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Abstract

This paper considers Bayesian approaches for incorporating information from a his-
torical model into a current analysis when the historical model includes only a subset
of covariates currently of interest. The statistical challenge is two-fold. First, the pa-
rameters in the nested historical model are not generally equal to their counterparts
in the larger current model, neither in value nor interpretation. Second, because the
historical information will not be equally informative for all parameters in the cur-
rent analysis, additional regularization may be required beyond that provided by the
historical information. We propose several novel extensions of the so-called power
prior that adaptively combine a prior based upon the historical information with a
variance-reducing prior that shrinks parameter values toward zero. The ideas are di-
rectly motivated by our work building mortality risk prediction models for pediatric
patients receiving extracorporeal membrane oxygenation, or ECMO. We have devel-
oped a model on a registry-based cohort of ECMO patients and now seek to expand this
model with additional biometric measurements, not available in the registry, collected
on a small auxiliary cohort. Our adaptive priors are able to leverage the efficiency of the
original model and identify novel mortality risk factors. We support this with a simu-
lation study, which demonstrates the potential for efficiency gains in estimation under
a variety of scenarios. Bias-Variance Tradeoff; Combining Information; Hierarchical
Shrinkage; Power Prior; Regularized Horseshoe Prior

1 Introduction

When a statistical model is published, there are often already models for the same outcome.
Although the new model and the existing models may each differ in their target populations,
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underlying sets of predictors, or in other ways [e.g., Becker and Wu, 2007], there is usually
some historical information available when the new model was built. In that sense, this
framework of sequential but independent model development is not fully utilizing available
historical information. In this paper, we propose Bayesian approaches that incorporate the
posterior distribution from the historical model into a prior for the new model when the set
of historical covariates is strictly nested within the set of the new covariates.

Our motivation for this work is a short-term mortality risk prediction model (“Ped-RESCUERS”)
for pediatric patients receiving extracorporeal membrane oxygenation (ECMO) support us-
ing information on 1611 pediatric patients treated between the years 2009-2012 [Barbaro
et al., 2016]. The source population was the Extracorporeal Life Support Organization
(ELSO), an international registry of ECMO patients, and the pertinent data are limited
to patient clinical characteristics (weight, age, sex, primary diagnosis, co-morbidities, com-
plications, pre-ECMO supportive therapies) and ECMO-specific measurements (blood gas
measurements and ventilator settings). In total, Ped-RESCUERS uses eleven predictors.
Patient-specific biometric measurements of renal, hepatic, neurologic and hematologic dys-
function that may be associated with mortality on ECMO are not generally collected in the
ELSO registry. We posited a list of eleven such additional potential risk factors and collected
a cohort of 178 non-overlapping patients at three ECMO-providing centers. The data consist
of both the eleven risk factors in PED-RESCUERS and eleven biometric measurements not
in the registry. We require a model that potentially includes all 22 predictors. We report on
these new data in Barbaro et al. [2018]. However, given the ratio of sample size to number
of predictors and the subsequent variability in estimates, it is more statistically incumbent
to make use of the information from the original large cohort of patients with unmeasured
biometric measurements to gain efficiency. Yet, the process of doing so may introduce bias,
due to the different predictors included in each model. It is these competing objectives we
seek to balance.

In other cases, there may only be very limited historical information, meaning that the num-
ber of historical predictors is much less than the total number of potential predictors under
study. It is reasonable to expect that incorporating even such limited historical information
should result in a model that is non-inferior to a modeling approach ignoring the historical
information entirely. For example, one alternative to using a literal historical prior would be
to regularize estimation and prediction with a prior that shrinks parameters toward zero, as
in the Bayesian Lasso [Park and Casella, 2008] and others [Griffin and Brown, 2005, Armagan
et al., 2013]. Based on this logic, an ideal strategy combines these approaches: incorporating
whatever historical information is available and, for those parameters about which it is not
informative, controlling variability by shrinking them to zero in the ‘usual’ way.

We achieve this here through an extension of the power prior, which uses the historical
data likelihood as the current prior, and this prior density is further raised to a power
0 ≤ φ ≤ 1 [Ibrahim and Chen, 2000, Ibrahim et al., 2015]. Setting φ = 0 or φ = 1
corresponds, respectively, to ignoring the historical likelihood entirely or a fully Bayesian
update. Using 0 < φ < 1 allows for partial borrowing of the historical likelihood in the
presence of heterogeneity, and this can be made adaptive by considering a hyperprior on φ
itself [Duan et al., 2006, Neuenschwander et al., 2009]. The novel idea in our approach is to
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use φ to vary the relative contributions of the historical prior (φ = 1) and a variance-reducing
prior that shrinks to zero (φ = 0).

In the classical power prior, the historical and current models include the same predictors.
In one extension, Chen et al. [1999] approach a related problem by constructing a second,
artificial historical likelihood that uses a constant for the outcome and copies of the added
covariates from the current data. This has the effect of shrinking the corresponding regression
coefficients toward zero and so is actually more similar to a typical shrinkage-to-zero prior.
Ibrahim et al. [2002] consider the general setting of fitting GLMs using power priors when
there are missing covariates in the historical and/or current datasets. Crucially, both the
historical and current likelihoods condition on the same set of covariates, and missingness is
ancillary to the main statistical problem.

Beyond the power prior, there exist alternative approaches for incorporating historical in-
formation. A meta-analysis statistically combines univariable or multivariable associations
from multiple studies based upon each analysis’ variance or covariance matrix [Walker et al.,
2008, Chen et al., 2012, Jackson and Riley, 2014]. The main advantage of a meta-analysis is
its simplicity, even when combining more than two models, because only summaries statis-
tics are required. Among other assumptions, however, all models to be combined must
include the same predictors. Recently, several authors have proposed strategies for incor-
porating summary-level historical information via constraints on the likelihood [Chatterjee
et al., 2016, Grill et al., 2017, Cheng et al., 2018]. Antonelli et al. [2017] propose Bayesian
approaches for borrowing information from the dataset with additional covariates to improve
estimation of the average causal effect in the dataset with fewer covariates. Relative to previ-
ous important work in this area, we highlight two distinctive features of our approach. First,
we account for the underlying uncertainty in the historical information by using the posterior
variance from the historical model as the prior variance for the current model. Second, we
explicitly ignore any historical information on the intercept parameter, which, in the case of
a binary outcome, borrows information while still allowing for differences in the underlying
true prevalence between the historical and the current models.

The proceeding sections develop the required ingredients of our approach that combines
historical-based prior shrinkage and shrinkage to zero. Section 2 reviews the ‘regularized
horseshoe prior’ [Carvalho et al., 2009, 2010, Piironen and Vehtari, 2015, 2016, 2017], which
is the shrinkage-to-zero prior that we use. Section 3 outlines the construction two historical-
based priors derived from models fit to a subset of the current set of covariates under con-
sideration. Section 4 proposes how to adaptively combine the historical information with
the shrinkage prior. Section 5 and 6 demonstrate our methods with a simulation study and
analysis of the motivating ECMO mortality risk prediction model, respectively. Section 7
concludes with a discussion.

2 Shrinkage-to-Zero Priors

Let g(·) denote the link function of a generalized linear model (GLM) and π(·|·) and π(·)
denote conditional and marginal distributions, respectively. We will use the prior/posterior
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nomenclature to indicate whether conditioning is on data. Capital and lowercase letters,
respectively, indicate random data and observed data; all types of Greek letters will be
reserved for parameters. Standard font will be used for scalar or vector valued quantities,
and boldface font will be reserved for matrix-valued quantities.

A GLM for an outcome Y is fit to a length-p+q vector of covariatesX, g(E[Y |X = x]) = x>β,
using n datapoints, {y,x}. The covariates x are standardized to their empirical mean
and empirical standard deviation. We do not distinguish between the first p and the final
q elements of β yet (these identify the historical and current elements, respectively) but
will do so in subsequent sections. The vector β = {β1, . . . , βp+q} is of primary interest.
Given the likelihood π(y|β) and prior π(β|θ)π(θ), with θ a vector of hyperparameters that is
conditionally independent of y given β, the posterior is π(β, θ|y) ∝ π(y|β)π(β|θ)π(θ). Often,
the prior π(β|θ)π(θ) is selected to regularize parameters by shrinking estimates toward zero,
thereby reducing variance and increasing efficiency, as discussed in the Introduction. Many
such shrinkage priors can be written as products of conditionally independent normal priors
on βj: e.g., θ = {θ1, . . . , θp+q} and π(β|θ) =

∏
j N(βj|0, θ2

j ). For example, if each θ2
j is

independently inverse-gamma-distributed with a common shape and scale parameter equal
to k/2, each βj is marginally student-t-distributed with k degrees of freedom [e.g. Gelman
et al., 2014]. A different choice of π(θ) conferring more adaptive shrinkage properties is
the ‘regularized horseshoe’ [Carvalho et al., 2009, 2010, Piironen and Vehtari, 2015, 2016,
2017]. Given constants c, d and hyperparameters τ , λ = {λ1, . . . , λp+q}, the hyperprior is
π(θ) ≡ π(τ)

∏p+q
j=1 π(λj), where

π(τ) = C+(τ |0, 1); π(λj) = C+(λj|0, 1), j = 1, . . . , p+ q

θj ≡ θ(τ, λj) =
(
1/d2 + 1/[c2τ 2λ2

j ]
)−1/2

⇒πSZ(β|θ) =

p+q∏
j

N(βj|0, θ2
j ). (1)

C+ indicates the positive half-Cauchy distribution. The SZ subscript indicates ‘shrinkage to
zero’. The hyperparameter τ globally shrinks all parameters, while the λjs multiplicatively
offset τ and thus admit large individual variance components. The original horseshoe [Car-
valho et al., 2009] implicitly used c = 1 and d = ∞, i.e. θj = τλj, and others have since
generalized it. First, Piironen and Vehtari [2016] suggested considering alternative values
of c, which scales the global shrinkage, by linking its value to an implicit assumption about
the a priori effective number of non-zero parameters in the model, say ξeff. The relationship

is given by ξeff ≈
∑

j

(
1 + [σ/

√
n]2θ−2

j

)−1
, where σ is the dispersion. So, for example, if

p + q = 20, n = 500 and σ = 2, under the original horseshoe, the prior mean of ξeff is
E[ξeff] ≈ 17.1. If instead c = 0.01, then E[ξeff] ≈ 3.3. Typically, using c = 1 codifies a
prior belief that most of the p + q parameters are non-zero, which is unlikely when p + q
itself is large. Further, the expression for ξeff highlights that the choice of c ought to scale
with σ/

√
n, all other things being equal. Larger sample sizes warrant smaller values of c.

Based on this, Piironen and Vehtari recommend selecting ξ̃eff = E[ξeff] and then, assuming

σ−2 is fixed, numerically solving ξ̃eff = E
[∑

j

(
1 + [σ/

√
n]2θ−2

j

)−1
]

for c (θj is a function

of c), where the expectation is taken with respect to π(τ, λj). The result will usually be
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c� 1.

Subsequent work by Piironen and Vehtari [2017] argued that the original horseshoe tends
to under -shrink large elements of β. A numerical consequence of this is that the original
horseshoe may encounter challenges in its stochastic search through heavy tails [Piironen and
Vehtari, 2015]. As a solution to both of these problems, they suggest to soft-truncate the
tails of the horseshoe prior by including a diffuse normal prior with variance d2. Choosing
a finite-valued d results in the regularized horseshoe prior. Our strategy for choosing the
hyperparameters c and d in this paper is to set d equal to a large value, d = 15, and then
numerically solve ξ̃eff = E[

∑
j(nσ

−2θ2
j )/(1 +nσ−2θ2

j )] for c, as before. A large d has minimal
effect in the middle of the horseshoe prior but effectively thins out the heavy tails. We
further discuss ξ̃eff in Section 5. The prior in (1) is the hierarchical shrinkage prior that we
will extend in Section 4 to adaptively incorporate historical information. But first, Section
3 considers the prerequisite non-adaptive prior using the historical information alone.

3 Historical Shrinkage Prior

Separate the covariate vector into Xo and Xa, of length p and q, respectively. The original
covariates Xo were measured in the historical analysis, and the added covariates Xa were
not. We are interested in modeling E[Y |Xo = xo, Xa = xa], but the historical model only
estimates the smoothed version E[Y |Xo = xo] = E[E[Y |Xo = xo, Xa]|Xo = xo]. The
historical analysis conveys information about

g(E[Y |Xo = xo]) = µhist + (xo)>α, (2)

This knowledge is quantified by the posterior distribution of α given the historical data,
about which one likely only has access to summary statistics, e.g. the mean and covariance
matrix. Our interest is not in model (2) but rather the embiggened model

g(E[Y |Xo = xo, Xa = xa]) = µ+ (xo)>βo + (xa)>βa. (3)

We have a dataset of n observations, {y,xo,xa} and a likelihood π(y|βo, βa). A standard
analysis of {y,xo,xa} alone might employ a shrinkage-to-zero prior as described in Section
2; that prior does not distinguish between historical and current covariates. Keeping in mind
our ultimate goal of incorporating the historical information we have about α, this section
lays out an alternative prior formulation based upon the historical analysis. We will then
combine these priors in Section 4.

3.1 Naive Bayesian Update

A naive Bayesian (NB) update would directly apply the historical posterior on α as a prior
on βo, since these parameters correspond to the same set of covariates, namely Xo. More
formally, one might use mα ≡ E[α] and Sα ≡ Var[α] as the respective prior mean and
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variance for βo. Then, given an optional scaling hyperparameter η, a conditional prior might
be

πNB(βo|η) = N(βo|mα, ηSα) (4)

However, model (2) cannot hold for all patterns xo if model (3) is the true generating model
unless βa = 0 (or, if for some fixed q × p matrix of weights B, Xa = BXo almost surely.
In the special case that g is the identity link, this condition may be relaxed to equality in
expectation, i.e. E[Xa|Xo = xo] = Bxo). Thus, in general, the naive Bayesian is implicitly
assuming that βa ≈ 0, so as to be able to equate α and βo in (4). To be consistent with
this assumption, πNB(βo|η) should be accompanied by a prior on βa that strongly shrinks to
zero. We discuss this further in Section 4.

3.2 Sensible Bayesian Update

Although the naive Bayesian update may improve efficiency, by construction it assumes
α ≈ βo and βa ≈ 0. In general α and βo are not equal, neither in value nor interpretation.
Further, it is illogical to begin with a strong prior assumption that βa – the novel set of
covariates of interest – is approximately zero. The naive Bayesian update will introduce
bias when βa is far from zero. A more sensible Bayesian update would approximate the
many-to-few mapping from {βo, βa} to α and place a prior on that mapping. That mapping
naturally arises from iterating the conditional expectation of Y given Xo = xo:

E[Y |Xo = xo] = E[E[Y |Xo = xo, Xa]|Xo = xo] = E[g−1
(
µ+ (xo)>βo + (Xa)>βa

)
|Xo = xo].

Applying Model (2), i.e. taking g(·) of both sides, which – because the true(r) model is
(3) – will only be an approximation of the conditional mean of Y given Xo, we obtain the
following:

µhist + (xo)>α ≈ g E[g−1
(
µ+ (xo)>βo + (Xa)>βa

)
|X = xo] (5)

µhist ≈ g E[g−1
(
µ+ (Xa)>βa

)
|Xo = 0]. (6)

This relates the available historical model with the current model. In particular, (6) obtains
an approximation for the historical intercept parameter µhist by plugging in xo = 0, which
is predicated on xo = 0 falling within the observed support of Xo and achieved by centering
the covariates. This is useful because taking the difference between (5) and (6) completely
removes µhist from the equation:

(xo)>α ≈ g E[g−1
(
µ+ (xo)>βo + (Xa)>βa

)
|Xo = xo]− g E[g−1

(
µ+ (Xa)>βa

)
|Xo = 0].

(7)

Equation (7) is the basis of the sensible Bayesian update: it links Model (3) to a linear
function of the parameters from Model (2), about which there is historical information.
Furthermore, like the naive Bayesian update, the sensible Bayesian update avoids borrowing
information on the historical intercept µhist. This relaxes a critical assumption: we do not

6



need to assume that the historical and current data generating models are identical but
rather that the regression coefficients, that is, the underlying generating values of {βo, βa},
are identical. We discuss this more in the concluding section.

When the link function g is non-linear, constructing a prior based upon (7) would necessitate
a Jacobian adjustment, and the adaptive priors that we subsequently develop in Section 4
would require numerically integrating over this Jacobian at each iteration of the Markov
Chain, rendering such an approach computationally intractable. Practically, then, we must
further linearize the mapping to obviate the Jacobian adjustment. Moving g across the
integrals,

(xo)>α ≈ E[µ+ (xo)>βo + (Xa)>βa|Xo = xo]− E[µ+ (Xa)>βa|Xo = 0]

= (xo)>βo +
(
E[Xa|Xo = xo]> − E[Xa|Xo = 0]>

)
βa. (8)

For a given p-length vector xo, we can use Equation (8) to link a (p+ q)-dimensional set of
parameter values {βo, βa} to a linear combination of α, capturing one dimension of infor-
mation about α. With a linearly independent set of p vectors xo, we can create the desired
(p+ q)→ p mapping and capture the available p dimensions of information.

In theory, (8) holds for any arbitrary vector xo. However, as a consequence of the deriva-
tions in this section, we intuitively understand xo to correspond to a vector of the original
covariates. This is important because we need to be able to calculate or approximate the
expectations in the mapping. Let V o denote a p×p matrix of linearly independent columns,
with the jth row representing a hypothetical pattern of the original covariates. Analogously,
let V a denote a p× q matrix of p hypothetical patterns of the added covariates. Then, the
length-p vectorized mapping is

voα ≈ voβo + (E[V a|V o = vo]− E[V a|V o = 0p×p]) β
a

⇒ α ≈ βo + Pβa, (9)

where P ≡ (vo)−1 (E[V a|V o = vo]− E[V a|V o = 0p×p]). Analogous to the naive Bayesian
update,

πSB(βo + Pβa) = N({βo + Pβa}|mα, ηSα). (10)

Here vo is fixed and known. Contrasting (4) and (10), the latter incorporates a linear offset
to account for the differences in Model (2) and (3). The sensible Bayesian update thus
approximates and accounts for the difference between α and βo. However, the prior in (10)
will still be insufficient on its own, as it only informs p dimensions of a p+q parameter space.
We return to this point in Section 4.

The rows of vo must form a linearly independent set, i.e. vo must be invertible, so that
information on α is not lost in the transformation. Additional minimal requirements come
from noting that the integral in the expectation of (9) can be numerically estimated by
repeatedly sampling from the conditional distribution of the augmented covariates given the
original covariates and averaging over these samples. This is symbolically written as

P ≈ (vo)−1 1

M

M∑
m=1

(
V a

(m) − Ṽ a
(m)

)
, (11)
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where V a
(m) ∼ F (V a|V o = vo) and Ṽ a

(m) ∼ F (V a|V o = 0p×p). With this in mind, the
rows of vo, which represent hypothetical patterns of the original covariate, should ideally be
uncorrelated with each row in xo, but, at the same time, not too “far” from the distribution
of xo. We therefore selected vo to be the set of eigenvectors from Sα.

After setting up the matrix vo appropriately, multiple imputation with chained equations
(MICE) provides a fast and flexible approach for calculating (11). We need to draw M
samples of V a

j ∼ F (V a|V o = voj ), for each j, and M samples of Ṽ a ∼ F (V a|V o = 0). We will
use the n×(p+q) matrix {xo,xa} to infer the joint distribution of {Xo, Xa}. Operationally,
first stack this matrix on top of a p×(p+q) matrix, with the jth row being the length-(p+q)
vector {voj ,NA, . . . ,NA}, that is the jth row of vo followed by a length-q vector of “missing”
values. These are the components to sample V a

(m) in (11). Next, stack this (n+ p)× (p+ q)

matrix onto a single additional row vector {0, . . . , 0,NA, . . . ,NA}, which will be used to
sample Ṽ a

(m) in (11). Feed the resulting (n + p + 1) × (p + 1) matrix into the imputation
software to obtain the needed multiple imputations. Because a monotone missingness pattern
is satisfied by construction, one iteration of MICE is sufficient for convergence. Note that,
in contrast to typical uses of MICE, we do not condition on the outcome Y because it does
not appear in Equation (7).

Both priors here further consideration: the sensible Bayesian is intuitively preferable by
adjusting for model misspecification, and the naive Bayesian avoids modeling the distribution
of Xa given Xo.

4 Adaptive Weighting

Alone, neither type of prior from Section 2 or 3 would be acceptable in the context of this
paper: the shrinkage-to-zero prior in Section 2 ignores the historical data, and the priors
in Section 3 may be incomplete, particularly when the historical information is limited to a
small number of covariates. In this section, we develop combined versions of the historical
priors that continuously and adaptively vary between the priors in Section 2 and Section
3. Intuitively, these adaptive versions, called ‘naive adaptive Bayes’ (NAB) and ‘sensible
adaptive Bayes’ (SAB), should be able to incorporate the historical information without
sacrificing potentially large efficiency gains coming from shrinking to zero. We intuitively
describe the two adaptive priors before formally defining them. Both share the following
commonalities. Similar to the power prior, a hyperparameter φ ∈ [0, 1] weights the historical
information by inversely scaling the variance Sα; larger (smaller) values of φ reflect greater
(less) incorporation of the historical information. When φ is equal to zero, both NAB and
SAB reduce to the shrinkage-to-zero prior in (1).

4.1 Naive Adaptive Bayes

Where NAB and SAB diverge is at φ = 1, which corresponds to full use of the historical
information. NAB extends the α ≈ βo assumption of its non-adaptive counterpart in Section
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2.1. Therefore, the historical prior on βo in (4) is fully used, and any additional shrinkage of
βo is very weak, since prior information on βo is already available. Moreover, βa should be
strongly shrunk to zero, since that is generally the only parameterization in which α ≈ βo.
Mathematically, the NAB conditional prior given real-valued hyperparameters φ and τ and
vector-valued hyperparameters λ and λ̃ is

πNAB(βo, βa|φ, η, τ, λ, λ̃) = N(βo|mα, ηSα/φ)

p+q∏
j=1

N(βj|0, θ̃2
j )ZNAB(φ, η, τ, λ), (12)

θ̃j(φ, τ, λ, λ̃) =



(
1

d2
+

1− φ
c2τ 2λ2

j

)−1/2

, j = 1, . . . , p(
1

d2
+

1− φ
c2τ 2λ2

j

+
φ

c̃2λ̃2
j

)−1/2

, j = p+ 1, . . . , p+ q

,

ZNAB(φ, η, τ, λ) =

(∫
βo

N(βo|mα, ηSα/φ)

p∏
j=1

N(βj|0, θ̃2
j )dβ

o

)−1

(13)

As desired, the impact of the shrinkage-to-zero prior decreases with φ. τ and λ are the same
as in Section 2.1, and the constants c and d are selected as previously described. We set the
other constant, c̃, equal to 0.05, i.e. a small but non-zero number to reflect the assumption
that βa ≈ 0 when φ = 1; however, we introduce an auxiliary hyperparameter vector λ̃, which
allow for exceptionally large elements of βa if warranted by the data. The NAB prior uses
the constant d, which is not scaled by φ, to guarantee propriety of the posterior for any
φ ∈ [0, 1]. To summarize, NAB varies between standard shrinkage to zero (φ = 0) and a
Bayesian update under the assumption that α ≈ βo and βa ≈ 0 (φ = 1).

Remark 1 The normalizing constant ZNAB(φ, η, τ, λ) in (13) ensures that the prior is a
proper density for any configuration of the hyperparameters and must be calculated when
any of the hyperparameters are themselves random. Its analytic expression is derived in
the Supplement. The integral, which is calculated at each step of the Markov Chain, would
become computationally intractable in the presence of a Jacobian, which is why we linearized
the mapping, as in Equation (8).

4.2 Sensible Adaptive Bayes

For SAB, the modified prior in Equation (10) is fully employed when φ = 1, and any
additional shrinkage of βo to zero is weak. However, because the sensible Bayesian update
adjusts for the difference between βo and α, it is not necessary to assume that βa ≈ 0. Thus,
in SAB, the value of φ does not affect the contribution of the variance-reducing prior on βa.
The SAB conditional prior given real-valued hyperparameters φ and τ and vector-valued
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hyperparameter λ is

πSAB(βo, βa|φ, η, τ, λ) = N({βo + Pβa}|mα, ηSα/φ)

p+q∏
j=1

N(βj|0, θ̃2
j )ZSAB(φ, η, τ, λ), (14)

θ̃j(φ, τ, λ) =


(

1

d2
+

1− φ
c2τ 2λ2

j

)−1/2

, j = 1, . . . , p(
1

d2
+

1

c2τ 2λ2
j

)−1/2

, j = p+ 1, . . . , p+ q

ZSAB(φ, η, τ, λ) =

(∫∫
βo,βa

N({βo + Pβa}|mα, ηSα/φ)

p+q∏
j=1

N(βj|0, θ̃2
j )dβ

odβa

)−1

An expression for ZSAB(φ, η, τ, λ) is derived in the Supplement. Table 1 compares the values
of the hyperparameter θj for the two adaptive Bayesian approaches. Like the NAB, the SAB
prior is also proper for any φ as a consequence of d being finite.

4.3 Hyperpriors

We describe here our choices of hyperprior for the hyperparameters φ, η, and, for NAB, λ̃.
The hyperpriors on the global and local shrinkage components, τ and λ, remain as given in
Section 2.

The hyperparameter φ is critical because it distributes prior weight between shrinkage to zero
(φ close to zero) and historical shrinkage (φ close to one). Thus, we consider two options.
The first, which we call agnostic, is uniform over the unit interval. The second is a truncated
normal distribution with mean and standard deviation of 1 and 0.25, respectively. This is
an optimistic hyperprior in the sense that the mode is φ = 1, encouraging full use of the
historical information.

The hyperparameter η independently controls the historical prior shrinkage. This could
simply be set to 1; we used an inverse-gamma distribution with shape and scale equal to
2.5, although our findings were generally insensitive to multiple different choices that we
considered.

Finally, the hyperparameter vector λ̃, used by the NAB prior, controls the prior scale of
βa when φ = 1. As with η, this could be set to 1, which would give that βa is normal
with standard deviation (1/d2 + 1/c̃2)−1/2 = (1/152 + 1/0.052)−1/2 ≈ 0.05 when φ = 1. We
instead model λ̃ as an inverse-gamma with shape and scale equal to 0.5, which allows for
some elements of λ̃ to be exceptionally large.

5 Simulation Study

We conducted a simulation study of logistic regression to evaluate our proposed methodology
against a variety of data generating scenarios. All analyses were conducted in the R statistical
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environment [R Core Team, 2016, Wickham, 2009, van Buuren and Groothuis-Oudshoorn,
2011] and its interface with Stan [Carpenter, 2017, Stan Development Team, 2017, 2018],
which numerically characterizes posterior distributions using Hamiltonian Monte Carlo. The
Stan scripts implementing the NAB and SAB priors are in Supplement S3.

Varying between each scenario were the fixed, unknown values of {βo, βa} to be estimated
(ten possibilities described in Table 3, ranging from p+ q = 6 to 100 predictors), the sample
size of the historical data analyses (nhist ∈ {100, 400, 1600}), and the sample size of the
current data analyses (n ≡ ncurr ∈ {100, 200}). For each unique data generating scenario,
we independently sampled 80 ‘historical’ and ‘current’ datasets of size nhist and ncurr, re-
spectively. To generate the data, the covariates {Xo, Xa} were sampled from multivariable
normal distributions with constant correlation equal to 0.2. Then, given {Xo, Xa}, Y was
sampled according to a logistic regression with regression coefficients {βo, βa} fixed at one
of the values in the third column of Table 3. The true value of the intercept parameter in
the historical data (µhist = −1) was larger than that of the current data (µ = −2), yielding
different marginal prevalences of the outcome. Each historical dataset, yhist, consisted of
independent draws of {Y,Xo}, whereas each current dataset, y ≡ ycurr, consisted of inde-
pendent draws of {Y,Xo, Xa}. In summary, the historical and current generating models
differ in the true value of the intercept; the historical and current datasets structurally differ
in that the former does not use Xa.

The fourth column of Table 3 gives the asymptotic coefficients from the misspecified logistic
regression of Y on Xo, which the historical data analysis estimates. To emulate the historical
analysis, an initial Bayesian logistic regression was fit to yhist to estimate model (2). We
applied a regularized horseshoe prior on α using Equation (1) with d = 15 and ξ̃eff = p1/3−0.5,
n = nhist, and σ = 2 to determine the value of c. So, for example, when p = 20, the assumed
effective number of non-zero parameters was about 2.21, and when nhist = 400, solving
2.21 = E[

∑
j(nhistσ

−2θ2
j )/(1 + nhistσ

−2θ2
j )] yields c ≈ 0.0060. Fixing σ = 2 in this equation

corresponds to the largest dispersion in a logistic GLM and usually results in slightly less than
ξ̃eff effective covariates compared to σ < 2 [Piironen and Vehtari, 2016]. We obtained samples
from the historical posterior distribution π(α|yhist). From this, we obtained estimates of mα

and Sα, the ingredients for the adaptive priors in the current data analysis: (12) and (14).
We then conducted the current analysis, which consists of fitting another Bayesian logistic
regression, this time to estimate the larger model in (3), using ycurr. Each of five priors in
the third column of Table 2 was paired with the likelihood of ycurr, yielding five posterior
distributions to be compared. Four of these priors are variants of the adaptive Bayesian
update priors outlined in Section 4: two adaptive priors times two choices of hyperpriors on
φ. The other prior, namely the regularized horseshoe prior in (1), was used as a reference;
both of the adaptive priors would reduce to the regularized horseshoe prior if φ ≡ 0. This
is the ‘Standard’ posterior. We used d = 15 and ξ̃eff = (p+ q)1/3 − 0.5, n = ncurr, and σ = 2
to solve for c. We measured performance using root mean-squared error (RMSE), defined
by

RMSE =
√
Eπ(β|y)(β − b)>(β − b), (15)

where b is the fixed, true value of the regression coefficient vector, and the expectation is
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taken over both the original and added covariates. For each of the historical-based adaptive
priors, we calculated the RMSE ratio compared to the standard approach, such that ratios
less than one indicate relatively better performance of the historical-based prior. For each
unique data generating mechanism, we report the distribution of 80 RMSE ratios for each
adaptive prior. The top panel of Figure 1 plots the RMSE ratios from the first 5 rows of
Table 3, for which p = 4 and q = 2, and the bottom panel plots the RMSE ratios from the
final 5 rows, for which p + q ranged from 22 to 100. Figures S1 and S2 in the supplement
plot the RMSE ratios separately for the original and added covariates, respectively.

In general, more historical data, i.e. larger nhist, improved the relative performance of the
adaptive priors, whereas more current data, i.e. larger ncurr, decreased the relative perfor-
mance of the adaptive priors. Both of the adaptive priors were relatively less useful when
p + q was small: across all datasets in the top panel of Figure 1, the middle quartiles of
the RMSE ratios for NAB(agnostic) was {0.68, 0.86, 1.04}, and for SAB(agnostic) it was
{0.63, 0.76, 0.89}; across all datasets in the bottom panel, these were {0.21, 0.51, 0.69} and
{0.25, 0.56, 0.76}, respectively. One likely reason for this is the inherent variability from
estimating many regression coefficients. Comparing the adaptive priors, NAB outperformed
SAB in scenarios for which integral required by the latter ((9) and (10)) is difficult to estimate
well through multiple imputation, e.g. p� q.

6 Application: Mortality Risk Prediction in Pediatric

ECMO Patients

We demonstrate our methods on the data example discussed in the introduction. Ped-
RESCUERS was fit to nhist = 1611 historical patients, and p = 11 risk factors for short-term
mortality were included. Our current data consists of ncurr = 178 patients, on which we
have measured both the p = 11 original and the q = 11 added risk factors. The overall
mortality rate in the Ped-RESCUERS cohort was 40.8%; in the current cohort it was 26.4%.
Thus, ignoring historical information on the intercept µhist, as both types of prior do, is
prudent.

We fit the following seven Bayesian logistic regression models. Ped-RESC is the model of the
eleven original risk factors from Barbaro et al. [2016], using the 1611 patients. Ped-RESC2
fits this same model using the current 178 patients, using weakly informative Cauchy priors
on the regression coefficients; we include this model so as to be able to assess differences
due to study populations. The other five priors are as considered in the simulation study: a
regularized horseshoe prior on all 22 risk factors (‘Standard’), and agnostic and optimistic
versions for each of the SAB and NAB priors. For all five priors, we used ξ̃eff = 11 to reflect
an optimistic prior assumption that 11/22 of the coefficients are non-zero. To account for
sporadic missingness in the covariates of the current dataset (about 4% across all covariates),
we used a pseudo-Bayesian strategy proposed by Zhou and Reiter [2010]. We first imputed
100 datasets using MICE. Then, for each completed dataset and each prior, we sampled 400
draws from the posterior distribution of the parameters conditional upon that completed
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dataset, concatenating these across imputations to construct a sample of 400×100 = 40, 000
posterior draws “averaged” over the imputations.

All odds ratios were standardized with respect to the observed distribution of the 178 current
patients, allowing for a comparison of magnitudes both between and within all priors. Table
4 gives the posterior medians of the standardized odds ratios. Also included is the larger
of (i) Pr(eβk > 1) and (ii) Pr(eβk < 1). Bolded results correspond to those with a > 75%
probability of falling above or below 1, a simple binary indicator of variable importance. The
first two blocks of rows correspond to the original risk factors, and the second two blocks
of rows correspond to the added risk factors. Figure 2 and 3 give boxplots of the posterior
distributions for the original and added covariates, respectively.

Comparing the PED-RESC and PED-RESC2 rows, the direction and magnitude of the
observed associations in the sets of original risk factors were consistent between the two
cohorts. One exception was in PED-RESC2, in which no patients with a primary diagnosis
of asthma died, i.e. quasi-complete separation. All variable importance probabilities were
generally closer to 1 in PED-RESC, a consequence of its larger sample size. The Standard
approach (a shrinkage-to-zero prior), shrinks nearly all odds ratios, both original and added,
close to one. This is one consequence of the size of ncurr relative to p+ q. In contrast, all of
the adaptive priors recover some of the original associations from PED-RESC.

Using the NAB priors, the variable importance probabilities of the original risk factors
were all greater than 75%, as well as those of added risk factors of ALT and lactate; these
were also important according to the Standard approach. The SAB priors did not find
PaCO2, malignancy, or preECMO milrinone to be important and, among the added risk
factors, identified bilirubin, ALT, lactate, and PF ratio as important. The posterior means
of the tuning parameter φ were 0.61 and 0.58, for NAB and SAB when π(φ) = Unif(φ|0, 1)
(‘agnostic’) and 0.84 and 0.83, respectively when π(φ) = N(φ|1, 0.252) (‘optimistic’).

From Figure 2, there are two general differences between the Standard and the Adaptive
priors. For the two original covariates that Standard identified as important (primary diag-
nosis of pertussis and number of hours intubated prior to ECMO), the posterior variability
of the adaptive priors is smaller than the Standard prior. Among the remaining original
coefficients, the Adaptive priors have larger posterior variability than the Standard prior;
this is a consequence of the shrinkage-to-zero prior, which yields small posterior variance for
coefficients that it identifies as likely to be zero-valued. The Standard prior is not necessarily
preferred, because some of this shrinkage likely reflects an inability to reliably estimate co-
efficients rather than confidence that the coefficients are truly close to zero. In general, the
SAB priors deviate more from PED-RESC than the NAB priors: NAB shrinks βo directly
towards the PED-RESC estimates, whereas SAB shrinks a linear combination of βo and βa

toward the PED-RESC estimates.
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7 Discussion

We have proposed novel adaptive Bayesian updates of a GLM when the historical model only
includes a subset of the covariates of interest. The priors, with acronyms ‘NAB’ or ‘SAB’,
adaptively combine literal prior information from the historical model, including underly-
ing statistical uncertainty, with variance-reducing shrinkage to zero. Thus, they are flexible
enough for use in many contexts, ranging from the historical information being highly in-
formative about a few coefficients to being weakly informative about most coefficients, as
evidenced by our simulation study. They generally outperformed or matched in performance
a standard approach that ignores historical information. We demonstrated these ideas in
our motivating case study for predicting short-term mortality risk in pediatric ECMO pa-
tients.

Specifically, we combined a registry-based mortality risk prediction model (the historical
model) fit to 1611 patients’ data with a broader model that includes biometric measurements
(the current model) recorded on 178 patients. A standard shrinkage-to-zero prior shrunk
most covariates, both original and added, to zero, which is typical behavior for such priors in
the presence of substantial uncertainty. Taking into account a clinical perspective, it seems
unlikely that only two of the eleven original variables identified by Ped-RESCUERS remain
as risk factors for mortality after including the added biometric measurements. Agreeing
more with our clinical expectation, the adaptive priors re-confirmed most of the original
Ped-RESCUERS risk factors and also identified two (NAB) or four (SAB) of the added
covariates as being potential risk factors. Lack of importance in some of the original factors
may be due to correlation in the predictors: PaCO2 and lactate are negatively correlated,
both associated with the degree of acidosis in the body. Similarly, bilirubin and ALT both
measure liver damage, which may explain that the NAB priors focused on ALT alone whereas
SAB estimated both bilirubin and ALT as important. One finding that is counter to clinical
intuition is SAB’s failure to identify malignancy as a meaningful risk factor; NAB found it
to be more associated with mortality, which is consistent with the Ped-RESCUERS model
as well as our clinical prior.

As outlined in Section 3, the SAB prior requires specification of an imputation model for
Xa given Xo, c.f. (8). In our simulation study, this approach worked well in scenarios for
which that model was readily estimated, namely p > q. Its advantage over NAB was most
evident in scenario 5; in this case, the true value of βo differed from the misspecified true
value of α, and so NAB was substantially worse than the Standard approach because the
historical prior was biased. In contrast, in scenarios 9 and 10, for which p � q and NAB
outperformed SAB, the need for imputation was likely to the detriment of SAB (although
it still outperformed the Standard approach). Such p � q scenarios would correspond,
for example, to the exploration of the utility of adding a panel of biomarkers, Xa, to an
established risk prediction model, Y |Xo. Furthermore, there may be differences in the true
underlying imputation model between the current and historical populations that no amount
of current data could recover. NAB is free of this particular assumption and therefore not
automatically inferior to SAB in all scenarios, despite the implied value judgment in our
nomenclature of ‘naive’ versus ‘sensible’. The only difference between the historical priors
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in (4) and (10) being the offset Pβa in (10), replacing it with γPβa, γ a random variable
in [0, 1], may be one way to leverage the advantages of both adaptive priors. Importantly,
both NAB and SAB ignore information on the historical intercept µhist. Thus, rather than
assuming that the underlying data-generating mechanism [Y |Xo, Xa] is identical between
the historical and current models, they both make a less restrictive assumption that the
regression coefficients βo and βa are the same.

Shrinkage methods classically make a bias-variance tradeoff to improve overall performance:
bias in the direction of zero in exchange for a reduction in variance. In contrast, the adaptive
Bayesian updates we propose, which balance between historical-based shrinkage and shrink-
age to zero, are making a bias-bias tradeoff. Both extremes of the adaptive priors (φ = 0
and φ = 1) reduce variance, and the question is rather one of determining which type of
shrinkage is less biased.
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Figure 1: Boxplots of RMSE ratios (y-axis, on the log2-scale) comparing four adaptive priors
that make use of the historical information against a standard hierarchical shrinkage prior
against varying sample sizes of the historical data (nhist; x-axis) for ten true values of the
regression coefficients (bk, k = 1, . . . , 10; columns) taken from Table 3 and varying sample
sizes of the current data (ncurr; rows). Each boxplot compares the posteriors across 50
independent datasets. Smaller ratios indicate that better performance of the corresponding
adaptive prior.
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Figure 2: Boxplots of posterior draws for the original risk factors from seven Bayesian logistic
models using different priors. All models except ‘PedRESC’ and ‘PedRESC2’ also include
the added risk factors as given in Figure 3.
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Figure 3: Boxplots of posterior draws for the added risk factors from five Bayesian logistic
models using different priors. All models also include the original risk factors as given in
Figure 2.
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Table 1: Expressions for θ̃j in the adaptive Bayesian updates.
j = 1, . . . , p, i.e. βo j = (p+ 1), . . . , (p+ q), i.e. βa

NAB and SAB NAB SAB

φ = 0

(
1

d2
+

1

c2τ 2λ2
j

)−1/2 (
1

d2
+

1

c2τ 2λ2
j

)−1/2 (
1

d2
+

1

c2τ 2λ2
j

)−1/2

φ ∈ (0, 1)

(
1

d2
+

1− φ
c2τ 2λ2

j

)−1/2
(

1

d2
+

1− φ
c2τ 2λ2

j

+
φ

c̃2λ̃2
j

)−1/2 (
1

d2
+

1

c2τ 2λ2
j

)−1/2

φ = 1 d

(
1

d2
+

1

c̃2λ̃2
j

)−1/2 (
1

d2
+

1

c2τ 2λ2
j

)−1/2
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Table 2: Summary of posterior distributions evaluated in the simulation study. Because
the same likelihood is used for all methods, any differences are due to priors used. The
‘Standard’ approach is precisely the regularized horseshoe prior and used as a benchmark
for comparing performance.
Label Likelihood Prior Prior Eqn. Hyperprior: π(φ) =
Standard π(y|βo, βa) πSZ(βo, βa|τ, λ) Eqn. (1) –

NAB(agnostic) π(y|βo, βa) πNAB(βo, βa|φ, η, τ, λ, λ̃) Eqn. (12) Unif(φ|0, 1)

NAB(optimist) π(y|βo, βa) πNAB(βo, βa|φ, η, τ, λ, λ̃) Eqn. (12) N(φ|1, 0.252)1φ∈[0,1]

SAB(agnostic) π(y|βo, βa) πSAB(βo, βa|φ, η, τ, λ) Eqn. (14) Unif(φ|0, 1)
SAB(optimist) π(y|βo, βa) πSAB(βo, βa|φ, η, τ, λ) Eqn. (14) N(φ|1, 0.252)1φ∈[0,1]
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Table 3: Summary of fixed, true values of the regression coefficients {βo, βa} from the gen-
erating logistic regression model, [Y |Xo, Xa] used in the simulation study as well as the
asymptotic true values of α from the misspecified reduced model, [Y |Xo], when the covari-
ates {Xo, Xa} are jointly normally distributed with constant correlation 0.2.

Label {p, q} {βo||βa} α
b1 {4, 2} {0.5, 0.5, 0.5, 0.5||0.5, 0.5} {0.58, 0.58, 0.58, 0.58}
b2 {4, 2} {1, 0.5, 0, 0||0.5, 1} {0.99, 0.58, 0.16, 0.16}
b3 {4, 2} {1,−0.5, 0, 0|| − 0.5,−1} {0.68,−0.58,−0.16,−0.16}
b4 {4, 2} {0.5, 0.5, 0, 0||1, 1} {0.58, 0.58, 0.19, 0.19}
b5 {4, 2} {0.5, 0.5, 0, 0|| − 1,−1} {0.19, 0.19,−0.19,−0.19}
b6 {11, 11} {0.5, . . . , 0.5︸ ︷︷ ︸

4

, 0.25, . . . , 0.25︸ ︷︷ ︸
7

|| {0.45, . . . , 0.45︸ ︷︷ ︸
4

, 0.30, . . . , 0.30︸ ︷︷ ︸
7

}

2, 1, 1, 0, . . . , 0︸ ︷︷ ︸
8

}

b7 {5, 20} {0.2, . . . , 0.2︸ ︷︷ ︸
5

|| 0.2, . . . , 0.2︸ ︷︷ ︸
20

} {0.49, . . . , 0.49︸ ︷︷ ︸
5

}

b8 {20, 5} {0.2, . . . , 0.2︸ ︷︷ ︸
20

|| 0.2, . . . , 0.2︸ ︷︷ ︸
5

} {0.23, . . . , 0.23︸ ︷︷ ︸
20

}

b9 {5, 45} {1, 1, 1, 0, 0|| {1, 1, 1, 0.35, 0.35}
0.5, . . . , 0.5︸ ︷︷ ︸

10

, 0, . . . , 0︸ ︷︷ ︸
35

}

b10 {5, 95} {1, 1, 1, 0, 0|| {1.08, 1.08, 1.08, 0.38, 0.38}
0.25, . . . , 0.25︸ ︷︷ ︸

20

, 0, . . . , 0︸ ︷︷ ︸
75

}
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Table 4: Posterior medians of standardized odds ratios and, in parentheses, variable impor-
tance probabilities given as percentages, defined as the larger of (i) the posterior probability
that an odds ratio exceeds one and (ii) the posterior probability that an odds ratio falls
below one. Those in bold exceed 75.0%.

Original pH PaCO2,mmHg MAP(CMV), MAP(HFOV), admit hrs intubated hrs
cmH2O cmH2O preECMO (log) preECMO (log)

PedRESC 0.46(100.0%) 0.70(96.3%) 1.37(93.9%) 1.43(98.6%) 1.42(99.3%) 1.62(99.5%)
PedRESC2 0.37(96.1%) 0.67(77.4%) 1.54(74.4%) 1.59(83.5%) 1.63(87.1%) 2.29(95.5%)
Standard 0.99(58.9%) 1.01(59.1%) 1.01(56.0%) 1.02(61.1%) 1.01(58.7%) 1.98(90.4%)

NAB(Agn) 0.58(94.8%) 0.88(70.3%) 1.29(83.8%) 1.39(93.2%) 1.32(91.4%) 1.71(98.4%)
NAB(Opt) 0.55(97.5%) 0.83(78.3%) 1.33(89.1%) 1.41(96.2%) 1.35(95.6%) 1.67(99.0%)
SAB(Agn) 0.71(86.7%) 0.98(56.6%) 1.16(74.8%) 1.22(80.5%) 1.20(79.5%) 1.79(96.5%)
SAB(Opt) 0.63(91.7%) 0.91(66.5%) 1.26(80.8%) 1.33(86.9%) 1.26(84.9%) 1.71(96.6%)

Original malignancy preECMO DX:Asthma DX:Bronchiolitis DX:Pertussis
milrinone

PedRESC 1.22(95.1%) 1.29(95.8%) 0.75(93.9%) 0.58(100.0%) 1.33(99.5%)
PedRESC2 1.21(70.8%) 1.31(76.6%) 0.05(99.2%) 0.77(75.2%) 2.07(98.0%)
Standard 1.00(50.8%) 1.00(51.3%) 0.94(69.9%) 0.98(63.5%) 1.33(85.3%)

NAB(Agn) 1.14(80.6%) 1.18(81.5%) 0.70(91.2%) 0.65(95.7%) 1.43(98.9%)
NAB(Opt) 1.17(86.9%) 1.21(88.0%) 0.71(93.7%) 0.63(98.1%) 1.40(99.4%)
SAB(Agn) 1.03(59.1%) 1.05(63.0%) 0.83(77.8%) 0.74(88.7%) 1.52(94.5%)
SAB(Opt) 1.07(64.7%) 1.11(70.3%) 0.82(79.1%) 0.68(93.2%) 1.55(95.7%)

Added abnormal bilirubin ALT U/L (log) extent of extent of extent of
pupillary resp. mg/dL (log) leukocyt. (log) leukopen. (log) thrombocytopen. (log)

PedRESC – – – – – –
PedRESC2 – – – – – –
Standard 0.99(56.8%) 1.07(72.6%) 5.52(99.9%) 1.04(67.9%) 0.97(66.7%) 1.01(55.1%)

NAB(Agn) 0.99(54.8%) 1.05(70.9%) 4.86(99.5%) 1.03(63.8%) 0.98(62.6%) 1.01(55.3%)
NAB(Opt) 0.99(54.6%) 1.04(69.1%) 4.90(99.6%) 1.02(63.4%) 0.98(61.7%) 1.01(54.7%)
SAB(Agn) 0.99(57.9%) 1.26(81.5%) 3.27(99.1%) 1.05(67.0%) 0.95(66.6%) 1.02(59.3%)
SAB(Opt) 0.99(57.5%) 1.25(81.3%) 3.09(98.9%) 1.04(65.8%) 0.96(64.6%) 1.02(59.9%)

Added INR VIS (log) lactate PF ratio (log) preECMO acute
mMol/L (log) kidney injury

PedRESC – – – – –
PedRESC2 – – – – –
Standard 1.02(62.2%) 1.01(57.6%) 1.60(86.1%) 0.94(71.1%) 1.00(53.4%)

NAB(Agn) 1.01(58.0%) 1.01(53.7%) 1.11(78.0%) 0.96(68.5%) 1.00(50.1%)
NAB(Opt) 1.01(56.9%) 1.00(53.2%) 1.07(75.0%) 0.97(67.0%) 1.00(50.0%)
SAB(Agn) 1.02(60.6%) 1.01(54.9%) 1.54(86.1%) 0.88(76.7%) 1.00(52.2%)
SAB(Opt) 1.01(58.2%) 1.01(53.9%) 1.41(83.8%) 0.89(76.0%) 1.00(51.9%)
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