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• Parameters and potentials for interatomic interactions were taken from previous 
simulations of PDMS1,3, and from the Universal Force Field for the Ni-Mn-Ga4

• PDMS chains of 20 repeat units are constructed, and volumes with 80 or 100 chains are 
initialized. Ni-Mn-Ga is constructed using its unit cell (Figure 5) and replicating the unit 
cell 20x20x1 

• Simulations of the materials required the use of the National Center for 
Supercomputing Applications’ Blue Waters supercomputer

• HOOMD-blue, a molecular simulation toolkit, was utilized to equilibrate the materials 
as well as to observe their interactions 

• The volume of PDMS was simulated at 294.7 K, 884.15 K, and 1768.2 K
• The interaction of the PDMS & MSM has been simulated at 294K and 500K

• We observe PDMS chains to self-aggregate at room temperature prior 
to binding to the Ni-Mn-Ga

• By examining the outputs, and graphs (Figure 7. A & B), there is an 
initial peak (not shown) that indicates a drastic increase in energy, 
which comes from needing an initial surge of energy to get the 
particles in motion

• Temperature profiles (Figure 7. C & D) show interface stabilization
• Efficiency of the system is ~3500 TPS (time-steps per second) which 

equilibrates in 45 minutes of run-time
• PDMS seems to aggregate first above the surface, then binds quickly to 

the surface

III. Results

• Stable energy in the system points towards a stable 
simulation system that can continue to be expanded

• PDMS if far enough away tends to keep to itself in the 
simulations, and sticks to surface otherwise

• Using GPUs in parallel cuts down the time needed to 
process large volumes of data that would otherwise be 
prohibitive if limited to CPU processing

• Incrementing chain counts, may help PDMS to not clump 
together in the simulation

• The individual materials can be used in conjunction with 
Rhaco on different clusters to investigate polymer-
surface interactions in more depth

IV. Conclusions and Follow-ups

• Ni-Mn-Ga can deform in the presence of a magnetic field, and 
still return to its original state

• Due to its deformation properties Ni-Mn-Ga has been used to 
make micropumps here at Boise State University

• Since the Ni-Mn-Ga plays all the roles needed for the 
micropump to function, typical O-rings can’t be used to provide 
a seal to maintain proper pressure

• Polydimethylsiloxane (PDMS), has been found to be a good 
sealant solution

• Understanding how the polymer/metal interface sticks and 
delaminates is central for engineering better pumps. We use 
simulations here to improve this understanding

PDMS sealant

Figure 1. Ni-Mn-Ga Micropump showing MSMA element and PDMS sealant placement

Figure 2. PDMS 
20-mer (20 
repeating cell) 
chain, and its 
formula2. The 
longer chain 
configuration 
provides a more 
rigid PDMS
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II. Methods

Figure 3. Volume of 80 
20-mer chains of PDMS 
in its initial time step 
(top). Same volume in its 
final time step (right) at a 
temperature of 294.7 K 
(~21.7 Celsius. Total 
number of atoms: 7120)

Table 1. Potentials for PDMS used in simulations

Figure 7. Difference in 
potential energy 

stabilization in PDMS 
based on temperature 
(A & B). Temperature 

profiles of PDMS-MSM 
interface (C & D) at 
different simulation 

temperatures.

Figure 4. 20 x 20 x 1 Ni-Mn-Ga surface
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Figure 5. Ni-Mn-Ga Unit Cell

Figure 6. Simulation showing PDMS aggregation, with slight MSM interaction (frames 0, 250, 499)
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