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ABSTRACT 

Land cover acts as the gatekeeper to incoming and outgoing energy and water 

fluxes at the land surface, partitioning energy and water in accordance with the vegetation 

type and in response to atmospheric forcings. As Land Surface Models become more 

complex and more capable of simulating the coupled dynamics of the land-atmosphere 

system in greater spatial detail, the need for accurate representation of spatial distribution 

of vegetation types and their dynamics through time grows. 

As humans modify land cover, there are complex dynamics at play between the 

vegetation, the surface energy balance and the cycling of water. The resultant 

hydroclimatic impacts of land cover change is dependent on local factors such as the 

local atmospheric forcings and the type of vegetation and land cover in question. Central 

Mozambique is a particularly useful setting to explore the impacts of changing land cover 

on climate because, since 2000, the country’s forests have been exploited by international 

corporations for timber extraction and conversion to agriculture. The region is of 

particular interest in the context of global climate dynamics and understanding land-

atmosphere exchange because the monsoonal seasonality ties the incoming oceanic 

moisture to the land cover. As such, Mozambique has a relatively high recycling rate, 

with up to 20% of the precipitation resulting from evapotranspiration from the same area. 

More locally, as Mozambicans rely heavily on dryland crops without the use of irrigation, 

the amount and distribution of local rainfall can have a much greater impact on local 

people than in an area where water is redistributed through mechanical means. 
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In order to examine the role of these vegetation changes in the redistribution of 

energy fluxes and resultant rainfall redistribution, we have conducted a suite of numerical 

experiments to investigate the impact of deforestation on regional land-atmosphere 

interactions. In particular, we represented deforestation in Central Mozambique by 

merging data gleaned from the Global Forest Cover Change dataset with the USGS land 

cover dataset used within the Weather Research and Forecasting (WRF) model. 

In this study, we created a quasi-State and Transition model to alter the WRF 

model land cover input map. We used both numerical and spatial information from a 

regridded version of the Global Forest Cover Change Dataset. We then applied a 

combination of random selection and heuristic rules to these statistical information to 

determine how each pixel of the WRF land cover should be altered for our deforestation 

scenario. We then ran simulations with both the control WRF land cover and modified 

land cover within the WRF model to determine the difference in hydroclimatic variables. 

We selected the time periods of 2001 and 2015 (a wet and dry year, respectively), and the 

months of March – May (the dry down period after the rainy season) to show a spectrum 

of atmospheric conditions for forcing of the model runs. 

Our results indicate that our methodology underestimates deforestation, though 

even these underestimates of deforestation result in impacts on the local hydroclimate 

within the WRF model scenarios. The overall impact is a general increase in temperature 

and a redistribution and decrease in rainfall due to changes in the energy and water 

balances. All of these outcomes are variable, though, due to spatial patterns of 

deforestation, topography, and weather patterns. These results demonstrate the need for 

better representation of deforestation within land-atmosphere modeling. 
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CHAPTER ONE: INTRODUCTION 

Land cover change (LCC) represents one piece of the climate change puzzle, and 

there are still uncertainties in how regional land cover change affects global climate, and 

vice versa. One issue that still remains for LCC in both regional and global climate 

modeling is the issue of scale. Empirical studies of tree cover and deforestation occur on 

the scale of meters and below, and can include detailed information such as leaf area 

index, height, exact locations of loss, number and types of species coexisting in one area, 

etc. Regional climate models (RCM), however, can exist on a scale from ~30 km down to 

1 km, depending on computational resources available. While an RCM cannot 

incorporate all of the details from empirical studies, it has the advantage of being able to 

capture complexities of land-atmosphere interactions that allows the user to study larger 

scale relationships between LCC and resultant climatic changes. On the other end of the 

spectrum is a global climate model (GCM), with resolutions of down to ~50 to 25 km. 

These GCMs, while having a simplistic representation of vegetation, can show global 

dynamics between vegetation and atmospheric patterns. Because of these differences in 

scale, examining the role of deforestation in land-atmosphere exchange becomes a 

balancing act between representing reality and being able to represent complex, large-

scale interactions. In our study area of Central Mozambique, Africa, there has been 

extensive deforestation due to an increase in demand for land rights for forest and 

agriculture. In the period of 2004 – 2009, land use rights granted for these uses amounted 

to 2.5 million hectares, which is 3% of the land area (Hanlon, 2011). Extensive 
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deforestation of this nature could potentially have large impacts on the hydrology and 

climate of a region. Therefore, our two objectives for this study were to: 

1. Fuse a global forest cover dataset with the land cover in a regional model. 

2. Run a suite of simulations in a regional climate model to examine the role of 

deforestation in land-atmosphere interactions. 

In this way, we were able to update an existing land cover map within use in a regional 

climate model to more accurately represent spatial patterns of deforestation without 

creating a new land cover dataset from scratch. From these RCM model runs, we can 

determine both if LCC has an impact on local hydrology and climate, and at what scale 

these changes are important. In particular, in our study area of central Mozambique, 

Africa, the physical interactions between LCC, topography, and meteorology are all 

strongly connected. Therefore, we hypothesize that not only deforestation, but also the 

spatial patterns of deforestation (e.g., spatial contiguity) combined with local atmospheric 

patterns and topography are all key in determining hydroclimatic outcomes. To this end, 

we employed the Weather Research and Forecasting (WRF) model, a high-resolution (1 

km scale) land-atmosphere model that resolves the physical interactions between LCC, 

topography, and meteorology. To update the WRF land cover, we utilized the Hansen 

Global Forest Cover Change Dataset (Hansen et al., 2013) to represent a more realistic 

deforestation scenario. This dataset, being global in scale, offers new opportunities to 

develop techniques to incorporate tree cover loss data into any land cover dataset that is 

already in use in regional and global climate models. 

In the mid 2000s, scientists such as Pielke (2005) and Feddema et al. (2005) and 

the National Research Council (NRC) (2005) called for a better understanding in the role 
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of land cover change within the context of climate modeling. In the intervening years, 

many scientists have performed sensitivity analyses to examine both the biophysical and 

biochemical effects of deforestation in GCMs. In a recent review paper by Perugini et al. 

(2017), the authors work to summarize the findings from these sensitivity analyses, along 

with a few observational studies. One key area that Perugini et al. (2017) notes as 

needing attention: the mismatch in scale and rates of deforestation and its representation 

within these GCM analyses. In this review, the majority of studies cited from the tropics 

rely on complete deforestation to determine general impacts of land cover change.  

While global climate model sensitivity analyses are able to capture the general regional 

effects of deforestation, there are still uncertainties in how these regional processes affect 

global circulation patterns. As Lee et al. (2011) point out, GCMs that use continental-

scale land clearing show a feedback between land albedo and sea ice that is crucial in 

determining the global effects of land cover change. However, Lee et al. (2011) also state 

that we cannot be certain that this feedback would take place with a smaller scale of 

deforestation. As an NRC Report (2005) describes, regional energy balance perturbations 

can cause atmospheric teleconnections that affect the climate in region thousands of 

kilometers away. This NRC Report (2005) recommended understanding the magnitudes 

of regional energy balance change, which will in turn help us to understand the associated 

global climate responses. In 2010, Mahmood et al. specifically noted that LCC is a first-

order human climate forcing that must be assessed, particularly at the regional scale 

because it is these regional responses that produce droughts, floods, and other impacts 

that affect society the most.  
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Furthermore, global land cover products typically used within both GCMs and 

RCMs show low accuracies when assessed (Broxton et al., 2014). Due to differences in 

class definitions, classification methods, satellite datasets used, etc., there are significant 

disagreements between global land cover products (Giri et al., 2005, Herold et al., 2008 

and Broxton et al., 2014). Even when data from the same satellite sensor is used, there is 

significant interannual variability that is not consistent with the vegetation changes 

occurring on the ground (Friedl et al., 2010 and Broxton et al., 2014). For example, 

Broxton et al. (2014) found that within the MODIS Collection 5.1 Land Cover Type 

(MCD12Q1) data, 40% of nonwater pixels undergo at least one change from 2001 to 

2010, and that most of these are more than physically reasonable. Broxton et al. (2014) 

note that the reason for this high interannual variability is difficult to parse from the data 

itself, but is commonly attributed to the mixtures of vegetation classes within each pixel 

of satellite imagery (Latifovic and Olthof 2004, Smith et al., 2002, 2003, and Herold et 

al., 2008). Broxton et al. (2014) describe the problem with these mixtures of vegetation as 

satellite sensors being unable to unmix all of the spectral characteristics and phenologies 

located within each large pixel size. 

In order to circumvent this variability between land cover datasets, we chose to 

select one land cover product already used within the WRF model, and to update it with 

deforestation patterns using the Global Forest Cover dataset from Hansen et al. (2013), 

referred to hereafter as the Hansen dataset. In this way, we were able to compare two 

internally consistent land cover datasets, where the only change occurring was 

deforestation. The Hansen dataset applies computational methods to global Landsat data 

at a resolution of 30 m to produce a comprehensive forest cover change dataset from the 
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years 2000 to 2016. In this way, the Hansen dataset is created by uniformly processed 

Landsat data. By selecting this global dataset, applications of the methodologies 

presented here will be expandable all regions of the globe. The output of the Hansen 

dataset are percent forest cover from the year 2000, forest cover loss (2000 – 2016) in 

binary (0 for no change, 1 for loss), and forest cover gain (2000 – 2012) in binary (0 for 

no change, 1 for gain), each available for every individual Landsat pixel over land. 

Hansen et al. (2010) define forest cover as at least 25% cover for trees of at least 5 m in 

height, citing the Australian Greenhouse Office report (2002) detailing the threshold of 

canopy density for accurate land cover change classification in Landsat. Forest cover loss 

is available at yearly time scales, whereas forest cover gain is only available for the 

whole time period of 2000 – 2012. Therefore, net loss in forest cover must be considered 

in the aggregate scale, to incorporate both loss and gain together. 

While there are advancements in both modeling and remote sensing, the resulting 

products from each of these fields are rarely built to be compatible. The input land cover 

into the WRF model relies on specific categories and their corresponding vegetation 

parameter tables, which must be updated by hand if other categories are to be added. As 

previously stated, Hansen loss and gain are available in binary values. Additionally, the 

grid spacing and resolution of land cover within WRF is much coarser than the Hansen 

dataset. Therefore, a methodology to combine these disparate datasets has the advantage 

of updating land cover maps within a land-atmosphere model without building a new 

land cover dataset. To address these challenges, we created a simplified version of a State 

and Transition Model (STM), which we refer to as a quasi-STM. According to 

Bestelmeyer et al. (2017), an STM can be viewed in the mode of Pulsford et al. (2014), as 
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a specific theory about how ecosystems respond to disturbance, or in the mode of 

Westoby et al. (1989), as a way of categorizing ecosystem change, stemming from a wide 

array of ecosystem dynamics models. Here we apply the Westoby et al. (1989) view of 

ecosystem change to vegetation categories in the WRF model, using statistical knowledge 

of deforestation gleaned from the Hansen dataset. A complete STM will categorize 

discrete plant communities that can exist and coexist at a site, and will model the 

transitions between these communities to determine alternative states that can occur on 

the same site (Westoby et al., 1989). Our quasi-STM, however, diverges from this as it is 

applied much more broadly to determining the transition from one land cover category to 

a new land cover category due to deforestation.  

The output from this quasi-STM is a new land cover map incorporating 

deforestation that can be directly inserted into the pre-processing step of the WRF model 

initialization. After creating a new version of the WRF land cover map, we then ran a 

suite of simulations that compares the control WRF map (circa 1992 – 1993) to the 

modified WRF map, which incorporates deforestation from the years 2000 – 2016.  

In this study, we utilize the high-resolution physically based model WRF model 

because it incorporates land-atmosphere interactions. By using this regional scale model, 

we are able to resolve the complexities of local meteorological patterns, local topography, 

and spatial patterns of deforestation. The WRF model consists of a dynamical core that 

solves several partial differential equations related to the dynamics of the atmosphere 

(Skamarock et al., 2008). Along with these general atmospheric movements, WRF is 

capable of solving physical processes including radiation budgeting, cloud microphysics, 

and land surface physics. Each of these parameters has multiple schemes from which to 
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choose, each of differing complexity and computational efficiency (Skamarock et al., 

2008). As well as within the remote sensing community, the modeling community has 

recognized the need for better representation of vegetation dynamics has been 

recognized. The Noah-MP (multiple parameterization) land surface model (Niu et al., 

2011) is available for use in the WRF model. This land surface model is capable of 

representing complex interactions, including vegetation canopy energy balance, layered 

snowpacks, frozen soil infiltration, soil moisture-groundwater interaction, runoff, and 

vegetation phenology (Niu et al., 2011). Along with these intensive vegetation 

interactions, the WRF model is capable of modeling very fine resolutions (down to 1 

km), dependent on the computational resources available. We are focusing on the region 

of Southeast Africa, in central Mozambique. The climatology and topography of this area 

make it an interesting place to understand the interactions between meteorology and local 

topography. 

Galvin (2008) describes the complex interactions between the Intertropical 

Convergence Zone (ITCZ) and the topography of the region. He notes that the normal 

“monsoonal” patterns associated with the ITCZ making landfall is complicated by the 

presence of higher topography along the coast and further inland, and by the convergence 

of air from the Indian and Atlantic Oceans. Galvin (2008) explains that air from the 

Indian Ocean is very moist, but shallow. This requires the aid of orographic lift to initiate 

rainfall. Another complicating factor in this region is the high-recycling rate. In the 2012  
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Figure 1. Conceptual diagram of a precipitationshed, from Keys et al. (2012). 

study by Keys et al., the authors describe the concept of a precipitationshed, shown in 

Figure 1. Much like a watershed describes where water flows depending on its 

origination, a precipitationshed describes the locus of points from which local 

precipitation likely originated as evapotranspiration.  

Within much of the tropics, and indeed, within this study area, atmospheric 

recycling, or the contribution of local evapotranspiration to local precipitation (Trenberth, 

1999), is relatively high. This can be seen in Figure 2 from Trenberth (1999). This 

indicates that any deforestation, and any changes to evapotranspiration, in this study area 

have the potential to highly impact rainfall in the area. 
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Figure 2. Modified from Trenberth (1999). The recycling rate, , for annual 

mean conditions for a length scale of 1000 km over land. 

To examine deforestation, meteorological and topographic patterns, in this study 

we focus on the biophysical effects of deforestation on a regional scale in the tropics. 

Biophysical effects from deforestation on climate are well documented: the albedo, 

roughness length, seasonal senescence, and leaf area index are all important parameters 

(Bonan, 2008). However, as shown in Perugini’s review- not all deforestation is equal, with 

deforestation in boreal, temperate and tropical forests all having differing local and global 

effects on climate. This is due to the fact that in any location, climatic response to 

deforestation is due to not only first-order energy balance interactions (such as decreasing 
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albedo and evapotranspiration), but also second-order effects due to more complex land-

atmosphere feedbacks (such as increasing incoming solar radiation due to a decrease in 

cloud cover) (Alkama & Cescatti, 2016). Generally, in the tropics, the decrease in albedo 

due to removal of the dark forest canopy (which should cause a cooling), is offset by the 

decrease in evapotranspiration (leading to warming) (Perugini et al., 2017). 

As we work to learn how our global climate will be changing in the future, it is 

imperative to determine the role of deforestation, and to apply realistic deforestation 

scenarios within regional and global climate models. From the novel methodologies 

created in this study, we were able to control for a realistic deforestation scenario, 

determining both the local and regional effects of tree cover removal on hydrology and 

climate. By utilizing a global forest cover change dataset, we provide a technique that can 

be applied in any region of the world.  
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CHAPTER TWO: STUDY AREA 

Our study centers near Gorongosa National Park in Central Mozambique, Africa, 

but the model domains have been extended outside of the park to capture regional 

weather patterns and to expand the applicability of this research. 

Gorongosa National Park is located in the southern portion of the Great African 

Rift Valley and encompasses 1,456 m2 of land. The park spans a valley with the Barue 

platform on the west and the Cheringoma escarpment on the east. Just outside of the park 

to the west is Mount Gorongosa, an important geographical feature whose orthographic 

lift promotes rainfall from moist, warm air (Tinley, 1977). The area contains a 

combination of floodplain grasslands, savanna, Miombo forests, and a tropical rainforest 

on Mount Gorongosa. The climate in central Mozambique is tropical savanna in the 

Koppen classification system, typified by distinct wet and dry seasons. The rainy season 

corresponds to an annual southward shift in the ITCZ that brings humid air to the region, 

typically from December to April. The area experiences a pronounced dry season, with 

very little rain occurring from May through November (Beilfuss et al., 2007). At the 

southern edge of the valley floor is a permanent lake, Lake Urema, that is 10 - 15 km2 in 

size, but can grow to 200 km2 during wet years (Beilfuss et al, 2007). Gorongosa is part 

of the Urema Catchment, which is within the Pungwe River Basin in Central 

Mozambique (Steinbruch, 2010). 

All of the modeled scenarios have the same model domains, as shown in Figure 3. 

All analysis takes place in the innermost domain (shown in Figure 4), which is centered 
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on Central Mozambique, but also includes portions of the Indian Ocean and the border 

with Zimbabwe. The northern and southern borders of this domain are located at 17.522 

and -20.506 latitude, respectively. 

 
Figure 3. Model domains used in all analyses, with the African continent shown 

for reference. 

The eastern and western borders of this domain fall on 35.9 and 32.7 longitude, 

respectively. The full modeling domain extends to include all of Zimbabwe, Malawi, 

Lesotho, Swaziland and Madagascar, as well as significant portions of Botswana, 

Zambia, Tanzania, and the Democratic Republic of the Congo, South Africa, and the 

Indian Ocean.  
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Figure 4. Topographic map of analysis domain with boundaries of Gorongosa 

National Park shown. 
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CHAPTER THREE: METHODS 

3.1 Data Fusion 

In this section we present the methods we employed to achieve objective 1: Fuse a 

global forest cover dataset with the land cover in a regional model. In this methodology, 

the final product is a dataset that matches the input parameters to the WRF model, with 

the same land use categories and grid spacing from an unmodified land cover dataset. 

3.2.1 Data 

The WRF model has two land cover maps included in a baseline dataset 

distributed with the model, and are commonly used. We selected the USGS 30s map as it 

represents an older time period, with our modified map representing and updated version 

of the land cover, referred to hereafter as the WRF land cover dataset. The WRF land 

cover classification is built on AVHRR data from the year 1992 - 1993 at a resolution of 

1 km (Loveland et al., 2000). This WRF land cover dataset not only utilizes global 

satellite data, but the creators also incorporated ancillary datasets of elevation and 

ecoregions to create a comprehensive global land cover dataset (Loveland et al., 2000). 

 



15 

 

 

 
Figure 5. WRF Land Cover for the study domain, with Gorongosa National 

Park outlined in black. 

The WRF land cover dataset was developed with the International Geosphere-

Biosphere Programme’s (IGBP) unified land cover goals- to provide global land cover 

characteristics most often used in environmental research (Loveland et al, 2000). This 

dataset is categorical, based on characteristics identified by the IGBP as critical to 

vegetation studies. Each land use category is defined by a set of variables that describes 

its biophysical properties, such as albedo, moisture availability, emissivity, roughness 

length, and thermal inertia (Skamarock et al., 2008). There is also a component of 

seasonality built into the categories, with parameters for summer and spring seasons 

(Skamarock et al., 2008). 

To represent forest cover change in our study area, we utilized the Global Forest 

Change dataset from Hansen et al. (2013), referred to hereafter as the Hansen dataset. 

The Hansen data for the analysis domain is shown in Figure 6. This global dataset is 
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derived from 30 m Landsat data, with loss defined as stand-replacement disturbance or 

complete loss of canopy at the Landsat pixel scale (and gain defined as the opposite at the 

Landsat pixel scale) (Hansen et al., 2013). Version 1.4 spans years 2000 - 2016, with gain 

aggregated from 2000 - 2012, and loss available for the whole time period, and on a 

yearly basis. The data also contains forest cover for the year 2000, as a percent. All other 

data is binary, with ‘0’ for no change and ‘1’ for change. 

3.2.2 LCC Quasi-STM 

Compiling data from the Hansen dataset and synthesizing it with the WRF dataset 

presented several challenges. First, there is a significant difference in spatial resolution 

between datasets that needs to be reconciled in some way. Second, we needed to come up 

with a set of rules to compare binary and categorical data. Third, the Hansen dataset 

consists of two separate datasets for loss and gain data. The loss data are available yearly 

for the years 2000 - 2016, while the gain data is available from the whole time period of 

2000 – 2012. Therefore, a time series of net loss is not available, but an aggregate net loss 

can be calculated for the whole time period. 
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Figure 6. Hansen Forest Cover Dataset- tree cover percentage in green, loss in 

red, and gain in blue (Hansen et al., 2013). 

Along with these challenges, we set out to develop a straightforward approach for 

applying these methods to different geographic areas, different scales, and potentially 

different land use products. Foremost, we sought to develop a method that specifically 

dealt with the land cover classes (e.g., plant functional types) already contained in the 

WRF dataset so as to make input into the model as simple as possible. We wanted to 

represent spatial patterns of deforestation, as one of our hypotheses is that not only 

deforestation, but also the patterns of deforestation (e.g., spatial contiguity) are key in 
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determining the resulting hydroclimatic outcomes. Lastly, we wanted a process that was 

fairly simplistic so as to be applied in broad studies with little computing and few 

modifications that could correspondingly be applied to other land use/land cover datasets 

in a relatively straightforward manner. 

 
Figure 7. Potential scenarios in examining a categegorical dataset along with a 

binary dataset. Here, an evergreen needleleaf forest pixel is classified as >60% canopy 

cover. The same amount of loss in scenarios A and B could lead to different outcomes. 

To address these challenges and goals, we decided to create a quasi-State and 

Transition Model (STM) that considers the data on an aggregate scale instead of on a 

pixel-by-pixel scale. An STM uses a probability analysis to determine the likelihood of 

one state transitioning to another state. We took this approach in part due to scenarios 

such as those presented in Figure 7. For example, within the WRF land cover 

classification system, a pixel with tree canopy cover greater than 60% where the trees 
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remain green all year is considered an evergreen forest. This can present us with a variety 

of options for the new state, depending on how we view the first state, and what types of 

conversion are most likely in our study area. 

We also viewed it as imperative to maintain some of the spatial characteristics of 

the deforestation, as we hypothesize that spatial patterns are an important factor that 

controls the spatiotemporal patterns of land-atmosphere interaction and, therefore, the 

associated hydrologic response. 

3.2.3 Workflow 

To create this model, we applied the workflow shown in Figure 8, with 

descriptions of each step in the following sections. 

 

 
Figure 8. Workflow diagram of the steps for fusing the WRF and Hansen 

datasets 

3.2.4 Areal Averaging 

In this first step, we wanted to compare both datasets at the same resolution. As 

we wanted to alter the input WRF land cover map, we wanted to scale up the Hansen 

dataset to 1 km, the same resolution as the WRF input land cover. We also needed to 

ensure that the resultant grids of each dataset matched, so we used the National Center for 

Atmospheric Research’s command language function area_hi2lores (The NCAR 

Hansen 

Dataset 

Regridded 
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Average 

Statistics of 
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Command Language, 2017). This script, along with all others utilized in this research 

were archived on GitHub, the details of which are located in Appendix A. With this 

function, we were able to find the average of each 30 m pixel in the Hansen dataset that 

fell within each 1 km pixel of the WRF dataset. This spatial average effectively 

corresponds to the percentage of pixels within the Hansen dataset that exhibit gain or loss 

at the scale of the WRF landcover dataset. 

 

 

 
Figure 9. Conceptual models of areal averaging the binary Hansen dataset to the 

WRF grid. There are two separate datasets, represented here in blue for gain and red 

for loss. 

The output from this exercise is conceptualized in Figure 9, with 1 km pixels 

ranging from 0 to 1 created from the 30 m pixels of 0 or 1. Output from the areal 

averaging regridding can be seen in Figure 10. The averaged loss values range from 0.0 

to 0.99, while the gain values range from 0.0 to 0.81. Locations of greatest change 

correspond with visual analysis of Landsat in the region. 
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Figure 10. Regridded Hansen dataset on the WRF grid, now with values ranging 

from 0 - 1 for each pixel. 

3.2.5 Hot Spot Analysis 

From the regridded areal average, we located the areas of most loss and most 

gain. We used the Hot Spot Analysis (Getis-Ord Gi*) statistical tool within ArcGIS 

(Getis & Ord,1992), which evaluates a pixel in relation to its surrounding pixels to 

determine where features not only have a high fraction of gain/loss, but are also 

surrounded by high fractions of gain/loss. We created spatial features of gain/loss by 

clustering values that fell within a 99% confidence interval of being a statistically 

significant “hot spot.” Figure 11 shows the locations of most deforestation from our study 

site. 
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Figure 11. "Hot spot" locations of loss and gain in the analysis area. Loss shown 

in red and gain shown in blue. 

3.2.6 Statistics of Quartile Thresholds 

Besides a spatial analysis of the aggregated Hansen dataset, we also performed a 

statistical analysis, the statistics of which are found in Table 1. First, we determined from 

the hot spot analysis that the majority of gain in the study area occurred at the same 

locations as loss, and that loss far outpaced gain. Second, we overlaid the regridded areal
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Table 1. Statistics determined from overlaying the regridded Hansen dataset on the WRF land cover. 

 

Loss (2000 - 2016)
Pixels of 

loss

Percent of 

loss

Percent of 

land cover 

class

Percent of 

domain

Pixels of 

loss

Percent of 

loss

Percent of 

land cover 

class

Percent of 

domain

Pixels of 

loss

Percent of 

loss

Percent of 

land cover 

class

Percent of 

domain

Pixels of 

loss

Percent of 

loss

Percent of 

land cover 

class

Percent of 

domain

Urban 18 0.02 100.00 0.02

Dryland cropland 17586 15.83 99.02 15.22 142 4.30 0.80 0.12 17 2.61 0.10 0.01 2 1.44 0.01 0.00

Cropland/Grassland 43 0.04 100.00 0.04

Cropland/woodland 4232 3.81 96.42 3.66 110 3.33 2.51 0.10 25 3.84 0.57 0.02 11 7.91 0.25 0.01

Grassland 143 0.13 100.00 0.12

Savanna 42645 38.39 97.22 36.90 942 28.53 2.15 0.82 136 20.89 0.31 0.12 19 13.67 0.04 0.02

Deciduous Broadleaf 21430 19.29 93.97 18.54 1090 33.01 4.78 0.94 125 19.20 0.55 0.11 16 11.51 0.07 0.01

Evergreen Broadleaf 906 0.82 72.65 0.78 201 6.09 16.12 0.17 95 14.59 7.62 0.08 23 16.55 1.84 0.02

Mixed Forest 8033 7.23 86.88 6.95 815 24.68 8.81 0.71 253 38.86 2.74 0.22 68 48.92 0.74 0.06

Water 15112 13.60 100.00 13.08

Barren 944 0.85 99.58 0.82 2 0.06 0.21 0.00

Total 111092 96.12 3302 2.86 651 0.56 139 0.12

Gain (2000 - 2012)
Pixels of 

gain

Percent of 

gain

Percent of 

land cover 

class

Percent of 

domain

Pixels of 

gain

Percent of 

gain

Percent of 

land cover 

class

Percent of 

domain

Pixels of 

gain

Percent of 

gain

Percent of 

land cover 

class

Percent of 

domain

Pixels of 

gain

Percent of 

gain

Percent of 

land cover 

class

Percent of 

domain

Urban 18 0.02 100.00 0.02

Dryland cropland 17741 15.42 99.89 15.35 15 3.77 0.08 0.01 4 3.60 0.02 0.00

Cropland/Grassland 43 0.04 100.00 0.04

Cropland/woodland 4356 3.79 99.25 3.77 27 6.78 0.62 0.02 4 3.60 0.09 0.00 1 25.00 0.02 0.00

Grassland 143 0.12 100.00 0.12

Savanna 43788 38.07 99.82 37.89 53 13.32 0.12 0.05 17 15.32 0.04 0.01 2 50.00 0.00 0.00

Deciduous Broadleaf 22765 19.79 99.83 19.70 30 7.54 0.13 0.03 7 6.31 0.03 0.01

Evergreen Broadleaf 1100 0.96 88.21 0.95 108 27.14 8.66 0.09 32 28.83 2.57 0.03

Mixed Forest 9013 7.84 97.48 7.80 165 41.46 1.78 0.14 47 42.34 0.51 0.04 1 25.00 0.01 0.00

Water 15112 13.14 100.00 13.08

Barren 948 0.82 100.00 0.82

Total 115027 99.53 398 0.34 111 0.10 4 0.00

0 - 0.25

Threshold of Threshold of Threshold of Threshold of

0.26 - 0.50 0.51 - 0.75 0.76 - 1

Regridded Hansen Dataset Statistics
Threshold of Threshold of Threshold of Threshold of

0 - 0.25 0.26 - 0.50 0.51 - 0.75 0.76 - 1
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average datasets on the WRF dataset to determine the corresponding land cover class at 

each pixel. Third, we determined a thresholding system to simplify how to compare the 

two datasets. Each pixel of the aggregated Hansen dataset was categorized into 0 - 25%, 

26 - 50%, 51 - 75%, and 76 - 100% loss or gain. We then took the total number of gain 

pixels from each threshold at each land cover class and subtracted them from the total 

number of loss pixels in each threshold/land cover class to determine an aggregate net 

loss per threshold, per land cover class. From these aggregate calculations, we had a 

defined number of pixels for each land cover class, and a level of loss that each land 

cover class was experiencing. 

Table 2. Statistics applied to the WRF Land Cover within our model, after 

subtracting gain pixels from loss pixels. 

 
 

We used the statistics in Table 2 in our quasi-STM. This was based on two assumptions: 

gain and loss pixels were occurring in approximately the same area, and pixels 

experiencing less than 25% loss did not transition to a new state. 

3.2.7 Creating the Model Rules 

First, we categorized each land cover class in the WRF model as a “level of tree 

Pixels

Percent of 
land 
cover 
class

Percent 
of 

domain Pixels

Percent of 
land cover 

class

Percent 
of 

domain Pixels

Percent of 
land cover 

class

Percent 
of 

domain
Urban
Dryland cropland 127 0.72 0.01 13 0.07 0.00 2 0.01 0.00
Cropland/Grassland
Cropland/woodland 83 1.89 0.02 21 0.48 0.00 10 0.23 0.00
Grassland
Savanna 889 2.03 0.02 119 0.27 0.00 17 0.04 0.00
Deciduous Broadleaf 1060 4.65 0.05 118 0.52 0.01 16 0.07 0.00
Evergreen Broadleaf 93 7.46 0.07 63 5.05 0.05 23 1.84 0.02
Mixed Forest 650 7.03 0.07 206 2.23 0.02 67 0.72 0.01
Water
Barren 2 0.21 0.00 0 0.00 0.00 0 0.00 0.00

Loss Minus Gain

Threshold of

0.76 - 1

Statistics Applied to WRF Land Cover

Loss Minus Gain

Threshold of

0.26 - 0.50

Loss Minus Gain

Threshold of

0.51 - 0.75



25 

 

 

cover” as shown in Table 3.  

Table 3. Rules for defining "First State" of vegetation cover. 

 
 

Second, we created a set of rules for changing each level of tree cover based on an 

amount of loss, shown in Table 4. We based the transition land cover on an examination 

of Landsat imagery and reports of the land use change in Mozambique. The majority of 

tree cover change in the area is conversion to agricultural lands, or for the sale of timber 

(Hanlon, 2011). However, there are some areas of Landsat imagery that are barren after 

tree cover loss. There is a small area of tree cover loss due to urbanization around the city 

of Inhaminga. This was not considered in this study as the majority of the study area is 

either not urbanized, or lightly urbanized. All major cities in the domain area can be seen 

in Figure 12. 

 

WRF Land Cover Type

Level of Tree 

Cover

Barren None

Dryland Cropland Low

Cropland/Woodland Mosaic Intermediate

Savanna Intermediate

Deciduous Broadleaf Forest High

Evergreen Broadleaf Forest High

Mixed Forest High
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Figure 12. Cities of interest located in the domain.
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Table 4. Rules for transitioning each "First State" to its "New State." 

 
 

3.2.8 Random Selection of Land Cover Change Pixels 

We randomly selected pixels corresponding to each land cover class within the 

loss hotspot areas. This was part of our approach to calculating net loss on an aggregate 

scale as opposed to a cell-by-cell basis. In this way, we were able to maintain the spatial 

patterns of deforestation while evenly distributing pixels of loss across the hotspot area. 

The number of selected pixels was based on the numbers from each category of loss, and 

we then changed the land cover corresponding to the rules in Table 4. For example, we 

randomly selected 127 dryland cropland pixels within the loss hot spot areas to represent 

the pixels that underwent 26 - 50% loss and converted them to the “Barren” land use 

class in the WRF land cover map. The locations of the random pixels that were selected 

for change are shown in Figure 13. 

 

Original Land Use Type

Land Cover 

after 25 - 50% 

Loss

Land Cover 

after 50 - 75% 

Loss

Land Cover 

after 75 - 100% 

Loss

Dryland Cropland Barren Barren Barren

Cropland/Woodland

Savanna

Deciduous Broadleaf

Evergreen Broadleaf

Mixed Forest

Cropland/ 

Woodland 

Mosaic

Dryland 

Cropland Barren

Dryland 

Cropland

Dryland 

Cropland Barren
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Figure 13. Randomly selected pixels within the loss hotspot areas, shown in 

purple. 

3.2.9 Modified Land Cover Map 

After applying the model to all of the changed pixels, the resultant land cover map 

in Figure 14 was produced. Only 4% of the pixels in the land portion of the study area 

were changed, and 3% of the of the pixels in the entire domain were changed. These 

changes led to some areas of increased heterogeneity in the land cover classes. Some of 

these areas correspond with areas of higher elevation, including Mount Gorongasa, the 

Barue Platform in the eastern central portion of the domain, and a ridge where the cities 

of Mar and Sabwu are located. 
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Figure 14. Modified WRF Land Cover, after applying our quasi-State and 

Transition model. 

3.2.10 Comparison of Modified Map with Hansen Dataset 

We calculated statistics of the Hansen dataset to see how the modified WRF land 

cover map compares. To achieve this, we extracted all pixels of the dataset within a 

certain threshold of tree coverage for the year 2000, and masked all other pixels. The 

percent of the full domain that each of these tree cover amounts is shown in Figure 15. 

We then calculated the total loss for each tree coverage amount for the time period, 

shown in Figure 16. We calculated the total gain without considering the percentage of 

tree coverage in 2000. The total gain for the time period is 699 km2, or 0.6% of the entire 

domain.  
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Figure 15. Hansen tree coverage for the year 2000 

 

 
Figure 16. Percent of domain lost. Here, each tree coverage category from the year 

2000 was considered individually, with all other tree coverage amounts masked. 
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From these statistics, we can see that the modified land cover map underestimates 

tree cover loss, especially when we consider tree coverage ranging from savanna (≥10%), 

to forested areas (≥60%), which were both modified in our new land cover map. 

According to these statistics, 5.5% of the domain was lost to deforestation, and another 

0.6% was reforested for a net loss of 4.9% of the domain. In comparison, 3% of the entire 

domain was altered in the new land cover, with a difference of 1.9%. 

Table 5. Coverage for each land cover class in the WRF land cover. Each pixel 

is 1 km. 

 
 

Also of note is the apparent mismatch between the 2000 tree cover and the forest 

cover classes within WRF, as seen in Table 5. Forest classes account for 28.8% of the 

model domain, while only 7.7% of the Hansen dataset shows a forest cover of above 60% 

in the year 2000. 

3.2 Modeling Framework 

We approached this study as a sensitivity analysis; comparing two land cover 

datasets within the same modeling parameters. We selected the WRF model for its high 

resolution and its physical representation of land-atmosphere interactions. The WRF 

WRF Land Cover 

Class

Pixels in 

domain

Percent of 

Domain

Urban 18 0.0

Dryland Cropland 17,760 15.4

Cropland/Grassland 43 0.0

Cropland/Woodland 4,389 3.8

Grassland 143 0.1

Savanna 43,865 38.0

Deciduous Broadleaf 22,804 19.7

Evergreen Broadleaf 1,247 1.1

Mixed Forest 9,246 8.0

Water 15,112 13.1

Barren 948 0.8

Total 115575
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model works by dynamically downscaling climate data by simulating coupled land-

atmosphere dynamics in response to input atmospheric conditions at the domain 

boundaries and land surface vegetation and soil characteristics (Skamarock et al., 2008). 

In this way, we can achieve much finer resolution results than a global climate model, 

with information pertaining to the whole atmospheric column. To capture the modeled 

differences due to land cover change we implemented two scenarios. In one scenario, we 

used the original WRF land cover, and in the other we used WRF land cover modified to 

incorporate deforestation. All other boundary conditions are maintained in both scenarios. 

The methodology for creating this modified land cover dataset is described in the 

following section. We followed the methodology in Figure 17 to create different model 

input scenarios with different land cover forcing. 

 
Figure 17. Conceptual diagram of model input scenarios used in this study. 



33 

 

 

3.3 WRF Model Parameterization 

All model runs were performed on the National Center for Atmospheric 

Research’s Wyoming Super Computing Center on the Yellowstone supercomputer, with 

WRF Version 3.8.1, built with an Intel compiler. We selected European Reanalysis 

(ERA-Interim) as the atmospheric forcing for WRF as it has been shown to perform 

better than other reanalysis data in representing the weather patterns in Africa (Siam et 

al., 2013). Reanalysis data are particularly useful for atmospheric forcing for their long 

period of record that assimilates historical data. All data resulting from a reanalysis 

project were formed from consistent methods of data assimilation and modeling, allowing 

for uniformly updated methodology that spans long time periods of analysis. From the 

ERA-Interim analysis, we chose two time periods of atmospheric forcing: a wet year 

(2001), and a dry year (2015). We chose a time period of March – May (with a two-

month spin-up) to study. This period of time corresponds to a shoulder season, moving 

from the rainy season to the dry season. In this way, we were able to examine both the 

extremities in rainfall, as well as an intermediate time period for each. We selected a 

domain size for the innermost domain that is small enough to resolve convective scale 

circulations (<4 km), but large enough to capture potential regional-scale biophysical 

effects of deforestation on hydroclimate. 
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Table 6. Parameterizations selected to use in all WRF model scearnios. 

 
 

Table 6 shows the parameterizations within WRF that were selected for our 

simulations. We selected the Noah-MP land-atmosphere model for its complex 

vegetation representation, canopy layer radiation transfer with shaded fraction, soil 

moisture and heat fluxes, runoff, evaporation from open water, and interaction with an 

aquifer layer (Niu et al., 20011). We selected the WRF Double Moment 6-Class 

microphysics scheme for precipitation convection (Hong et al., 2010) and the Betts-

Miller-Janjic cumulus scheme by Betts (1989), Betts and Miller (1986), and Janjic 

(1994). The cumulus scheme was only active in the outer two domains of the simulation 

because the innermost, highest resolution domain is capable of resolving convective 

motions. These microphysics and cumulus scheme selections were based on a study by 

Surussavadee and Aonchart (2013) that showed that these schemes performed well in the 

tropics. 

 

Parameter Scheme

Microphysics ……………………………………WDM 6 Class

Longwave Radiation……………………………CAM3

Shortwave Radiation…………………………..CAM3

Surface Layer …………………………………Monin-Obukhov

Land Surface Physics……………………….. Noah-MP

Planetary Boundary Layer Physics…………..Mellor-Yamada-Janjic

Cumulus Scheme (outermost domain)………..Betts-Miller-Janjic

Domain Resolutions…………………………………..25 km, 5 km, 1 km

WRF	Parameterization
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CHAPTER FOUR: ANALYSES AND RESULTS 

In our analyses, we first focused on overall regional trends of the energy and 

water balance. We then focused on topography and its role in affecting the hydroclimatic 

changes from deforestation. Here we focus on results from the year 2001. Additional 

Results from 2015 can be seen in Appendix B, “Supplemental Figures.” According to the 

African Flood and Drought Monitor (Sheffield et al., 2013), for the time period of 2000 – 

2017, 2001 was the wettest year for the study domain, and 2015 was the driest year.  

4.1 Regional Spatial Analysis 

4.1.1 Analysis Method 

In analyzing the regional trends in the water and energy balance, we took the 

monthly average at each cell in the model output. We then subtracted the monthly 

averaged spatial fields from the simulation with the WRF land cover case (hereafter 

referred to as the control case) from the modified values. Resulting maps, therefore, show 

the modeled change due to deforestation. 

4.1.2 Net Radiation 

For net radiation, for each hourly output we subtracted the outgoing shortwave 

and longwave from the incoming shortwave and longwave, then found the average 

monthly values at each cell. In this instance, we found the percent difference in net 

radiation to show the magnitude of change. The largest driver of incoming net radiation  
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Figure 18. Monthly change in modeled net radiation due to LCC, 2001. 

at the microclimatic scale is albedo. Removal of the darker forest cover leads to an  

increase in albedo. This decreases net radiation at the location of deforestation as more 

incoming shortwave radiation is reflected. The largest driver of incoming net radiation at 

the regional scale is cloud cover, a conclusion for which we provide additional 

justification in the following sections. Regional net radiation due to cloud cover is much 

more variable than the albedo change, but covers a larger scale. Incoming longwave 

radiation and reflected shortwave radiation have opposite effects, as less cloud cover 

during the day leads to more incoming shortwave and more cloud cover reflects outgoing 

long wave back to surface, increasing longwave down. The change in net radiation is 

driven by changes in incoming shortwave, leading to an average net increase in incoming 

radiation. 

4.1.3 Turbulent Fluxes 

To examine the turbulent fluxes, we show both the upward latent heat flux and 

upward sensible heat flux in Figure 19. 
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Figure 19. Monthly change in modeled upward sensible heat flux at the surface 

(top panel) and upward latent heat flux at the surface (bottom panel), 2001, due to 

LCC.  

In viewing the patterns of these turbulent fluxes along with the patterns of net radiation, 

several observations emerge. First, some of the patterns from net radiation changes are 

the largest driver of change within the turbulent fluxes as well. This can be seen in the 

May panel for sensible heat change. When there is less net radiation available, there is a 

corresponding decrease in energy partitioned to sensible heat (and vice versa). Second, 

there are other times where the latent heat portion of the energy balance is a larger driver 

in change in the sensible heat flux. This can be seen in the March panel for latent heat 

flux change. Here, along the western edge of the domain we can see a large decrease in 

latent heat from the control case to the modified case. This matches the same area in the 

sensible heat change panel, with a decrease in latent heat flux resulting in a 

corresponding increase in sensible heat. From March to May, our study site becomes 



38 

 

 

increasingly drier, so whether latent heat flux or net radiation drives changes in 

partitioning of energy may be determined by the amount of moisture available for 

evapotranspiration. Further evidence for this can be seen in Appendix B, “Supplemental 

Figures.”  

4.1.4 Cloud Cover 

Here we show the difference in cloud cover in the lower portion of the 

atmosphere. To solve for these changes, we found the difference between the modified 

and control runs for the cloud fraction from a representative model layer in the lower 

atmosphere.  

 
Figure 20. Monthly change in modeled cloud cover fraction due to LCC, 2001. 

Cloud cover in the upper atmosphere did not change between the different model 

scenarios. Cloud cover change in the lower atmosphere matches the patterns of change in 

net radiation, as shown in Figure 18. Here we can see the cloud cover transitioning 

farther south due to LCC, particularly in the April and May cases. 

4.1.5 Temperature at 2 meters 

The general trend in temperature change is an increase in temperature, with the 

loss of evaporative cooling and the gain in incoming solar radiation being the main 

forcing. However, there is some variability, as the shifting cloud cover in May decreases 
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incoming solar radiation in the southwestern portion of the domain. This leads to an 

average decrease in temperature in these areas. Here we see the sum of all of the effects 

from each energy balance parameter together. As we move from a wetter month to a drier 

month, warming due to a decrease in latent heat flux becomes less important and an 

increase in cloud cover drives cooling in some areas.  

 
Figure 21. Monthly change in modeled temperature due to LCC, 2001. 

4.1.6 Rainfall 

Here we show the difference in the total rainfall amounts at each cell. Here there 

are patterns indicating a shift in rainfall due to LCC. For example, in the March case, 

rainfall shifts from an increased amount in the south during the control case to an 

increased amount in the north during the modified case. Along with this redistribution of 
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rainfall, there is a net decrease in the total amount of rainfall from the control case to the 

modified case. Total depth amounts will be discussed in the next section. 

 
Figure 22. Monthly change in modeled accumulated rainfall, 2001, with LCC 

pixels shown in black. 

4.1.7 Table Summaries of Regional Analysis 

Here we show statistics of the percent change in domain-wide average values for 

the region for key components of the surface energy balance. It should be noted that there 

is no change in energy storage in the ground in the LCC scenario. Also, there is no net 

change in the average temperature between the two runs for the three-month time period. 

The net average values for all parameters in the energy balance show very little change, 

indicating that the majority of changes are at the microclimatological scale. This also 

indicates that the majority of the change results from a redistribution of the energy 

balance.
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Table 7. Percent difference in each modeled parameter due to LCC. 

 

However, in the case of rainfall, even the aggregated values of accumulated rain for the 

whole domain show notable differences between the control and modified scenarios. 

LCC results in a net loss of average rainfall depth for the whole time period, though we 

can see that the greatest differences occur in months where rainfall is greatest. 

Table 8. Domain-wide accumulated rainfall depth for each month, in mm. 

 
 

Table 9. Monthly change in modeled accumulated rainfall due to LCC, in mm. 

 
 

4.2 Rain Case 

Here we investigate one rainfall event to examine the role of weather patterns and 

terrain further. By looking at one rainfall event, we can see how the local weather 

patterns at the time of the event interact with the topography of the domain area. This 

rainfall event takes place from April 4 – 9, 2001. The total rainfall in the domain from 

this event is 21 mm in the control run, and 16 mm in the modified scenario. For this 

Mean Max Min Std Dev

Latent Heat Flux 1.1 0.1 0.0 2.0

Sensible Heat Flux 0.3 0.2 1.0 1.5

Longwave Up 0.1 0.1 0.1 2.0

Longwave Down 0.1 0.1 0.1 1.0

Shortwave Up 0.9 0.4 1.9 2.8

Shortwave Down 0.1 0.1 0.2 0.8

Original Modified

March 34 17

April 24 19

May 16 13

Total 73 49

Mean Stdev Max Min

March -17 31 162 -353

April -5 23 142 -196

May -3 19 250 -102

Total -25 39 186 -381
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analysis, we used the same WRF model output from the previous analyses, but subset the 

output to the time and areas of concern.  

4.2.1 Spatial Patterns of Event 

Here we show accumulated rainfall and cloud cover changes during the rain event 

for the whole domain, using the same analyses methods described previously. 

 
Figure 23. Difference in accumulated rainfall for the April 4 - 9 event, due to LCC. 

In Figure 23, rainfall fell in the central part of the domain in the control case, but 

the rainfall fell in the southern portion of the domain in the modified case. 
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Figure 24. Difference in modeled cloud fraction for the April 4 - 9 rain event, due 

to LCC.  

In Figure 24, the differences in cloud fraction show interaction with terrain such as 

Mount Gorongosa in the north central portion of the domain, or the mountain range in 

Zimbabwe just to the west of Mozambique. To explore the impact of these changes in 

rainfall and cloud cover in combination with the topography of Mount Gorongsa on the 

energy and water balance, we used the methods detailed in the next section. 

4.2.2 Locational Analysis Method 

In order to examine the role of mountainous terrain in our study area during a 

rainfall event, we examined differences between the modified land cover and control 

cases in a successively increasingly large window surrounding Mount Gorongosa (Figure 

25).  
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Figure 25. Here the domain and LCC pixels are shown. Surrounding the 

mountain are the boxes used for this analysis, expanding 10 km then 20 km on each 

side. 

First, we selected several boxes around the mountain area: the first surrounding Mount 

Gorongosa and contains the majority of the tree cover loss area according to the Hansen 

dataset. Each successive box after expands the analysis area by 10 km on each side of the 

box. In this way, we are able to examine how each variable interacts with the topography, 

particularly in a case where the local meteorological patterns are changing in one 

scenario to another. Then, for analysis of each variable, we used the kernel density 

estimation function within Matlab, ksdensity (Hill, 1985, Silverman, 1986, Jones, 1993, 

and Bowman and Azzalini, 1997), to estimate a probability density function (PDF) for 
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each variable of interest in both the control run and modified model simulations. We 

utilized the non-parametric measure of rank correlation by Kendall (Kendall, 1938) to 

determine the agreement between the PDFs in each scenario, given by . The values of  

range from -1 to 1, with a positive  indicating concordance between each pair of 

variables (Kendall, 1938). A small p-value (less than 0.05) indicates that the PDFs are 

significantly non-correlated (Kendall, 1938). 

4.2.3 Locational Analysis Results 

4.2.3.1 Longwave Radiation 

Outgoing longwave radiation will indicate how the area emits absorbed radiation, 

and incoming longwave radiation will indicate how it receives this emitted radiation, 

reflected back from the cloud cover. In our rainfall event, we see very little change 

between the control and modified runs in the longwave radiation variables. 

 
Figure 26. Probability density functions for outgoing longwave radiation. Control 

case in orange and modified case in indigo.  values from left to right: 0.87, 0.84, 0.83. 

All have a p-value of <0.01. 
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Figure 27. Probability density functions for incoming longwave radiation. Control 

case in orange and modified case in indigo.  values from left to right: 0.93, 0.96, 0.95. 

All have a p-value of <0.01. 

In Figure 27, incoming longwave at the location directly around the mountain has 

the most change. In this plot (Figure 27, left panel), there are three major modalities 

within the control case, with three different types of vegetation interacting with the 

longwave radiation. In the modified scenario, the three modalities still exist, but there is 

smoothing between these groups, most likely due to the added interaction with increased 

cloud cover in this particular rainfall event. 

4.2.3.2 Shortwave Radiation 

Differences in incoming solar radiation will indicate how much of the radiation 

from the sun was intercepted or reflected by cloud cover. Outgoing solar radiation will 

indicate how the land cover reflects the solar radiation. Shortwave radiation is also most 

impacted at the location surrounding the mountain. These effects are shown in Figure 28 

and Figure 29. 
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Figure 28. Probability density functions for outgoing shortwave radiation. 

Control case in orange and modified case in indigo.  values from left to right: 0.90, 

0.81, 0.77. All have a p-value of <0.01. 

 
Figure 29. Probability density functions for incoming shortwave radiation. 

Control case in orange and modified case in indigo.  values from left to right: 0.73, 

0.73, 0.74. All have a p-value of <0.01. 

In Figure 28, the largest effects on reflected shortwave occurs exactly at the 

location of the vegetation change. The difference between PDFs of upward shortwave 

radiation between the modified and control runs show smaller differences when 

examining the larger surrounding areas. In Figure 29 there are significant differences in 

the PDFs between the control and modified runs, which we attribute to the changes in 

cloud cover between the runs. Specifically, an increase in cloud cover in the modified 
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scenario shifts the modes of the incoming shortwave radiation values lower. Again, these 

effects become smaller the more area we include around the mountain. 

4.2.3.3 Upward Sensible Heat Flux 

The sensible heat flux indicates the amount of energy related to changes in 

temperature. Here the sensible heat flux shows a secondary peak around 500 kJ/m-2 near 

the mountain in both the control and the modified scenarios, but the peak is larger for the 

modified scenario.  

 
Figure 30. Probability density functions for upward sensible heat flux at the 

surface. Control case in orange and modified case in indigo.  values from left to right: 

0.91, 0.88, 0.85. All have a p-value of <0.01. 

As we move farther away from the mountain, the PDFs between the control and modified 

runs become more similar, but a smaller peak still remains at 500 kJ/m-2 in the modified 

scenario. The control scenario has much lower values of upward sensible heat flux, as 

more of the available net radiation is being partitioned to the latent heat portion of the 

energy balance. 

4.2.3.4 Upward Latent Heat Flux 

The latent heat flux indicates the amount of energy related to changes in phase. In 

the upward latent heat flux, we can see that the probability density estimate curves have 
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the greatest divergence beyond the mountain itself. Latent heat flux is controlled by 

evapotranspiration, as well as the movement of moisture through turbulent mixing. As air 

moves over mountainous terrain, the air cools which can facilitate precipitation of 

moisture in the air. Additionally, as the air interacts with topography, local wind speeds 

and movement can become more variable. 

 

 
Figure 31. Probability density functions for upward sensible heat flux at the 

surface. Control case in orange and modified case in indigo.  values from left to right: 

0.94, 0.93, 0.93. All have a p-value of <0.01. 

Therefore, the turbulent fluxes are much more likely to be affected by the mountainous 

terrain than something like the reflectance of shortwave radiation which is mostly 

controlled by albedo. In Figure 31, as we move farther away from the mountain, the peak 

of the control PDF moves to higher values (closer to 100 kJm-2), whereas the peak of the 

modified scenario remains near 50 kJm-2. This indicates that more energy is redistributed 

to evaporative cooling in the control case, farther from the mountain.
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4.2.3.5 Temperature at 2 meters 

When averaged over the space and time, the temperature differences are barely 

noticeable. There is a small shift to higher values in the modified scenario, but most 

variation is smoothed out in the averaging. 

 
Figure 32. Probability density functions for 2m Temperature. Control case in 

orange and modified case in indigo.  values from left to right: 0.96, 0.94, 0.93. All 

have a p-value of <0.01. 

4.2.3.6 Accumulated Rainfall 

In Figure 33, overall there is much less rainfall in the modified scenario, and the 

empirical probability distribution does not change significantly as we investigate larger 

regions. There is a small peak of 30 mm right near the mountain location, which may 

indicate a small increase in rainfall due to orographic lift. However, overall, the control 

case receives more rainfall overall. 
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Figure 33. Probability density functions for accumulated rainfall. Control case in 

orange and modified case in indigo.  values from left to right: 0.97, 0.97, 0.97. All 

have a p-value of <0.01. 
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CHAPTER FIVE: DISCUSSION 

In the first portion of our study, we show a novel method for representing 

deforestation in a regional climate model. Though there is some underestimation of tree 

cover loss, especially in the savanna areas, this methodology represents a simplified way 

to fuse a dataset in the WRF model and the Hansen Global Forest Cover dataset together. 

One of the most difficult problems to overcome with comparing global land cover 

datasets is to find a way to translate one data type to another. We implemented a heuristic 

approach to determine an approximate level of change with correct spatial patterns at the 

spatial scale of the regional climate model. Our model was simplistic enough that it can 

be applied at larger scales and in a broad variety of environments. By relating loss 

amounts from the Hansen dataset to existing categorical land cover datasets, this 

methodology is applicable to all land cover types, though special care should be taken in 

each region to create rules of change based on the local history of deforestation and 

afforestation. Though our quasi-STM method showed promising results, adjustments 

should be made to better include forest cover loss in categories that already contain a 

small percentage of canopy cover. For example, we could incorporate the 2000 tree cover 

dataset to split our loss into percent loss per coverage amount. We could also split our 

thresholding into a finer resolution so that we can more effectively split the categories 

between those not experiencing loss (such as water) and those experiencing a small 

amount of loss. This will capture more of the deforestation that is occurring in land cover 

classes that do not have much canopy cover to begin with, such as savanna. 
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We show that with this level of deforestation, some parameters exhibit effects at 

the location of the deforestation, while others are more likely to have farther reaching 

effects. This location in central Mozambique is particularly sensitive to alterations in 

latent heat flux, as the recycling rate in this area is relatively high. Therefore, a decrease 

in evapotranspiration leads to a decrease in rainfall amounts. As we have shown, this 

effect becomes less exaggerated in drier seasons, leading to a decrease in the net effect of 

deforestation during the drier periods. As latent heat and sensible heat are more likely to 

be perturbed by fluctuations in turbulent mixing, changes in circulation patterns 

combined with topographic uplift can change the distribution of these parameters. In 

agreement with other studies in the tropics, latent heat flux changes are the main driver in 

temperature change, with increases in temperature occurring at the location of LCC.  

The net effect of alterations to net radiation are less widespread, especially when 

averaging over the whole time period for the whole domain, which smooths out any of 

the variation that is seen. Particularly in the case of outgoing shortwave radiation, the 

effects are very localized to the microclimate as albedo increase is the main driver of 

change. Again, distribution of moisture in the atmosphere is the most important factor for 

regional changes in the net radiation balance, as cloud cover impacts both incoming 

longwave and shortwave radiation. This is also highly dependent on storm track patterns 

along with uplift due to orography. 

With this analysis, it becomes apparent that not only deforestation, but the spatial 

patterns of deforestation coupled with local atmospheric and topographic patterns are 

important in determining the biophysical effects of deforestation. This analysis was 

performed on 1 km grid cell spacing with a model that represents the full dynamics of the 
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coupled land-atmosphere system. While modeling the Earth system at this spatial 

resolution is still too expensive to perform in global scale climate modeling, it is 

important to note that while we can determine aggregate net impacts of deforestation, 

linking deforestation with global rainfall patterns through teleconnections will remain 

difficult until we can more explicitly represent topography and spatial patterns of 

deforestation in global climate models. 
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CHAPTER SIX: CONCLUSIONS 

With this work, we have shown that regional climate, including energy and water 

cycling, could potentially be significantly altered by deforestation. In particular, we show 

that for our study area, the net impact of deforestation from the years 2000 – 2016 is 

generally an increase in temperature and a decrease in rainfall amounts, with some 

variability due to moisture availability and weather patterns for the month in question. 

We have also shown that the magnitude and sign of these alterations depend on local 

weather patterns, topography, and spatial patterns of deforestation. This further supports 

the information gathered in the review of tropical deforestation by Lawrence and 

Vandecar (2014), who examined studies of deforestation which incorporated a variety of 

methods to represent land cover change. They show that modeled results of rainfall 

change depend on a critical thresholds of deforestation amounts, and that deforestation 

patterns (such as concentrated vs. dispersed deforestation) can determine whether there is 

an increase in rainfall or a decrease (Lawrence and Vandecar, 2014). While both review 

papers from Perugini et al. (2017) and Lawrence and Vandecar (2014) describe a variety 

of deforestation simulations in both GCMs and RCMs, the majority of these model 

simulations rely on complete deforestation. While our results are consistent with the 

broader impacts of these continental scale deforestation simulations (i.e. a decrease in 

rainfall and an increase in temperature at the locations of deforestation), our results 

capture the variability that a more realistic representation of deforestation brings. As 

regional and global climate models become increasingly more complex and are able to 
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resolve finer resolutions, it is imperative that we incorporate these land-atmosphere 

interactions due to realistic deforestation on a more localized scale to determine how they 

will eventually impact (and be impacted by) larger areas of the globe. 

There have been some studies that attempt to incorporate more realistic land cover 

change scenarios. Feddema et al. (2005) and Lejeune et al. (2015), incorporate land cover 

change from the Integrated Model to Assess the Global Environment (IMAGE) 2.2 from 

the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios 

(Alcamo et al., 1998 and IMAGE team 2001). The IMAGE land cover change scenarios 

show modeled land cover change for the years 2050 and 2100 for global climate models 

(IMAGE team 2001). Other methodologies include using vegetation models to deforest 

only areas suitable for bioenergy potential (Dass et al., 2014), and deforestation of timber 

concession areas (Roy et al., 2005). Here we offer the first methodology incorporating a 

global forest cover change dataset with a categorical land cover dataset to further 

improve our understanding of the impacts of land cover change on the hydroclimate. 
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APPENDIX A: LOCATIONS OF MODEL OUTPUT AND PROCESSING SCRIPTS
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For future studies, the model output and processing scripts used for this project 

are located in the following locations: 

Model Output 

Two analyses were performed: a small sensitivity analysis with randomized 

vegetation (results shown in Appendix C), as well as the full model runs used in the 

majority of this study. As of May 2018, model output from the sensitivity analysis is 

located on the Payette server in the Department of Geosciences. The full model run 

output is located on the BroncoNet01 server at Boise State University, at 

/research/wrf_mz. 

Script Archive 

All scripts are archived on Github at: https://github.com/LEAF-BoiseState/WRF-

MZ. A repository describing the methodology for the data fusion process is also located 

here. 
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APPENDIX B: SUPPLEMENTAL FIGURES
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The following figures are the same as those shown in Section 4.1, Regional 

Analysis, but for the year 2015. 

 
Figure 34. Monthly change in modeled net radiation due to LCC, 2015. 

 

 
Figure 35. Monthly change in modeled upward sensible heat flux at the surface 

(top panel) and upward latent heat flux at the surface (bottom panel), 2015, due to 

LCC.  
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Figure 36. Monthly change in modeled cloud cover fraction due to LCC, 2015. 

 

 
Figure 37. Monthly change in modeled temperature  at  2 meters due to LCC, 

2015. 

 
Figure 38. Monthly change in modeled accumulated rainfall, 2001, with LCC 

pixels shown in black. 
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APPENDIX C: SENSITIVITY ANALYSIS
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Background 

To plan for the final runs, we first completed a small sensitivity analysis for the 

same domain. Within this study, the same WRF model parameterization was 

implemented as the final runs. The time period in this sensitivity analysis was for the 

month of July 2013 (the dry season), with a one month spin-up. For these modeling 

scenarios, we used the same control run, but implemented a randomized land cover set 

up, shown in Figure 35. In this randomized scenario, each pixel of land cover from the 

WRF model (excluding water pixels) was randomly moved. In this way we could 

examine the role of spatial patterns in deforestation. 

 
Figure 39. Randomized land cover used in modified scenario for the sensitity 

analysis. 

Results 

To analyze this data, we averaged the domain-wide variables and plotted the time 

series for both the control (“standardized”) run and the randomized run. 
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Figure 40. Time series data for specified variables for the whole domain. Control 

run in blue and randomized land cover run in green. 
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Figure 41. Domain-wide acumulated rainfall in mm. Control run in blue and 

randomized land cover run in green. 

Conclusions 

From this analysis, we saw very little difference when we look at the time series 

of each data. It was also a relatively dry month. We used these results to inform the setup 

of our final run and analyses methods. From this, we decided to look more at spatial 

patterns of deforestation and the resultant energy and water balance changes, as well as 

both wetter and drier time periods. 

 


