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Summary

“Covariate adjustment” in the randomized trial context refers to an estimator of the average

treatment effect that adjusts for chance imbalances between study arms in baseline variables

(called “covariates”). The baseline variables could include, e.g., age, sex, disease severity, and

biomarkers. According to two surveys of clinical trial reports, there is confusion about the sta-

tistical properties of covariate adjustment. We focus on the ANCOVA estimator, which involves

fitting a linear model for the outcome given the treatment arm and baseline variables, and trials

with equal probability of assignment to treatment and control. We prove the following new (to

the best of our knowledge) robustness property of ANCOVA to arbitrary model misspecification:

Not only is the ANCOVA point estimate consistent (as proved by Yang and Tsiatis (2001)) but

so is its standard error. This implies that confidence intervals and hypothesis tests conducted as if

∗To whom correspondence should be addressed.
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2 Bingkai Wang and others

the linear model were correct are still valid even when the linear model is arbitrarily misspecified,

e.g., when the baseline variables are nonlinearly related to the outcome or there is treatment ef-

fect heterogeneity. We also give a simple, robust formula for the variance reduction (equivalently,

sample size reduction) from using ANCOVA. By re-analyzing completed randomized trials for

mild cognitive impairment, schizophrenia, and depression, we demonstrate how ANCOVA can

reduce variance, reduce bias conditional on chance imbalance, and increase power even when by

chance there is perfect balance across arms in the baseline variables.

Key words: Imbalance, Relative Efficiency, Robustness

1. Introduction

Pocock and others (2002) surveyed 50 randomized trial reports published between July and

September, 1997. They found that 36 used covariate adjustment, but only 12 emphasized ad-

justed over unadjusted estimators. They also stated that “the statistical properties of covariate-

adjustment are quite complex and often poorly understood, and there remains confusion as to

what is an appropriate statistical strategy.” Austin and others (2010), in a paper entitled “A

substantial and confusing variation exists in handling of baseline covariates in randomized con-

trolled trials: a review of trials published in leading medical journals”, surveyed randomized trial

articles published between January and June, 2007. Only 39 out of 114 trials in their sample

presented an adjusted analysis.

We focus on the analysis of covariance (ANCOVA) estimator, referred to as “ANCOVA I”

by Yang and Tsiatis (2001). ANCOVA involves fitting a linear regression model for the primary

outcome with intercept and main terms for the treatment assignment and baseline variables.

For trials with continuous-valued or change score outcomes, covariate adjustment (if it is used)

often involves the ANCOVA estimator. We use the terms “covariate adjustment” and “adjusted

https://biostats.bepress.com/jhubiostat/paper292



ANCOVA Robustness and Precision Gain in Randomized Trials 3

estimator” to refer to the ANCOVA estimator.

Concerns have been raised about the validity of ANCOVA for analyzing randomized trial data

when the linear model is misspecified. For example, Kraemer (2015) states “The linear model

used for covariate adjusting (e.g., analysis of covariance) assumes ... that there is no interaction

between the covariates and the treatment effect.” and “Given these risks for bias, ANCOVA

should not generally be used for such adjustment.” Ludvigsson and others (2008) and Montalban

and others (2017) both checked whether data is normally distributed before applying ANCOVA

and Ludvigsson and others (2008) state that “ANCOVA involves the assumption of normally

distributed response data and homogeneity of variances.” These authors are wise to have the

general concern about model misspecification, since in many contexts it can lead to biased or

uninterpretable analyses. However, when the ANCOVA estimator is used to analyze randomized

trial data, it has special robustness properties that obviate the above concerns.

Yang and Tsiatis (2001) proved that the ANCOVA estimator is consistent under arbitrary

misspecification of the linear model. We build on this result by proving that the standard error,

computed as if the linear model were correct, is also consistent. Therefore, not only estimates

but also confidence intervals and hypothesis tests conducted as if the linear model were correct

are valid even when the linear model is arbitrarily misspecified, e.g., when the true relationships

between variables are non-linear, and/or when there is treatment effect heterogeneity. This is

important since it is not possible to rule out all types of model misspecification. Also, it means

that precision gains from ANCOVA, which in our data examples range from modest (4%) to

substantial (32%), can be retained even if the linear model is incorrect.

We attempt to provide intuition behind the precision gains from covariate adjustment by

showing a direct analogy to ordinary least squares linear regression. We prove that the asymptotic

variance reduction (i.e., precision gain) due to covariate adjustment precisely equals the fraction

of variance in the primary outcome explained by the baseline variables, beyond what is already
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4 Bingkai Wang and others

explained by the main effect of treatment. This holds under arbitrary model misspecification and

leads to a simple formula for estimating the variance reduction due to ANCOVA. This variance

reduction is important since it equals the reduction in the required sample size to achieve a

desired power.

The above results build on key ideas and theory from Efron and Hinkley (1978); Robins and

Morgenstern (1987); Rosenbaum (1987); Robins and others (1992); Tsiatis and others (2008);

Rubin and van der Laan (2008); Moore and van der Laan (2009); Moore and others (2011);

Rubin and van der Laan (2011); Jiang and others (2016); Tian and others (2016). As in their

work, our results are asymptotic, i.e., they hold in the limit as sample size grows to infinity while

the number of covariates is fixed.

We present data analyses based on three completed randomized clinical trials for treatment

of mild cognitive impairment (MCI) (Petersen and others, 2005), schizophrenia (Jarskog and

others, 2013), and depression (Treatment for Adolescents With Depression Study (TADS) Team,

2004), respectively. By analyzing these data sets, we demonstrate how covariate adjustment can

reduce (unconditional) variance, reduce bias conditional on the observed chance imbalance (called

conditional bias), have greater added value in large trials in terms of reducing the required sample

size to achieve a desired power, and increase power even when by chance there is perfect or near-

perfect balance across arms in the baseline variables (due to the adjusted estimator having smaller

standard error than the unadjusted estimator).

In the next section, we describe the three trials. In Section 3, we define the unadjusted

estimator (which ignores baseline variables), the ANCOVA estimator, and the chance imbalance

(also called covariate imbalance). In Section 4, we present our main results, which involve the

close relationship among these three statistics. Illustrations are provided in Sections 5, where

trial analyses are presented. Some practical recommendations for applying covariate adjustment

are given in Section 6.
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ANCOVA Robustness and Precision Gain in Randomized Trials 5

2. Three Completed Randomized Clinical Trials

2.1 Mild Cognitive Impairment (MCI) Trial

The “Vitamin E and Donepezil for the Treatment of Mild Cognitive Impairment” (MCI) phase

3 randomized trial was completed in 2004 (Petersen and others, 2005). The goal was to estimate

the effect of a drug treatment on preventing progression from MCI to Alzheimer’s disease. Par-

ticipants were randomly assigned to three arms: the drug Donepezil, Vitamin E, and placebo

control. For simplicity, we compare the Donepezil arm (253 participants, 33% missing outcomes)

to the placebo arm (259 participants, 28% missing outcomes). The primary outcome was time to

progression to Alzheimer’s disease. In order to apply the ANCOVA estimator, which requires a

continuous or change score outcome, we instead use the change in Clinical Dementia Rating-sums

of boxes score (CDR-SB) between baseline and 18 months. We use the following baseline vari-

ables for adjustment: age, gender, Alzheimer’s Disease Assessment Scale (ADAS)-cognitive score,

MiniMental State Examination (MMSE) score, Activities of Daily Living total score, Global

Deterioration scale, and CDR-SB.

2.2 Metformin for Weight Loss (METS) Trial

The “Metformin for weight loss and metabolic control in overweight outpatients with schizophre-

nia and schizoaffective disorder” trial, referred to as “METS”, is a phase 4 randomized trial

completed in 2010 (Jarskog and others, 2013). Participants were randomly assigned to two arms:

Metformin (treatment, 75 participants, 15% missing outcomes) and placebo (control, 71 par-

ticipants, 14% missing outcomes). The primary outcome was weight loss over 16 weeks. In our

analysis, we use the same primary outcome and the following baseline variables: age, gender,

Clinical Global Impressions (CGI) severity rating score, tobacco use, illicit drug use, alcohol use,

baseline weight and body mass index (BMI).
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6 Bingkai Wang and others

2.3 Treatment for Adolescents with Depression Study (TADS)

The “Treatment for Adolescents with Depression Study” (TADS) is a phase 3, four-arm, random-

ized trial completed in 2003 (Treatment for Adolescents With Depression Study (TADS) Team,

2004). The goal was to evaluate cognitive-behavioral therapy (CBT) and Fluoxetine (FLX), each

alone and combined (CMB), for treating major depressive disorder in adolescents (age 12–17).

Participants were randomized to four arms: FLX only (109 participants, 15% missing outcomes),

CBT only (111 participants, 29% missing outcomes), combined (CMB, 107 participants, 16%

missing outcomes), and placebo (112 participants, 20% missing outcomes). The co-primary out-

comes were the change in Children’s Depression Rating Scale-Revised (CDRS-R) score and im-

provement of Clinical Global Impressions (CGI) severity rating score at 12 weeks. We focus on the

former outcome and adjust for the following baseline variables: age, gender, CDRS-R score, CGI

severity rating score, Children’s Global Assessment Scale score (CGAS), Reynolds Adolescent

Depression Scale total score (RADS), suicide ideation score, current major depressive episode

duration, co-morbidity (indicator of any other psychiatric disorder except dysthymia).

2.4 Summary of Data Analysis

Our analyses of the three trials are summarized in Table 1. For the MCI and METS trials, we

focus on a single treatment arm versus control. For TADS, we compare each of three treatment

arms (FLX, CBT, CMB) versus control. The analyses in Table 1 are not adjusted for multiplicity.

We describe a few key results from Table 1; a complete discussion is given in Section 5. The

ANCOVA estimator leads to variance reductions (equivalently, sample size reductions to achieve

a desired power) of 4% to 32%. We next consider the conditional bias reduction due to covariate

adjustment (defined in Section 5.1). There is no such reduction in the MCI trial; in contrast,

for TADS(FLX), the conditional bias is reduced by 2.9 points of CDRS-R total score (which

exceeds 1 standard error for the unadjusted estimator, so is quite substantial). In the latter

https://biostats.bepress.com/jhubiostat/paper292
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case, the ANCOVA estimator leads to a statistically significant result (p-value 0.01), unlike the

unadjusted estimator (p-value 0.73). This improvement is due to the substantial reductions in

variance and conditional bias from covariate adjustment, explained in Sections 4 and 5.3.

3. Definitions

3.1 Estimators of Average Treatment Effect

We focus on randomized clinical trials where each participant contributes the generic data vector

(W , A, Y ), where W is a k×1 column vector of predefined baseline variables, A is the study arm

assignment, and Y is the outcome. We assume that Y is continuous or a change score (difference

between a score measured at follow-up and baseline). We assume the study arm assignment

indicator A is binary (A = 1 for treatment and A = 0 for control). For trials with more than 1

treatment (e.g., TADS), we consider each treatment arm vs. control comparison separately.

For each participant i = 1, . . . , n, we observe the data vector (Wi, Ai, Yi). Each data vector is

assumed to be an independent draw from the unknown, joint distribution on generic data vector

(W , A, Y ). The goal is to estimate the population average treatment effect

∆ = E[Y |A = 1] − E[Y |A = 0], i.e., the difference between population means if everyone in

the study population had been assigned to treatment versus control. We focus throughout on

estimating the average treatment effect ∆, since that is the principal quantity of interest in the

primary efficacy analysis of randomized trials (Tsiatis and others, 2008).

The components of the baseline vector W can be continuous, binary, ordinal and/or categor-

ical. All variables are assumed to be bounded. We assume the study arm A is randomly assigned

with equal probability to treatment or control independent of the baseline variables W , which

holds by design in a randomized trial. We also assume that the components of (1,W t) are linearly

independent (since otherwise at least one is redundant and can be dropped from the correspond-

ing design matrix). We do not assume any other relationships among the variables W , A, Y . An
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8 Bingkai Wang and others

estimator of the average treatment effect ∆ is called robust to arbitrary model misspecification

if it is consistent under the aforementioned assumptions.

The unadjusted estimator of the average treatment effect ∆ is the difference between sample

means of the outcome in the treatment and control arms, denoted by

∆̂unadj =

∑n
i=1 YiAi∑n
i=1Ai

−
∑n
i=1 Yi(1−Ai)∑n
i=1(1−Ai)

.

The unadjusted estimator is consistent, i.e., converges to ∆ as the sample size goes to infinity,

but it ignores all information in the baseline variables.

The ANCOVA estimator of the average treatment effect ∆ adjusts for chance imbalance

between study arms in W . It is computed by fitting the following linear regression model

E[Y |A,W ] = β0 + βAA+ βtWW , (3.1)

using ordinary least squares (OLS). Denote the estimated coefficients by β̂0, β̂A, β̂W . The AN-

COVA estimator ∆̂ancova of the average treatment effect ∆ is the estimated coefficient β̂A.

According to Huitema (2011), the ANCOVA model assumes: (i) a linear relationship between

the outcome and the other variables, i.e., Y = β0 + βAA+βtWW + ε, where ε is the error term,

and (ii) the distribution of the error ε is normal with mean 0 conditional on A and W . These

assumptions may fail to hold if there is an interaction between treatment and covariate (Kraemer,

2015), if there are unmeasured prognostic covariates that are correlated with W (Austin and

others, 2010), or if the outcome is non-linearly related to the covariates. Fortuitously, the key

statistical properties of ANCOVA (consistency of the point estimate and standard error) hold

under any of these types of model misspecification.

Yang and Tsiatis (2001) proved that the ANCOVA estimator is consistent for ∆, i.e., β̂A

converges to ∆ in probability, even under arbitrary misspecification of the linear model (3.1).

Furthermore, the ANCOVA estimator is asymptotically normal and we denote its asymptotic

variance as V ar∗(∆̂ancova), i.e., n1/2(∆̂ancova−∆) converges to a normal distribution with mean

https://biostats.bepress.com/jhubiostat/paper292
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0 and variance V ar∗(∆̂ancova). Yang and Tsiatis (2001) also proved that when the probability

of being randomized to each study arm is equal (as assumed here), the ANCOVA estimator

has asymptotic variance at most that of the unadjusted estimator; if any baseline variable is

correlated with the outcome, then ANCOVA is strictly more precise.

We use the ANCOVA estimator ∆̂ancova = β̂A to estimate the average (also called marginal)

treatment effect ∆ = E[Y |A = 1] − E[Y |A = 0], which is not assumed to be constant across

strata of W . We emphasize this to avoid confusion, since the conventional interpretation of the

estimated coefficient β̂A is the conditional treatment effect. That interpretation does not apply

when the model is misspecified in any way. For example, when the treatment effect differs within

strata of W , then the conditional treatment effect is not a single number but instead is a function

mapping each stratum of W to the corresponding effect. Though it is of independent interest

to estimate the conditional treatment effect, this is often much more challenging and requires

more assumptions than estimating the marginal treatment effect ∆ (since it involves estimating

a function rather than a single number). The reason for considering baseline variables at all

when estimating the marginal treatment effect ∆ is that this can improve precision and power

by accounting for chance imbalances across study arms (Yang and Tsiatis, 2001).

The imbalance I between study arms in the baseline variables W , called chance imbalance or

covariate imbalance, is the difference between sample means of W comparing treatment versus

control arms:

I =

∑n
i=1AiWi∑n
i=1Ai

−
∑n
i=1(1−Ai)Wi∑n
i=1(1−Ai)

. (3.2)

The imbalance I is a vector with the same number of components as W . A component being 0

represents perfect balance in that variable. Although A is independent of W by design, in any

realization (i.e., any real trial) the baseline variables can be imbalanced.

Hosted by The Berkeley Electronic Press
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3.2 ANCOVA Variance Decomposition and Definition of R2
Y−∆A∼W

We review properties of OLS regression and define a quantity (R2
Y−∆A∼W ) that plays a key role

in our main results in Section 4. All results below hold under arbitrary model misspecification.

Consider regressing a generic response variable Z on a covariate vector X using the linear

model E[Z|X] = β0 + βtXX. If the model is misspecified, i.e., if for every possible β0,βX we

have E[Z|X] 6= β0 + βtXX, then the OLS estimator β̂0, β̂X (based on independent, identically

distributed vectors (Xi, Zi) : i = 1, . . . , n) still converges to a limit, denoted β0,βX . Assuming

the components of (1,Xt) are linearly independent (otherwise one or more is redundant and can

be dropped), the variance of Z decomposes as V ar(Z) = V ar(β0 +βtXX)+V ar(Z−β0−β
t
XX),

where β0 +βtXX is the predicted response and Z−β0−β
t
XX is the residual. In other words, the

response variance is the sum of the prediction variance and residual variance. The fraction of the

variance of Z explained by covariatesX, denoted R2
Z∼X , is defined as 1−V ar(Z−βtXX)/V ar(Z)

(where we omit the intercept β0 here and below since it does not impact the variance).

We apply the above variance decomposition to the linear regression model (3.1) that is used

in computing the ANCOVA estimator. Let (βA,βW ) denote the limit in probability of the OLS

estimator (β̂A, β̂W ) for the linear model (3.1) as sample size n goes to infinity. Our interest is

in the variance in the outcome Y explained by baseline variables W , beyond what is already

explained by treatment A. Therefore, we set the response to be Z = Y − βAA and regressor to

be X = W . The following variance decomposition, analogous to the decomposition of V ar(Z)

above, is proved in the Supplementary Material:

V ar(Y − βAA) = V ar(βtWW ) + V ar(Y − βAA− β
t
WW ). (3.3)

The corresponding fraction of the variance in the outcome Y explained by the baseline variables

W , beyond what is already explained by (the main effect of) treatment A, is denoted by

R2
Y−∆A∼W = 1− V ar(Y − βAA− β

t
WW )/V ar(Y − βAA). (3.4)

https://biostats.bepress.com/jhubiostat/paper292
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The subscript in R2
Y−∆A∼W is to indicate that this R-squared represents the fraction of variance

of Y −∆A explained by W , where we made the substitution βA = ∆ on the right side of (3.4),

which holds by the consistency result of Yang and Tsiatis (2001).

The importance of R2
Y−∆A∼W is that, as we show below, it is identical to the asymptotic

variance reduction (equivalently, the sample size reduction) comparing the ANCOVA estimator

to the unadjusted estimator, and that this holds under arbitrary misspecification of (3.1). This

result builds on fundamental ideas from Rubin and van der Laan (2008); Moore and van der Laan

(2009) as described below.

4. R2
Y−∆A∼W and the Relationship Among Unadjusted Estimator, ANCOVA

Estimator, and Covariate Imbalance, Under Model Misspecification

All results below hold under arbitrary model misspecification. Our first result, in Section 4.1, is

an equivalence between the ordinary least squares variance decomposition (3.3) and a variance

decomposition relating the unadjusted estimator, ANCOVA estimator, and covariate imbalance.

Second, in Section 4.2, we show that the variance estimator for ANCOVA computed by standard

statistical software is consistent. Our third result, in Section 4.3, is a simple formula for the vari-

ance reduction (equivalently, the sample size reduction) due to covariate adjustment. We present

visualizations of the relationship among the imbalance, unadjusted estimator, and ANCOVA es-

timator in the Supplementary Material. These results build on ideas from prior work as described

below.
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4.1 Connecting OLS Regression to the Relationship Among Unadjusted Estimator, ANCOVA

Estimator, and Covariate Imbalance

Jiang and others (2016) proved the following relationship among the unadjusted estimator ∆̂unadj ,

ANCOVA estimator ∆̂ancova, and chance imbalance I:

∆̂unadj ≈ βtW I + ∆̂ancova. (4.5)

(Formally, the difference between the left and right sides of the above display, after multiplying

by n1/2, converges to 0 in probability.) They also showed the following variance decomposition:

V ar∗(∆̂unadj) = V ar∗(βtW I) + V ar∗(∆̂ancova), (4.6)

where V ar∗ denotes asymptotic (i.e., large sample) variance.

We show that the above variance decomposition among the unadjusted estimator, chance

imbalance, and ANCOVA estimator is identical to the variance decomposition (3.3) for OLS,

under arbitrary model misspecification. Specifically, we prove in the Supplementary Material

that each term in (4.6) equals 4 times the corresponding term in (3.3), i.e., V ar∗(∆̂unadj) =

4V ar(Y −βAA), V ar∗(βtW I) = 4V ar(βtWW ), and V ar∗(∆̂ancova) = 4V ar(Y −βAA−β
t
WW ).

This is summarized in Figure 1, where the first row is the variance decomposition in OLS,

the second row is the variance decomposition of ∆̂unadj from Jiang and others (2016), and our

contribution is to connect them by proving equality of quantities in the same column. When

model (3.1) is misspecified, all equalities in Figure 1 still hold. These relationships are used to

prove the results in Sections 4.2 and 4.3.

4.2 Robustness of the ANCOVA Variance Estimator to Arbitrary Model Misspecification

Consider the ANCOVA model-based variance estimator for ∆̂ancova that is output by stan-

dard statistical software such as ‘summary.lm’ in R or ‘proc reg’ in SAS, which we denote by

https://biostats.bepress.com/jhubiostat/paper292
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V̂ ar(∆̂ancova). The formula for V̂ ar(∆̂ancova) is

V̂ ar(∆̂ancova) =
V̂ ar(Y − β̂0 − β̂AA− β̂tWW )

(n− 1)[V̂ ar(A)− Ĉov(W , A)tV̂ ar(W )−1Ĉov(W , A)]
(4.7)

where on the right side V̂ ar, Ĉov are the sample variance and sample covariance, respectively,

where degrees of freedom are taken into account. (See the Supplementary Material for precise

definitions of these.) The following theorem shows that the above variance estimator is robust to

arbitrary model misspecification.

Theorem Given the assumptions in Section 3.1, which do not assume that the linear model (3.1)

is correctly specified, n times the estimated variance V̂ ar(∆̂ancova) converges in probability to

the true asymptotic variance V ar∗(∆̂ancova) of the ANCOVA estimator ∆̂ancova.

The above theorem implies that confidence intervals and Wald-type hypothesis tests conducted

as if the linear model were correct are valid even when the linear model is arbitrarily misspecified.

The 1 − α confidence interval for the coefficient on the A term in (3.1) that is output by the

aforementioned, standard linear regression software is(
∆̂ancova − tn−p,α/2

√
V̂ ar(∆̂ancova), ∆̂ancova + tn−p,α/2

√
V̂ ar(∆̂ancova)

)
, (4.8)

where tn−p,α/2 is the α/2-quantile of the t-distribution with n− p degrees of freedom where p is

the number of coefficients in the linear model (3.1). For large n and fixed p, the quantile tn−p,α/2

is approximately the α/2-quantile of the standard normal distribution. It follows from the above

theorem that the above display is a valid confidence interval for the average treatment effect ∆,

under arbitrary model misspecification.

We next prove the above theorem. The term in square brackets in the denominator of (4.7)

converges to 1/4 since (i) the variance of A is 1/4, and (ii) A and W being independent (by

randomization) implies that they have zero covariance. The numerator of (4.7), i.e., the residual

variance from fitting model (3.1), converges to V ar(Y − βAA − β
t
WW ). Therefore, the above
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theorem follows from the equality V ar∗(∆̂ancova) = 4V ar(Y − βAA − β
t
WW ) in the previous

subsection.

4.3 R2
Y−∆A∼W Equals Precision Gain (and Sample Size Reduction) Due to Adjustment, Even

Under Arbitrary Model Misspecification

Borm and others (2007) and Rubin and van der Laan (2008) connect the R-squared from regress-

ing Y on W to the variance reduction due to ANCOVA, while Moore and van der Laan (2009)

and Moore and others (2011) make a similar connection in the context of binary outcomes and

estimators based on logistic regression models. Each of the aforementioned approaches requires

conditions (such as the linear model being correctly specified or that ∆ = 0) or requires additional

factors to connect the R-squared to the variance reduction due to covariate adjustment. (See the

Supplementary Material for more details.) Building on key ideas from their approaches, we prove

that the R-squared R2
Y−∆A∼W equals the variance reduction due to ANCOVA without requiring

these conditions or extra factors; this R-squared (which differs from the prior work above by

incorporating A) is robust to arbitrary model misspecification.

It follows from the relationships in Figure 1 that the fraction R2
Y−∆A∼W of the variance in the

outcome Y explained by the baseline variables W , beyond what is explained by the treatment

A, equals the asymptotic variance reduction due to ANCOVA, i.e.,

R2
Y−∆A∼W = 1− V ar(Y − βAA− βW

tW )

V ar(Y − βAA)
= 1− V ar∗(∆̂ancova)

V ar∗(∆̂unadj)
. (4.9)

The first equality is the definition of R2
Y−∆A∼W , and the second shows that R2

Y−∆A∼W equals

the variance reduction due to ANCOVA (expression on the right). The rightmost expression,

by definition, equals one minus the asymptotic relative efficiency (also called Pitman efficiency)

comparing the unadjusted to the ANCOVA estimator.

In practice, R2
Y−∆A∼W can be estimated by computing 1−V̂ ar(∆̂ancova)/V̂ ar(∆̂unadj), where

V̂ ar(∆̂ancova) is the variance of the ANCOVA estimator output by standard statistical software

https://biostats.bepress.com/jhubiostat/paper292
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as in (4.7), and V̂ ar(∆̂unadj) is the variance of the unadjusted estimator estimated analogously

(by regressing Y on A and an intercept).

The variance reduction (4.9) due to ANCOVA is important since it equals the fractional sample

size reduction that can be achieved through covariate adjustment when holding the desired power

fixed, asymptotically. A variance reduction of p% means that the sample size required to achieve

a desired power is also reduced by p%. Therefore, R̂2
Y−∆A∼W can be used to estimate the benefits

of covariate adjustment in terms of sample size reduction. The R̂2
Y−∆A∼W values from our data

sets range from 4% to 32%, which can be translated into 4% to 32% sample size reductions.

5. Clinical Trial Applications

In each application (MCI, METS, TADS), all baseline variables were standardized and missing

baseline values were imputed by the median for continuous variables and the mode for binary and

categorical variables. All participants with missing outcomes were removed from the analysis, for

simplicity; in practice, missing outcome data would be handled as described in Section 6. Point

estimates and standard errors are rounded to the nearest 0.1.

5.1 MCI Trial

The unadjusted treatment effect estimate was ∆̂unadj = −0.2 CDR-SB points with standard error

0.2 and 95% CI (−0.5, 0.1), and the ANCOVA estimate was ∆̂ancova = −0.2 CDR-SB points with

standard error 0.1 and 95% CI (−0.4, 0.1). Compared to the unadjusted estimator, the ANCOVA

estimator has a 14% narrower confidence interval and 25% smaller variance, indicating that

researchers planning to perform an adjusted analysis could achieve the same precision as the

unadjusted analysis with approximately 25% fewer participants.

Jiang and others (2016) proved that adjustment for baseline variables can reduce bias condi-

tional on the chance imbalance I (called conditional bias). They showed that the unadjusted es-
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timator has conditional bias βtW I but the ANCOVA estimator is conditionally unbiased, asymp-

totically. In other words, ANCOVA approximately removes the conditional bias of the unadjusted

estimator that is caused by chance imbalance, and this bias is approximately the dot product

of the chance imbalance I with the regression coefficients β̂W . This statistic β̂tW I distills the

imbalance information typically presented in a large table (often “Table 1”) of a clinical trial

report into a single number that is directly relevant to interpreting the unadjusted estimator; it

represents this estimator’s bias due to chance imbalance across study arms of multiple baseline

variables. In contrast, the ANCOVA estimator is immune to such conditional bias, asymptotically.

Table 2 shows the decomposition of the conditional bias in the MCI trial into contributions

from each baseline variable. The “Coeff. β̂j” row displays the regression model coefficients β̂W .

The β̂W components combined with the correlations among the components of W determine the

variance reduction due to adjustment for W . (See Figure 1 and the Supplementary Material.)

Roughly speaking, larger magnitudes of β̂j generally correspond to larger contributions to the

variance reduction, but correlations among the baseline variables need to be factored in as well.

Strong correlations among components of W are not necessarily detrimental (though they may

indicate that some variables are redundant); what matters in terms of the variance reduction due

to adjusting for W is the fraction of variance explained R2
Y−∆A∼W , which is defined in equation

(4.9).

The “Imbal. Ij” row gives the components of the imbalance vector I. Since we first standard-

ized each covariate before fitting the regression model, the imbalance of each covariate is approx-

imately normally distributed N(0,
√

1/n1 + 1/n0), where n1 =
∑n
i=1Ai, n0 =

∑n
i=1(1−Ai). For

MCI, each variable’s imbalance has standard error 0.1. The “Correction i.e. β̂jIj” is given by the

product of each component of the imbalance I and the corresponding regression coefficient β̂W ,

which represents the contribution of each baseline variable toward correcting (i.e., removing the

conditional bias of) the unadjusted estimator. In the MCI trial, due to the relatively small values
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in β̂W and each variable’s imbalance being approximately 1 standard error or less in magnitude,

the overall conditional bias reduction (β̂tW I = −0.003 CDR-SB points) is small.

5.2 METS Trial

The unadjusted treatment effect estimate is ∆̂unadj = −3.7 kg of weight change with standard

error 1.6 and 95% C.I. (−6.8,−0.5), and the ANCOVA estimate is ∆̂ancova = −3.6 with standard

error 1.6 and 95% C.I. (−6.7,−0.5). Adjustment resulted in a 4% variance reduction.

Table 2 shows that several of the baseline variables were imbalanced (each variable’s imbalance

is expected to have standard error 0.2). Because baseline weight and BMI evinced substantial

imbalance and large absolute regression coefficient values, they contribute most to the conditional

bias. Due to their opposite signs, however, their effects cancel out, yielding a relatively small

overall conditional bias (as evidenced by the similar values of ∆̂unadj and ∆̂ancova).

5.3 TADS Trial

As shown in Table 1, covariate adjustment results in substantial variance reduction and condi-

tional bias reduction for all three treatment arms. This stands out for the Fluoxetine arm, where

we estimated that covariate adjustment reduced asymptotic variance by 32%. The ANCOVA es-

timator, unlike the unadjusted estimator, leads to a statistically significant treatment effect −4.4

CDRS-R points (p-value 0.01); the 95% C.I. of the ANCOVA estimator (−8.1,−0.6) excludes

zero, but that of the unadjusted estimator (−6.0, 3.2) does not. This results from both conditional

bias reduction and variance reduction. Bias reduction increases the estimated treatment effect

magnitude and variance reduction narrows the confidence interval width.

Table 2 shows the contribution of each covariate to the conditional bias reductions. For each of

the three TADS treatment arms, the covariate imbalance has approximate standard error 0.2. In

each treatment comparison, the baseline score for the primary outcome, baseline CDRS-R score,
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contributes most to the conditional bias reductions. This is the case even when baseline CDRS-R

does not exhibit a relatively large imbalance, and is due to its high regression coefficient. For

each treatment versus control comparison, the estimated conditional bias (Table 1, column 4) is

non-negligible, and all are in the same direction, suggesting that there is conditional bias in the

control arm (1.2 CDRS-R points, estimated by using methods of Jiang and others (2016)).

The conditional bias reduction due to a covariate can also be interpreted as a correction

of the unadjusted estimator that is reflected in the ANCOVA estimator. For example, in the

TADS(FLX) section of Table 2, the standardized baseline CDRS-R score has imbalance -0.2

CDRS-R points, indicating that, on average, the treatment (FLX) arm has lower baseline depres-

sion scores compared to the control arm. The estimated regression coefficient is -8.1, and its sign

being negative means that lower baseline scores are correlated with smaller values of the change

score Y . The unadjusted estimator (which ignores this imbalance) is biased against the treat-

ment arm (which, roughly speaking, started at lower levels of depression and so has less room to

improve compared to control) conditioned on the observed imbalance in baseline CDRS-R score.

The ANCOVA estimator removes this bias by subtracting approximately 2.0 CDRS-R points.

Similar adjustments were made for the other variables, whose combined impact is to subtract 2.9

points from the unadjusted estimator.

Sometimes in a trial, the ANCOVA and unadjusted estimators may be substantially differ-

ent. For example, in the TADS(FLX) trial, the unadjusted estimator is -1.4 CDRS-R points and

the ANCOVA estimator is -4.4 CDRS-R points, which yields a large difference between the two

estimates. This is the type of case where adjustment adds the most value over the unadjusted

estimator. The large difference is approximately the conditional bias of the unadjusted estimator.

Covariate adjustment removes (approximately) this conditional bias. Due to having less con-

ditional bias and lower (unconditional) variance than the unadjusted estimator, the ANCOVA

estimator should be given more credence when these estimators differ substantially.
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6. Practical Recommendations

Consider the case where the primary outcome Y is a change score (difference between final score

and baseline score). As demonstrated in the 3 clinical trial examples in Section 5, the baseline score

often has a substantial correlation with the change score and so we recommend adjusting for the

baseline score (and possibly additional variables). In some cases, adjusting for the baseline score

alone can bring substantial variance reduction. For example, for TADS(FLX) and TADS(CMB),

adjusting for only the baseline CDRS-R score gives a similar variance reduction as adjusting for

all of the baseline covariates. In other cases, the baseline score can have negligible impact while

the other covariates provide substantial variance reduction. E.g., in the MCI trial the baseline

score provided approximately 0 variance reduction while the other covariates led to an estimated

25% variance reduction. It is fine to adjust for correlated baseline variables as long as each adds

some new prognostic information for the primary outcome.

When the trial has missing outcomes, under the assumption of missing at random (that the

outcome distribution is the same for those with missing outcomes as for those with observed

outcomes, conditional on treatment assignment and baseline covariates), the unadjusted estima-

tor may no longer be consistent. This can happen if participants who benefit more/less from

treatment are more likely to drop out than those who do not. The ANCOVA estimator remains

consistent under missing at random if the ANCOVA model is correctly specified. To add ro-

bustness to model misspecification, one can use a propensity score model for missing outcomes

(modeling the probability of missingness given treatment assignment and covariates with, e.g., a

logistic regression model) as the inverse weight when fitting the ANCOVA model among those

with observed outcomes. According to Robins and others (2007), this estimator is doubly-robust,

i.e., consistent as long as one of the two models (propensity score model or ANCOVA model) is

correctly specified. For the three trial examples in this paper, the ANCOVA estimator (which does

not incorporate information from participants with missing outcomes) and the aforementioned
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doubly-robust extension (which incorporates information from all participants) gave similar esti-

mates and confidence intervals. See the Supplementary Material for details.

For large trials, e.g., with total sample size at least 500, adjusting for prognostic baseline

variables (if there are any) is highly recommended since it reduces the required sample size to

achieve a desired power. This is counter to the (false) intuition that in large trials there is little to

gain from covariate adjustment since randomization will likely leave little imbalance to adjust for.

Adjustment can still be useful at large sample sizes, and arguably can be more useful since it leads

to greater absolute reductions in the required sample size. For example, the METS trial involved

146 participants and our estimate of the sample size reduction due to covariate adjustment is

4%, which means 6 fewer participants are required to achieve the same power. If this trial were

10 times larger, i.e., 1460 participants, then covariate adjustment would lead to a sample size

reduction of approximately 60 participants.

Even when a randomized trial ends up having negligible imbalance, covariate adjustment can

still increase power when the hypothesis test is based on dividing the estimator by its standard

error (s.d.) and rejecting the null hypothesis when this ratio exceeds a threshold. This results

from the fact that power is related to the (unconditional) variance through the standard error

in the denominator of the test statistic. For example, the MCI trial is well balanced, with esti-

mated conditional bias -0.003 CDR-SB points. There is still an estimated 25% variance reduction

from adjustment. When there are prognostic baseline variables, we recommend that covariate

adjustment (e.g., with ANCOVA) be preplanned as the primary efficacy analysis.

If the outcome is binary, count, ordinal or time-to-event, then covariate adjustment can be

done using estimators of, e.g., Moore and van der Laan (2009), Lu and Tsiatis (2011), Howard

and others (2012) and Dı́az and others (2018). However, robust variance estimators typically

must be used, e.g., when constructing confidence intervals or conducting hypothesis tests. The

sandwich estimator could be used as described by Tsiatis and others (2008); alternatively, the
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nonparametric bootstrap could be used. Because of these results for other outcome types, it was

surprising that when using ANCOVA it is unnecessary to use such robust variance estimators

(since as proved in Section 4.2 the standard, model-based variance estimator for ANCOVA is

already robust to arbitrary model misspecification).

How to best pick the set of covariates to use in an adjusted estimator is a challenging problem.

The methods of Moore and van der Laan (2009) and Moore and others (2011) use cross-validation,

Tian and others (2016) and Bloniarz and others (2016) use LASSO, and Wager and others (2016)

use a combination of regression and cross-validation. All aspects of the covariate adjustment

method need to be prespecified in the study protocol (FDA and EMA, 1998).

Supplementary Material

Supplementary Material, available at http://people.csail.mit.edu/mrosenblum/ANCOVA.pdf

includes the following: (a) definitions of the sample variance and covariance used in Section 4.2;

(b) simulations to generate visualizations of the relationship among the imbalance, unadjusted

estimator, and ANCOVA estimator; (c) proofs of theoretical results; (d) relationship among

different types of R-squared; (e) data analyses accounting for missing data; (f) link to the code

for data analysis; and (g) information monitoring to achieve sample size reductions with covariate

adjustment.

Acknowledgments

The research was funded by NIH grants UL1TR001079 and R01AG048349. MCI data were ob-

tained from the Alzheimer’s Disease Cooperative Study (National Institutes of Health Grant U19

5U19AG010483) legacy database. TADS and METS data were obtained from the controlled ac-

cess datasets distributed from the NIMH-supported National Database for Clinical Trials (NDCT)

with identifiers TADS(NCT00006286) #2145 and METS(NCT00816907) #2156. This manuscript

Hosted by The Berkeley Electronic Press



22 REFERENCES

reflects the views solely of the authors and does not reflect the views of any of the above.

References

Austin, P.C., Manca, A., Zwarenstein, M., Juurlink, D.N. and Stanbrook, M.B.

(2010). A substantial and confusing variation exists in handling of baseline covariates in ran-

domized controlled trials: a review of trials published in leading medical journals. J Clin

Epidemiol 63(2), 142 – 153.

Bloniarz, A., Liu, H., Zhang, C., Sekhon, J.S. and Yu, B. (2016). Lasso adjustments

of treatment effect estimates in randomized experiments. Proc Natl Acad Sci USA 113(27),

7383–7390.

Borm, G.F., Fransen, J. and Lemmens, W.A.J.G. (2007). A simple sample size formula for

analysis of covariance in randomized clinical trials. J Clin Epidemiol 60(12), 1234 – 1238.

D́ıaz, I., Colantuoni, E., Hanley, D. and Rosenblum, M. (2018, 02). Improved precision

in the analysis of randomized trials with survival outcomes, without assuming proportional

hazards. Lifetime Data Anal , 1–30.

Efron, B. and Hinkley, D.V. (1978). Assessing the accuracy of the maximum likelihood

estimator: Observed versus expected Fisher information. Biometrika 65(3), 457.

FDA and EMA. (1998). E9 statistical principles for clinical trials. U.S. Food and Drug Admin-

istration: CDER/CBER. European Medicines Agency: CPMP/ICH/363/96 .

Howard, G., Waller, J.L., Voeks, J.H., Howard, V.J., Jauch, E.C., Lees, K.R.,

Nichols, F.T., Rahlfs, V.W. and Hess, D.C. (2012). A simple, assumption-free, and

clinically interpretable approach for analysis of modified Rankin outcomes. Stroke 43(3), 664–

669.

https://biostats.bepress.com/jhubiostat/paper292



REFERENCES 23

Huitema, B. (2011). The Analysis of Covariance and Alternatives: Statistical Methods for

Experiments, Quasi-Experiments, and Single-Case Studies, 2nd Edition. WILEY.

Jarskog, L.F., Hamer, R.M., Catellier, D.J., Stewart, D.D., LaVange, L., Ray, N.,

Golden, L.H., Lieberman, J.A. and Stroup, T.S. (2013). Metformin for weight loss and

metabolic control in overweight outpatients with schizophrenia and schizoaffective disorder.

American Journal of Psychiatry 170(9), 1032–1040.

Jiang, F., Tian, L., Fu, H., Hasegawa, T., Pfeffer, M.A. and Wei, L.J. (2016). Ro-

bust alternatives to ANCOVA for estimating the treatment effect via a randomized compar-

ative study. Harvard University Biostatistics Working Paper Series. Working paper 209,

https://biostats.bepress.com/harvardbiostat/paper209.

Kraemer, H.C. (2015). A source of false findings in published research studies: Adjusting for

covariates. JAMA Psychiatry 72(10), 961–962.

Lu, X. and Tsiatis, A.A. (2011). Semiparametric estimation of treatment effect with time-

lagged response in the presence of informative censoring. Lifetime Data Anal 17(4), 566–593.
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Table 1. Summary of clinical trial data analyses: unadjusted estimator for average treatment effect,
adjusted estimator (ANCOVA) for average treatment effect, 95% confidence intervals (CI), estimated
conditional bias reduction due to adjustment, and estimated variance reduction due to adjustment.
Negative (positive) estimates are in the direction of clinical benefit (harm).

Trial
Name

Unadjusted
Estimator (95% CI)

ANCOVA
Estimator (95% CI)

Conditional
Bias Reduction

Variance

Reduction (R̂2
Y−∆A∼W )

MCI -0.2 (-0.5, 0.1) -0.2 (-0.4, 0.1) 0.0 25%
METS -3.7 (-6.8, -0.5) -3.6 (-6.7, -0.5) -0.1 4%

TADS(FLX) -1.4 (-6.0, 3.2) -4.4 (-8.1, -0.6) 2.9 32%
TADS(CBT) 2.2 (-1.9, 6.4) 0.5 (-3.2, 4.2) 1.7 21%
TADS(CMB) -6.6 (-11.0, -2.3) -7.7 (-11.3, -4.0) 1.0 30%

Fig. 1. Variance decomposition equivalence between linear regression and estimators of average treatment
effect. The variance decomposition in the first row is a result of OLS linear regression. The second row
gives the asymptotic variance decomposition of the unadjusted estimator, which is a minor extension
of key results from Jiang and others, 2016; Tian and others, 2016. Our contribution is to connect the
two variance decompositions by showing their equivalence, i.e., quantities in the same column are equal,
under arbitrary model misspecification.
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Table 2. Contribution of each baseline variable to overall conditional bias reduction (correction of the

unadjusted estimate) in the MCI, METS and TADS trials. “Coeff.β̂j” displays the elements of β̂W .
“Imbal.Ij” gives the imbalance vector I. “Correction i.e., β̂jIj” is the element-wise product of “Coeff.β̂j”
and “Imbal.Ij”. In MCI, baseline variables are age, gender, Alzheimer’s Disease Assessment Scale-
cognitive score (ADAS), MiniMental State Examination score (MMSE), Activities of Daily Living total
score (ADLS), Global Deterioration scale (GDS) and baseline Clinical Dementia Rating-sums of boxes
(CDR-SB). In METS, baseline variables are age, gender, Clinical Global Impressions severity rating scale
(CGI), tobacco use (Tobacco), illicit drug use (Drug), alcohol use (Alcohol), baseline weight (Weight)
and body mass index (BMI). In TADS, baseline variables are age, gender, baseline Children’s Depression
Rating Scale-Revised total score (CDRS-R), CGI, Children’s Global Assessment Scale score (CGAS),
Reynolds Adolescent Depression Scale total score (RADS), Suicide ideation, current major depressive
episode duration (Depr. episode) and indicator of co-morbidity (Comor.).

Age Gender ADAS MMSE ADLS GDS CDR-SB

Coeff. β̂j 0.1 0.1 0.4 -0.2 -0.4 0.1 -0.3

MCI Imbal.Ij 0.0 -0.1 0.0 -0.1 0.1 -0.1 -0.1

Correction

i.e., β̂jIj
0.0 0.0 0.0 0.0 0.0 0.0 0.0

Age Gender CGI Tobacco Drug Alcohol Weight BMI

Coeff. β̂j 0.0 0.7 1.6 -0.7 0.6 0.8 -3.4 2.5

METS Imbal.Ij -0.3 0.1 0.0 0.1 0.0 -0.3 -0.2 -0.1

Correction

i.e., β̂jIj
0.0 0.1 0.0 -0.1 0.0 -0.3 0.5 -0.4

Age Gender CDRS-R CGI CGAS RADS
Suicide
ideation

Depr.
episode

Comor.

Coeff. β̂j 1.4 -0.1 -8.1 -0.5 0.0 -1.0 -1.6 0.8 -0.4

TADS Imbal.Ij 0.1 0.0 -0.2 -0.3 -0.1 -0.3 -0.2 0.0 -0.2

(FLX)
Correction

i.e., β̂jIj
0.1 0.0 2.0 0.1 0.0 0.3 0.4 0.0 0.1

Coeff. β̂j 1.4 -0.5 -4.2 -1.8 1.1 0.4 -2.5 2.1 1.3

TADS Imbal.Ij 0.2 0.2 -0.2 -0.2 -0.3 -0.1 -0.2 0.1 0.0

(CBT)
Correction

i.e., β̂jIj
0.3 -0.1 1.0 0.3 -0.3 0.0 0.5 0.1 0.0

Coeff. β̂j 1.3 -0.2 -8.0 -0.3 0.4 -1.0 0.5 1.0 0.3

TADS Imbal.Ij 0.2 0.2 -0.1 -0.2 -0.1 -0.1 0.0 0.1 0.0

(CMB)
Correction

i.e., β̂jIj
0.2 0.0 0.6 0.1 0.0 0.1 0.0 0.2 0.0
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