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Abstract During the powerful July 2013 eruption of Tungurahua volcano, Ecuador, we recorded
exceptionally high amplitude, long-period infrasound (1,600-Pa peak-to-peak amplitude, 5.5-s period) on
sensors within 2 km of the vent alongside electromagnetic signals from volcanic lightning serendipitously
captured as interference. This explosion was one of Tungurahua’s most powerful vulcanian eruptions since
recent activity began in 1999, and its acoustic wave is among the most powerful volcanic infrasound ever
recorded anywhere. We use these data to quantify erupted volume from the main explosion and to classify
postexplosive degassing into distinct emission styles. Additionally, we demonstrate a highly effective
method of recording lightning-related electromagnetic signals alongside infrasound. Detailed
chronologies of powerful vulcanian eruptions are rare; this study demonstrates that diverse eruptive
processes can occur in such eruptions and that near-vent infrasound and electromagnetic data can
elucidate them.

Plain Language Summary Vulcanian-type volcanic eruptions begin when pressurized gas in the
vent is abruptly released in a powerful explosion. We recorded pressure waves produced in a powerful
vulcanian-type eruption at Volcan Tungurahua (Ecuador) on 14 July 2013. The wave from the main explosion
shows that the vent ruptured in a complex 2-s process including uplift followed by multiple distinct bursts,
releasing an immense quantity of gas. This was among the most powerful pressure waves ever recorded
from a vulcanian-type eruption. Subsequent waves show that the volcano continued to emit gas and ash
after the main explosion; this emission occurred in three distinct types. Additionally, volcanic lightning was
recorded serendipitously as interference in the acoustic data. Frequent lightning began abruptly 25 s
after the eruption onset and became more sporadic 4 min later, finally ceasing 20 min after the explosion.
This work shows that explosions and emissions in vulcanian eruptions can be complex and that acoustic
recordings near the vent can elucidate these processes, strengthening volcano monitoring, and science.

1. Introduction
Infrasound is a valuable tool for all-weather monitoring of erupting volcanoes. Infrasound source processes
can often be resolved in detail because path effects on infrasound near the vent are often small (Fee &
Garces, 2007; Johnson & Lees, 2010) or predictable and straightforward to correct (Kim et al., 2015). Local
infrasound is therefore useful in tracking the style (Fee & Matoza, 2013) and vigor (Gerst et al., 2013;
Johnson & Miller, 2014) of eruptions. However, near-vent infrasound recording is most common at volcanoes
with small, frequent eruptions; larger eruptions like the one in this study are typically recorded at longer
distances (e.g., Fee et al., 2010). Longer-range recordings are useful, but waves are modified by path effects
at such distances, making detailed inferences of volcanic activity more difficult (e.g., Green et al., 2012).

Several volcanic processes produce distinct types of infrasound. Some of the most energetic waves corre-
spond to discrete vulcanian (Iguchi et al., 2008) and strombolian (Gerst et al., 2013) explosions, in which
explosive gas release produces brief infrasound pulses a few seconds in duration that consist of a compres-
sion, rarefaction, and coda. The most powerful explosions generate nonlinear shock waves (Morrissey &
Chouet, 1997) that decay into linear infrasound.

Other volcanic sources can generate continuous, long-duration infrasound tremor. For example, tremor
from the vent can arise in gas jetting (Matoza et al., 2009; Steffke et al., 2010), streams of bubbles
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bursting at the lava surface (Ripepe et al., 2007; Ulivieri et al., 2013), and periodic series of emission pulses
called chugging (Lees et al., 2008, 2004; Lees & Ruiz, 2008). Tremor also originates from pyroclastic density
currents (PDCs) and lahars, which can be tracked with infrasound networks (Johnson & Palma, 2015;
Ripepe et al., 2010; Yamasato, 1997).

Tungurahua was one of Ecuador’s most active volcanoes from 1999 to 2016 and a prolific infrasound
source. Its activity included strombolian, vulcanian, and subplinian explosions separated by intervals with
weak or absent surface activity (Arellano et al., 2008; Hall et al., 2015). Tungurahua’s infrasound included
explosions, gas jetting, and chugging (Fee et al., 2010; Ruiz et al., 2006). The asymmetry of
Tungurahua’s crater and summit (Figure 1) focuses infrasound northwest and complicates recordings
(Kim et al., 2012); these effects can be removed with numeric wave propagation modeling (Kim
et al., 2015).

This paper examines a severe vulcanian eruption at Tungurahua at 11:47 UTC, 14 July 2013. The explosion’s
pressure wave was heard 180 km away, and its column reached 8.3 km above the crater. Falling lapilli
damaged solar panels at least 6 km from the vent, and PDCs traveled 6.5 km from the vent (Instituto
Geofisico, 2013). The vulcanian eruption was followed by occasional small explosions over the following
23 days (Narvaez, 2014). This was among Tungurahua’s most powerful explosions since continuous, compre-
hensive geophysical monitoring began in 2006 and one of the most powerful vulcanian eruptions recorded
with a nearby geophysical network anywhere in the world (Hall et al., 2015). We describe infrasound record-
ings of this violent eruption to elucidate its range of eruptive processes.

2. Field Data Collection

Our installation included two stations 1,860 m and 3,160 m north of the vent (Figure 1), each with three infra-
sonic microphones with flat responses above 0.01 Hz (Marcillo et al., 2012). Lab tests on these microphone
types showed negligible nonlinearity at the excess pressures measured in this study. Infrasound was logged
with a RefTek RT-130 data logger at station HIGH and a DataCube-3 at station LOW; the sample rate at these
stations was 1000 and 100 Hz, respectively. Both data loggers recorded at 24 bit resolution with Global
Positioning System timing. Sensor cables were shielded at station LOW but not at station HIGH, probably
contributing to lightning-related electromagnetic interference in recordings from station HIGH (discussed
in sections 3.3 and 4.4 and Text S2 in the supporting information).

Terrain and equipment constraints prevented the installation of triangular arrays, so linear arrays were
deployed with ~15 m spacing between sensors. Although linear arrays cannot be used to calculate a
unique back azimuth or incidence angle of incoming waves, the spatial separation of the array elements
permits us to calculate coherence among sensors, a variable we consider when analyzing tremor
(section 3.4).

Figure 1. (a) Map of Tungurahua volcano and instrumentation network. (b) Topographic cross section including vent and sensors.
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3. Analysis

Infrasound analysis enables us to quantify eruptive activity by the amount of air it displaces (summarized in
Table S1). We note that some of these analyses address details of waveforms that can be altered by path
effects; therefore, recording infrasound near the vent where path effects are weak is essential.

Infrasonic pressure can be used to calculate erupted volume during discrete events. For linear acoustic waves
emanating from an isotropic source, pressure recorded at the microphone corresponds to displaced air at the
vent as

q tð Þ ¼ H tð Þ�p tð Þ (1)

where q(t) is mass flow rate of displaced air, H(t) is the inverse of the Green’s function from the source to the
receiver, “*” denotes convolution, and p(t) is the infrasound time series in pressure units. When a signal is
recorded at multiple sites with different Green’s functions, an overdetermined linear system can be con-
structed and solved:

qi ¼ Hijpj; (2)

where Hij is the ordinary-least-squares generalized inverse of the Green’s functions and pj is the recorded data
from all receivers (using the Einstein summation convention).

In the particular case when path effects (such as from topography, atmospheric heteogeneity, and attenua-
tion) are negligible, equation (1) can be simplified as

q t � r
c

� �
¼ Ωr∫t2t1p tð Þdt (3)

where r is the distance between vent and microphone andΩ is the solid angle (about 9.08 sr at Tungurahua)
subtended by the atmosphere around the vent (Lighthill, 1978). Otherwise, equation (2) must be used instead
with Green’s functions calculated using numeric models.

Equations (1)–(3) make four assumptions (Johnson, 2003). First, any instrument response, path or site effects,
or radiation pattern anisotropy must be accounted for in H (and must be negligible if using equation (3)). We
calculate Green’s functions using finite-difference modeling with appropriate topography and atmospheric
structure (Text S1 and Figures S1 and S2).

Second, long-period noise (such as from wind) and instrument drift (small trends in recordings not represen-
tative of actual pressure changes) must be negligible. Such noise is common in infrasound recordings and is
problematic because trends and low frequencies are magnified by inversion, sometimes causing volume flow
to be nonzero long after the end of the signal. Johnson and Miller (2014) solved this problem by estimating
flow rate using equation (4) and detrending to make infrasound pressure and flow rate zero at the end of the
signal. We use a slightly different detrending method because we use Green’s functions from numeric
models instead of equation (3). Using linear inversion, we find an optimal drift that minimizes the L2 norm
of estimated flow rate:

qi ¼ Hij pj �mtj
� �

(4)

where m is the slope of the instrument drift and tj is time (using the summation convention). Apart from
instrument drift, signal-to-noise ratio is high during the explosion (Figure 2).

Third, the source dimensions must be small compared to acoustic wavelengths to justify a point source
approximation. With vent dimensions of tens of meters compared to dominant wavelengths exceeding
1 km, this assumption is valid.

Fourth, pressure perturbations must be small relative to ambient pressure to justify the use of linear acoustic
theory. This is easily satisfied for the precursory vent uplift but possibly not for the explosion. The wave from
the explosion exceeded 1,200-Pa peak pressure at 2,158 m, so the wave’s excess pressure probably reached
10% of ambient atmospheric pressure within 400 m of the vent. Nonlinear effects in this region could have
caused waveform change and decay, which equations (1)–(4) cannot account for. However, significantly
nonlinear propagation typically forms an abrupt signal onset, which we do not observe in this signal.
Although we suggest that nonlinear effects on this wave were probably weak, we must consider our volume
calculation to be conservative.
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3.1. Main Vulcanian Blast

The eruption began abruptly with a major explosion that produced the high-amplitude infrasound signal
(Figure 2). Like waves from many explosions, the waveform is dominated by a strong compression followed
by a longer, weaker rarefaction (Morrissey & Chouet, 1997). However, unlike many explosion waveforms, the
rise from ambient to peak pressure occurs in several distinct steps; pressure rises quickly at the onset of the
waveform and 0.6, 1, and 1.4 s later (Figure 2).

Two of the three channels at station LOW clipped during the peak of the main blast arrival; consequently,
data from those two microphones are excluded from the blast analysis. Only the main blast arrival was
clipped in these two channels, so we did consider them in other analyses. The remaining channel at station
LOW did not clip due to its lower sensitivity, and the high input voltage range of the RT-130 logger prevented
clipping on any channel at station HIGH.

Figure 2. Infrasound and erupted volume inferences for the main explosion and precursory pulse. Times are relative to the explosion onset; traces are time shifted to
vent to show stacking procedure in (a)–(c) but not in (d)–(f). (a) Reduced pressure of infrasound at all six stations (gray lines) and time-shifted stack (black). (b and c)
Estimated instantaneous and cumulative volume flow. (d) Infrasound of main explosion. Inset: detail of stepped pressure rise. (e and f) Volume
estimates from linear inversion with drift correction. Black dashed lines show single-station estimates of instantaneous volume flow rate. The highest single-station
estimate (HIGH-3) is a clear outlier and is omitted from the multistation volume estimates (solid gray lines).
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We apply equation (4) to quantify erupted volume using data from the four microphones that did not clip. We
first estimate the volumetric eruption rate sensor by sensor and find that one sensor (HIGH-3) disagrees with
the others (Figures 2e and 2f). This outlier is attributed to an uncorrected instrument drift or other long-
period noise, and we omit it from subsequent calculations. The remaining three sensors agree closely with
each other (±10% of cumulative flow). We invert these three records jointly for erupted volume, finding peak
flow rate of 2.39 × 107 m3/s and cumulative volume of 5.31 × 108 m3.

3.2. Precursory Uplift

The first infrasound signal from this eruption was a relatively small emergent pressure increase (beginning at
11:46:38 UTC at the nearest station) that lasted about 0.71 s before being obscured by the main blast arrival
(Figure 2). No coherent infrasound was recorded before the onset of the emergent pressure rise.

Inverting the brief, low-amplitude precursor using Green’s functions from numeric models would be proble-
matic because of possible acausal contamination from the blast wave. Instead, we invert the precursor using
equation (3) (which is strictly causal) and correct for path effects by weighting each trace by the amplitude of
the corresponding Green’s function. Drift removal is performed by subtracting the trends found in the 14 s
before the precursor began. Signal-to-noise ratio is not high during the precursor, so weighted traces are
stacked to reduce noise.

We estimate the volume of displaced atmosphere during this uplift as 2.08 × 104 m3 using equation (4)
(Figure 2). Following interpretations of similar precursory pressure increases at Santiaguito (Johnson &
Lees, 2010), Sakurajima (Yokoo et al., 2009), and Suwanosejima (Yokoo & Iguchi, 2010), we attribute this signal
to vent surface uplift before gas escapes. The area of the vent that deformed during this phase is unknown, so
we cannot calculate the height of the uplift.

3.3. Electrical Activity

Infrasound from station HIGH contains glitches (brief spikes in the time series) throughout the first 20 min
of the eruption. Glitches do not appear at station LOW, possibly because of differences between the two
loggers’ locations, antialiasing filters, or cables (which were shielded at LOW but not at HIGH). These
glitches include a one-sample voltage spike preceded and followed by brief oscillations (presumably
induced by the data logger’s antialiasing filter); they appear on all channels within the same sample inter-
val (0.001 s) with distinct waveforms (Figure S3). Such characteristics are unlikely for acoustic waves but
are typical of glitches observed to coincide with lightning strikes during thunderstorms, which are inter-
preted as electromagnetic interference from radio waves generated during lightning strikes (Anderson
et al., 2014). Volcanic lightning is common in explosive eruptions and forms as a result of charging due
to violent interactions between ash particles or, if present, hydrometeors (Behnke et al., 2013; Cimarelli
et al., 2014).

Glitches are considered noise for the infrasound analysis and are therefore removed by a median filter
before waveform inversion (Text S2). Although glitch elimination provides cleaned-up acoustic signals
to analyze, we also analyze the timing of the glitches because they indicate lightning activity during
the eruption. Lightning is absent from 0 to 25 s, frequent from 25 to 250 s, sparse from 250 to
1,250 s, and absent after 1,250 s (Figure 3). In total, we identify 119 lightning events, of which 93 occurred
within 300 s of the explosion. For comparison, the World Wide Lightning Location Network (a network
that detects lightning globally with low detection efficiency) detected three events, all of which appear
in our data.

3.4. Tremor

Themain vulcanian explosion is followed by a period of infrasonic tremor. We subdivide the tremor into types
1a, 1b, and 2 by waveform shape, amplitude, and semblance (Figure 3). The first tremor period (60–1,200 s)
alternates between tremor 1a and 1b, and the second tremor period (1,200–3,000 s) consists of type 2 only.
The following analyses are summarized in Table S2. All analyses are done with data from channel HIGH-2.

Waveform shape varies systematically during the long period of tremor following the explosion, with
some periods composed of strongly asymmetric pulses (higher-amplitude compressions than rarefac-
tions) and other periods fluctuating more evenly about 0. To quantify pulse asymmetry over long

10.1002/2017GL076419Geophysical Research Letters

ANDERSON ET AL. 2980



timescales, we plot Pearson’s moment coefficient for skewness for moving 50-s windows. Skewness is
defined as

eμ3 ¼ 1
N

XN
i¼1

pi � μ
σ

� �3

where eμ3 is skewness, μ is themean, σ is standard deviation, and N is the number of samples in a window. This
measure quantifies the degree to which tremor is dominated by strongly asymmetric pulses (Fee et al., 2013).

Additionally, we calculate semblance as an indicator of wave coherence. For a window of n samples, the
semblance S is defined as

S ¼
Pn

i¼1

P3
j¼1 pj ti � δtj

� �h i2
3�Pn

i¼1

P3
j¼1 pj ti � δtj

� �2 ;
where pj is the infrasound recorded at microphone j, ti is the time step i, and δtj is the time shift at microphone

Figure 3. (a) Acoustic waveforms (gray) and skewness (black). (b) Semblance. (c) Lightning occurrence as binned event counts (black) and cumulative counts (gray).
Red line represents World Wide Lightning Location Network detections (three events detected, all within 11 s). Background color shows tremor type. (d–f) Examples
of tremor types 1a, 1b, and 2. Tremor types are distinguished in time series by their differing amplitude, semblance, and waveform shape.
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j for the apparent velocity. For each window, we test a range of apparent velocities and use the maximum
semblance value obtained.

Tremors 1a and 1b both feature continuous, stationary waveforms. However, they differ from each other in
skewness, amplitude, and semblance. Skewness of tremor 1b fluctuates around 0, while tremor 1a ranges
from about 0 to 1. Further, both semblance and amplitude are greater in tremor 1a than tremor 1b.

Tremor 2 differs from tremors 1a and 1b mainly by waveform shape. Unlike the continuous waveforms of
tremors 1a and 1b, tremor 2 waveforms consist of closely spaced asymmetric pulses separated by irregular
time intervals. Each pulse includes a strong, short-duration compression followed by a weak, longer-
duration rarefaction; amplitudes of compressions are 2–3 times those of rarefactions. Correspondingly,
skewness rises sharply at the onset of type 2 tremor and remains high throughout that period, demon-
strating that the visible differences in waveform shape constitute a large-scale structural difference
between these tremor types. Zero-to-peak amplitudes of tremor 2 are similar to those of tremor 1a, but
peak-to-peak and root-mean-square amplitudes are lower in tremor 2; this discrepancy results from the
high skewness of tremor 2.

4. Discussion

We divide the volcano’s activity into three periods, including the main vulcanian explosion and two distinct
degassing phases.

4.1. Main Vulcanian Explosion

Before the explosion, the vent was sealed and contained a large quantity of pressurized gas. Surface activity
began with a rapid uplift of the vent, creating a precursory acoustic pulse lasting at least 0.71 s and displacing
at least 20,800 m3 of air. Because the shock wave produced by gas release may have propagated supersoni-
cally and partially overrun this precursor, the uplift might be underestimated.

Explosive gas and tephra ejection followed the vent uplift. The stepped rise of the wave onset in the infra-
sound data (Figure 2) suggests that gas release occurred in pulses, probably due to incremental opening
of the conduit or successive tapping of deeper gas-charged sections of the magma column. Altogether,
the total erupted volume from the main explosion is estimated as 5.31 × 108 m3 including gas and tephra
(Fee et al., 2017). If, contrary to our assumptions, nonlinear propagation effects were significant, these values
would be underestimates.

To provide context for the scale of the 14 July 2013 eruption, we compare it to the two largest explosions
from a recent period of explosive activity at Sakurajima volcano, Japan (explosions 3 and 5 of Johnson &
Miller, 2014). Infrasound analysis indicated that the 2013 Sakurajima explosions erupted 8.3 and
8.4 × 106 m3 of volcanic gas and tephra, a factor of 63 less than the volume erupted at Tungurahua.
Compared to these eruptions, Tungurahua’s blast wave had a longer compression duration (2.4 s compared
to about 1 s at Sakurajima) and a higher peak-to-peak reduced amplitude (3.4 × 106 Pa · m compared to
3.9 × 105 and 7.4 × 105 Pa · m at Sakurajima). Therefore, the Tungurahua explosion was considerably larger
than these Sakurajima explosions by several measures, especially by infrasound-inferred erupted volume.
By infrasound amplitude, this explosion was also more powerful than any other discrete explosion at
Tungurahua since the current monitoring network was installed in 2006. In particular, the peak-to-peak
amplitude of the July 2013 explosion exceeds amplitudes of later vulcanian eruptions in October 2013 and
February 2014 by factors of 1.7 and 2.9, respectively (Hall et al., 2015).

In this explosion, the vent opened in a complex ~2-s process including preexplosive vent deformation and a
series of emission pulses. Similar multipulse superposition of blasts is evident, though less pronounced, in
explosions at Sakurajima (Fee et al., 2014; Johnson & Miller, 2014), and similar preexplosive deformation
has been observed at volcanoes including Sakurajima (Yokoo et al., 2009) and Suwanosejima (Yokoo &
Iguchi, 2010). These observations demonstrate the complexity of vent processes that can initiate powerful
explosions: vent opening can be a series of events rather than one single failure. By comparison, the explosive
mechanism was much simpler (single explosive pulse, no preexplosive deformation) in Tungurahua’s small
explosions in the weeks following 14 July 2013.
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4.2. Continuous Tephra-Rich Degassing

Infrasonic tremor oscillating between types 1a and 1b follows the explosion and is accompanied by sporadic
electrical discharge. The lack of discrete waveforms within the tremor indicates a relatively continuous emis-
sion process, although the variation in amplitude between these tremor types shows that emission vigor
fluctuated over timescales of tens to hundreds of seconds.

During tremor 1a periods, the high semblance among sensors corresponds to high signal-to-noise ratio and a
single dominant acoustic source. As a result, we consider this signal to indicate continuous magma fragmen-
tation at the vent, either by downward propagation of a fragmentation wave (Alidibirov, 1994) or continuous
ascent and bursting of bubbles (Ulivieri et al., 2013).

We interpret the low-semblance signals of tremor 1b to be dominated by incoherent pressure variations that
mask eruptive signals during periods of reduced emission vigor. This incoherence probably arises from
severe wind noise, possibly driven by updrafts near the vent, as station HIGH was installed in a sparsely vege-
tated site with no wind reduction system. Other possible sources of incoherent noise may include PDCs that
passed within hundreds of meters of station HIGH (Hall et al., 2015) and falling ejecta.

Electrical discharge began before the first tremor period and continued throughout. The incidence of
lightning-linked glitches agrees with the pattern seen in recent studies at Augustine (Thomas et al., 2007),
Redoubt (Behnke et al., 2013), and Eyjafjallajökull volcanoes (Behnke & McNutt, 2014). These studies describe
explosive eruptions in which electrical discharge started near the vent soon after explosive activity began.
Two styles of discharge occur during this period: vent discharge (small events occurring continuously at
the vent) and near-vent lightning (higher-power discrete lightning flashes near the vent). A third type of
discharge, referred to as plume lightning, occurs when a plume is present; plume lightning occurs in long,
powerful, discrete flashes similar to thunderstorm lightning (Behnke et al., 2013).

Similarly, we observe a period between about 25 and 250 s after the eruption onset with frequent
discharges (around several tens of discharges per minute). The beginning of this phase is abrupt, and
no discharges are observed earlier. These discharges are probably near-vent lightning; our instrumentation
is not designed for sensitivity to electrical activity and is therefore unlikely to record the lower-power vent
discharge. After about 250 s, electrical discharge becomes much less frequent (around 1–2 discharges per
minute). Because we cannot locate these events, we cannot classify them between plume lightning and
near-vent lightning. The period of sparse lightning ends around 1,250 s, and no further discharges occur
after that time.

4.3. Pulsed Degassing

The properties of the tremor signal change abruptly around 1,200 s. This new signal, labeled tremor 2, is
dominated by discrete pulses separated by irregular time intervals. Pulsed degassing continues for 1,800 s
before diminishing.

Electrical discharge also ceases around the beginning of the pulsed degassing phase. Two interpretations of
plume activity could explain the absence of discharges. The first possibility is that plume electrification was
driven by volcanic emissions during the first tremor period, so lightning diminished when the style of emis-
sion changed. The second possibility is that plume electrification resulted from an initial intense venting of
gas and ash—not by emissions during the first tremor period—and that by coincidence the plume electrical
activity stopped around the transition to tremor 2. In either case, emission during the tremor 2 period was
insufficient to create a column or cloud with electrical activity.

We consider two potential sources for tremor 2, one being small, repeated bursts at the vent. This mechanism
is suggested by the resemblance between these pulses and explosion waveforms (sharp, brief compressions
followed by longer, weaker rarefactions). These events could be bubbles ascending to the magma surface
and bursting (e.g., Ulivieri et al., 2013) or cycles in which permeable crack networks in the magma pressurize,
burst, and reseal.

These waveforms also resemble “crackle,” a type of signal produced by supersonic jetting. Waveforms similar
to tremor 2 were recorded at regional distances during the June 2011 eruption of Nabro volcano (Eritrea) and
Stromboli volcano (Italy) and were attributed to supersonic gas jetting because of their similarity to noise
from rocket and jet engines (Fee et al., 2013; Goto et al., 2014). Crackle was associated with the remarkably
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ash-poor, gas-rich character of the Nabro and Stromboli emissions. We speculate that ash-poor jetting could
potentially explain both the absence of electrical activity and this tremor.

4.4. Recording Volcanic Lightning Alongside Infrasound

Our method of lightning glitch logging—connecting infrasound microphones to a data logger with long
unshielded cables—was discovered by accident in this campaign but will be useful in future infrasound
projects. If a local infrasound station is already being installed, this method yields lightning event times with
no additional equipment, expense, or installation time, and minimal extra data processing, and with higher
detection efficiency than is possible with global networks like World Wide Lightning Location Network.
The timing and event frequency of volcanic lightning—which is driven by conditions in the plume—can
therefore serve as an easily obtained but valuable complement to existing monitoring data (which typically
offer little information on plume conditions in cloudy weather).

However, this method has downsides and is inappropriate in some scenarios. For example, if more detailed
information (like discharge location and power) is required, the method in this paper is insufficient and a
dedicated lightning monitoring system should be used (Behnke & McNutt, 2014). Additionally, because the
median filter acts as a low-pass filter on ordinary data, a higher sample rate than normal may be needed
to prevent the median filter from attenuating high acoustic frequencies of interest.

5. Conclusion

We analyzed near-vent infrasound data from the 14 July 2013 vulcanian eruption at Tungurahua in order to
quantify explosion dynamics and describe subsequent eruptive activity. Ash and gas can be released by
diverse and complex processes in powerful vulcanian eruptions, and near-vent infrasound and electromag-
netic data can differentiate these processes. Lightning-related glitches in the infrasound record indicate that
volcanic lightning began abruptly 25 s after the eruption onset and diminished over the next 20 min; future
infrasound projects could easily record lightning using our method with little effort and no extra equipment.

The eruption began with the opening of a sealed magma conduit containing pressurized exsolved gas. A
complex failure process including vent uplift and a series of gas emission pulses opened the vent over a
2-s period, resulting in the rapid expulsion of at least 5 × 108m3 of gas and tephra. Volcanic lightning (registered
as glitches in acoustic data) began 25 s after the explosion. Continuous fragmentation in the conduit emitted
ash and gas and produced continuous infrasonic tremor starting 50 s after the explosion and lasting about
1,150 s. Finally, electrical activity in the plume ceased; simultaneously, vent activity transitioned to either pulsed
degassing or supersonic ash-poor gas jetting, producing pulsed infrasonic tremor lasting 1,800 s.
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