Boise State University **ScholarWorks**

Doctor of Nursing Practice

School of Nursing

1-1-2018

Aerobic Physical Exercise Increases the Health-Related Quality of Life in Older Adults

Patricia L. Parker

Aerobic Physical Exercise Increases the Health-Related Quality of Life in Older Adults

A Scholarly Project Presented to the Faculty of the School of Nursing Boise State University

In partial fulfillment of the requirements

For the Degree of Doctor of Nursing Practice

By

Patricia L. Parker, MSN/Ed., RN

Faculty Advisor: Cara Gallegos, PhD, RN Committee Member: Pam Strohfus, DNP, RN

Table of Contents

Abstract	5
Problem Description	7
Introduction	7
Problem Background	7
Local Problem	9
Available Knowledge	9
Literature Review	9
Synthesis of the Evidence	9
Rationale	11
Theoretical Model	11
Project Framework	11
Specific Aims	11
Context	12
Population	12
Local Care Environment	12
Relevant Elements of Project Setting	13
Organizational Culture and Readiness for Change	13
Strengths and Weaknesses	14
Interventions	14
Logic Model	16
Correlation of Interventions with Theoretical Model	17
Timeline	18
Measures	18
Analysis	20
Ethical Considerations	21
Ethical Considerations and Protection of the Participants	21
Conflicts of Interest	21

Bias	22
Threats to Quality	22
Results	22
Contextual Interactions of the Project	25
Differences in Project Revenues/Expenses Compared to the Budget Pla	ın26
Discussion	26
Limitations	30
Conclusion	30
References	32
Appendices	
Appendix A: Individual Literary Evidence Summary	40
Appendix B: Theoretical Model	55
Appendix C: Logic Model	56
Appendix D: Data Table	64
Appendix E: Memorandum of Agreement	71
Appendix F: Cognitive Function Survey	72
Appendix G: Positive Affect/Well-being Survey	73
Appendix H: Timeline	74
Appendix I: Preliminary Budget	77
Appendix J: 3-5 Year Budget	79
Appendix K: Statement of Operations	82
Appendix L: Attendance Sheet	83
Appendix M: Educational Handout	84
Appendix N: Benefits of Walking Poster	91
Appendix O: Internal Review Board Notification of Approval	92
Appendix P: Cover Letter of Intent.	93
Appendix O: Weekly Walking Log	95

Appendix R: Summary of Weekly Minutes Walked by Residents96
Appendix S: Number of Walking Sessions
Appendix T: Percentage of Walking Sessions
Appendix U: Age Mean and Standard Deviation of Residents99
Appendix V: Cognitive Short Form Pre/Post Project Outcome Results100
Appendix W: Baseline and Post-Test Cognitive Scores
Appendix X: Positive Affect/Well-being Variable Monthly Mean, Correlation102
Coefficient
Appendix Y: Positive Affect/Well-Being Survey Results for Each Resident103
Appendix Z: Monthly Time Series Plot of Positive Affect/Well-Being104
Survey Variables
Appendix AA: Outcome Evaluation Table

Abstract

Problem Description: Globally, the older adult population is expected to substantially increase in number throughout the next few decades. The aging process causes the body and mind to undergo many detrimental changes. Typically, older adults succumb to a more sedentary lifestyle due to factors such as decreased musculature and skeletal changes, chronic pain, socioeconomic and psychological stressors, and memory changes. Inevitably, health-related quality of life and overall independence dwindles in this population negating their perception of happiness and life satisfaction. There is significant research on preventing and/or managing cognitive disabilities in the older adult; however, Western medicine approaches, such as prescription medications are unsuccessful in reducing cognitive decline. Research suggests that engaging in routine physical exercise is an alternative, cost-effective method to reduce the effects of aging, cognitively and physically.

Interventions: An aerobic walking program was instituted in an Assisted Living Facility, where most of the older adults had begun to lead sedentary lifestyles. Older adults (>60 years) with mild cognitive impairments and decreased quality of life factors were invited to join the walking program. The residents were asked to walk a minimum of three times per week for 30 minutes over a five-month period. A walking log and the National Institutes of Health endorsed Cognitive and Positive Affect/Well-Being short form surveys were completed by the residents at specific time intervals throughout the project assessing whether improvement in cognitive abilities and quality of life factors occurred with increased physical activity.

Results: Initially, 28 residents volunteered to participate in the walking program. Illness and personal reasons caused six residents to drop out, resulting in 22 active participants. A paired t-test, using a confidence interval of 95%, was used on the Cognitive short form survey results at

6

project start and end. The mean values of all eight variables significantly increased over the course of the project (p <0.001). Pearson's Correlation Coefficient test was used to identify strengths in the relationship between minutes walked each month and the Positive Affect/Well-Being survey variables. By engaging in routine, aerobic physical activity, all residents gained significant improvements in their cognitive factors and health-related quality of life factors.

Interpretation: In this project, aerobic walking significantly improved cognitive domains, such as concentration, reading comprehension, thinking speed, managing time, planning activities, and learning new instructions and/or tasks. Although this project was of short duration, the results substantiated that maintaining active lifestyles is necessary for older adults to preserve independence, combat cognitive deterioration, while sustaining happiness and life satisfaction in both physical and cognitive realms.

Conclusions: Older adults, who keep physically and mentally fit as they age, enjoy longer, healthier, happier lives. Health care systems will benefit from decreased health care costs. Providers will benefit by not enduring patient-load strain. Families/caregivers will experience less financial and emotional burden caring for ill, older adults in the future. Engaging in routine, physical exercise throughout aging is a simple, cost-effective measure in preserving numerous cognitive and quality of life factors.

Keywords: older adults, mild cognitive impairment, aerobic exercise, quality of life

Aerobic Physical Exercise Increases the Health-Related Quality of Life in Older Adults **Problem Description**

Introduction

Worldwide, during the years 2000 – 2030, persons over 65 years of age will increase from 550 million to 973 million, from 6.9% to 12% respectively (Centers for Disease Control and Prevention [CDC], 2003). Statistics show that in the United States (U. S.), the older adult population over the age of 65 will increase from 12.4% (35 million) in 2000 to 19.6% (71 million) in 2030, which is higher than global increases (CDC, 2003).

People who are over 65 years of age often experience health issues including physical and cognitive decline. Cognitive decline includes diagnoses such as Alzheimer's disease (AD), dementia, and mild cognitive impairment (MCI). Over the age of 65, persons with co-morbidity disease states, such as hypertension, diabetes, and hyperlipidemia, prove to be more at risk for developing mild cognitive impairment and dementia (Duke Medicine, 2008; Gorelick et al., 2011; Richie & Tuokko, 2010). Additional secondary comorbidities contribute to cognitive decline, such as vascular anomalies, family history, development of the apolipoprotein A, head trauma, and depression. Twenty-five percent of persons in the United States, with memory loss without dementia, had heart disease and diabetes (Petersen, et al., 2014; Ritchie & Tuokko, 2010).

Problem Background

Cognitive impairment, in older adults over the age of 65, has significantly increased and is a major concern due to additional hardships placed on the individual, family/caregivers, and health care system (Davis, Hsuing, & Liu-Ambrose, 2011). The definition of MCI has been redefined as the individual and/or family member/caregiver subjectively reporting an increase in sporadic memory loss without the loss of activities of daily living (ADL) functioning. Further

8

definition divides MCI into two main categories, amnestic-where the person tested positive for poor memory function on a neuropsychological test (aMCI), and non-amnestic- where the person has tested poorly in other cognitive domains (not including memory), such as executive functions, visuospatial, and language abilities (naMCI) (Petersen, et al., 2014). Researchers estimate that 5.4 million persons over the age of 70 have memory loss with MCI that does not affect daily functioning, but does impede their daily routines (Duke Medicine, 2008).

MCI impedes daily routines, causing a disruption in health-related quality of life (HRQoL). HRQoL correlates with health and disease constructs, relative to one's social, mental, physical, and emotional functioning. Examples of interference in daily routines include forgetting the following: appointments, to pay a bill, to attend a social event, words in conversation, and where one left car keys, dentures, or eyeglasses (Department of Health and Human Services, 2010).

Providers treat MCI with the same medications as dementia, not truly distinguishing between the two diseases. Therefore, there is a critical need and urgency to develop treatments to decrease the incidence of cognitive impairments in older adults to ensure they maintain health-related quality of life factors throughout the aging process (Hildreth & Church, 2015). Exercise is one strategy that has been proposed to improve cognitive functioning and Ahlskog, Geda, Graff-Radford, and Petersen (2011) suggest that regular exercise reduces the risk for developing age-related cognitive impairments and dementia. Therefore, the purpose of this Scholarly Project was to implement an aerobic exercise program and to describe cognitive function and HRQoL for individuals (>60 years) with mild cognitive impairment (MCI), living in an assisted living facility (ALF). The Scholarly Project evidence-based problem question (EBP) was as follows: For older adults, (> 60 years) with MCI, what is the effect of an aerobic

exercise program on the person's health-related quality of life and cognitive functions?

Local Problem

In 2014, Citrus County, FL. had one of the highest adult populations over the age of 65 in the state of Florida, numbering approximately 46,588 males and females, including all races (Florida Community Health Assessment Resource Tool Set, 2014). In 2011, 21 states in the U. S. identified their aged population over 60 years of age to have increased confusion and memory loss happening more often or getting worse over a 12-month period (CDC, 2011). In 2011, 12.2% to 15.7% of persons over the age of 60 in Florida reported increased memory loss or confusion that occurred more often or was getting worse in the past 12 months (CDC, 2011).

Available Knowledge

Literature Review

A systematic search was performed between 2005 and 2015 in CINAHL, MEDLINE, PsycINFO, and Science Direct databases using the keywords: cognitive impairment, dementia, aging, exercise, and quality of life. Articles in all databases were limited to the English language. The results were analyzed and a synthesis of the 18 articles was performed. (Refer to Appendix A).

Synthesis of the Evidence

The aging population (>60 years) will reach an estimated 1.2 billion persons worldwide by 2025. The primary risk factor for developing cognitive impairments is aging (Ritchie & Tuokko, 2010). Recent research indicates modern medicine approaches are not effective in treating or deterring the incidence of mild cognitive impairments and dementia (Cooper, Li, Lyketsos, & Livingston, 2013; Frantzidis, Ladas, Vivas, Tsolaki, & Bamidis, 2014, Petersen et al., 2014). However, the use of complementary and alternative medicine (CAM) approaches,

such as exercise, has shown to improve cognitive abilities in older adults (Ahlskog, Geda, Graff-Radford, & Petersen, 2011; Cooper, Li, Lyketsos, & Livingston, 2013; Frantzidis, Ladas, Vivas, Tsolaki, & Bamidis, 2014; Gates, Singh, Sachdev, & Valenzuela, 2013; Hart, Swartz, Cashin, & Strath, 2011; Jeon, Han, Jeong, & Fregni, 2014; Law, Barnett, Yau, & Gray, 2014).

Research has shown that engaging in routine physical activities provides a neuroprotective effect in the brain by increasing oxygenation, neuronal synapsis, and decreasing cerebrovascular risks (Ahlskog, Geda, Graff-Radford, & Petersen, 2011). Bielak's (2010) study posits engaging in physical activity enhances mental capacities and emotional well-being in older adults. Engaging in physical activities with others benefits psychosocial behaviors in aging by increasing support systems, decreasing physical and mental stress, promotes well-being, and increases quality of life. Engaging in regular physical activity promotes overall physical health (e.g. especially in the musculoskeletal and cardiopulmonary systems), which decreases the chance of developing other age-related diseases, such as osteoarthritis, cardiovascular problems, and hormone deficiencies (Bielak, 2010). In addition, improvements occurred in physical and cognitive functioning, especially in memory, processing speed, and executive functions in persons who are considered frail (Langlois, et al., 2013). Frailty in the aged population is linked to increase in falls, hospitalizations, physical disabilities, and possibly death (Bherer, Erickson, & Liu-Ambrose, 2013).

One systematic review by Voss et al. (2013) supports physical exercise interventions being cost-effective in reducing cognitive decline. Specific modalities of exercise should be individualized to the abilities of the person. If a person leads a sedentary lifestyle and begins participating in an aerobic exercise program, it is presumed that any amount of exercise, with or without assistive devices, would benefit increasing oxygenation to the brain. Exercise, as a

complementary medicine modality, is attainable, cost-effective, acceptable, and is a powerful alternative for combatting cognitive decline in older adults (Mathersul & Rosenbaum, 2016).

Rationale

Theoretical Model

Pender's *Health Promotion Model* "...defines health as a positive dynamic state rather than simply the absence of disease" (Petiprin, 2016, para 1). Pender speaks of health promotion related to the person's overall level of well-being and categorizes relevant personal factors as socio-cultural, psychological, and biological. These factors contribute to Pender's model focus, in that each person has specific individual characteristics and life experiences, which foster particular behavioral actions in the environment in which they live to pursue good health or poor health (Petiprin, 2016). The person's behavioral outcomes stem from behavior-specific cognitions and affect, which guide the person's motivation to gain improvement in their health status, functional abilities, and health-related quality of life or remain in ailing health (Current Nursing, 2012). (Refer to Appendix B).

Project Framework

The logic model is comprised of the program processes involving the resources, activities, and outputs used in planning for implementation of the Scholarly Project (Refer to Appendix C). Outcome evaluation methods are included, along with programmatic impacts. The data table specifies outcomes, resources, data indicators, data gathering methods, technical assistance needed, and potential costs (Refer to Appendix D). The logic model outcomes drive the project and includes elements such as securing the project facility and communication with the project partner administration, staff, residents, and community healthcare members.

Specific Aims

The purpose of this Scholarly Project was to implement an aerobic exercise program and to describe improvement in cognitive function and HRQoL for individuals (>60years) with MCI living in an assisted living facility (ALF). Older adults participating in the walking program were expected to exercise three times a week for thirty minutes. The use of assistive devices was acceptable for resident safety throughout the exercising session. The expected outcomes were the resident would experience a 10% increase in positive affect/well-being in their quality of life and cognitive factors, over five months, by program end.

Context

Population

Cedar Creek ALF has 63 residents living in the facility, ranging in age from the late 60s to 100 years of age and the majority of the residents are females (H. Fritz, personal communication, April 12, 2017). The primary medical diagnoses for the residents are heart disease, chronic obstructive pulmonary disease, essential hypertension, gastroesophageal reflux disease (GERD), hyperlipidemia, hypothyroidism, major depressive disorder, osteoarthritis, diabetes, and dementia. Twenty percent of the residents are independent in ADLs and 80% need some type of caregiver assistance with ADLs, e.g., assistance in the shower for safety and medication administration. Approximately, 80% use an assistive device, e.g., cane, walker, or wheelchair (H. Fritz, personal communication, April 12, 2017).

Local Care Environment

Cedar Creek ALF is located in downtown Crystal River, FL. The facility is privately owned and is managed by local community members. It has apartments for resident living space, activity rooms, kitchen and dining rooms, sitting rooms, laundry and housekeeping personnel and facilities, office space for staff, a medication room, and outside spaces for resident

enjoyment and parking. In addition, transportation is provided to doctor appointments, shopping, and dining in the local area via facility handicapped vans. The living accommodations are configured as studio, one-bedroom, and two-bedroom apartments (M. Schubert, personal communication, July 16, 2016). The residents are allowed to bring their own cars, furniture items, and small pets into the facility when they move in. Three meals are provided by a chef and dietary staff and the residents can enjoy an array of beverages and light refreshments twenty-four hours a day.

Relevant Elements of Project Setting

The ALF has a recreation department with two exercise instructors and a manager. Prior to the start of this Scholarly Project, recreational activities at the facility involved chair exercise activities promoting strength and range of motion. There were no aerobic exercise programs for the residents.

The facility is staffed with two to four patient care technicians twenty-four hours per day, seven days per week. Technicians on the day and evening shifts were asked to volunteer to participate in the program to assist the residents for safety. In addition, there are two licensed practical nurses (LPNs) on day shift (7am to 3pm), and one LPN on the evening shift (3pm to 11pm). In Florida, ALFs are not required to hire licensed nursing staff to attend to the residents' needs, but the owners of this ALF chose to have nurses present to provide a higher level of quality care (Carder, O'Keeffe, & O'Keeffe, 2015).

Organizational Culture and Readiness for Change

Identifying a need and readiness for change is one of the preliminary elements in developing a Scholarly Project. In collaborating with the ALF facility staff and administration, a common health disparity among their residents was identified--sedentary lifestyles. Most of the

residents lacked routine engagement in physical activity, specifically aerobic activity. "Many of the residents are taking the easy road and using wheelchairs for mobility more in recent months. It is sad to see them settle for living below their functional levels" (H. Fritz, personal communication, June 9, 2016). A Memorandum of Agreement was signed in June 2016, acknowledging the relationship between the Project Leader and ALF, to move forward with the aerobic walking program in Spring 2017 (Logic model outcome 1) (refer to Appendix E).

Invoking team collaboration is one of the essential elements in leadership. Wong,

Cummings, and Ducharme (2013) speak to the congruence of leadership, staff performance, and
patient outcomes, by embracing effective relational leadership using clear communication

strategies, collaborative staff engagement in decision-making, and a vision of change for quality
in health care for all. The ALF administration acknowledged a need for change in the facility to
promote healthier lifestyles for the residents and was actively engaged in discussing wins and
obstacles in the project planning and implementing phases.

Strengths and Weaknesses

The strengths of the project included the following: (1) high engagement levels of ALF administration and facility staff; (2) open communication channels between the Project Leader and facility staff; (3) engaged residents; (4) reliable and valid instruments; and (5) minimal expenses.

The weaknesses of the project included the following, (1) attrition; (2) summer heat in Florida; (3) staff shortages to assist residents that need assistance for safety reasons (4) unavailability of residents to complete surveys when the Project Leader was able to meet with them and (5) small sample size.

Interventions

Educational sessions were held at the ALF for residents, (> 60 years of age), who were interested in participating in the walking program (Logic model outcome 3). Facility staff (administrative and direct care staff), who were interested in assisting the residents in the walking program, were invited to participate (Logic model outcome 2). All attendees signed an attendance sheet (Refer to Appendix L) and an educational handout and a "benefits of walking poster" were given to all attendees (Refer to Appendices M & N). A copy of the Boise State University Internal Review Board (IRB) Letter of Intent was given to all attendees and explained that participating in the program would be strictly voluntary and anyone could opt out of the program at any time (Refer to Appendices O & P). All attendees were instructed on how to complete The Neuro-Qol Cognitive and Positive Affect/Well-Being surveys and the weekly walking log (Logic model outcomes 5, 6, 7, & 8) (refer to Appendices F, G, & Q). Residents interested in participating in the program were asked to complete the two surveys as baseline data (Logic model outcome 4). The volunteer staff were asked to put the word *volunteer* after their name on the attendance sheet if they were interested in assisting the residents.

The walking program was conducted for five months, from May 1, 2017 through September 30, 2017. Recreation department staff delineated Monday and Tuesday of each week as the Walking Club times to meet at 0900, outdoors (weather permitting) and indoors, for those residents wanting to walk in a group. Additional staff was present to provide standby assist for those needing one-on-one for safety concerns. The minimum amount of walking sessions per week was proposed at three times throughout the project. The residents were responsible for completing the other walking session/s in the week, either by themselves, with staff, or with friends. The weekly walking log data was filled out each day of the week, as well as the minutes the resident walked, and kept through the entire program. A few residents elected to keep their

own walking logs, but most resident information was kept in one binder in a locked cabinet, in order to keep data from being lost, to maintain privacy of personal information, and maintain accuracy of the data obtained (Logic model outcome 12).

Each month, the Project Leader reviewed the results and three \$25.00 Visa gift cards were awarded to the residents with the most improvement, most days, and/or minutes walked in the month. Pictures of the winners were taken and posted on the facility events board and in the Cedar Creek Life newsletter each month. Starting in June, due to increasing progress of the walking times and days per week by the residents, the addition of Honorable Mention Residents was added to the monthly congratulatory meeting and an Honorable Mention Certificate was given to each qualifying resident.

The Project Leader collected the survey data from the residents in a private location. The Cognitive survey data was collected at baseline and at the end of the program in early October 2017. The Positive Affect/Well-Being survey data was collected at baseline and collected each month through the end of the program (Logic model outcome 9).

The resident volunteers decided to commemorate their goals as a walking team in the project. A large, flat world map was obtained and secured on a large wall outside the activity room in the ALF, where everyone could see the progress of traveling to different countries throughout the program. Resident walking volunteer pictures were taken and displayed as a team alongside the map, so that all team members could stay connected and inspire each other to reach their personal walking goals. At project conclusion, a celebration was held with refreshments from the different countries visited during the walking program for all to enjoy. In October 2017, data collection was completed.

Logic Model

Developing the components of the logic model were completed in the planning phase and include short-term outcomes and long-term outcomes/impacts of the Scholarly Project from project assessment to completion of the project (Refer to Appendix C). The following list comprises the short-term outcomes: (1) by July 2016, ALF Administrators agree to collaborate and sign Memorandum of Agreement; (2) by May 2017, 75% of the facility direct care staff attended the education session; (3) by May 2017, 50% of the facility residents attended the education session; (4) by May 2017, 90% of the residents complete the initial baseline surveys (Positive Affect and Cognitive tools); (5) by May 2017, 20 residents volunteer to be in the Scholarly Project walking program; (6) by May 2017, 80% of residents are educated on how to fill out the Positive affect and Cognitive surveys, along with time increments in the project; (7) by May 2017, 75% of the resident volunteers are educated on how to fill out the weekly exercise log; (8) by May 2017, 90% of the volunteer facility staff are educated on how to fill out the weekly exercise log; (9) by October 2017, 90% of the residents completed all survey tools throughout the project; (10) by October 2017, 50% of the volunteer residents reported a 10% increase in health-related quality of life; (11) by October 2017, 50% of the volunteer residents reported a 10% increase in cognitive function; (12) by October 2017, 75% of the residents completed 80% (50 out of 63) of the exercise sessions; and (13) by June 2018, an abstract will be submitted to a professional conference. The long-term outcomes/impacts of the Scholarly Project can be referred to in Appendix C.

Correlation of Interventions with the Theoretical Model

Pender's *Health Promotion Model* aligns directly to the Scholarly Project emphasis of engaging in healthy behaviors that are sustainable to improve cognition, functional abilities, and increase well-being in the older adult, through the aging process (Petiprin, 2016). Pender's

model has 13 theoretical statements, which guide work on promoting healthy behaviors. All of these statements relate to the Scholarly Project. A few of the major components are (1) people engage in behaviors they believe will positively benefit them, (2) the person will be more committed to changing behaviors if they are confident they have the ability to perform the behavior, (3) if family or caregivers model the expected behavior or expect healthy behaviors to happen, the person will be more committed to engage in the behavior, (4) the more serious the person is about committing to an action plan, the probability of changed behaviors becoming sustainable over a long time will increase, and (5) people can adjust their behaviors by changing their cognitive thoughts, affect, personal interactions, and the environment they live in to start engaging in healthier behaviors (Current Nursing, 2012). Refer to Appendix B (Stokes, n.d.).

Timeline

Project planning involves using a timeline for setting project milestones. Project management and stakeholders use the timeline to keep on track throughout project implementation, evaluation, and disseminating the results (Haughey, 2013). The Scholarly Project timeline includes all of the preliminary target milestones from initial planning endeavors in 2016 through dissemination of project results in 2018. (Refer to Appendix H).

Measures

The measures for evaluating this project included an attendance sheet, weekly walking log, Neuro-QoL Cognitive Short Form survey, and Positive Affect/Well-Being Short Form survey (refer to Appendices F, G, L, and Q). The attendance sheet captured the number of residents and staff present for the education session prior to project start. Throughout the project, residents used the walking log to tally their minutes per day and days per week walked. The Project Leader developed the attendance sheet and walking log.

The two survey tools chosen for use in the project are sponsored through the National Institutes of Health subsidiary group called HealthMeasures. HealthMeasures (2016) comprises a team of "...psychometricians and measurement science experts at Northwestern University and five additional research and education institutions" (para 2). These tools are reliable, valid, and have been used extensively over the past decade. The tools are free to use through public domain (HealthMeasures, 2016).

For ease of survey administration with the older adult who may have sensory deficits and MCI, a paper format was used. The Positive Affect and Well-Being Short Form is a nine question survey and takes less than five minutes to complete (Logic model outcome numbers 4, 5, 6, 9, and 10) (Refer to Appendix G). The Positive Affect and Well-Being Short Form survey used a Likert Scale of 1 to 5 (1 = Never; 5 = Always) referencing nine categorical questions related to quality of life. The Cognitive Function Short Form survey has eight questions and takes less than four minutes to complete (Logic model outcome numbers 4, 5, 6, 9, and 11) (HealthMeasures, 2016) (Refer to Appendix F). The Cognitive Short Form survey used a Likert Scale of 1 to 5 (1 = Never; 5 = Always) referencing eight cognitive attributes. The Project Leader designed the attendance sheet and the weekly walking log. The attendance sheet was completed on the initial encounter with staff and residents (Logic model outcomes 2 & 3). The weekly walking log was completed by staff or residents denoting the number of days and minutes walked each week throughout project implementation (Logic model outcomes 7, 8, & 12) (refer to Appendices L & Q).

There were two main areas in the proposed budget plan for the project that were updated to reflect the actual costs, e.g., the data analyst cost (in kind) and the Project Leader mileage cost. The data analyst cost was found to be much more than anticipated at \$350.00. The actual cost

was \$689.00 for 16.42 hours at \$42.00/hr. (United States Department of Labor, 2017). The mileage cost was estimated to be \$37.00 for data collection and celebratory times traveling to and from the ALF. The number of trips completed through the project totaled 76 times (9 miles each to and from the ALF), equating to 684 miles at .54 cents per mile. The total expenditure for mileage was \$369.36 by project end using the United States Internal Revenue Service mileage allowance (Foundeo, Inc., 2018). The 3-5 Year Budget Plan and Statement of Operations tables were updated to reflect these changes (refer to Appendices I, J, & K).

Analysis

A quantitative design was performed, using survey designs, attendance sheets, and a walking activity log. The surveys, activity log, and attendance sheets use numeric values to describe trends, behaviors, attitudes, and ideas of the sample population (Creswell, 2013). The Cognitive Short Form evaluation is a two-step, pre-/post intervention design. The Positive Affect/Wellbeing Short form is a longitudinal, performance measurement/monitoring design. This Scholarly Project did not include a control group (Issel & Handler, 2014).

Descriptive statistics were used to describe the participants (age and gender) and analyze the data, e.g., number (N), mean (M), and/or standard deviation (SD) on each of the two Likert Scale survey subscales. Inferential statistics, such as a paired t-test was used to determine if there were significant statistical differences between the baseline scores and project end scores on the Cognitive Short Form. Inferential statistics, such as analyzing correlation coefficient factors between the mean of monthly minutes walked and the mean of Positive Affect/Wellbeing Short Form variables, was performed to determine if there were significant statistical relational differences in the positive affect/well-being of the residents over time (Logic model outcomes 4, 6, 9, 10, & 11).

The number and percentages of staff and residents were calculated on the attendance log quantifying their presence at the education session, along with residents' completion of surveys and walking sessions throughout the project (Logic model outcomes 2, 3, 9, & 12). Run charts and a table was used to display results of completed exercise sessions and average minutes walked by all residents throughout the project (Logic model outcomes 7 & 8) (refer to Appendices R, S, & T). Minitab 17 (Minitab 17 Support, 2017) was used to extract the data, along with consulting a data analyst periodically throughout the project.

Ethical Considerations

Ethical Considerations and Protection of the Participants

The Project Leader completed the Collaborative Institutional Training Initiative (CITI) Program to understand ethical requirements in protecting human subjects involved in the Scholarly Project (Collaborative Institutional Training Initiative [CITI], 2016) and the project was approved by the Boise State University Institutional Review Board (IRB) (Refer to Appendix O). Confidentiality was one of the biggest risks to this project and several measures were taken to ensure confidentiality. Numerical identifiers were used on the survey questionnaires that residents and caregivers use to protect personal identity throughout the project, along with the walking logs. All surveys and logs were stored in a locked box off site and electronic data was de-identified and stored in a password-protected server maintained by Boise State University (BSU).

Conflicts of Interest

There were no conflicts of interest between the Project Leaders and Cedar Creek ALF administration, facility staff, or residents. The Project Leaders did not receive any monetary gains for instituting the Scholarly Project from the ALF owners or administration.

Bias

Minimizing sources of bias in research is important for the project results to be validated and sustainability of the project to be considered (Indrayan, 2012). The following is a list of potential bias factors in this Scholarly project, as suggested by Indrayan (2012): participant selection, recall bias, response or information bias, and non-response bias. Additional positive factors include having a mindset of being truthful and objective in the use of tools in the project and analyzing the results, minimizing response and non-response bias, and using a statistical, non-biased approach in evaluating the information and disseminating the results (Indrayan, 2012).

Threats to Quality

Acquiring and using invalid survey tools could jeopardize the quality of the project results. The two main survey tools in this project are from NIH and are considered evidence-based, and are reliable and validated tools. The attitudes of the residents, towards project engagement, may change through the implementation phase and cause skewed survey results. Several attitude problems to be aware of are volunteers who speed through filling out the survey, those who want to be overly positive in their remarks, and those who just mark down any response to get through the survey (Sauro, 2015). The Project Leader was with each resident as the surveys were filled out. Therefore, these threats were eliminated. Additionally, resident volunteers may decide to drop out of the program before completion.

Results

Initially, 32 of 63 residents (51%) joined the educational session on the aerobic walking program. However, only 28 completed the initial Cognitive and Positive Affect/Well-Being surveys, indicating their interest to participate in the project. All 28 residents were found to meet

the criteria for participation of being over 60 years of age, had some degree of MCI, and decreased HRQoL (n = 28; 100%). In addition, 19 (79%) of the caregiver staff attended the education session and volunteered to participate in assisting the residents (Logic model outcomes 2, 3, & 5). One hundred percent of participating residents and staff were educated on filling out the walking log and all participating residents were educated on the Cognitive Short Form and Positive Affect/Well-Being Short Form surveys (Logic model outcomes 6, 7, & 8). The average age of the residents was 89 and the majority of residents were female (n = 25) (Refer to Appendix U).

The Cognitive Short Form Survey was used as a pre-post project survey (cognitive factors were identified pre-project intervention compared to post-intervention, aerobic activity, cognitive factors) and a dependent sample, paired t-test was performed. The pre-project survey items on 28 residents that scored the highest included managing time for daily activities (M = 3.96; SD = 0.84) and planning/keeping appointments (M = 3.57; SD = 1.29). The items that scored the lowest included understanding something read (M = 2.82; SD = 1.06) and slow thinking (M = 3.36; SD = 0.87). The post-project survey items that scored the highest on the remaining 22 residents in the project included following complex instructions (M = 4.95; SD = 0.21) and planning/keeping appointments (M = 4.91; SD = 0.29). The items that scored the lowest included understanding something read (M = 4.59; SD = 0.66) and slow thinking (M = 4.45; SD = 0.85) (Refer to Appendices V & W).

The Confidence Interval was set at 95% on all eight variables in the Cognitive survey paired t-test. The mean values of all eight categories significantly increased over the course of the project. The data produced a P value of <0.001 for all eight variables. Frost (2014) suggests a lower P value greatly decreases the chance of a false positive occurring in the results (refer to

Appendix W). Short-term outcome number 11 in the logic model proposed 50% of the residents would report a 10% increase in cognitive factors. Ninety-five percent (N = 21) of the resident walkers reported more than a 10% increase (refer to Appendix W). This achievement may be directly related to increased aerobic activity levels providing increased oxygenation to the brain. Increased oxygenation promotes increased neuronal generation and neuronal synapsis speed (neuroplasticity), increased hippocampal tissue, while decreasing small vessel disease, as proposed in studies by Ahlskog, Geda, Graff-Radford, and Petersen (2011), Bielak, (2010), and Langlois, et al. (2013).

Pearson's correlation coefficient test was used to identify strengths in the relationship between minutes walked each month and the Positive Affect/Well-Being survey variables. Seventy-three percent (N = 16) of the residents reported a 10% increase in their Positive Affect/Well-being over the five-month period (refer to Appendix Y). Short-term outcome number 10 in the logic model proposed 50% of the resident walkers would report a 10% increase. Therefore, an additional 23% was achieved, which may be related to the increase in days per week walked and the social connection between walkers. The initial Positive Affect/Well-Being survey items that scored the highest included life had meaning (M = 3.53) and life was worth living (M = 3.64). The items that scored the lowest included sense of well-being (M = 3.00) and felt hopeful (M = 3.10). The post-project items that scored the highest included life was worth living (M = 4.86) and life had meaning (M = 4.77). The post-project items that scored the lowest included well-being (M = 4.36) and life was interesting, satisfying, and being cheerful (all had an M = 4.45). All survey variables showed a positive increase from project beginning to end (refer to Appendices X, Y, & Z).

The total number of walking sessions during the project and the amount of minutes walked each week was recorded on weekly walking logs. Refer to Appendix R for the mean minutes walked per week for the 22 residents in the program. Short-term outcome number 12 in the logic model proposed 75% of the resident walkers would complete 80% of the proposed exercise sessions (50 out of 63) over five months. The overall trend for the five months shows an increase in the amount of time walked. There was a significant drop in September, which was most likely due to a major hurricane hitting the area and the residents had to evacuate the ALF, disrupting their routines. Twenty-one (N = 95%) residents submitted documentation on their walking logs showing they exceeded the proposed number of exercise sessions throughout the program (Refer to Appendices S & T). Twenty-one (21) of the 22 residents completed all eight surveys throughout the project (n = 21 [100%]; n = 1 [88%] due to illness; 95% total).

Contextual Interactions of the Project

There was no change in the processes of the project or project interventions. The summer heat and rain showers in Florida are unfavorable factors with engaging in outside activities. However, to overcome this, the residents tried to walk outside early in the mornings and if they were inclined to walk more during the day, they walked the long hallways inside the ALF, at a shopping mall, or other facility. Residents with vision problems, walked inside the ALF or outside with one-on-one assistance of staff for safety.

After the start of the walking program, three residents left the project for personal reasons. Resident health issues, ranging from falls, deterioration of health, and death of a family member, affected three residents' ability to continue in the program. Twenty-two residents participated through project end. The majority of resident walking logs were kept in one binder under lock and key in the facility until the Project Leader gathered them for data compilation.

The caregiving staff noted the day and amount of minutes walked for each resident, who opted not to keep their own data. However, a couple residents opted to keep their own logs. One resident lost some of them and did not log all walking sessions, due to illness. On a positive note, the more experienced walkers encourage others in the project to walk more routinely, exhibiting a supportive team effort to increase health and wellness, as identified by Pender's *Health Promotion Model* (refer to Appendix B).

Differences in Project Revenues/Expenses Compared to the Budget Plan

Supplies were cut to a minimum as no office supplies were needed for resident use. The ALF staff offered to cover all copying costs (in kind). However, the Project Leader underestimated the number of trips to the ALF to collect data, which increased auto gas mileage cost. The data analyst cost (in kind) was underestimated, due to not realizing the normal hourly rate for this service is \$42.00/hour (United States Department of Labor, 2017; refer to Appendix I). No external funding was appropriated for the project (refer to Appendix I).

Discussion

Summary Points

The effects of a five-month aerobic walking program were evaluated in older adults (> 60 years) living in an ALF. Two primary aims of the project were to assess whether the benefits of walking a minimum of three times a week for thirty minutes each day would increase cognitive functioning and health-related quality of life factors for each resident over time. Although a few residents did not meet the goal of walking thirty minutes each day, the number of days walked increased routinely to between five and seven days each week for all residents in the program, equating to most residents walking over four hours in a month to thirty-one hours a month. The average minutes walked by all residents increased substantially over the project duration. This is

a promising, positive effect of the project, as most residents were physically sedentary in nature before the project began. Individual abilities of the residents varied, but the positive results of the project indicated these residents were beginning to take their health status seriously and started to make changes in their health behaviors, as identified in Pender's *Health Promotion Model* (Petiprin, 2016). Results of project outcomes 2 through 12, as depicted on the Logic Model, exceeded the expected level of achievement (ELA) by project end (refer to Appendix C).

Interpretation Points

It is not known if the increase in time and days spent walking was due to social interactions with a group, the fact that a reward would be given each month to three exceptional walkers, or if the residents generally began to physically feel better enhancing their motivation to walk, as these particular aspects were not measured. Past studies have shown that by increasing social interactions and daily physical activity, older adults experience positive benefits in behavioral, cognitive, and physical adeptness, while gaining protection against cardiovascular, hormonal, and neuronal insults common in aging (Ahlskog, Geda, Graff-Radford, & Petersen, 2011; Bielak, 2010). It is noteworthy that 17 of the 22 residents' ages were in the 90s.

Walking is a cost-free method of exercise and is one factor the residents found rewarding. The residents were especially delighted that the recreational staff team incorporated two days out of the week in the ALF activity agenda for the Walking Club to meet and walk together. Staff engagement with the residents increased, as they both enjoyed the neighborhood walks together. Staff assisted those who needed standby assistance for safety and interacted more with them in gathering data on the amount of minutes walked on specific days of the week. Successes were shared between staff and residents building self-esteem and comradery. These positive encounters assisted the residents to be successful in the project, along with heightened team spirit

of the individual walkers with other residents. Logic model outcomes 2 through 12 are reflected in positive behaviors (refer to Appendix C).

Positive contextual considerations were the buy-in of the staff and residents, as mentioned above. Two designated days were built into the residents' weekly recreational schedule. Residents scheduled other days to exercise. Monthly congratulatory meetings were held to honor the walkers, along with a project end celebration. HRQoL constructs include not only physical and functional abilities, but also community involvement and participation in healthy behaviors of individuals. Experiencing a state of well-being and social participation often help to define a person's sense of HRQoL (American Psychological Association, 2006: Office of Disease Prevention and Health Promotion, 2018).

Negative contextual considerations were the heat and rainy summer weather in Florida. A major weather disruption occurred in September, as Hurricane Irma came through town and the residents had to evacuate their coastal facility. Health issues are potentially negative factors with this aging population, so the fact that three residents left the project with health issues, was less than 11% of the total resident project volunteers.

Policy Implications

Regarding policy development instituting aerobic exercise for older adults in aggregate living facilities, it is doubtful that an actual policy will be developed. Adults have the right to decide whether or not to engage in healthy behaviors. However, the positive results of this quality improvement project does imply that community dwelling adults will enjoy overall health benefits by increasing aerobic physical activity in their daily activities. After completing this community-based project, the Project Leader gleaned a greater understanding of the importance of professional accountability and responsibility in identifying social determinants of health

relative to the health care system. Community, specific interest groups, and workplace environments are three spheres of influence where nurses can strive to influence policy-making to improve health outcomes, reduce health care costs, decrease many health disparities, and enhance quality health care for all (Mason, Gardner, Outlaw, & O'Grady, 2016).

Recent investigation found existing health insurance policy endowments supporting health promotion with physical activity. The StayWell Company offers innovative strategies to employers in developing health promotion incentives. One of their most successful programs is the Million Step Challenge (Anderson, 2016). Insured recipients, who walk over 700,000 steps per year, are offered a \$100.00 reduction in their annual health policy premium and those who walk over 1.4 million steps per year, enjoy an annual premium reduction of \$200.00. The insured person's steps are monitored through a health tracker application that is downloaded on the insured's cell phone. The insured synchronizes this application to a Fitbit or other health tracking devices, such as a smart watch. The annual accumulation of steps walked information is forwarded to the health insurer, in this case StayWell, verifying physical activity accomplishments (Anderson, 2016; P. Parker, personal communication, December 8, 2017).

Prince et al. (2015) suggest ageism is very complex, due to older adults having many disease co-morbidities, lack appropriate age-related care, are faced with increased medical fees, lack adequate monetary income, and lack social support. Appropriate age-related, primary care services need to be reorganized to meet their medical needs. Policy reforms might include cost-effective assessments and holistic, integrated, continuity of care that may identify and promote the needs of this population; ultimately, decreasing physical and cognitive disabilities and increasing independence (Prince et al., 2015). Enhanced technology, web and social media platforms, and smart phone applications allow the populous easy access to health information

and evidence-based research. Twenty-first century Medicare, Medicaid, and private insurance recipients would definitely benefit from technology-based, health promotion, incentive programs incorporated in their benefits package to enhance health outcomes, physically, mentally, emotionally, and socially to maintain optimum, health-related quality of life factors in aging.

Limitations

The ALF populous gender count was females (49) and males (19). Gender bias could be a limitation, as more females (F) participated than males (M) in the project (F = 20 or 40%; M = 2 or 11%). Although this is may be viewed as a discrepancy, the participation was representative of the residents' gender living in the ALF. The sample size was small (< 30). Age may be a limitation, as 17 of the 22 residents were in their 90s; although, it could be viewed if 90 year-old adults can routinely engage in exercise routines, anyone of lesser age could. There were no confounding factors, or design, method, measurement, or analytical issues that hindered the project constructs, processes, and outcomes. Therefore, the project was internally valid. Generalizability of the project (external validity) is global in relation to the older adult population's increasing growth and continuance of need for cost-effective, medical interventions to promote healthier physical and HRQoL outcomes in the aging process (Kukull & Ganguli, 2012).

Conclusion

Research indicates that by routinely exercising throughout adulthood, the deleterious effects of numerous physical and cognitive deficiencies could be minimized or avoided in aging (Ahlskog, Geda, Graff-Radford, & Petersen, 2011; Bielak, 2010). If the adult population ages in a healthier state, the health care community will benefit by decreased heath care costs and less burden on health care services. Additionally, families/caregivers will not endure emotional,

physical, and financial burdens placed on them to care for their disabled loved ones. Worldwide, communities catering to the needs of older adults should consider investing in cost-effective, enjoyable physical activity interventions and environments in order to promote independence, health, and well-being of this population. There are a limited number of studies investigating aerobic exercise on health and wellness in aging. Therefore, it is recommended that future research efforts be conducted in this specific area and research results disseminated in worldwide, peer-reviewed, health-related publications for interested health care workers to benefit from.

References

- Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R., & Petersen, R. C. (2011). Physical exercise as a preventative or disease-modifying treatment of dementia and brain aging. *Mayo Clinic Proceedings*, 86(9), 876-884. Retrieved from http://www.sciencedirect.com/science/article/pii/S0025619611652191
- American Psychological Association. (2006). *Memory changes in older adults*. Retrieved from the American Psychological Association web site:

 http://www.apa.org/research/action/memory-changes.aspx
- Anderson, D. (2016). Health promotion is coming of age and looking to the future [Web log post]. Retrieved from http://staywell.com/health-promotion-is-coming-of-age-and-looking-to-the-future/
- Bherer, L., Erickson, K. I., & Liu-Ambrose, T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. *Journal of Aging Research*, 2013, Article ID 657508. Retrieved from http://dx.doi.org/10.115/2013/657508
- Bielak, A. (2010). How can we not 'lose it' if we still don't understand how to use it?

 Unanswered questions about the influence of activity participation on cognitive performance in older age-A mini-review. *Gerontology*, *56*, 507-519. doi: 10.1159/000264918
- Bodeker, G., & Kronenberg, F. (2002). A public health agenda for traditional, complementary, and alternative medicine. *American Journal of Public Health*, 92(10), 1582-1591.

 Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221447/
- Carder, P., O'Keeffe, J., & O'Keeffe, C. (2015). Compendium of residential care and assisted living regulations and policy: 2015 edition. Florida: Definition. Retrieved from

- Department of Health and Human Service web site: https://aspe.hhs.gov/basic-report/compendium-residential-care-and-assisted-living-regulations-and-policy-2015-edition#FL
- Centers for Disease Control and Prevention. (2003). *Morbidity and mortality weekly report*.

 *Public health and aging: Trends in aging—United States and worldwide. Retrieved from the Centers for Disease Control and Prevention web site:

 http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5206a2.htm
- Centers for Disease Control and Prevention. (2011). *Healthy aging data portfolio: Indicator*summary: ICML for adults aged 60 or older. Retrieved from the Centers for Disease

 Control and Prevention web site:

 http://nccd.cdc.gov/DPH Aging/Indicator/IndicatorSummary.aspx?indId=62&CatId=58
- Collaborative Institutional Training Initiative. (2016). Social and behavioral researchers basic course. Retrieved from: https://www.citiprogram.org/
- Cooper, C., Li, R., Lyketsos, C., & Livingston, G. (2013). A systematic review of treatments for mild cognitive impairment. *British Journal of Psychiatry*, 203(3), 255-264. doi: 10.1192/bjp.bp.113.127811
- Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). Thousand Oaks, CA: Sage.
- Current Nursing. (2012). Health promotion model. Retrieved from http://nursingplanet.com/health_promotion_model.html
- Davis, J. C., Hsiung, G. Y. R., & Liu-Ambrose, T. (2011). Challenges moving forward with economic evaluations of exercise intervention strategies aimed at combating cognitive

- impairment and dementia. *British Journal of Sports Medicine*, 45(6), 470-472. doi: 10.1136/bjsm.2010.077990
- Department of Health and Human Services: Office of Disease Prevention and Health Promotion. (2010). *Health-related quality of life and well-being*. Retrieved from healthypeople.gov web site: http://www.healthypeople.gov/2020/about/foundation-health-measures/Health-Related-Quality-of-Life-and-Well-Being
- Duke Medicine. (2008). One in three people over 70 have memory impairment. Retrieved from http://corporate.dukemedicine.org/news_and_publications/news_office/news/10261
- East Renfrewshire Council. (n.d.). Social and leisure activities for adults and older people [Picture]. Retrieved from http://www.eastrenfrewshire.gov.uk/article/2601/Social-and-leisure-activities-for-adults-and-older-people
- Florida Community Health Assessment Resource Tool Set (CHARTS) (2014). Florida population estimates. Retrieved from Florida CHARTS web site:

 http://www.floridacharts.com/FLQUERY/Population/PopulationRpt.aspx
- Foundeo, Inc. (2018). 2016 IRS mileage rates. Retrieved from https://mileagepad.com/irs-mileage-rates/2016/
- Frantzidis, C. A., Ladas, A-K. I., Vivas, A. B., Tsolaki, M., & Bamidis, P. D. (2014). Cognitive and physical training for the elderly: Evaluating outcome efficacy by means of neurophysiological synchronization. *International Journal of Psychophysiology*, *93*(1), 1-11. doi: 10.1016/j.ijpsycho.2014.01.007
- Frost, J. (2014). Five guidelines for using P values [Web log post]. Retrieved from http://blog.minitab.com/blog/adventures-in-statistics-2/five-guidelines-for-using-p-values

- Gates, N., Singh, M. A., Sachdev, P. S., & Valenzuela, M. (2013). The effect of exercise training on cognitive function in older adults with mild cognitive impairment: A meta-analysis of randomized control trials. *The American Journal of Geriatric Psychiatry*, 21(11), 1086-1097. doi: 10.1016/jagp.2013.02.018
- Glasbergen, R. (2011). Health initiative newsletter [Picture]. Retrieved from http://archive.constantcontact.com/fs027/1103707962004/archive/1105065752213.html
- Gorelick, P. B., Scuteri, A., Black, S. E., DeCarli, C., Greenberg, S. M., Iadecola, C. ...Seshadri.
 S. (2011). Vascular contributions to cognitive impairment and dementia. A statement for healthcare professionals from the American Heart Association/
 American Stroke Association. *Stroke*, 42(9), 2672-2713.
- Grundman, M., Petersen, R. C., Ferris, S. H., Thomas, R. G., Aisen, P. S. Bennett, D. A., ...Thal, L. J. (2004). Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. *Archives of Neurology*, *61*(1), 59-66. doi: 10.1001/archneur.61.1.59
- Hart, T. L., Swartz, A. M., Cashin, S. E., & Strath, S. J. (2011). How many days of monitoring predict physical activity and sedentary behavior in older adults? *International Journal of Behavioral Nutrition and Physical Activity*, 8, 62. doi: 10.1186/1479-5868-8-62
- Haughey, D. (2013). The 8-step guide to creating a quality project schedule. Retrieved from https://www.projectsmart.co.uk/the-8-step-guide-to-creating-a-quality-project-schedule.php
- HealthMeasures. (2016). About us. Retrieved from http://www.healthmeasures.net/resource-center/about-us

- Hildreth, K. L., & Church, S. (2015). Evaluation and management of the elderly patient presenting with cognitive complaints. *Medical Clinics of North America*, 99(2), 311-335. doi: 10.1016/j.mcna.2014.11.006
- Indrayan, A. (2012). Varieties of bias to guard against. Retrieved from medicalbiostatistics.com/Types of bias.pdf
- Issel, L. M., & Handler, A. (2014). Choosing designs for effect evaluations. In L. Issel (Ed.),

 Health program planning and evaluation: A systematic approach for community health

 (pp. 393-427). Burlington, MA: Jones & Bartlett.
- Jeon, S. Y., Han, S. J., Jeong, J. H., & Fregni, F. (2014). Effect of exercise on balance in persons with mild cognitive impairment. *NeuroRehabilitation*, *35*(2), 271-278. doi: 10.3233/NRE-141120
- Kukull, W. A., & Ganguli, M. (2012). Generalizability. The trees, the forest, and low hanging fruit. *Neurology*, 78(23), 1886-1891. doi: 10.1212/WNL.0b013e318258f812
- Langlois, F., Vu, T. T., Chasse, K., Dupuis, G., Kergoat. M. J., & Bherer, L. (2013). Benefits of physical exercise training on cognition and quality of life in frail older adults. *Journals of Gerontology Series B*, 68(3), 400-404. doi: 10.1093/geronb/gbs069
- Law, L. F., Barnett, F., Yau, M. K., & Gray, M. A. (2014). Effects of combined cognitive and exercise interventions on cognition in older adults with and without cognitive impairment: A systematic review. *Ageing Research Reviews*, *15*, 61-75. doi: 10.1016/j.arr.2014.02.008
- Mason, D. J., Gardner, D. B., Outlaw, F. H., & O'Grady, E. T. (2016). *Policy & Politics in nursing and health care* (7th ed.). St. Louis, MO: Elsevier

- Mathersul, D. C., & Rosenbaum, S. (2016). The roles of exercise and yoga in ameliorating depression as a risk factor for cognitive decline. *Evidence-Based Complementary and Alternative Medicine*, 2016, [Article ID 4612953], 1-9. doi: 10.1155/2016/4612953
- Minitab 17 Support. (2017). Introduction. Retrieved from http://support.minitab.com/en-us/minitab/17/getting-started/introduction/
- Morris, J. C. (2012). Revised criteria for mild cognitive impairment may compromise the diagnosis of Alzheimer's disease dementia. *Archives of Neurology*, 69(6), 700-708. doi: 10.1001/archneurol.2011.3152
- National Institute on Aging (NIA). (2006). Research highlights in the demography and economics of aging. The future of human life expectancy: Have we reached the ceiling or is the sky the limit (NIA Publication number 8)? Retrieved from www.prb.org/pdf06/NIA_FutureofLifeExpectancy.pdf
- Office of Disease Prevention and Health Promotion. (2018). Health-related quality of life & well-being. Retrieved from https://www.healthypeople.gov/2020/topics-objectives/topic/health-related-quality-of-life-well-being
- Petersen, R. C., Caracciolo, B., Brayne, C., Gauthier, S., Jelic, V., & Fratiglioni, L. (2014).

 Mild cognitive impairment: A concept in evolution. *Journal of Internal Medicine*,

 275(3), 214-223. doi: 10.1111/joim.12190
- Petiprin, A. (2016). Nursing theory: Health promotion model. Retrieved from http://nursing-theory.org/theories-and-models/pender-health-promotion-model.php
- Prince, M. J., Wu, F., Guo, Y., Robledo, L. M., O'Donnell, M., Sullivan, R., & Yusuf, S. (2015).

 The burden of disease in older people and implications for health policy and practice. *The Lancet*, 385(9967), 549-562. doi: 10.1016/S0140-6736(14)61347-7

- Rajan, K. B., Hebert, L. E., Scherr, P. A., Mendes de Leon, C. F., & Evans, D. A. (2013).
 Disability in basic and instrumental activities of daily living is associated with faster rate of decline in cognitive function of older adults. *The Journals of Gerontology*, 68(5), 624-630. doi: 10.1093/38ssist/gls208
- Richie, L. J., & Tuokko, H. (2010). Mild cognitive impairment: Case definitions, age, and other risk factors. Retrieved from http://cirrie.buffalo.edu/encyclopedia/en/article/117/
- Sanders, L. (2016). The brain's blueprint for aging is set in early life [Picture]. Retrieved from https://www.sciencenews.org/article/brain-blueprint-aging-set-early-life
- Sauro, J. (2015). 10 threats to the quality of online research. Retrieved from http://www.measuringu.com/blog/ten-threats.php
- Statista. (2016). Projected annual inflation rate in the United States from 2010 to 2020. Retrieved from https://www.statista.com/statistics/244983/projected-inflation-rate-in-the-united-states/
- Stokes, H. (n.d.). Theorist project. Retrieved from https://app.emaze.com/@AWQQFTI/theorist-projectpptx#1
- Sylvia, M. L., & Terhaar, M. F. (2014). *Clinical analytics and data management for the DNP*. New York, NY: Springer.
- United States Department of Labor. (2017). May 2016 national occupational employment and wage estimates: United States. Retrieved from Bureau of Labor Statistics web site: https://www.bls.gov/oes/current/oes_nat.htm
- Voss, M. W., Heo, S., Prakash, R. S., Erickson, K. I., Alves, H. Chaddock, L., ...Kramer, A. F. (2013). The influence of aerobic fitness on cerebral white matter integrity and cognitive

function in older adults: Results of a one-year exercise intervention. *Human Brain Mapp*, 34(11), 2972-2985. doi: 10.1002/hbm.22119

Wong, C. A., Cummings, G. G., & Ducharme, L. (2013). The relationship between nursing leadership and patient outcomes: A systematic review update. *Journal of Nursing Management*, 21, 709-724. doi: 10.1111/jonm.12116

Appendix A

Johns Hopkins Nursing Evidence-Based Practice Appendix G: Individual Evidence Summary Tool

EBP Question: (revised [4] In older adults, over the age of 60 with mild cognitive impairment, what is the effect of an aerobic exercise program on the person's health-related quality of life (HRQoL) and cognitive functions?

Table 1

Article #	Author & date	Evidence type	Sample- sample size & setting	Study findings that help answer the EBP question	Limitation/s	Evidence level & quality
1.	Ritchie, 2010, International Encyclopedia of Rehabilitation Mild Cognitive Impair-ment: Case Defini-tions, Age, and other Risk Factors	Non-experimental /descriptive	No sample	Aged persons 60+ to be 1.2 billion by 2025 Risk factors—gender (women to AD & men with vascular deficiencies), age, education & biologic factors—secondary comorbidities of HTN, diabetes, family history, development of the apolipoprotein A, and trauma; depression. Protective factors—active lifestyle and cognitive stimulation	Data is over five years old, but Key Symposium was in 2003 that came out with new definition of MCI and data supports this	Level IV High

				Needs to be a gold standard of testing; longitudinal testing is recommended; other research says caregiver reports should be used over time. Normal Model of Aging definitions and Cognitive Decline as disease process definitions. No drugs are recommendedno evidence in assisting with healing and some may cause unwanted side effects.		
2.	Duke Medicine, 2008, Duke Medicine News and Communications One in Three People Over 70 Have Memory Impairment	Non-experimental /descriptive	No sample	1 in 3 persons over 70 have MCI 3.4 million Americans have dementia and another 5.4 million have MCI 12% of those with MCI will progress to dementia 25% with memory loss	Information is over 5 years old, but holds key evidence of the prevalence of MCI and dementia	Level IV High

				without dementia had other comorbidities—diabetes & heart disease Mortality rate of those diagnosed had an 8% mortality rate annually varying across various types of cognitive impairment		
3.	Centers for Disease Control & Prevention, 2011, Healthy Aging Data Portfolio	Non-experimental /descriptive Data retrieved from 21 states in America on adults over age 60	No sample	21 states identified numbers of their aged over 60 having increased confusion and memory loss that is happening more often or getting worse in the past 12 months. Includes changes in attention, memory, learning, executive function & language capabilities affecting quality of life, personal relationships, and making informed decisions about health care and other life matters	None except that there was no data for 29 states	Level IV High

4.	Cooper, C., 2013, British Journal of Psychiatry A Systematic Review of Treatments for Mild Cognitive Impair-ment	Systematic Review of 41 RCTs	Studies included any study with persons with MCI and the aim was to identify best current treatment evidence	No modern medicine interventions were found effective for treatment of MCI. Only one non-pharmacological intervention proved promising for reminiscence, memory training, and cognitive stimulation, along with recreation and social interaction improved cognition over a 6-month period.	No limits for language or time published	Level 1 High
5.	Grundman, M. et al, 2004, Archives of Neurology Mild Cognitive Impair-ment Can Be Disting-uished from Alzheim-er's Disease and Normal Aging for Clinical Trials	Descriptive /comparative study in a multicenter clinical trial in the U.S. and Canada cohort study	769 MCI patients, 107 cognitively normal elderly controls, 122 patients had very mild AD (Clinical Dementia Rating [CDR] 0.5), and 183 patients had mild AD (CDR 1.0) and were patients in the MIS met operational criteria for amnestic MCI	Comparing with the control group, MCI patients were most impaired with memory tasks, but less impaired in other cognitive domains. MCI patients had less impairment caused by the alolipoprotein E than those with mild AD.	Participants were from Alzheimer's Disease Cooperative Study sites in Canada and the US. Participants had to meet specific criteria to be involved in the study of MCI. Information was over five years old.	Level II High

6.	Morris, J. C., 2012,	Retrospective systematic	17, 535 partici-	The recently published	Assessment of	Level III
		review -clinical practice	pants with	revised criteria for MCI	those participating	
	Archives of Neurology	guidelines and consensus	normal cognition,	require:	in the Alzheimer's	High
		statement of ratings	MCI, and AD		Disease Centers	
	Revised Criteria for	regarding functional	dementia files	1) change in cognition	that had clinical and	
	Mild Cognitive	impairment across	were reviewed	recognized by the	cognitive data	
	Impair-ment May	diagnostic categories of	for functional	affected individual or	entered in the	
	Compro-mise the	normal cognition, MCI,	abilities from	observers;	National	
	Diagnosis of	and Alzheimer's disease	data retrieved		Alzheimer's	
	Alzheimer's Disease		from 33	2) objective impairment	Coordinating Center	
	Dementia		Alzheimer's	in one or more cognitive	database.	
			Disease Centers,	domains;		
			(National Alz-			
			heimer's	3) independence in		
			Coordinating	functional activities; and		
			Center data	4) absence of dementia.		
			retrieval)	4) absence of dementia.		
			according to the	The revised criteria		
			revised criteria	operationalize		
			on MCI. Those	"independence in		
			participants with	functional activities"		
			MCI and possible	more expansively than		
			AD were	before. For example,		
			compared with	"mild problems" in		
			those with	performing daily		
			normal cognitive	activities such as		
			aging.	shopping, paying bills,		
				and cooking are		
				permissible, as is		
				dependency on aids or		
				assistance to complete		
				such activities.		

			1		I	
				This intermedation of		
				This interpretation of		
				"independence in		
				functional activities"		
				thus has the potential to		
				characterize as MCI		
				some individuals who		
				now are diagnosed with		
				very mild and mild		
				Alzheimer's disease (AD)		
				dementia.		
				It was found that up to		
				60% of providers do not		
				diagnose dementia or		
				MCI due to AD due to		
				thinking of the		
				catastrophic effects on		
				patients and caregivers		
				of the diagnosis.		
				Patients and caregivers,		
				would like to know the		
				diagnosis so they can		
				plan for the future.		
				Providers treat MCI with		
				the same dementia		
				medications, as they are		
				not truly distinguishing		
				between the two		
				diseases.		
				Ninety-nine percent of		
				those with very mild AD		
				and 92% of those with		
L	<u> </u>	<u> </u>		and 5270 or those with	l	

				mild AD could be reclassified with a diagnosis of MCI.		
7.	Hildreth, K. L., 2015, Medical Clinics of North America, Evaluation and Management of the Elderly Patient Presenting with Cognitive Com-plaints	Non-experimental /descriptive	No sample	This article was information based on expert opinion on the definitions of MCI, current and proposed evaluation methods, current treatment options (pharmacological and non-pharmacological), primary provider concerns and resources for the provider for referral depending on the individual patient complaints. For all patients with cognitive complaints, primary goals include maintaining function and independence, preventing further cognitive decline, and ensuring quality of life.	None discussed	Level IV High
8.	Bodeker, G., 2002, American Journal of Public Health, A Public Health Agenda	Non-experimental /descriptive There are 25 out of 191 WHO member states	No sample identified	Questions are related to public health agendas needed for support and research on traditional and complementary	Information is over 5 years old, but is an important contribution to setting policies for	Level IV High

	for Traditional, Complementary, and Alternative Medicine	that have national policies related to T/CAMs		medicine (T/CAMs). Numerous questions were identified in the following areas: (1) National policy and regulation, (2) safety, efficacy, and quality, (3) access, and (4) rational use. Establishing regulatory and policy guidelines will ensure the safety, quality, and efficacy of T/CAMs. Call for a public health agenda is needed.	use of T/CAMs globally. Most research has focused on clinical and experimental medicine (safety, efficacy, and mechanism of action) and regulatory issues, to the general neglect of public health dimensions.	
9.	Hart, T. L., 2011, International Journal of Behavior-al Nutrition and Physical Activity, How Many Days of Monitoring Predict Physical Activity and Sedentary Behaviour in Older Adults	Quasi-Experimental	52 older men and women; age = 69.3 ± 7.4 years, range= 55-86 years—commun- ity dwelling	This study was performed to see how many days a week would physical activity, using several measurement modalities, be needed to improve health in older adults. (Predicting physical activity that becomes habitual vs sedentary behavior) The higher the intensity of physical exercise, the less days needed per week to increase health status (minimum three	Participants were homogeneous in age and health, which could cause a skew of the external validity. More females participated than males. No power calculation for the study.	Level II High

				days/week). This study was important to plan for the number of exercise days needed for participation in the Scholarly Project.		
10.	Petersen, R. C., 2014, Journal of Internal Medicine, Mild Cognitive Impair-ment: A Concept in Evolution	Descriptive/Systematic Review with meta- analysis	Over 162 studies were reviewed	There is certain time period between normal cognitive functioning and clinical dementia when individuals experience cognitive decline. Not all those who experience cognitive decline, especially in advanced ages, will develop AD, and some classified as having MCI will not even progress to clinically defined dementia. Many people may have cognitive decline due to causes other than neurodegeneration, such as depression, anxiety, drug use,	Authors list 9 inconsistencies in defining MCI in research studies— > settings in which the criteria are used > age of subjects > operational criteria > implementation of the diagnostic criteria > retrospective versus prospective data collection	Level III High

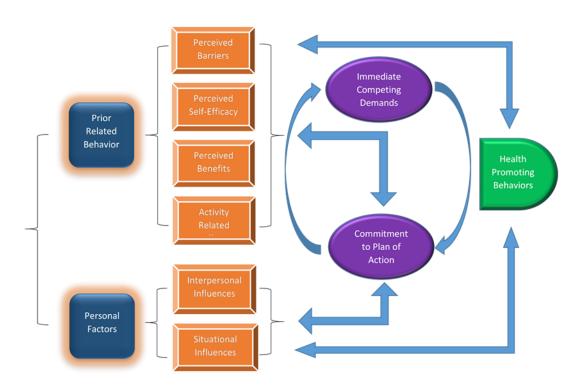
				comorbidities, and other treatable conditions. The identification of different types of MCI, is made easier by new diagnostic criteria and by some promising biomarkers, which are available for testing in different clinical settings.	>algorithmic versus clinical application of the criteria >blindness with respect to previous diagnoses >length of follow-up of subjects when assessing outcome >stability of the construct.	
11.	Gates, N., 2013, The American Journal of Geriatric Psychiatry The Effect of Exercise Training on Cognitive Function in Older Adults with Mild Cognitive Impairment: A Metaanalysis of Random Control Trials	Meta-analysis of RCTs	Fourteen RCTs (1,695 participants; age 65–95 years) were reviewed. These older adults had MCI or a MMSE score of 24-28.	To evaluate the effectiveness of physical activity on cognition in older adults with MCI. Supports increasing physical activity to improve cognitive abilities.	The authors thought the quality of the RCTs was "modest" and "underpowered for the small effects" noted.	Level 1 Good
12.	Frantzidis, C. A., 2014,	RCT using cognitive training with Brain	103 older adults — (53 were in	This unique approach of using cognitive and	None listed, but factors not	Level 1

	International Journal of Psycho-physio-logy, Cognitive and Physical Training for the Elderly: Evaluating Outcome Efficacy by Means of Neuro-physio-logy Synchroni-zation	Fitness software, physical training using the Nintendo Wii and a balance board and neuropsychological testing before and after the training	the training group & 50 were in the active control group) 75% were women—age over 60 in 5 EU countries, age factors were matched between the males and females along with cognitive status.	physical training proved to be useful in increasing synchronization of brain function between the two hemispheres of the brain in 43 out of the 53 participants. Supports using holistic approaches to measuring brain and cognitive functioning in older adults.	supported in the study were sample individual differences such as, education, personality, intervention — duration, and dose longer than what was in this study to bring optimal results.	High
13.	Ahlskog, J. E., 2011, Mayo Clinic Proceedings Physical Exercise as a Preventive or Disease-Modifying Treatment of Dementia and Brain Aging	Systematic review	1063 articles related to keywords of "cognition" and exercise"— mostly RCTs—on Seniors	This systematic review looked at the benefits of physical activity in animals (rats) and humans in a large number of studies, mostly RCTs in the senior population. Physical activity is shown to increase neuroplasticity, increase hippocampal volume in the brain, and has a neuroprotective feature by decreasing small vessel disease in the brain. Improved cognitive scores and	Mention of some studies having gender bias, prescribed exercise routines varies, along with length of the programs in particular studies.	Level II High

				spatial memory were proven. Overall, physical exercise was beneficial and should not be overlooked as a therapeutic intervention.		
14.	Davis, J. C., 2011, British Journal of Sports Medicine Challenges Moving Forward With Economic Evaluations of Exercise Intervention Strategies Aimed at Combating Cognitive Impairment and Dementia	Non-experimental /descriptive	No sample identified; speaks to older adults aged 65+	The authors address the importance of economic evaluations applied to exercise interventions (costs and consequences) promoting cognitive function in older adults. Need for efficiency, due to limited healthcare resources, to facilitate efficient medical decision-making by using cost-effectiveness analysis (CEA). The thought is that exercise interventions are more cost-effective and are beneficial to overall health. Health outcomes are quantified in terms of health	Clinical trials are not long enough to show the costeffectiveness. CEAs-units to express health benefits may have limited comparability across certain disease states—outcomes verses intervention. More research to be conducted on the direct effect of exercise on cognition.	Level V High

				benefits (number of life years saved).		
15.	Rajan, K. B., 2012, The Journals of Gerontology, Disability in Basic and Instrumental Activities of Daily Living is Associated with Faster Rate of Decline in Cognitive Function of Older Adults	Non-Experimental /longitudinal population-based cohort observational study in the clients' homes.	6,678 non-disabled adults over the age of 65 were interviewed at 3-year intervals from 1993 to 2012 in a defined area in Chicago, IL.	The study was to see if a correlation between physical disabilities increased the rate of cognitive decline in older adults. The study started with clients before physical disability occurs and assessed 2-6 times at 3-year time periods over a 12.6 year period, specifically looking at IADLs and ADLs functions. A correlation was identified proving that physical disabilities enhance cognitive decline and, thus, is a risk factor. Cognitive function was decreased 158% after an ADL disability occurred and 115% after an IADL disability occurred. Therefore, minimizing physical disabilities could minimize cognitive impairments in older adults.	Although the sample size was more than sufficient, the geographic area was restricted to one area of the US.	Level V High

16.	Jeon, S. Y., 2014, Neurorehabilitation, Effect of Exercise on Balance in Persons With Mild Cognitive Impairment	RCT	42 male and female subjects 65 years of age and older who had subjective memory complaints	To research whether physical exercise changed balance control abilities in persons who complained of subjective memory impairment, as falls are increased in persons with advanced age and, even more in persons with mild cognitive impairment or dementia. There were positive results in this study on improving balance.	Small sample size. Should have considered splitting the MCI group in two—those that did the exercises and those who did not. The setting of a community medical service. The degree of compliance compared to the degree of improvement in balance should have been accounted for. Four exercises were used and might have been more helpful if certain groups of subjects were told to use a certain exercise or two.	Level I High
17.	Law, L. F., 2014, Ageing Research Reviews	Systematic review	Of 474 potential studies, 4 RCTs & 4 non-RCTs were finally reviewed	To assess studies combining cognitive training and physical exercise to improve cognitive functioning in	Small study size Some of the studies had rater and subject blindness; 7 of the studies were	Level II Good


	Effects of Combined Cognitive and Exercise Interventions on Cognition in Older Adults With and Without Cognitive Impairment: A Systematic Review		that met the selection criteria	older adults with and without cognitive complaint. Assess the quality of the methodologies used in studies, and report latest results in these projects. Four of the five studies found significant improvements in executive functions and attention in MCI, general cognitive abilities, language, memory, and functional	of medium quality and 1 was high; results were conflicting-with the cognitively impaired subjects-one study found no benefit, while four others had significant assistance.	
18.	Voss et al. (2013), Human Brain Mapp The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention	RCT	70 sedentary, com-munity dwelling older adults between the ages of 55 and 80 years of age.	To investigate whether a one-year aerobic fitness program would increase the white matter in the brain of older adults, thereby increasing cognition in healthy subjects. The effects of aerobic exercise was found to increase white matter in the brain and specific	Although, white matter density was examined, specific fiber tracts and brain networks were not examined; the effect sizes were small	Level 1 High

_	_
. ר.	.)

		executive functions, but	
		not processing speed.	

Appendix B

Figure 1
Pender's Health Promotion Model Success

(Stokes, n.d.)

Appendix C

Table 2
Logic Model

Resources/Inputs	Activities	Outputs	Outcomes: Short term	Out-comes: Long term	Impact
1. Facility staff and administration in Citrus County, Fl. Facility	1. Contact community project partner/s	1. Project partners secured	1. Project partners (Administrator & Assistant Administrator) verbally agree and sign memorandum of agreement for ALF to collabo- rate by 7/2016.		Scholarly Project exercise program com- pleted (09/2017)
2. DNP student, ALF facility staff and residents	2. Develop education session materialsAging process	2. Education materials completed	2 Seventy-five percent of ALF direct care facility staff attended the education session by 5/2017.		ALF facility staff and residents verbalized understanding the importance of aerobic

	 Mild cognitive impairment Health-related quality of life Effects of exercise 		3. Fifty percent of ALF residents attended the education session by 5/2017.	activity increasing health- related quality of life in the aging process (5/2017)
4. Sch. Project mentor & DNP student NIH PROMIS survey tools — cognitive and health-related quality of life ALF project residents	4. Secure approval for cognitive survey and health-related quality of life survey tools.	4. Survey tools approval secured	4. Ninety percent of volunteer exercise program residents completed the baseline NIH Survey tools (HRQoL & cognitive survey) by 5/2017.	

5. Project	5. Contact	5. Twenty	5. Enrolled 20	Scholarly
residents, possibly	community-	volunteer ALF	ALF residents	Project program
their medical	dwelling ALF	residents	over the age of	completed
providers, facility	residents for	enroll into the	60, who	09/2017:
staff, facility	project (target	project	document having	(Impacts from
administration,	number 20+)		cognitive impair-	program A-D)
DNP student,			ments in working	
resident			memory,	A. The benefits
caregivers/family			attention, and	of aerobic
members, Sch.			processing	exercise
Project mentor,			speed, along with	increased the
and Boise State			decreased	HRQoL of older
University faculty			HRQoL factors	adults by 10%
			on the NIH	over a five
Facility			PROMIS	month period,
			HRQoL &	by 10/2017.
Media resources			cognitive surveys	
			into the project	B. The benefits
Survey tools			by 5/2017.	of aerobic
2 32 1 2 3 2 3 2 3				exercise
Exercise program				increased
resources		6. Walking	6. Eighty	cognitive
(walking		program	percent of ALF	function-
equipment,		residents	residents	ing in older
technology, office		complete NIH	involved in the	adults, related
supplies, auto		PROMIS	walking program	to executive
gas)		cognitive and	were educated on	function-
<i>G</i> ,		HRQoL surveys	NIH PROMIS	

Logic model, timeline, and budget			survey tools (Health- related quality of life [HRQoL]	ing of working memory, attention, and process-
	7. Exercise logs distributed to all exercise program residents	7. Residents complete weekly exercise logs	and cognitive) admini- administered throughout the project by 5/2017 project start. (Administration times prior to start (both tools), Monthly (Positive affect and well-being survey), and end of project (both tools) from 5/2017 to 10/2017). 7. Seventy- five percent of ALF residents involved in the walking program are	ing speed, 10%, over a five month period, by 10/2017. C. Congregate-dwelling older adults, over the age of 60, verbalize understanding the importance of engaging in regular, aerobic exercise to improve and maintain overall cognitive health and health-related quality of life throughout the aging process. Thereby, the

1 1	11 12
educated on	older adult
how to complete the	remained in
weekly	their own
exercise log	residence
before program	function-
start 5/2017.	ing safely and
stat 3/2017.	indepen-
8. Ninety	dently. (1-3
percent of ALF	year attain-
facility staff	ability)
members	aomity)
involved in	P. G
assisting	D. Sustain-
residents in the	ability of active
walking	engage-
program, are	ment in aerobic
educated on	physical
how to	exercise
complete the	benefit-
weekly	ting cognitive
exercise log	health and
before program start 5/2017.	health-related
9. Ninety percent	quality of life in
of the survey	older adults is
tools (HRQoL &	
cognitive survey)	recognized and
were completed	documented in
by each ALF	peer-reviewed
exercise program	journals and
resident	

throughout the Sch. Project by 10/2017. 10. Fifty percent of the	research studies. (4-6 year attain- ability)
20 ALF exercise	
program residents reported a 10%	
increase in HRQoL on the NIH PROMIS	
survey by 10/2017.	
11. Fifty percent of the 20 ALF	
exercise program residents	
reported a 10% increase in cognitive	
functioning, in executive functions of	
working memory, attention, and	

processing speed on the NIH PROMIS cognitive survey by end of project 10/2017.
12. Seventy-five percent of ALF exercise program residents completed 80% of the walking exercise sessions (50 out of 63 sessions) throughout the project implementation period (5/2017 to 10/2017)

13. DNP student, area healthcare providers	13. Scholarly Project information compiled for poster presentation to professional conference attendees and ALF consortium group	13. DNP student presented Scholarly Project information to professional conference attendees via poster board presentation.	13. Sch. Project. Abstract submitted to professional conference by 6//2018 (if possible).		Dissemination of program results to area and state healthcare providers gave credence to project sustainability (2-4 year attainability).
--	--	---	---	--	---

Appendix D

Table 3

Data Table

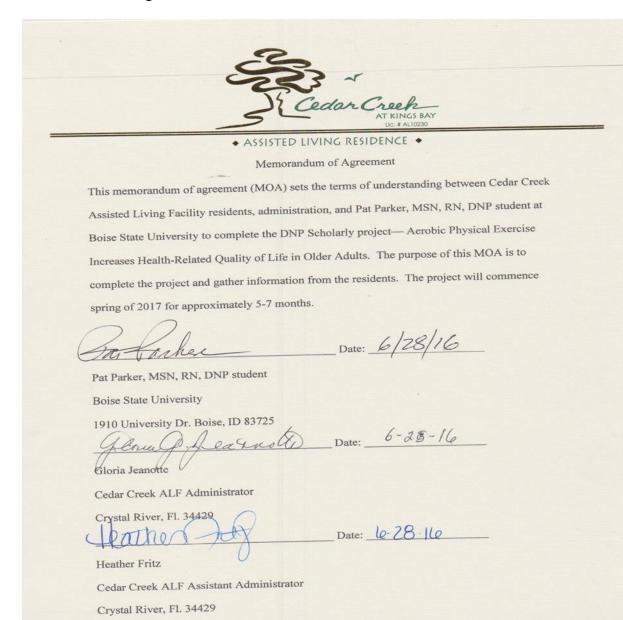
Outcome(s)	Resources	Data (Indicators)	Method to gather data	Technical assistance needed	Potential cost
1. Project partners signed memorandum of agreement to support project 100% by 7/2016.	DNP student, ALF Administrator and Assistant Administrator	Memorandum of agreement	Memorandum of agreement signed by project partners (DNP student, Administrator, and Assistant Administrator) before project begins.	Memorandum of agreement typed by DNP student	In kind printer use & one sheet paper cost from ALF Administrative facility staff participation in planning @ \$15.00/hr x 4 hrs = \$60.00 (in kind)
2. Seventy-five percent of ALF facility staff attended the education session by 5/2017.	DNP student, ALF facility staff and residents	Education session attendance sheets	Education session attendance sheets signed by ALF facility staff before	Education session attendance sheets made by DNP student	One dollar for printer toner and paper Facility administration participation in

3. Fifty percent of ALF exercise program residents attended the education session by 5/2017.			presentation begins		implementation 6 hrs @ \$15.00/hour = \$90.00 (in kind); facility staff 66ssistance in implementation = 20 hrs at \$10.00/hr = \$200.00 (in kind); facility exercise leader 5 months @ \$45.00/wk = \$900.00 (in kind)
4. Ninety percent of exercise program residents completed the baseline NIH Survey tools (HRQoL & cognitive survey) by 5/2017.	DNP student, ALF project residents	NIH PROMIS Health-related quality of life & cognitive surveys	NIH survey tools completed for baseline information before the project begins	NIH PROMIS Health-related quality of life & cognitive surveys	Free down loads from NIH Subsidiary HealthMeasures

5. Enrolled 20 ALF residents over the age of 60, who document having cognitive impairments in working memory, attention, and processing speed, along with decreased HRQoL factors on the NIH PROMIS HRQoL & cognitive surveys into project by 5/2017. 6. Eighty percent of ALF residents involved in the walking program were educated on NIH PROMIS survey tools administered throughout the project by 5/2017 project start. (administration times-	DNP student, ALF project residents and staff	NIH PROMIS Health-related quality of life & cognitive surveys	NIH survey tools completed for baseline information before the project begins	NIH PROMIS Health-related quality of life & cognitive surveys	Free down loads from NIH \$30.00 in paper and printer toner (in kind) \$10.00 in printer toner & paper (in kind) Included in cost above for residents Facility administration and staff pay are included in outcome #2
--	--	--	---	--	--

monthly, and end of project from 5/2017 to 10/2017). 7. Seventy-five percent of ALF residents involved in the walking program are educated on how to complete the weekly exercise log before program start 5/2017.	Weekly exercise logs Weekly exercise	Residents receive education on how to fill out weekly exercise logs to verify time spent three days per week. Facility staff receive education on how to fill out	Weekly exercise logs made by DNP student Weekly exercise logs
8. Ninety percent of facility staff members, involved in assisting residents in the walking program, are educated on how to complete the weekly exercise log before program start 5/2017.	logs	weekly exercise logs to verify time spent three days per week, in case residents need assistance	made by DNP student

9. Ninety percent of survey tools (HRQoL & cognitive survey) were completed by each resident throughout the Sch. Project by 10/2017. 10. Fifty percent of the residents reported a 10% increase in HRQoL on the NIH PROMIS survey by 10/2017. 11. Fifty percent of residents reported a 10% increase in cognitive functioning on the cognitive survey by end of project 10/2017.	NIH PROMIS survey tools – cognitive and health-related quality of life ALF project residents	NIH PROMIS Health-related quality of life & cognitive surveys	NIH PROMIS cognitive survey completed by ALF project residents before project begins and at the end of the project. NIH PROMIS HRQoL survey completed by ALF project residents before the project begins, then, monthly through project implementation, and at the end of the project.	NIH PROMIS Health-related quality of life & cognitive surveys	73 hours of DNP student time each month @ 35.00/hr x 7 = \$2,555.00 through-out the project (in kind) Benefits: \$826.25 Auto gas: \$30.00 for DNP student to facility(in kind) Cell phone: \$50.00
five percent of ALF exercise program residents completed 80% of the walking exercise					


sessions (50 out of 63 sessions) through-out the project (5/2017 through 10/2017).	DNP student NIH PROMIS survey tools – cognitive and health-related quality of life ALF project residents				
13. Abstract submitted to professional conference by 6/2018.	Area health care professionals, DNP student	Presentation materials (poster board/handouts)	DNP student to present project results	Presentation materials (poster board/handouts)	This information will be captured in the same time period listed above at end of project (Refer to DNP student hourly rate) \$100.00 for poster presentation printing; auto gas \$7.00

		Handout printed by DNP student
		\$10.00 for paper and printer toner
		Two hours of presentation time for DNP student @ \$35.00/hr = \$70.00 (in kind)

Note: Data Template designed by Kellogg Logic Model Development Guide; Outcomes retrieved from current copy of Logic Model.

Appendix E

Memorandum of Agreement

Appendix F

Cognition Function— Short Form

Please respond to each question or statement by marking one box per row.

	In the past 7 days	Never	Rarely (once)		etimes imes)	Often (once a day)	Very often (several times a day)
NQCOG6 4r1	I had to read something several times to understand it	□ 5	□ 4		3	2	1
NQCOG7 5r1	My thinking was slow	□ 5	4		3	2	1
NQCOG7 7r1	I had to work really hard to pay attention or I would make a mistake	□ 5	□ 4		□ 3	□ 2	1
NQCOG8 0r1	I had trouble concentrating	5	4		3	2	1
	How much DIFFICULTY do you con have	urrently	Nama	A 19441 -	Conservation 4	. A 1.4	Constant
			None	A little	Somewhat	t A lot	Cannot do
NQCOG2 2r1	reading and following complex instr (e.g., directions for a new medication)?		5	4	3	2	1
NQCOG2 4r1	planning for and keeping appointm are not part of your weekly routine therapy or doctor appointment, or a gathering with friends and family)?	, (e.g., a a social	5	4	3	2	1
NQCOG2 5r1	managing your time to do most of y activities?	our daily	5	□ 4	3	2	1
NQCOG 40r1	learning new tasks or instructions?.	•••••	□ 5	4	3	2	1

©2008-2013 David Cella and the PROMIS Health Organization on behalf of the National Institute for Neurological Disorders and Stroke (NINDS). Used with permission.

Positive Affect and Well-Being — Short Form

Please respond to each question or statement by marking one box per row.

	Lately	Never	Rarely	Sometimes	Often	Always
NQPPF14	I had a sense of well-being	1	2	3	4	5
NQPPF12	I felt hopeful	1	2	3	4	5
NQPPF15	My life was satisfying	1	2	3	4	5
NQPPF20	My life had purpose	1	2	3	4	5
NQPPF17	My life had meaning	П 1	2	3	4	5
NQPPF22	I felt cheerful	□ 1	2	3	4	5
NQPPF19	My life was worth living	1	2	3	4	5
NQPPF16	I had a sense of balance in my life	1	2	3	4	5
NQPPF07	Many areas of my life were interesting to me	1	2	3	4	5

@2008-2013 David Cella and the PROMIS Health Organization on behalf of the National Institute for Neurological Disorders and Stroke (NINDS). Used with permission.

Appendix H

Table 4

Project Timeline

Color Key: Light red—completed

Scholarly Project Title: Aerobic	Scholarly Project Title: Aerobic Physical Exercise Increases Health-Related Quality of Life in Older Adults							
Activity	Mo/Yr	Mo/Yr	Mo/Yr	Mo/Yr	Mo/Yr	Mo/Yr	Mo/Yr	12/17 end
Begin project planning and writing Scholarly Project paper-DNP student	5/16							
Literature review (continued through project) & timeline (Initial and review dates)—DNP student	5/ 16	9/ 16	12/16	2/17	5/17	8/17	10/17	12/17
Project outcomes and impacts-DNP student	6/ 16							
Theory of change model, theoretic framework, logic model, initial budget proposal- <i>DNP student</i>	6/ 16							

Secure community project partner/s (facility administration) –DNP student	7/16					
Decide on project survey tools (may revise) PROMIS HRQoL and cognitive surveys-DNP student	Ini- tial- 5/16			12/16 Re- view		
Start working with project mentor throughout the project- <i>Dr</i> . <i>Gallegos and DNP student</i>	5/ 16					3/18 End
Develop education session materials, brochures, fliers for project and marketing-DNP student	4-5/ 17					
Project proposal session-DNP students and Boise State University faculty	4/ 17					
Begin to secure facility for project; review budget; finalize budget and facility –DNP student, facility staff, and project partner	5/16	12/16				
IRB process—DNP student, facility administration, & IRB members Submit IRB	11/16	1/17	2/17			
Start project; participants selected and memorandum of agreement signed by all; providers permission secured for project subjects to participate or liability	5/ 17					

waiver signed; initial surveys completed; train the exercise instructor, if needed; teach initial educational class to participants and staff-DNP student, facility staff, residents, and project partners							
Meet with participants monthly to administer HRQoL survey; Last exercise session—participants to complete HRQoL survey and cognition survey; celebration at the end of the project—DNP student, residents, and project partners/staff	6/17	7/ 17	8/17	9/17	10/17	End proj- ect	
Data collected and analyzed (from –to)- DNP student and possible data analyst	11/17	12/17					
Copy editor, DNP student, and third person reader possibly engaged in final submission.	01/18						
Final project presentation-DNP student and Boise State University faculty	3/18						
Final Report submitted—DNP student and Boise State University faculty	3-4/ 18						

Appendix I

Table 5
Preliminary Budget

	Year 1	Year 2
Staff Salaries and Benefits	DNP student- 25 hrs at \$35.00/hr = \$875.00 (in kind); administrative facility staff participation in planning @ \$15.00/hr x 4 hrs = \$60.00 (in kind); \$0 for facility staff DNP student benefits @ 31.5% of invested time = \$275.00 (in kind)	DNP student @ 50 hrs @ \$35.00/hr = \$1750.00 (in kind); facility administration participation in implementation 6 hrs @ \$15.00/hour = \$90.00 (in kind); facility staff assistance in implementation = 20 hrs at \$10.00/hr = \$200.00 (in kind); facility exercise leader 20 weeks @ \$45.00/wk = \$900.00 (in kind); DNP student benefits @ 31.5% of invested time = \$551.25 (in kind)
Consultants	none	Data analyst expert-(in kind) estimating \$350.00 Actual cost = \$689.00 (16.42 hrs. x \$42/hr.) (+\$339.00)
Travel (@. 54/mile)	Auto gas for DNP student = \$7.00	Auto gas for DNP student = \$30.00 Actual mileage cost: \$369.36 (76 trips to ALF and back x 9 miles each way = 684 miles x .54/mile) (+\$339.36)
Communications (phone, postage, etc.)	DNP student cell phone cost \$15.00	DNP student cell phone cost \$35.00

Printing	\$10.00 by DNP student (Toner and paper)	Poster presentation and handout = \$100.00; printing by DNP student \$65.00 (in kind)
Printed materials	NIH cognitive and HRQoL surveys-free online	NIH cognitive and HRQoL surveys-free online; weekly exercise logs (included in printing costs); Benefits of Physical Activity poster
Supplies and equipment	none	Fluids for residents \$0 (in kind at facility)
Gift cards/celebration costs	none	Estimating \$575.00 Actual cost: \$86.85 3 gift cards x 5 months = \$434.25 \$79.40 celebration party Total = \$513.65 (-\$61.35)
Marketing costs for project	none	\$300.00 estimated (In kind through facility: \$60.00/mo.)
External Project Funding	none	none
Total:	\$1,242.00	Est. total cost: \$4,946.25 Actual cost: 5,563.26 (\$617.01 over budget)

Note. This preliminary budget is subject to change throughout the project planning and implementation time. After project completion, data analyst, mileage, and project celebrations costs were added to the table as *actual costs*, which changed the overall project cost

Appendix J

Table 6

3-5 Year Budget

ALF Walking Program for 25 residents Revenues	Project Budget	Budget Year	Budget Year 3	Budget Year 4	Budget Year 5	Rationale
	Year 1	2				
This is a subsidized program with no anticipated organizational revenue [current assets] DNP in kind contribution	\$1,250.00	\$5,000.00	\$5,000.00	\$5,000.00	\$5,000.00	Years 2-5 Grant funding possibly from National Institutes of Health or Institutes of Healthcare Improvement
Total:	\$1,250.00	\$5,000.00	\$5,000.00	\$5,000.00	\$5,000.00	
Expenses						
Administrative and project management salaries (in kind)	\$4501.25	\$1,050.00	\$1,102.00	\$1,157.00	\$1,214.00	Minus DNP salary and benefits years 2-5 ; with 5% pay raise each year [moderate inflation rate

						included plus 2.8% conservative rate included] (Statista, 2016)
Other personnel (in kind)	Project (20 hrs. total) \$200.00	\$1,040.00	\$1,092.00	\$1,148.00	\$1,205.00	Post-project- years 2-5 1 hr. 2 x wk annually 5% raise each year of facility staff [moderate inflation rate plus 2.8% conservative rate included] (Statista, 2016)
Walking program supplies for residents	\$525.00	\$1,105.00	\$1,163.00	\$1,223.90	\$1,287.85	Toner cartridges Copy paper Gift cards (3 residents per month) celebration party, and fluids [moderate inflation rate plus 2.8% conservative rate included] (Statista, 2016)

DNP Cell phone cost	\$50.00	\$52.50	0	0	0	X 1 month of air time total annually w/ 5% inflation rate included for year 2 [moderate inflation rate plus 2.8% conservative rate included]
						(Statista, 2016)
DNP travel costs	\$369.36	0	0	0	0	\$0.54/mile 5% inflation rate included for year 2 [moderate inflation rate plus 2.8% conservative rate included] (Statista, 2016)
Initial Project Marketing (in kind) Biannual marketing	\$300.00	\$600.00	\$630.00	\$661.50	\$694.57	Facility cost 5% inflation rate years 2-5 included [moderate inflation rate plus 2.8% conservative rate included] (Statista, 2016)

Consultants	\$689.00	0	0	0	0	Project only
DNP Professional	\$100.00	0	0	0	0	Project only
Poster Board printing						
cost						
Total:	\$6,734.61	\$3,847.50	\$3.987.00	\$4,190.40	\$4,401.42	
	-\$5,563.26					
	(project costs +					
	in kind)					
	\$1171.35					
Operating Income	\$1,250.00	\$5,000.00	\$5,000.00	\$5,000.00	\$5,000.00	
(Revenue minus	-\$1,171.00	-\$3,847.5	-\$3,987.00	-\$4,190.40	-\$4,401.42	
actual expense cost)	\$78.65	\$1,152.5	\$1,013.00	\$809.60	\$598.58	

Note. Table format adapted from Boise State University NURS 622 course, 2016. With the new Presidential Administration beginning January 2017, it is uncertain how economic factors, oil prices, and commodities will affect the current national average inflation rate of 2.2%, which occurred over the past five years. Taking a very conservative approach, a 5% inflation rate was added in the appropriate areas over the next two to five years. The national inflation rates were taken from Statista (2016), *Projected Annual Inflation Rate in the United States 2010-2020*, Statista web site: https://www.statista.com/statistics/244983/projected-inflation-rate-in-the-united-states/

Appendix K

Table 7
Statement of Operations Table

Statement of Operations	
Project Budget Year 1 of Project Implementation	
Revenues	
No organizational revenue (current assets)	\$0.00
DNP contribution (in kind)	\$1,250.00
Salaries and benefits (DNP, Administrative, and facility staff in kind)	\$4,701.25
Project supplies costs (fluids, toner, paper, in kind)	\$90.75
Marketing Costs – (through facility in kind)	\$300.00
Consultant fee (in kind)	\$689.00
	Total: \$7,031.00
Expenses	
DNP Travel	\$369.36
DNP Communication	\$50.00
DNP Project supply costs	\$513.65
	Total: \$933.01
Operating Income	Total: \$6,097.99
Revenues minus expenses	

Note. Table format adapted from Boise State University NURS 622 course, 2016.

Appendix L

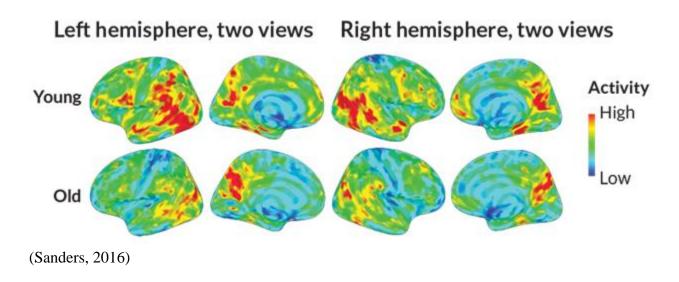
Appendix L
Attendance Sheet for Education Session
Education Session Attendance Sheet for Benefits of Aerobic Exercise, Neuro-QOL Survey
Tools, and Walking Log

Appendix M

Educational Handout

Boise State University Doctor of Nursing Practice Scholarly Project

By


Patricia L. Parker, MSN/Ed., RN, Doctoral Student

Aerobic Physical Exercise Increases Health-Related Quality of Life in Older Adults

(East Renfrewshire Council, n.d.)

FACTS ABOUT OUR BRAIN IN THE AGING PROCESS

- In our late 20s, the brain actually starts to decrease in size and continues to shrink throughout life.
- > By the time we reach our 40s, we start to notice memory lapses, e.g. why did I go into this room?, where did I put my car keys?
- > Nerve cells in our brains are shrinking and the *firing ability* (or neuro-synaptic activity) of these cells decrease
- ➤ Blood flow to the brain decreases in older adults, decreasing the oxygen flow to the brain (American Psychological Association, 2006).
- ➤ All of these factors lead to the brain working less efficiently and cause memory loss (mild cognitive impairments and dementia) (Gorelick et al., 2011).

> Memory loss causes disruption in daily activities, decreased ability to enjoy a productive lifestyle, and impairs health-related quality of life (Department of Health and Human Services, 2010)!

Statistical Relevance of Brain Aging

Older Adult Population Statistics:

- * Worldwide, during the years 2000-2030, persons over 65 years of age will increase from 550 million to 973 million, from 6.9% to 12% respectively (Centers for Disease Control and Prevention [CDC], 2003).
- * Statistics show that in the United States (U. S.), the older adult population over the age of 65 will increase from 12.4% (35 million) in 2000 to 19.6% (71 million) in 2030, which is higher than global increases (CDC, 2003).
- * In 2014, Citrus County, Fl. had one of the highest adult populations over the age of 65 in the state of Florida, numbering approximately 46,588 males and females, including all races (Florida Community Health Assessment Resource Tool Set, 2014).
- * Life expectancy has also significantly increased in the past 60 years from an average of 58 years for men and 62 years for women to 76-80 years of age, with women outliving men by an average of seven years (CDC, 2003; National Institute of Aging [NIA], 2006).

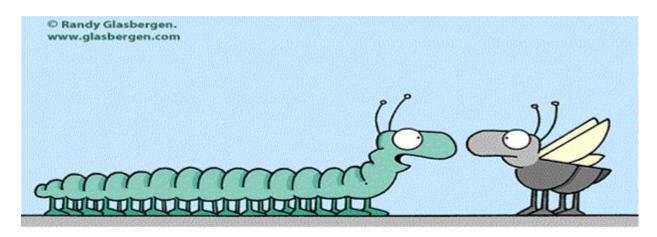
- * People who are over 65 years of age often experience health issues including physical and cognitive decline. Cognitive decline includes diagnoses such as Alzheimer's disease (AD), dementia, and mild cognitive impairment (MCI). Over the age of 65, the prevalence of Alzheimer's disease (AD) doubles every 5 years (CDC, 2011).
- * The older adult will experience frequent episodes of memory loss, especially in executive functions of working memory, attention, and processing speed (Ahlskog, Geda, Graff-Radford, & Petersen, 2011; Richie & Tuokko, 2010). Executive functions regulate higher functioning abilities, such as "...attention, memory, and motor skills" (Encyclopedia of Mental Disorders, 2016, para 2). Decreased executive functioning abilities will negatively affect a person's HRQoL.
- * In 2011, 12.2% to 15.7% of persons over the age of 60 in Florida reported increased memory loss or confusion that occurred more often or was getting worse in the past 12 months (CDC, 2011). Additionally, research has shown older adults with physical disabilities present with an increased rate of cognitive decline (Rajan, Hebert, Scherr, Mendes de Leon, & Evans, 2013).
- * Cognitive impairment, in older adults over the age of 65, has significantly increased and is a major concern for the health system with increased burden placed on the individual, family/caregivers, and health care system (Davis, Hsuing, & Liu-Ambrose, 2011).

WHAT CAN WE DO TO INCREASE BRAIN ACTIVITY, COMBAT COGNITIVE IMPAIRMENTS, AND INCREASE QUALITY OF LIFE?

Aerobic physical activity provides the brain with a neuroprotective effect:

- * increases oxygen delivery to the brain
- * increases *firing* of the neurons in the brain- improves memory, attention span, motor skills
- * decreases risk of vascular problems in the brain
- * enhances mental capabilities

Additional benefits:

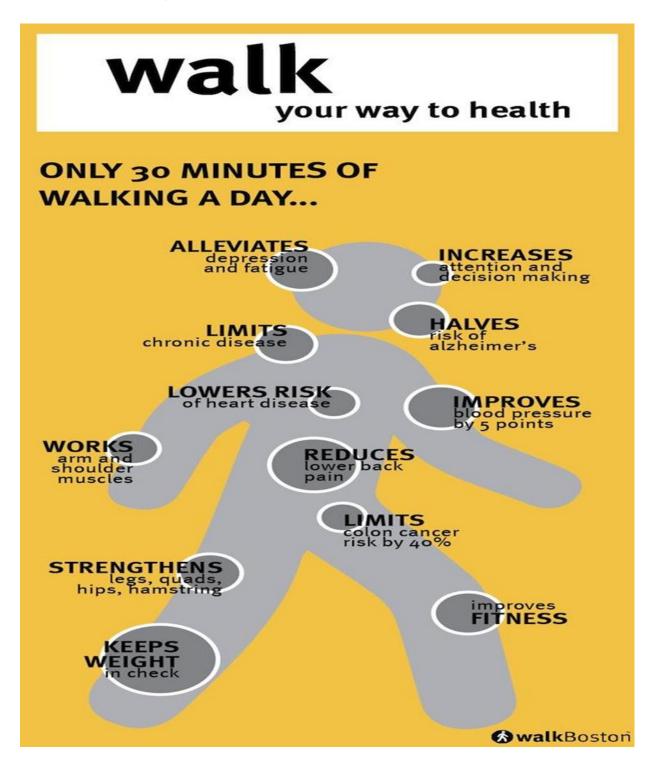

- * enhances emotional well-being
- * increases support systems
- * decreases physical and mental stress
- * promotes physical health by decreasing the chance of developing other age-related diseases (osteoarthritis, cardiovascular diseases, & hormone deficiencies) (Ahlskog, Geda, Graff-Radford, & Petersen, 2011; Bielak, 2010).

What is the best way to enjoy HEALTHIER AGING?

WE HAVE TO GET MOVING ON A REGULAR BASIS!

Protect your body and your brain!

JOIN OUR WALKING PROGRAM!


"I tried all the fitness fads, but my doctor was right all along—walking is still the best exercise."

(Glasbergen, 2011)

- * Present participation letter and attendance sheet
- * Present Neuro-QOL survey forms
- * Present walking log
- * Speak to project details, protection of human rights, and data collection/analysis
- * Motivational rewards throughout project and ending celebration

Appendix N

Benefits of Walking Educational Poster

Appendix O

Original Internal Review Board Notification of Approval

Date: March 16, 2017

To: Cara Gallegos cc: Patricia Parker

From: Social & Behavioral Institutional Review Board (SB-IRB)

c/o Office of Research Compliance (ORC)

Subject: SB-IRB Notification of Approval - Original - 187-SB17-041

Aerobic Physical Exercise Increases Health-Related Quality of Life in Older Adults

The Boise State University IRB has approved your protocol submission Vour protocol is in compliance with this institution's Federal Wide Assurance (#0000097) and the DHHS Regulations for the Protection of Human Subjects (45 CFR 46).

 Protocol Number:
 187-SB17-041
 Received:
 2/26/2017
 Review:
 Expedited

 Expires:
 3/15/2018
 Approved:
 3/16/2017
 Category:
 7

Your approved protocol is effective until 3/15/2018_To remain open, your protocol must be renewed on an annual basis and cannot be renewed beyond 3/15/2020_For the activities to continue beyond 3/15/2020_a new protocol application must be submitted.

ORC will notify you of the protocol's upcoming expiration roughly 30 days prior to 3/15/2018. You, as the PI, have the primary responsibility to ensure any forms, are submitted in a timely manner for the approved activities to continue. If the protocol is not renewed before 3/15/2018, the protocol will be closed. If you wish to continue the activities after the protocol is closed, you must submit a new protocol application for SB-IRB review and approval.

You must notify the SB-IRB of any changes to your approved protocol and the committee must review and approve these changes prior to their commencement. You should also notify the committee if your activities are complete or discontinued.

Current forms are available on the ORC website at http://goo.gl/D2FYTV

Please direct any questions or concerns to ORC at 426-5401 or humansubjects@boisestate.edu.__

Thank you and good luck with your research.

Appendix P

Cover Letter of Intent

Aerobic Physical Exercise Increases the Health-Related Quality of Life in Older
Adults

Patricia Parker, MSN, RN, a graduate student at Boise State University, is conducting a Scholarly Project in the Doctor of Nursing Practice Program. The purpose of the project is to evaluate the benefits of aerobic exercise, specifically a walking program instituted at Cedar Creek Assisted Living Facility, on the health and well-being of older adults. You are being asked to engage in the walking program, which consists of walking routinely three days a week for the next few months. During this time, you will be asked to fill out two survey forms at specific times throughout the project. Additionally, you will be asked to complete a weekly walking log.

Participation is voluntary. Each survey will take less than three to four minutes to complete, as well as the weekly walking log. You must be at least 60 years old to take the surveys.

This project involves no foreseeable serious risks. We ask that you try to answer all the questions on the surveys. If there are any questions that make you uncomfortable or that you would prefer to skip, please leave the answer blank. Your responses are anonymous and data collected will be kept strictly confidential.

If you have any questions or concerns, feel free to contact Patricia or her faculty mentor. Dr. Cara Gallegos, PhD, RN at the following phone and email addresses:

Patricia Parker, Graduate Student Dr. Cara Gallegos, Assistant Professor School of Nursing at Boise State University School of Nursing at Boise State

University

Phone: (352) 212-7029 Phone: (208) 995-6633

Email: patparker965@u.boisestate.edu Email: caragallegos@boisestate.edu

If you have questions about your rights as a Scholarly Project participant, you may contact the Boise State University Institutional Review Board (IRB), which is concerned with the protection of volunteers in research and Scholarly Projects. You may reach the board office between 8:00 am and 5:00 pm (Mountain Standard Time), Monday through Friday, by calling (208) 426-5401 or by writing: Institutional Review Board, Office of Research Compliance, Boise State University, 1910 University Drive, Boise, ID 83725-1138.

If you would prefer not to volunteer to participate in this project, please do not fill out a survey.

If you consent to participate in the project, please complete the initial surveys.

Thank you for your interest in this Scholarly Project!

Sincerely,

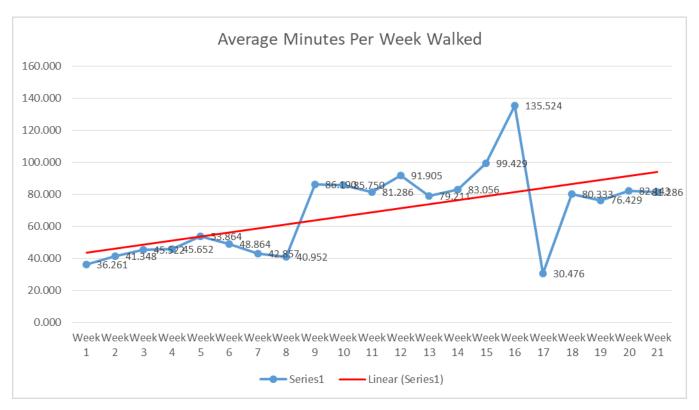
Patricia Parker, MSN/Ed., RN

Boise State University Graduate Student

BSU Internal Review Board Protocol Approval Number: 187-SB17-041

Appendix Q

Weekly Walking Log



Weekly Walking Log Month:

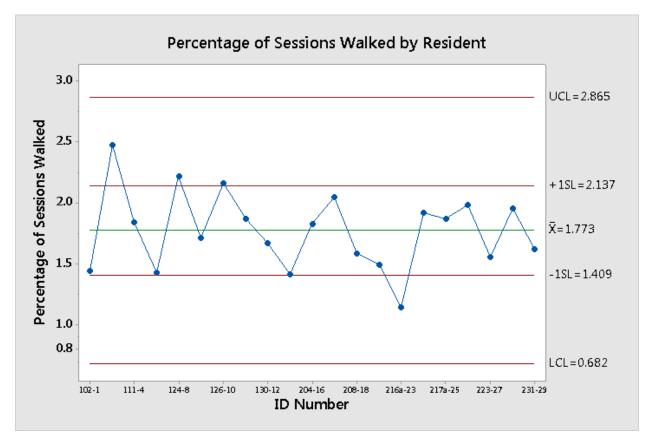
Record the week and check the amount of minutes you walked each day: If you are certain you walked 8 minutes one day, just write this in the square on the day.

Monday Sunday Tuesday Wednesday Thursday Friday Saturday Date: Date: Date: Date: Date: Date: Date: 5 min. 10 min 15 min 20 min 25 min 30 min

 $\label{eq:Appendix R} Appendix \ R$ Average Walking Minutes Per Week of All Residents in May through September

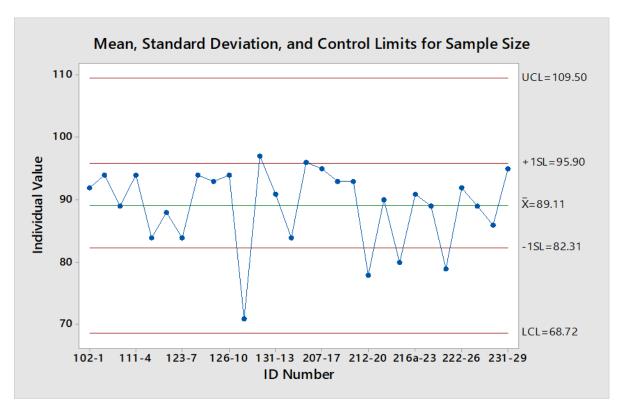
Key: Series indicates the mean minutes walked by all residents in the applicable week. *Linear* indicates the trending of all walkers' minutes over the twenty-one weeks in May through September 2017.

Appendix S


Table 8

Number of Walking Sessions for each Resident

Number of Walking Se	
Throughout the Project	1 0
0.4	80% of Exercise Sessions
91	144%
156	248%
116	184%
90	143%
140	222%
108	171%
136	216%
118	187%
105	167%
89	141%
115	183%
129	205%
100	159%
18 (lost th	e 29%
data)	
94	149%
72	114%
121	192%
118	187%
125	198%
98	156%
123	195%
102	162%
Final project resident of	count > 50 sessions documented =
=22	21
	< 50 sessions documented
	=1
	95% exceeded 80% of
	sessions


Note: The outcome achievement level was 75% of the residents would complete 50 out of 63 walking sessions throughout the project (3 times per week for 21 weeks).

Appendix T Percentage of Walking Sessions by Resident

Note: Mean sessions walked by all residents = 177% (X = 1.773) of the outcome of walking 50 out of 63 sessions throughout the project or 80% (0.8 on chart).

Appendix U
Sample Size Age Mean and Standard Deviation for Each Resident

Appendix V

Table 9

Cognitive Short Form Pre/Post Project Outcome Results

Pre-Project	Post-Project	10% Outcome	Outcome met?
results	results	number	Yes/ No
		indicator	
		needed	
4.500	4.750	4.950	No
3.250	4.625	3.575	Yes
3.500	4.750	3.850	Yes
2.875	4.750	3.163	Yes
3.375	4.875	3.713	Yes
3.000	4.000	3.300	Yes
3.750	4.625	4.125	Yes
2.125	4.000	2.338	Yes
2.625	5.000	2.888	Yes
2.375	4.000	2.613	Yes
3.500	4.875	3.850	Yes
4.250	5.000	4.675	Yes
2.250	4.250	2.475	Yes
4.250	5.000	4.675	Yes
3.750	5.000	4.125	Yes
4.250	5.000	4.675	Yes
4.250	5.000	4.675	Yes
2.375	4.750	2.613	Yes
4.000	4.875	4.400	Yes
4.000	5.000	4.400	Yes
3.625	5.000	3.988	Yes
2.500	5.000	2.750	Yes

No's = 1; Yes's = 21 Total % = 95%

Note: Ninety-five percent of the residents who finished the project met the estimated level of achievement for the 10% increase in cognitive factors.

Table 10

Appendix W

Comparison of Baseline and Post-Test Cognitive Paired T-Test Scores

		Basel	ine		Post Tes	t	T Value	P Value
Survey	N	Mean	95% CI	N	Mean	95% CI		
Variable		(SD)			(SD)			
Understand	28	2.82	(2.412,	22	4.591	(-2.263,	-7.22	0.00
		(1.06)	3.231)		(0.666)	-1.276)		
Thinking	28	3.36	(3.020,	22	4.455	(-1.593,	-4.46	0.00
		(0.87)	3.694)		(0.858)	-0.602)		
Attention	28	3.43	(3.088,	22	4.636	(-1.645,	-5.56	0.00
		(0.88)	3769)		(0.658)	-0.770)		
Concentrating	28	3.36	(3.004,	22	4.682	(-1.768,	-6.01	0.00
		(0.91)	3.711)		(0.646)	-0.881)		
Instructions	28	3.50	(3.034,	22	4.955	(-1.928,	-6.28	0.00
		(1.20)	3.966)		(0.213)	-0.981)		
Planning	28	3.57	(3.072,	22	4.909	(-1.851,	-5.32	0.00
		(1.29)	4.071)		(0.294)	-0.824)		
Managing	28	3.96	(3.639,	22	Error-all			
		(0.84)	4.289)		values in			
					column are			
					identical			
Learning	28	3.57	(3.231,	22	4.636	(-1.482,	-5.14	0.00
		(0.88)	3.912)		(0.581)	-0.648)		

Appendix X

Table 11

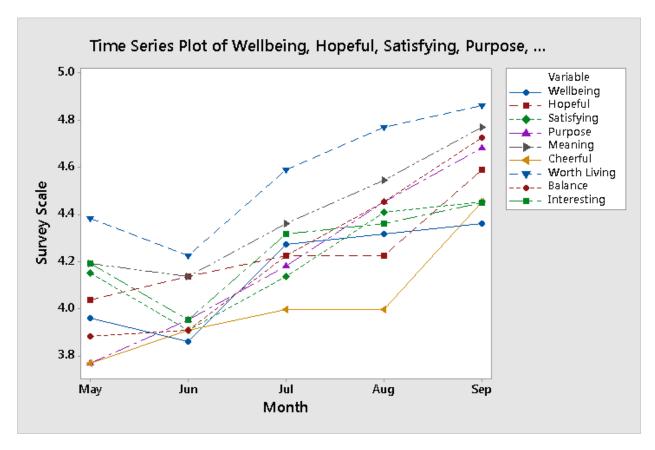
Positive Affect/Well-being Variable Monthly Mean, Correlation Coefficient, and P value

Month	Well- being	Hope- ful	Satisfy- ing	Purpose	Meaning	Cheerful	Worth Living	Balance	Inter- esting
				2.760	4.402	2.760		2.005	
May	3.962	4.038	4.154	3.769	4.192	3.769	4.385	3.885	4.192
June	3.864	4.136	3.909	3.955	4.136	3.909	4.227	3.909	3.955
July	4.273	4.227	4.136	4.182	4.364	4.000	4.591	4.227	4.318
August	4.318	4.227	4.409	4.455	4.545	4.000	4.773	4.455	4.364
Septem- ber	4.364	4.591	4.455	4.682	4.773	4.455	4.864	4.727	4.455
Correla- tion Coeffi- cient	0.844	0.364	0.603	0.687	0.606	0.344	0.746	0.668	0.644
P-Value	0.072	0.547	0.281	0.200	0.278	0.57	0.148	0.218	0.24

Note: The Pearson's correlation coefficient is the strength of the relationship between the mean minutes walked each month and the monthly mean variable results of the Positive Affect/Well-Being Short Form survey. The best results would be +1. The P value represents statistical significance between the two groups of data.

Appendix Y

Table 12


Positive Affect/Well-Being Survey Results for Each Resident for Five Months

Initial	May	June	July	August	September	10%	Outcome
results	results	results	results	results	results	Outcome	met.
						number	Yes/no
						needed	
4.667	5.000	4.889	4.889	5.000	4.778	5.133	No
4.000	3.556	4.444	4.000	4.111	4.222	4.400	No
4.111	3.667	3.778	3.667	4.111	4.667	4.522	Yes
2.889	3.778	2.778	3.444	4.333	4.333	3.178	Yes
2.778	4.556	4.889	5.000	5.000	5.000	3.056	Yes
2.556	3.000	3.222	4.111	3.667	4.667	2.811	Yes
2.333	4.556	3.556	4.444	4.222	4.778	2.567	Yes
2.111	4.000	3.889	4.111	4.444	4.667	2.322	Yes
2.444	4.778	5.000	5.000	5.000	5.000	2.689	Yes
2.778	5.000	4.556	4.778	5.000	4.556	3.056	Yes
4.222	4.222	5.000	5.000	5.000	5.000	4.644	Yes
3.889	3.667	3.333	3.556	4.111	4.333	4.278	Yes
2.778	3.889	4.000	4.667	4.667	4.778	3.056	Yes
4.667	0.000	4.333	4.667	4.556	4.667	5.133	No
3.444	2.222	3.111	4.333	4.333	4.000	3.789	Yes
4.556	5.000	5.000	5.000	5.000	5.000	5.011	No
4.111	4.444	4.778	4.667	4.222	4.444	4.522	No
2.444	1.556	1.889	1.667	3.333	3.667	2.689	Yes
3.556	5.000	4.556	5.000	5.000	5.000	3.911	Yes
3.889	3.889	2.556	3.333	3.667	4.222	4.278	No
3.778	4.889	4.111	3.889	4.000	4.667	4.156	Yes
3.333	4.222	4.333	4.444	3.889	4.667	3.667	Yes
Grp. M							
3.424	3.859	4.000	4.258	4.394	4.596	3.767	Yes
<u> </u>						Final	6 = No
						resident	16 = yes
						count =	73%
						22	

Note: Grp. M stands for the Mean data point of all residents at each time interval.

Appendix Z

Monthly Time Series Plot of Positive Affect/Well-Being Survey Variables

Note: Months are May through September 2017

Appendix AA

Outcome Evaluation Table

Outcome	Outcome Instrument Data	Analysis Goal	Analytic Technique
2. Seventy-five percent (75%) of the facility staff attended the education session by 5/2017.	Attendance sheet for education session.	Describe and summarize the number of attendees listed on the attendance sheet.	Descriptive statistics: count and percentages
3. Fifty percent (50%) of ALF residents attended the education session by 5/2017.	Attendance sheet for education session.	Describe and summarize the number of attendees listed on the attendance sheet.	Descriptive statistics: count and percentages
4. Ninety percent (90%) of volunteer residents completed the two baseline NIH Survey tools by 5/2017.	* Neuro-QOL Short Form Cognitive Function survey—8 items. * Neuro-QOL Short Form Positive affect and well-being survey—9 items (HealthMeasures, 2016). Forms have established reliability and validity over the past decade.	*Count and percentages of the number of residents completing the two baseline surveys prior to beginning the project.	Descriptive statistics: count and percentages
5. Enrolled 20 ALF residents over the age of 60, who document having cognitive impairments and decreased HRQoL factors on the NIH surveys by 5/2017.	* Neuro-QOL Short Form Cognitive Function survey—8 items. * Neuro-QOL Short Form Positive affect and well-being survey—9 items (HealthMeasures, 2016).	Describe and summarize the residents' responses on their current positive affect/ well-being and cognitive factors prior to beginning the project.	Descriptive statistics: count and percentages

6. Eighty percent (80%) of volunteer residents were educated on NIH PROMIS survey tools (Positive Affect/Well-being and Cognitive Short Form) 5/2017 project start.	Attendance sheet for education session	Describe and summarize the number of attendees listed on the attendance sheet.	Descriptive statistics: count and percentages
7. Seventy-five (75%) of residents are educated on how to complete the weekly walking log before program start 5/2017.	Attendance sheet for education session.	Describe and summarize the number of attendees listed on the attendance sheet.	Descriptive statistics: count and percentages
8. Ninety percent (90%) of volunteer staff were educated on how to complete the weekly exercise log before program start 5/2017.	Attendance sheet for education session.	Describe and summarize the number of attendees listed on the attendance sheet.	Descriptive statistics: count and percentages
9. Ninety percent (90%) of residents completed all 8 survey tools through program by 10/2017.	*Neuro-QOL Short Form Cognitive Function survey—8 items. * Neuro-QOL Short Form Positive affect and well-being survey—9 items (HealthMeasures, 2016)	Describe and summarize the residents' responses on their positive affect and well-being and cognitive surveys throughout the project.	Descriptive statistics: count and percentages
10. Fifty percent (50%) of the residents reported a 10% increase in HRQoL on the NIH survey by 10/2017.	*National Institutes of Health endorsed HealthMeasures Neuro- QOL Short Form Positive affect and well-being survey—9 items (HealthMeasures, 2016).	Describe and summarize the residents' responses on their positive affect and well-being surveys throughout the project	Descriptive statistics: N, M, & SD Inferential statistics: Pearson's correlation coefficient over time
11. Fifty percent (50%) percent of the residents reported a 10% increase in cognitive functioning on the NIH	National Institutes of Health endorsed HealthMeasures Neuro- QOL Short Form Cognitive	Describe and summarize the residents' responses on their	Descriptive statistics: N, M, & SD

cognitive survey by end of project 10/2017.	Function survey—8 items (HealthMeasures, 2016).	cognitive function surveys throughout the project.	Inferential statistics: Paired T- test; baseline and
			project end.
12. Seventy-five percent (75%) of residents completed 80% of the walking sessions (50 out of 63 sessions) throughout the project implementation period (5/2017 to 10/2017).	Weekly walking log. The resident will fill in the number of minutes walked on any given day of the week.	Describe and summarize the responses on the residents' weekly exercise log at the end of the project.	Descriptive statistics: count and percentages
13. Scholarly Project abstract submitted to professional conference by 6//2018.	Submit abstract for presentation consideration at Florida Nurse Association (FNA) conference.	To be accepted to present a poster presentation on Scholarly Project.	Acceptance to present poster presentation at FNA conference in 7/2018

Note. Table format adapted from Boise State University NURS 618, 2016. Reference-HealthMeasures. (2016). *About us.* Retrieved from http://www.healthmeasures.net/resource-center/about-us