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RESEARCH ARTICLE Open Access

SPIDR: small-molecule peptide-influenced
drug repurposing
Matthew D. King1, Thomas Long2, Daniel L. Pfalmer3, Timothy L. Andersen2 and Owen M. McDougal1*

Abstract

Background: Conventional de novo drug design is costly and time consuming, making it accessible to only the
best resourced research organizations. An emergent approach to new drug development is drug repurposing, in
which compounds that have already gone through some level of clinical testing are examined for efficacy against
diseases divergent than their original application. Repurposing of existing drugs circumvents the time and
considerable cost of early stages of drug development, and can be accelerated by using software to screen existing
chemical databases to identify suitable drug candidates.

Results: Small-molecule Peptide-Influenced Drug Repurposing (SPIDR) was developed to identify small molecule
drugs that target a specific receptor by exploring the conformational binding space of peptide ligands. SPIDR was
tested using the potent and selective 16-amino acid peptide α-conotoxin MII ligand and the α3β2-nicotinic
acetylcholine receptor (nAChR) isoform. SPIDR incorporates a genetic algorithm-based, heuristic search procedure,
which was used to explore the ligand binding domain of the α3β2-nAChR isoform using a library consisting of
640,000 α-conotoxin MII peptide analogs. The peptides that exhibited the highest affinity for α3β2-nAChR were used
as models for a small-molecule structure similarity search of the PubChem Compound database. SPIDR incorporates
the SimSearcher utility, which generates shape distribution signatures of molecules and employs multi-level K-means
clustering to insure fast database queries. SPIDR identified non-peptide drugs with estimated binding affinities nearly
double that of the native α-conotoxin MII peptide.

Conclusions: SPIDR has been generalized and integrated into DockoMatic v 2.1. This software contains an intuitive
graphical interface for peptide mutant screening workflow and facilitates mapping, clustering, and searching of local
molecular databases, making DockoMatic a valuable tool for researchers in drug design and repurposing.
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Background
Conventional de novo drug development involves identi-
fying a lead drug candidate, optimizing its structural and
pharmacological properties, and then validating it
through expensive and time intensive pre-clinical and
clinical trials. Historically, only 1 in 10 drug candidates
that enter clinical trials yields a marketable drug that is
both highly effective and induces few if any undesirable
side effects [1, 2]. A successful drug from concept to
market costs on the order of ~$2.8 billion (USD) with
an average development time of 14 years [1, 2]. As a re-
sult, the number of new drugs approved each year

remains low, and the exorbitant cost of successes and
failures are passed on to the consumer.
The problems with conventional de novo drug develop-

ment have led the National Institutes of Health (NIH),
university researchers, and pharmaceutical companies to
explore ‘drug repurposing’ (aka ‘drug repositioning’) as an
alternative path to drug development [3–5]. Drug repur-
posing jumpstarts the drug development process by using
compounds that have already gone through some level of
clinical testing, rather than attempting to create new un-
proven drugs. Drug repurposing has led to many note-
worthy successes including Viagra (sildenafil), Requip
(ropinirole), and Chantix (varenicline) among others. The
drug-repurposing paradigm accounted for nearly 30% of
United States Food and Drug Administration (FDA) ap-
proved drugs between 1999 and 2008 [6]. This achievement
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directly correlated to emergence of large, publicly-available
chemical databases. One prominent example is the NIH
PubChem Compound database which contains structural
and bioactivity information for over 51 million small mol-
ecules, in addition to web-based tools for performing sub-
structure, shape, and database searches of other publically
available databases [7].
The prediction of the specific interaction of a small

molecule and biological receptor is a central problem in
biochemistry and pharmacology. Many software pro-
grams (e.g., WinDock [8], BDT [9], Glide [10], and
DockoMatic [11, 12]) have been developed for high-
throughput virtual screening (HTVS) of compound librar-
ies that take advantage of rapid mathematical methods for
predicting the interaction strength between two bound
molecules of a given orientation. The challenge that re-
mains is prediction of the binding orientation for two
molecules, a process that requires each molecule of the
binding pair to come together in a variety of conforma-
tions to identify the optimal partnership [7].
DockoMatic [11, 12] is an open source software meta-

tool consisting of a graphical user interface that employs
AutoDockTools and AutoDock 4.2 to facilitate set-up,
calculation, and result analysis for large numbers of
docking jobs [13, 14]. In addition to single ligand/recep-
tor docking, DockoMatic can be used for secondary lig-
and docking, peptide ligand structure creation with
Obconformer [15], and in silico site-directed mutagen-
esis of peptide or protein structures with TreePack [16,
17]. DockoMatic was originally developed to facilitate
the creation of a library of mutated peptides for docking
to a multi-subunit protein receptor without manually
generating the mutated peptide structures.
In the natural world, some of the most potent inhibi-

tors/initiators of biological functions take the form of
small peptides, including many variations found in the
venom of some spiders, wasps, snakes, and marine snails
[18]. These effective and highly specific biomolecules
have received significant attention by the scientific com-
munity due to their demonstrated translation to thera-
peutic treatments for a variety of afflictions including
pain (Prialt), hypertension (angiotensin-converting
enzyme ‘ACE’ inhibitors), Type 2 diabetes (Exenatide),
and malignant glioma (chlorotoxin TM-601) [19, 20].
However, peptide-based pharmaceuticals have been mar-
ginally adopted due to their rapid degradation by gastro-
intestinal enzymes, making administration of the drugs
challenging. Identification of small molecules with simi-
lar shape and pharmacophore features to those of
bioactive peptides will lead to development of orally-
available biomimetic drugs with analogous pharmaco-
logical actions.
nAChRs are pentameric ligand-gated ion channels crit-

ically important in neuronal survival and cognitive function,

and regulation of neurodegenerative diseases, including
Alzheimer’s and Parkinson’s [21–25]. α-Conotoxins (α-
CTxs) are small (10–30 residue) peptides derived from the
venom of predatory marine cone snails of the genus Conus
that discriminate between nAChR isoforms [26–29]. Their
bioactive specificity and potency has led to α-CTxs being
used as molecular probes to determining the structure/
function relationships of nAChRs, and has the potential to
lead to significant advancements in the pharmacology of
neurodegenerative disorders [30].
α-CTx MII is a 16 amino acid peptide with an IC50 of

0.5 nM for the α3β2-nAChR isoform [26]. Binding of α-
CTx MII with α3β2-nAChR occurs between the α3- and
β2-subunits, with the peptide docking in the large pocket
under the C-loop of the α3-subunit (Fig. 1). Site directed
mutagenesis studies on nAChRs, investigations into the
alteration of the primary sequence of α-CTx MII, and
molecular modeling approaches have all been conducted
to help understand the selectivity and potency of α-CTx
MII and its variants [31–33]. In this study, the small-
molecule peptide-influenced drug repurposing (SPIDR)
workflow was developed to survey α-CTx MII peptide
analogs that most favorably bind α3β2-nAChRs, and ex-
trapolate complementary atomistic contacts to small
molecule drugs exhibiting the desired qualities identified
by screening drug repurposing databases. SPIDR exe-
cutes the following three steps: 1) perform a structure-
based high-throughput virtual screening of an α-CTx
MII mutant library to find peptides with high binding af-
finity for the α3β2-nAChR; 2) use these peptide struc-
tures to perform a ligand-based survey of the PubChem
Compound database to identify FDA approved drugs

Fig. 1 α-CTx MII bound to the transmembrane ligand-gated ion
channel α3β2-nAChR. Note that native receptor is a pentamer,
whereas computational modeling utilizes a dimer consisting of
known binding site for α-CTxs between α3- and β2-subunits
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with 3-D conformations similar to the high affinity pep-
tides; and 3) perform molecular docking calculations
between the resulting small molecule drugs and the
α3β2-nAChR.

Results and discussion
The first step in the SPIDR workflow uses genetic algo-
rithm managed peptide mutant screening (GAMPMS)
[34] to perform a comprehensive structure-based screen
of a peptide mutant library. GAMPMS implementation
required a total of 9344 molecular docking jobs to
explore 640,000 variants of α-CTx MII. Sequences of the
peptide mutants found to have the highest binding affin-
ities are shown in Table 1. The estimated binding free
energy of α-CTx MII was − 12.38 kcal/mol compared to
the ΔGbind of the top ten mutants ranging from − 20.66
to − 21.07 kcal/mol, indicating that the analog screening
process identified peptide ligands with more favorable
receptor binding energies than the native peptide. High
sequence similarity was observed for the best α-CTx MII
mutants. Notably, each mutant contained the residues
Tyr5 and Trp10 in place of the α-CTx MII residues
Asn5 and Leu10, respectively, as well as a His-12-Ser
mutation in 80% of the mutants. The His9 residue of α-
CTx MII was conserved in half of the top mutant se-
quences. A more robust treatment of GAMPMS results
for predicted conotoxin mutant binding to the α3β2-
nAChR isoform can be found in ref [35].
The high sequence similarity and comparable esti-

mated binding affinities of the top mutants indicate that
the residues in bold print in Table 1 are critical in the
formation of significantly more favorable interactions in
the ligand-receptor complex compared to native α-CTx
MII. These favorable attributes are also advantageous
when using these sequences as templates for searching

small molecules that may form the same types of ligand-
receptor interactions.
The new SimSearcher utility, developed using the

α3β2-nAChR system, allows for rapid similarity searches
with any target molecule of any size and conformational
flexibility over local molecular databases. The management
of SimSearcher employs an intuitive graphical interface in
DockoMatic 2.1 to proceed through the Map, Cluster, and
Search steps. Development of additional signature types and
corresponding similarity metrics could increase SimSearch-
er’s utility. A pharmacophore signature and corresponding
similarity metric have been created and are included in
DockoMatic 2.1, but pharmacophore clustering is not yet
supported. The additions to DockoMatic 2.1 resulting from
this work have greatly improved the software’s capabilities
and efficacy as a powerful tool for exploring receptor con-
formational binding space with peptide mutant analogs and
identification of small molecules as potential lead com-
pounds for drug repurposing. We sought to evaluate the
usefulness of SimSearcher and considered databases includ-
ing DrugBank, BindingDB, Chem Spider, ChEMBL, and
PubChem [36–40]. Of these resources PubChem offered
the greatest variation and number of molecules.
To evaluate the efficacy of clustering the signature data-

base before performing a comprehensive similarity search
using SimSearcher, the Cluster and Search steps were ini-
tially tested with a single target molecule (CID 1, where
CID is the PubChem compound identifier) for the 10
most similar molecules [40]. This was done by two com-
parative searches, one using the entire collection of gener-
ated PubChem compound signatures, and the other using
multilevel K-means clustering of the signatures. For clus-
tering, a χ2 test was used to assess the distance between
signatures. As a result of the clustering, the signatures
were divided into 50 clusters, each containing 20
subclusters, and each subcluster containing 5 sub-
subclusters. The search of the non-clustered signature
database took approximately 24 min to complete and per-
formed on the order of 51 million similarity calculations.
By comparison, the multilevel K-means clustering search
required only a few seconds, and performed far fewer
similarity calculations (~ 15,000). In both searches, the
same resulting 10 molecules were identified.
The 20,000-molecule clustered signature database was

queried with the top 200 peptides from GAMPMS. Du-
plicate molecules and those containing silicon, which is
not parameterized in the AutoDock scoring function,
were removed from the collection, leaving only 1320
molecules. Each of these potential drug molecules was
docked against the α3β2-nAChR model using AutoDock
with 40 pose evaluations. The 1320 molecules were then
re-clustered and the molecule with the highest binding
affinity with the α3β2-nAChR was selected from each
cluster. In this manner, the top 128 molecules were

Table 1 The 10 highest affinity peptides found with GAMPMS
compared with the native α-CTx MII peptide for binding with
α3β2-nAChR
Peptidea ΔGbind

b

GCCSYPVCYWTNSNLC −21.07

GCCSYPVCHWQSSNFC − 20.91

GCCSYPVCYWQSSNVC −20.91

GCCSYPVCHWSSSNFC −20.88

GCCSYPVCHWSSSNWC −20.79

GCCSYPVCSWKSSNFC −20.74

GCCSYPVCHWYSSNVC −20.73

GCCSYPVCKWSNSNGC −20.71

GCCSYPVCNWSSSNWC −20.68

GCCSYPVCHWKSSNGC −20.66

GCCSNPVCHLEHSNLC (MII) −12.38
aMutations in bold type; bkcal/mol, estimated in AutoDock
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identified. The 12 molecules with the highest predicted
binding affinity to α3β2-nAChR from the set of 128 are
shown in Fig. 2. The CIDs, molecular formula, molecular
mass, and AutoDock scores for the 12 molecules are pro-
vided in Table 2. Each of the small molecules had a more
favorable predicted binding free energy than that of α-
CTx MII (ΔGbind = − 12.38 kcal/mol). The top small mol-
ecule candidate had an estimated ΔGbind = − 21.88 kcal/
mol, which was slightly more favorable than the ΔGbind =
− 21.07 kcal/mol predicted for the best peptide mutant.
Similarities were observed in the chemical structures

of the top 12 small molecules. Each consists of multiple
ring structures and an associated large surface area that
is compatible with the relatively high number of hydro-
phobic residues in the α3β2-nAChR binding pocket. All
of the top molecules are amine-rich; all but one (com-
pound 11) have a secondary amine capable of acting as
either a hydrogen bond donor or acceptor. However,
most of the moieties available for hydrogen bonding in

Fig. 2 The 12 small molecules from the PubChem Compound database with the predicted highest binding affinity for the α3β2-nAChR isoform.
PubChem CIDs for the above compounds are provided in Table 2

Table 2 The 12 small molecules from the PubChem Compound
database with the highest predicted binding affinity for α3β2–
nAChR identified by SPIDR [41–52]

Rank CIDa Molecular Formula Molar Massb ΔGbind
c

1 25,131,416 C42H66N8 683.03 −21.88

2 58,420,086 C40H62N6O4 690.96 −17.87

3 46,883,273 C44H63N5 662.00 −17.32

4 11,017,883 C44H68N4O2 685.04 −17.19

5 46,702,076 C37H49N9O3 667.84 −16.20

6 19,311,642 C41H31N3O5S 677.77 −16.02

7 19,311,407 C41H33N3O4S 663.78 −15.92

8 19,303,632 C41H36N4O3S2 696.88 −15.62

9 69,091,626 C39H50N8O2S 694.93 −15.55

10 19,311,613 C41H33N3O4S 663.78 −15.55

11 58,320,126 C33H48N14O2
2+ 672.83 −15.50

12 67,754,078 C44H55N3O2S 689.99 −15.40
aPubChem compound identifier; bg/mol; ckcal/mol
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these molecules would act as acceptors, with high num-
bers of tertiary amines, carbonyl and ether groups. Many
of the compounds have similar structural components,
most notably compounds 6, 7, 8, and 10, which have the
same base structure with variations in the ringed
addition linked through the thiophenol groups. Com-
pounds 6 and 10 differ only in the elimination of a sin-
gle oxygen atom (and addition of two hydrogen atoms)
in the terminal five-member ring of compound 6. An-
other pair of like compounds are 9 and 12, which share
the same base structure. The sizes of the top compounds
are comparable with molecular masses in the range of
662–697 Da, which is much smaller than the molecular
mass of native α-CTx MII (~ 1711 Da), although rela-
tively large when considering small drug-like molecules.
‘Larger’ small molecules with greater surface area, such
as ring-containing compounds, are more likely to correl-
ate to the peptide signatures when associating with the
sizable binding region of nAChR.
The high affinity of molecule 1 with α3β2-nAChR is

largely due to the strong electrostatic interactions be-
tween amine moieties and receptor Asp and Glu resi-
dues containing charged carboxyl groups (Fig. 3). The
length of the molecule spans the binding pocket with
each of the amine-containing ring structures interacting
with a distinct concentration of negatively charged resi-
dues on separate subunits. The Glu194 and Glu195 resi-
dues belonging to the α3-subunit are part of the C-loop,
the dynamics of which are critical in the functionality of
nAChRs [53–55]. Interrupting the opening/closing of
the C-loop by 1 could render this molecule a potent an-
tagonist (or agonist) to normal function of nAChRs.
Since the precise mechanism of activation of nAChRs
remains unclear, the effects of small molecule binding

are unknown; although it is likely that 1 would have
strong antagonist action on nAChR since it was modeled
after potent α-CTx antagonists. In addition to the
strong coulombic interactions observed in the binding
of 1 to α3β2-nAChR subunits, there are also signifi-
cant apparent hydrophobic contributions between the
aromatic ring portion of the molecule and hydropho-
bic residues in the deep binding pocket of nAChR.
The combination of favorable interactions is reflected
in the predicted high binding affinity for this
molecule.
The design of this study was to demonstrate proof-of-

principle of the developed SPIDR workflow to identify
potential drug candidates for repurposing based on map-
ping of the conformational binding space of small pep-
tide ligands with a target receptor. As such, detailed
pharmacokinetic profiles of the top small-molecule can-
didates were not created in this study. This is, however,
an important aspect of drug development and repurpos-
ing. Fortunately, many useful tools are available for
quickly identifying important pharmacokinetic proper-
ties, including potential toxicity, absorption, distribution,
metabolism, and excretion, which aid in determining the
potential efficacy of a drug candidate upon administra-
tion to a patient. Online servers, such as admetSAR [56],
SwissADME [57], and OCHEM [58, 59], allow users to
submit chemical structures and retrieve pharmacoki-
netic and physical properties relating to drug-like
characteristics and potential biological activities. This
provides researchers knowledge of deficiencies in drug
design and performance, and expedites the drug de-
velopment and repurposing process by either elimin-
ating potentially ineffective candidates or identifying
modifications to the compound that can improve

Fig. 3 Binding orientation of the highest binding affinity small molecule 1 (CID: 25131416) with α3β2-nAChR predicted by molecular docking,
where panel A provides one view of the ligand-receptor complex with the C-loop on top, and B represents the perspective looking through
the C-loop
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pharmacological characteristics [60–62]. Future devel-
opment of the DockoMatic software package will in-
clude the capability for pharmacokinetic analysis of
drug candidates.

Methods
The DockoMatic software package and the integration of
GAMPMS is described in detail elsewhere [10, 11, 33].
The receptor structure used in GAMPMS was a homology
model of the α3β2-nAChR isoform constructed from the
amino acid sequences of α3- (UniProtKB: P04757.1) and
β2- (UniProtKB: P12390.2) subunits of rat neuronal
nAChR and using the Torpedo marmorata nAChR (PDB
ID: 2BG9) as a structural template [63, 64]. The homology
models were created using the DockoMatic 2.1 and
MODELLER packages [65]. The α3β2-nAChR subunit
dimer consisting of only the extracellular domains,
although nAChRs exist naturally as a pentameric
transmembrane protein complexes [27].

PubChem’s file transfer protocol (FTP) tool was used
to download the most diverse conformer for each mol-
ecule in the PubChem Compound database. The direc-
tory contained 2864 spatial data files (SDFs), with each
covering a range of 25,000 CIDs. The total number of
structures screened using SPIDR was approximately 51
million. The workflow of SPIDR, which includes the
GAMPMS and SimSearcher utilities of DockoMatic 2.1, is
shown in Fig. 4 and described in detail below.

GAMPMS
The peptide mutant library was defined as the native
α − CTx MII peptide sequence and a set of mutation
constraints. α-CTx MII has the primary sequence
GCCSNPVCHLEHSNLC, with two disulfide bonds
between Cys2-Cys8 and Cys3-Cys16, and features an
α-helix spanning from Pro6 to His12. Mutation
constraints specify which residues are subject to mu-
tations and which amino acids can be substituted for

Fig. 4 Schematic representation of the SPIDR workflow using the GAMPMS and SimSearcher utilities found in DockoMatic 2.1
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each mutable residue. The approach to generating the
640,000 α-CTx MII mutant ligand library is defined
in Table 3. Six residues: Asn5, His9, Leu10, Glu11,
His12, and Leu15, were considered mutable. The resi-
dues important to initiating the α-helix (i.e., Pro6) or
maintaining structural stability (i.e., Cys2, Cys3, Cys8,
and Cys16) were left unchanged. Both polar/charged
and nonpolar residues were constrained to mutations to
residues of like character. The possible combinations
of amino acid substitutions in the mutation space re-
sults in a total of 640,000 different peptide sequences.
A detailed description of the GAMPMS methodology
can be found in ref. [34].
Each individual was represented as a character array

using single-letter amino acid identifiers. The fitness
of an individual was evaluated by first constructing the
peptide analog through a set of residue mutations to
the base peptide, followed by molecular docking
against the target receptor. The estimated binding free
energy for the highest affinity pose produced by the
AutoDock scoring function was considered the fitness
value for the individual. The user-defined elitism op-
erator was used to select the top fraction of the most
fit mutants of a population to be passed on to the suc-
cessive population. A two-parent, two-offspring, N-
point crossover was used as a fitness-proportionate
selection scheme. Two top results from the current
population were selected with a probability directly
proportional to their fitness ranking. The two parents
were split into N + 1 regions that were alternated to
make two different offspring sharing features of both
parents. The mutation operator provided an amino
acid an equal chance of being substituted for any
other amino acids within the defined set shown in
Table 3. The resulting next-generation populations
were used as subsequent input sequences for docking
until the convergence criteria were achieved. New
populations were generated by GAMPMS until reach-
ing the specified convergence criteria. The genetic al-
gorithm was terminated when there was no change in
the top X highest affinity peptides over the last λ

iterations, both parameters were specified in the
DockoMatic 2.1 workflow.
The screening was performed on the Fission high-

performance computing cluster located at Idaho Na-
tional Laboratory, Idaho Falls, ID. Forty pose evaluations
were used in the AutoDock docking simulation for
ligand-receptor binding. A total of 9344 molecular dock-
ing jobs were performed as 73 groups of 128 jobs (over
128 cores). GAMPMS was configured to carryover the
top 40% of each population, use a two-parent, two-
offspring, three-point crossover, and have a 2% residue
mutation probability. The GA terminated after 5 rounds
without an improvement in the binding affinity of the 50
top peptides.

Drug similarity search
After identifying a set of α-CTx MII mutants with a high
binding affinity to α3β2-nAChR by GAMPMS, small-
molecular-weight drugs from the PubChem Compound
database were searched for those closely resembling the
3-D shapes of the peptide ligands. Although the Pub-
Chem online search tools include similar functionalities,
limitations of these tools prevent screening against the
peptide library.
Generating the fingerprint for every molecule is a

computationally demanding endeavor, but the finger-
prints could be pre-computed in a highly parallel
manner. However, determining reference shapes and
generating fingerprints for peptides requires an ex-
cessive amount of time and would have limited the
input sequences. Instead, a shape distribution tech-
nique was used to assess 3-D shape similarity be-
tween molecules [66, 67]. With shape distribution, a
shape sampling function is used to construct a dis-
tribution of measurements. The distribution serves
as the molecule signature, and a distribution differ-
ence measure, such as the χ2 test, is used to quickly
compare the signatures. To reduce the time to
perform distribution tests for 51 million compounds,
multilevel K-means clustering was implemented. This
allowed a recursive search operation to compare the
target molecule with a clustered subset, thus redu-
cing the number of comparisons required for each
search.
The following model was developed for similarity

searches with any target molecule over local molecular
databases. For clarity, using a molecule M as the basis of
a similarity search (i.e. searching with a target molecule
M) over a database D is equivalent to searching D for
items which are similar to M. The model consisted of
three steps:

1. Map – Map all molecules to signatures

Table 3 The α − CTx MII mutant ligand library defined as a base
peptide and a set of mutation constraints

Mutable Residue Substitutable Amino Acids

N 5 S T Y N Q D E K R H

H 9 S T Y N Q D E K R H

L 10 G A V L I M W F

E 11 S T Y N Q D E K R H

H 12 S T Y N Q D E K R H

L 15 G A V L I M W F

King et al. BMC Bioinformatics  (2018) 19:138 Page 7 of 11



2. Cluster – Cluster the signatures for expedited
searching

3. Search – Map the target molecule to a signature,
search the (clustered) database for similar
signatures.

Signature mapping must first be performed for
tractable searching. The Cluster step is optional but
can be used to reduce search time by several orders
of magnitude. The Map and Cluster steps are compu-
tationally expensive but only need to be performed
once per database and can be pre-computed. Search
is the end product of the process, allowing users to
quickly perform molecular similarity searches over the
databases.
Generating signatures is a highly parallel problem

that is made simpler by the fact that molecular data-
bases are typically downloaded as a collection of data
files. To quickly generate signatures, it is necessary
to first partition the database files to create a parti-
tion for each available processing core. Then, using a
function to generate a signature for a molecule, an in-
stance of the mapping algorithm can be run on each pro-
cessor in order to generate signatures for the associated
partition. The signature needs to be both descriptive and
easily comparable so that a similarity metric can be dis-
criminative and efficient, respectively. Signatures can be
precomputed (offline), making the computational com-
plexity of their generation less important than that of the
similarity metric.
The shape distribution was used to gauge the 3-D shape

similarity of two molecules. In this approach, a shape sam-
pling function was applied to a 3-D shape in order to attain
a set of measurements. The distribution of these measure-
ments was used as the shape signature. Any distribution
difference test (e.g. χ2) could be applied to the two
signatures to quickly judge the similarity of the associated
molecules. This approach has been successfully applied to
compare 3-D protein structures [68]. The implemented
shape sampling function measures the Euclidean distance
between unique pairs of atoms within a molecule. The
computational need for sampling was configured by
defining the number of samples. Since most of the mol-
ecules within PubChem Compound are small (less than
50 atoms), it was feasible to generate a distribution

using all NðNþ1Þ
2 unique measurements, with N repre-

senting the number of atoms in the molecule. The dis-
tribution is represented as a histogram containing a
constant number of bins and a maximum measurement
threshold. Algorithms 1 and 2 demonstrate the process
used to create a molecule shape signature. Algorithm 2
was used to generate shape signatures for a group of
data files. Four similarity metrics were implemented for

signature comparison: Chi Square, L1-norm, L2-norm,
and the Root of Products test.

Clustering is an optional step, although it is highly rec-
ommended for shape-based similarity searches. Without
clustering, searching a database with molecule q requires
comparing the signature of q and every signature in the
database. For the PubChem database, this would mean
performing 51 million calculations. Clustering the signa-
tures reduces the number of similarity calculations by
orders of magnitude.
For example, when dealing with a database containing

|DB| signatures, if the database is clustered with the K-
means algorithm, where K = k1 × k2 × ... × kn, then an
effective search could be performed with

≈ Kþ DBj j
K

ð2Þ

similarity calculations by comparing the target mol-
ecule to each of the K cluster centers and then to each

of the jDBj
K signatures within the cluster whose signature

was most similar to the target molecule. If |DB|≫ K, a
single K-means clustering would reduce the number of
comparisons by a factor of K.
Nested (multilevel) clustering can be used to further

reduce search time. In multilevel clustering, most clus-
ters contain subclusters. Algorithm 3 gives a pseudo
code algorithm for the idea, with a user calling Nlevel-
Cluster(N,DB) to perform N level clustering with the K-
means clustering algorithm. A “Big Data” implementation
of the K-means clustering algorithm was used for generat-
ing the two outermost clusters, whereas an in-memory
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implementation was used for subsequent clusters (See
Additional file 1).

If the DB database is clustered with n-level clustering,
where level i has ki clusters (recall K = k1 × k2 × ... × kn
from above), then the approximate number of similarity
calculations required for an effective search is given by:

≈
Xn

i¼1

ki þ DBj j
K

ð3Þ

As a result, the difference in the number of required
signature calculations between the n-level clustering and
the single clustering is given by:

Yn

i¼1

ki−
Xn

i¼1

ki ð4Þ

So if |DB| = 50 million and K = 20 × 20 × 20 = 8000,
then multilevel clustering can reduce the search time by
≈ 65% compared to a single K-means clustering.
The idea used in the single level cluster search can be

easily extended to handle nested clusters. Algorithm 4
shows a recursive technique which can search a collec-
tion of signatures that have been subjected to N-level
clustering. To search with the target molecule q, one
would call Search(q,DB).

A tool to perform quick similarity searches over local
molecular databases, SimSearcher, has been imple-
mented in DockoMatic 2.1, allowing the user to perform
mapping, clustering, and searching of the compound da-
tabases. In this study, the top 200 peptides from
GAMPMS were used as the target molecules in the data-
base search of the PubChem Compound library. Shape
distributions, or signatures, were created for each of the

51 million small molecules in the PubChem database.
The 2864 SDFs, each covering up to 25,000 CIDs, were
obtained using PubChem’s FTP tool. The SDFs were
divided into 16 groups of 179 files and signatures were
generated for each group in parallel. For the shape dis-
tributions, Euclidean distance between all unique atom
pairings within a molecule was used to sample the 3-D
shape of the molecules. The distances were binned to
create a histogram distribution. Each histogram con-
tained 10 bins, and each bin had a width of 1.5 units.
Distances greater than 15 units were placed in the last
bin. The signature generation required approximately
3 h with highly parallel processing, with output of a sig-
nature file corresponding to each SDF. The signatures
were clustered before performing the similarity search.
For N-level K-means clustering, a χ2 test was used to
assess the distance between signatures.

Conclusions
Small-molecule peptide-influenced drug repurposing,
SPIDR, was developed to explore the conformational ligand
binding space of the α3β2-nAChR isoform and use the re-
sults to identify small molecule drugs that target the recep-
tor. The genetic algorithm-based search procedure,
GAMPMS, was used to heuristically explore the ligand
binding domain of the α3β2-nAChR isoform using a
640,000 α-CTx MII mutant library. The GAMPMS
required only 9344 docking calculations and identified pep-
tides with estimated binding affinities 70% higher than na-
tive α-CTx MII. In SPIDR’s repurposing step, the PubChem
Compound database was searched for molecules bearing a
shape similar to the highest affinity α-CTx MII mutants. To
perform the search with small molecules, the shape
distribution-based signatures were generated for each
molecule. The signatures were clustered using multilevel K-
means clustering and searched with the highest affinity pep-
tide mutants exhibiting preferred binding characteristics to
the nAChR. The estimated binding affinity of the top iden-
tified small molecule (− 21.88 kcal/mol) was nearly double
that of the native α-CTx MII peptide (− 12.38 kcal/mol).
SPIDR has been generalized and integrated with Docko-

Matic 2.1. DockoMatic 2.1 contains an intuitive graphical
interface for a peptide mutant screening workflow, allow-
ing a researcher to quickly create virtual peptide mutant
libraries. The user has the option to screen the peptide
mutant library exhaustively or with an implementation of
GAMPMS. DockoMatic 2.1 also contains the SimSearcher
module, which facilitates the mapping, clustering, and
searching of local molecular databases. Searching a
clustered database with SimSearcher requires only a
few seconds per target molecule, and can accept lists
of target molecules to automate larger searches. As a
result, DockoMatic is a powerful tool for researchers
interested in drug repurposing.
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