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• Parameters and potentials for interatomic interactions were taken from previous 
simulations of PDMS2, and from other lists of potentials

• PDMS was constructed to be of chains twenty repeating cells long (i.e. a 20-mer), 
with the main volume being comprised of these chains being replicated 80 times

• Ni-Mn-Ga was constructed using its Martensitic unit cell (Figure 5) and replicating 
the unit cell ten times in both X and Y, with a height, Z, of 5 Angstroms

• Simulations of the materials required the use of the National Center for 
Supercomputing Applications’ Blue Waters supercomputer

• HOOMD-blue, a molecular simulation toolkit, was utilized to equilibrate the 
materials as well as to observe their interactions 

• All scripts were written by Jaime Guevara

• The PDMS particles at room temperature seem to attract each other to 
contract into a tighter version of our unit
• Makes sense that a hardening gel would contract

• By examining the outputs, and graphs (Figure 6), there is an initial peak 
(not shown) that indicates a drastic increase in energy, which comes 
from needing an initial surge of energy

• The volume of PDMS was simulated at 294.7 K, 884.15 K, and 1768.2 K
• Next steps will be to run the PDMS side-by-side with the alloy
• Efficiency of the system is ~3500 TPS (time-steps per second) which 

equilibrates in 45 minutes of run-time

III. Results

• So far the PDMS stabilized energy shows that our use of the HOOMD 
toolkit and the Blue Waters system can represent the materials for 
understanding pump/seal interfaces

• Ni-Mn-Ga surfaces simulated in contact with the PDMS is the next step 
to calculating binding energies

• Using GPUs in parallel cuts down the time needed to process large 
volumes of data that would otherwise be prohibitive if limited to CPU 
processing

IV. Conclusions and Follow-ups

• Ni-Mn-Ga can deform in the presence of a magnetic field, and still 
return to its original state

• Due to its deformation properties Ni-Mn-Ga has been used to 
make micropumps here at Boise State University

• Since the Ni-Mn-Ga plays all the roles needed for the micropump 
to function, typical O-rings can’t be used to provide a seal to 
maintain proper pressure

• Polydimethylsiloxane (PDMS), has been found to be a good 
sealant solution

• Understanding how the polymer/metal interface sticks and 
delaminates is central for engineering better pumps. We use 
simulations here to improve this understanding

PDMS sealant

Figure 1. Ni-Mn-Ga Micropump showing MSMA element and PDMS sealant placement

Figure 2. PDMS 20-mer (20 
repeating cell) chain, and its 
formula2. The longer chain 
configuration provides a more 
rigid PDMS

I. Introduction

Sources: 1. Frischknecht, A. L., & Curro, J. G. (2003). Improved United Atom Force Field for Poly(dimethylsiloxane). Macromolecules, 36(6), 2122-2129. 
2. Pdms: A Review. https://www.elveflow.com/microfluidic-tutorials/microfluidic-reviews-and-tutorials/the-poly-di-methyl-siloxane-pdms-and-microfluidics/
3. Tamai, Y., Tanaka, H., & Nakanishi, K. (1994). Molecular Simulation of Permeation of Small Penetrants through Membranes. 1. Diffusion Coefficients. Macromolecules,

27(16), 4498-4508.

II. Methods

Figure 3. Volume of 80 
20-mer chains of PDMS 
in its initial time step 
(top). Same volume in its 
final time step (right) at a 
temperature of 294.7 K 
(~21.7 Celsius. Total 
number of atoms: 7120)

Table 1: Potentials for PDMS 
bonds, angles, dihedrals, and 
atom pairs used in simulations

Figure 4. Crystal slab of Ni-Mn-Ga

Figure 6. Difference in potential 
energy stabilization in PDMS 
based on temperature: 294.7K 
(top), 884.15K (bottom). Time 
step Range: 2000 – 1e7

Figure 5. Unit cell of Ni-Mn-Ga 
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