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Abstract 
As AI becomes more ubiquitous there is increasing interest 
in computers being able to provide explanations for their 
conclusions. This paper proposes exploring the relationship 
between the structure of a problem and its explanation. The 
nature of this challenge is introduced through a series of 
simple constraint satisfaction problems.    

 Introduction   
As AI becomes more ubiquitous there is increasing interest 
in computers being able to provide explanations for their 
conclusions (Aha et al. 2018; Magazenni et al. 2018), and 
the European GPDR provides special impetus (Goodman 
and Flaxmanar 2016). Many years ago I began exploring 
the relationship between the structure of a problem and the 
complexity of its solution (Freuder 1982). This paper pro-
poses exploring the relationship between the structure of a 
problem and its explanation. The nature of this challenge is 
introduced through a series of simple constraint satisfac-
tion problems.  

A constraint satisfaction problem (CSP) involves choos-
ing a value for each problem variable, subject to re-
strictions (constraints) on allowable combinations of val-
ues. CSPs have many uses in AI and in real-world applica-
tions. In fact, in an earlier AAAI Senior Track paper I ar-
gued that constraints can serve as a unifying force in AI 
(Freuder 2006).  

In constraint satisfaction, on the one hand we are fortu-
nate in that an explanation for a successful solution is very 
straightforward: “see, the constraints are satisfied”. 
(Though one may want a further explanation as to how the 
solution was obtained, or a characterization of a set of so-
lutions). However, when a constraint satisfaction problem 
is unsolvable, explanations are difficult, as there can be an 
exponential number of reasons for failure, corresponding to 
every way that the constraints cannot be satisfied, and there 
can be many different routes to arriving at the conclusion 
that satisfaction is impossible. To misquote Tolstoy: Solv-
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able CSPs are all alike; every unsolvable CSP 
is unsolvable in its own way.  

Thus the primary focus here is on explaining failure. A 
number of approaches have been taken to providing expla-
nations for constraint satisfaction failure. We restrict our-
selves here to efforts to provide explanations to users as 
opposed to explanations intended to make algorithms more 
efficient or to aid programmers (Freuder 2017). Given the 
exponential threat, and to address specific needs, these 
efforts generally start with an abstracted or higher-level 
form of explanation, e.g. sets of unsatisfiable constraints, 
and then quickly limit their focus, e.g. to minimal sets of 
unsatisfiable constraints.  

The position taken here is to start with truly complete 
explanations (Freuder 2018) and abstract and limit from 
there. The approach taken here is straightforward, and at 
least at this point, not very deep or technical; but one that, 
perhaps for that reason, may be well-suited to the goal of 
providing a high-level “big picture” of the structure of the 
problem, in a form readily meaningful to a human user. 
The hope is that this approach may, as well, lead to general 
insights into the structure of constraint satisfaction prob-
lems.   

Complete 
A CSP can be represented by a constraint network, with a 
node for each variable, each with a set of possible values, 
and edges (or more generally hyperedges) representing 
constraints. We will use the problem represented by the 
following constraint network as an initial example. It rep-
resents a simple, unsolvable “coloring problem”. The prob-
lem is to choose a color (r)ed or (b)lue for each node (X, 
Y, Z) such that any two nodes connected by a constraint 
(A, B, or C) have different colors. Each constraint is a “not 
equals” constraint.  
 



 
 
Of course, this is an unsolvable problem. Just as the obvi-
ous way to “completely explain” a solution is simply to 
point at the constraints and say “see they are all satisfied”, 
the obvious way to provide a complete explanation for 
failure is to list all the possible instantiations, assignments 
of values to variables, and point out for each the con-
straints that are not satisfied.  

There are 8 possible assignments of values red or blue to 
the variables X, Y, and Z in our example, none of which 
satisfy all the constraints. Each of these is listed in the table 
below, along with the set of constraints that the assignment 
does not satisfy. E.g. (r b r) {B} indicates that assigning 
red to X, blue to Y and red to Z violates just constraint B.  

   
(r r r) {A B C} (r r b) {A} 
(r b r) {B} (r b b) {C} 
(b r r) {C} (b r b) {B} 
(b b r) {A} (b b b) {A B C} 

 

Scalability 
The reader may be immediately concerned that listing all 
the possible assignments to obtain a complete explanation 
will not be an approach that scales well. Research in con-
straint programming on explanation has understandably 
grappled with scaling issues. Abstractions and limitations 
derived from complete explanations, and associated visual-
ization tools, may address scaling concerns. Clever algo-
rithms or sampling methods may reduce effort. We can 
seek to take advantage of symmetry and specialized struc-
ture. Most importantly, relationships we observe, prove, or 
mine with machine learning methods, between problem 
structure and explanation structure may permit us to make 
at least approximate predictions or generalizations without 
large scale computational effort.   

If a large effort is still required, an initial off-line effort 
may be amortized by its use for repeated, efficient on-line 
queries. However, our presumption is also that, as AI be-
comes increasingly pervasive in everyday life, attention 
will shift to some degree to smaller scale problems where 
the issue is not so much how to minimize explanation size, 
as how to maximize explanation utility, and the need may 
be less for scalable algorithms and more for effective hu-
man-computer interfaces.  

Abstraction 
Complete explanations may be useful in themselves, e.g. 
for machine learning purposes, but human users will gen-
erally appreciate higher level views of the problem “land-
scape”. We can look for, and automate extraction of, pat-
terns, abstractions, properties of the complete solution set. 

We focus here on the sets of constraints that are violated 
by each instantiation.  The constraint violations in our ex-
ample’s complete explanation can be summarized by the 
set: 
 

{{A} {A} {B} {B} {C} {C} {A B C} {A B C}} 
 

where each of the elements corresponds to the set of con-
straints violated by an assignment.  

We have “abstracted out” some information here. This 
says that there are two assignments that just violate con-
straint A, but it does not specify which they are (though 
this information might be “attached” to be pulled up when 
asked for). 
 
This can be rewritten as: 
 

2{A} U 2{B} U 2{C} U 2{A B C} 
 
and then as: 

2([C]1 U {C}) 
 

where [S]k is the set of all cardinality k subsets of S, C is 
the set of all constraints, and nS denotes a set containing n 
copies of every member of S.  

While removing all constraints is, of course, sufficient to 
allow any solution, we are indicating here that it is only 
necessary for two of the solutions.  

We could limit such a representation further, e.g. by re-
ducing just to a term that represents removing the fewest 
constraints or one that represents the most partial solutions. 
Such limitations could simplify the generation or handling 
of the explanation.  

There is, of course, a long history of work on “partial 
constraint satisfaction” (Freuder and Wallace 1992), but 
this generally focuses on finding an instantiation that satis-
fies a maximal number of constraints. In some applica-
tions, users might want a broader picture of their options. 
We might want to define and study concepts like k-
unsatisfiability, for instantiations where k constraints are 
unsatisfied or k-unsolvability, for problems that can be 
solved by removing k constraints.   

The sets {A}, {B}, {C} and {A B C} correspond to 
what have been called exclusion sets (O’Sullivan et al. 
2007). We define an exclusion set here as a subset of the 
problem constraints that when removed permits at least one 
solution. It is important to note that the sets employed here 
do not correspond to the common use of sets in explana-
tions to represent, in effect, unsatisfiable subproblems, 



often “minimal” unsatisfiable subproblems, where remov-
ing any constraint makes the subproblem satisfiable. The 
representation here is both finer-grained, and arguably 
more comprehensive. 

The symmetry of the problem is reflected in the explana-
tion and helps make it more compact, but we could also try 
to make use of symmetry up front to simplify the deriva-
tion of the formula.  

The formula compactly describes the “landscape” of the 
problem, and corresponds to a simple, high-level, natural 
language “story”:  
 

We can get a solution by removing just one 
constraint, and in fact any constraint will do, 
and will admit two more solutions. Remov-
ing two constraints at a time will not buy us 
any more solutions. There are two solutions 
that cannot be obtained without removing all 
constraints. 

 
The formula should be straightforward to generate auto-
matically (though there may be room for cleverness in 
making the process more efficient) and provides a compact 
representation for the computer and for expert human us-
ers. The English explanation should be easy to produce 
automatically from the formula by a rudimentary English-
language generator. I claim that it constitutes a satisfying 
high-level explanation for a human user, and one that pro-
vides some insights that are not immediately obvious from 
the statement of even a simple problem like this.  

We can, of course, look for other forms of abstraction, 
we can investigate other ways of characterizing or classify-
ing complete explanations, other features or patterns, per-
haps even an explanation taxonomy.  

Questions 
The formula could also be used to automatically generate 
answers to common questions that users might have. For 
example:  
 
Q: How many more solutions do I gain if I allow two con-
straints at a time to be violated rather than just one. 
A: None actually. There are only two solutions that require 
removing more than one constraint, and those require re-
moving all of them.  
 

We can also use this approach to answer “what if” or 
“how” questions. For example, “How much do I have to 
give up to obtain a solution with r(ed) for X?” or “Can I 
get a solution with r(ed) for X by removing just one con-
straint?” If we limit the values for X to r(ed), the explana-
tion formula for the resulting problem is: 
 

[C]1 U {C} 

which readily provides the answer. Of course, ideally we 
could “annotate” the explanation for the original problem 
to permit us to derive this explanation without starting 
from scratch.  

Solvable 
We can also look at the unsolvable portion of a problem 
that does have solutions. Suppose that constraint C, be-
tween Y and Z, is an equality constraint rather than an ine-
quality constraint. This changes the results to:  

   
(r r r) {A B} (r r b) {A C} 
(r b r) {B C} (r b b) solution 
(b r r) solution (b r b) {B C} 
(b b r) {A C} (b b b) {A B} 

 
The complete explanation for the unsatisfiable portion of 
this problem is: 
 

2[C]2 
 
If we like, we can add the solvable assignments back in, 
represented by the empty set of unsatisfied constraints, to 
obtain the formula: 
 

2([C]2 U {Ø}) 
 
Or in English: 
 

This problem has two solutions. Elimi-
nating one constraint will not add any 
new solutions. Eliminating each combi-
nation of two constraints at a time yields 
two additional solutions. There is no as-
signment that fails to satisfy all three 
constraints at once.  

Comparisons 
These explanations also can be used as a tool to compare 
problems or view the effects of modifying a problem. For 
example, here we see that changing the one constraint from 
inequality to equality changed the explanation to its “com-
plement”: the second explanation involves exactly those 
subsets of constraints that are not in the first. You may find 
this to be a bit of a surprise. Why is this so, under what 
general conditions will this happen? More generally, how 
will changes in the problem change the explanation? Stud-
ying the structure and relationships of complete explana-
tions may yield new insights into CSPs.  

This complementarity is strongly reflected visually in 
the following image, which colors the traditional “power 
set lattice” of the subsets of {A B C} according to whether 



they appear in the explanation of the original or modified 
problem.  
 

 

Structure 
For our final example we consider the Queens problem. 
The classic Queens problem is to place 8 chess queens on a 
chessboard such that no two attack each other. We will 
look at the 3 Queens problem, placing 3 chess queens on a 
3 by 3 mini chessboard, such that no two attack each other. 
This is unsolvable. It is a larger problem than our coloring 
problem, there are 27 possible instantiations. The abstract-
ed explanation is: 
 

2[C]1 U 2[C]2 U 6{C12 C23} U 9C  
 
In English: 
 

Removing any one of the constraints en-
ables two solutions. Removing any two 
of the constraints at a time enables two 
other solutions, but removing C12 and C23 
will enable 6 more. To obtain the re-
maining 9 solutions you need to remove 
all the constraints. 

 
Partly thanks to symmetry, the formula is still fairly com-
pact even though we have more than triple the number of 
possible instantiations that we had for the coloring prob-
lem. And again the English explanation tells us an interest-
ing story about the “structure” of the unsatisfiability, one 
which is not immediately obvious from the statement of 
the problem. In this case, for example, in another form of 
“complementarity”, unlike for the coloring problem, only a 
relatively small proportion of the assignments become so-
lutions when a single constraint is removed, and a relative-
ly large proportion of assignments only become solutions 
when all the constraints are removed.  

Again, this suggests a potential line of inquiry: can we 
predict based on problem structure what proportion of the 
assignments will be only “one constraint away” from satis-
fiability? More generally, can we relate the structure of a 
problem to the structure of its explanation? 

The question of “distance from satisfiability” leads, for 
example, to the following conjecture:  
 

The Good News / Bad News Conjecture: 
 

The harder a constraint satisfaction problem 
is to solve, 

the easier it is to come close to a solution, 
and vice versa. 

 
By “coming close” is meant finding an instantiation that 
violates few constraints. If one is familiar with the basic 
approaches to solving CSPs, backtracking and local search, 
this conjecture will seem a natural one. The existence of 
many “almost solutions” can lead to costly, frustrating for-
ays deep into the search tree or up to local maxima. We 
could investigate conjectures like this experimentally. 
What kind of theoretical machinery might enable us to 
prove conjectures like this formally? 

Conclusion 
We have identified: 
 

• An Opportunity: Studying the structure and rela-
tionships of explanations may yield new insights 
into problems.  

• A Challenge: Can we relate the structure of a 
problem and the structure of its explanation?  

 
These have been raised here, and might be further pursued, 
in the context of basic constraint satisfaction problems, but 
might also be generalized or specialized. For example, still 
in the context of constraint satisfaction, we could expand to 
consider constraint optimization problems, or specialize to 
scheduling problems. There are many variants and exten-
sions of CSPs that might merit bespoke approaches to ex-
planation. More generally, we can look for corresponding 
opportunities and challenges in explaining other forms of 
AI.   
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