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ABSTRACT 

Data visualization has proven effective at detecting patterns and drawing inferences 

from raw data by transforming it into visual representations. As data grows large, 

visualizing it faces two major challenges: 1) limited resolution i.e. a screen is limited to a 

few million pixels but the data can have a billion data points, and 2) computational load 

i.e. processing of this data becomes computationally challenging for a single node system. 

This work addresses both of these issues for efficient big data visualization. In the 

developed system, a High Pixel Density and Large Format display was used enabling the 

display of fine details on the screen when visualizing data. Apache Spark and Hadoop used 

in the system allow the computation to be done on a cluster. 

The system is demonstrated using a global wind flow simulation. The Global 

Surface Summary of the Day dataset is processed and visualized using web browsers with 

Data-Driven Documents (D3).js code. We conducted both a performance evaluation and a 

user study to measure the performance and effectiveness of the system. It was seen that the 

system was most efficient when visualizing data using streamed bitmap images rather than 

streamed raw data. The system only rendered images at 6-10 Frames Per Second (FPS) and 

did not meet our target of rendering images at 30 FPS. The results of the user study 

concluded that the system is effective and easy to use for data visualization. The outcome 

of our experiment suggests that the current state of Google Chrome may not be as powerful 

as required to perform heavy 2D data visualization on the web and still needs more 

development for visualizing data of large magnitude. 
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CHAPTER ONE: INTRODUCTION 

Background 

Large corporations and research groups use big data as a source of knowledge 

discovery to gain insights that can help them make better decisions. Big data is difficult to 

store, manage, process, visualize, and analyze because of three characteristics: volume, 

velocity, and variety [1]. Volume means the amount of data, velocity refers to the rate at 

which the data is being amassed, and variety is the range of data types and sources. Big 

data presents many challenges for developing and using tools that transform it into 

something of value.  

Data visualization is an effective tool for presenting this vast information and 

driving complex analyses [2]. Transforming large quantities of raw data into a graphical 

view exploits the superior visual processing capability of the human brain. More data is 

shown on the screen at once allowing users to quickly spot interesting patterns that are 

otherwise hard to detect. However, the effectiveness of visualization diminishes as the data 

to be visualized becomes large due to resolution and computation limitations. A single 

screen with low pixel density is limited to only a few million pixels limiting the 

visualization to a few million data items at once. A single screen with low pixel density 

can quickly lead to overplotting, overlapping, and may overwhelm users’ perceptual and 

cognitive capacities [1, 3] making it difficult for users to understand the behavior of the 

underlying data and defeating the purpose of the visualization. Figure 1 gives an example 

of how visualizing too many data points on a single screen with low pixel density results 

in overplotting and makes analysis difficult. In the figure, the data visualized in the form 
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of scatterplot loses meaning because individual points overlap each other and can no longer 

be seen. 

We identify this problem as the “Fundamental Visualization Pixel Problem”. The 

problem is how to present an object with fine details to a user such that they can 

comfortably explore these details and remain aware of the overall context. For example, 

Figure 2 shows how on small format displays when panning or zooming to see the details 

of an object, we tend to lose the overall context. This problem raises the question: How can 

we let the user comfortably explore the fine details of the object while maintaining the 

overall context given a finite pixel count insufficient to represent all data points. 

The computational load also increases with data volume causing a performance 

challenge. As the volume of the data becomes large, processing and querying such massive 

information requires more memory and processing capabilities and becomes difficult to 

perform on a single node system. Furthermore, if this process takes a lot of time, it can 

hinder the user experience by making users wait too long for seeing visualization on the 

screen [3].  

Figure 1: Overplotted scatterplot 
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This thesis addresses both of these problems by combining two efficient hardware 

architectures that are designed to tackle the problems specified before. A High Pixel 

Density and Large Format (HDLF) display often implemented as a tiled display was used 

to achieve perceptual scalability. We define HDLF display as a display having pixel density 

greater than 100 Pixels Per Inch (PPI) and size greater than 100 inches diagonally. Using 

an HDLF display, the system provides high pixel density and high pixel count, meaning 

more data with fine details can be shown on the screen at once without performing any data 

reduction techniques. While most single-screen data visualization systems use data 

reduction techniques when dealing with big data, these techniques do not completely solve 

the problem of scale [4] and tend to lose a lot of information present in the fine detailed 

data. 

An HDLF display is an arrangement of multiple monitors that collectively behave 

as a single high-resolution wide screen. Such an arrangement is a cost-effective way to 

achieve a large high-resolution display for visualizing a large amount of data and 

presenting fine details without losing sight of the broader context. This allows users to 

explore the details and study the data quickly and easily. A distributed data rendering 

Detailed View Data Overview 

Figure 2: Losing context on small format displays while zooming to see detailed 

data 
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approach was chosen; each monitor is responsible for rendering only that data which is 

unique to that monitor. Under user direction, each node requests data from the server for a 

particular view and the monitors are responsible for rendering only that portion of the view 

based on the data that is streamed from the server. Collectively all of the monitors create 

one large view of data. 

The distributed data processing tool Apache Spark was used for processing large 

data and Apache Hadoop was used for storing this data. Apache Spark and Apache Hadoop 

both work on a cluster that provides sufficient memory and processing capabilities. They 

were chosen as the server side tools in the system because they have shown to be effective 

in a number of big data visualization systems [5–9] and are widely available in industry 

and academia. 

Apache Spark is responsible for processing and transforming the initial raw data 

into the meaningful output, which is then written onto a Hadoop Distributed File System 

(HDFS). Apache Hadoop stores new data efficiently in HDFS and provides access to the 

specific data for visualization when queried. The detailed implementation of the system 

and all of its constituent parts are explained in Chapter 3. 

A global wind flow simulation was performed using the Global Surface Summary 

of the Day (GSOD) dataset to demonstrate the system. The performance and effectiveness 

of our system were measured via a performance evaluation and a user study respectively. 

The author conducted both the performance evaluation and the user study. The user study 

involved 22 human subjects evaluating the system for its effectiveness and ease of use for 

data visualization. The results of these two separate studies (performance evaluation and 

user study) conclude that the implemented system is effective in visualizing big data using 

web-based visualization tools and indicate that the web-based data visualization tools 
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currently may not provide optimal performance when visualizing large amounts of data 

points using high-resolution images as explained in Chapter 5. 

Research Questions 

The primary research question of this thesis was: Can an HDLF display be used to 

effectively visualize large data with fine details for an end user? We wanted to check if the 

distributed approach we used on the HDLF display helps users effectively view and interact 

with visualization. The question was:  

1) Does one of the implementations allow users to effectively view and interact with 

the visualization on the HDLF display? 

Another goal of this thesis was to find performance bottlenecks when performing web-

based visualization of large-sized data. Since there could be many factors that hinder the 

efficiency of the system, finding the ones that most heavily influenced performance was 

imperative. Key questions were: 

2) What visualization functions should be performed on the client side when 

visualizing large sized data? 

3) What visualization functions could be performed on the server side when 

visualizing large sized data? 

4) How can data partitions be created on the server side for efficient data streaming 

and visualizing on the HDLF display? 

Typical functions performed on the client side when visualizing data are:  

 Request data to visualize. 

 Parse received data into the required data structure. 

 Process the parsed data to create frames of visualization. 

 Render created frames on the screen. 
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Typical functions performed on the server side when visualizing data are: 

 Run the simulation code. 

 Store data in memory. 

 Transfer data to clients upon request. 

Question 1) is studied by conducting a user study. The user study involves participants 

testing the HDLF display system by performing a set of tasks on it and answering the 

questions that ask the participants if they find the HDLF display system: 

I. Effective for task-based interactive data visualization. 

II. Easy to use for task-based interactive data visualization. 

Question 2) is studied by measuring three things:  

I. Time taken by the client side for parsing data.  

II. Time taken by the client side for creating frames of visualization.  

III. Image rendering rate on the client side.  

These measurements tell us which of the typical functions performed by the client side 

hinder the efficiency of the system when visualizing large data. It also helps us know if the 

network time for transferring large data is the one impacting the efficiency of the system 

in a negative way.  

Question 3) is studied by performing some typical client-side visualization functions on 

the server and then measuring the performance of the client side when visualizing the 

resulting data format. The performance of the client side is again measured using three 

things:  

I. Time taken by the client side for parsing data.  

II. Time taken by the client side for creating frames of visualization.  

III. Image rendering rate on the client side.  
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These measurements tell us if performing some typical client functions on the server 

increases the efficiency of the system when visualizing large data. Performing such 

functions on the server generates intermediary image data and aggregated data beyond the 

raw text data. These two data types can be bigger in size and take longer to stream to clients 

than the raw counterpart. If the measurements show that performing some typical client-

side functions on the server does increase the rendering performance on the client side, it 

allows us to study if the network streaming time for these intermediary data hinders the 

user experience.  

Question 4) is studied by partitioning the final visualization data in a particular manner 

that could help the system for efficient streaming of data to all monitors in the HDLF 

display, and rendering of these data partitions on all monitors and collectively showing one 

large view on the HDLF display.  

Thesis Statement 

The number of pixels on a single screen with low pixel density is insufficient to 

effectively visualize a large amount of data. Also, a single compute node lacks the memory 

and processing capabilities required to process large data efficiently for visualization. This 

thesis presents an efficient big data visualization system to address these challenges. An 

HDLF display is used to effectively visualize large numbers of data points with fine details 

on the screen. The system uses distributed data preparation and rendering to take advantage 

of the high pixel density and high pixel count available on the HDLF display. Apache Spark 

processes datasets and transforms them into the meaningful output, which is then 

segmented and written to HDFS for each monitor in the HDLF display. In the system, each 

monitor requests its own data from the server and renders it locally. Each monitor renders 

its own section of the full view and together they show one large view of the data. The 
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contributions of this thesis work are the distributed approach and a discussion of the 

bottlenecks and tradeoffs for performing efficient big data visualization using web 

technology as a platform. 

The paper is organized as follows. Chapter 2 discusses the prior work relating to a 

single screen data visualization systems and large format display systems and how some 

of them have influenced the design of our system. Chapter 3 discusses the client side and 

server side components of the implemented system and how they interact with each other 

for performing an efficient data visualization. Chapter 4 talks about the experimental setup 

performed on the system for showing a scientific data visualization. Chapter 5 discusses 

how we evaluated our system and measured the performance and effectiveness of the 

system when visualizing large numbers of data points. This section also shows the results 

obtained from these studies and explains how the collected statistics validate the 

effectiveness of the implemented system while simultaneously pointing out its limitations. 

Chapter 6 summarizes our thesis work with a brief conclusion and discusses the possible 

future direction of this thesis work. APPENDIX A discusses the scientific equations used 

in our work and gives an explanation of how these equations were used to create the global 

wind flow simulation data. Finally, APPENDIX B includes the IRB approval letter and the 

online link to the repository where we have hosted our system. 
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CHAPTER TWO: RELATED WORK 

Prior work in interactive data visualization has focused on devices with low pixel 

density (<100 PPI) and typically small format (<=40 inches in diagonal) [10,11]. With a 

limited amount of pixels, they had to reduce the amount of data presented to the users using 

some kind of scaling techniques for such devices [3,10,11]. These data reduction 

techniques take fine detailed data and throw away information present in them for 

presentation on relatively fat pixels. This results in such systems not being able to show 

objects with fine details. There are a number of visualization techniques for showing fine 

details of an object while presenting them in systems with a limited amount of pixels like 

focus plus context, zooming and panning, brushing, overview plus detail etc. [10–13]. 

These past works use these techniques for exploring fine details but tend to lose the overall 

context on the screen trying to show the fine details. 

Less work has been done on devices with High Pixel Density (>100 PPI) and Large 

Format displays (>100 inches in diagonal) [10, 11]. These devices can improve the ability 

of a system to present large data with fine details while maintaining the overall context. 

Using HDLF displays for visualization increases the performance demand for data 

processing, network streaming, and graphics rendering. Increased demand for data 

processing is mitigated by the fact that existing systems already process big data. This 

results in the major impact being on network and graphics rendering performance to handle 

these HDLF displays.
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Single Screen Data Visualization Systems 

Li et al. [13] developed a visualization specific database engine that performs data 

aggregation on the server side based on the available pixels on the client side (pixel-aware 

aggregation). Their system supports interaction such as zooming, brushing, and overview 

+ detail using a novel deep-linking mechanism where multiple views of a dataset are shown 

and updated simultaneously based on the user’s interaction. Fisher [3] talks about a number 

of aggregation techniques like binning, summarizing, and filtering that can be performed 

on a large dataset to reduce the number of pixels to be rendered and the amount of data to 

be transferred for visualization. He lists a number of projects that have benefitted from 

those approaches and also puts forward the idea of using a parallel processing model like 

MapReduce [4] to boost the performance of such system for data processing and 

preparation. 

Xu et al. [9] created a cloud-based system called CloudVista to support cluster 

analysis in big data and demonstrated how data reduction techniques like sampling and 

summarization cannot always provide the required perspective of data for analysis. Their 

system design uses a Hadoop cluster as a means of computing-intensive tasks on the data 

to create visual frames. These generated visual frames are initially streamed to the client 

transforming the raw data to a size that is feasible for network bandwidth limit and client 

to render. Additionally, their system supports drill down operations where actual raw data 

is streamed to the client when these operations select a subset whose size can be easily 

handled by the client for rendering. Our system has a similar feature where data can be 

streamed to the clients in any of the three formats: visual frames, aggregated text, and raw 

text. But we do not provide drill down operations and therefore stream complete data in 

any of these three formats to the client upon initial request. 
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Eldawy et al. [7] created HadoopViz; a MapReduce framework specifically for 

extensible visualization of big spatial data. Their system is capable of generating big 

images up to giga-pixel resolution by employing a three-phase technique (partition-plot-

merge) and also provides a smoothing functionality that can fuse nearby records together 

as an image is plotted. Their system generates both a single level image to provide a broader 

view of the data and pyramidal images where users can zoom in/out to see a more detailed 

view of the data. They designed HadoopViz such that algorithm designers can focus on 

how the data should be visualized without caring about the performance and scalability 

issues, which is handled by the system. This system is based on a system called SHAHED 

[6], which is also a MapReduce system for querying, visualizing, and mining large-scale 

spatial data. 

Koval et al. [14] implemented a grid service and web interface for dynamical 

interactive 3D visualization of big data arrays. Their system uses web technologies to 

visualize 3D data on the client side. Apache Hadoop plus other tools power the server side 

where the processed simulation data is stored on HDFS. Our implementation has similar 

features where we store our final visualization data on HDFS and use web technologies for 

visualization. But our system is built for heavy 2D visualization not 3D and because of 

this, we use a 2D visualization library D3.js in our work. 

Ravada [8] advocates the efficiency of Hadoop clusters for big enterprises’ 

applications where big data are integrated, stored, managed, analyzed, and acted upon by 

a distributed data storage and processing system like Apache Hadoop. He suggests Hadoop 

is a better alternative to the traditional tools used for Extract, Transform and Load (ETL) 

process in a data warehouse. 
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Other papers such as Cho et al. [5] have explained the problems and requirements 

of interactive data visualization as well as the different steps involved in big data 

processing and analysis. They have also put forward a number of R visualization packages 

and demonstrated that they can be used together with Hadoop to perform efficient 

interactive data visualization. 

Apache Hadoop is not the only framework that has been used for distributed 

processing in data visualization systems. Systems like Kim et al. [15] use the Spring 

Framework to support distributed processing and achieve scalability in web-based data 

visualization and have demonstrated good results. Their web interface allows users to select 

from a number of views of the same dataset for the required visual analysis. 

Big data analytics platforms like MapD [16] use in-memory databases and leverage 

both GPUs and CPUs to execute SQL queries to retrieve data from a huge dataset and 

optimally visualize them on the screen in a single node configuration. Another paper by 

Cheng et al. [17] puts forward a tile-based system for exploratory visual analytics for large 

numbers of data points. Their work used a billion data point Twitter dataset to demonstrate 

the approach to be effective in the analysis of data of unrestricted size. 

Systems Using Large Format Display 

There has been a number of works on a Large Format Display. The works that we 

found do not concentrate on showing large data with fine details efficiently on the screen 

but rather have proven the effectiveness of such displays in showing data in a meaningful 

way with multiple views while still maintaining the context of data in a broader perspective. 

Yang et al. [18] developed PixelFlex; a spatially reconfigurable multi-projector 

display system that provides users with a large format wall display to work with. This work 

talks about the applicability of such a display system for scientific data visualization and 
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user collaboration. But their work is more specific to addressing the problems that arise 

while implementing a smooth and seamless multi-projector system than visualizing data. 

Wallace et al. [19] created a 24-projector display system to provide a large format 

tiled display with the look and feel of a single screen. They talk about the application of 

such displays for large-scale scientific visualization and user collaboration and mention the 

limitation of a normal desktop resolution for visualizing large-scale detailed data. But their 

system has a resolution of 6,144 × 3,072 projected on an 18 × 8 foot projection wall which 

makes it difficult for users to glance at the whole display while simultaneously viewing the 

details. Their work also mentions how they have only visualized data that can easily fit in 

their main memory and have not used the system for visualizing massive amount of data. 

We in our work have focused on visualizing a large amount of data and allow the users to 

comfortably glance at the whole display while exploring the fine details presented on the 

screen. 

Booker et al. [20] developed a tool named GIANT that uses a node-linking 

mechanism to perform geospatial visualization by placing nodes over a map. Since this 

tool uses a large format display, they were able to successfully show multiple views of the 

data while completely avoiding navigation strategies like zooming, panning, etc. Their 

system however required filtering and other methods to reduce the amount of data to be 

shown to achieve good performance. Their evaluation corroborates the effectiveness of 

such large format displays for intelligence analysis. 

Chae et al. [21] used a large format display to visualize graph datasets by using a 

distributed force-directed layout algorithm. Their system partitions data into the individual 

computer-display node, which is responsible for visualizing that particular piece of data 

thus minimizing the network bandwidth requirement for data exchange between the nodes. 
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While the system is built for visualizing generic big data, the work they have shown is too 

specific to graph datasets because of which the applicability of the system for visualizing 

generic big data is not very clear. 

Johnson et al. [22] created DisplayCluster; an interactive visualization environment 

for cluster-driven tiled displays. Their system combines the features of a number of large 

format display environments to provide a dynamic, desktop-like windowing system with 

built-in media viewing capabilities for collaboration, application integration and image and 

video display. Their system offers the ability to stream up to a hundred megapixel images 

and allows arbitrary applications from remote sources to be shown on the tiled display. 

Although their system has really good features, they do not talk about addressing the 

Fundamental Visualization Pixel Problem when visualizing large-sized data, which is the 

primary problem we have addressed in our work. 

Systems like SAGE2 [23] have embraced cloud-based and web browser 

technologies for increasing their collaborative power, flexibility, and ubiquity to drive 

Scalable Resolution Shared Displays that enable real-time communication and multi-user 

interaction. But this system is specifically designed for co-located and remote collaboration 

between users rather than for processing and visualizing big data. This thesis uses similar 

system design choices to SAGE2. Our choice of using a web browser as the tool for 

visualizing data and providing user interaction is inspired by SAGE2’s proof of concept. 
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CHAPTER THREE: IMPLEMENTED SYSTEM 

A design choice that was made while implementing the system was to use already 

existing technologies and test if we could integrate all of them together to create an efficient 

data visualization system. The alternative of building our own tools for the system would 

take us more time to implement all the features and make it difficult to complete this work 

within the timeframe. We decided to use web technologies for client-side visualization. 

Because recent developments to web-based technologies have enabled high-performance 

Figure 3: Implemented system architecture 
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graphics and networking capabilities [23], we wanted to see if we could get enough 

performance out of the web technologies to create an efficient visualization system. 

For the client side of the system, an HDLF display was leveraged along with Data-

Driven Documents (D3).js [24] to visualize data using a web browser as the rendering tool. 

Apache Spark on the server side was used to run distributed parallel processing on a 

Hadoop cluster to prepare data for visualization. An HTTP server was responsible for 

streaming the final visualization data to all browsers in the HDLF display. Figure 3 

illustrates the architecture of the system and shows how the system operates for visualizing 

data. The major components of the system are:  

I. Web Browser: This is the tool for rendering graphics. 

II. D3 Page: This is the file that creates one large view of data on the HDLF 

display.  

III. WebSocket Server: This is a server responsible for specifying what portion 

of the full view a particular browser in the HDLF display is supposed to 

render. It also synchronizes events in all browsers. This is done using the 

WebSocket protocol. 

IV. Spark Job:  This is a spark application running on a Hadoop cluster for data 

preparation. This application creates the final visualization data for all 

monitors in the HDLF display and writes them onto HDFS. 

V. HTTP Server: This is a web server that streams associated chunk of the final 

visualization data from HDFS to each browser based on the browser’s 

location in the HDLF display. 

VI. Three Nodes: Total nodes running the nine monitors of the HDLF display. 

Each node runs three monitors present in a row of the HDLF display. 
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Below is a description of each component that constitutes the client side and server 

side of the implemented system along with the reasons for selecting each. How these 

components interact with each other to run the system as a whole is explained in the System 

Component Interaction section. 

Client Side Components 

HDLF Display 

An HDLF Display is an arrangement of multiple monitors to behave as a single 

screen. HDLF displays are typically large (>100 inches diagonally) and have high pixel 

density (>100 PPI). The display devices connected with each other can be used together 

for any purpose that requires a large format with ultra-high resolution. This type of display 

can be controlled either by a hardware-based controller, a software-based controller (video-

card controller) or via a network. An advantage of implementing such an arrangement is 

that it can be created in any kind of layout with the required resolution. For example, it can 

be connected in a matrix, grid layout or a custom layout as per requirement whereas a single 

screen with such custom shape and high resolution may be unavailable and may cost much 

more. Figure 4 is an example of a 3x3 HDLF display that was used as a part of this project. 

Each of the monitors in Figure 4 is a 4K SE39UY04 SEIKI with dimensions of 

35.16”×21.21”×3.48”(W × H × D) and 39 inches diagonal with a resolution of 3840 × 

Figure 4: 3x3 HDLF display used in this thesis 
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2160. Each monitor has a pixel density of 112.97 PPI and a refresh rate of 30Hz. The total 

resolution of the HDLF display sums to 11520 × 6480 pixels, approximately 72 MP and 

total size equals 117 inches diagonally. The system is run by three nodes. Each node has 

32 GB of RAM and a Nvidia NVS 510 GPU. Each node is responsible for running a single 

row of monitors of the HDLF display. These nodes run Windows and are connected to the 

same Local Area Network (LAN) and internet by 1 Gigabit Ethernet. Also, these three 

nodes are connected to an IOGEAR 4-Port DVI KVMP Switch for simplified keyboard 

and mouse control for a single user.  

Since such an arrangement provides us with a high density and a high pixel count, 

this property can be exploited so that more data points with fine details can be visualized 

on the screen. To show more detailed data points on the HDLF display, the system creates 

the final visualization data and partitions it into chunks equal to the number of monitors 

and streams each chunk to the associated monitor. Simultaneous streaming of all data 

chunks into their associated monitor and rendering them locally based on the same 

visualization view ensures that the complete data is meaningfully represented on the HDLF 

display as a single large data view. 

Data-Driven Documents Package 

We chose D3 package as the tool for visualizing data on the client side because it 

is a standardized visualization package for creating 2D visualizations on the web. D3.js 

[24] is a JavaScript library that is widely used for generating dynamic and interactive data 

visualization in a web browser. It uses Hyper Text Markup Language (HTML), Scalable 

Vector Graphics (SVG), and Cascading Style Sheets (CSS) standards. D3 runs fast with 

minimal overhead in almost any modern web browsers [24]. As its name suggests, it is 

data-driven which means it creates Document Object Model (DOM) elements based on the 
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available data where each created DOM element are bound with a particular piece of data 

which can be used to manipulate the appearance or the location of this element anytime 

during its existence. You can also add functionality to change the way data is visualized 

based on the user’s interaction or events that are triggered. Figure 5 shows a typical 

visualization1 created by The New York Times using D3.js that illustrates Barack Obama’s 

2013 Budget Proposal. This visualization allows users to select from one of four different 

views of the data plus provides detailed information when hovered over any of the bubbles. 

 

We choose D3 for the system because: - 

 D3 can be used without installing any extension or additional plugin in a web 

browser. 

 It is natively written in JavaScript, so just include the .js file and start visualizing 

data. 

                                                 

1 https://archive.nytimes.com/www.nytimes.com/interactive/2012/02/13/us/politics/2013-

budget-proposal-graphic.html 

Figure 5: A typical data visualization created using D3.js 
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 It uses SVG to create an image which means the graphical elements are created 

using geometric primitives (lines, circle, rectangle etc.) and stored in an XML file 

and can be easily scaled up or down to use the available pixels while retaining 

quality. SVG elements are resolution independent and render great on high-density 

displays utilizing the full resolution available. 

 Web browsers have become ubiquitous applications found on any visual computing 

device, which eliminates the need to install an additional tool for the sake of 

rendering graphics on the screen.  

D3 code is responsible for requesting and converting the data received in any format 

from the server into the desired view and providing the interaction control with that view 

for data visualization purposes. D3 is used together with SVG and HTML5 Canvas to 

create graphical elements on a web browser and to provide users the ability to interact with 

the data. Google Chrome was selected as the browser for rendering graphics on screen 

because of its extensive graphics and networking capabilities. 

View Initializer 

The HDLF display used in the system is run by three nodes but is not centrally 

controlled by a single hardware or software unit. An application was created that could 

launch the same visualization view in all nine monitors at the same time to collectively 

show one large view on the HDLF display. For this, a Java application was developed that 

uses a tool named PsExec to launch a web browser process on remote systems. The 

application is run in one of the nodes and allows the user to select a file that represents the 

data visualization to render on the HDLF display. After a file is selected, the application 

launches the file in a web browser in each of the nine monitors. This creates nine different 



21 

 

view areas of a single large view on the HDLF display waiting to receive its associated 

data from the server. 

WebSocket Server 

Our system needed a protocol that allows us to transfer messages between a web 

client and a web server at any time in any direction. Since WebSocket protocol supports 

this mode of communication, a WebSocket server was created for the system. WebSocket2 

is a computer communication protocol, providing full-duplex communication channel over 

single TCP connection.  

The WebSocket Server’s code was written in Java using the WebSocket 

Application Programming Interface (API) and runs in a WildFly container. This 

WebSocket Server runs in one of the nodes in the system and performs two functions: 1) 

tells the connected browsers which portion of the full view to render, and 2) synchronizes 

events happening in one in all nine of them. As both functions require a server to send 

information to a connected client without the client making a request, WebSocket protocol 

was suited for achieving such performance. Also, WebSocket protocol is currently 

supported in most major browsers and the HTML5 WebSocket specification defines an 

API that enables web pages to use the WebSocket protocol for two-way communication 

with a remote host. 

When the view initializer launches the data visualization file in a web browser in 

all nine monitors, each browser connects to the WebSocket server. Upon establishment of 

the connection, each browser receives display parameters that define a rectangular 

subsection of the full view that the browser is to display. These parameters are used by the 

                                                 

2 https://en.wikipedia.org/wiki/WebSocket 
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browsers to draw only a particular section of the full view which they are directed to display 

by the WebSocket server. Additionally, this WebSocket server assists the system in 

handling user interaction with the full view. After each browser receives the display data 

to render from the HTTP server, they can send an event that happens in them to this 

WebSocket server, which in turn broadcasts it to all nine browsers via their established 

WebSocket connections. 

Server Side Components 

Apache Hadoop 

Our system needed a platform for storing large datasets before processing the initial 

data and after creating the final visualization data. This made Apache Hadoop an 

appropriate choice. Apache Hadoop [4] is an open source software project that allows for 

distributed storage and processing of large datasets across a cluster of computers built from 

the commodity hardware. Furthermore, the scalability of Hadoop for storing data of any 

size using a cluster of commodity servers and the resiliency of the software for detecting 

and handling fault tolerance made it even more suitable. 

In the system, we use Hadoop Distributed File System (HDFS) for distributed 

storage of data on the server side. Additionally, we needed a convenient API that allowed 

us to write into and read the data residing in HDFS from any location beyond Hadoop’s 

private network. For this, Hadoop’s WebHDFS API was used. WebHDFS defines a public 

HTTP API, which permits clients to access the data stored in HDFS using multiple 

programming languages without the need to install Hadoop in their own system. 

WebHDFS allows users to connect to HDFS from outside of the Hadoop cluster, which is 

particularly useful when some outside application has to load data in and out of the HDFS 

or to work with the data stored in HDFS. WebHDFS also supports all HDFS’s user 
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operations like reading files, writing to files, making directories, changing permissions, 

renaming etc. making it a good choice for our system. WebHDFS API is used in our system 

for two functions: 1) once the server-side processing is finished creating the final 

visualization data in raw text format, this data is stored in HDFS via WebHDFS API, and 

2) when the created final visualization data in raw text format is requested by the clients 

for visualization, the data is streamed to them using WebHDFS API. 

Apache Spark 

Our system also needed a cluster computing framework for processing the initial 

data and transforming them into the final visualization data in a reasonable amount of time. 

Apache Spark is an efficient tool for achieving this. Apache Spark [25] is a powerful open 

source cluster-computing framework for running large-scale data analytics applications 

across clustered computers. It is a fast, in-memory data processing engine with elegant and 

expressive development APIs. 

Spark applications can be run using a resource or cluster management system that 

takes care of allocating workers on demand for this distributed parallel processing 

architecture. Apache Hadoop’s distribution used in this project provided us with a cluster 

management system named Apache YARN (Yet Another Resource Negotiator). Therefore, 

Spark jobs were run in the system using Apache YARN on a Hadoop cluster to share a 

common cluster processing and storage system while ensuring consistent levels of service 

and response. Figure 6 depicts how a typical spark job together with the YARN resource 

manager is executed on a Hadoop cluster. 
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Spark’s python API PySpark was used for developing a server-side application that 

could process the initial data and transform it into the required output for visualization. 

Spark together with the YARN resource manager is used to run this application. For storing 

the transformed output into HDFS, the application communicates with Hadoop’s 

WebHDFS server. Since the implemented system uses distributed data preparation and 

rendering approach, this spark application was responsible for processing the initial data 

residing in HDFS, creating final visualization data for each monitor and writing each 

monitor’s data into HDFS via WebHDFS. These final outputs could then be streamed to 

each of the monitors in the HDLF display for visualization. 

HTTP Server 

A simple web server was created using Python’s BaseHTTPServer module and 

written in Python. Upon data request from the client, this web server connects to HDFS 

using WebHDFS and streams the final visualization data in raw text format to all monitors 

in the HDLF display. The default features of the HTTP server were sufficient to study 

Research Question 2 and facilitated analyzing bottlenecks of the system. But the third 

Figure 6: A typical Spark workflow 
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research question required extending the basic features to get appropriate answers. 

Therefore, the HTTP server was expanded to incorporate two additional features.  

The first feature enabled clients to request for aggregated text data created by the 

server using an aggregation method. The server supports aggregation methods such as 

filtering, summarizing, and binning. For this feature, the server reads the final visualization 

data from HDFS, creates aggregated data using an aggregation operation and streams it to 

the client upon request. The aggregation operation is determined by the type of 

visualization view that the data is going to be rendered into. The selected aggregation 

operation reduces the size of data to be streamed and the number of data points to be 

rendered on the client side. 

The second feature enabled clients to request bitmap image data for visualization. 

The server creates bitmap image data using Python Imaging Library (PIL) after processing 

the final visualization data to create actual frames of visualization. These created frames 

are the same frames of image the client would have otherwise rendered on the screen when 

visualizing the final visualization data in raw text format. For this feature, the server reads 

the final visualization data from HDFS, processes the data using PIL to produce bitmap 

images representing the client visualization, and stores them as Portable Network Graphics 

(PNG) images. When a client requests data in the form of bitmap images, the corresponding 

PNG images are sent. 

These two features were added to enable the study of if reducing some of the load 

on the web-based visualization tools would assist the client side of the system to gain 

performance. Our assumption is that the server-side components such as HTTP server have 

an order of magnitude more memory and computing resources than the client side. This is 

why we chose to perform the resource-intensive tasks on the server and take care of some 
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of the typical client visualization functions that may be difficult for the client side to handle 

if done alone. We used the two additional features to study Research Question 3. 

Additionally, this web server provided us with the ability to analyze our implemented 

system and find the performance bottlenecks when performing web-based visualization for 

large-sized data. 

System Component Interaction 

Figure 7 illustrates the distributed data segmentation, preparation and rendering 

approach used by the system. The components that work together to achieve this approach 

are: 

I. Nine browsers running on nine monitors to show one large view on the 

HDLF display. 

II. HDFS where data partitions for all nine monitors are written by a Spark 

application. 

Figure 7: Data creation and streaming in three formats by HTTP Server 
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III. HTTP server which reads data partitions from HDFS, processes them, 

creates the output in three formats, and stores them in memory. It also 

streams data in the required format to all nine monitors in the HDFL display 

for rendering. 

Likewise, Figure 3 illustrates the workflow between the server side and client side 

components of the system as well as the interaction that happens between them when 

visualizing data. The server side and client side components are put together in the system 

based on two important principles explained below. 

View Partition and Data View Synchronization 

The data visualization file created using D3.js is initialized as a large SVG image that fully 

utilizes the pixel density available on the HDLF display. Our system launches the same 

page on all nine monitors in a web browser. This approach was preferable to creating nine 

different visualization files. Creating one file was more convenient and efficient in terms 

of source code development and maintenance. Also, it was seen that using a different file 

for different monitors could sometimes result in misalignment of the view subsections if 

pages were launched in or moved to the wrong monitor. Using a single file does not suffer 

from this issue. 

After the view initializer launches the data visualization file on each web browser, 

the WebSocket server sends display parameters to the browsers based on the browser’s 

location in the overall grid. For example: - a browser at location (2,1) in the 3x3 HDLF 

display receives a message specifying the display parameters as 

“height=2160&width=3840&x=3840&y=0”. This means the view initialized as a large 

SVG image that is being opened by this browser is rendered only from pixel 3840 in x-axis 

and 0 in y-axis with a width of 3840 pixels and a height of 2160 pixels. These dimensions 
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correspond to one of the nine rectangular subsections of the full SVG image where each 

subsection utilizes the full resolution of a monitor. 

Because different browser instances receive different parameters specific to their 

location, the HDLF display as a whole renders a single large SVG image. The system uses 

SVG’s viewBox and clip-path properties to apply the principle of view partition. This is 

how view partitioning is performed in the system. After view partition, all nine browsers 

are ready to request data from the HTTP server and render. The data requested is based on 

the rectangular subsection of the full view they are currently displaying. 

Data view synchronization is handled after the actual data is received and rendered 

in all nine browsers. Data view synchronization here means an event occurring in one of 

the browsers shows its effect in all of them within a short period of time. This gives the 

impression that users are interacting with one large view on the HDLF display. This is done 

by the WebSocket server, which has an open WebSocket connection with all nine browsers 

after view partition. For data view synchronization, when an event occurs in one of the 

browsers, that browser sends the event to the WebSocket server, which in turn pushes the 

event to all browsers. This ensures that every rectangular subsection of the full view on the 

HDLF display is in the same state of the current data view. This is how the system performs 

data view synchronization and provides users with the ability to interact with data in 

multiple monitors the same way a user would interact with data on a single screen. 
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Data Partitioning and Streaming 

The view partition concept explained before requires that each browser should receive its 

own discrete data based on which portion of the full view it displays. To meet this 

requirement, the final visualization data was created by partitioning the visualization data 

into nine parts. Here each part represents the data that is unique to a monitor where it is 

supposed to be rendered. To perform data partitioning, a Spark application is run that 

transforms the initial meaningless data into the final visualization data. The completion of 

this Spark job writes the output of the performed computation into text files in HDFS. A 

total of nine files are written into HDFS each of which is associated with a monitor in the 

HDLF display. These files contain the raw text data that is to be rendered by the browser. 

Additionally, the text files are written in a format suitable for D3.js to parse and HTTP 

server to perform some server-side operations. This is how data partitioning is done in the 

system. Figure 8 illustrates how data partitioning is done by Spark. 

Data streaming is the responsibility of the HTTP Server. This server acts as a bridge 

between the client side of the system and HDFS where the final visualization data resides. 

The HTTP server stores data in three formats: 1) raw text data, 2) aggregated text data, and 

3) bitmap image data. Here data in the raw text file format is an exact copy of the final 

Figure 8: Data partitioning done by Spark 
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visualization data residing in HDFS. Because the final visualization data residing in HDFS 

is stored in a distributed fashion, the server runs a number of parallel processes where each 

process reads a partition of the final visualization data from HDFS, performs some server-

side operations and stores the output data in its memory. This way the HTTP server creates 

data in three formats mentioned before for all nine monitors and stores them in its memory. 

Figure 7 depicts the process of how the HTTP server creates and stores data in three formats 

for all nine monitors of the HDLF display. All required data for the HDLF display reside 

in the memory of this server, so upon request by the clients for a particular data for a 

particular monitor in a particular format, this server transmits the associated data. This is 

how the HTTP server facilitates data streaming by responding with the required data to all 

of the nine monitors in the HDLF display. We used this principle of data partitioning and 

streaming to study Research Question 4. 

In this way, our system uses distributed data preparation and rendering approach to 

show more data with fine details by visualizing nine different blocks of meaningful data at 

once utilizing the high pixel count available on the HDLF display. 
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CHAPTER FOUR: EXPERIMENTAL SETUP 

In order to test the hypothesis that leveraging an HDLF display can assist in 

effectively visualizing large numbers of data points with fine details, an experimental setup 

for showing scientific data visualization was performed on the system. Scientific data 

visualization was performed on the system for visualizing the Global Surface Summary of 

Day (GSOD) dataset. Because of the dataset’s specific attributes and features, wind flow 

simulation was chosen as the view for visualization. 

Dataset 

Global Surface Summary of Day 

GSOD3 data is a dataset created by the National Climatic Data Center (NCDC). 

The GSOD dataset consists of 18 surface meteorological elements that are listed in Table 

1. In addition to the meteorological elements listed in Table 1, the dataset also consists of 

the indicator for the occurrence of fog, rain or drizzle, snow or ice pellets, hail, thunder, 

and tornado/funnel cloud. 

Based on the attributes listed in Table 1, the dataset was found to be suitable for 

simulating wind flow on a global map. This is why global wind flow simulation was chosen 

as the view for this experiment. Because there are more factors to global wind flow than 

the ones listed in Table 1, a number of scientific equations were used that could assist us 

to simulate the wind flow. These scientific equations use a small number of meteorological 

                                                 

3 https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod 

ftp://ftp.ncdc.noaa.gov/pub/data/gsod 
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features to transform the initial unprocessed GSOD data into the final simulation data. The 

resulting simulation data can be plotted as points on the globe with the wind velocity 

information at every plotted point. This final simulation data was used to perform the global 

wind flow animation. The scientific equations were added as a part of the Spark 

application’s source code, which was run on a Hadoop cluster to create the simulation data 

for visualization. APPENDIX A presents the scientific equations used for creating the 

global wind flow simulation data out of the preprocessed GSOD data. It shows how the 

scientific equations were used to create the data points on the globe that would later help 

us to render wind flow simulation on the client side. 

Table 1: GSOD Meteorological Elements 

Meteorological 

Elements 
Unit 

Meteorological 

Elements 
Unit 

Mean temperature Fahrenheit 
Maximum sustained 

wind speed 
Knots 

Mean dew point Fahrenheit Maximum wind gust Knots 

Mean sea level 

pressure 
Millibar Maximum temperature Fahrenheit 

Mean station pressure Millibar Minimum temperature Fahrenheit 

Mean visibility Miles Precipitation amount Inches 

Mean wind speed Knots Snow depth Inches 

 

Data Preprocessing 

The GSOD dataset used in this experiment was not in the format required by the scientific 

equations to transform them into the final simulation data. Therefore, the GSOD dataset 

was preprocessed using the following steps: 

1. GSOD’s data fields were converted into the units required by the scientific 

equations for creating the simulation data. 



33 

 

2. Insufficient or incomplete data out of the GSOD dataset were removed or 

interpolated. 

3. New data fields required by the scientific equations were created using the data 

fields already available in the GSOD. These new data fields were added onto GSOD 

while the unnecessary fields were removed. 

We did not record the dataset preprocessing time in our work because it is out of the scope 

of this thesis and we were not concerned about the performance of the system while 

preprocessing the dataset. For converting the data fields into the units required by the 

scientific equations, pressure fields were converted from millibar to Pascal (Newton/m2), 

temperature fields were converted from Fahrenheit to Kelvin, and wind fields were 

converted from knot to m/s. 

For removing insufficient or incomplete data, all data values having all values 9 

indicating an incomplete data were either interpolated using other data fields or were 

removed. For this, if the station pressure is an incomplete value then it was interpolated 

using the following formula: 

𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝑆𝑒𝑎 𝐿𝑒𝑣𝑒𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑥 ℮(− elevation/(temperature∗29.263)) (1) 

  
Here pressure fields are measured in millibar, the temperature is measured in Kelvin 

and elevation is measured in meters.  

GSOD data files do not include any elevation information about stations. A separate 

file available in the GSOD was used to get the elevation information for the station. This 

file includes the list of stations along with their geographical information. The scientific 

equations used requires data about the station’s temperature, pressure, and wind velocity 

to compute the simulation data. So any row of data, which either had any of these fields 

with all values 9 or any of these fields that could not be interpolated using other data fields, 
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was removed from the data file. After converting the data fields into the required units and 

removing incomplete data, the GSOD data files still did not contain all the data fields 

required by the scientific equations. Therefore, we added new data fields into the GSOD 

data files and removed the ones not needed for this experiment. 

To create the new GSOD data files with all the required data fields, we needed to 

append the geographical information about a station to that station’s data row. For this, the 

station’s full name, latitude, longitude, and altitude information were retrieved from a 

separate file in the GSOD dataset and appended into that data row. The scientific equations 

also required the air density information, which is not present in the original GSOD data 

file. So air density needed to be appended to the data row whose value was being processed. 

For appending the air density information of a station, the following formula was used: 

 𝑃 =  𝜌 𝑅𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑇 (2) 

  Here P is the air pressure measured in Pascal, T is the temperature measured in 

Kelvin, and 𝑅𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 is 287.058 J/Kg/K.  

The GSOD data files already contained the station pressure and temperature 

information and the preprocessing step converted these fields into the required units, 

therefore equation (2) gave us the air density value in kg/m3. This air density information 

was then appended into the data row, which value was being processed.  

After preprocessing, the data files have all of the data fields that the Spark 

application requires to transform the initial unprocessed data into the final simulation data. 

Finally, new GSOD data files after preprocessing were stored in Tab Separated Values 

(TSV) format. Figure 9 shows this format. The total size of the preprocessed data files was 

20 GB. These files contain time series data from 1929 to 2016. 
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Figure 9: Preprocessed GSOD data file 
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CHAPTER FIVE: EVALUATION 

This chapter is divided into three sections. The first section contains a list of images, 

which illustrates how the scientific data visualization appeared on the client side. It gives 

a view of how the global wind flow simulation performed on the system appeared to the 

users. The second section explains the results of the performance evaluation that was 

conducted to measure the performance of the system. The third section provides the results 

of a user study that was conducted with 22 different participants to measure the 

effectiveness and ease of use of the system for data visualization. 

Global Wind Flow Simulation 

The global wind flow simulation data contained more than a million data points to 

be visualized on the web browser. Using D3 to draw this large number of data points on 

SVG resulted in a bad performance with the browser being unable to achieve a smooth 

transition between the frames of visualization. As an improvement, an HTML5 canvas 

object was used for drawing the data points. So the data visualization was created using D3 

with the SVG elements and the HTML5 canvas element for drawing graphics on the screen. 

In the rendered global wind flow simulation, SVG was used to draw the world map and 

wind stations. The performance intensive task of drawing all the wind data points was 

performed on the HTML5 canvas element to allow a smooth transition between the frames 

of visualization. This eliminated sluggish performance during animation. With these 

technologies being selected for achieving maximum performance while performing web-

based 2D data visualization, we performed the global wind flow simulation. We added 

panning and filtering options for the users to interact with the view. Panning allowed the 
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users to pan the global wind flow up to 40 degrees longitude on both directions. Filtering 

allowed them to start the wind flow from a selected number of weather stations. In the 

system, we did not add zooming as an option because we wanted to check if the users could 

comfortably explore the fine details on the screen without the need to zoom in to see the 

details. 

This section contains the pictures of the global wind flow simulation that was 

performed on the HDLF display visualization system. Figure 10 shows how the global 

wind flow simulation looked on the system. In the figure, the black icons represent a 

weather station and the lines with an arrowhead represent a wind instance flowing from the 

source station to the destination station. Figure 11 and Figure 12 show the state of the 

global wind flow when a user decides to start the wind from a selected number of source 

stations. Figure 13 shows the same state as Figure 12 but after panning the whole view 40 

degrees towards east. Figure 14 gives a closer look at the wind flow and shows how it is 

rendered in one of the monitors. 

Figure 10: Global wind flow simulation on the Tiled Display Based System 
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Figure 11: Global wind flow when the wind has been started from only one 

station 

 

Figure 12: Global wind flow where the wind has been started from five stations 
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Figure 13: Global wind flow when panned 40 degrees east 

 

Figure 14: A closer look at the wind flow on one monitor 
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Performance Evaluation 

We conducted a performance evaluation to measure the efficiency of the system for 

big data visualization. The results of the performance evaluation conducted on the system 

are explained below. 

In our work, we were concerned only about the performance of the visual part of 

the system. Therefore, we decided to measure the client side rendering performance and 

ignored the server side performance for visualizing data. As stated, the HTTP server is 

capable of streaming data to the clients in three formats: 1) raw text data, 2) aggregated 

text data, and 3) bitmap image data. We measured the client side rendering performance of 

the system when visualizing each of these three data formats. The parameters that measured 

the client side rendering performance are described below: 

1. Disk Size = Total size of the data for all nine browsers in terms of used disk 

space measured in Megabytes (MB). 

2. Number of Data Points = Total number of data points for all nine browsers 

in the visualization view where each data point is a wind instance drawn on 

the HTML5 canvas. 

3. Total Read Time by Client = Total time waited by all nine browsers to 

receive the data from the server. 

4. Average Parsing Time Before Client Rendering = This is the average time 

spent by each browser parsing the data received from the server to convert 

them into the required data structure which is then used by D3 for creating 

the frames of visualization. 
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5. Image Rendering Frame Rate = This is the average Frames Per Second 

(FPS) of the visualization drawn by the browsers. This parameter was 

recorded only after the browsers started drawing the cached 30 frames of 

visualization. The browsers cached these 30 frames after they were 

successfully rendered on the screen for the first time. 

6. Average Client User Action Response Time = This is the average time spent 

by each browser to receive an event and draw frames of visualization based 

on that event. This parameter was recorded when a user interacted with the 

data visualization and fired an event in any one of the nine browsers on the 

HDLF display. 

7. Total Number of Streamed PNGs = Total number of bitmap images in 

compressed PNG format streamed to the client by the server for all nine 

browsers. This parameter is recorded only when visualizing bitmap image 

data. 

Tables 2-4 contain the results of the measurements taken on the system using the set of 

parameters explained before. Table 2 shows the results when visualizing raw text data, 

Table 3 when visualizing aggregated text data and Table 4 when visualizing bitmap image 

data.
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Table 2: Performance evaluation for client-side rendering when visualizing 

raw text data 

SIZE OF DATA TIME IN SECONDS 

Disk Size 

(CSV File) 

Number of 

Data Points 

Total Read 

Time By 

Client 

Average 

Parsing Time 

Before Client 

Rendering 

Image 

Rendering 

Frame Rate 

Average Client 

User Action 

Response Time 

8.43 MB 58,535 0.282s 0.117s 8FPS 1.2s 

19.9 MB 126,465 0.535s 0.24s 10FPS 0.95s 

37.1 MB 236,194 1.046s 0.405s 10FPS 1.305s 

82 MB 561,590 2.5s 0.69s 8FPS 1s 

260 MB 1,645,261 7.21s 1.2s 7FPS 1.75s 

375.7 MB 2,445,942 21.031s NR NR NR 

  NR = Not Recorded means browsers crashed while rendering images. 

Table 3: Performance evaluation for client-side rendering when visualizing 

aggregated text data 

SIZE OF DATA TIME IN SECONDS 

Disk Size  

(JSON File) 

Number of 

Data Points  

Total Read 

Time By 

Client 

Average 

Parsing Time 

Before Client 

Rendering 

Image 

Rendering 

Frame Rate 

Average Client 

User Action 

Response Time 

15.7076 MB 54,593 0.47s 0.074s 8FPS 0.64s 

36.9 MB 121,376 0.99s 0.24s 10FPS 0.62s 

68.7 MB 227,191 1.824s 0.37s 10FPS 0.61s 

153.6 MB 527,529 3.941s 0.63s 8FPS 1s 

451.14 MB 1,489,782 13.96s 0.95s 7FPS 1s 

580 MB 1,945,115 33.5s 1.2s 7FPS 1.2s 

1281 MB 4,209,349 44.935s NR NR NR 

 NR = Not Recorded means browsers crashed while rendering images.
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Table 4: Performance evaluation for client-side rendering when visualizing 

bitmap image data 

SIZE OF DATA TIME IN SECONDS 

Disk Size 

(Compressed 

PNG Files) 

Number of 

Data 

Points 

(Rendered 

on PNGs) 

Total 

Number 

of 

Streamed 

PNGs 

Total Read 

Time By 

Client 

  (PNGs) 

Average 

Parsing 

Time Before 

Client 

Rendering 

Image 

Rendering 

Frame 

Rate 

Average 

Client User 

Action 

Response 

Time 

31.7MB 54,593 180 1.418s 0.0045s 8FPS 0.82s 

30.8MB 121,376 120 0.772s 0.00625s 10FPS 0.78s 

30.9MB 227,191 120 0.866s 0.001675s 10FPS 0.78s 

102.6MB 527,529 180 3.286s 0.0175s 8FPS 0.82s 

126.2 MB 1,489,782 270 5.064s 0.032s 7FPS 0.9s 

360.9 MB 1,945,115 270 26.14s 0.0389s 7FPS 1.85s 

226 MB 4,209,349 270 11.873s 0.048s 7FPS 2.1s 

254.6 MB 8,248,724 270 14.263s 0.062s 6FPS 2.89s 

 

From the results in Tables 2-4, it can be seen that client side is superior in 

visualizing bitmap image data than the raw/aggregated text data in terms of the disk size 

of the data, network streaming time for the data, client-side parsing of the data, and the 

maximum number of data points visualized. It is seen that the system crashed while 

rendering images when the number of data points reached around 2 million for the raw text 

data and 4 million for the aggregated text data. The number of data points did not make a 

difference even when visualizing larger number of data points for the bitmap image data. 

In our evaluation, we successfully visualized up to 8 million data points using bitmap image 

data without any of the browsers crashing. 

We believe the system’s behavior would be similar even if we visualize more data 

points using bitmap images. This is because the HTTP server is doing all the performance 
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intensive task of processing and creating frames of visualization for all nine browsers. 

When visualizing bitmap images, each browser receives images of 4K resolution regardless 

of the number of data points rendered on the server. This concludes that the number of data 

points visualized using bitmap images is not of a concern for the client side. The only 

concern is rendering the bitmap images of this resolution. Because the system can easily 

handle rendering images of this resolution, the system is more efficient in visualizing data 

using bitmap images than the other two formats. These observations indicated that 

performing typical client visualization functions of processing the data and creating frames 

of visualization on the server increases the efficiency of a data visualization system when 

visualizing large data. 

It is also seen that the system is more efficient while visualizing aggregated text 

data than the raw text data. This is because the HTTP server performs the typical client 

visualization function of parsing the data on the server and creates the aggregated data, 

which eliminates the need for the client side to perform this function. In Table 3 the 

aggregated number of data points were the result of the server performing filtering 

operation on the original raw text data. These new data points represented the aggregated 

information created from the original data points, which were much more in number. 

Although the browsers were unable to handle anything more than 4 million data 

points while visualizing aggregated text data, this data format still gives the system the 

ability to visualize more information on the screen. This is possible if the server does a 

more intense and rigorous aggregation operation than just filtering to create data points that 

best represent a larger number of original data points. In this case, if the resulting number 

of data points are under 4 million, the client side can easily visualize this aggregated text 

data that best present the insights present in a larger data.  
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 Tables 2-4 show that the amount of data streamed to the clients was smaller in size 

when the server streamed data in bitmap format than the other two. It is seen that: 

 When the number of data points to visualize is small, bitmap format is bigger in 

size than the other two. 

 When the number of data points to visualize grows large, bitmap format is smaller 

in size than the other two. 

The reason behind this behavior is that when the server streams bitmap image data to all 

nine browsers, it streams PNGs. These PNGs are of 4K resolution no matter how many 

data points are rendered on them by the server. The size of these PNGs makes the total 

disk size for bitmap image data more than the raw and aggregated text data when the 

number of data points to visualize is small. But when the number of data points becomes 

larger, total disk size of the bitmap image data is much smaller than the other two formats. 

This behavior does not affect our system because we are concerned about the efficiency of 

the system for visualizing large data and do not worry how it behaves while visualizing a 

small number of data points. 

It is also seen that the size of aggregated text data was more than raw text data. This 

is because the HTTP server while performing aggregation stores the resulting data into a 

structure which makes the browser spend comparatively less time for data parsing before 

rendering for aggregated text data than the raw text data as seen in Table 2 and Table 3. 

This resulting aggregated JavaScript Object Notation (JSON) file contains more 

information and it ends up being bigger in size than the raw Comma Separated Values 

(CSV) file. 

Tables 2-4 show that the Total Read Time by Client (TRTC) for all nine browsers 

was less for bitmap image data than the raw and aggregated text data. It is seen that when 
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the number of data points to be visualized is small, TRTC is more for bitmap image data 

than other two formats. This is again because the disk size of the raw text and aggregated 

text data were smaller than the bitmap image data when the number of data points to 

visualize was small. But when the number of data points was large, total disk size of the 

bitmap image data was much smaller than the other two formats and hence the TRTC for 

bitmap image data was smaller than other two formats. 

From the results in Tables 2-4, it is also seen that Average Parsing Time Before 

Client Rendering (APTCR) was smaller in bitmap image format compared to raw text and 

aggregated text format. This is because when visualizing bitmap image data, the browser 

has to do less parsing and starts drawing images on the screen as soon as the received PNGs 

are loaded into memory. The only data parsing the browser has to do is parsing of the 

modest metadata that the server streams with the PNGs when visualizing bitmap image 

data. The APTCR numbers seen in Table 4 is because of the parsing of this metadata that 

increased the parsing time as the number of data points visualized increased. This metadata 

is used by the client side for visualization purposes and for handling user interactions with 

the view. 

This APTCR is directly proportional to the time it takes a browser to process the 

data to render a frame when visualizing raw text and aggregated text data but does not have 

any relation with the client side rendering performance when visualizing bitmap image 

data. As the number of data points grows large in a raw or aggregated text data, the browser 

spends more time processing the data to create and render 30 frames of visualization and 

results in crashing. It was seen that the browsers reached this point of crashing when the 

data points reached 2 million for raw text data and 4 million for aggregated text data 

respectively. However, when visualizing bitmap image data, the browsers do not process 
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any data to create frames and directly render the images on the screen as soon as the 

received PNGs are loaded into memory. This is why the browsers never crashed when 

visualizing bitmap image data. 

These results indicate that the rendering time taken by the visualization tools 

impacts the client side performance of the system. It was observed that if the number of 

data points to be processed and rendered by the client side web-based visualization tools 

exceeds a certain size, the system crashes. These observations indicate that client-side 

processing of the data in order to render frames for visualization hinders the efficiency of 

the system when displaying large data. 

Another measured parameter was the Average Client User Action Response Time 

(ACUART), which was similar for all three data formats as seen in Tables 2-4. Since 

browsers use the same process to respond to an event for all three data formats, this is not 

surprising. In the system, the factors that determine the AERT are: 

 Time for an event to reach the WebSocket server. 

 Time the WebSocket server takes to broadcast this event to all nine browsers. 

 Time all nine browsers take to respond to the event after they receive it. 

The numbers in Tables 2-4 show that the system responds in a reasonable time for the user 

interactions. It was also seen that an event is properly synchronized in all nine browsers 

making each of them in the same state of the current data view. 

Finally, from Tables 2-4 it is seen that the Image Rendering Frame Rate (IRFR) 

of the system was exactly the same when visualizing data in all three formats. The FPS 

was recorded after the browsers started drawing the cached frames of animation on the 

screen. The browsers cache these frames after they are drawn on the screen for the first 
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time. Cached frames are drawn using the same process for all three data formats. This is 

why the IRFR for visualizing all three data formats is the same. 

Based on the results discussed, it is clear that visualizing data on the system is most 

efficient using bitmap image data than the other two formats. But our system could only 

render images at the rate of 6-10 FPS and did not meet our target of rendering images at 

30 FPS even when visualizing bitmap image data. Our target was 30 FPS for rendering 

images because the monitors used in the HDLF display have a refresh rate of 30 Hz. We 

hypothesize this shortcoming is not in our D3 code but rather in the process how Google 

Chrome does image rendering. 

Because the browsers are drawing cached images after they have been loaded in the 

memory, they are not spending any time creating these frames. They just use the GPU to 

draw the images that reside in the browsers’ memory. We believe that although the HTML5 

canvas is hardware accelerated in Google Chrome, the cached images always reside in the 

CPU’s memory and not in GPU’s memory. Because of this, the CPU has to transfer these 

cached images every time to the GPU’s memory to be drawn on the screen. Each node in 

the HDLF display has one GPU driving three monitors, therefore three browsers are taking 

turn transferring images that reside in their memory to the same GPU’s memory. Also, 

each image being transferred is of 4K resolution that makes three browsers spend more 

time copying the contents from their cache memories to the GPU’s memory for every frame 

drawn on the screen. We believe this to be the reason we could not get optimal performance 

out of the system even when visualizing data using bitmap images. 

To test our hypothesis for the system’s poor rendering performance, we checked if 

running one browser with one GPU could increase the system’s image rendering frame 

rate. We performed this simulation in the system by connecting only one monitor in one 
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node and running only one browser. With this setup, it was seen that every single stat in 

Table 4 was similar except the IRFR which reached our target of 30 FPS. The reason we 

believe for not seeing the bad performance while running one browser with one GPU is 

that only one browser is sending cached images to the GPU’s memory which takes less 

time than performing the same operation with three browsers. 

This hypothesis is further backed by data collected in Table 4 where IRFR for 

227,191 data points with 2 browsers in each node was better than for 54,593 data points 

with 3 browsers in each node. This was because when visualizing 227,191 data points only 

two context switching was done between the browsers to transfer their cached images to 

the GPU’s memory whereas three context switching was done when visualizing 54,593 

data points. 

In addition to the above tests, we ran one additional test of the poor rendering 

performance of the system. We lowered the resolution of the images being rendered from 

4K to 2K for each monitor making the total resolution of the full view on the HDLF display 

to 5760 × 3240 instead of 11520 × 6, 480. With this setting, when the resolution of the 

rendered image was half the resolution of the original image, each browser was rendering 

images at the rate of 21FPS, which is about 3 times better than the results seen in Table 4. 

The obtained result was expected because the drawn images now were half the resolution 

of the original images used to conduct the performance evaluation. We concluded that with 

this setting, it took the CPU less time to move the cached images from browsers’ memories 

to the GPU’s memory while drawing each frame compared to performing the same 

operation in the original system setting. Based on the results obtained from these tests, we 

conclude that our hypothesis for the system’s poor rendering performance is plausible and 

is likely the case why we could not reach our goal of 30 FPS image rendering frame rate.
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User Study 

A user study was conducted for evaluating the effectiveness and ease of use of the 

system. To conduct this user study, we went through the Institutional Review Board (IRB) 

at Boise State University. Upon getting the approval of IRB (APPENDIX B), mass emails 

and flyers were sent out to the students of the computer science department at Boise State 

University asking if they would like to take part in the evaluation of the system. A total of 

22 students volunteered for the system’s evaluation and took part in the user study. We 

conducted the user study by comparing user experiences while working with the same data 

visualization on a single screen system (Figure 15) versus on the HDLF display system 

(Figure 16). For this, an additional single screen system was setup with the exact same data 

visualization and interaction features using the same data that would be visualized on the 

HDLF display system. The single screen system (Figure 15) was setup using one of the 

monitors in the HDLF display with the dimensions of 35.16”×21.21”×3.48”(W × H × D), 

39 inches diagonal with a resolution of 3840 × 2160 and 30Hz refresh rate. 

The procedure of the user study started with each participant being given a set of 

tasks to perform on both the HDLF display system and the additional single screen system. 

After participants were finished with the set of tasks in both the systems, they were asked 

to fill out a questionnaire consisting of 10 questions where each question was designed to 

assess one system’s superiority over the other in a particular aspect of data visualization. 

The order of the systems in which the participants performed the given tasks was counter 

balanced. 11 participants performed the given tasks first on the HDLF display system and 

then moved to the single screen system while the other 11 performed the given tasks first 

on the single screen system and then moved to the HDLF display system. A user study 

session had a total duration of 30-40 minutes. 
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Figure 15 shows the users working on the single screen system and Figure 16 shows 

the users working on the HDLF display system for the user study. 

Figure 15: Users working with the single screen system in the user study session 

Figure 16: Users working with the tiled display based system in the user study 

session 

Questionnaire 

The questionnaire that each participant of the user study was asked to fill out 

consisted of 10 questions. This questionnaire was asked to be filled out by each participant 
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at the end of their user study session after they finished the given set of tasks on both the 

systems. The questions asked in the questionnaire are listed below: - 

I. Which system was easier to identify the data points on the screen? 

II. In which system did you find the data of interest quicker? 

III. Which system helped you to understand the nature/pattern of the data 

better? 

IV. Which system was easier to see the details present in the data points? 

V. Which system makes it easier to explain/share your interaction with the data 

to others? 

VI. Which system allowed you to interact with the data quicker? 

VII. Which system was more comfortable to use? 

VIII. Which system was easier to learn to use for the set of tasks? 

IX. Which system was easier to use for the set of tasks after learning? 

X. a) Was mouse an effective interface device in Tiled Display Based System? 

b) Was mouse an effective interface device in Single Screen System? 

Each of the questions listed above from I to IX had two options given to the users to select 

from: a) Tiled Display Based System, and b) Single Screen System. Answers to these 

questions reflected the user’s preference between the two systems for a particular aspect of 

interactive data visualization. Question X had two parts where each part was a yes-no 

question asking if users agree with a particular assessment about each system.
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Outcome of the User Study 

Figure 17 shows the results that were obtained from the questionnaire filled out by 

all 22 participants of the conducted user study. The x-axis of the bar chart consists of each 

question, the y-axis denotes the number of participants of the user study, the blue bar 

represents the Tiled Display Based System and the orange bar represents the Single Screen 

System. The number on the top of the blue bar denotes the number of participants who 

selected the Tiled Display Based System as an answer for a particular question and the 

number on the top of the orange bar denotes the number of participants who selected the 

Single Screen System as an answer for that particular question. In addition to the results 

shown in Figure 17, 18 out of 22 participants answered yes for the question X. a) while 4 

answered no and 20 out of 22 answered yes for the question X. b). while 2 answered no. 

 

Figure 17: Results of the user study conducted with 22 participants 
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From the results in Figure 17, it is clear that the HDLF Display system is more 

effective than the Single Screen System for data visualization with the majority of 

participants selecting Tiled Display Based System for questions I-V. Each of the questions 

I-V is related to the effectiveness of a particular system for data visualization where they 

ask if a particular system is easier to identify the data points, helps to find the data of 

interest quicker, helps to understand the pattern of data better, is easier to see the details 

present in the data points and is easier to explain your interaction with the data to others. 

The Tiled Display Based System was preferred over the Single Screen System by the 

majority of participants for all the aspects of interactive data visualization asked in the 

questions I-V, therefore we assert that the HDLF Display system is effective for the 

purpose of data visualization. 

 It is seen that the participants preferred the Single Screen System over the Tiled 

Display Based System for the questions VI-VIII. Each of these questions is related to the 

ease of use of a particular system for data visualization where they ask if a particular system 

allowed you to interact with the data quicker, was comfortable to use and was easier to 

learn to use for the set of tasks. 

We believe there are a few reasons why the participants found it difficult to work 

in the Tiled Display Based System compared to the Single Screen System. One of them is 

that most users are accustomed to working in a single screen system because of which they 

find it overwhelming to see so many screens put together that ultimately affects their 

navigation process in the system. Next and the most important one that we believe hindered 

their experience was the way the mouse and keyboard have been put together to work in 

the tiled display. Users have to use a set of macros on the keyboard to switch to each row 

in the tiled display and only then are able to use the mouse or keyboard in that row. It was 
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seen during the user study sessions that most of them were taking some time to learn this 

switching mechanism and could not work smoothly with the Tiled Display Based System. 

Most of them recommended to install an easier form of navigation inside the tiled display 

and mentioned the currently installed switching mechanism being uncomfortable to use. 

This is an issue in the Tiled Display Based System but we did not have enough time to 

implement a better interface that could centrally control the whole display and therefore 

decided to address this issue in our future work. Finally, we believe that the Tiled Display 

Based System’s poor image rendering performance could also be a factor for users 

preferring the Single Screen System for questions VI-VIII. A particular system’s lag 

negatively affects how fast and easily a user can perform a set of tasks on the system. This 

was a case for the Tiled Display Based System but not for the Single Screen System. 

There was a clear preference for the Single Screen System over the Tiled Display 

Based System in terms of easy to use. Still, there were participants who found the Tiled 

Display System to be easier to use than the Single Screen System. Additionally, based on 

the responses we got for question IX, it is seen that the majority of participants found the 

Tiled Display Based System to be easier to use for the set of tasks after learning than the 

Single Screen System. Based on this interesting result, we believe that the prior knowledge 

of how to use a system also influenced the participants to consider a particular system easy 

to use. We conclude that the Tiled Display Based System, although not preferred by every 

user, is still easy to use and is preferred rather than a Single Screen System for interactive 

data visualization once the user knows how to use this kind of system. 

In addition to the results seen in Figure 17, there were a few interesting findings 

that were seen during the conducted user study which are listed ahead: - 
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 The participants preferred the Tiled Display Based System more when they 

first learned to perform the set of given tasks on the Single Screen System 

and then moved to do the same thing on the tiled display.  

 The participants finished their user study session faster when the set of tasks 

were performed first on the Single Screen System and then on the Tiled 

Display Based System than the other way around. It was seen that starting 

with the Single Screen System and then moving to the Tiled Display Based 

System, participants concluded their user study session in around 15 

minutes on average while it took them around 25 minutes on average to 

conclude the session when starting with the Tiled Display Based System 

and then moving to the Single Screen System.  
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CHAPTER SIX: CONCLUSION AND FUTURE WORK 

In this thesis, we leveraged an HDLF display to implement an efficient big data 

visualization system. We used the distributed data preparation and rendering approach to 

fully utilize the high pixel density and high pixel count available in the HDLF display. This 

helped us visualize large numbers of data points with fine details while maintaining the 

overall context on the screen. Based on the results of the user study, it is seen that the 

system is effective and easy to use for the purpose of interactive data visualization. 

From our conducted evaluation, it is seen that the work that web-based visualization 

tools have to perform for processing and rendering the frames of visualization on the client 

side, becomes a major bottleneck when the data points to be visualized exceeds a certain 

size. Because of this, the system was most efficient when visualizing streamed bitmap 

images than streamed text data. When visualizing streamed bitmap images, the 

computationally expensive task of creating the frames of visualization is handled by the 

server. This improved the performance of the clients when visualizing large numbers of 

data points. As the streamed bitmap images remain similar in size irrespective of the 

number of data points to be visualized, the system could efficiently visualize even larger 

numbers of data points. In our experiment, we successfully visualized around 8.5 million 

data points using the bitmap image format and believe the system would perform similarly 

for larger numbers of data points. 

While our system was found to be efficient while visualizing bitmap image data, it 

could not meet our target of rendering images at 30 FPS and rendered images at the rate of 

6-10 FPS. This was found to be a limitation of the system. Our hypothesis for this limitation 
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is that the current state of Google Chrome could not fully utilize the power of GPU for 

performing heavy 2D visualization on the web. 

In our future work, we would like to conduct more rigorous tests to confirm our 

hypothesis for the system’s poor image rendering rate. We would like to further test our 

hypothesis that the system’s lower FPS is because of the time the CPU takes to transfer the 

cached images from browser’s memories to the GPU’s memory for each frame that is 

drawn on the screen. 

Another thing that we would like to change is the way the mouse and keyboard 

have been put together for use in the HDLF display. Instead of making users press a 

combination of keys for switching to each row, we would like users to be able to centrally 

control the HDLF display using an application on a tablet or some other form of interface 

that makes navigation much easier than the one currently installed. This feature would be 

the most important extension to the system as the results of the user study indicate that the 

currently installed form of navigation is hindering the user experience in terms of ease of 

use. 

Finally, we would also like to add a full boundless panning and zoom features in 

the system. The current state of the system supports panning only up to certain degrees and 

does not support zooming. It would be interesting to see what the performance of the 

system would be after these features are successfully integrated into the system. 
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Scientific Equations 

The scientific equations described in this section were taken from the following web pages: 

 http://sciphile.org/lessons/bernoullis-principle-and-venturi-tube 

 http://www.physicalgeography.net/fundamentals/7n.html 

 http://www.movable-type.co.uk/scripts/latlong.html 

 http://www.alternatewars.com/BBOW/Ballistics/Ext/Corolis_Effect.htm 

The Bernoulli Equation 

The Bernoulli principle4 states that a region of fast flowing fluid exerts lower 

pressure on its surroundings than a region of slow-flowing fluid. To see Bernoulli's 

approach, we can write the energy density for a flowing fluid as:  

 𝑒𝑛𝑒𝑟𝑔𝑦

𝑣𝑜𝑙𝑢𝑚𝑒
= 𝑃 +

1

2
𝜌𝑣2 +  𝜌𝑔ℎ 

(3) 

  

Here P is the pressure at a location of interest, 𝜌 is the mass density, v is the flow 

velocity, g is the gravitational constant, and h is the altitude. The second term 

1

2
𝜌𝑣2represents the kinetic energy of a fluid due to its average flow, and the third term 

𝜌𝑔ℎ represents its potential energy in the earth's gravity field. The first term P represents 

the energy associated with the pressure of the fluid, and has the dimensions of force per 

area, or equivalently, energy per volume. According to the conservation of energy, the 

energy density is constant, so that for two different regions in a flow of compressible fluid: 

                                                 

4 http://sciphile.org/lessons/bernoullis-principle-and-venturi-tube 

 𝑃1

𝜌1 
+

1

2
𝑣1

2 + 𝑔ℎ1 +  𝜖1 =
𝑃2

𝜌2 
+

1

2
𝑣2

2 + 𝑔ℎ2 + 𝜖2 
(4) 

  

http://sciphile.org/lessons/bernoullis-principle-and-venturi-tube
http://www.physicalgeography.net/fundamentals/7n.html
http://www.movable-type.co.uk/scripts/latlong.html
http://www.alternatewars.com/BBOW/Ballistics/Ext/Corolis_Effect.htm
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For two regions at the same height (ℎ1 = ℎ2), an increase in the flow velocity in 

one region must correspond to the decrease in pressure in order to keep the equation 

balanced. Kinetic energy is increased at the expense of pressure energy, while the total 

energy remains constant. 

For creating the simulation data, 𝑃1 and 𝑃2 in equation (4) are the pressures at two 

weather stations respectively. Similarly, 𝜌1 and 𝜌2 are the air densities at these two stations, 

𝑣1 and 𝑣2 are the wind velocities at these two stations, g is the gravitational constant, ℎ1 

and ℎ2 are the altitudes of these two stations and 𝜖1 and 𝜖2 are the fluid internal energy per 

unit mass at these two stations. In the equation (4) the value of 𝜖 is calculated using the 

formula: 

𝜖 = 𝐶𝑣 𝑇 

Where 𝐶𝑣 is the specific heat at constant volume and equals to 717 J/Deg/Kg for 

air and T is the temperature of the air in Kelvin unit. 

As Bernoulli equation states the conversation of energy in any two regions in a fluid 

flow, we applied this concept and assumed the two regions in a wind flow to be the two 

stations that are compared against in our dataset. Because the increase in the flow velocity 

in one region must correspond to the decrease of pressure energy in that region, high 

pressure in one station corresponds to low wind velocity and the station with low pressure 

must have high wind velocity. Wind always flows from high-pressure regions to low-

pressure regions. Therefore equation (4) was used to find the wind velocity of the station 

with low air pressure. The GSOD dataset after preprocessing provided us with all the 

variables’ data required for equation (4), therefore this equation was used to find the wind 

velocity of the station where the wind ends up after flowing from a source station. 
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Pressure Gradient Acceleration 

Pressure gradient force5 is a force formed due to spatial differences in the 

atmospheric pressure between any two places on earth. This force is primarily responsible 

for influencing the formation of wind between two locations on earth and usually expressed 

in millibars or kilopascals per unit distance (meters or kilometers). Based on this force, we 

can describe the pressure gradient acceleration mathematically with the equation (5): 

 
𝐹(𝑚 𝑠2)⁄ =

1

𝐷
 . ( 

𝑃1 − 𝑃2 

𝑛
 ) 

(5) 

  

Here D = density of air measured in kg/m3, P1 = pressure at location 1 measured in 

Pascal, P2 = pressure at location 2 and n = distance between the two points in meters. For 

creating the simulation data, P1 represents the first station in comparison, P2 represents the 

second station in comparison, and n denotes the distance between these two stations. The 

GSOD dataset after preprocessing provided us with stations’ geographical information. 

Therefore the Haversine Formula described ahead was used to calculate the shortest 

distance n in meters between the two stations.  

For creating the simulation data, equation (5) was used to calculate the acceleration 

of the wind flow. This acceleration allowed us to calculate the wind velocity at every point 

in the wind flow between two stations using equation (6).  

 𝑉𝑓 =  𝑉𝑖 + 𝐴𝑇 (6) 

  

Here 𝑉𝑓 is the final velocity in m/s, 𝑉𝑖 is the initial velocity in m/s, A is the 

acceleration in m/s2 and T is the time in seconds during which A is applied.  

                                                 

5 http://www.physicalgeography.net/fundamentals/7n.html 
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For creating the simulation data, 𝑉𝑓 is a point of interest where we want to calculate 

the wind velocity information, 𝑉𝑖 is the starting velocity of the wind, A is the pressure 

gradient acceleration and T is the time passed since wind started flowing from the source 

station to the destination station. The T used in equation (6) helps us to plot the wind 

velocity information in various places in a particular flow between two stations. For 

example, when T = 12 seconds gives us a location where wind reaches after 12 seconds 

starting from a source station and is treated as a point in the wind flow where we get the 

velocity information using equation (6).  

Total Wind Flow Time 

The total wind flow time6 between two stations was calculated using equation (6) 

where 𝑉𝑓 is the wind velocity of the destination station. 𝑉𝑓 was calculated using equation 

(4) and is the wind velocity of the destination station when any two stations are compared 

for a wind flow. Since we have the wind velocity information of the source station 𝑉𝑖 in the 

GSOD dataset and  𝑉𝑓 and A are calculated from equations (6) and (5) respectively, we 

calculated the total time required for wind to flow from the source station to the destination 

station in T seconds. T also gives us the maximum number of points in a particular wind 

flow that can be plotted on the globe. These points fall in the location the wind reaches 

after 1 second from the previous plotted point in a particular flow. But equation (6) only 

gives us information about the wind velocity of a particular point in the flow. It does not 

give us any geographical information about the location itself. To get the geographical 

information of the location Intermediate Point formula was used. 

                                                 

6 http://www.physicalgeography.net/fundamentals/7n.html 
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Intermediate Point formula described ahead provided the longitude and latitude 

information of all points where we want to plot the wind velocity information in a particular 

flow. For example: - if the total time for a particular wind flow is 100 seconds and we want 

to plot only 10 points in the flow, this equation gives us 10 points between the two stations 

with the latitude and longitude information of these points. Here each point is in the 

location where wind reaches 10 seconds after the previously plotted point. 

Coriolis Force 

A number of forces act on the wind when it flows on the earth. We decided to ignore 

most of them for the sake of simplicity and included only the most common one; the 

Coriolis Force. The Coriolis force7 is the force created by the rotation of Earth from west 

to east, which acts upon the wind and other objects in motion. Instead of wind blowing 

directly from high to low pressure, the rotation of Earth causes the wind to be deflected off 

course. In the Northern Hemisphere, the wind is deflected to the right of its path, while in 

the Southern Hemisphere it is deflected to the left. The magnitude of the Coriolis force 

varies with the velocity and latitude of the wind’s location. Coriolis force is absent at the 

equator, and its strength increases as one approaches either pole. An increase in wind speed 

also results in a stronger Coriolis force and greater deflection of the wind. 

To take into account the effect of Coriolis force on moving wind, following 

equations were used.  

 𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝐶𝐴) = 2 ∗ 𝑊𝑖𝑛𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 

 

(7) 

   𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒(𝑅𝑅) = (2 ∗ 𝑃𝑖 86,4000⁄ 𝑆𝑒𝑐𝑜𝑛𝑑𝑠) ∗ 𝑆𝑖𝑛(𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒) 

 

(8) 

  
                                                 

7 http://www.alternatewars.com/BBOW/Ballistics/Ext/Corolis_Effect.htm 
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Here Wind Velocity is the velocity of the moving wind in a particular location and 

Latitude is the latitude of that location. Here CA is measured in m/s2, Wind Velocity in m/s 

and Latitude in radians.  

To calculate the distance displaced due to Coriolis effect equation (9) was used: 

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑(𝐷) = 0.5 ∗  𝐶𝐴 ∗  𝑇𝑖𝑚𝑒 𝑜𝑓 𝐹𝑙𝑖𝑔ℎ𝑡2 (9) 

   Where D is the distance displaced due to Coriolis effect measured in meters, CA is 

the Coriolis acceleration calculated using equation (7) and Time of Flight is the time in 

seconds after the wind reaches a location from the source. 

For creating the simulation data, equations (7) and (9) were used to find the wind 

location after Coriolis deflection. For this, a wind point data was passed into equations (7) 

and (9) to find the new longitude value for that particular point after Coriolis deflection. 

This new value is the one that is written as a wind point in the final simulation data. So the 

wind location with latitude and longitude value +34 and +120 is written as +34 and +130 

respectively in the data file after taking in account the Coriolis deflection of +10 degrees 

longitude. 

Haversine Formula 

Haversine formula8 calculates the great circle distance between any two points on 

the earth that is the shortest distance over the earth’s surface between the points. The 

formula is given as: 

a = sin²(Δφ/2) + cos φ1 ⋅  cos φ2 ⋅  sin²(Δλ/2) 

c = 2 ⋅  atan2( √a, √(1−a) ) 

                                                 

8 http://www.movable-type.co.uk/scripts/latlong.html 
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d = R ⋅  c  

Here φ1 is the latitude of the first point in radians, φ2 is the latitude of the second 

point in radians, Δφ is the difference of latitude between the two points, Δλ is the difference 

of longitude between the two points in radians, and R is the earth’s radius. 

Intermediate Point 

An intermediate point9 at any fraction along the great circle path between two points 

on the earth can also be calculated using the formula below: 

a = sin((1−f)⋅ δ) / sin δ 

b = sin(f⋅ δ) / sin δ 

x = a ⋅  cos φ1 ⋅  cos λ1 + b ⋅  cos φ2 ⋅  cos λ2 

y = a ⋅  cos φ1 ⋅  sin λ1 + b ⋅  cos φ2 ⋅  sin λ2 

z = a ⋅  sin φ1 + b ⋅  sin φ2 

φi = atan2(z, √x² + y²) 

λi = atan2(y, x) 

Here δ is the angular distance d/R between the two points on the earth. Here d is 

calculated using the Haversine Formula and R is the earth’s radius. f is fraction along the 

great circle route between the two points (f=0 equals the first point, f=1 equals the second 

point) where we want to calculate the geographical information. φ1 is the latitude of the 

first point in radians, φ2 is the latitude of the second point in radians, λ1 is the longitude of 

the first point in radians, and λ2 is the longitude of the second point in radians. φi and λi 

                                                 

9 http://www.movable-type.co.uk/scripts/latlong.html 
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give us the latitude and longitude information of the location of interest between the two 

points. 
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System Online Repository 

The components of the implemented HDLF display system with it source code and 

dependencies are hosted online at:      

https://github.com/uacharya/HDLF-Display-System 

https://github.com/uacharya/HDLF-Display-System

