amount of successful 

escapes from the sub-optimal peak decreased. This was especially true as the epistatic 

values transition from 3 to 4. Interestingly, for the populations that did escape, there 

existed no correlation between epistatic value and the generation of escape. This validates 

the stochastic nature of the simulations. Importantly, the squares with high epistatic 
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values are still possible to successfully escape, however as expected the success rate is 

significantly lower than those with lesser epistatic values. 

Valley Library Epistasis and Evolutionary Simulations 

Given the vastness of genotype space and the complex structure of ribozymes, it 

can be expected that a significant portion of sequence space is dominated by low-fitness 

genotypes. Therefore, from an evolutionary standpoint, the majority of evolutionary 

exploration by natural selection is through low-fitness valleys. To determine the effects 

of higher dimensionality in a region of sequence space with only low-fitness genotypes, a 

second library containing a direct and indirect landscape was designed (Fig. 2.4a). These 

two landscapes were equal in size and complexity to the previously discussed direct and 

indirect landscapes in the Peak library. The direct landscape in the Valley and Peak 

libraries start from the same reference genotype and overlap for 16 genotypes (Fig. 2.4b). 

We obtained relative ligation measurements for all 16,384 genotypes contained in the 

Valley library. The direct pathway landscape contained only a single low-fitness peak 

(fitness=0.08), while the indirect pathway landscape encompassed a total of 68 peaks, 

with a global peak or summit of fitness=0.12 (Fig. 2.4c, Table 2.1). As expected both 

landscapes are composed of very low-fitness genotypes with only 5 genotypes in the 

direct landscape and 53 genotypes in the indirect landscape with a relative ligation fitness 

>0.01 or 1% of wild-type (Figure 2.1-figure supplement 1). 

Examining the pairwise epistasis in each landscape revealed that, similar to the 

Peak library, epistasis was proportionally more prevalent in the direct landscape (~88% 

of squares), as compared to the indirect landscape (~69%, Table 2.1, Figure 2.2-figure 

supplement 1). Magnitude epistasis was the most prevalent occurring in ~68% and ~50% 
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of squares in the direct and indirect landscapes, respectively. Simple sign epistasis was 

also slightly more proportionally prevalent in the direct landscape (~17% vs ~13%). 

However, reciprocal sign epistasis was approximately twice as prevalent in the indirect 

landscape (~6% vs ~3%). This resulted in the two landscapes having approximately the 

same amount of ruggedness (0.23-0.24). Interestingly, we found that a significantly lower 

proportion of genotypes in the direct landscape had mutational access to the summit 

genotype using a pathway with increasingly higher fitness (~23%). This number is 

significantly increased when using indirect pathways (~91%). Similar to the Peak library, 

the distributions of epistasis severity were similar in the direct and indirect landscapes, 

with the majority of epistatic interaction being of low severity (Fig. 2.4d). However, 

similar to the Peak library, more severe epistasis was encountered in the indirect pathway 

landscape (max~4) than the direct pathway landscape (max~2). 

Simulating adaptive evolution on the direct and indirect landscapes of the Valley 

library yielded similar results to the direct and indirect landscapes in the Peak library. All 

simulations on the direct landscape attained the summit within the first 100 generations 

of evolution (Fig. 2.4e). This is particularly interesting because only ~23% of genotypes 

had mutational access to the summit using only beneficial mutations, therefore fitness 

valleys were easily traversed during the simulations. Adaptation was enhanced by 

indirect pathways in many instances, however for several starting genotypes simulated 

populations were hindered by sub-optimal peaks isolated by epistatic interactions (Figure 

2.3-figure supplement 2). As expected and similar to the Peak library, we also found 

higher amounts of final population diversity, beneficial mutations, deleterious mutations 



54 

 

and unique genotypes explored in the indirect landscape as compared to the direct 

landscape (Figure 2.3-figure supplement 3-6). 

Discussion 

Using empirical data, we constructed RNA fitness landscapes that encompass 

direct and indirect pathways of adaption. By simulating adaptive evolution on these 

landscapes, we found that indirect pathways can facilitate adaptation, however they can 

also significantly hinder it. Similar to protein fitness landscapes, we found regions where 

‘extra-dimensional bypass’ using indirect pathways allowed for escape from isolated 

peaks (13). However, unlike protein, due to increased epistatic severity along indirect 

pathways, many populations were precluded from further evolutionary exploration and 

thus never attained the landscape summit. These sub-optimal stasis genotypes were 

caused by epistatic interactions, which were found to be prevalent in both landscapes. 

Epistasis has long been shown to have significant impacts on the ruggedness and 

navigability of fitness landscapes (18–20,23). Negative epistasis, where the combination 

of two mutations results in a lower fitness than expected from the effect of each 

individual mutation is prevalent in RNA fitness landscapes (30). Without epistasis, 

fitness landscapes would be smooth, only contain a single peak and would be easily 

traversed by evolutionary exploration. However, epistasis increases landscape ruggedness 

and results in multi-peak landscapes with several local fitness maximums (3,19,21). Our 

analysis was limited to only pairwise epistatic interactions, however it has been shown 

that the magnitude or severity of epistasis is shown to significantly alter evolutionary 

trajectories or pathways much more than the order of epistasis (31). The number of peaks 

in a landscape is linked to reciprocal sign epistasis and directly affects the potential for 
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evolutionary adaptation (22,32). The indirect landscapes in this study encompassed 

significantly more peaks compared to the direct landscapes. Indirect pathways not only 

introduced numerous novel pathways but also resulted in many new high fitness 

genotypes, some of which represented new peaks. The number of peaks in a landscape is 

a strong metric of its navigability (23). The findings of our study agree that the more 

peaks present in a landscape the less navigable it becomes. 

The differences observed between RNA and protein fitness landscapes might be 

explained due to the different approaches used to assess adaptive evolution. Previous 

work in protein limited adaptation to sequential steps of single mutations of increasing 

fitness (13). This metric is similar to the approach taken in our study wherein the number 

of genotypes with accessible mutational pathways to the summit was assessed for each 

landscape. Although this metric can contribute to evolutionary potential, it makes one 

important assumption: evolution cannot cross fitness valleys. However, studies have 

shown that recombination and genetic drift allow for evolution to traverse fitness valleys 

(18,33,34). In fact, it has been shown in digital organisms that deleterious mutations can 

play an important role in adaptive evolution (35). By using a Wright-Fisher model to 

simulate adaptive evolution, we allow for fitness valleys to be crossed according to the 

valley depth and the severity of the epistatic interaction. This results in a dynamic 

evolutionary model that better represents the accessibility of mutational pathways in 

empirical fitness landscapes. The differences in the structural nature of protein and RNA 

might also contribute to the differences observed. Constraints caused by base pairing of 

RNA nucleotides produce structural epistasis which exhibit deep fitness valleys (28). The 

globular structure of proteins causes less pairwise structural interactions. It’s also 
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important to note that the number of pathways present in protein landscapes are 

significantly larger due to expanded mutational options. For example, when examining a 

single mutational pair, for both protein and RNA, the direct landscape consists of four 

(22) genotypes, where each genotype has two connections (Fig. 2.2.1a). However, in the 

indirect pathway landscapes, the network for RNA consists of 16 (42) genotypes as 

compared to 400 (202) genotypes for protein. The number of mutational connections for 

each genotype scales accordingly as well (RNA=6, protein=38). Therefore, it is possible 

that indirect pathways offer greater connectivity and thus facilitate evolution better in 

protein than in RNA fitness landscapes. 

Our study suggests that increased dimensionality using indirect pathways in RNA 

fitness landscapes has the potential to circumvent fitness valleys, however indirect 

pathways might also harbor stasis genotypes isolated by reciprocal sign epistasis. Testing 

the law of parsimony, we found that indirect pathways can contribute significantly to the 

ruggedness and navigability of a local fitness landscape. It is important to note that these 

genotypes are only isolated within the scale of the fitness landscape studied. Our study 

only investigated seven mutational nucleotides, however the true dimensionality of a 

fitness landscape is much more complex and scales with length. Therefore, it is possible 

that a large RNA molecule might be able to circumvent all stasis genotypes and avoid 

evolutionary stasis (11,36). However, a recent comprehensive fitness landscape for a 

small RNA (length=24) found that fitness peaks were largely isolated from one another 

(36). We also found that higher dimensionality had similar effects in regions of high-

fitness (Peak) or low-fitness (Valley). In conclusion, we found that higher dimensionality 
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in empirical RNA fitness landscapes can allow for escape from epistatic traps, however it 

can also constrain evolution by the introduction of more severe epistasis. 

Materials and Methods 

Direct and Indirect Landscape Design 

For our experiments, we used a previously developed assay to assess the relative 

ligation of a synthetic class III ligase ribozyme (Chapter 1). This ribozyme was first 

isolated from a large pool of random sequences using in vitro selection and yields a 2’,5’-

phosphodiester bond by means of a terminal 2’ hydroxyl attack on the 5’ triphosphate of 

another RNA molecule (25). This causes displacement of the pyrophosphate and ligates 

the two RNA molecules together. The genotype network of this ribozyme was previously 

shown to intersect with a self-cleaving ribozyme network resulting in the identification of 

a single ‘intersection’ sequence that had the ability to both self-ligate and self-cleave 

(26). Using this ‘intersection’ sequence as a reference sequence, we identified 7 

nucleotides (mut) that were different than the ‘prototype’ sequence initially isolated. 

Aligning these two sequences, we designed the direct library to encompass only the two 

nucleotides (n=2) present in either the ‘intersection’ sequence or the ‘prototype’ 

sequence. Therefore, they represent the most direct, parsimonious pathways from the 

‘intersection’ to the ‘prototype’ sequence. This direct pathway landscape consists of 128 

(𝑛𝑚𝑢𝑡 = 27) unique genotypes and ~5,000 ((𝑛 − 1) × (𝑚𝑢𝑡))! = (2 − 1) × (7))!) 

unique pathways from the ‘intersection’ to the ‘prototype’ sequence. The indirect 

pathway landscape encompasses the same 7 mutational nucleotides, however at each 

location all four nucleotide options (A, C, U, G) are allowed (n=4). This results in a 

significantly bigger library with 16,384 (47) unique genotypes and billions ((4 − 1) ×
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(7))!)) of unique pathways. A region of the direct pathway landscape was previously 

characterized and was shown to contain a high fitness peak (Chapter 1); therefore, this 

landscape was called the Peak landscape (Fig. 2.2.1b). Library construction was 

accomplished by chemically synthesizing a degenerate DNA oligonucleotide that would 

serve as a template for in vitro transcription. A conserved sequence was added to the 3’-

end of the library to serve as a universal primer binding site for reverse transcription (37). 

A single DNA library was synthesized that consisted of both the direct and indirect 

pathways. A similar approach was used in a different region that was expected to have 

only relatively low fitness genotypes. The intersection sequence was once again used as a 

reference sequence and a direct landscape and indirect landscape were designed. Due to 

the expected low fitness genotypes of the region, this landscape was called the Valley 

landscape (Fig. 2.4a). 

Ligation Assay 

The assay used to assess relative ligation was previously described (Chapter 1). In 

brief, the Peak and Valley libraries were ordered as ssDNA ultramers and were used for 

in vitro transcription of the ribozyme mutants. 20 picomoles of each ultramer library was 

annealed to a T7 primer by brief heating in 10 µL water. The template was then 

transcribed with rNTP (25mM, NEB), MEGAshortscript T7 Reaction Buffer (10X, 

Thermo Fisher) and MEGAshortscript T7 RNA Polymerase (Thermo Fisher) at 37 C for 

2 hours. The DNA was then degraded by DNase treatment, and the RNA was purified 

and normalized to 5µM. 25 picomoles of the RNA were then placed in 200mM Tris pH 

7.5 and heated and cooled. 500 picomoles of ligation substrate were then added with 

MgCl2 (50mM). The mixture was then incubated for 2 hours at 37 C. The ligation 
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reaction was then reverse transcribed using SMARTscribe Reverse Transcriptase (10 

units, Clontech) by incubating at 42 C for 90 mins. The reaction was stopped and the 

RNA was degraded by heating the sample. To selectively amplify the cDNA that 

successfully performed the ligation reaction, a mix of phased insert selective PCR 

primers were used (Chapter 1). The PCR reaction consisted of purified cDNA, KAPA 

HiFi HotStart ReadyMix (2X, KAPA Biosystems), phased insert selective ligation 

primers, and reverse transcription primer. To prevent PCR bias, multiple cycles of PCR 

were assessed using gel electrophoresis and an appropriate cycle was chosen that was still 

in linear growth. The selective PCR product was then purified. To determine the pre-

selection starting abundance of each genotype, a portion of each sample was reverse 

transcribed using the template switching capabilities of SMARTscribe reverse 

transcriptase. In preparation for high-throughput sequencing, Illumina adapter sequences 

were added to the cDNA using low-cycle PCR. Each library was done entirely in 

triplicate yielding a total of twelve samples (3 Peak pre-selection, 3 Peak post-selection, 

3 Valley pre-selection, 3 Valley post-selection). Each sample was assigned a unique 

Illumina adapter barcode that was added during the adapter PCR. 

High-Throughput Sequencing  

In preparation for high-throughput sequencing the twelve samples, each with 

unique Illumina adapter barcodes were pooled and sent to the University of Oregon 

Genomics and Cell Characterization Core Facility. The samples were sequenced using 

Illumina HiSeq 4000 Single End 150 with 25% PhiX addition. This generated ~241 

million reads (Cluster PF Yield) between the twelve samples with a mean quality score of 

39.5. 
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Sequencing Data Analysis 

The high-throughput sequencing was analyzed using custom Python scripts. The 

scripts identified the conserved 3’ sequence, determined if the sequence was ligated or 

unligated and extracted the sequence at the 7 mutational nucleotides to identify the read 

genotype. This process was repeated for each of the three replicates. A genotype was 

considered to be a part of the ligase genotype network only if it was detected as ligated in 

all three replicates and had a catalytic rate above the uncatalyzed ligation rate (38,39). 

The three replicates for pre-selection and post-selection for each library (Peak or Valley) 

were then correlated with each other to verify accurate and precise measurements (Figure 

2.1-supplement figure 2). 

The level of enrichment between the pre-selection and the post-selection samples 

(Figure 2.1-supplement figure 1) was used to determine the relative ligation fitness for 

each genotype. The relative abundance of each genotype was normalized by dividing the 

read count for each genotype by the total number of sequencing reads in that sample. The 

level of enrichment was calculated by dividing the relative abundance of a genotype in 

the post-selection sample by the relative abundance in the pre-selection sample. We 

observed detectable ligase activity for all 16,384 genotypes in the Peak and Valley 

landscapes. 

Empirical Fitness Landscape Construction and Characterization 

The highly complex nature of the genotype networks presented here are difficult 

to visually interpret and assess. Therefore, to aid in visualization, three-dimensional 

fitness landscapes were constructed for both the direct and indirect pathways in the Peak 

(Fig. 2.2a) and Valley (Fig. 2.4b) landscapes. Due to the fact that the direct pathways are 
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encompassed within the indirect pathway landscape, we first used custom Python scripts 

to isolate the 128 genotypes from the sequencing libraries that correspond to the direct 

pathway landscapes. We then determined all of the edges within the genotypes in the 

direct and indirect pathway landscapes. An edge connects two genotypes (nodes) that can 

be interconverted by a single mutation. The corresponding fitness landscapes were then 

constructed using Gephi software (40), with ForceAtlas 2 used as the layout to 

approximate genotype repulsion using a Barnes-Hut calculation. The z-axis was 

generated using the Network Splitter 3D plugin and indicates the relative ligation fitness. 

To characterize the highly complex fitness landscapes we used custom Python 

scripts and the Genonets Server (27). Genonets allows for in-depth analysis of genotype 

networks including peak, summit, robustness, and epistasis calculations. The epistasis 

calculation includes the assessment and categorizing of every square present in the 

network. A square represents a pair of mutations and consists of a total of 4 genotypes. 

For example, the simple network presented in Figure 1a direct represents a single square. 

There exist 672 squares in the direct pathway landscapes and 774,144 in the indirect 

pathway landscapes. Each square is categorized as either containing magnitude epistasis, 

simple sign epistasis, reciprocal sign epistasis or no epistasis depending on the sign of the 

individual mutations and of the combination of the mutations (23). For each class of 

epistasis, the proportion of all squares belonging to that class was determined. This 

allowed for a thorough assessment of the prevalence of each class of epistasis in the 

direct and indirect pathway landscapes. Using the prevalence of pairwise epistasis we 

calculated an estimate of fitness landscape ruggedness as fsign+2freciprocal, where ftype 

indicates the fraction of all the squares that fell into each epistasis class (13). However, 
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because not all epistatic interactions are equal in their severity, we used custom Python 

scripts to calculate the magnitude of each epistatic interaction. Epistatic values for each 

square of mutation pairs was calculated as ε = log10 (WAB*Wwt / WA*WB), where WA and 

WB are the fitness of RNA variants with a single mutation, WAB is the fitness of the 

variant with both mutations, and Wwt is the fitness of the wild-type. In this case, the wild-

type indicates the variant in the square with no mutations. The distribution of epistatic 

magnitudes was then determined for the direct and indirect pathway landscapes (Fig. 

2.2b, Fig. 2.4d). 

Simulated Adaptive Evolution on Empirical Fitness Landscapes 

In order to simulate the adaptive evolution of populations of RNA molecules on 

the fitness landscapes, we used previously custom Python scripts that were previously 

described (Chapter 1). In brief, the simulation models evolution based on the Wright-

Fisher approach (18,29). Each simulation begins with 1000 individuals of the same 

genotype. Each generation of the simulation, a new population of 1000 individuals was 

populated. The genotypes of the new population were the result of stochasticity 

(introduced by random number generation) and dependent on the relative fitness of the 

parent genotype. First, a genotype was randomly chosen form the parent population. The 

fitness of the genotype was normalized (0-1) and then ‘competed’ against a randomly 

selected value between 0 and 1. If the parent genotype fitness was lower than the random 

value, the genotype was not placed in the offspring population. If the parent genotype 

fitness was greater than or equal to the random value, it was placed in the offspring 

population. The genotype in the offspring population then had chance to mutate at a 

randomly determined nucleotide. The probability of a single mutation occurring was 
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dependent on a predetermined mutation rate. For our simulations we used a constant 

mutation rate (µ) of 0.01. This process of survival and potential mutation was repeated 

until the offspring population consisted of 1000 individuals. This constituted a single 

generation and the simulation was repeated for 1000 generations. As starting genotypes 

for simulated evolution on the Peak landscape we selected the 84 genotypes on the direct 

pathway landscape with relative fitness 0.01. As starting genotypes for simulated 

evolution on the Valley landscape we selected the 75 genotypes on the direct pathway 

landscape with relative fitness 0.0001. The simulation was started from each genotype 

and ran on both the direct and indirect pathway landscapes for 100 replicates each. The 

mean population fitness for each 100 replicates for each starting genotype were averaged 

and plotted as a function of generational time (Fig. 2.3a, b, Fig. 2.4e). For each 

simulation several metrics were tracked and recorded, namely: final fitness (Fig. 2.3c, d), 

final diversity, number of beneficial, and deleterious mutations encountered, beneficial 

substitutions and the number of unique genotypes explored (Figure 2.3-figure supplement 

2-6). 

To validate the consequences of epistatic interactions on adaptive evolution, we 

also developed a model that demonstrates the difficulty of ‘escaping’ from highly 

epistatic genotypes. The model consists of a single square of mutation pairs, resulting in a 

total of four genotypes. The wild-type sequence is held constant with a fitness (Wwt) of 1. 

The two variants with a single mutant (A, B) were varied from a fitness (WA, WB) of 0.1 

to 1. The variant with two mutations (AB) was varied from a fitness (WAB) of 1 to 10. 

Therefore, AB was the optimal peak in the square. This generated 4,756 unique fitness 

combinations and a wide distribution of epistatic values (Figure 2.3-figure supplement 7), 



64 

 

calculated using ε = log10 (WAB*Wwt / WA*WB). Each square indicates a case of reciprocal 

sign epistasis. Simulating adaptive evolution on each square begins with a population of 

1000 individuals on the wild-type genotype. The evolutionary simulation then proceeded 

as previously described. The simulation continued for up to 100 generations or until 50% 

of the population had successfully traversed the intermediate valley and made it to the 

optimal peak. If the population made it to the optimal peak within the 100 generations, 

the generation of successful ‘escape’ was recorded. This was repeated for 100 replicates 

of each square. The average number of generations to escape was then plotted as a 

function of the epistasis value calculated for that square (Figure 2.3-figure supplement 7).  
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Figure 2.1: Direct and indirect pathways in an empirical RNA fitness landscape.  

(a) Example of direct (orange) and indirect (blue) pathways leading from a single 

genotype ‘AA’ to ‘GG’. Nodes represent a unique genotype and edges connect nodes that 

differ by a single mutation. (b) Secondary structure of ligase ribozyme depicting the 

library design for the Peak library. Nucleotides in orange indicate the direct parsimonious 

nucleotide mutations included in the direct landscape. The indirect landscape contains all 

four nucleotides (A, C, U, G) at these mutations. (c) The genotype network of the direct 

(left) and indirect (right) landscapes of the Peak library are depicted. Node size and color 

indicate the relative ligation fitness.  
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Figure 2.2: Characterization of epistasis in direct and indirect pathways in the 

Peak library fitness landscape. 

(a) Three-dimensional fitness landscapes depicting the direct and indirect pathway 

landscapes in the Peak library. Nodes represent a single genotype and edges connect 

nodes that differ by a single mutation. The height of the node represents the relative 

ligase fitness. (b) Distribution of epistatic values for pairs of mutations in the direct 

(orange) and indirect (blue) landscapes. Epistatic values were calculated as ε = log10 

(WAB*Wwt / WA*WB), where WA and WB are the fitness of RNA variants with a 

single mutation, WAB is the fitness of the variant with both mutations, and Wwt is the 

fitness of the wild-type. (c) Secondary structure of the ligase ribozyme indicating the 

genetic background and nucleotides that are mutated between peak 1 and peak 2 in the 

direct landscape. (d) An example of reciprocal sign epistasis between the two peaks in the 

direct library. The height and size of each node represents relative ligation fitness. Nodes 

in the direct landscape are orange-red and nodes unique to the indirect landscape are 

green-blue. The nucleotides above each node indicate the two nucleotides present at 

position 86 and 52. (e) Distribution of epistatic values for pairs of mutation in the 

subgraph presented in panel d. Direct values are depicted in orange and indirect in blue. 

(f) Local fitness landscapes of peak 1 in the direct landscape. The fitness of the peak 

genotype is plotted at mutations=0 and marked with a dashed line. Lines depict the two-

mutation pathways (orange=direct, blue=indirect) away from this genotype. The number 

on each graph represents the total number of two-mutation pathways that lead to higher 

fitness.   
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Figure 2.3: Computational simulation of adaptive evolution on the direct and 

indirect landscapes in the Peak library.  

(a) Average rates for multiple evolutionary simulations starting from the 84 starting 

genotypes in the direct landscape with fitness <0.01. Each trace represents a different 

starting genotype and shows the mean fitness of 100 simulations plotted as a function of 

generation time. 100 simulations were performed on the direct (orange) or indirect (blue) 

pathway landscapes for each starting genotype. (b) Enhanced view of the first 50 

generations of adaptive evolution from panel a. (c) Rates of adaptation on the direct and 

indirect landscapes starting from a single starting genotype. Each trace shows the average 

population fitness as a function of generation time for a separate simulation consisting of 

1000 individuals. Numbers indicate the number of overlapped simulations. (d) Final 

population fitness following 1000 generations of adaptive evolution on the direct 

(orange-red) and indirect (blue-green) landscapes starting from the 84 starting genotypes 

in the direct landscape with fitness <0.01. Each plot represents the distribution of 100 

replicates. The distributions are ordered by the mean final fitness on the direct landscape 

and the corresponding simulations on the indirect landscape are shown directly below.   
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Figure 2.4: Valley library fitness landscape characterization.  

(a) Secondary structure of ligase ribozyme depicting the library design for the Valley 

library. Nucleotides in orange indicate the direct parsimonious nucleotide mutations 

included in the direct landscape. The indirect landscape contains all four nucleotides (A, 

C, U, G) at these mutations. (b) Three-dimensional fitness landscape depicting the direct 

landscapes from the Peak (grey) and Valley (orange) library. Each node indicates a 

unique genotype and the edges connect genotypes that are one mutation apart. (c) Three-

dimensional landscapes depicting the direct and indirect pathway landscapes in the Valley 

library. Nodes represent a single genotype and edges connect nodes that differ by a single 

mutation. The height of the node represents the relative ligase fitness. (d) Distribution of 

epistatic values for pairs of mutations in the direct (orange) and indirect (blue) 

landscapes. Epistatic values were calculated as ε = log10 (WAB*Wwt / WA*WB), where WA 

and WB are the fitness of RNA variants with a single mutation, WAB is the fitness of the 

variant with both mutations, and Wwt is the fitness of the wild-type. (e) Average rates for 

multiple evolutionary simulations starting from the 75 starting genotypes in the direct 

landscape with fitness <0.0001. Each trace represents a different starting genotype and 

shows the mean fitness of 100 simulations plotted as a function of generation time. 100 

simulations were performed on the direct (orange) or indirect (blue) pathway landscapes 

for each starting genotype.   
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Supporting Information 

Table 2.1 Genotype network analysis of direct and indirect fitness landscapes 

 

 
Figure 2.1-supplement figure 1: Distribution of relative ligation fitnesses for the 

Peak and Valley libraries.  

The distributions of relative fitness in the direct (orange) and indirect (blue) pathway 

landscapes are plotted as histograms with the kernel density estimate on the y-axis and 

the log10 fitness on the x-axis. The dashed black line indicates wild-type fitness.  

Direct Indirect Direct Indirect

peaks 2 20 1 68

genotype network sizes 128 16384 128 16384

genotypes accessible to summit 86 (67%) 11320 (69%) 29 (23%) 14991 (91%)

number of squares 672 774144 672 774144

magnitude epistasis 62.1% 51.6% 67.6% 50.3%

simple sign epistasis 23.7% 8.2% 16.7% 13.1%

reciprocal sign epistasis 5.5% 2.8% 3.3% 5.7%

total epistasis 91.2% 62.6% 87.5% 69.1%

ruggedness 0.346718 0.13749 0.232 0.244634

Peak Library Valley Library
Genotype Network Analysis
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Figure 2.1-figure supplement 2: Correlation of high-throughput sequencing 

replicates for the Peak and Valley libraries.  

Correlation of sequencing reads for pre-selection and post-selection for three replicates. 

Each figure displays all 16,384 genotypes and indicates the frequency that a specific 

genotype was observed in a particular replicate (x-axis) vs. another replicate (y-axis). 

Sequence kernel density estimation is also displayed for each replicate in the jointplot. 

The number of reads on the x and y-axis are log10 transformed.  
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Figure 2.2-supplement figure 1: Prevalence of pairwise epistasis in direct and 

indirect pathway landscapes.  

Examples of magnitude, simple sign and reciprocal sign epistasis, with the relative 

prevalence of these classes of epistasis in the direct (orange) and indirect (blue) 

landscapes of the Peak and Valley libraries. The y-axis indicates the proportion of all 

squares (mutational pairs) that correspond to each epistasis class. 

 
Figure 2.2-figure supplement 2: Epistasis in the base pair of terminal 3’ stem of 

the ligase ribozyme.  
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(a) Secondary structure of the ligase ribozyme indicating the nucleotides and genetic 

background involved in the direct and indirect pathway landscape. (b) Local fitness 

landscape of a base pair. The height and size of each node represents relative ligation 

fitness. The nucleotides above each node indicate the two nucleotides present at position 

83 and 55. 

 

 
Figure 2.3-figure supplement 1: Local fitness landscapes of stasis peak genotypes 

in the indirect landscape.  

The fitness of the stasis peak genotype is plotted at mutations=0 and marked with a 

dashed line. Lines depict the two-mutation pathways away from this genotype. Titles of 

each subplot indicate the seven-nucleotide genotype of the stasis peak. The number on 

each subplot indicates the number of two-mutation paths to higher fitness from the stasis 

peak.  
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Figure 2.3-figure supplement 2  Mean population final fitness following adaptive 

evolution on direct and indirect pathway landscapes.  

Final population fitness following 1000 generations of adaptive evolution on the direct 

(orange-red) and indirect (blue-green) landscapes of the Peak and Valley library. Each 

plot represents the distribution of 100 replicates of simulated evolution for each unique 

starting genotype. The distributions are ordered by the mean final fitness on the direct 

landscape and the corresponding simulations on the indirect landscape are shown directly 

below. The correlation of mean final fitness values from the direct and indirect 

landscapes for each of the starting points is also depicted.  
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Figure 2.3-figure supplement 3: Mean population final diversity following 

adaptive evolution on direct and indirect pathway landscapes.  

Final population diversity following 1000 generations of adaptive evolution on the direct 

(orange-red) and indirect (blue-green) landscapes of the Peak and Valley library. Each 

plot represents the distribution of 100 replicates of simulated evolution for each unique 

starting genotype. The distributions are ordered by the mean final fitness on the direct 

landscape and the corresponding simulations on the indirect landscape are shown directly 

below. The correlation of mean final diversity values from the direct and indirect 

landscapes for each of the starting points is also depicted.  
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Figure 2.3-figure supplement 4: Mean beneficial mutations following adaptive 

evolution on direct and indirect pathway landscapes.  

Mean beneficial mutations following 1000 generations of adaptive evolution on the direct 

(orange-red) and indirect (blue-green) landscapes of the Peak and Valley library. Each 

plot represents the distribution of 100 replicates of simulated evolution for each unique 

starting genotype. The distributions are ordered by the mean final fitness on the direct 

landscape and the corresponding simulations on the indirect landscape are shown directly 

below. The correlation of mean beneficial mutation values from the direct and indirect 

landscapes for each of the starting points is also depicted.  
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Figure 2.3-figure supplement 5: Mean deleterious mutations following adaptive 

evolution on direct and indirect pathway landscapes.  

Mean deleterious mutations following 1000 generations of adaptive evolution on the 

direct (orange-red) and indirect (blue-green) landscapes of the Peak and Valley library. 

Each plot represents the distribution of 100 replicates of simulated evolution for each 

unique starting genotype. The distributions are ordered by the mean final fitness on the 

direct landscape and the corresponding simulations on the indirect landscape are shown 

directly below. The correlation of mean deleterious mutation values from the direct and 

indirect landscapes for each of the starting points is also depicted.  
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Figure 2.3-figure supplement 6: Unique genotypes explored during adaptive 

evolution on direct and indirect pathway landscapes.  

The number of unique genotypes explored during 1000 generations of adaptive evolution 

on the direct (orange-red) and indirect (blue-green) landscapes of the Peak and Valley 

library. Each plot represents the distribution of 100 replicates of simulated evolution for 

each unique starting genotype. The distributions are ordered by the mean final fitness on 

the direct landscape and the corresponding simulations on the indirect landscape are 

shown directly below. The correlation of the number of unique genotypes explored from 

the direct and indirect landscapes for each of the starting points is also depicted.  
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Figure 2.3-figure supplement 7: Escape from stasis genotypes isolated by 

reciprocal sign epistasis.  

(a) Model depicting the mutational pairs (squares) that are used in the simulated 

evolution. The wild-type (WT) sequence had a constant fitness=1, while the fitness of 

single mutant genotypes A and B fluctuated between 0 and 1. The fitness of the double 

mutant (AB) fluctuated between 1 and 10. (b) Top graph depicts the distribution of 

epistatic values explored during the simulations. Middle graph depicts the total number of 

‘successful’ escapes from the stasis genotype (WT) out of 100 replicates as a function of 

epistasis magnitude. Bottom graph displays the generation of each ‘successful’ escape. 
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Abstract 

Phylogenetic analyses combined with ancestral sequence reconstruction and a 

high-throughput mutational assay can resurrect a phylogenetic fitness landscape. By 

predicting, ‘resurrecting’ and functionally characterizing ancient gene sequences, 

hypotheses about gene function or selection can be empirically tested in an evolutionary 

context. Recent advances in DNA synthesis and next-generation sequencing allow for the 

high-throughput assessment of activity for thousands of sequence variants. Here, we 

report an experimentally resurrected and reconstructed phylogenetic fitness landscape for 

the naturally occurring CPEB3 self-cleaving RNA enzyme (ribozyme). This ribozyme is 

highly-conserved in mammals and has been associated with episodic memory. We found 

that a single high-activity ancestral sequence was highly conserved and purifying 

selection is expected to have reduced the accumulation of mutations through geologic 

time. Many of the extant mammalian ribozyme sequences had high ribozyme activity, 

however a few had relatively low activity. Yet, given the local fitness landscape, a 

selective pressure for functional ribozyme sequences was seen. We showed that the 
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single nucleotide polymorphism (SNP) found in humans reduced co-transcriptional 

ribozyme activity in vitro and might alter our understanding of the CPEB3 ribozyme’s 

biological function. 

Introduction 

Phylogenetic analyses of genes or gene products (RNA, protein) yield valuable 

insights into evolutionary theory, processes and mechanisms. Extant sequences from a 

range of taxa can be used to predict the sequences of ancestral genes (Fig. 3.3.1a). It is an 

important application of phylogenetics and has been widely used to test hypotheses about 

gene function and structure (Fournier and Alm 2015; Natarajan et al. 2016; Stern et al. 

2017) or to guide the design of novel biomolecules (Zakas et al. 2017; Alva and Lupas 

2018). In addition to ancestral sequence prediction, phylogenetics can be used to recover 

a measurable characteristic (phenotype) of a sequence (Joy et al. 2016). However, the 

accuracy of predicted phenotypes (i.e. activity or gene function) for ancestral sequences 

is uncertain and often difficult to validate. Ancestral sequences that code for gene 

products, such as protein and RNA enzymes (ribozymes), can be readily assessed and 

characterized resulting in accurate fitness measurements. By predicting, ‘resurrecting’ 

and functionally characterizing ancient gene sequences, hypotheses about gene function 

or selection can be empirically tested in an evolutionary context (Thornton 2004). 

Recent advances in DNA synthesis and next-generation sequencing allow for the 

high-throughput assessment of activity or fitness for thousands of sequence variants 

(Dupont et al. 2015; Hayden 2016; Kobori and Yokobayashi 2016). The activity or 

fitness measurements (phenotype) for each sequence (genotype) can be constructed into 

an empirical fitness landscape with valuable evolutionary insights (Fig. 3.3.1b). Fitness 
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landscapes are a classical approach for visualizing the relationship between genotype and 

phenotype (McCandlish 2011) and can be used to determine the accessibility of 

mutational pathways or even predict or forecast evolution (Kogenaru et al. 2009; Franke 

et al. 2011; Lobkovsky et al. 2011; de Visser and Krug 2014). DNA libraries for the 

construction of fitness landscapes are often designed by identifying nucleotide positions 

of interest or variable nucleotide positions between two anchoring sequences. The library 

is then synthesized with equal probability of each variable nucleotide at those positions 

resulting in a library that contains the anchoring sequences, as well as the parsimonious 

intermediate between them. This allows for elucidation of the possible evolutionary 

trajectories or pathways in the immediate sequence space (Hayden 2016). By combining 

this approach with ancestral sequence resurrection, we can use extant sequences as 

anchors and design a library that contains not only extant sequences and their predicted 

ancestors, but also every other combination of the mutations that differ between the 

chosen extant sequences. This novel approach can provide new insight into gene 

function, conservation and evolutionary selection pressure. 

Here, we report an experimentally resurrected and reconstructed phylogenetic 

fitness landscape for the naturally occurring CPEB3 self-cleaving RNA enzyme 

(ribozyme). This ribozyme is found in an intron of the cytoplasmic polyadenylation 

element-binding 3 gene (CPEB3). The ribozyme folds into a complex nested double-

pseudoknot secondary structure (Fig. 3.3.1c), very similar to the Hepatitis delta virus 

(HDV) ribozyme, and exhibits 5’ co-transcriptional self-cleavage (Salehi-Ashtiani et al. 

2006; Chadalavada et al. 2010; Webb and Lupták 2011; Skilandat et al. 2016). The 67-nt 

core ribozyme is located in the second intron of the human CPEB3 (hsCPEB3) gene that 
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codes for a functional prion with an important role in synaptic plasticity and long-term 

memory (Fig. 3.3.1d, Stephan et al. 2015). This ribozyme is conserved in mammals and 

has been associated with episodic memory (Vogler et al. 2009; Webb and Lupták 2011). 

Alignment and comparison of the ribozyme sequences identified across mammalian taxa 

shows a high level of sequence conservation as compared to the human CPEB3 sequence 

(Fig. 3.3.1d). The true role of the CPEB3 ribozyme is unclear, however hypotheses 

suggest that it might play an important role in co-transcriptional processing of the CPEB3 

pre-mRNA (Webb and Lupták 2011). For our experiments reported here, we chose 

CPEB3 ribozyme sequences from 25 mammalian species that differed at 13 mutational 

positions and designed a DNA library that encompassed 27,648 genotypes containing all 

combinations of these 13 mutations. We determined the relative activity for each unique 

sequence through the deep sequencing of in vitro co-transcriptional self-cleavage 

reactions. We used these data to reconstruct the phylogenetic fitness landscape of the 

CPEB3 ribozyme, offering a novel glimpse into the evolution of this ribozyme. A 

phylogenetic fitness landscape encompasses not only extant sequences and predicted 

ancestral sequences, but also the local genotype space, consisting of all local mutational 

combinations. Using high-throughput sequencing we obtained ribozyme activity 

measurements for all 27,648 unique genotypes, which includes all the extant ribozyme 

sequences found in 25 species of mammals and several predicted ancestral sequences. 

Results and Discussion 

CPEB3 Ribozyme Ancestral Sequence is Highly Conserved Through Time 

By mapping the extant ribozyme sequences onto the tree of life, we predicted that 

the ancestral sequence has been completely conserved in 13 of the extant lineages (Fig. 
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3.3.2). Interestingly, we found that this ancestral sequence shows very high self-cleavage 

activity. The high level of conservation found throughout mammalian sequences is 

indicative of purifying selection, which is widespread in mammalian RNA structures 

(Smith et al. 2013). To test this hypothesis, a Tajima’s neutrality test based on the 

alignment of extant ribozyme sequences was performed  and resulted in a negative D-

value (-1.34), which is indicative of a low frequency of mutations and polymorphisms 

(Tajima 1989). This is often due to population expansion following a bottleneck event or, 

as suspected in this case, purifying selection. 

A Range of Ribozyme Activity is Found in Extant Ribozyme Sequences 

We next sought to determine if high ribozyme activity was conserved throughout 

extant sequences suggesting a strong evolutionary selection for ribozyme function. 

Ribozyme activity was calculated as the fraction cleaved during the 20-minute co-

transcriptional assay. We found that 21 of the 36 extant species contained ribozyme 

sequences with ribozyme activity 0.77 (Fig. 3.3.2). Interestingly, the remaining 15 

extant species contained or were predicted to contain ribozyme sequences with ribozyme 

activity 0.33. Four of these ribozyme sequences were measured using high-throughput 

sequencing in the phylogenetic mutational library. Three of these ribozyme sequences 

were assessed using standard lab assays combined with denaturing gel electrophoresis to 

determine ribozyme activity. The remaining eight extant sequences were not measured, 

but are predicted to have low ribozyme activity due to mutations at the G1 position, 

which results in low ribozyme activity in our data and in previous reports (Salehi-

Ashtiani et al. 2006; Webb and Lupták 2011). 
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Phylogenetic Fitness Landscape Revealed Selective Pressure 

Next, we set out to use the activity measurements of all mutational combinations 

to better understand the fitness landscape that shaped the evolution of this ribozyme. (Fig. 

3.3a). Each node in the fitness landscape indicates a unique ribozyme sequence and nodes 

that differ by a single mutation are connected by edges. Pairwise epistasis was prevalent 

in the landscape and was found in ~57% of all mutation pairs (Fig. S3.1). This is 

consistent with earlier reports on the amounts of epistasis in RNA fitness landscapes 

(Bendixsen et al. 2017). However, the severity of epistatic interactions was not extreme 

(<1.6), suggesting that evolution might have been able to traverse the landscape without 

high levels of stasis. We found that the ribozyme activities were not uniformly distributed 

across the activity range, but rather ~96% of all ribozyme sequences assessed had low 

ribozyme activity (0.2, Fig. S3.2). In contrast, less than 1% of sequences in the 

phylogenetic mutational library had high ribozyme activity (0.8). However, we find that 

80% of extant species (20 of 25) in the mutational library have sequences with high 

ribozyme activity. Only three species have low ribozyme activity and interestingly, only 

two sequences (human and human-SNP) exhibit intermediate ribozyme activity 

(0.2>µ<0.8). Of the three extant ribozyme sequences with low activity, giant panda 

(Ailuropoda melanoleuca) exhibited the lowest ribozyme activity (~0.03). Although this 

ribozyme activity is relatively low, it is still higher than ~61% (16,960) of sequences that 

were available to evolution in this local sequence space. This suggests that although the 

majority of sequences in the local sequence space have low ribozyme activity, evolution 

selected for many sequences that exhibit high or at least functional activity. 
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We then assessed the effects of the mutations in the 13 variable positions within 

the phylogenetic mutational library. We determined the average ribozyme activity for 

each nucleotide at each position independent of genetic background and mapped their 

effects to the ribozyme secondary structure (Fig. 3.3.2b, Fig. S3.3). Many of the 

mutations that were accumulated in extant species showed very little average effect on 

ribozyme activity. In particular, L4 of the ribozyme was very tolerant to mutations and 

consistently had no detectable impact on function. Not surprisingly and in agreement 

with previous studies, the most detrimental mutations occurred at position 1, which is 

directly upstream of the cleavage site (Salehi-Ashtiani et al. 2006; Webb and Lupták 

2011). Notably, the nucleotides found in the highly-conserved, highly-active ancestral 

sequence were found to be optimal for 12 out of the 13 variable positions. The exception, 

position 9, was the only mutation that on average had a higher ribozyme activity when 

the ancestral C was mutated to a U. This mutation is found exclusively in marsupials and 

motivated a deeper exploration of the local fitness landscape found in marsupials (Fig. 

3.3c). We identified the five mutational positions present in the marsupial clade and 

isolated ribozyme sequences that differ only at these positions. These sequences were 

then built into a fitness landscape with extant ribozyme sequences and the ancestral 

sequence in the inner circle and all other combinations in the outer circle. All of the 48 

ribozyme sequences found in this landscape show high ribozyme activity. This is, 

however, expected because the four mutations other than position 9, are all in L4 which is 

highly robust. In contrast, using a similar approach for the primate clade results in a 

fitness landscape with very few sequences with high ribozyme activity (Fig. 3.3c). 

However, it should be noted that five of the seven mutations within this clade are found 
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exclusively in the marmoset (Callithrix jachus) which has low ribozyme activity.  

Interestingly, a closer examination of the potential evolutionary trajectories from the 

ancestral sequence to the marmoset reveals that four of the five mutations incur ribozyme 

activity loss (Fig. S3.4). Next, we plotted the 27,648 unique sequences in the 

phylogenetic mutational library as a function of mutational distance from the ancestral 

sequence and ribozyme activity (Fig. 3.3d). We found that up to six mutations could be 

added to the ancestral sequence before a significant reduction in ribozyme activity. 

However, on average the ribozyme activity quickly decreased as the sequence mutated 

away from the ancestral sequence (dotted line). This suggests that the ancestral sequence 

is highly optimized and that there exists selective pressure to maintain ribozyme activity.  

Single Nucleotide Polymorphism (SNP) in Humans Reduces Ribozyme Activity 

An important and biologically relevant mutation within the CPEB3 ribozyme is a 

single nucleotide polymorphism (SNP) found in the human sequence at position 36. 

Humans that are homozygous in this SNP show poorer episodic memory. This nucleotide 

directly interacts with position 1 of the ribozyme which we found to be very sensitive to 

mutations. The wild-type human sequence contains a U at this position forming a non-

canonical GU wobble base pair. A subpopulation of humans contain a C at this position 

forming a canonical Watson-Crick G-C base pair. We found that the wild-type human 

sequence exhibited relatively high ribozyme activity (0.72), however the ribozyme 

sequence containing the SNP (U36C) exhibited significantly lower ribozyme activity 

(0.23). These two ribozyme sequence variants were ordered individually and validated in 

the lab using a co-transcriptional assay followed by denaturing gel electrophoresis (Fig. 

S3.5). A previous study had suggested that the SNP mutation increased ribozyme activity 
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three-fold (Salehi-Ashtiani et al. 2006). However, this study assayed ribozyme activity 

following transcription after RNA isolation and purification, not co-transcriptionally as 

presented in this study. Another research group assessed the human wild-type ribozyme 

and found that it was co-transcriptionally fast-reacting (Chadalavada et al. 2010). In fact, 

they determined that the CPEB3 human ribozyme cleaves 50-fold faster than previously 

reported. This is not surprising because RNA structures have been shown to fold 

extensively during transcription and in some instances this significantly improves the 

efficiency of cleavage (Pan and Sosnick 2006). The HDV ribozyme, which has high 

amounts of similarity to CPEB3, has been shown to be highly dependent on co-

transcriptional folding (Chadalavada et al. 2000; Diegelman-Parente and Bevilacqua 

2002; Chadalavada et al. 2007). These data agree with our findings that the human wild-

type ribozyme has high co-transcriptional ribozyme activity. 

However, our findings still disagree with previous findings that introducing the 

U36C SNP mutation into the human ribozyme improves ribozyme activity (Salehi-

Ashtiani et al. 2006). This might be explained by the difference in assay approaches (co-

transcriptional or following purification) as previously mentioned. It might also be 

attributed to differences in the assay conditions, for example our study used a higher 

Mg2+ concentration (10mM) than was previously used (5mM). The wobble base pair is a 

binding site for Mg2+and therefore might be sensitive to these differences (Skilandat et al. 

2014; Skilandat et al. 2016). Recent investigations of Mg2+ interaction with the CPEB3 

ribozyme suggested that Mg2+ is necessary for proper native folding and that the 

optimized Mg2+ concentration to correspond to physiological conditions is 10mM Mg2+ 

(Strulson et al. 2013; Skilandat et al. 2016). Although the physiological concentration of 
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Mg2+ is approximately 20 to 100-fold less (0.1-0.5mM) than the 10mM used in this 

study, 10mM Mg2+ mimics the molecular crowding found in cells. Therefore, the Mg2+ 

concentration used in our study most closely resembles the environmental conditions 

encountered by the ribozyme in vivo. Further supporting our findings that the U36C SNP 

mutations reduces activity in the human ribozyme are recent investigations on the HDV 

ribozyme. The HDV and CPEB3 ribozymes have a very similar secondary structure and 

exhibit many nucleotides or base pairs that are conserved (Salehi-Ashtiani et al. 2006; 

Skilandat et al. 2016). One base pair found in both wild-type ribozyme sequences is the 

GU wobble base pair immediately downstream of the cleavage site. The GU base pair 

in the HDV ribozyme had been shown to be important to ribozyme activity and when 

substituted with most base pair combinations caused significant activity loss (Wu et al. 

1993; Perrotta and Been 1996). However, mutations that retain a base pair interaction and 

a purine at position 1 were tolerated (Cerrone-Szakal et al. 2008; Chen et al. 2009). A 

recent mutational analysis suggested that the GU wobble base pair played a specific role 

in the stabilization of the active sites (Sripathi et al. 2015). The wobble base pair 

stabilizes high in-line conformation and the hydrogen bond between the G at position 1 

and the catalytic nucleotide (C75). Although this data is not entirely conclusive, it does 

suggest that the GU wobble base pair might play an important stabilization role in the 

CPEB3 ribozyme, similar to the HDV ribozyme. 

The effects of the SNP mutation may have strong implications for human episodic 

memory. An association test found that individuals homozygous for the SNP mutation 

performed poorer in episodic memory tests (Vogler et al. 2009). The effect was 

particularly prevalent when the material had an emotional valence. At the time it was 



93 

 

believed that the SNP mutation increased ribozyme activity and conclusions were drawn 

from these data. However, in this study we found that the SNP mutation actually reduces 

the co-transcriptional activity of the ribozyme by ~3 fold. Although the true function of 

the ribozyme in human memory is unclear, it was proposed that the ribozyme might play 

a role in co-transcriptional processing of the CPEB3 pre-mRNA (Webb and Lupták 

2011). Rapid ribozyme self-cleavage may prevent further processing of the pre-mRNA 

before the next exon is synthesized and tagged for splicing. Due to the fast co-

transcriptional CPEB3 ribozyme activity in many mammalian species it is believed that it 

can affect the stability of the pre-mRNA on timescales relevant to gene expression (Webb 

and Lupták 2011). Given the findings in this study it can be proposed that human 

episodic memory improves with the rate of co-transcriptional ribozyme activity, although 

the mechanism needs further exploration. 

Random Mutagenic Library Identified Key Nucleotides for Ribozyme Activity 

The phylogenetic mutational library of the CPEB3 ribozyme offered valuable 

insight into the local fitness landscape encountered by evolution. However, due to 

limitations in sequencing capabilities not all of the mutations that exist in extant species 

were able to be exhaustively explored. To identify other key nucleotides that had a 

significant impact on co-transcriptional ribozyme activity, we designed a random 

mutagenic library (18% mutation rate per position). This library contained a distribution 

of random mutations from the highly-conserved highly active ancestral sequence (Fig. 

3.4a, grey). In total >30 million unique sequences were found in the library and only 

<90,000 were found to be cleaved. This low level of active ribozyme sequences was 

expected due to the distribution of mutations in the library being centered around 
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approximately 15 mutations away from the ancestral sequence. As expected, the 

population of cleaved sequences showed a slight shift towards the ancestral ribozyme 

sequence as compared to the library (Fig. 3.4a, teal). By comparing the sequences that 

were found to be cleaved against the mutagenic library we were able to identify several 

nucleotides that were highly conserved among cleaved sequences (Fig. 3.4b). Importantly 

the catalytic nucleotide (C57) was highly conserved among cleaved sequences. This 

agrees with our prediction that extant species with a mutation at this location (Dasypus 

novemcinctus, Felis catus, Myotis lucifigus and Dipodomys ordii) have low ribozyme 

activity. The first three nucleotides in the ribozyme sequence which form the P1 stem 

were found also found to be highly conserved. This was expected due to the catalytic 

importance of the stability of the P1 helical structure (Salehi-Ashtiani et al. 2006; Webb 

and Lupták 2011) and further supports our observation and prediction that extant 

sequences with mutations at these positions have low activity. The only mutational 

difference between the ancestral sequence and the human wild-type ribozyme sequence 

is a G30A mutation. Interestingly the G found in the ancestral sequence was enriched, 

which agrees with our findings that this mutation reduces ribozyme activity by ~20%. We 

also found that at position 36 of the ribozyme activity the human wild-type nucleotide 

was enriched as compared to the human-SNP U36C mutation. This further supports our 

finding that the SNP mutation reduces ribozyme activity in humans. Three other notable 

conserved nucleotides (positions 10,11 and 67) are found in the P2 stem structure, which 

is important for stability of the ribozyme structure.
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Conclusion 

Using a high-throughput mutational assay and ancestral sequence resurrection, we 

resurrected and reconstructed a phylogenetic fitness landscape for the CPEB3 ribozyme. 

We found that a single ancestral sequence was highly conserved and purifying selection 

is expected to have reduced the accumulation of mutations through geologic time. 

However, high ribozyme activity was not universally conserved in extant mammalian 

ribozyme sequences. Yet, given the local fitness landscape encountered by evolution, a 

selective pressure for functional ribozyme sequences was seen. Due to the proposed 

important role of the CPEB3 ribozyme in episodic memory, it is possible that in vivo co-

evolved regulatory elements in each mammalian species help to account for reduced 

measured ribozyme activity. We showed that the single nucleotide polymorphism (SNP) 

found in humans reduces co-transcriptional ribozyme activity in vitro and might alter our 

understanding of the CPEB3 ribozyme’s biological function. In agreement with previous 

findings, we also identified key nucleotides that are responsible for ribozyme activity. 

The biochemical assessment of extant and ancestral CPEB3 ribozyme variants, coupled 

with the characterization of the local fitness landscape motivates further research into the 

true biological function of the CPEB3 ribozyme. 

Materials and Methods 

Mammalian CPEB3 Ribozyme Phylogenetic Mutational Library Design 

In order to build a phylogenetic mutational library, the 36 identified mammalian 

CPEB3 ribozyme sequences (Webb and Lupták 2011) were aligned and 13 mutational 

positions were identified that maximized phylogenetic coverage. For this study, only the 

mutations that occurred in the length of the ribozyme (67nt) were considered. Of the 36 
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CPEB3 ribozyme sequences, 25 species had only differences within these 13 mutational 

positions. Of the 25 species in this group, 13 of these species had the same identical 

ribozyme sequence. Library construction was accomplished by chemically synthesizing a 

degenerate DNA oligonucleotide that served as temple for in vitro transcription. At each 

of the 13 identified mutational positions, only nucleotides that were present in the group 

were considered. At each mutational position, the DNA library was synthesized with 

equal mixtures of two or three nucleotide phosphoramidites, generating approximately 

equal likelihood of each sequence variant. At 10 of the mutational positions only two 

nucleotides were allowed, and at three of the mutational positions only three nucleotides 

were allowed. This resulted in a library that consisted of 27,648 (210  33) unique 

sequences. This library consisted of the CPEB3 ribozyme sequences for 25 mammalian 

species, as well as all possible intermediates and combinations. For assay purposes a T7 

promoter sequence was added to the end of the ribozyme sequence and a common 

sequence was added to the 3’-end to act as a universal primer binding site during reverse 

transcription (Wilkinson et al. 2006). 

CPEB3 Ribozyme Random Mutagenesis Library Design 

In order to identify and assess key nucleotides for ribozyme activity that were not 

included in the phylogenetic fitness landscape library, we designed a randomly mutagenic 

library. At each position in the CPEB3 ribozyme (length=67), the DNA library was 

synthesized with an 82:6:6:6 mixture of all four nucleotide phosphoramidites. At each 

position the nucleotide found in the wild-type human sequence was maintained at 82%. 

This generated a synthetic DNA library with a random mutation rate of ~18%. For the 

high-throughput assay a T7 promoter sequence was added to the end of the ribozyme 
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sequence and a common sequence was added to the 3’-end to act as a universal primer 

binding site during reverse transcription (Wilkinson et al. 2006). 

Co-Transcriptional Self-Cleavage Assay 

Both CPEB3 mutational libraries (phylogenetic and random) were assayed 

entirely in triplicate yielding three biological replicates. Each replicate for each library 

were prepared in the same manner. The ssDNA template library was annealed with the 

T7-TOP+ primer by heating 20 picomoles of template and primer in custom T7 Mg10 

buffer (10 µL 1M Tris pH 7.5, 50 µL 1M DTT, 20µL 1M spermidine, 100 µL 1M MgCl2, 

300 µL RNase-free water). The template and primer were then diluted 10-fold. 2 L of 

template and primer were then transcribed in vitro in a 50 L reaction with 5 L T7 

Mg10 buffer, 1 L rNTP (25 mM, NEB), 1 L T7 RNA polymerase (200 units, Thermo 

Scientific) and 41 L RNase free water (Ambion) at 37C for 20 mins. The transcription 

and co-transcriptional self-cleavage reaction was then terminated by adding 15 L of 50 

mM EDTA. The total amount of cleaved RNA increases during transcription, however 

the ratio of cleaved to uncleaved remains approximately the same, as long as the rate of 

transcription is constant. This holds true especially for moderately short transcription 

times before reagents become limited (Long and Uhlenbeck 1994). The transcription 

reaction was then cleaned and concentrated with Direct-zol RNA MicroPrep w/ TRI-

Reagent (Zymo Research) to 7 L. We then determined the concentration of the RNA 

sample using a spectrophotometer (ThermoFisher NanoDrop) and the samples were 

normalized to 5 M. The cleaned RNA (5 picomoles) was mixed with 20 picomoles of 

reverse transcription primer in a volume of 10 L and was heated at 72 C for 3 mins and 

then cooled on ice. 4 L SMARTScribe 5x First-Strand Buffer (Clontech), 2 L dNTP 
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(10 mM), 2 L DTT (20 mM), 2 L phased template switching oligo mix (10 M), 1 L 

water and 1 L SMARTScribe Reverse Transcriptase (10 units, Clontech) were then 

added to the RNA template and RT primer. The phased template switching oligo mix 

consisted of four oligonucleotides that were phased by the addition of 9, 12, 15 or 18 

nucleotides. The mixture was then incubated at 42 C for 90 mins. The reverse 

transcription reaction was stopped and the RNA degraded by heating the sample to 72 C 

for 15 mins. The cDNA was then purified using DNA Clean & Concentrator-5 (Zymo 

Research) and eluted into 7 L water. To prepare the mutational library for high-

throughput sequencing, Illumina adapter sequences were added to the ends of the cDNA 

using PCR. Each of the replicates were assigned a unique combination of barcodes. The 

PCR reaction contained 1 L purified cDNA, 12.5 L KAPA HiFi HotStart ReadyMix 

(2X, KAPA Biosystems), 2.5 L forward, 2.5 L reverse primer (Illumina Nextera Index 

Kit) and 5 L water. To ensure that the PCR didn’t introduce bias, multiple cycles of 

PCR were examined using gel electrophoresis an appropriate PCR cycle was chosen that 

was still in linear amplification. Each PCR cycle consisted of 98 C for 10 s, 63 C for 30 

s and 72 C for 30 s. The PCR cDNA product was then cleaned using DNA Clean & 

Concentrator-5 (Zymo Research) and eluted in 30 L water. The final product was then 

verified using gel electrophoresis. 

High-Throughput Sequencing 

The three replicates for each mutational library (phylogenetic and random) were 

pooled together and sent to the University of Oregon Genomics and Cell Characterization 

Core Facility. The two libraries were sequenced using an Illumina HiSeq 4000 on 

separate lanes. The random library was pooled along with other samples not presented 
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here. For each lane 25% PhiX was added to increase the nucleotide diversity during 

sequencing. The phylogenetic library yielded ~170 million reads passing filter with a 

mean quality score of 39.6. The random mutagenic library yielded ~57 million reads 

passing filter with a mean quality score of 39.1. Replicates were correlated with one 

another with a high amount of correlation (Fig. S3.6). The standard deviation (delta) of 

replicates were also calculated to be used in analyses (Fig. S3.7) 

Sequencing Data Analysis 

Sequencing data were analyzed using custom Python scripts. The scripts 

identified the universally conserved 3’ handle and determined if the sequence was 

cleaved or uncleaved. For the phylogenetic mutational library, the nucleotides at the 13 

variable mutational positions were then isolated. For each unique genotype in the library 

the number of cleaved and uncleaved sequences were counted. For each genotype, 

ribozyme activity (fraction cleaved) was calculated as: 𝑓𝑐𝑙𝑒𝑎𝑣𝑒𝑑 =
𝑛𝑐𝑙𝑒𝑎𝑣𝑒𝑑

(𝑛𝑐𝑙𝑒𝑎𝑣𝑒𝑑+𝑛𝑢𝑛𝑐𝑙𝑒𝑎𝑣𝑒𝑑)
. For 

the random mutagenesis library, the cleaved sequences were binned. For each genotype 

in the entire library (cleaved and uncleaved) the mutational distance (Hamming distance) 

was calculated between the genotype and the highly-conserved ancestral genotype. The 

distribution of mutational distances in the cleaved bin was compared to the entire library 

were calculated (Fig. 3.4a). For each position (p) in the CPEB3 ribozyme (length=67), 

fold enrichment in the cleaved bin was calculated as: 𝑝𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =
%𝑐𝑙𝑒𝑎𝑣𝑒𝑑𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑎𝑙

%𝑙𝑖𝑏𝑟𝑎𝑟𝑦𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑎𝑙
=

𝑐𝑙𝑒𝑎𝑣𝑒𝑑𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑎𝑙 𝑐𝑙𝑒𝑎𝑣𝑒𝑑𝑡𝑜𝑡𝑎𝑙⁄

𝑙𝑖𝑏𝑟𝑎𝑟𝑦𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑎𝑙 𝑙𝑖𝑏𝑟𝑎𝑟𝑦𝑡𝑜𝑡𝑎𝑙⁄
, where xancestral indicates the number of sequences in the 

cleaved or library bin that have the ancestral nucleotide at that position.
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CPEB3 Ribozyme Phylogenetic Tree Construction and Ancestral Sequence Resurrection 

For the 35 mammalian species with known CPEB3 ribozyme sequences (Webb 

and Lupták 2011), we constructed a phylogenetic tree based on the tree-of-life and its 

evolutionary timescale (Hedges et al. 2015). We loaded the 35 species into TimeTree and 

generated a phylogenetic tree that showed the 35 extant species and ancestral progenitors 

in the class Mammalia (Kumar et al. 2017). Using this phylogenetic tree we used 

Molecular Evolutionary Genetics Analysis 7 (MEGA7) software to infer ancestral 

sequences (Kumar et al. 2016). Two statistical methods of inference (maximum 

likelihood and parsimony) yielded the same predicted ancestral sequences. All predicted 

sites were found to have >0.9 maximum probability. This process predicted the CPEB3 

ribozyme sequences at the ancestral nodes within the phylogenetic tree. Mutations were 

added to edges connecting nodes in order to allow for easier interpretation. Node colors 

were determined by co-transcriptional self-cleavage assay followed by high-throughput 

sequencing or denaturing gel electrophoresis. For a subset of nodes, ribozyme activity 

was predicted based on known mutations in the sequence that result in low activity. 
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Figures 

 
Figure 3.1: Overview of ancestral sequence resurrection, fitness landscapes and 

CPEB3 ribozyme.  

(a) Simplified example of ancestral sequence resurrection. The tree is built based on the 

phylogenetic relationship between species containing extant sequences (blue). Statistical 

probability algorithms are then used to infer or predict ancestral sequences (green). (b) 

Simplified example of an empirical fitness landscape. Each node indicates a unique 

sequence (genotype) and nodes that differ by a single mutation are connected by edges. 

The x- and y-axes indicate the relative position in genotype sequence space and the z-axis 

indicates the relative fitness (phenotype). Node colors are indicative of the relative fitness 

of the given genotype. (c) Secondary structure of human (hs) CPEB3 ribozyme sequence. 

Triangle indicates self-cleavage site and grey letters indicate cleaved sequence. Base 

paired helices are distinguished by color. Asterisk indicates the location of a SNP (U36C) 

in the human ribozyme sequence. (d) Mapping and conservation of human (hs) CPEB3 

ribozyme. Protein, mRNA and gene are adapted from Salehi-Ashtiani et al. 2006. Four 

notable domains are identified in the protein primary structure (Q=glutamine-rich 

domain, RRM=RNA-binding domains, Znf= zinc finger). Vertical dividers in the mRNA 

indicate splice sites. Tissue-specific untranslated exons are marked below the gene with 

letters (L=liver, T=testis, B=brain). Translated exons are indicated with large vertical 

lines. Self-cleaving CPEB3 ribozyme location is indicated as Rz in the second intron and 

the human CPEB3 sequence is shown. Grey triangle indicates self-cleavage site and grey 

letters indicate cleaved sequence. Asterisk indicates the location of a single nucleotide 

polymorphism (SNP) in the human CPEB3 ribozyme sequence. Plot indicates the 

conservation of each nucleotide in the human sequence as compared to the 36 identified 

mammalian CPEB3 sequences (Webb and Lupták 2011). Color indicates level of 

conservation.  
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Figure 3.2: Phylogenetic tree and ancestral sequence resurrection of the 

mammalian CPEB3 ribozyme.  

Phylogenetic tree derived from the 35 mammalian species with identified CPEB3 

ribozyme sequences. Extant species are listed on the right. Each node indicates a 

ribozyme sequence that is either found in an extant species (right) or represents a 

predicted ancestral sequence. The color of the node indicates the self-cleaving ribozyme 

activity. Square nodes indicate a single highly-functional, highly-conserved ancestral 

sequence. Circle nodes indicate ribozyme sequences that were biochemically assessed 

using high-throughput sequencing. Circle nodes with an asterisk were assessed using co-

transcriptional assay and denaturing gel electrophoresis. Diamond nodes indicate a 

sequence with predicted ribozyme activity based on known effects of mutations. 

Mutations listed above edges connecting nodes indicate the required mutations to convert 

from one ribozyme sequence to another. Black mutations indicate mutations that were 

included in the phylogenetic ribozyme library for high-throughput sequencing. 

Background color is colored by the Ages of the geologic timescale. 
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Figure 3.3: Phylogenetic fitness landscape of the mammalian CPEB3 ribozyme.  

(a) Fitness landscape of the 27,648 unique ribozyme sequences in the phylogenetic 

mutational library. Each node indicates a unique sequence and nodes that differ by a 

single mutation are connected by an edge. The node size and color indicate the self-

cleaving ribozyme activity of each sequence. For visualization purposes the fitness 

landscape is broken into five levels of ribozyme activity. The respective number of 

genotypes and a list of extant species found in each of the five levels are shown. (b) 

Secondary structure of the ancestral CPEB3 ribozyme with mutational nucleotides 

indicated. Each nucleotide at each mutational position is colored by the mean activity of 

all ribozyme sequences with that nucleotide. (c) Local fitness landscapes of two 

phylogenetic clades: marsupials and primates. Each node indicates a unique ribozyme 

sequence and two nodes are connected by an edge if they can be interconverted by a 

single mutation. Node color indicates the relative ribozyme activity. Nodes in the inner 

circle represent sequences identified in an extant species or the highly-conserved 

ancestral sequence. Nodes in the outer cycle indicate ribozyme sequences with 

combinations of mutations that have not been identified in extant species or predicted as 

an ancestral sequence. The combination of mutations is limited to mutations that are 

present in the clade. (d) Ribozyme activity of all 27,648 sequences in the phylogenetic 

mutational library plotted as a function of mutations from the highly-conserved ancestral 

sequence. Each node indicates a unique ribozyme sequence and the color and size of the 

node indicate ribozyme activity. The number of sequences (n) that correspond to each 

mutational distance from the ancestral sequence is shown. The dashed line indicates the 

average at each mutational distance. 
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Figure 3.4: Random mutagenesis library of mammalian CPEB3 ribozyme.  

(a) Distribution of mutational distances from the highly-conserved ancestral CPEB3 

ribozyme sequence. Sequences that were detected as cleaved (teal) are shown compared 

to the distribution of the total mutagenic library (cleaved and uncleaved sequences, grey). 

(b) The fold enrichment for each nucleotide in the ancestral CPEB3 ribozyme sequence 

between the cleaved sequences and the library (cleaved and uncleaved). A fold 

enrichment value of 1.0 indicates that the nucleotide was not enriched and was equally 

represented in the cleaved population as compared to the library. A fold enrichment value 

of 1.3 indicates that the nucleotide was represented in the cleaved population at a level 

30% higher than expected, given its proportion in the mutagenic library. The top twelve 

enriched or conserved nucleotides in the cleaved population are labeled. Node color 

indicates the level of enrichment. Grey triangle indicates the cleavage site and grey letters 

indicate the cleaved sequence. Base paired helical elements are shown and labeled as P1-

P4. 
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Supplementary Material 

 
Figure S3.1: Pairwise epistasis in the phylogenetic fitness landscape  

(a) Relative prevalence of three classes of pairwise epistasis (Khalid et al. 2016; Aguilar-

Rodríguez et al. 2017). Pairwise epistasis was assessed using mutational pairs or squares. 

Two precise mutations can occur in either order, and are represented in our landscapes by 

subgraphs of four connected genotypes. Each square consists of a ‘wild-type’ genotype, 

two single mutants and a double mutant. Magnitude epistasis occurs when the magnitude 

of a mutations effect on ribozyme activity depends on the genetic background of the 

mutation. Simple sign epistasis occurs when a single mutant has lower activity than the 

wild-type and the double mutant. Reciprocal sign epistasis occurs when both double 

mutants have lower activity than the wild-type and double mutant. (b) The distribution of 

severity of epistatic interactions in the phylogenetic fitness landscape. Epistatic values for 

each square of mutation pairs was calculated as ε = log10 (WAB*Wwt / WA*WB), where WA 

and WB are the fitness of RNA variants with a single mutation, WAB is the fitness of the 

variant with both mutations, and Wwt is the fitness of the wild-type. 
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Figure S3.2: Distribution of ribozyme activity, robustness and selection coefficient 

in the phylogenetic fitness landscape.  

(a) Distribution of ribozyme activity measured as fraction sequences cleaved during 20 

minutes of transcription. The ribozyme activity of the ancestral sequence is indicated by 

the dotted line. (b) Distribution of mutational robustness. Robustness was calculated for 

each genotype as the average ribozyme activity of all mutational neighbors that differed 

by a single mutation. The robustness of the ancestral sequence is indicated by the dotted 

line. (c) Distribution of mean selection coefficients. Selection coefficients were 

calculated for each genotype as the difference in ribozyme activity between a genotype 

and its mutational neighbors that differed by a single mutation. 
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Figure S3.3: Mutational effects in the phylogenetic fitness landscape.  

(a) The average of all genotypes with the corresponding mutation at the corresponding 

position. Position in the CPEB3 ribozyme are listed on the x-axis and mean ribozyme 

activity is on the y-axis. Color of node indicates the nucleotide at the position (A=blue, 

C=yellow, U=red, G=green). Square nodes represent nucleotides that are in the highly-

conserved, highly-active ancestral sequence. (b) The distributions of ribozyme activities 

containing a given mutation at each position. Nucleotide and position in the CPEB3 

ribozymes are indicated on the x-axis. Mean is indicated by white dot. Color corresponds 

to panel a. 
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Figure S3.4: Potential evolutionary pathways from the ancestral sequence to the 

marmoset (Callithrix jacchus).  

Hamming distance from the ancestral sequence is on the x-axis and measured ribozyme 

activity on y-axis. Color of nodes indicate ribozyme activity. Edges connect nodes that 

differ by a single mutation. Edge colors are dependent on the source and target node 

color. There are displayed 120 unique direct pathways that can be taken from ancestral 

sequence to the marmoset. The number of genotypes (n) at each mutational distance are 

indicated. 

 
Figure S3.5: Co-transcriptional self-cleavage of human-WT and human-SNP 

CPEB3 ribozymes.  

(a) Time-course transcription for ribozyme activity. Ribozyme activity is measured as the 

fraction cleaved at each timepoint (0, 20, 40 80 mins). Samples were allowed to co-

transcriptionally cleave and were run on 10% denaturing polyacrylamide gel, visualized 

with GelRed (Biotium) and quantified by densitometry. Human-SNP is shown in red and 

human-WT is shown in blue. The two sequences only differ at the U36C SNP mutation. 
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(b) Mean of four replicates for the 20-minute co-transcriptional assay. This timepoint is 

what was used for high-throughput sequencing. Error bars indicate the standard deviation 

of the mean.  

 
Figure S3.6: Correlation of high-throughput sequencing replicates for the 

phylogenetic fitness landscape library.  

Correlation of number of cleaved reads, uncleaved reads and fraction cleaved (ribozyme 

activity) for each of the three replicates. Each figure consists of 27,648 genotypes present 

in the phylogenetic fitness landscape library. Each data point for cleaved and uncleaved 

represents the frequency that a specific genotype was observed in a particular replicate 

(x-axis) vs. another replicate (y-axis). The fraction cleaved is a product of observed 

cleaved and uncleaved reads for each genotype. Sequence kernel density is also reported 

from each replicate in the jointplot. 
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Figure S3.7: Distribution of delta ribozyme activities measured between sequencing 

replicates.  

Delta ribozyme activity (x-axis) is measured as the standard deviation of the mean of 

ribozyme activities between the three biological replicates (y-axis). Delta measurements 

are taken into account when calculating epistasis and mutational pathways (Khalid et al. 

2016)
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Abstract 

Mutations and their effects on fitness are a fundamental component of evolution. 

The effects of some mutations change in the presence of other mutations, and this is 

referred to as epistasis. Epistasis can occur between mutations in different genes or within 

the same gene. A systematic study of epistasis requires the analysis of numerous 

mutations and their combinations, which has recently become feasible with 

advancements in DNA synthesis and sequencing. Here we review the mutational effects 

and epistatic interactions within RNA molecules revealed by several recent high-

throughput mutational studies involving two ribozymes studied in vitro, as well as a 

tRNA and a snoRNA studied in yeast. The data allows an analysis of the distribution of 

fitness effects of individual mutations as well as combinations of two or more mutations. 

Two different approaches to measuring epistasis in the data both reveal a predominance 

of negative epistasis, such that higher combinations of two or more mutations are 
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typically lower in fitness than expected from the effect of each individual mutation. This 

data is in contrast to past studies of epistasis that used computationally predicted 

secondary structures of RNA that revealed a predominance of positive epistasis. The 

RNA data reviewed here is more similar to that found from mutational experiments on 

individual protein enzymes, suggesting a common thermodynamic framework may 

explain negative epistasis between mutations within macromolecules. 

Introduction 

It is often convenient to describe a mutation as deleterious, neutral or beneficial. 

In fact, there exists a continuous distribution of fitness effects caused by mutations, from 

lethal to highly beneficial, and every value in between. This distribution of fitness effects 

is important for many theories in the fields of genetics and evolution (Whitlock et al. 

1995; Fenster et al. 1997; Ostman et al. 2012). For example, the rate at which a 

population adapts to an environment depends on the frequency of beneficial mutations 

relative to the more common deleterious and neutral mutations (Desai et al. 2007). In 

addition, whether a mutation is beneficial or deleterious depends on the presence of other 

mutations (genetic background). Epistasis is a term used broadly to describe instances 

when the effects of combinations of mutations are not easily predicted by the effect of 

each individual mutation. Positive epistasis is used to describe situations when 

combinations of mutations produce higher fitness than expected from their individual 

effects. Negative epistasis occurs when multiple mutations produce lower fitness together 

than expected from their individual effects (Fig. 4.1). In some situations, a mutation can 

even be beneficial in some genetic backgrounds, and deleterious in others. This is 

referred to as sign epistasis, and highlights the difficulty in classifying mutations as 
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beneficial, deleterious or neutral. Sign epistasis has received considerable attention 

because it can make certain sequential combinations of mutations unlikely to persist in a 

population, even though they may be subsets of extremely beneficial combinations of 

mutations. The presence of sign epistasis means that some pathways to higher fitness are 

highly improbable (Weinreich et al. 2005; Weissman et al. 2009). Populations evolving 

in the laboratory, as well as in the wild, must navigate the peaks and valleys of fitness 

landscapes caused by selection pressure and epistatic interactions. Our ability to forecast 

evolutionary outcomes will require advancements in our understanding of epistasis within 

and between genes. 

Two experimental approaches for detecting epistasis are commonly used (Fig. 

4.1). One way is by determining the average fitness effects of increasing numbers of 

mutations relative to a reference. The genetic variants are often generated in the 

laboratory by mutation accumulation, utilizing extreme population bottlenecks to enhance 

genetic drift and force random mutation fixation (Halligan and Keightley 2009). 

Mutations are more frequently deleterious than beneficial, and the random accumulation 

thus causes a decline in the average fitness of individuals with increasing numbers of 

mutations. The decline can be expected to follow a simple exponential curve if epistasis 

is absent or if there exists a balance of positive and negative interactions (note that fitness 

decline will follow a linear curve for logarithmically transformed fitness values). 

Deviations from a simple exponential can identify epistasis when it is predominantly 

negative or positive (Fig. 4.1A). A second experimental approach to revealing epistasis is 

a pairwise comparison of mutational effects. For this, the effect of several individual 

mutations is determined and compared to pairs of these mutations. The epistasis between 
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each pair of mutations can be determined by comparing their actual fitness effect relative 

to what is expected from each individual effect (Fig. 4.1). Both of these types of 

experiments have been conducted on the scale of individual genes (Bershtein et al. 2006; 

Hayden et al. 2015) and whole genomes (Kouyos et al. 2007; Halligan and Keightley 

2009). 

These experimental approaches can be thought of as ways to understand the 

complex mapping of genotypes to phenotypes. Ideally, a fitness value could be assigned 

to every possible genotype, generating a comprehensive mapping of genotype to 

phenotype. However, this is not possible because of the vast numbers of potential 

genotypes. For example, a genome of length 100 bp has 4100 > 1060 possible sequence 

variants. As the length of the genome increases, or the number of mutated sites increases, 

the effort required to identify, isolate or synthesize, and assay each variant increases 

exponentially. For this reason, individual gene products, including proteins and non-

coding RNA (ncRNA) molecules, are an attractive model system (Jiménez et al. 2013). 

For the smaller genotype space of genes, a large subset of interesting mutations can be 

identified and many possible combinations can be produced and assayed. Understanding 

epistasis within genes has relevance to directed evolution approaches aimed at optimizing 

gene functions (Bloom and Arnold 2009). In addition, as the expressed components of 

genomes, the genotype to phenotype maps of individual genes may inform our 

understanding of epistasis at the level of whole genomes (Soskine and Tawfik 2010). A 

better understanding of epistasis may improve evolutionary theories required to assess the 

vast majority of genotype space that will not be studied with these experimental 

approaches. In the study of epistasis within a gene product, protein molecules have been 
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the subject of the majority of empirical investigations. However, our growing 

understanding of the numerous and critical roles carried out by ncRNA molecules 

warrants investigation of how mutational effects contribute to the evolution of new RNA 

functions. 

Several recent experiments have produced extensive data on epistatic interactions 

in ncRNA molecules (Fig. 4.2). Each study produced large numbers of mutational 

combinations and utilized a high-throughput assay for the effects of individual and 

combinations of mutations. Two studies used ribozymes (RNA enzymes), where fitness 

is defined as the ribozyme activity of a variant relative to that of a wild-type reference. In 

these experiments ribozyme fitness was determined in vitro, outside of a cellular context. 

Two other studies transformed yeast with libraries of specific ncRNA molecules, and 

used the RNA-dependent growth rate as the in vivo fitness metric. Here we characterize 

the epistatic mutational effects observed in each of these experimental systems. On 

average, all of the RNA molecules show a predominance of negative epistatic 

interactions between random mutations, whether the assay was carried out in vivo or in 

vitro. Underlying this average effect are similarities in the distribution of individual 

mutational effects and the distribution of pairwise mutational interactions. The 

predominance of negative epistasis is observed despite the fact that the RNA molecules 

reviewed have very different structures, and were studied with different experimental 

approaches. Similar epistasis has been seen in protein enzymes, suggesting that negative 

epistasis between mutations within genes may be a common property of biological parts 

(Bloom et al. 2004; Bershtein et al. 2006; Wylie and Shakhnovich 2011). 
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The RNA Molecules and Experimental Approaches 

We have collected data from several recent experiments in order to facilitate 

direct comparison between different RNA molecules with different functions and 

between in vitro and in vivo experiments. We will briefly describe some of the pertinent 

details of each experimental system. The in vitro ribozyme data are from a 54-nt self-

cleaving ribozyme that belongs to a structural family of ribozymes called Twister (Roth 

et al. 2014) and a 197-nt Azoarcus self-splicing group I intron ribozyme (Reinhold-Hurek 

and Shub 1992). For the Twister ribozyme, the mutants were generated by gene 

randomization during DNA synthesis, and therefore the analysis included all single and 

double mutants of the wild-type ribozyme, as well as a random sampling of sequences 

with three or more mutations (Kobori and Yokobayashi 2016). The fitness of each 

ribozyme was determined by the amount that each variant was able to self-cleave during 

in vitro transcription. All variants were transcribed simultaneously, and high-throughput 

sequencing was used to determine the fraction of each variant found in the cleaved form. 

Data was openly shared for the single and double mutants, enabling nearly exhaustive 

analysis of interactions between the effects of pairs of mutations. However, the average 

fitness of combinations of three or more mutations was not available. In contrast, the data 

for the Azoarcus ribozyme included average mutational effects even for high numbers of 

mutations, but the individual and pairwise effects were not exhaustively determined. For 

the Azoarcus ribozyme, average fitness effects were determined by producing separate 

populations of ribozymes with incrementally increasing numbers of mutations by 

consecutive rounds of error-prone PCR, and then determining the activity of each 
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population relative to the wild-type ribozyme (Hayden et al. 2015). The number of 

mutations in each population was determined by high-throughput sequencing. 

The ncRNA molecules studied in vivo include the Arginine tRNACCU, and the U3 

small nucleolar RNA (snoRNA), both from Saccharomyces cerevisiae. The sequence 

variants, in both of these data sets were produced by randomization during DNA 

synthesis and contained most of the possible single and double mutants, and a random 

sampling of three or more mutations. The tRNA experiments used a yeast strain with this 

non-essential tRNA replaced by a tRNA sequence variant at its native genomic location 

(Li et al. 2016). The growth rate was determined for more than ~105 yeast strains, each 

with a different tRNA variant. This was accomplished by counting the population 

frequency of each tRNA before and after growth competition using high-throughput 

sequencing. The enrichment rate of each tRNA variant is assumed to arise from the 

growth advantage, or disadvantage, provided by the specific tRNA. The experiments 

were carried out at 37°C in YPD media, conditions that inhibited the growth rate of a 

tRNACCU knockout strain to ~20% of the wild-type. The U3 snoRNA experiments used a 

yeast strain with the single copy of the U3 gene under a galactose inducible promoter 

(Puchta et al. 2016). This strain could grow in galactose media, but showed growth arrest 

when transferred to glucose. Growth in glucose was then recovered by transformation 

with a plasmid constitutively expressing the wild-type U3 sequence. Mutational variants 

were assayed by transforming this yeast strain with a library of U3 variants contained on 

a plasmid. Each plasmid also contained a unique 20nt DNA sequence or “barcode”. The 

barcodes linked to each U3 variant were verified in a separate sequencing reaction. This 

enabled only the barcodes to be sequenced during growth competitions. The population 
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frequency of each barcode before and after growth competition was used to determine the 

fitness effect of each U3 variant associated with this barcode. For these in vivo 

experiments, the fitness distributions of mutations and epistasis were previously reported, 

but in different formats. The authors kindly shared their fitness data for this review, so 

that the data could be presented in a common format for comparison. 

Fitness Declines to Accumulated Mutations Reveals Negative Epistasis and Robustness-

Epistasis Link 

Epistasis can be detected from the average effects of increasing numbers of 

mutations. Typically, this is done by categorizing many sequence variants based on the 

number of mutations per molecule n and then determining the average fitness at each 

value of n. The data is fit to the equation w(n) = exp(-αnβ) (Wilke and Adami 2001). 

Upon fitting this equation to the data, the parameter α indicates the average deleterious 

effects of mutations, and determines how rapidly fitness declines as more mutations are 

introduced. Lower values of α require that higher values of fitness are preserved upon 

mutation, a property referred to as mutational robustness (Wagner 2005). The parameter 

β indicates epistatic interactions in the following way. If there are no epistatic 

interactions, or a perfect balance of positive and negative interactions, then β=1 and the 

average fitness declines exponentially with increasing numbers of mutations. Values of 

β>1 indicates a predominance of negative epistasis (Wilke et al. 2003), and the deviation 

from a pure exponential is such that the fitness of genotypes with multiple mutations is 

lower than expected from the average fitness at n = 1 (Fig. 4.1). Values of β<1 indicates 

predominantly positive epistasis. In this case the decline in fitness is less rapid and 

multiple mutations are less deleterious than expected from the average fitness at n = 1. 
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In order to facilitate comparison, we have collected the data for each of the four 

RNA molecules, and plotted fitness as a dependent variable and number of mutations as 

the independent variable. We used non-linear least squares to fit the data to the above 

equation that models fitness decline as a function of the number of mutations (Fig. 4.3). 

All four of the RNA molecules analyzed in this way show a predominance of negative 

epistasis with β>1. For comparison, we have also plotted fitness decline curves without 

epistasis (β=1), but with similar deleterious effects of individual mutations (Fig. 4.3 

dashed lines). Similar epistasis is observed for the Azoarcus ribozyme (β=1.30.20) and 

the U3 snoRNA (β=1.20.02), and the curves are nearly overlapping. More extreme 

average epistasis is seen in the Twister ribozyme (β=1.40.11) and the tRNACCU 

(β=2.70.02). Taken together, all molecules fit into the previously observed negative 

correlation between α and β (van Nimwegen et al. 1999; Wilke and Adami 2001; 

Bershtein et al. 2006), in that all molecules show relatively high robustness (α<0.6) and 

negative epistasis (β>1). It is important to point out that we are only noting general trends 

in the data, and have not evaluated the significance of the differences in α and β between 

the data sets. This is especially true for the Twister data, which comes from curve fitting 

to only three available data points of average fitness at n=0, n=1, and n=2. 

Distributions of Individual Mutational Effects and Pairwise Interactions  

Underlying the average epistatic effects described above is a range of fitness 

effects from individual mutations, and combinations of mutations. For example, 

mutational robustness (small α) could come from either many mutations with neutral 

effects, or a balance of beneficial and deleterious effects. Similarly, average negative 

epistasis could arise from a combination of positive and negative epistatic effects, if the 
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negative epistatic effects are either more frequent or more extreme than the positive 

epistatic effects. Fortunately, three of the data sets (snoRNA, tRNA, and Twister) 

reported the fitness consequence of nearly every possible single and double mutation. 

This allows us to compare the distributions of fitness effects and pairwise epistatic 

interactions in each of these RNA molecules. The snoRNA data was reported as log(w), 

and we transformed this to w to facilitate comparison. In addition, we normalized all the 

data so that the variants with the lowest detected fitness had fitness = 0 and the wild-type 

variants all had fitness = 1. 

We show the distribution of fitness effects caused by mutations as histograms 

(Fig. 4.4). The distributions of individual mutational effects are quite similar, despite the 

differences between the size and structures of these ncRNA molecules (Fig. 4.2), as well 

as the differences in experimental approaches. All three distributions are characterized by 

a large number of neutral mutations, indicated by the modal peak at fitness = 1. There is a 

long tail of deleterious mutational effects (0 < Fitness < 1). There are very few beneficial 

mutations (Fitness > 1), although more were detected for the U3 snoRNA. The U3 

snoRNA shows the highest fraction of neutral mutations, which is consistent with the 

lowest α values obtained from curve fitting. In addition, the Twister ribozyme has a 

higher fraction of extremely deleterious effects (Fitness < 0.2), which is consistent with 

the larger values of α obtained by curve fitting. Taken together, the differences in the 

robustness of these ncRNA molecules to the effects of individual mutations is observable 

in the differences in the distributions of fitness effects. 

We also plotted the distribution of effects caused by two mutations as lighter 

colored bar graphs in Figure 6.4. The distributions are clearly shifted to the left relative to 
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the single-mutation distributions, which indicates that two mutations are typically more 

deleterious than one mutation. This is expected, and in itself does not indicate epistasis. 

However, the differences between the distributions of each RNA molecule are 

informative. We will describe the change that is observed for each ncRNA by comparing 

the distribution of single mutational effects to double mutational effects, i.e. from the 

dark to light histograms in Figure 6.4. The Twister data (Fig 6.4E gray) shows a dramatic 

increase in the number of non-functional variants, such that the modal fitness actually 

changes from fitness=1 to fitness=0 when comparing single to double mutations. In 

contrast, the most apparent change in the tRNACCU data (Fig. 4.4A blue) is a dramatic 

decrease in the proportion of neutral variants (fitness = 1). The distribution of double-

mutant fitness values for the tRNACCU data is more broadly distributed over intermediate 

non-zero values, as compared to the Twister data. Finally, the U3 snoRNA data has the 

least pronounced change, with a slight increase in non-functional variants as well as 

intermediate low fitness variants, but the model peak near fitness=1 remains. The cause 

of differences in the fragility of the different RNA molecules to the effects of two 

mutations remains unknown, but may involve the thermodynamics of the specific 

structure, or differences in the environment, such as the presence of chaperone proteins in 

vivo, which will be discussed in more detail below. 

To detect epistasis in this data requires a comparison between the measured 

effects of pairs of mutations and what would be predicted from the effects of each 

individual mutation (see Fig. 4.1 for explanation). The calculated pairwise epistatic 

values are plotted as histograms in Fig. 4.4. All distributions indicate that there exists 

both positive and negative epistasis. However, the mean and skew of the data support a 
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predominance of negative epistasis. The distribution of effects in the Twister ribozyme is 

much broader than the other two distributions, with a heavy tail in the negative direction. 

The nearly balanced distribution of positive and negative effects in the pairwise 

interactions of U3 snoRNA emphasize the importance of higher-order epistatic 

interactions in this ncRNA (Weinreich et al. 2013; Sailer and Harms 2017), and is 

consistent with the curve fitting analysis to the average effects of higher numbers of 

mutations (Fig. 4.3). 

Discussion 

Laboratory and Computational Studies Find Predominantly Different Epistatic 

Interactions 

The predominance of negative epistasis is notable because it differs from previous 

results from computational folding of RNA that uncovered a predominance of positive 

epistasis (Fig. 4.3 green curve). Specifically, Wilke et al. studied the computationally 

predicted folding of 76nt long RNA molecules (Wilke et al. 2003). They randomly 

generated 100 reference sequences of this length, and determined their computationally 

predicted secondary structure. Then they produced sequences at incrementally increasing 

numbers of mutations relative to each reference. They defined fitness as the fraction of 

sequences that folded into the same structure as the reference, and determined fitness for 

up to 106 sequences at each number of mutations. They fit this data to the epistasis 

equation used above, and extracted α and β parameters. In contrast to the laboratory 

studies reviewed here, all values of β fell into the positive epistasis range (β<1), and all 

molecules also showed a lower tolerance to mutations (α>0.6). One intriguing possibility 

for this difference is that natural selection has favored molecules with many mutational 
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neighbors that maintain function, leading to the evolution of mutational robustness in 

naturally occurring RNA (Meyers et al. 2004; Kun et al. 2005). The random sequences 

used in the computational studies would not be expected to have mutational robustness if 

it is the product of evolution. Future high-throughput experiments with natural and 

artificially selected ribozymes could be designed to directly test this hypothesis. Another 

possible explanation for this discrepancy is that computationally folding RNA secondary 

structures are bimodal and predict either a fitness of 1 or 0 (Wilke et al. 2003). The 

empirical fitness measurements, on the other hand are continuous, and a large fraction of 

the fitness effects fall into intermediate values of fitness effects. This lack of intermediate 

values in computational structure prediction could lead to an overestimation of 

deleterious mutational effects, and an underestimate of negative epistasis. 

As noted, several previous studies involving both theoretical prediction and 

experimental data found a negative correlation between the parameters α and β (Wilke 

and Adami 2001; Bershtein et al. 2006; Hayden et al. 2015). This suggests that epistasis 

becomes more predominantly negative as the average mutational effects are decreased. 

The data previously reported for the Azoarcus ribozyme involved three different 

conditions where selection pressure was intentionally decreased. As expected, decreased 

strength of selection resulted in increased β, and decreased α (Hayden et al. 2015). 

Therefore, it appears that the negative correlation between α and β holds whether the 

intensity of mutational effects is altered by changes in the specific molecule, such as the 

different RNA molecules reviewed here, or changes in the environment. 

A direct comparison of in vivo fitness and in silico prediction was also previously 

reported for the specific Arginine tRNACCU (Li et al. 2016). The authors found that the 
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propensity to fold properly is a poor indicator of fitness in their experiments. They found 

that their strain of S. cerevisiae is more robust to mutations in this particular tRNA than 

predicted from computational folding of these sequences. This could indicate that this 

tRNA can still function properly despite small deviations from a canonical structure, such 

as a single missing base pair. This would be somewhat surprising given the numerous 

interactions involving tRNA molecules during its lifetime in the cell (Maraia and 

Arimbasseri 2017). In addition, other tRNAs can also decode this codon, and it is 

possible that only a small amount of properly folded tRNACCU is required to recover 

normal growth. The AGG codon that is decoded by tRNACCU is the second most common 

Arginine codon in S. cerevisiae, representing ~20% of the codons for this amino acid 

(Cherry et al. 2012). 

Another possibility is that RNA chaperones alter the folding such that some of 

sequence variants fold into the native structure even when it is not the most stable (MFE) 

structure. It is well established that an RNA chaperone called the La protein can assist the 

proper folding of several RNA molecules, including tRNAs, and has been shown to hide 

the deleterious effects of point mutations (Chakshusmathi et al. 2003). In addition, 

several RNA chaperones have been shown to facilitate the native folding of numerous 

RNA molecules (Herschlag 1995; Russell 2008), including several ribozymes (Herschlag 

et al. 1994; Halls et al. 2007; Sinan et al. 2011). The U3 snoRNA is a part of an RNA-

protein complex (SSU processome) that processes ribosomal RNA from primary 

transcripts. Assembly of this complex has been shown to involve several RNA 

chaperones and helicases (Soltanieh et al. 2015; Hunziker et al. 2016). In addition to 

normal folding pathways, several chaperones have recently been shown to buffer the 
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deleterious effects of many different mutations (Rudan et al. 2015). Similar to chaperones 

for protein folding, such as HSP90, RNA chaperones could enable a property referred to 

as phenotypic capacitance, where otherwise deleterious mutations are maintained in the 

population, providing the potential to produce novel adaptations upon environmental 

change (Rutherford and Lindquist 1998; Queitsch et al. 2002; Jarosz and Lindquist 2010). 

In fact, this has recently been proposed as a factor in tRNA diversification in Eukaryotes 

(Maraia and Arimbasseri 2017). Despite this critical role of RNA chaperones in the 

mapping of RNA genotypes to phenotypes, the role of RNA chaperones in promoting the 

evolution of novel ncRNA structures and functions remains poorly understood. 

However, the prevalence in negative epistatic interactions for RNA molecules 

studied in vitro and in vivo suggests a common mechanism that cannot be explained by 

the different experimental environments. For example, besides the presence of chaperone 

proteins, negative epistasis in vivo could result from a cooperative destabilization of the 

multi-component complexes involving the studied RNA molecules. While this 

contribution is not ruled out, it cannot be the cause of negative epistasis for the ribozymes 

studied in vitro where only the RNA is present. This suggests that a property of the RNA 

structures themselves can account for negative epistasis. RNA structures may provide 

buffering against individual mutations, yet be sensitive to many mutations. We note that 

protein enzymes have also shown a predominance of negative epistasis that has been 

attributed to the crossing of a thermodynamic threshold (Bershtein et al. 2006). The 

combined results suggest a similar phenomenon is occurring in these RNA structures. A 

thermodynamic framework may provide a prediction of epistasis within gene products 

and multi-component RNA-protein complexes. 
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It is interesting to note that several previous studies have found a predominance of 

positive epistasis in the genomes of RNA viruses when they are randomly mutated away 

from the wild-type (Bonhoeffer et al. 2004; Sanjuán 2010). The distribution of individual 

mutational effects in RNA viruses has also been studied, and uncovered a very high 

fraction of mutations with a lethal effect (fitness = 0). For example, about 40% of 

mutations were found to be lethal in both the tobacco etch virus and vesicular stomatitis 

virus (Sanjuán et al. 2004; Iglesia and Elena 2007). These findings are consistent with the 

negative correlation between epistasis and robustness (larger α and β<1). More generally, 

the distribution of fitness effects in viral genomes (Sanjuán 2010) appears to be quite 

similar to findings in some cellular genomes (Eyre-Walker and Keightley 2007), in that 

both show large fractions of lethal mutations, and predominately positive epistatic 

interactions or no predominant direction of epistasis (Elena and Lenski 1997; He et al. 

2010). Individual proteins, on the other hand, have fitness distributions very similar to 

those seen here in RNA molecules, with very few lethal mutations and negative epistasis 

(Soskine and Tawfik 2010). Given the apparent robustness of individual macromolecules, 

and the multiple forms of robustness in living organisms (Wagner 2011), the mutational 

targets that are the source of lethal mutations in the genomes of viruses and cellular 

organisms is not completely understood. It is possible that these few well-studied 

examples of proteins and RNA are not typical in their distribution of fitness effects, but 

this seems unlikely given the variety of forms and functions as well as the multiple ways 

they were assayed. Another possibility is that pleiotropic mutations that affect multiple 

traits or processes are more likely to be lethal. More research is needed to understand the 
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mechanisms and implications of differences in the mutational effects in organisms and 

their genetically encoded biological parts. 

The presence of negative epistasis is important for models that attempt to explain 

the evolution and maintenance of recombination and sexual reproduction (Kouyos et al. 

2007). The RNA molecules reviewed here meet several of the requirements for this 

theory, namely a predominance of negative epistasis, correlation between epistasis and 

strength of selection, and probably tight linkage between mutations within the small RNA 

molecules. At first these small RNA genes seem unlikely to be a large enough target for 

recombination to explain the evolution of recombination at the organismal level. 

However, when one considers the pervasiveness of transcription, and the discovery of 

long non-coding RNA, the breaking up of linked mutations with negative epistasis within 

RNA molecules cannot be ruled out as a driving force for the evolution of recombination. 

Interestingly, it has been proposed that genetic recombination may have contributed to 

the origin of life (Lehman 2003). In fact, RNA recombinase ribozymes have been 

demonstrated in the laboratory as models of the RNA World versions of modern protein 

recombinase enzymes (Hayden et al. 2005; Vaidya et al. 2012; Pesce et al. 2016). The 

predominance of negative epistasis in the RNA molecules reviewed here suggest that the 

earliest RNA genomes could have benefited from recombination, and supports the theory 

that genetic recombination may be as old as life itself.  
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Figure 4.1 Experimental approaches to uncovering epistatic mutational 

interactions. Mutation accumulation and curve fitting.  

(A) Predominantly negative (red) or positive (green) epistasis can be detected by 

mutation accumulation followed by non-linear curve fitting. The average fitness (w) is 

determined for populations of genotypes with a given number of mutations (n). No 

epistasis is inferred by β=1 (black curve). Decreasing β results in positive epistasis, while 

increasing β results in negative epistasis. All curves have the same average mutation 

effect (α = 0.2). (B) Examples of curves with no epistasis (β = 1) and different values for 

α. Comparing effects of individual vs. pairs of mutations. Mutation effects are compared 

to a wild-type reference (ab). Two mutations are indicated as a to A and b to B. 

Assuming that the effects of each mutation is multiplicative, epistasis (grey box) is 

identified as a deviation from this prediction. Positive epistasis is observed as higher than 

expected fitness. Negative epistasis is observed as lower than expected fitness. (C) 

Epistasis between deleterious mutations (red). (D) Epistasis between beneficial mutations 

(blue). 
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Figure 4.2 Structures of the RNA Molecules. 

The size of the RNA, name, and genomic source is given below each structure. The assay 

conditions used to measure mutational effect (in vitro vs. in vivo) are also indicated. 

Structures were rendered in Pymol. Crystal structure coordinates are from the Oryza 

sativa Twister ribozyme (4OJI), the Azoarcus group I intron (1ZZN), an Asparagine 

tRNA from yeast (1VTQ). The U3 snoRNA structure is taken from the context of a cryo-

EM structure of the 90S pre-ribosome (5JPQ). Structures are not to scale.  
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Figure 4.3 Decline in the average fitness of ncRNA variants caused by increasing 

numbers of mutations.  

The average fitness w is plotted as a function of the number of mutations per molecule n 

determined by the number of nucleotide differences relative to a wild-type reference 

sequence. Solid lines represent epistatic equations of the form w(n)=exp(-αnβ), with 

parameters that produce the best-fit to the experimental data by non-linear least squares 

curve fitting (Python). Individual data points are excluded for visual clarity, however are 

included in the Supplemental Material (Fig. S4.2). For comparison, dashed lines show 

curves with no epistasis =1, and an activity at n=1 similar to the twister ribozyme (gray 

dashed line) or the other three RNA molecules (blue dashed line). Data from the 

computational folding of RNA sequences (RNA comp) with positive epistasis are also 

shown for comparison (green). 
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Figure 4.4 Distribution of fitness effects and pairwise epistasis. 

(A) Distributions of fitness effects for individual mutations (dark blue) and pairs of 

mutations (light blue) for tRNACCU (Li et al. 2016). (B) Distributions of individual (dark 

red) and pairwise (light red) mutational effects in the U3 snoRNA (Puchta et al. 2016) 

(C) Distributions of individual (dark gray) and pairwise (light gray) mutational effects in 

the Twister ribozyme (Kobori and Yokobayashi 2016). (D) Distribution of epistatic 

values for pairs of mutations for the tRNACCU. (E) Distribution of epistatic values for 

pairs of mutations for the U3 snoRNA. (F) Distribution of epistatic values for pairs of 

mutations for the Twister ribozyme. Epistatic values were calculated as ε = log10 

(WAB*Wwt / WA*WB), where WA and WB are the fitness of RNA variants with a single 

mutation, WAB is the fitness of the variant with both mutations, and Wwt is the fitness of 

the wild-type. All distributions are set to the same scale on the x-axis. Inset in (F) shows 

the full distribution of epistatic effects in the Twister ribozyme. 
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Supplemental material 

Negative epistasis naturally arises when selection works on a linearly decreasing 

distribution of fitness effects. A population subject to just one of these (deleterious) 

mutations will consist of those with the smallest s, because selection will favor those 

mutants over others. With two mutations, the two smallest s mutations will go to fixation, 

and so on. The order of the mutations as they accumulate under selection will therefore 

be the smallest first (Fig. S4.1, solid lines), which results in negative epistasis. 

Fitness-functions above the black line results in negative epistasis, and because 

this curve is close to the fitness-function of the decreasing s (dashed blue line), we can 
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expect that most distributions will lie above this (black) line, and thus result in negative 

epistasis. 

Epistasis is calculated as ε = log10(W0WAB/WAWB) (green lines) and ε = W0WAB - 

WAWB (brown lines), which both have the same sign, even if they show different 

magnitudes of epistasis. Here we assume that the effect of the other single-mutant is the 

same as the first, i.e., WA = WB. 

The order of mutations (i.e., 0 → A → AB vs. AB → A → 0) makes no 

difference for the sign of epistasis, as interchanging W0 and WAB gives the same result. 

This means that for adaptive evolution with those same mutations in reverse, the (now 

beneficial) mutations with the largest s would most likely go to fixation first, and 

epistasis along this trajectory would therefore also be negative, resulting in diminishing 

returns epistasis. 

 
Supplemental Figure 4.1. A linear distribution of fitness effects results in negative 

epistasis.  

A linearly increasing selection coefficient distribution (orange solid line) results in a 

fitness-function that declines slowly as the number of mutations increase (blue solid line). 

A decreasing distribution of fitness effects (dashed orange line) results in a fitness 

function that decreases sharply with the first large-effect mutations (blue dashed line). 

The increasing s results in negative epistasis (green and brown solid lines), while the 

decreasing s results in positive epistasis (green and brown dashed lines). Random 

sampling of mutations over 100,000 replicates gives an intermediate fitness-function 
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(black line), which results in a constant s = 0.5 (thin orange line) and zero epistasis (thin 

lines). 

 

 
Supplemental Figure 4.2. Distribution of genotype fitness of ncRNA variants 

caused by increasing numbers of mutations.  

The fitness of each genotype is plotted as a function of the number of mutations per 

molecule n determined by the number of nucleotide differences relative to a wild-type 

reference sequence. Each data point represents a single genotype from tRNA (blue), 

snoRNA (red) and Twister (gray) datasets. This is the normalized fitness data used to 

infer alpha and beta parameters in Figure 6.3. Dashed lines indicate the mean fitness for 

each mutational distance.  
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DISSERTATION CONCLUSION 

Overall, the work presented here represents a significant contribution to our 

ability to construct and empirically characterize RNA fitness landscapes. The 

development of two high-throughput ribozyme assays opens the door for further 

empirical landscape construction. The phased nucleotide insert technique will allow for 

larger landscapes to be constructed using bigger mutational libraries without increasing 

the sequencing cost. The implementation of data-driven stochastic evolutionary modeling 

allows for a clearer evolutionary characterization of the landscape than straight-forward 

pathway analyses. Understanding the connection between genotype and phenotype in 

RNA systems is important for designing RNA functions, improving in vitro selections 

and understanding the origins and evolution of new RNA functions or even to predict or 

forecast future evolutionary directions. Applying the advances within this work yielded 

valuable information about evolutionary innovations, the effects of higher 

dimensionality, evolution of extant ribozymes and the prevalence of epistasis in RNA 

fitness landscapes. Overall this work represents a significant contribution to the field of 

evolutionary biology, both in terms of new tools in the fitness landscape toolbox and new 

insights into evolutionary processes.
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APPENDIX A: PHASED NUCLEOTIDE INSERTS FOR SEQUENCING LOW-

DIVERSITY SAMPLES FROM IN VITRO SELECTION EXPERIMENTS 
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Abstract 

In vitro selection combined with high-throughput sequencing is a powerful 

experimental approach with broad application in the engineering and characterization of 

RNA molecules. The diverse pools of starting sequences used for selection are often 

flanked by fixed sequences used as primer binding sites. The low nucleotide diversity at 

the beginning of the sequence causes reduced sequence output and poor sequence quality 

on Illumina platforms due to complications with fluorescence imaging algorithms. A 

common solution to this problem is the addition of fragmented bacteriophage PhiX 

genome. This increases diversity to allow for sequencing, but sacrifices a portion of the 

usable sequencing reads. An alternative approach to improve nucleotide balance is to 

insert nucleotides of variable length and composition at the beginning of each molecule 

when adding adaptors prior to sequencing. This approach preserves read depth by 

sacrificing several bases in the length of each read. Here, we test the ability of inserted 

nucleotides to replace PhiX in a low-diversity sample generated from a high-throughput 

sequencing based ribozyme activity screen. We designed an RNA library based on the 

twister ribozyme from Oryza sativa and screened the resulting 4,096 sequence variants 

for self-cleaving ribozyme activity. Phased nucleotides were inserted during reverse-

transcription using four different template-switching oligos. The resulting cDNA was 
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sequenced with and without the addition of PhiX DNA on a MiSeq platform. We found 

that libraries with the phased inserts produced equally high-quality sequence data 

whether or not PhiX DNA was added. In this experiment, the increase in read depth 

achieved without PhiX improved the consistency of activity measurements as compared 

to previously reported data. We conclude that phased inserts can be implemented 

following in vitro selection experiments to eliminate the use of PhiX when read length is 

not critical. 

Introduction 

The development of RNA molecules with desired functions has numerous 

applications in RNA research. While de novo rational design of sequences that provide a 

desired function remains an ongoing pursuit (Daher et al. 2017; Weenink et al. 2017), in 

vitro selection offers a proven experimental approach (Robertson and Joyce 1990; 

Ellington and Szostak 1990). In vitro selection starts with diverse pools of sequences and 

uses cycles of functional selection and amplification to enrich only the sequences with 

the desired function, while discarding unwanted sequences. Nucleotide sequence analysis 

is often used to monitoring the results of in vitro selections. Historically, sequencing has 

focused on the end-point of selection in order to find a small number of desired 

sequences that are in high abundance. More recently, advances in high-throughput 

sequencing have enabled a more quantitative analysis of selections over time and to 

provide a larger set of functional sequences. High-throughput sequence analysis has been 

applied to several common goals of in vitro selection, such as finding ligand specific 

aptamers (Dupont et al. 2015; Levay et al. 2015), catalytic RNA molecules (Ameta et al. 

2014; Pitt and Ferré-D’Amaré 2010; Hayden 2016), and chimeric aptazymes, which are 
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allosteric ribozymes that are engineered by combining aptamer and ribozyme sequences 

in a single molecule (Martini et al. 2015). The steps in the process are inspired by 

evolution, and the cycles of replication, mutation and selection have also been used to 

study the process of evolution as it unfolds in real-time in the laboratory (Joyce Gerald F. 

2007; Hayden et al. 2011). 

In vitro selections often begin with very diverse pools of sequences (libraries) that 

can include over 1015 different nucleotide sequences. These diverse pools enable the 

search for rare functions or beneficial combinations of mutations. However, these 

complex libraries often have no sequence diversity at their 5’ and 3’ ends because these 

sequence elements are used as primer binding sites for amplification by PCR or reverse-

transcription PCR during the regeneration phase of a selection. Importantly, these primer 

binding sites are the first nucleotides to be sequenced by Illumina platforms, which 

causes a major challenge when the instrument’s automated algorithms are trying to 

identify the precise location of individual sequence clusters that are subsequently monitor 

during rounds of sequencing by synthesis (Krueger et al. 2011). Ironically, because of the 

lack of nucleotide diversity at the beginning of each read, these complex libraries are 

considered “low-diversity” for the Illumina platforms. Low-diversity samples have been 

shown to result in poor sequence output and quality. One way to improve the sequencing 

of samples with low nucleotide diversity is to add randomly fragmented DNA from 

bacteriophage PhiX (Illumina Technical Report, 

https://support.illumina.com/bulletins/2017/02/how-much-phix-spike-in-is-

recommended-when-sequencing-low-divers.html, April 7 2017). This PhiX addition 

changes the balance of juxtaposed fluorescent signals during early sequencing cycles 

https://support.illumina.com/bulletins/2017/02/how-much-phix-spike-in-is-recommended-when-sequencing-low-divers.html
https://support.illumina.com/bulletins/2017/02/how-much-phix-spike-in-is-recommended-when-sequencing-low-divers.html
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which improves output and quality. However, this PhiX addition also consumes 5-50% of 

the sequencing reads effectively diverting a portion of the sequencing cost toward an 

unwanted target. For perspective, a typical HiSeq run with 15% PhiX results in the 

sequencing of the entire PhiX genome approximately 8,000 times. In addition to being 

wasteful, the abundant use of PhiX has also caused contaminated genome assemblies 

(Mukherjee et al. 2015). A brief survey of the literature shows recent in vitro RNA 

selection experiments use 8-30% PhiX addition resulting in high-quality data and 

significant data loss (Kobori and Yokobayashi 2016; Pressman et al. 2017; Kobori et al. 

2017, 2015). 

The loss of data at this level has consequences for the precision and accuracy of 

functional measurements from sequence data. Several experimental designs have used the 

change in abundance of each unique sequence over selection rounds to quantify function, 

such as binding affinity or ribozyme activity. The accuracy and precision of this approach 

depends upon sequencing depth, defined as the number of reads assigned to each unique 

sequence (Sims et al. 2014). In this approach, sequences with lower read depth show poor 

precision between replicates. Therefore, losing a substantial portion of sequencing reads 

can limit the ability to accurately quantify functions or properties of individual 

sequences, or fail to identify rare sequences. Alternatively, in order to improve read 

depth, precision and accuracy, it’s possible to increase the amount of sequences generated 

by moving to a higher throughput sequencing platform or simply doing multiple 

sequencing runs. However, this can significantly increase the cost of sequencing in an 

effort to obtain adequate usable data. Another approach is the use of custom read primers 

that overlap constant regions next to variable regions and improve diversity while 
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reducing read lengths. This approach requires that there exist known constant regions in 

the library, which is not always the case, and requires that new custom primers be 

designed for each library. This approach also ignores any possible unexpected mutations 

or errors that might occur that are not in the variable region. 

An alternative approach to improving low-diversity sequencing is to insert 

nucleotides of variable length and composition when preparing samples for sequencing. 

This has been achieved using a set of PCR primers that each add a different number of 

bases upstream of PCR amplicons that will be sequenced. These primers are often 

referred to as “phased primers” because they shift the cycle number in which the 

amplicon is sequenced such that neighboring clusters are often out of phase, and no 

longer produce identical or highly similar fluorescent signals in each sequencing cycle. 

This approach improves sequencing read depth but reduces the available sample read 

length. Therefore, this approach is best utilized when target molecules are shorter than 

the read length by more than the length of the phased nucleotide insert. This approach has 

been applied to the sequencing of ribosomal genes from microbial communities, and was 

shown to improve sequence throughput, as well as average base quality scores and 

effective read length. This prior work on microbial amplicon sequencing suggests that a 

similar phased primer design could also improve the sequencing of cDNA resulting from 

the in vitro selection of RNA. 

Here, we test the use of phased nucleotide insertions for high-throughput 

screening of a library of RNA molecules for their ability to catalyze a self-cleaving 

ribozyme reaction. We designed an RNA library based on the twister ribozyme from the 

Oryza sativa genome (Roth et al. 2014) that randomized six nucleotide positions in two 
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distal regions that interact in a tertiary structural element (Fig. A.1A). This ribozyme 

cleaves near the 5’-end of the RNA. Assessment of the relative activity of each sequence 

variant requires sequencing both uncleaved and cleaved molecules in order to quantify 

the fraction of each sequence that is in the cleaved vs. uncleaved form (fraction cleaved). 

For this purpose, we used a reverse transcription protocol that relies on the template 

switching property of the reverse transcriptase to produce single stranded cDNA with 

attached partial adapter sequences from all RNA molecules, regardless of their 5’-

sequence identity (5’-RACE protocol). Our phased nucleotide inserts were introduced 

into the template-switching oligo such that they become the first nucleotides sequenced 

by the Illumina platform. The inserted sequences were of four different lengths in order 

to change the phasing of the subsequent ribozyme sequences. They were also designed to 

have a balanced nucleotide composition with approximately equal likelihood of A, C, G 

and T at each of the first nine inserted nucleotides to improve cluster identification at the 

critical initial cycles of sequencing (Fig. A.1B). To test our phased inserts, we carried out 

a co-transcriptional cleavage reaction with our ribozyme library and prepared this RNA 

for Illumina sequencing using our phased template switching oligos during reverse 

transcription. We then sequenced this sample on a MiSeq platform in two conditions. The 

first condition used the addition of 25% PhiX and the second condition used essentially 

no PhiX. 0.5% PhiX was added to the second condition in order to determine the 

sequencing error rates and did not significantly alter nucleotide diversity. Comparing 

these two conditions allows for a direct assessment of the efficacy of the phased insert 

nucleotides for the sequencing of low-diversity samples.
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Results and Discussion 

Simulated Sequencing Predicts That Phased Inserts Provide Better Nucleotide Balance 

Over Phix 

To predict the capacity of our phased inserts to improve the nucleotide diversity 

and balance of the low-diversity ribozyme samples, we produced simulated sequence data 

to mimic the sequence diversity that would be produced under different library 

preparation protocols. For comparison, we determined the expected uncertainty of each 

position of sequencing reads (Fig. A.2). Our model used randomly generated collections 

of one million sequences taken from the twister ribozyme library sequences, then 

appended our phased inserts, or added random sequences to approximate the PhiX 

genome, or both. Each read was then appended with Illumina sequencing primers and the 

first 150 nucleotides that would be sequenced were analyzed. For each position (index) 

starting from the 5’ end, we used information theory to calculate the entropy (Adami 

Christoph 2012). Entropy is dependent on the nucleotide balance or relative proportion of 

each nucleotide at each position (Fig. AS.1). Entropy was calculated in units of bits, 

where a single completely random nucleotide has an entropy of 2 bits. Inversely, a 

nonrandom nucleotide has an entropy of 0. As a metric of nucleotide diversity along the 

entire read, the average positional entropy was calculated. For comparison, we also 

generated a low-diversity control that used only the 4,096 unique sequences of the twister 

library with no phased inserts and no PhiX addition. These sequences are identical for all 

but the six positions of the T1 pseudoknot that were randomized (Fig. A.2, grey). This 

control sample produces an average positional entropy of 0.080.39 (). The addition 

of 25% PhiX alone into the sequencing pool produces a modest improvement in the 
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entropy, resulting in an average positional entropy of 1.030.19 (Fig. A.2, yellow). The 

addition of phased nucleotide insertions alone reduces the average nucleotide balance 

beyond what is achieved by PhiX, giving an average positional entropy of 1.430.36 

(Fig. A.2, blue). Finally, having both phased inserts and 25% PhiX only modestly 

improves the nucleotide balance compared to phased nucleotide insertions alone, with an 

average positional entropy of 1.730.17 (Fig. A.2, red). We conclude from this simulated 

sequence run that the phased inserts are expected to improve nucleotide balance over 

PhiX alone and suggests that the addition of PhiX might no longer be needed. 

Phased Inserts Produce High Quality Data Without Phix 

We next tested our model prediction by comparing two sequencing runs of the 

twister library. Both runs used the same DNA sample that was generated by the same 

template switching reverse transcription reaction with phased nucleotide insertions. One 

sequencing run used a 25% PhiX addition, and the other did not. The two sequencing 

runs produced similar raw output quantity and quality, with >90% clusters passing filter, 

and >90% of base calls greater than Q30 (Table A.1). The run with 25% PhiX spike-in 

yielded slightly more clusters (1.10 million) compared to without PhiX (1.03 million), 

however this is within a normal expected range for the platform (MiSeq, Nano mode). 

The quality scores for each position in the sequencing read are similar for the two runs 

(Fig. A.3A). Each boxplot in Fig. A.3A is noticeably higher than a quality score of 28, 

which indicates a base call accuracy of 99.9%. This is typically considered very high-

quality data. By averaging the quality scores for each nucleotide position in a sequencing 

read we can calculate a mean sequence quality score. The distributions of the mean and 

minimum sequence quality scores for sequencing with and without PhiX are also very 
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similar and further supports the conclusion that the two runs yielded very similar, high-

quality data (Fig. A.3B, 3C). To validate that the quality of the data was improved by the 

addition of phased nucleotide inserts, we compared it to a previous failed sequencing run 

without phased inserts and with 10% PhiX addition (Fig. AS.2). This library was 

similarly prepared but was based on a different self-cleaving ribozyme (HDV) and was 

sequenced using an Illumina HiSeq 3000 platform. This sequencing run resulted in 

significant amounts of failed cluster identification with only ~12% of clusters passing 

filter. The clusters that did pass filter were low quality, with a mean sequence quality of 

<28 (Fig. AS.2B). Although this sequencing run was on a different platform, both the 

MiSeq and the HiSeq platforms are known to suffer from similar low-diversity issues. 

These findings support the prediction that phased nucleotide insertions alone, without 

PhiX, remedy the low diversity of our ribozyme samples. 

Eliminating PhiX Improves Sequence Read Depth 

The extra data from eliminating PhiX results in an improvement in the sequencing 

depths for both cleaved and uncleaved reads of each genotype (Fig. A.4A). This is 

important because these counts are used to quantify the relative activity of each 

nucleotide sequence. The sequencing run without PhiX produced a total of 899k twister 

library reads. The sequencing run with PhiX produced only 689k ribozyme reads, a 

difference of ~210k reads (Table A.1). To a first approximation, phased inserts alone 

increases read depth by the amount of PhiX that was added, i.e. 25% in our case, albeit 

with shorter usable read length. The net effect, in terms of usable nucleotides sequenced, 

depends heavily on the read-length kits (70, 150, 300 cycles) and the length of the target 

sequence. If the length of the target sequence and the phased insert is less than the read-
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length kit then the net increase in reads is directly connected to the amount of PhiX used 

(25% in our case). This is because data output and quality were not reduced when PhiX 

was eliminated. We note that the reduction in coverage has a larger impact on the cleaved 

reads because they are in lower abundance than the uncleaved reads. For example, when 

comparing the read counts from the two runs, the cleaved reads show a lower correlation 

(R2=0.48) than the uncleaved reads (R2=0.97), illustrating the risk caused by PhiX 

addition for low abundance reads. 

Genotype Fitness Validation with Previously Published Data 

The relative ribozyme activity of a subset of our ribozyme library was previously 

reported in a high-throughput sequencing based mutation analysis (Kobori and 

Yokobayashi 2016). Specifically, the activity for 18 single and 81 double mutants within 

the T1 pseudoknot were previously reported. To facilitate a visual comparison, we 

present the previous data and our two data sets as heat maps (Fig. A.4C). A visual 

comparison shows a good general agreement between the two data sets. It is important to 

note that compared to our assay, the previously published data was collected with a 

longer co-transcription time (2 h), higher pH (8.0) and lower magnesium concentration (6 

mM). The layout of the heat maps are such that the activities of sequence with a single 

mutation are on the far left column and bottom row. Along the diagonal are the activities 

of ribozymes with compensatory double mutations that convert one of the C-G base pairs 

(recall that the pseudoknot in the wild-type ribozyme is comprised of three consecutive 

C-G base pairs) to a different Watson-Crick base pair (G-C, A-U, or U-A). The previous 

data and our current data are very similar in that these compensatory mutations tend to 

maintain high relative ribozyme activity. The majority of the differences between the 
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previous data and our current data lie off the diagonal. These positions in the heat map 

represent pairs of mutations that do not result in a Watson-Crick base pair at one position 

in the pseudoknot. We find that in general our new data reports higher activity for both 

G-U and A-C wobble base pairs. These base pairs may be stabilized slightly by the 

specific conditions of our experiment. Such data comparisons between experiments with 

different conditions may be used to understand genotype by environment interactions for 

RNA molecules (Adami 2004). 

The decrease in reads associated with PhiX addition has real consequences in our 

data. Importantly, of the 4,096 unique sequences in our library, 4011 were observed in 

the cleaved state in data that was obtained with PhiX. In contrast, only 3933 sequences 

were found to be cleaved when PhiX was added. Every sequence was found in the 

uncleaved state with and without PhiX. This illustrates how data saved by our phased 

inserts results in better detection of low abundance reads. In addition, we look more 

closely at the deviations between our two data sets and the previously reported data (Fig. 

A.4D). We find that the differences in relative activity are more extreme between the 

previously published data and our data that used PhiX, and our data that was obtained 

with phased inserts only produced less extreme differences (Kruskal-Wallis H=6.42, 

p=0.01). We conclude that the data saved by the use of phased inserts increases the 

detection of low abundance reads as well as the consistency of activity measurements 

between experiments. 

We find that phased nucleotide inserts are an effective method to improve 

sequencing yield of our ribozyme reactions by eliminating the need for PhiX addition. 

While our study system analyzed self-cleaving ribozymes, our results should hold for 
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other in vitro selection experiments, including selections for RNA and DNA aptamers 

and aptazymes. Phased nucleotides could be introduced in several ways, depending upon 

how sequencing adaptors are added. For example, phased nucleotides could be 

introduced into oligos used during RNA ligation protocols, or into PCR primers. 

However, the approach does sacrifice read length for improving read depth. Replacing 

PhiX addition with phased inserts only makes sense in situations where sequenced 

molecules are shorter than the read length by more than the length of the inserted 

nucleotides. We conclude that the use of similar phased insert designs would improve 

numerous in vitro selection experiments. 

Materials and methods 

Simulated Sequencing Run Entropy Calculation 

To determine the expected effect of phased nucleotide inserts as compared to the 

addition of a random genome such as PhiX, we used information theory to calculate the 

expected entropy at each position based on the alignment of 1 million generated reads. 

This was repeated for four different sequencing libraries: 1) no phased insert + no PhiX, 

2) no phased insert + 25% PhiX, 3) phased insert + no PhiX and 4) phased insert + 25% 

PhiX. At each position in the aligned sequencing reads entropy (H) was defined as: 

𝐻(𝑥) = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
𝑁
𝑖=1  (Adami Christoph 2012), where N=4 representing the four 

canonical DNA nucleotides and pi indicates the relative proportion of that nucleotide at 

that position. 

Phased Nucleotide Insert Design 

Four template switching oligonucleotides (TSO) were designed with phased 

nucleotide inserts that added 9, 12, 15 or 18 nucleotides (Table A.2). The phased 
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nucleotides were inserted between the partial Illumina adapter and three ribose guanines 

in a TSO needed for second strand synthesis by template switching. The four phased TSO 

were combined in equal concentrations and diluted to a concentration of 10 µM total 

oligonucleotides in Tris-EDTA pH 8. 

Twister Library Design 

The twister library was synthesized as a “machine-mixed” ssDNA oligonucleotide 

(IDT). The library was synthesized as the reverse complement to act as the template 

strand during in vitro transcription with T7 RNA polymerase. The minus strand of the T7 

promoter was appended to the 3’-end, and a fixed sequence (linker) was added to the 5’-

end of the DNA library to serve as a primer binding site for reverse transcription 

(Wilkinson et al. 2006) (Table A.2). The ribozyme sequence included 54 nucleotides 

taken from Oryza sativa (Osa-1-4) ribozyme except with randomized bases (N) at six 

nucleotide positions that correspond to the T1 pseudoknot (Fig. A.1A). This results in a 

library of 46 = 4,096 unique RNA sequences. 

Co-Transcriptional Self-Cleavage Assay 

The promoter region of the ssDNA library was made double stranded by 

annealing to the T7-TOP+ primer (Table A.2). Reactions containing 20 pmol of each 

oligonucleotide and 10X T7 buffer (300 mM Tris pH 7.5, 500 mM DTT, 200 mM 

Spermidine, 100 mM MgCl2). Oligos were heated to 98C for 5 mins then cooled to room 

temperature and diluted 10-fold. Transcription reactions used 8 µL of annealed library in 

a 200 µL reaction with 1X T7 buffer, 4 L rNTP (25 mM, NEB), 8 L T7 RNA 

polymerase (200 units, Thermo Scientific) and 160 L RNase free water (Ambion) and 

were incubated at 37C for 20 mins. The transcription and ribozyme self-cleavage was 
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terminated by the addition of 15 µL of 50 mM EDTA. Protein and buffer were removed 

using Direct-zol RNA MicroPrep w/ TRI-Reagent (Zymo Research). The sample was 

eluted in 7 µL, quantified by UV absorbance, normalized to 5uM, and checked for quality 

by denaturing PAGE (10 % polyacrylamide, 8 M urea). 

Reverse Transcription with Phased Template Switching 

The purified RNA (5 pmol) was mixed with 20 pmol of RT-library primer (Table 

A.2) in a final volume of 10 µL and heated at 72C for 3 mins and cooled on ice. A 10 

µL mixture, consisting of 4 µL SMARTScribe 5x First-Strand Buffer (Clontech), 2 µL 

dNTP (10 mM), 2 µL DTT (20 mM), 1 µL water and 1 µL SMARTScribe Reverse 

Transcriptase (100 units, Clontech), were then added to the RNA template and RT 

primer. SMARTScribe Reverse Transcriptase was chosen for its template-switching 

activity which allows for the addition of a constant primer binding site onto the 3’ end of 

the cDNA. The phased TSO mix (20 pmol) was added resulting in a 22 µL reverse 

transcription reaction. The mixture was then incubated at 42C for 90 mins, followed by 

heating the mixture to 72C to stop reverse transcription and degrade the RNA. The 

single stranded cDNA product was purified using a silica-based column kit (Zymo 

Research) eluted with 7 µL water. 

Illumina Adapter PCR and High-Throughput Sequencing 

In preparation for high-throughput sequencing, Illumina adapter sequences were 

added to each end of the cDNA library using low-cycle PCR. The PCR reaction consisted 

of a 1 µL cDNA library, 12.5 µL KAPA HiFi HotStart ReadyMix (2X, KAPA 

Biosystems), 2.5 µL forward, 2.5 µL reverse primer (Illumina Nextera Index Kit) and 5 

µL water. Each PCR cycle consisted of 98 C for 10 s, 63 C for 30 s and 72 C for 30 s. 
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Multiple PCR cycles were analyzed using gel electrophoresis. A cycle with observable 

dsDNA but prior to saturation was chosen for sequencing. The PCR product was purified 

with a silica-based column kit (Zymo Research) and verified using gel electrophoresis. 

The sample was sent to the University of Oregon Genomics and Cell Characterization 

Core Facility for quality control, quantification by qPCR and sequencing on the Illumina 

MiSeq (Nano mode, single end 150bp). The same sample was run on the MiSeq 

sequencer twice, once with a 25% PhiX addition and once with a minimal 0.5% PhiX. 

The 0.5% PhiX does not significantly alter diversity but was added at the request of the 

core facility in order to ensure similar sequencing error rates between sequencing runs, 

which is determined by comparing the PhiX reads to the PhiX reference genome. 

Data Analysis 

Sequencing data were analyzed using Biopython (Cock et al. 2010, 2009) and 

custom Python scripts. Relative activity values (w) for each unique sequence, or 

genotype, were determined from the fraction of sequencing reads found in the cleaved 

form (Ncleaved) divided by the total reads of that genotype: w=Ncleaved/(Ncleaved+Nuncleaved). 

The fitness values were then normalized such that the wildtype sequence in each 

sequencing run was equal to 1 (wnorm=w/wWT). 
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Tables 

Table A.1. Sequencing metrics for phased nucleotide inserts.  

Raw data incorporates all sequencing reads from each sequencing run. Twister data 

incorporates only sequencing reads that correspond to the twister ribozyme library for 

each run, thus excluding reads that mapped to the PhiX genome. 

 

 

Table A.2. Oligonucleotides used in this study. 

 

  

Data Type Sequencing Metric Phased Insert + 25% PhiX Phased Insert

Raw Clusters 1,103,506 1,027,991

Pass Filter Clusters 1,035,812 935,119

% Pass Filter Clusters 93.87% 90.97%

Yield (Mbases) 156 141

% >= Q30 bases 94.12% 92.17%

Mean Quality Score 36.54 35.96

Pass Filter Clusters 689,334 899,174

Yield (Mbases) 104 136

% >= Q30 bases 92.91% 92.76%

Mean Quality Score 36.17 36.1

% of lane 66.55% 96.16%

Raw Data

Twister Data

Name Sequence (5' - 3') Notes

Twister-library
GAACCGGACCGAAGCCCGATTTGGATCCGGCGAACCGGATCGA

CCGCCNNNTCCACTTTTATCCGGGCTTNNNACCGGCATTGGCA

GTGTTAGGCGGCCCTTTTCCTATAGTGAGTCGTATTAGCCG

HDV template oligonucleotide. 

Ribozyme sequence is bolded. 

Cleaved sequence is in red. 

T7-TOP+ primer CGGCTAATACGACTCACTATAG T7 transcription primer.

RT-library primer
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAACCGGA

CCGAAGCCCG
Reverse transcription primer

Phased TSO 1
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCATGCATGC

ATGCATGCrGrGrG

Phased TSO 2
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCATGCATG

CATGCrGrGrG

Phased TSO 3
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGCATGCAT

GCrGrGrG

Phased TSO 4
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCATGCATGCr

GrGrG

Phased template switching 

oligonucleotides. Phased insert is 

bolded. rG indicates RNA bases
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Figures 

 
Figure A.1. The library design and in vitro protocol.  

(A) Secondary and tertiary structure of the twister Osa-1-4 ribozyme (Liu et al. 2014; 

Rose and Hildebrand 2015). The library contained six randomized nucleotide positions 

indicated by the red nucleotides. The triangle in the secondary structure indicates the 

cleavage site, and the black nucleotides are the cleaved product. (B) Illustration of the 

protocol for co-transcriptional self-cleavage and phased nucleotide insertion during 

template switching reverse transcription.The DNA library is ordered as the template 

strand for transcription, with the T7 promoter at the 3’-end, and a primer binding 

sequence at the  5’-end (linker). Active variants self-cleave during transcrption by T7 

RNA polymerase. Cleaved and uncleaved RNA products are reverse-transcribed with 

template switching using the linker sequence for primer binding, and a pool of four 

phased template switching oligonucleotides. These phased inserts are incorporated into 

the the cDNA transcripts during  reverse transcription. The resulting single stranded 

cDNA products with phased inserts are amplified with index primers to add full adaptors 

for high-throughput sequencing (Illumina). 

 



162 

 

 
Figure A.2. Prediction of positional entropy from simulated sequence run.  

Entropy was predicted for four simulated twister ribozyme library samples. Maximum 

entropy at a position is indicated by entropy = 2. Identical nucleotide for all sequences at 

a given position is indicated by entropy = 0. Predicted nucleotide balance is shown for a 

control library without phased nucleotide insertions or PhiX (grey), only 25% PhiX (tan), 

addition of only phased nucleotide insertions (blue), or (D) both phased insertions and 

PhiX (red). 
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Figure A.3. Sequencing output and quality with phased nucleotide inserts.  

(A) Sequencing quality scores per position in read for phased inserts with (red) and 

without PhiX (blue). Each boxplot represents the interquartile range (IQR) of the dataset 

and the whiskers extend to the minimum and maximum, excluding outliers (>3IQR 

difference). Outliers are not depicted. (B) Distribution of mean sequence quality (Phred 

score) for sequences with phased inserts with (red) and without PhiX (blue). (C) 

Distribution of minimum sequence quality (Phred score) for sequences with phased 

inserts with (red) and without PhiX (blue). 
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Figure A.4. Comparison of results between data sets.  

(A) Distribution of sequencing depths of cleaved and uncleaved reads for phased insert 

sequencing runs with (red) and without (blue) PhiX. Dashed lines indicate mean 

sequencing depth. (B) Correlation between read counts with PhiX (x-axis) and without 

PhiX (y-axis). Each unique sequence from the library is plotted as the number of counts 

of cleaved (blue) and uncleaved (red) sequencing reads. The fraction cleaved for each 

sequence is also plotted (grey). The dashed line indicates a perfect correlation between 

the two sequencing runs. (C) Heat map visualization of the relative activity of the twister 

ribozyme mutants with previously published values (Kobori and Yokobayashi 2016). 

Nucleotide identities of mutations are shown as row and column labels. Double mutants 

are depicted at the intersection of two mutations. The diagonal contains compensatory 

double mutations that result in a new Watson-Crick base pair (D) Activity differences 

between previously published data and our current data with PhiX (red) or without PhiX 

(blue). Activity differences were determined as the absolute value after subtracting our 

data from the previously published data for each sequence variant in the heat map.
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Supplemental Notes  

Failed HiSeq 3000 Sequencing Run Using Hepatitis Delta Virus (HDV) Ribozyme 

To determine the efficacy of using the phased nucleotide inserts during high-

throughput sequencing, we compared our sequencing data from this study to a previously 

failed sequencing run. The library was based on the Hepatitis Delta Virus ribozyme 

which, similar to the twister ribozyme, exhibits 5’ self-cleavage activity. The library was 

prepared in an identical fashion to the twister library in this study, except without phased 

inserts in the template switching oligos. The sample was then sequenced using Illumina 

HiSeq 3000 platform with the addition of 10% PhiX. The cDNA library caused a 

significant amount of issues during cluster identification and resulted in only 12.26% of 

clusters passing the filter. The sequencing reads that did pass the filter were of low 

quality and had a mean quality score of 27.90.003 (Fig. AS.2). Although this library 

was sequenced on a HiSeq as compared to the MiSeq platform in this study, both 

platforms are known to have significant issues with low-diversity samples. Furthermore, 

it is recommended that PhiX be used for both platforms to increase the nucleotide 

diversity. 

Comprehensive Mutational Analysis of Twister T1 Pseudoknot 

In addition to using the twister ribozyme as a model system to validate the 

benefits of the phased nucleotide inserts, the data also enables a comprehensive 

evaluation of the T1 pseudoknot. The previously published data included only sequences 

with one or two mutations in the T1 pseudoknot (154 genotypes). Our current twister 
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library consists of 3,942 additional genotypes, which includes sequences with 

combinations of 3-6 mutations relative to the wildtype sequence. To understand the 

relationship between pseudoknot thermodynamic stability and ribozyme activity, we first 

categorized the genotypes into subpopulations based on the presence of the number of 

base pairs at the three positions. We plotted the distributions of relative ribozyme activity 

for each category using our data set obtained without PhiX (Fig. AS.3A). As expected the 

64 genotypes that form canonical Watson-Crick base pairs had the highest average 

relative fitness. This is followed by the three subpopulations that retain two Watson-

Crick pairs and a single G-U wobble pair. We note that within this group, the position of 

the G-U wobble matters. There exists a non-canonical A-A base interaction in T1 that is 

conserved in >97% of all known twister ribozymes, and which is immediately adjacent to 

the general base required for the catalytic mechanism (G45) (Wilson et al. 2016). The 

relative activity of ribozymes decrease on average as the G-U wobble moves closer to the 

A-A interaction, suggesting that the G-U wobble has a more deleterious effect as it 

moves closer to the active site. A similar trend was noticed in a randomized stem loop in 

a HDV-like ribozyme (Kobori and Yokobayashi 2018). As the mismatch mutation came 

closer to the ribozyme core, the relative activity decreased. 

Next, in order to characterize the 64 genotypes that form canonical Watson-Crick 

base pairs, we calculated the Gibbs free energy for each of these T1 pseudoknots based 

on nearest-neighbor rules (Turner and Mathews 2010). We plotted ribozyme fitness as a 

function of free energy (Fig. 5B). The plot shows a negative correlation between the 

measured relative activity and the change in free energy (R2 = 0.23, p <0.0001, n =64). 

This data confirms the importance of the stability of the T1 pseudoknot to the overall 
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ribozyme structure and function (Fig. AS.3B). However, we note that the sequences with 

the highest ribozyme fitness do not have the lowest free energy. This indicates that 

specific interactions between each T1 sequence and the rest of the ribozyme are also 

important. 
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Supplemental Figures 

Supplementary Figure A.1. Prediction of nucleotide diversity from simulated 

sequence run. 

Nucleotide diversity was predicted for four simulated twister ribozyme library samples. 

Predicted nucleotide diversity is shown for a control library without phased nucleotide 

insertions or PhiX, only 25% PhiX, addition only phased nucleotide insertions, or  both 

phased insertions and PhiX. Each diamond indicates the relative proportion of that 

nucleotide that is present at the position.  
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Supplementary Figure A.2. Sequencing output and quality for failed sequencing run 

without phased nucleotide inserts.  

(A) Sequencing quality scores per position in read for sequencing run without phased 

nucleotide inserts and the addition of 10% PhiX/ Each boxplot represents the interquartile 

range (IQR) of the dataset and the whiskers extend to the minimum and maximum, 

excluding outliers (>3IQR difference). Outliers are not depicted. (B) Distribution of mean 

sequence quality (Phred score) for sequencing reads. 
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Supplementary Figure A.3. Relative activities from ribozymes categorized by the 

composition of base pairs in the T1 pseudoknot. 

(A) Symbols on the categorical axis indicate Watson-Crick base pair (solid line), G-U 

wobble pairs (dashed lines) or mismatch (X). The number n below indicates the number 

of variants in each subpopulation. Dashed line and grey diamonds indicate the mean of 

each subpopulation. Data is rank ordered by the mean of the relative activity for the 

category. (B) Gibbs free energy changes for the 64 sequences that form three canonical 

base pairs. Gibbs free energy is calculated from the Nearest Neighbor Database (Turner 

and Mathews 2010). Line indicates the regression model with 95% confidence interval.
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APPENDIX B: EFFECTS OF POPULATION SIZE AND MUTATION RATE ON 

EVOLUTIONARY SIMULATION
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Overview 

Evolutionary simulations are a powerful tool for assessing the navigability and 

accessibility of sequence space. Evolutionary exploration by natural selection is central to 

Darwinian evolution and is often difficult to assess. Evolutionary simulations have many 

benefits over simple pathway analyses. Most notably simulations have the ability to cross 

fitness valleys and we believe most accurately depicts evolution in nature. The rate of 

adaptation and in particular the ability to escape stasis genotypes isolated by reciprocal 

sign epistasis can be greatly affected by two simulation parameters: mutation rate and 

population size. A recent study on the effect of population size on adaptation in empirical 

fitness landscapes, found that evolutionary dynamics cannot be fully explained by the 

population mutation rate ( Nµ, Vahdati and Wagner 2017). Furthermore, contrary to some 

theoretical theories, even on the most rugged fitness landscapes, small population size 

was never advantageous over larger population sizes. Simulations on fitness landscapes 

derived from RNA folding showed that mutation rate (µ), population size (N) or the 

population mutation rate (µN) could not completely explain the rate of adaptation 

(Vahdati et al. 2017). This suggests that population size and mutation rate play a role in a 

very complex system.  

The majority of our evolutionary simulations presented in this dissertation, use a 

constant population size (N) of 1000 individuals and a mutation rate (µ) of 0.01. This 
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results in a population mutation rate of 10. To determine the effects of population size 

and mutation rate on evolutionary adaptation on empirical RNA fitness landscapes, we 

tested a range of mutation rates and population sizes. We used the two empirical fitness 

landscapes presented in Chapter 1. These landscapes represent the sequence space of the 

Hepatitis Delta Virus (HDV) ribozyme and the class III Ligase ribozyme. These two 

landscapes form an intersection of innovation and have extensive functional overlap. We 

selected a single starting genotype for each landscape to start simulations from. For the 

HDV landscape we chose the genotype that occupied the global peak on the Ligase 

landscape. And for the Ligase landscape we chose the genotype that occupied the global 

peak on the HDV landscape. We ran 100 replicates of evolutionary simulation using six 

different population sizes (25, 50, 125, 250, 500, 1000) and four mutation rates (0.0001, 

0.01, 0.1, 1.0). This results in 24 unique combinations. We tracked the mean population 

fitness (Fig. B.1), mean final diversity (Fig. B.2), unique genotypes explored (Fig. B.3), 

mean final fitness (Fig. B.4), mean deleterious mutations, mean beneficial mutations (Fig. 

B.5), and initial rate (Fig. B.6). We report the distributions of these simulation metrics 

here.
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Figures 

 
Figure B.1 Mean population fitness during evolutionary simulations.  

Each line represents the mean of 100 simulation replicates. Each of the six population 

sizes are displayed in each plot and mutation rate increases as plot ascend. Simulations on 

the Ligase landscape are on the left. Simulations on the HDV landscape are on the right. 
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Figure B.2 Mean final diversity following 1000 generations of evolutionary 

simulations.  

Each violin plot represents the distribution of 100 simulation replicates. Each of the six 

population sizes are displayed according to colors in the legend and mutation rates are on 

the x-axis.  

 

 
Figure B.3 Mean unique genotypes explored during 1000 generations of 

evolutionary simulations.  

Each violin plot represents the distribution of 100 simulation replicates. Each of the six 

population sizes are displayed according to colors in the legend and mutation rates are on 

the x-axis.  
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Figure B.4 Mean final fitness following 1000 generations of evolutionary 

simulations.  

Each violin plot represents the distribution of 100 simulation replicates. Each of the six 

population sizes are displayed according to colors in the legend and mutation rates are on 

the x-axis.  

 

 
Figure B.5 Mean beneficial and deleterious mutations during 1000 generations of 

evolutionary simulations.  

Each violin plot represents the distribution of 100 simulation replicates. Each of the six 

population sizes are displayed according to colors in the legend and mutation rates are on 

the x-axis.  
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Figure B.6 Mean initial rate of adaptation during the first 200 generations of 

evolutionary simulations.  

Each violin plot represents the distribution of 100 simulation replicates. Each of the six 

population sizes are displayed according to colors in the legend and mutation rates are on 

the x-axis. 
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Overview 

The evolution of novel function (innovation) was covered in Chapter 1 by closely 

examining the intersection of two ribozyme genotype networks: self-cleaving (HDV) and 

self-ligating (ligase). A potentially important aspect of innovations that is not fully 

covered is the role that promiscuous activity could play in evolving a new function. 

Functional promiscuity is when a gene or in our case a ribozyme is able to develop a 

second function albeit at low function while not significantly reducing the efficiency of 

the original function. Promiscuity is seen in proteins (Babtie et al. 2010; Espinosa-Cantú 

et al. 2015; Khanal et al. 2015) and can be perceived as being very advantageous in terms 

of evolutionary potential. If the environment changes and the new function is positively 

selected for, then it would have a head-start on optimizing the new function. This could 

also occur following a gene duplication event, where divergence occurs prior to the 

duplication (Ohno 1970; Taylor and Raes 2004; Bergthorsson et al. 2007; Andersson et 

al. 2015). Using the empirical fitness landscapes constructed in Chapter 1 we developed 

many evolutionary simulations to assess and model the evolution of promiscuity. We first 

determined the total fitness (Wtotal) of a sequence as a product of its ligase function and 

its HDV function using this equation : 𝑊𝑡𝑜𝑡𝑎𝑙 = 𝛽𝐻𝐷𝑉 ∗ (
𝑊𝐻𝐷𝑉

max(𝑊𝐻𝐷𝑉)
) + 𝛽𝐿𝐼𝐺 ∗

(
𝑊𝐿𝐼𝐺

max(𝑊𝐿𝐼𝐺)
). By weighting the beta values for HDV and LIG on a sliding scale, we 
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generate 11 unique fitness landscapes with different topographies (Fig. C.1). We then 

identified a random starting population that was of equal distance from the HDV 

reference genotype and the LIG reference genotype. We then plotted these genotypes 

HDV and ligase function on the original HDV-LIG landscape presented in Chapter 1 

(Fig. C.2). We then simulated evolution on each of the 11 unique co-selection landscapes. 

We repeated this simulation for 100 replicates per landscape and plotted the Ligase 

function, the HDV function and the total function (Fig. C.3). It appears that there was a 

stasis genotype at ~0.19 on the ligase landscape that often stopped evolutionary 

exploration. We also plotted the individual traces for the 100 replicates for three of the 

landscapes. The most extreme HDV landscape, the middle 50-50 landscape and the most 

extreme ligase landscape (Fig. C.4). 
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Figures 

 
Figure C.1 HDV-LIG co-selection landscapes.  

The 11 landscapes presented each have differing beta values for HDV and ligase 

function, resulting in conformational changes. The nodes with dominant HDV function 

are colored in red and the nodes with dominant ligase function are colored in blue. Nodes 

that differ by a single mutation are connected by an edge. Total fitness was calculated as 

a function of both functions: 𝑾𝒕𝒐𝒕𝒂𝒍 = 𝜷𝑯𝑫𝑽 ∗ (
𝑾𝑯𝑫𝑽

𝐦𝐚𝐱(𝑾𝑯𝑫𝑽)
) + 𝜷𝑳𝑰𝑮 ∗ (

𝑾𝑳𝑰𝑮

𝐦𝐚𝐱(𝑾𝑳𝑰𝑮)
). 
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Figure C.2 Starting population for co-selection evolutionary simulations.  

The random population was selected from all of the sequences that were of equal distance 

from the HDV reference genotype and LIG reference genotype. 
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Figure C.3 Evolutionary simulations on the HDV-LIG co-selection landscapes.  

The ligase, HDV and total fitness are displayed on the y-axis and the number of 

generations are on the x-axis. Each line indicates the average of 100 replicates. Red lines 

indicated the most extreme HDV landscape and blue lines indicated the most extreme 

ligase landscape. 
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Figure C.4. Individual traces from evolutionary simulations.  

The most extreme HDV landscape is shown in red, the 50-50 landscape is shown in grey 

and the most extreme ligase landscape is shown in blue. Total fitness, HDV fitness and 

Ligase fitness are shown for each trace. 
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