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Abstract

The Virtual Physiological Human (VPH) is a methodological and
technological framework that, once established, will enable collabora-
tive investigation of the human body as a single complex system. As part
of realizing this framework, building detailed spatio-temporal digital rep-
resentations of the human body in general, and of specific organ systems
in particular, is considered of prime importance. Such representations
should be able to describe the typical anatomical phenotype of popula-
tions of individuals and disease states. Ideally, they should also be multi-
scale representations amenable to expressing the desired phenotypes at
the relevant spatial and temporal scales.

The use of a common reference frame is a necessity to make objective
and accurate comparisons between individuals’ groups or of a given indi-
vidual over time. Tied in with the development of such a reference frame
are the tools to transform measurements from various studies to the frame
and vice versa. Typically the reference frame is taken to be a model of
normality of the anatomical phenotype at hand, expressed as an average
and a range of statistically plausible variations, obtained from training
data drawn from the population. New measurements are then assimilated,
yielding corresponding model parametererizations.

Construction of a common reference frame, or atlas, for the (human)
heart is fraught with challenges. The mammalian heart has a complex
morphology with great variability across populations, it is a highly dy-
namic morphology due to cardiac function, and it contains a large num-
ber of substructures that ultimately enable this electro-fluid-mechanical
bio-machine to work efficiently. Thus, a good cardiac atlas is ideally
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Abstract

multi-scale, spatio-temporal, multi-structural, and its construction must
be very robust to large morphological variation and capable of handling
large amounts of data in a highly automated manner.

This thesis is centered on the construction of a cardiac atlas to serve
as such a reference frame. The construction covers the entire construction
pipeline, starting from a set of 3D+t multislice computed tomography im-
ages, then performing a spatial normalization of these images, segmenta-
tion of the synthesized mean image, multi-structure meshing, and finally
mapping of the mesh back to the population of images. In addition, two
applications are presented in this thesis.

First, the atlas is used to frame a spatio-temporal model of cardiac
morphology which models the variability along both ‘axes’ simultane-
ously. Such a unified approach should be preferable over existing meth-
ods, which decouple the two sources of variation and then model them
separately, in isolation.

Second, the proposed atlas is applied to develop an acceleration tech-
nique for performing personalized simulation of cardiac electrophysiol-
ogy (EP). The prior knowledge encapsulated in our atlas is used, in con-
junction with a numerical solver of cardiac EP, to build a statistical model
linking cardiac morphology with the steady states of myocardial cell mod-
els that pre condition detailed cardiac EP simulations. This application
puts the proposed dynamic cardiac atlas in the context of VPH-related
simulations, of which the computational costs are currently greatly in ex-
cess of what is acceptable for their adoption in current clinical practice.
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Resumen

El Humano Fisiolégico Virtual (VPH en inglés) es un marco meto-
dologico y tecnolégico que, una vez establecido, habilitard la investiga-
cion colaborativa sobre el cuerpo humano como un tinico sistema com-
plejo. Como parte de la realizacion de este marco, estd considerado de su-
ma importancia construir representaciones digitales espacio-temporales,
de alto nivel de detalle, del cuerpo humano en general y de sus siste-
mas organicos en especifico. Tales representactiones deberan facilitar la
descripcion del fenotipo anatémico tipico de poblaciones de individuos y
estados de enfermedad. Idealmente, también deben ser representaciones
multi-escala que puedan expresar los fenotipos deseados en las escalas
pertinentes en espacio y tiempo.

La representacion de datos en un marco de referencia comun es una
necesidad para hacer comparaciones imparciales y exactas entre indivi-
duos o de un individuo a lo largo del tiempo. Atado con el desarrollo de
tal marco estd el desarrollo de las herramientas para transformar las me-
didas de varios estudios al marco y viceversa. Tipicamente, el marco re-
presenta un modelo de normalidad del fenotipo anatémico en utilizacion,
expresada por un promedio y un rango de variaciones estadisticamente
plausibles, obtenidos de datos de entrenamiento adquiridos de la pobla-
cion. Entonces, las nuevas medidas seran asimiladas, resultando en las
parametrizaciones correspondientes del modelo.

La construccién de un marco de referencia, o atlas, del corazén (hu-
mano) presenta una multitud de obsticulos. El corazén mamifero tiene
una morfologia compleja con gran variabilidad dentro de poblaciones,
es una morfologia altamente dindmica debido a la funcién cardiaca, y

v




“main” — 2013/12/4 — 15:53 — page VI — #6

Resumen

contiene un gran nimero de subestructuras que dltimamente permiten el
funcionamiento eficaz de esta maquina electro-fluido-mecénica. Enton-
ces, idealmente, un buen atlas cardiaco es multi-escala, espacio-temporal,
multi-estructura, y su construccion debera ser robusta a grandes varia-
ciones morfoldgicas y capaz de procesar grandes cantidades de datos de
manera altamente automatizada.

Esta tesis estd centrada en la construccion de un atlas cardiaco, para
servir como tal marco de referencia. La construccién consiste en la tra-
yectoria completa, empezando con un conjunto de imagenes 3D+t de to-
mografia computacional multi-corte, y entonces hacer una normalizacién
espacial de las imdgenes, segmentacion de la imagen promedio sinteti-
zada, un mallado multi-estructura, y finalmente la transformacién de la
malla a la poblacién de imagenes. Adicionalmente, la tesis presenta dos
aplicaciones del atlas.

Primero, el atlas se usa para enmarcar un modelo espacio-temporal de
la morfologia cardiaca que modela la variacion a lo largo de ambos ‘ejes’
simultdneamente. Tal propuesta debe ser preferible sobre otros métodos
existentes, los cuales desacoplan las dos fuentes de variacion para mode-
larlas separadamente, en isolacion.

Segundo, el atlas esta aplicado al desarrollo de una técnica de acelera-
cién para simulaciones personalizadas de electrofisiologia (EF) cardiaca.
El conocimiento previo encapsulado en nuestro atlas se usa, en conjunto
con un solver de EF cardiaca, para construir un modelo estadistico conec-
tando morfologia cardiaca con los steady states de modelos celulares del
miocardio que precondicionan a simulaciones detalladas de EF cardia-
ca. Esta aplicacion posiciona el propuesto atlas dindmico cardiaco en el
contexto de simulaciones relacionadas al VPH, cuyo costo computacional
actual estd en gran exceso de lo aceptable para su adopcién en la prictica
clinica de hoy en dia.

Agradezco la ayuda de Martha Aguilar en traducir el resumen.
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That muscle, the heart, was a double pump that had to beat from well
before birth to the final moment before death and do so with unbroken
rhythm, unwearying strength, under all conditions. It was the greatest
heart in the animal kingdom. The heart of no other mammal beat more
than a billion times or so before even the most delayed approach of death,
but after a billion heartbeats the human being was merely in early middle-
age, in the prime of his strength and power. Men and women had lived
long enough to experience well over three billion heartbeats.

—— Isaac Asimov, “Fantastic Voyage”
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Chapter 1
INTRODUCTION

1.1. The Heart and its Function(ing)

It is common knowledge that the heart is essential for all known vertebrate animal
life forms. It is also commonly known from biology class that we humans—and all other
mammals and birds—have a four-chamber heart. Beyond that, the commonality of the
knowledge decreases rapidly.

As illustrated in Fig. 1.1, the human heart has two sides with two chambers each:
left and right ventricle, and left and right atrium. The right heart contains deoxygenated
blood, while the left heart contains oxygenated blood. This is due to the double cycle
that is the human cardiovascular system. One loop of this ‘8’ may start at the right
ventricle (RV), from which deoxygenated blood is ejected towards the lungs through the
pulmonary artery (PA). There, the blood is oxygenated and re-enters the heart at the left
atrium (LA) via the pulmonary veins (PVs). After transfer to the left ventricle (LV), it
is ejected into the aorta to provide the entire body with oxygenated blood, after which
the blood returns to the heart at the right atrium (RA) via the superior and inferior venae
cavae (SVC and IVC). It then moves into the RV, and the double loop repeats.

This is a very simplified way of describing the result of an extraordinarily complex
chain of events that is repeated roughly every second of our life, or some 2.5 billion
times during a lifespan of about 80 years.

1.1.1. Electrophysiological Function

The heart is a very intricate machine that works autonomously, although its func-
tioning can be influenced by the sympathetic and parasympathetic nervous system when
necessary. It controls the heart rate through the sinus node, a set of specialized cells
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1.1. THE HEART AND ITS FUNCTION(ING)

located in the coronary sinus in the right atrium [7], shown top left in Fig. 1.2. This
node is sometimes referred to as the pacemaker of the heart, and in this capacity it syn-
chronizes the cardiac muscle cells, myocytes, to contract in unison. Otherwise, the cells
would contract on their own, but in random fashion. The electrical impulse from the
sinus node travels through the specialized conduction system of the right atrium, com-
prised of the terminal crest and Koch’s triangle, to the atrioventricular (AV) node , and
through Bachmann’s bundle to the left atrium. Along the way, both atria are activated
(depolarized).

After a short delay, the AV node allows the electrical signal to enter the interventric-
ular septum through the bundle of His, which splits there into the left and right bundle
branches. Finally, these bundles branch into an intricate network of fibers known as the
Purkinje fibers. This high-velocity conduction system is covered in an insulating sheath

Figure 1.1: Diagram of cardiac anatomy and circulatory function, with left heart
structures LA: left atrium; LV: left ventricle; PV’s: pulmonary veins; Aorta, and
their right heart counterparts RA: right atrium; RV: right ventricle; SVC/IVC:
superior/inferior vena cava; PA: pulmonary artery. Also shown are the tricuspid
(TVa), pulmonary (PVa), aortic (AVa) and mitral (MVa) valves. Drawing source:
Wikimedia Commons.
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1.1. THE HEART AND ITS FUNCTION(ING)

up until the terminals, or Purkinje-myocardial junctions, of the Purkinje fibers, which
allows the ventricles to depolarize rapidly throughout. As the normal myocytes also
propagate the electrical activation at a lower rate, it takes about 100 ms to depolarize the
entire healthy human ventricular myocardium. And then it contracts.

1.1.2. Pumping and Mechanical Function

The pumping function of the heart can be felt when one holds a finger on the pulse,
on the carotid artery, or simply on one’s chest. Usually one feels a single heartbeat as
a double thud. This is illustrative of the four-chamber heart’s two-phase contraction,
separated by the aforementioned delay at the AV node.

The valves between atria and ventricles (TVa and MVa in Fig. 1.1) are opened when
the ventricles are in a contracted state. When the ventricles relax, the pressure dif-
ferential between atrium and ventricle causes the atrium to empty its contents into the
ventricle. The contraction of the atrium squeezes the last bit of blood out. Then, the
atrioventricular valves close and the ventricles contract while the aortic and pulmonary
valve (AVa and PVa in Fig. 1.1) open, pumping the blood to the body and the lungs.

The timing of these steps is of great importance; together with the shape of the
cavities it is optimized to keep the blood going in a fluid motion down into the ventricle,
making a 180 degree turn and ‘up’ into the artery, so as to minimize the actual work
required from the myocardium and thus maximize the percentage of blood that is ejected
from the ventricle into the artery. As a clinical parameter, this is known as the ejection

Sinus node Purkinje fibers

'
AV node
Bundle

/of His

Left
bundle
'/ branch

Right
bundle/
branch

Purkinje fibers—

Figure 1.2: Diagram of the cardiac electrical conduction system. Drawing
source: Wikimedia Commons.
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1.2. VIRTUAL PHYSIOLOGICAL HUMAN

fraction (EF), computed as £ F' = 100%: the end diastolic (before contraction)
volume minus the end systolic (after contraction) volume, divided by the end diastolic
volume.

EF in a healthy person is usually greater than 50%. However, a contracted cardiac
myocyte is only between 10 and 15% shorter than it is in its resting state [103, 48]. The
difference in these percentages is resolved through the ingenious arrangement of the
myocytes. A helical arrangement that varies throughout the myocardial wall creates a
twisting motion of the ventricle when the myocytes contract in unison. At the outside of
the wall (epicardium), the fibers are tilted up to 60 degrees from the ‘horizontal’. That is,
from the true circumferential direction. At the endocardium, the wall of the cavity itself,
the fibers are tilted up to -60 degrees. In between, there is a smooth transition [185, 6].

1.1.3. Health Challenges

Worldwide, but particularly in the developed world, the impact of Cardiovascular
Diseases (CVDs) is enormous. It is the number one cause of death globally, accounting
for roughly one in every three deaths [219] in 2008. In Europe, this percentage is even
slightly higher despite recent decrease in the wealthier nations [56]. Its economic cost is
estimated to be at nearly €200 billion in the European Union, in health care costs, loss
of productivity from mortality and morbidity, and cost of informal care. As populations
in the developed world continue to age, and populations in fastly developing countries
likely to adopt unhealthier lifestyles [131, 142] as the western world did some decades
ago, it is expected that the global mortality rate due to CVDs will continue to rise until
at least the year 2030 [219].

This burden emphasizes the importance of all aspects of cardiovascular research.
This not only holds true for the classical medical aspects of reducing occurrence through
prevention, and reducing morbidity and mortality through early detection and optimized
treatment. It seems a natural step to exploit the possibilities offered by present and
future computational technologies to improve our understanding of pathogenesis, patho-
physiology, and the impact of pharmacological, surgical and other treatments on cardiac

physiology.

1.2. Virtual Physiological Human

The Physiome and VPH initiatives [55, 84] strive to build a digital representation
of an in silico human from molecular to organism level. As we could explain our body
divided into organ systems, into organs, into organ parts, into cell types, into types of
subcellular structures, and finally into molecules and atoms, so too is this human to be
described in a multi-scale fashion, and the initiatives represent the concerted efforts to
enable such goal.

4
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1.2.1. Motivation and Objective of the VPH

The ultimate objective of the VPH is to enable the computerized simulation of the
functioning, in the physiological sense, of the human body or any subset of it. To this
end, the various VPH initiatives strive to identify requirements for models and tools, and
to reach consensus regarding standards such that these models and tools may interoperate
across scale levels and organ boundaries. While the rationale behind crossing the scale
boundaries is probably immediately clear, the greater goal of the VPH is motivated more
by the somewhat less intuitive need for crossing the frontiers of isolated organs and
systems. One of the main keywords here is comorbidities.

As life expectancy at birth in our western society lies around 80 years, the age-
related problem of comorbidities, i.e., potentially interrelated health problems in mul-
tiple organs or organ systems, is growing. The potential interrelatedness presents a
problem in the medical world where specialization has been key to effective delivery
of healthcare for over more than a century [216]. Continued increase in the occurrence
of comorbidities means that we can no longer see organs as isolated parts and fully un-
derstand what their problems mean for the remainder of the body. To this end, the VPH
is optimally positioned: by promoting research into enabling multi-scale, inter-system
simulation and analysis, the interrelations between otherwise separate systems may be
uncovered under both healthy and pathological conditions. In turn, this can be used to
improve the various aspects of healthcare: more targeted and cost-effective drug discov-
ery and development through the use of large in silico trials; optimization of treatment
development and delivery, and improvement of diagnostics and prognostics, through
both such trials and through personalization of diagnostic tests and therapeutic planning.

1.2.2. Technical Challenges

The grand technical challenge of the VPH itself is to understand how the various
models are interlinked, to each other as well as to actual (clinical) measurements. From
this understanding, requirements for new models and tools can be formulated. However,
this also translates to requirements for knowledge bases that assist in choosing appropri-
ate models and in the various aspects of the clinical application of the VPH.

Simply put, such a knowledge base would contain a lot of information in a limited
number of standardized representations, or reference frames. These reference frames
are determined by the type of knowledge they represent, which in turn translates to the
various models to which the specific type of information is relevant.

Such a reference frame is typically a definition of normality for the information
it presents, expressed as an average observation and statistically plausible (‘normal’)
deviations from this average, over a population. The derivation of these reference frames,
and filling of these knowledge bases, are closely interwoven. A large quantity of data
must be processed to establish the average, as dictated by the law of large numbers.
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While doing so, this means that the knowledge base is being filled, and it implies that a
means of mapping observations to the reference frame exists.

In the VPH, the observations can take on a variety of forms as they span the entire
spectrum of medical measurements: indexes, measures of length, area, volume, weight,
concentration, categorical data, and images are but a few, and these can be either single-
shot or have their variation measured over time. That is, over cardiac, pulmonary or
dyadic cycles, or over periods measured in weeks, months, or years.

In summary, the complexity of the path towards such an almost sci-fi-like level of
computer-assisted healthcare calls for consensus on modeling standards, data acquisition
and knowledge generation that the VPH strives to frame.

1.2.3. The Heart in the VPH

A forerunner of the VPH initiatives, the International Union of Physiological Sci-
ences (IUPS), described the human body as a set of twelve organ systems [84], of which
the cardiovascular system is one. The heart, although considered an organ within the
cardiovascular system, could just as easily be considered a system on its own, based on
its complex heterogeneous anatomy and physiology. It is dynamic, and its function at
the organ scale is described by three branches of physics (mechanics, fluid dynamics,
electrophysiology) in an interconnected manner, to an extent which has so far exceeded
the capabilities of current modeling approaches.

A multi-scale model of the heart, thus, links various models of cellular electro-
physiology (EP) to cellular or tissue-level models of (electro)-mechanics. These would
incorporate also the anisotropic nature of the tissue dictated by the arrangement of car-
diomyocytes, commonly known as the myofiber architecture. The model would incor-
porate cardiac substructures such as the valves and the specialized electrical conduction
system described in Sec. 1.1.1, and allow the use of models describing pathological or
pharmacological changes at the cellular level. All of this would ultimately be embedded
in a macroscopic model of the cardiac anatomy, capable of being linked primarily to the
circulatory and pulmonary systems.

1.3. Contributions

This thesis presents three specific contributions, the latter two derived from the first
one, with one chapter dedicated to each contribution:

= Chapter Two describes a framework developed for the largely automated con-
struction of a cardiac atlas and statistical model, which can serve as a reference
frame in a VPH knowledge base. The processing of a large population, with lim-
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itations on per-case optimization and on human interaction/intervention makes
this a challenging task.

Chapter Three describes how the atlas can be used to frame a spatio-temporal
model of cardiac shape. The spatial and temporal components are modeled as
distinct axes of a bilinear model, which allows us to maintain relationships be-
tween model parameterizations and specific time points, which has been one of
multiple limitations of previous cardiac modeling approaches.

The final contribution uses the atlas as reference frame within a knowledge base.
As cardiac EP cell models are typically stabilized in isolation (OD), the complex
interactions between models when they are embedded in a 3D anatomy mean
they must be stabilized further. This leads to a significant computational burden,
limiting applicability of such simulations. In Chapter Four this burden is reduced
by prediction of the 3D steady states of these cell models using the knowledge
base.
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Chapter 2

A HIGH-RESOLUTION
ATLAS AND STATISTICAL
MODEL OF THE HUMAN
HEART FROM MULTISLICE
CT

Adapted from [75]

C. Hoogendoorn, N. Duchateau, D. Sdnchez-Quintana, T. Whitmarsh, M. De Craene,

F.M. Sukno, K. Lekadir, and A.F. Frangi
IEEE Transactions on Medical Imaging, vol. 32, no. 1, pp. 28-44, Jan. 2013.
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Abstract

Atlases and statistical models play important roles in the personalization
and simulation of cardiac physiology. For the study of the heart, however,
the construction of comprehensive atlases and spatio-temporal models is
faced with a number of challenges, in particular the need to handle large
and highly variable image datasets, the multi-region nature of the heart,
and the presence of complex as well as small cardiovascular structures.

In this chapter, we present a detailed atlas and spatio-temporal statis-
tical model of the human heart based on a large population of 3D+time
multi-slice computed tomography sequences, and the framework for its
construction. It uses spatial normalization based on non-rigid image reg-
istration to synthesize a population mean image and establish the spatial
relationships between the mean and the subjects in the population. Tem-
poral image registration is then applied to resolve each subject-specific
cardiac motion and the resulting transformations are used to warp a sur-
face mesh representation of the atlas to fit the images of the remaining
cardiac phases in each subject.

Subsequently, we demonstrate the construction of a spatio-temporal
statistical model of shape such that the inter-subject and dynamic sources
of variation are suitably separated. The framework is applied to a 3D+time
data set of 138 subjects. The data is drawn from a variety of pathologies,
which benefits its generalization to new subjects and physiological stud-
ies. The obtained level of detail and the extendability of the atlas present
an advantage over most cardiac models published previously.

10
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2.1. Introduction

Interest in cardiac electrophysiological and mechanical simulation has
risen significantly over the past decade, enabled by increased power and
availability of computing resources and developments in distributed com-
puting. This interest has been partly structured around initiatives to de-
velop computational physiology models of the (human) body and its sys-
tems, collectively known as Virtual Physiological Human (VPH) initia-
tives [55]. The cardiovascular system is one of twelve systems identified
within the International Union of Physiological Sciences (IUPS) Phys-
iome Project [84], and is subdivided further into cardiac and vascular
modeling.

Atlases play an important role in computational physiology of any or-
gan, including the heart [222, 28, 27]. They provide insight regarding the
division into and localization of substructures within the body, within an
organ, or within a structure. For computational physiology studies to re-
turn accurate results, the use of such a ‘map’ is of great importance, as
different structures within an organ have different electrical and mechan-
ical properties.

Statistical atlases provide not only an average layout of structures
within an encapsulating structure, but also encode deviations from this
average. This provides a means to deform the encapsulating structure,
within statistically justified bounds, and have the substructures deform
and move accordingly based on their statistical correlation. This enables
two very important applications of computational physiology: first, sim-
ulation studies can be personalized geometrically. This is in addition to
incorporating subject-specific measurements to parameterize models of
electrical conduction and of mechanics. For geometrical personalization,
the atlas can be matched to medical imaging data. Typically, only a sub-
set of atlas structures can be matched explicitly to the image, and the
remaining structures are moved by virtue of their statistical correlation.
Secondly, the statistics learned from the population can be used to gener-
ate populations for virtual population studies. Such a population can be
controlled by the user, either to statistically match an existing population,

11
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to increase sample size, or to generate more extreme cases.

For both applications, a statistical atlas provides a final advantage in
the postprocessing and analysis of any simulation results that are gener-
ated. The encoding of population variation implies that spatial relation-
ships between instances are known. This ensures a straightforward and
reliable way of warping study outputs into a common reference frame in
which they can be further presented, compared and analyzed.

The construction of a statistical atlas from a population of images re-
quires that each of the structures in the atlas be segmented (labeled) in
each of the images in the database. To do this manually is generally con-
sidered an impossibility for three-dimensional (3D) and 3D+time atlases.
To bypass this problem, atlas-based segmentation methods provide a so-
lution. First, one applies spatial normalization to the population. This
is the synthesis of an average image from the population, usually based
on image registration techniques. Additionally, it provides the spatial re-
lationships between the population and this average. As one then labels
this atlas, one may consider all the population images segmented through
these spatial relationships. By representing the atlas as a surface mesh,
one uses point distribution analysis as the approach to statistical analysis.

The spatial normalization of a population of 3D+time cardiac images
is faced with a number of challenges. Some of these have a counterpart
in the construction of brain atlases; others are specific to the cardiac case:

» Cardiac and vascular structures vary significantly in size and geom-
etry, with large global variations observed throughout the populace
and both global and local variations due to pathology. In order to
extract and represent these accurately, high-resolution image data
is required, and the algorithms used must be able to handle this.

= Correct topological relationships between structures are of the ut-
most importance for the atlas to be used in cardiac simulations.
Seamless transitions between structures while maintaining mesh
quality are required. Mesh extraction, simplification and smoothing
algorithms must be able to provide this.

12
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= High anatomical variability in the heart requires a large population
for its statistical modeling. This makes it very desirable to mini-
mize the greatest difference to be resolved, which can be achieved
by selecting a suitable initial estimate of the spatially normalized
image.

= A large population also means that case-by-case parameter tuning
becomes increasingly unfeasible. Consequently, this must be ad-
dressed in an automated manner or the algorithms must be robust
to potentially suboptimal parameterization.

= Cardiac motion presents a challenge in statistical analysis, as it
means there are at least two sources of shape variation: inter-subject
and temporal. Additionally, it introduces an increase in data set size
with respect to 3D imaging. Together with the large population re-
quirement and the high resolution requirement, this means that the
algorithms must be able to handle very large data sets.

In summary, the algorithms must be robust to suboptimal parameter-
ization and large variations, and able to handle very large data sets. It
means that the atlas representation must have the flexibility to permit the
statistical modeling as well as the simulation studies. Finally, the statis-
tical modeling must be able to handle spatio-temporal data in a correct
manner.

This chapter presents a statistical atlas of the human heart with the de-
tail and flexibility necessary for personalized cardiac simulation, and the
framework through which we constructed it. Elements within the frame-
work are freely exchangeable for more advanced techniques, yet in the
current form we have opted for some well-established approaches. In ad-
dition to the framework for the atlas construction, we present a framework
for its validation. Also, we have made the atlas itself publicly available.
An additional minor contribution is the automated selection of a reference
image as an initial estimate of the mean.

The remainder of this chapter is organized as follows. The next sec-
tion will provide an overview of related work, on cardiac statistical atlases

13
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and on spatial normalization of a population of images. Section 2.3 will
delineate the steps taken in the construction of the atlas, and the consider-
ations implied in the automation of this process at a large scale. Section
2.4 outlines the properties of the atlas and their relationship to the atlas’
applications, whereas 2.5 covers experiments regarding the validation of
the atlas, and in Sec. 2.6 we discuss possible improvements and exten-
sions.

2.2. Related Work

The traditional atlas in the medical field consists of a collection of
commented illustrations—drawings or photos—of the structure of choice,
either intact or dissected, as a whole or in close-up. Invariably these
are two-dimensional representations of the structures ex vivo, without the
possibility to see variations, active or passive movement, or points of view
other than those presented. Computerized medical imaging techniques
provide solutions to each of these issues. In this context, we see related
work in the development of digital three- and four-dimensional atlases,
as well as efforts in computational anatomy to characterize population
variability.

Digital cardiac atlases have been developed for a variety of purposes.
Recently, atlas-based segmentation using voxel-based atlases was intro-
duced in the cardiac domain [122, 85, 167, 98]. The construction of a
voxel-based atlas of cardiac structures was only outlined in [122], using
only three cardiac labels (two ventricular blood pools and left ventricular
myocardium).

More recently, voxel-based atlases of cardiac fiber orientation have
been constructed, first from canine [158] and later from human [118] ex
vivo diffusion tensor MRI (dtMRI) data. These atlases provide an im-
portant component for simulation of both cardiac electrophysiology and
mechanics, despite the limitation of being acquired ex vivo.

A special case of cardiac atlases is the Cardiac Atlas Project (CAP)
[59]. It adheres more to the traditional idea of an atlas in that it is a

14
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collection of maps—a database—rather than a single mean map, or a sta-
tistical description of the shapes and their relationships. The construction
of a statistical shape model of the left ventricle from part of this data (200
training shapes) was demonstrated in [137].

2.2.1. Cardiac Statistical Atlases

In [61], first a voxel-based and then a surface-based mean atlas was
constructed of the same structures used later in [122]. The surface-based
atlas, together with deformations obtained during construction of its voxel-
based counterpart, was used to generate point correspondence across the
population such that a point distribution model could be built. Virtually
the same technique was used to generate a four-chamber model in [123].

Similarly, Perperidis used voxel-based atlases of images in the first
cardiac phase to generate surface-based training data for a 3D+time sta-
tistical model covering both inter-subject and intra-subject (functional)
deformations [155], by applying Principal Component Analysis (PCA)
first to the mean shapes of each subject, and then to all phases of all sub-
jects, minus their mean shapes. Another 3D+time statistical model of
cardiac shape was based on direct bilinear decomposition of the surfaces
in the training set [79], using a higher order Singular Value Decompo-
sition. A similar model was used for segmentation of cardiac Magnetic
Resonance (MRI) images by Zhu et al. [226].

A slightly different approach was followed in [96], where a single
surface-represented segmentation was fitted to other segmentations to gen-
erate the point correspondence. With the surface sampling depending on
the curvature observed in the initial shape, a bias in local mesh density
may be introduced. Later, [120] used a similar technique but required full
manual segmentation only of the initially chosen image.

In [225], sampling of the curves obtained by intersection of manual
delineations with cut planes is employed to generate point correspon-
dence.

A recurring requirement in nearly all of these approaches is the need
for (manually) segmented images, as is also apparent from the review in

15




“main” — 2013/12/4 — 15:53 — page 16 — #38

2.2. RELATED WORK

[72]. The same holds true for the various methods suggested to achieve
point correspondence on shapes represented by meshes. Overall, this has
had the effect of limiting training set sizes in statistical shape modeling.
Some effort was made to enlarge such training sets by adding synthetic
variations [102], however, one could debate the plausibility of these vari-
ations. For further reading on surface-based atlases, including methods
that generate surface point correspondence without prior volumetric point
correspondence, please see [72].

In this chapter, we extend the works of [61] and [149], in that we
construct an atlas to generate correspondences throughout our training
population, and we use a surface-based representation so that this corre-
spondence is carried by the surface mesh vertices. Only one volume needs
to be segmented explicitly, creating the possibility to use arbitrarily large
training sets.

2.2.2. Spatial Normalization

When a synthesized anatomy is used for an atlas, it is usually gen-
erated to represent a central tendency of a population. Estimating this
central tendency is generally approached as a registration problem. This
field has been a very active one since the landmark paper for average im-
age construction by Guimond et al. [66]. Over the period since this work,
a shift can be observed from image averaging towards transformation av-
eraging, initiated by Christensen et al. [34]. Physical constraints have
been introduced in the registration approaches, including diffeomorphic
and other, more tissue-specific, constraints. Imaging modalities for the
construction of atlases have become more varied as development on the
mathematics of their deformation and similarity progressed.

Within the field of spatial normalization we can distinguish two main
approaches: true groupwise registration on the one hand, and a processing
of pairwise registrations on the other hand. The contributions for the latter
are mostly strategies to process the outcomes of the pairwise registrations.

Using pairwise registrations starts out from a single reference image.
Typically this one is chosen from the population at hand, either by an
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expert [152], or by an automated method; this can be based on subspace
exploration [151] or on an information-theoretical basis [80].

Once the reference has been established, registration of each member
of the population to this reference is carried out, producing a deformation
for each population member. The combination of these deformations typ-
ically leads to a mean deformation to be applied to the reference image,
ideally transforming it into the mean image directly. As demonstrated in
[66], this is not necessarily the case. Recently, various interpretations of
the use of intermediate means have been proposed. Jongen et al. [93] sug-
gested the construction of a mean from a small subset of the population,
before registering the entire population to this mean estimate.

This is different from intermediate means used in manifold-based ap-
proaches. Jia et al. [89] proposed the derivation of a tree to guide registra-
tion step by step. The registration of a population member to the popula-
tion mean is subdivided into steps of registration to neighbors nearer to the
mean, thus constructing a path through the population. Child-parent rela-
tionships are determined through the stabilization of a clustering method.
This contrasts with the approach of Wu et al. [220], who computes a Min-
imum Spanning Tree based exclusively on image intensity differences be-
tween images.

Other approaches explore the number of clusters that a population
could be divided into. Atlas stratification [18] was an initial approach to
only do this clustering, based on k-means. Sabuncu et al. [174] introduced
the automated atlasing into a similar framework, but used a generalization
of Estimation Maximization to discover the clusters.

True groupwise approaches tend to start from an average over the non-
deformed images in the population. From that point onwards, Joshi et
al. [94] update the deformations by explicit minimization of deformation
magnitudes with respect to the Fréchet mean of the population, thus ob-
taining that mean. Lorenzen et al. [121] extended this work to handle
multi-modality image data, while Fletcher et al. [58] replaced the Fréchet
meean with the Fréchet median to ensure population membership of the
atlas.

The above approaches use an explicit minimization of the average de-
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formations required to deform a population member to the population-
representative atlas. Other true groupwise approaches construct the at-
las by maximization of a groupwise similarity criterion. This is either
similarity of the population to the atlas via information theoretic criteria
[15, 134], or a single measure quantifying similarity between all pairs
[186]. In either case, an additional constraint is required to enforce zero
average deformation.

Our framework can be changed to incorporate any of the above meth-
ods. However, in its current form we present it using the standard ap-
proach of Guimond et al. [66], with multi-scale diffeomorphic B-spline
registration [173, 171].

2.3. Atlas Construction

This section covers the steps required to construct a population aver-
age image using image registration and the subsequent generation of an
atlas represented using a surface mesh. Although various strategies exist
for registering a set of images to an initially unknown average [133, 45,
15,94, 186, 121, 18, 213, 69, 89], we chose the classical approach of reg-
istration to a chosen reference, as did Guimond et al. [66]. The simplicity
of this approach holds some advantages:

1. The process is transparent. Unlike stratification [18] and manifold-
based methods [69], it does not introduce more parameters than
those required for the pairwise registration and the steps to update
the mean image. Additionally, there is no interaction between these
sets of parameters.

2. The complexity is kept to only one registration per subject per iter-
ation, rather than a full cross-registration of all or a subset of sub-
jects. Also, the optimization in a groupwise approach is a much
higher-dimensional optimization problem, with ramifications for
the robustness.

18
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3. The strategies of stratification [18] and of using intermediate lo-
cal averaging [89, 69, 90, 220] employ distance measures to deter-
mine which pairwise registrations must be carried out. It is unclear
whether cardiac image volumes would be at an advantage or disad-
vantage for stratification compared to brain image volumes, given
the increased number of disjoint regions of clearly different appear-
ance.

The process is outlined in Fig. 2.1, with parameters listed in the last
subsection of this section (2.3.6). It was implemented on a grid comput-
ing facility using Fura software (Grid Systems S.A., Palma de Mallorca,
Spain) to handle the distribution. The facility was equipped with 12 nodes
with 2 64-bit quad core processors each, with 16 Gb of shared memory
per node.

Note that we synthesize a mean first cardiac phase image only. This is
because of the greater stability of this phase in retrospective gating. Thus,
our means are computed over the 138 subjects rather than the 2070 image
volumes.

For further reading on cardiac image registration, we refer to Mékeld et
al. [128] and Tavakoli et al. [192]; for aspects of medical image registra-
tion in general, we refer to [183, 74, 101, 160, 127].

2.3.1. Imaging Data

The database of imaging data used in this study was retrospectively
collected from a clinical cohort of 138 consecutive patients that under-
went a Computed Tomography (CT) examination as part of their routine
diagnostic protocol for suspected coronary artery disease, and follow-up.
The resulting population distribution, as well as imaging parameters, are
outlined in Table 2.1. All information was anonymized before its transfer
from the clinic to our group.

While our database is not as large as that of the CAP [59], our image
resolution is 2.5 to 5 times higher in-plane [190, 59], and 3 to 4 times
higher axially [190, 95, 59]. This enables us to capture more anatomical
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Table 2.1: Details of data. CAD: Coronary Artery Disease; MI: Myocardial

Infarction

Imaging Machine Toshiba Aquilion 64*
Tube voltage 120 kV
Tube current 400-430 mA
Contrast agent Xenetix 350
- quantity 80-100 ml
- rate S ml/s

Reconstruction Workstation Vitrea?
Resolution 0.4 x 0.4 x 2.0 mm
In-plane grid 512 x 512 pixels
Axial grid 65.3 £ 11.3 slices
Volumes per cycle 15

Population Size 138
Men/women 94/44 (64% men)
Age 59.4 £13.0

Pathology CAD only 20%

Pathology CAD+MI

20%

! Toshiba Medical Systems, Tochigi, Japan
2 Vital Images Inc., Minnetonka, MN, USA
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1. Select reference; set as mean estimate

l

For all database subjects

2. Affine registration to mean estimate

l

Iterate

For all database subjects

3. Nonrigid registration to
mean estimate

4. Generate vector field
from deformations

5. Compute vector field logarithm

6. Compute mean log vector field

7. Compute exponential of mean log

8. Invert mean vector field

9. Compose with earlier estimates

10. Update mean estimate

Figure 2.1: Flow diagram of the mean image synthesis. The affine transforma-
tion obtained initially is re-used as an initial transform in the non-rigid registra-
tion.

detail than would be possible with clinical resolution MRI data. Similarly,
ultrasound has the advantages of noninvasiveness and higher temporal
resolution, but these are undone by the speckle patterns which make auto-
mated further processing—specifically inter-subject registration—extremely
difficult.
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2.3.2. Reference Selection

The selection of a suitable reference is one of multiple approaches to
minimize bias in the synthesized mean volume. The first box in Fig. 2.1 is
therefore an attempt to select the reference already close to the unknown
mean. For this we use a heuristic based on a Groupwise Mutual Infor-
mation (GWMI) score, an extension of Mutual Information (MI) [125]
that describes the amount of information between a single image and a
set of images [80]. We compute the GWMI score over affinely registered
volumes. The affine registration is required to remove the detrimental
influence of pose and size on the score.

In short, the GWMI between image I and image set .7 is defined using
the Shannon entropy  over voxel intensities as

GWMI(I,7) = H(I) + H(J) — H(1, J). @2.1)

With the probability of an intensity j in the set defined as

p(i) =>_p(ilTp(J), (2.2)

JeJg

and with an a priori uniform probability distribution over the candidate

images (p(J) = ﬁ with | - | denoting cardinality), we are effectively

summing the histograms of the images in the set 7 defined on the same
grid of bins:
Histogram(J) = » _ Histogram(J). (2.3)
JeJg

The joint probabilities of an intensity ¢ in the candidate reference with an
intensity 7 in the set J are defined analogously as

pli,§) =Y p(i. jl3)p(J), (2.4)
JeJg
also coming down to a summation of the joint histograms:

JointHistogram(I, J) = Z JointHistogram(I, J). (2.5)
Jeg
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In the case where J consists of only one image, this reduces to the stan-
dard MI. The method takes one parameter, the number of histogram bins.

The score represents the amount of information each volume carries
with respect to the remainder of the volumes, taking into account the vari-
ation observed in this set. To make the process even more robust to the
reference volume used in the affine registration, we registered all images
affinely to 11 randomly selected volumes, and applied GWMI to each of
the 11 resulting sets of 138 volumes, obtaining 11 rankings. The refer-
ence ultimately chosen for the atlas construction was the volume with the
best mean rank. Figure 2.2 illustrates the varying rankings of subjects
presenting a rank standard deviation of less than 10 positions with the
dash-dot lines. The solid lines (connected to the associated dash-dot lines
using dotted lines) illustrate the mean ranks for these subjects. It shows
that high and low ranks are relatively stable [80].

2.3.3. Global Registration

With the reference subject chosen from the population as described
in the previous section, we register the volume corresponding to each
subject’s first cardiac phase to the first phase of the reference subject.
Corresponding to the second box in Fig. 2.1, the first step of this registra-
tion is a global registration, requiring few parameters to optimize. It has
been shown that such an approach increases the robustness of the overall
scheme [173].
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We aim to model shape variation through a statistical shape model
rather than a statistical deformation model(as in [172, 43]). As the in-
verses of both the global and local transformations are applied to the mesh
corresponding to the average image, it is of no importance which global
transformation model is used. Hence, we use affine registration to re-
move global variations, minimizing as much as possible the deformation
remaining to be resolved in non-rigid registration.

The small number of degrees of freedom of an affine transformation
make the registration suitable for a gradient descent optimization. The
similarity metric is MI [125], of which the gradient is computed using
Mattes’ method [135]. As it was developed for inter-modality image reg-
istration, MI is capable of handling varying intensities for corresponding
structures, or in other words, to register images with different image in-
tensity profiles. In our dataset, we observed image intensity variations
throughout the population in the blood pools, due to varying contrast
agent concentrations (note the 25% variation reported in Table 2.1). Ad-
ditionally, some subjects presented with pacing devices, leading to some
very strong local intensity variations.

2.3.4. Diffeomorphic Nonrigid Registration

Following the affine registration, in the third box in Fig. 2.1, nonrigid
registration is used to resolve the remaining variations between the ref-
erence and population images. With a large number of registrations to
be carried out, a fast registration approach is desirable. The multiscale
approach using B-splines [173] fulfils this criterion.

A later work by Rueckert et al. [171] focused on imposing diffeomor-
phic constraints on B-splines, meaning that the resulting deformations are
smooth and invertible. From an anatomical as well as a technical view-
point, this is a very important property. Borrowing from the work of Choi
and Lee [33], the injectivity of a B-spline-based deformation is guaran-
teed if the local deformation is limited to 0.4 times the spacing of the
control points. As the group of diffeomorphic transformations is closed
for the composition operator (o) [197], this allows for a combination of
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the multiscale and the diffeomorphic B-spline approaches. That is, the
composition of diffeomorphic B-splines, regardless of equal or varying
control point spacings, produces a diffeomorphic transformation. How-
ever, it is generally not possible to represent this composition as a single
diffeomorphic B-spline.

The multiscale approach is robust and allows for fast registration. The
constraints on control point movement are implemented straightforwardly
using the Insight Toolkit (Kitware, Inc., Clifton Park, NY, USA) [99] and
a bounded quasi-Newton optimizer [25]. Klein et al. [101] showed that
this optimizer provides a good balance between speed and accuracy when
used for registration using B-splines and MI.

In the original formulation of the diffeomorphic B-splines, new splines
were added until convergence of the registration. However, we choose to
maintain a fixed set of transforms. This results in control over the maxi-
mum possible local deformation, and therefore prevents the construction
of outliers that could corrupt the computation of the mean deformation.

Using 1" for transformations obtained by composition of transforms,
A? for the affine transformation from the reference subject to subject s,
B? for a B-spline based deformation from the reference subject to subject
s, B*7 for the B-spline based deformation for the nonrigid deformation
from frame 7 — 1 to frame 7 of subject s, the total transformation to frame
7 of subject s is given by

7—5){31 = ﬂit?a © T’iflter © AS (26)

with
Titra = Oi=y B> 2.7)

and
T'iflter = O:l:bles (28)

Here, n,; is the number of B-spline transforms we use to compose the
deformation from the reference to subject s, and () is the big version of
the composition operator o. After the affine registration has brought the
images into a global alignment, by controlling the spline control point
spacing and n;, we control the maximum total local deformation. We will
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show later that we observed a convergence rate similar to that reported by
Guimond et al. [66].

After the non-rigid registration, we represent the inter-subject trans-
formations T:;, . as displacement vector fields ¢°, thus simplifying fur-
ther processing in the absence of the composition operators. The use of
B-splines to model our deformation reduces the number of degrees of
freedom in the optimization problems by multiple orders of magnitude
as compared to a parameter-free approach that directly produces a vector

field, like the diffeomorphic demons [208].

2.3.5. Mean Deformation

The vector fields ¢(s) representing Tiyter(S), and defined on the same
grid as the reference image, belong to the group of diffeomorphic vector
fields. This group is closed only for the composition operator (o) [197],
and therefore the euclidean metrics of addition and division cannot be ap-
plied directly. If the deformation is a geodesic in the metric space defined
by the deformation model used for the registration, one can use the log-
Euclidean framework of Arsigny et al. [8] to work in the tangent space
of these diffeomorphic vector fields, in which Euclidean metrics can be
applied. The mapping to and from the tangent space is provided by the
logarithm and exponential operators, respectively. Due to the multi-scale
approach to the registration, we should assume that we approximate the
geodesic closely enough for the log-Euclidean framework to be applica-
ble. We will later comment on the accuracy of the logarithm computation
(Sec. 2.3.6). This leads to the definition of the mean vector field as

1 &
5= —El s 2.
© = exp (n 2 0g90>, (2.9)

corresponding to the Sth through 7th boxes of Fig. 2.1. Note again that
the mean is computed over the first-phase images only.

Given the mean vector fields obtained in the iterations up to 7, and
the current approximation of the mean image I;_;, the approximation is
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1 = 0 (original)

1=4 v = 5 (final) 1=06 1=17

Figure 2.3: The development of fi, for 0 < ¢ < 7. After five iterations, the
composed deformations, although diffeomorphic and less biased, become im-
plausible. This is visible in the lateral wall of the left ventricle (the white arrow
in ¢ = 7, but also visible for ¢ = 6).

updated in boxes 9 and 10 of Fig. 2.1 using

L =g, ol (2.10)
where

1 -1 =1

Yo.i = ¥Pi °%o.i-1 (2.11)
For completeness, @y o = @o. The development of I; is illustrated in
Fig. 2.3.

Arsigny’s algorithm [8] for fast computation of the vector field log-

arithm is an inverse scaling and squaring method, exploiting the equiva-

lence
log p = 2"log p? . (2.12)

For sufficiently large n, the logarithm can be approximated by

log ¢* "~ * " —Id, (2.13)
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where /d stands for the identity. The square roots are computed using a
gradient descent approach, which uses the inverse of the transform. The
vector field must extend beyond the image domain and smoothly reduce
to zero magnitude to avoid discontinuities in the image domain in the in-
verse vector field. Effectively, the actual deformations must be contained
in a box, rigid under logarithm, averaging and exponential. The finite sup-
port of B-splines provides this without any additional cost in registration
complexity.

2.3.6. Parameters and Settings

Each step in the process of synthesizing the mean image volume de-
pends heavily on good parameters, with the image registrations a prime
example. However, optimizing each of these parameters for each instance
is unfeasible. Therefore it is imperative that only a few, if multiple, dis-
tinct configurations are used. As a consequence, for the majority of reg-
istrations these configurations are suboptimal.

In order to obtain the best possible registrations under these condi-
tions, a small set of six first-phase volumes was used to obtain a config-
uration suitable for all pairwise registrations in the subset, which was the
first instance of human intervention. Using a larger subset of 20 first-
phase volumes, the useability of this configuration was verified. Table 2.2
lists the values obtained for the registration parameters.

For the inter-subject registrations in the mean image synthesis, image
masks are defined based on the image intensities of the fixed and moving
images, ranging from air (-1000 Hounsfield Units (HU)) to cortical bone
(1500 HU). The mutual information similarity metric is computed from
50-bin histograms generated from voxels randomly sampled within the
mask regions, at a rate of one per 30 voxels.

The non-rigid registration uses a composition of B-splines of increas-
ing resolution. Due to the hard limit on the local deformation of each
B-spline, we control the maximum local deformation. Using only one
each of 32, 16 and 8 mm control point spacing, this would amount to a
maximum of 22.4 mm ((32 + 16 + 8) x 0.4). We assumed this to be
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Table 2.2: Registration parameters and values

Parameter Value
All intersubject Mask—Ilower threshold -1000 HU
Mask—upper threshold 1500 HU
Histogram bin count 50
Voxels per sample 30
Affine Gaussian smoothing kernel o 1.0 mm
Min. optimization step length 0.001
Max. optimization step length 1.0
32 mm inter (twice) Gaussian smoothing kernel o 1.5 mm
16 mm inter Gaussian smoothing kernel o 1.0 mm
8 mm inter Gaussian smoothing kernel o 0.5 mm
40 mm intra Histogram bin count 60
Voxels per sample 30
Gaussian smoothing kernel o 0.5 mm

Mask

warped atlas,
10 mm dilated
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Table 2.3: Parameters and values for non-registration elements

Parameter Value
Reference se- Histogram bin count 50
lection
Vector field Inversion—step size 1.0
logarithm Inversion—stopping criteria  99% error reduction
10 iterations
Squaring—step size 1.0
Squaring—stopping criteria  95% error reduction
10 iterations
Root order (n in Eq. 2.12) 7
Mean vector  Step size 0.3
field inversion ~ Stopping criterion 99% error reduction

100 iterations

insufficient, and added an additional allowance of 12.8 mm through an
additional B-spline with 32 mm spacing.

The segmentation of the atlas is used to provide the masks for the
intra-subject registrations, while the greater histogram resolution is used
to improve sensitivity to smaller differences.

An alternative would be to apply a small-range parameter sweep around
the values found, for every registration. However, this would increase the
computational load prohibitively, even if only one parameter is varied at
any given moment.

For the elements of the framework that are not registration steps, we
list the parameters in Table 2.3. Error reductions are computed with re-
spect to the error at initialization (identity vector field), and the itera-
tion limits supersede this criterion. For the root order, Arsigny et al. [8]
empirically reported convergence of the log computation with n = 7 in
Eq. 2.12. We found this value suitable for our data as well, yielding vec-
tor norm errors under 5% for 93.7% of vectors when comparing ° to
exp(log(y®)) in 20 subjects.
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Note that the computation of the mean log vector field, the compo-
sition of the mean estimate with earlier estimates, and the update of the
mean image (boxes 6, 9 and 10 in Fig. 2.1 require no parameters).

2.3.7. Atlas Segmentation

Through registration, we have obtained a mapping from the atlas co-
ordinate system to each of the subjects in our population. Thus, by seg-
menting the atlas volume, we obtain a segmentation of each member of
the population as well. We represent the segmentation not by a mask im-
age but by a triangulated mesh. This allows us to define other structures in
local coordinate systems, structures which are typically obtained through
literature description or separate modeling approaches.

By far most human interaction in the procedure is concentrated at this
step. An anatomist specialized in cardiac anatomy (D. S.-Q.) segmented
the synthesized mean image using GIMIAS v1.2.0b software [107]. In
each slice of the image, the structures listed in Table 2.4 were outlined
using a free-hand polygon tool, which labeled the voxels on the same grid
as the image.

For the coronary arteries, their intersections with the image planes
were marked using a pointer tool. Subsequently these sets of points were
connected and the arteries themselves were modeled by fitting knotted
cones to the segments.

2.3.8. Mesh Construction and Processing

The manual segmentation of the mean image is converted to a mesh
representation. There is a sizeable body of literature on the creation
of ‘reasonable’ non-manifold meshes from multi-label medical imaging
data. These meshes have a smooth surface, high accuracy with respect
to the non-smooth (i.e., with staircase artifacts) surface, and with good
element quality (usually polygon regularity). In addition to the challenge
to achieve this in binary (foreground+background) data, the multi-label
property of the input data presents the added challenge of smooth surfaces
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Table 2.4: Atlas subparts (3D) and element statistics

Vertex density Face surface

Name Vertex count (cm™2?) area (mm?)
1 Left Ventricular Myocardium 2032 10.66 4.85£1.88
2 Intraventricular Septum 1492 12.40 4.22+2.19
3 Right Ventricular Myocardium 3454 10.72 4.77+2.34
4 Left Atrial Myocardium 2010 11.68 4.43+1.61
5 Right Atrial Myocardium 1962 10.90 4.80+1.98
6 Aorta 2654 9.40 5.35+1.46
7 Vena Cava (inferior and superior) 742 11.25 4.69+1.81
8 Pulmonary Trunk and Artery 1032 11.46 4.44+1.47
9  Pulmonary Veins (left and right, inferior and superior) 1232 10.27 5.02+£1.79
10 Anterior descending artery
11 Circumflex artery
12 Diagonal artery
13 Right coronary artery
Total/overall 16113 10.44 4.78+1.93
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between materials while maintaining smooth outer surfaces. Examples
of approaches to this problem are multi-material extentions to marching
cubes (MC) [70, 221], marching tetrahedra [49], dynamic particle systems
[139], non-manifold dual contouring [14, 224], and multi-level partitions
of unity [51].

We use a more straightforward approach, schematically presented in
Fig. 2.4. We first generate a new segmentation by merging labels from
the original segmentation. In this case, into three groups: left blood, right
blood, and myocardium. The resulting masks are resampled using shape-
based interpolation [166, 73], and then triangulated using MC [119]. Dis-
tance transforms of the original segmentations are then used to assign
labels to the faces of the resulting mesh.

Subsequently, the mesh is coarsened using an approximate centroidal
Voronoi tesselation (ACVT) [205]. That is, each Voronoi cell is repre-
sented by a set of mesh faces in their entirety, and the seed of each cell
coincides with the cell centroid. This approach has the advantage of al-
lowing full control over the number of vertices in the coarse mesh, and as
outlined in [205], is guaranteed to converge to a global optimum. Addi-
tionally, the resulting mesh is independent from the original MC mesh.

With the coarsening, the mesh is smoothed somewhat due to a lower
sampling rate. However, staircase artifacts may remain especially when
a large number of vertices is used. Therefore the meshes were submitted
to a smoothing step [191]. Overall, the coarsening and smoothing in-
troduced some local distortions, though in general these remained either
within acceptable bounds, or they smoothed out undesired features which
appeared as a result of local inconsistencies in the manual segmentation.

The transformations 77, .. and A® were used to warp the atlas mesh to
the first cardiac phase of each subject s. Subsequently the transformations
T were applied to these meshes to obtain the meshes pertaining to the

intra

remaining 14 phases of each subject.
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1. Manually segment final mean volume

l

For all labels

2. Compute distance transform

{
3. Merge labels
(LeftBlood, RightBlood, Myo)

l

4. For all Merged labels

5. Generate mesh (marching cubes)

6. Label mesh using distance transforms

7. Coarsen mesh (ACVT)

l

8. Compose meshes

|

For all database subjects

9. Warp mesh

Figure 2.4: Flow diagram of the meshing steps. ACVT: Approximate Centroidal
Voronoi Tesselation. Initially the nine labels are merged into three; using the
nine distance transforms, the vertices on the marching cubes meshes are labeled
before coarsening. The atlas is finally composed by putting the three labeled,
coarsened meshes together.

2.4. Atlas Properties and Statistical Model

We developed the statistical atlas with the aim of using it in a com-
putational physiology setting. In this section we outline the properties of
the atlas that enable this. The atlas is available for downloading at our
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website!.

2.4.1. Structures

The atlas has been designed to be instantiated in varying composi-
tions, ranging from the entire heart to a single substructure. This serves
the purpose of extracting or generating knowledge from images and simu-
lation studies that only employ the structure of interest, without changing
the atlas itself. This in turn enables the seamless incorporation of this new
information into the atlas.

The structures outlined are listed in Table 2.4 and colored separately
in Fig. 2.5. For the left ventricle, the myocardium and blood pool were
segmented, while for both atria, for the right ventricle and for the trunk of
the aorta, only the blood pool was segmented. On CT images, the walls
of these structures are not discernible and as such are estimated from the
boundaries of the blood pool. We did this by extrusion of the surface along
its normal direction, to generate the thicknesses reported in the literature.
For the right ventricle (RV) wall, the surface was extruded by 4 mm [163],
for the aorta this was 3 mm [54] while the atria were extruded by 2 mm
[67]. The vertex counts in Table 2.4 already include the extruded parts.

2.4.2. Statistical Modeling

Paramount to the clinical value of computational physiology is the
possibility to perform patient-specific simulations, where the computa-
tional domain is a patient-specific geometry, or to generate large virtual
populations following the model population statistics. Approaches based
on statistical shape models to segment patient geometries from image
data have shown their worth many times over. For inherently dynamic
shapes, naturally one should consider using a dynamic statistical shape
model, such as those described in [155, 79, 226]. Here we reiterate some

'Mttp://www.cistib.upf.edu/cistib/index.php/downloads, or
https://sites.google.com/site/cornehoogendoorn2013/home/
publications/downloads
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Figure 2.5: The full atlas mesh, corresponding to the synthesized mean im-

age. Different colors indicate different structures. Reproduced in color on page
LXVIII.
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background on the bilinear spatio-temporal statistical shape model, con-
structed as per [79] from the framework’s output.

In Sec. 2.3.8 we described how we obtained the meshes corresponding
to the 2070 image volumes we began with. From these, we construct a
spatio-temporal statistical model of shapes, decomposing our data along
the axes of anatomical variation and motion-induced shape change using
a bilinear model as described by Tenenbaum and Freeman [194]. They
used the terms style and content to define the two sources of variation.
We could consider here the style to be the temporal element, whereas the
content is the anatomical variation that exists between subjects. By using
a bilinear model, we maintain temporal information which would be lost
if the more traditional PCA [92] had been used.

However, for a rudimentary outlier detection, we used PCA [92] to
generate a simple statistical model of the first-phase shapes, explaining
50% of total variation, amounting to five modes. The model parameters of
these shapes were used to identify potential misregistration. A shape (and
the associated subject) was marked as suspicious if any of its parameters
exceeded four standard deviations from the mean. This led to the flagging
of four subjects. In each of these cases, the affine registration had failed,
and thus the subjects were discarded. We generated the spatio-temporal
model from the remaining 134 subjects (2010 shapes).

Training of a bilinear shape model is done as described in [194, 79].
With 134 subjects and 15 phases each, the model reduces the data di-
mensionality to at most 147. For comparison, using Perperidis et al.’s
approach [155] one would need to reduce the dimensionality from 2025,
also from two sets of parameters. For the temporal synchronization, nec-
essary due to the electrocardiogram-based retrospective gating of the CT
data, we did use Perperidis’ method [154] to identify the end-systolic and
end-diastolic phases. More detail on the application of this method to
surface meshes is provided in [79].

Figure 2.6 shows three phases of four subjects, together with bar plots
for their subject and phase parameters. The applications of cardiac bi-
linear shape models have already been demonstrated in image segmenta-
tion [226] and motion analysis [57, 161]. In earlier works we have also
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Phase

1T
voe

Subject

Figure 2.6: Three phases of two subjects, with their bilinear parameter sets de-
rived from the full 134-subject data set. The dimensionality of the phase and
subject parameters (11 and 115, respectively) are based on explaining 95% of
total variance for each axis.

demonstrated pipelines towards electrophysiological [76] and mechanical
simulations [214] from surface-based cardiac segmentations.

Figures 2.7 and 2.8 show the first two modes of variation as mean
plus and minus one and a half and three standard deviations of both the
full heart and the left ventricular endocardium, of the traditional PCA-
based shape model. Coincidentally in both models, the first two modes
contain a strong component of elongation versus roundness.
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—3VA —1.5V/\ 1 +1.5V/\ +3v/A

Figure 2.7: The first two modes of variation in the linear statistical model of the
full heart at end diastole, showing the mean plus and minus one and a half and
three standard deviations.

2.5. Validation

The quality of the atlas depends on the quality of the registration. In
turn, the registration quality depends on each of the basic components of
a registration algorithm: similarity metric, transform, and optimizer, and
on the initial similarity between volumes [217].

In this section we validate the atlas through evaluation of the registra-
tion. This consists of three elements:

= Random selection of volumes and slices. The dataset size does not
allow the evaluation of all registrations. It is also undesirable to
fully segment volumes for all the selected subjects. Thus, a ran-
dom selection is made, based on some heuristics which make the
subjects and slices therein useful.

= Evaluation of vector field inversion. In order to evaluate everything
in one common space to avoid bias to the specific subjects involved,
all segmentations and landmarks are warped to the atlas space. This
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—3vV2  —15VA m +1.5VA 43V

Figure 2.8: The first two modes of variation in the linear statistical model of the
left ventricle at end diastole, showing the mean plus and minus one and a half
and three standard deviations.

is done using the inverse of the vector fields we obtain during reg-
istration. As the inversion is an optimization problem in itself, the
inversion error presents a localization uncertainty. We report the
inversion error at the locations of the landmarks and contours.

= Distance-based and overlap-based evaluation. After random slice
selection and quantification of uncertainty in landmark localization,
we report contour-to-surface and point-to-point errors and overlap
accuracy to evaluate the registration quality.

Furthermore, we illustrate the convergence of the synthesis of the

mean image.

2.5.1. Registration—Selection of Volumes and Slices

Both the optimization and the evaluation of all registrations carried
out is unfeasible with large datasets. Therefore it is of importance that
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a meaningful subset of the data is selected for the evaluation. We used
random sampling after identification of volumes and slices satisfying four
simple qualification criteria: two for volumes, and two for slices.

A volume qualifies if the image intensity histogram peak pertaining to
contrast enhanced blood could be identified, and the modal intensity and
width of the peak fall within two interquartile distances from the pop-
ulation median for these two quantities. Additionally, the volume must
contain a sequence of at least 20 qualified slices.

A slice qualifies if at least 3.5% of its pixels fall in the intensity range
of contrast enhanced blood, as determined via the volume’s intensity his-
togram. Additionally, the slice has to be part of a sequence of at least 20
in the volume.

The resulting sets of qualified slices are nearly guaranteed to intersect
the cardiac and supracardiac blood pool. The threshold of 3.5% contrast
enhanced blood pixels excludes slices where the enhanced blood is pro-
vided exclusively by the vena cava and aorta. The 20 slices cover 38 mm,
which is much less than the cardiac blood pool should extend for, but
excludes slices that were incorrectly qualified by the first slice criterion.

After determining qualifying volumes and slices, we draw randomly
from the volumes. The sequences of qualifying slices in these volumes
are divided into three equal parts and we randomly draw a slice from each
part.

2.5.2. Registration—Measurements
Contours

From the qualifying subjects, 36 were selected randomly. Six re-
searchers each segmented the slices of six subjects in Graphical Interface
for Medical Image Analysis and Simulation (GIMIAS) v1.2.0 [107] using
the same tool as used to outline the atlas structures. The set of structures
to be segmented correspond either to one or to multiple structures of the
final atlas:

1. Aortic root
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2. Left ventricular cavity

3. Left ventricular myocardium (constituting the left ventricular free
wall and the interventricular septum)

4. Right ventricular cavity
5. Left atrial cavity (including pulmonary vein trunks)
6. Right atrial cavity (including trunk of vena cava)

For each of these structures, the boundary of the segmentation in the
slice was extracted and warped to the reference space using the inverse of
the vector fields obtained during registration. Subsequently the mean un-
signed distance from the warped contour to the corresponding structure’s
surface in the atlas was recorded. These distances are reported for each
of the structures in the top half of Table 2.5.

Overlap

For each of the structures listed above, we also measured the over-
lap with the atlas segmentations. We warped the voxel-based segmen-
tation into the atlas space using nearest neighbor interpolation. By us-
ing three labels (foreground, background in segmented slice, background
elsewhere), we could identify and count false negative voxels (‘fn’) in ad-
dition to true and false positive voxels (‘tp’ and ‘fp’, respectively). These
counts were combined into F-scores for the registrations in Table 2.6.

The F-scores are defined as F' = %, with precision p = tpt}:fp and recall
r= tptfr)fn. Thus, perfect matchings would yield an F-score of 1.
Landmarks

The contour-based evaluations have drawbacks in that they are not
measuring the registration accuracy in a truly three-dimensional manner.
By measuring the point-to-point accuracy of a set of anatomical land-
marks, such evaluation is possible.
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Table 2.6: Registration accuracy quantified by F-score of overlap of selected structures

F-score
Initial Final
mean + mean +

standard deviation overall standard deviation overall
1 Aorta 0.8504+0.152 0.833 0.871+£0.105 0.867
2 LV cavity 0.9254+0.021 0.925 0.916 £0.023 0.917
3 LV myocardium 0.773 £0.055 0.775 0.773+£0.049 0.774
4 RV cavity 0.823 £0.070 0.825 0.817+£0.043 0.817
5 LA cavity 0.723 £0.131 0.723 0.699+0.104 0.700
6 RA cavity 0.643+0.167 0.636 0.628 £0.106 0.622
7  Left blood (14+2+5) {0.904 + 0.056 0.900 0.895+0.042 0.893
8 Right blood (4+6) |0.821£0.079 0.821 0.806 £0.058 0.804

Overall 0.838 0.827
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From the pool of subjects, 36 were selected for landmark-based eval-
uation. The same six researchers each processed 12 subjects; each subject
was processed by two researchers and each pair of researchers shared ei-
ther two or three subjects.

For each subject, five landmarks were identified and marked using
GIMIAS v1.2.0 [107]: the endocardial apex, the aortic and mitral valve
centers, and the origins of the left and right coronary arteries. Like the
contours, the landmarks were warped to the reference space. We report
the interobserver variations both prior to warping and after warping, and
the point-to-point registration error in the reference space. These results
are presented in the bottom half of Table 2.5.

Vector field inversion

To warp the contours and landmarks from the subject space to the
reference space, we require the inverse of the vector fields obtained during
registration. The computation of this inverse is an optimization problem,
and as such will introduce some uncertainty in the valuation. We quantify
the error in the estimation of the inverse as the vector magnitude of ¢® o

(p*)~! at the landmark and contour locations in the subject image space.
The last column of Table 2.5 lists these errors.

2.5.3. Registration—Results

The contour-based evaluation reported in Table 2.5 provides insight
into the agreement on boundaries. The average distance of these contours
ranges from 1.59 mm for the left ventricular area to 2.76 mm for the right
atrial area. This compares favorably with the slice spacing of 2.0 mm. The
difference in performance between the left ventricular area and the atrial
and right ventricular areas is easily explained by the low complexity of the
left ventricle (LV) compared to the atria, and the much smaller influence
of trabeculation on the LV blood-myocardium boundary strength.

The landmark errors compare well with the interobserver variation for
the valves and the left coronary origin. The greater error in the apex is due
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to a sliding along the LV cavity wall; it is on the boundary but not at the
apical point. During registration, boundaries are matched yet boundary
curvature, by which observers would identify the apex, is not taken into
account. The difference between interobserver variation and registration
error of the right coronary artery (RCA) origin is due to the size of the
RCA. While its position is stable at the base of the aorta, its appearance
is often weak, thus offering no boundary for the registration to match.

The left ventricular apex and mitral valve center show a greater in-
terobserver variability than the other landmarks. For the apex, this can
be attributed to a dependence on image plane orientation; the observers
are free to rotate the image planes to best visualize the landmark to be
located, which for the apex tends to be a pure short-axis view. The ap-
parent apex location varies along the endocardial wall with the deviation
from this view. The interobserver difference in the mitral valve is due to
its structure; whereas the closure of the aortic valve is defined by a curve
where the three leaflets meet, the mitral valve’s closure is a curved surface
on which the valve centroid is not easily identified. In addition, its oblique
location with respect to the image axes results in a high probability that
the observers mark the centroid in different slices.

The overlap-based accuracy is reported in Table 2.6 as F-scores in
the atlas space. We have listed both the mean and standard deviations per
subject per structure as well as an aggregate F-score per structure (column
‘overall’) and over all structures (last row of column ‘overall’). Relatively
little change in accuracy between the first (reference) and fifth (final) it-
erations can be observed. A slight deterioration of the registration quality
may be due to the inevitable reduction in image quality when the refer-
ence image is warped, which has affected all structures but the aorta, the
structure with the most homogeneous blood pool. Seemingly ‘difficult’
structures to match properly have complex geometry (atria) or are thin
(myocardium). A difficulty with the aorta was found to be the proximity
of the descending part to the spinal column, and of the ascending part to
the atria. ‘Bleeding’ into these structures was observed in some of the test
subjects.
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2.5.4. Bias Removal

The choice of a reference image introduces a bias. The iterative ap-
proach to synthesizing a mean image is designed to remove this bias. At
full and perfect conversion, the mean vector field with which the mean
image is updated should represent an identity transformation. We can
therefore quantify the bias by measuring ¢; for each .

The ideal mean vector field—the identity transformation—would con-
tain exclusively zero vectors. Thus, its vectors’ z, y and z components
would follow a zero mean Dirac delta function with the peak at 0. In
Fig. 2.9’s left panel we show the deviation from O of the mean z, y and 2
component over seven iterations. It is clear that this deviation decreases
strongly in the first iterations and then starts oscillating. In the right panel
we plot the sample kurtosis of the distributions over the seven iterations,
quantifying the ‘peakedness’ of the distributions. While the Dirac delta
distribution’s kurtosis is undefined, one can easily see that kurtosis in-
creases with better approximation of the delta function.

In Fig. 2.10 we show the distributions per component in full over the
iterations; after only three iterations the changes are no longer perceiv-
able, which is similar to the findings of Guimond et al. [66].

In Fig. 2.11 we show how the distribution of the vector magnitude of
©; changes over the iterations. The pattern of convergence is clear, yet
after five iterations the percentage of longer vectors starts to grow again.
This has a detrimental effect on the synthesized mean image and confirms
the qualitative observation of increased artifact visibility from Fig. 2.3.
Therefore, we consider the synthesized mean image at ¢ = 5 to be the
final image.

2.6. Discussion

We have presented a mesh-represented statistical atlas of the human
heart, and a framework for its construction from a large set of 3D+time
Multi-Slice Computed Tomography (MSCT) image volumes. We vali-
dated the atlas using measures of registration accuracy and evaluated the
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Mean Kurtosis

Bias (mm)
Kurtosis
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Figure 2.9: The absolute values of the bias (left) observed in the mean vector
field decrease with iterations, down to less than half of the shortest side of a
voxel in all directions after three iterations. The ‘peakedness’ of the distributions
displayed in Fig. 2.10 is quantified through their kurtosis (right). It is clear that
this measure continues to increase.
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Figure 2.10: Histograms of vector components per iteration. Qualitatively, it
shows that the first three iterations resolve the greatest amount of deformation.
After this, the majority of change occurs in the y component (sagittal plane).

iterative bias removal.
We have made the atlas publicly available through our group’s web-
site.
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Figure 2.11: The distributions of vector magnitudes in the mean vector fields
(displayed as cumulative histograms) show convergence of the registration. In
(b) we zoom in on the first three millimeters in (a) to better visualize that after
only three iterations the majority of vectors is shorter than the voxel diagonal,
and after five iterations around 70 percent of the vectors has a length shorter
than the voxel diagonal. In (c) it shows that after five iterations, the tail of the
vector magnitude distribution starts to widen. The synthesized mean image at
this iteration is considered the end result of the spatial normalization.

2.6.1. Framework Performance

We have demonstrated the construction of a spatio-temporal statistical
model of the atlas shape over a population of 134 subjects at 15 cardiac
phases. To our knowledge this represents the largest 3D+time population
to date to be used for cardiac statistical model generation.

The number of pairwise registrations in the framework scales linearly
with the number of subjects. This makes the framework applicable to
larger data sets than the set used in this chapter, such as the Cardiac Atlas
Project database. The framework derives robustness from automation of
the reference selection and the imposition of diffeomorphic constraints on
the registrations.

Human interaction is limited to two distinct instances during the ap-
plication of the framework. The first, tuning of registration parameters, is
based on a subset of the population of a user-defined size. In the second
instance, the manual labeling of the mean image, the level of detail and
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the number of structures can be controlled by the user. Existing atlases
can be employed to further reduce the human input.

Steps in spatial normalization that were previously typically done by
human interaction, such as reference selection and assessment of conver-
gence, were automated. An image-to-group similarity criterion was used
to select a suitable reference, while convergence was based on the distri-
bution of vector magnitudes in each iteration’s mean vector field.

We validated the atlas through measures of registration accuracy. Ran-
dom sampling was employed to balance the need to cover a sufficiently
large portion of the population, while maintaining the required human ef-
fort at a feasible level. In addition to random selection of subjects, within
the subjects the selection of image slices was randomized as well. Do-
main knowledge was used to encourage the selection of slices present-
ing cardiac structures, while also enforcing an even distribution along the
transversal axis of the body.

To complement the sample-based explicit registration evaluation, a
PCA-based outlier detection system was applied to the first-phase shapes.
While conceptually simple, it allowed the removal of a very small (3%)
subset of the population for which registration had failed, contributing to
the robustness of the overall framework.

By applying the spatial normalization only on the first frame of each
subject’s volume sequence, we explicitly resolve geometric variations
due to inter-subject variation separately from deformation due to cardiac
function. This reduced computational requirements with respect to reg-
istration using an integrated spatio-temporal transformation model, while
improving temporal consistency compared to normalizing the full set of
2070 image volumes.

2.6.2. Limitations

The atlas comprises 13 structures, of which 9 are outlined and 4 are
traced; this represents only a small fraction of structures present in the
heart but reflects a limitation resulting from the imaging data used. Pop-
ulations imaged using complementary imaging techniques can be used to
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provide more structures, further subdivision or level of detail of the cur-
rent structures, and increase the population size for the statistical model-
ing. Similarly, the aorta and pulmonary trunk are better modeled based
on dedicated imaging studies.

Further limitations due to the imaging data are related to the price
of the high spatial resolution of MSCT. Firstly, the temporal resolution is
rather low at 15 frames per cycle. This is a well-known tradeoff that exists
in all imaging modalities. Secondly, the use of CT data means the subjects
were submitted to ionizing radiation, in addition to having contrast agent
injected. As a result, all subjects are pathological, which influences both
the population mean and the observed variation.

The coronary trees can only be traced over a short section; through the
oblique orientation of the heart with respect to the image coordinate sys-
tem, the coronary arteries quickly disappear ‘between slices’. Addition-
ally, the structures are too small and are subject to topological variations,
such that accurate registration of these becomes impossible.

Another problem of visibility, though not by obliqueness but by ap-
pearance, is that of the thin walls of the atria, right ventricle and trunks
of great vessels. The appearance of these structures coincides with that
of the pericardium, and thus our atlas only estimates these structures by
extrusion of their blood pool boundaries.

A limitation of the framework is that it is currently unable to model
the topological variations that are known to occur in the complex of left
atrium and pulmonary veins [132], and in the coronary trees [3]. It de-
serves further study to unify a discrete statistical model of topological
variations with the continuous statistical model of shape. The separation
of the pulmonary vein trunks from the left atrium is a step towards acco-
modating such an extension.

The approach of iteratively removing bias from a chosen reference
image may require more constraints than only the condition that the reg-
istrations produce diffeomorphic deformations. This may be related to
the phenomenon we observe in the later iterations in Fig. 2.3. There, even
the diffeomorphic transformations start producing seemingly implausi-
ble deformations, potentially as a result of shifting from larger to smaller
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differences to be resolved. As Hamm et al. [69] suggested, it may be de-
sirable to explicitly constrain the deformations to generate only images
that lie on the manifold generated by the input images.

Furthermore, this manifold may allow discontinuities in the deforma-
tions due to different positions of the heart relative to neighboring struc-
tures. Consider here the lungs and pulmonary vasculature laterally, the
diaphragm inferiorly, and the sternum and rib cage frontally. Such dis-
continuities cannot be captured using the B-spline deformation model.
Providing a region of interest that comprises only the heart may alleviate
such a problem, as the B-spline needs only model deformation within this
region. This could work under the assumption that the reference image
can serve as an initial atlas, or by using an automated detection and/or
rough segmentation method.

By using pairwise registrations to resolve the cardiac motion (the
intra-subject registration), the time points at which labeled shapes are ob-
tained are dictated by the imaging protocol. Currently, work on spatio-
temporal registration [138, 46, 122] with a spatially and temporally con-
tinuous deformation model has not yet been demonstrated to handle high-
resolution CT image data. However, the framework allows the pairwise
approach to be replaced with a continuous approach when required and
feasible.

The high degree of automation of the framework calls for methods,
preferably also automated, to quantify accuracy. We used a rudimentary
means to identify suspicious shapes by outlier detection. However, as it
was rudimentary, it was limited to identifying only very obvious cases,
and thus a more sophisticated approach suitable also for early detection is
desired.

Finally, the framework presents the user with many decisions to be
made; there are many steps involved, one can interchange methods, and
each method has its parameters. This combines to a vast number of possi-
ble combinations that will not all produce the exact same atlas, and some
combinations may even fail. However it is beyond the scope of this chap-
ter to present a quantification of the effect of each decision exhaustively.
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2.6.3. Future Perspectives

The various steps in the framework are independent of each other; the
methods used in each step can be replaced by other methods according to
requirements without affecting the workflow ‘downstream’. One should
note stratification [18] as an exception to the latter; while it can be plugged
into the framework, it introduces branches in the workflow as it will lead
to multiple atlases.

The atlas was developed with the aim of using it in computational
physiology studies. We demonstrated the incorporation of fiber orien-
tations in the left ventricular myocardium, which is of paramount impor-
tance in the simulation of both electrical and mechanical cardiac function.

The combination of an atlas with a statistical model facilitates person-
alized computational physiology studies by connecting the image analysis
and simulation elements described by Young and Frangi [222].

The flexibility of the statistical model allows fitting the shape to image
data to personalize geometry [226]; although the model is built from CT
data, other modalities can be used as well with the help of simulated im-
age appearance models [195, 196]. Alternatively, the generative nature of
the model can be exploited to generate virtual populations [76, 77, 153] to
study the influence of certain parameters—including geometry itself—on
simulation results.

Further personalization of the mesh in preparation for simulation can
be based on invasive measurements, by taking into account statistical rela-
tionships between geometry and fiber orientation [111], or draw upon the
literature to introduce normal, abnormal, or expected parameter values.

53




“main” — 2013/12/4 — 15:53 — page 54 — #76




“main” — 2013/12/4 — 15:53 — page 55 — #77

Chapter 3

BILINEAR MODELS FOR
SPATIOTEMPORAL POINT
DISTRIBUTION ANALYSIS

Adapted from [79]
C. Hoogendoorn, FM. Sukno, S. Ordés, and A.F. Frangi
International Journal of Computer Vision, vol. 85, no. 3, pp. 237-252, Dec. 2009.
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Abstract

In this chapter we describe the usage of bilinear statistical models as a
means of factoring the shape variability into two components attributed to
inter-subject variation and to the intrinsic dynamics of the human heart.
We show that it is feasible to reconstruct the shape of the heart at discrete
points in the cardiac cycle. Provided we are given a small number of shape
instances representing the same heart at different points in the same cycle,
we can use the bilinear model to establish this.

Using a temporal and a spatial alignment step in the preprocessing of
the shapes, around half of the reconstruction errors were on the order of
the axial image resolution of 2 mm, and over 90% was within 3.5 mm.
From this, we conclude that the dynamics were indeed separated from the
inter-subject variability in our dataset.
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3.1. Introduction

3.1.1. Statistical Shape Models and Time

The use of statistical models of shape has established itself as a pop-
ular approach to image analysis problems, in the domain of both natural
[150] and medical image analysis [136, 53]. Along the way, much re-
search has been devoted to the development of various types of shape
models, as well as to solving problems arising from the construction of
such models. Many of those models, however, are essentially spatial mod-
els, and extension to the spatiotemporal domain is not as trivial or trivially
justifiable as the extension from d to d 4 1 spatial dimensions.

The analysis of Point Distribution Models (PDMs) in shape space re-
ceived a significant amount of attention from the mid-1980’s to the early
1990’s [38, 97, 109, 129]. The most renowned result from this work ap-
plied in computer vision is the emergence of the Principal Component
Analysis (PCA)-based statistical shape model from Cootes et al. [42],
who applied PCA to the covariance matrix of their data set in order to ex-
tract a set of orthogonal variations of the sampled points. These became
well-known as the modes of variation of the shape class.

Efforts to extend linear shape models to the spatiotemporal domain
have been made before, for example by Hamarneh and Gustavsson [68],
in whose work each sample in the dataset consists of an entire sequence
of observations of the same object sampled throughout the temporal ex-
posure window. Mitchell et al. [143] and Bosch et al. [20] employ the
same strategy, extending Active Appearance Models (AAMs) [39] to
Active Appearance Motion Models (AAMMs) in order to segment the
endocardium in echocardiograms and Magnetic Resonance (MRI) image
sequences, respectively. Perperidis [154] constructs two linear models us-
ing PCA: one which models the variation across the mean shapes of the
subjects, and another one which models the variation within the cardiac
cycle. Another approach to add the element of time to 3-dimensional seg-
mentation using statistical shape models was presented by Montagnat and
Delingette [144]. After building a PCA-based model treating all subjects
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and all phases as separate samples, they employ a scheme which seg-
ments the cycle as one single object, rather than employing a sequential
scheme to segment each frame separately. During segmentation, temporal
constraints are introduced in the optimization to limit the differences be-
tween segmentations of subsequent frames to reasonable values. Lynch et
al. [124] model the temporal processes in their level-set approach for car-
diac segmentation as a distance function between a set of control points
and the level sets.

Statistical models of cardiac left ventricle (LV) deformation only were
constructed by Chandrashekara et al. [30], using data from one single
subject. A comparable approach to modeling respiratory motion of the
liver was taken by Blackall et al. [17].

To the best of our knowledge, our previous work [78] was the first to
model individual and temporal variations of cardiac shape as two differ-
ent sources of variability within the same set of data. Before, inter-subject
variation and dynamics were not decoupled at all [20, 143, 68]. Later,
the application of the model was equipped with constraints to limit the
first-order derivative of shape points over time [144] or by constraining it
using a distance prior [124]. By creating a spatiotemporal model of car-
diac dynamics that decouples individual and temporal variations, we can
extrapolate cardiac phases from the statistical model even when they are
not available from the individual measurements. The models most simi-
lar to our apprach are those from Perperidis [154]. However, our method
does not result in a massively higher-dimensional parameterization for
intra-subject variability, resulting in a more compact model.

3.1.2. Bilinear Statistical Models

In biometrics, the separation of two (independent) processes that con-
tribute to the overall pattern variability is a well-known problem, which
has led to the introduction of bilinear models by Tenenbaum and Freeman
in [193]. The reader is referred to [194] for a more detailed description.
Dubbing the two sources of variability style and content, these names can
be assigned freely depending on which is most natural given a specific
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problem. Aside from the examples used in [194], the literature contains
examples of the separation of

= face identity and facial expression [1]

= Jocation and content for sparse coding of natural images [65]

= emotion and speech content [35]

= gait (walking characteristics) and viewing conditions [82, 110]
= pairs from the set {identity, action, viewpoint} [44]

= prostate shape between individuals and over time [87, 88]

= face identity and viewpoint [62]

= face identity and illumination [180].

While in Tenenbaum and Freeman [194] the bilinear models and their
construction are formulated quite specifically for bilinear decomposition,
which we expand on in Section 3.2, they follow the same principles of the
multilinear decompositions of higher order tensors presented by De Lath-
auwer et al. [47], which was followed by Vasilescu and Terzopoulos [206]
for their trilinear decomposition of expression, identity and illumination.

3.1.3. Clinical Context

The use of statistical models in cardiac image analysis initially fo-
cused primarily on segmentation[188, 20, 143, 144, 124]. However, the
analysis of cardiac function — dynamics and deformation — has since
emerged as a relatively new field of application to which intensive re-
search has been dedicated. In the context of Congestive Heart Failure
(CHF) assessment, LV function in particular has been the focus of au-
tomated localization and quantification algorithms, employing various
types of models. Automated methods for objective modeling and analysis
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of cardiac morphology and function are therefore desirable and relevant.
For an overview of cardiac modeling, we refer to Frangi et al. [60].

Most recently, deformation recovery and modeling was done by Bis-
toquet et al. [16], who make use of the near non-compressibility of my-
ocardial tissue to constrain the segmentation of the LV and simultane-
ously extract the underlying within-tissue deformation. Liu and Shi [117]
analyzed cardiac motion under constraints obtained from biomechanical
priors.

Lekadir et al. [112] model LV deformation as interlandmark motion in
a local circular coordinate system in which anomalies present themselves
as outliers. Leung and Bosch [114] create a sparse shape variation de-
composition using PCA and subsequent orthomax rotations to character-
ize local abnormal deformations, while Syeda-Mahmood et al. [189] use
registration and the associated deformation patterns to characterize defor-
mation abnormalities in two-dimensional (2D) ultrasound sequences.

While they may be robust to intersubject variability, none of the above
approaches really takes this source of variation into account. By factor-
ing from a dataset the variation attributed to inter-subject differences from
that of cardiac dynamics, be it shapes, deformation fields or the images
themselves, the contraction pattern of an entire population can be mod-
eled, and then used in various clinical applications. In this chapter we
employ bilinear models to establish this factorization on cardiac shapes,
and illustrate their power to parameterize the dynamics (or rather a set of
discrete phases within the cardiac cycle) and the subject by extrapolating
from a small subset of phases to the remaining phases in the cycle.

The remainder of this chapter is organized as follows: we introduce
the concept of and techniques behind bilinear models in Section 3.2. Our
extrapolation experiments are described in Section 3.3. The results are
presented in Section 3.4, followed by a discussion and future research
directions in Section 3.5. We conclude this chapter with Section 3.6.
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3.2. Bilinear Statistical Models

A bilinear model is a two-factor model which is linear in either factor
when the other one is kept constant:

y=awh (3.1)

where y is a scalar observation, @ and b are parameterization vectors de-
fined by the factors, and W is a constant matrix governing the interaction
between the factors.

Extending this to the case of multivalued observations, each element
yi¢ of a K -sized observation 4*° in style s and content ¢ can be described
by a bilinear model as

I J
U= ) wiahs. (3.2)

i=1 j=1

I and J are the sizes of the parameterization vectors @ and b, respectively.
W is now a 3-dimensional matrix, which forms a mapping from the style
and content spaces into observation space and as such is of size [ x J X
K. Each wj;; is a K-sized base observation, much akin to the eigenface
[198] and eigenshape [42]. In the case of speech recognition, one could
think of them as voice harmonics that need to be combined to form a
certain phoneme in a certain accent or intonation. The @ and b vectors
provide the information on how to combine those base observations. For
the time being, we will adhere to the original nomenclature and call these
the content and style vectors, respectively (hence the c and s superscripts).
Figure 3.1 illustrates how the model consists of the sets of parameters @
and b, providing a compact representation of the style and the content, and
the base observations W, derived from the examples in the bottom-right
quadrant.

The choice for bilinear models stems from the idea that variations in
a set of observations are the consequence of the variation of two inde-
pendent factors. The examples used to illustrate the usefulness of bilinear
models in Tenenbaum and Freeman [194] call upon analyzing the way we
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h
Phase parameters: b"**

subject

Subject parameters: a;

J

LA 1] =

Figure 3.1: The structure of a symmetric bilinear model. Along the horizontal
axis, three phases from the cardiac cycle are shown. Along the vertical axis
we have four different subjects. The set of basis observations W can not be
visualized in a meaningful manner.
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manage to recognize known characters, people or phonemes in a font or
under viewing circumstances not observed before, or uttered in an accent
not heard before. Somehow, we know the invariants of that character,
person, or phoneme, and in an observation we can recognize those irre-
spective of the variations introduced by the circumstances.

3.2.1. Asymmetric Models

A combining matrix A can be the result of contracting @)V into a
single matrix, leading to an asymmetric model:

J
Y=Y a5l (33)
j=1
where
I
aj = wajkaf. (3.4)
=1

This is useful when the mapping from content to observation is dependent
on style. The .J observations of size /' each that make up A are then style-
specific base observations that can be mixed using the parameterization
in b. In essence, the model has then become a unilinear model. It is
possible to invert the roles of style and content, and thus build a different
asymmetric model from the same training data.

3.2.2. Symmetric Models

The symmetric model is the original bilinear model as already pre-

sented in (3.2):
I

J
sc s1c
Y = § § wijkaibja

i=1 j=1

where the mapping from the style and content spaces to observation space,
W, is dependent on neither style nor content. The elements of WV are
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base observations that look like eigenfaces [198] but do not represent an
orthogonal basis like eigenelements. The base observations can then be
mixed using the @ and b parameterizations to form any element from the
training set, and other parameterizations can be used to construct obser-
vations of new style and/or new content.

3.2.3. Factoring Inter-Subject Variability and Cardiac
Dynamics

Representation of Training Data

The construction of the bilinear models as presented in Tenenbaum
and Freeman [194] assumes a vector representation of the observations.
This is easily achieved by employing a surface representation as is com-
monly used for the construction of PDMs like those in Cootes et al. [42].
In d-dimensional Euclidean space, each training shape is landmarked with
ny, points — pseudolandmarks [52]! — of anatomical correspondence through-
out the training set. The set of point coordinates is then concatenated to
form an (npd)-dimensional shape vector, or a single point in an (npd)-
dimensional shape space.

After landmarking and vectorization of our observations, we have C'S
(nrd)-dimensional shape vectors: C' frames per time sequence, .S subjects
(with one sequence each), ny, landmarks in d dimensions. As is the case
in [68], we construct our observation matrix by ’stacking’ all vectors for
one subject onto each other, such that we obtain a Cny,d x S shape matrix
Y:

g*ll .. 3710
Y= : -. . (3.5)
g'Sl y—’SC

This is the starting point for the construction of both the asymmetric and
the symmetric bilinear shape models. Rather than using a 3-dimensional

'In medical image analysis, ‘landmarks’ can refer to either anatomical landmarks or
pseudolandmarks.
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matrix WV, we use W which has a format similar to }7, with the number
of elements limited by the sizes of the parameterization vectors:

u—}»ll u_fl‘]
w=| : - . (3.6)
u_}'H u—}'IJ

The modeling consists of minimizing the squared reconstruction error be-

tween the original observations and the approximation the model will pro-
vide. Denoting the approximation of %*“ in shorthand notation as

?jsc _ Aspe if the model is asymmetric 3.7)

@ Wb if the model is symmetric '

we minimize

E=Y > l5 -yl (3.8)

s=1 c=1

Asymmetric Training

The training of an asymmetric model has a closed-form solution if the
number of observations is (nearly) equally distributed over the style and
content classes [194]. As the matrix with training data Y is the result of
the product AB, it suffices to compute the Singular Value Decomposition
(SVD) Y =US VT. Then, the matrix B , containing the phase parameters,

can be defined as thg first J rows of \7T, while A will be defined as the
first J columns of U S.

Symmetric Training

The training of the symmetric model requires the notion of the vector
transpose [130]. Unlike the original application of this term, namely the
conversion of a column vector into a row vector and vice versa, the vector
transpose we use here is a matrix operation.
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Given an /K x J matrix, where each column was constructed by
stacking / K-dimensional column vectors onto each other, the vector
transpose of this matrix is a JK X [ matrix, with the positions of the
K -dimensional column vectors transposed rather than the individual el-
ements. In the case where X' = 1, the vector transpose is the normal
transpose of the matrix. Otherwise, the vector transpose looks like

- 4 VT
T11 | 12
To1 | 22 M T ot ]
11 41 71
T31 | T32
T T To1 | Ts1 | g1
11 42
7 Z31 | Te1 | o1
XV = | a5 | 25 = (3.9)
Te1 | Teo T12 | a2 | T72
T T To2 | T2 | T82
71 72
T32 | Te2 | To2
Tg1 | g2 - -
| Lo1 | To2 |

for K = 3. Itis easy to see from (3.9) that the vector transpose operation
is invertible: (XVT) = X.

For the symmetric model, an iterative method is required to minimize
E in (3.8). To this end, first A and B are computed. Upon convergence

of these computations, W is computed using the results.

Analogously to the ' = 1 case using matrix transpositions, the sim-
plified model equation Y = AW B can be rewrittenas Y = (WVTA)Y" B

—

as well as YVT = (WB )VT A. This leads to two equations that are famil-
iar from the training of the asymmetric model:

& e\ VT N . 5
(YBT> A G s v (3.10)

and VT
(Y’VTAT> _WB=U3V". G.11)

By iterating over these equations, starting from an initial estimate of B
using the SVD of Y, convergence towards the real A and B is guaranteed
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[126]. As was the case in the previous section, dimensionality reduction
can be achieved by picking a fixed number of rows of A and B. Un-
like linear models based on PCA, this cannot be left until the end, as a
change in dimensionality of one set of parameters will affect the other set
of parameters. Therefore this truncation is done in each iteration. Upon
convergence of the computation of A and B, what is left is the computa-

tion of W
VT

W= ((?éT)VT A’T) , (3.12)

which satisfies Y = (WVTA)'" B.

In Section 3.1 we already mentioned the relation between the bilin-
ear models as they are formulated in Tenenbaum and Freeman [194] and
here, and tensor space decomposition [47]. The two vector transposi-
tions we use correspond to two of the three tensor unfoldings [47] of the
third-order tensor we could construct along the axes of subject, phase and
pseudolandmark coordinate.

3.3. Experiments

The assumption that shape variation introduced by inter-subject varia-
tion is independent from the dynamics is a simplification of reality. How-
ever, hearts with equal geometry at rest do not necessarily contract in
the same way, while hearts with different geometry may. Factors such
as myofiber orientation, local contractility defects like infarction, dilation
or hypertrophy, and wall stress influenced by blood pressure and loading
all influence the contraction pattern, and none of these are really inde-
pendent of one another. Therefore we performed experiments to verify
the suitability of bilinear modeling to capture the dynamics of the shape
of the beating heart. To this end we constructed models factoring the
inter-subject variations (as the style) and the dynamics (as the content), as
illustrated in Fig. 3.1. Then, the models were used for extrapolating the
learnt dynamics to subjects not present in the training set. In addition, we
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Table 3.1: The parts of the heart shape that have a closed surface representation,
with the associated number of landmarks ny,. The parts are visualized in Fig. 3.3.

Symbol | Description ny,

LV Left ventricular endo- and epicardium. 2677

RV Right ventricle without septum, with trunk | 7902
of pulmonary artery.

LA Left atrium with trunks of pulmonary veins. | 6789
RA Right atrium with trunks of venae cavae. 7243
Aorta | Trunk of the aorta. 3000

compared predictions based on a single phase to the difference between
this shape and phases following it.

3.3.1. Data
Population

Our data consists of 80 full hearts acquired consecutively, with closed
surface representations for each of five subparts, listed in Table 3.1 and
visualized in Fig. 3.3. The population is distributed as 60% healthy and
asymptomatic subjects, 20% subjects with Coronary Artery Disease (CAD)
without a history of myocardial infarction (MI), and 20% subjects with
CAD and a history of MI. Subject age was 58 4 8 years, and men made
up 56% of the population.

For the experiments we built models of the entire heart as well as
models of only the right and left ventricle (biventricular model) and the
LV only.

Imaging Parameters

The imaging was performed using a Toshiba Aquilion 64 Multi-Slice
Computed Tomography (MSCT) system with a 64-row detector (Toshiba
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Medical Systems, Tochigi, Japan). Between 80 and 100 ml of contrast
material (Xenetic 350) was administered at an injection rate of 5 ml/s. The
rotation time of the scanner was, depending on the subject’s heart rate, be-
tween 400 and 500 ms, and image reconstruction was performed on a Vit-
rea post-processing workstation (Vital Images, Minnetonka, MN, USA).
The resulting dataset consisted of 15 image volumes (temporal phases)
obtained using retrospective electrocardiogram (ECG) gating [148] with
voxel dimensions of 0.4 x 0.4 x 2.0mm? per subject. Figure 3.2 shows
the gating sequence over the cardiac cycle, albeit that the ECG used is
schematic. Temporal relationships are only preserved with respect to the
R-R interval®. Overlaid on this sequence are the root mean square (RMS)
point-to-surface (P2S) differences between subsequent full heart shapes,
using a landmarking scheme as explained hereafter. The value at time 0
reflects the RMS P2S difference between phases 15 and 1.

Landmarking

The data set was then used for the landmarking as presented in Ordas
et al. [149], resulting in n;, = 27611 points per volume. The point set
sampled on the average shape was triangulated using Amira V3.0 (Visage
Imaging, Carlsbad, CA, USA) to facilitate visualization of this shape,
all shapes in the training set, and all shapes generated using the bilinear
model. Table 3.1 lists the number of points sampled uniformly on each of
the closed surfaces.

Spatial and Temporal Alignment

The subjects were imaged without sedation, which lead to heart rates
of 62.2 £ 11.9 beats per minute. As the time it takes the heart to contract is
largely independent of the heart rate, this causes inter-subject phase shifts
due to the time points of the phases not being synchronized. Temporal
alignment would therefore be desired. To this end, we explored using the

2The R-R interval is the mean time between the R-peaks — the big peaks — in the ECG,
indicating the firing of an electrical impulse to the heart muscle, which then contracts.
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Figure 3.2: RMS P2S differences
between subsequent phases of the
left ventricles, averaged over all 80
subjects, plus and minus one stan-
dard error. The solid line shows
the differences before the tempo-
ral alignment step, while the dashed
line shows the differences after this
step (see Section 3.3.1 for details on
this process). At time 0, the differ-
ence shown is that between phases

15 and 1. The dotted curve at the 397 " [—Before temporal alignment
bottom represents a schematic ECG, 2 ° Az -After temporal alignment
the R-peak at the left being the refer- £2:5 II\§

ence for the ECG gating (all acqui- £ 2 /I’{ kS Y/l" ’}\i

sitions are at R plus a fraction of theg 1,51/' 1z 'Y fI/I\I/
R-R interval). The light grey ver-g 4 "%’.-}-I‘Y/
tical lines indicate the interval over 05l

which each of the phases was sam- Lot N o o .

pled. % 02 04 06 08
Subject index
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method by Perperidis et al. [156] for temporal alignment. For each phase,
the normalized cross-correlation coefficient (CC) of image intensities be-
tween the phase at hand and the first phase in the cycle is computed. As
the heart contracts, this scalar reduces as the images become less similar
to the first frame. The phase of maximum contraction (end systole (ES))
is identified as the phase with the minimum CC. Subsequently, the phase
of maximum deceleration of relaxation (end diastole (ED)) is identified
as the phase with the minimum second derivative of the CC after the
end-systolic phase. Together with the first and last phase, these form the
phases which are to be aligned. All phases in between are to be interpo-
lated.

We adapted this approach slightly. We did not use a reference cycle
to identify at which phase end-systole and end-diastole should be placed.
Instead, we used the mode of the set of identified phases for each, result-
ing in phase 5 for end-systole and phase 10 for end-diastole. It should be
noted, however, that of the 80 subjects, the subjects for which the end-
systolic phase was identified as the fifth only slightly outnumbered those
for which the end-systolic phase was identified as the sixth. Figure 3.4
shows CC values as the temporal alignment procedure progresses.

It will become apparent, however, that the temporal alignment has its
limitations. The spread of the heart rates, together with the low temporal
resolution (15 phases, compared to 30 in Perperidis et al. [156]), could
result in a loss of information in some of the sequences due to linear

(b) (d)

Figure 3.3: Surface rendering of one of the training hearts. In dark (a) the left
ventricle, (b) right ventricle, (c¢) left atrium, (d) right atrium, and (e) aorta.
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Figure 3.4: The effect of the alignment on the CC of the CT images. For clarity,
only values for 10 subjects are shown, including the subjects with shortest and
longest R-R interval. The volume of the left ventricle follows a very similar curve
[156]. (a) CC against time in milliseconds before alignment. Note the spread
along the temporal axis. (b) CC against time in percentage of the cardiac cycle
before alignment. This corresponds to aligning the first phase of the cycle and
the first phase of the next cycle. (c) CC against time in percentage of the aligned
canonic cycle. Positions in time of the original acquisitions are interpolated.
(d) Interpolated resampled CC after full alignment. In practice, the shapes were
aligned by linear interpolation of corresponding landmarks.
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Figure 3.5: Scatter plots of the relationship between heart rate and the phases in
which (a) maximum contraction (minimum CC) and (b) maximum deceleration
(minimum CC”) are observed. Note that a higher heart rate means a shorter R-R
interval and thus the largely rate-independent duration of the beat itself taking
up a larger part of this interval.

interpolation, which may not be compensated for by the resulting corre-
spondence. In some extreme cases, five phases used information from
three original phases, while elsewhere in the same cycle, five phases were
the result of interpolating between nine. Figure 3.5 shows how the phases
identified as end-systolic and end-diastolic depended to some extent on
the heart rate, but that even for equal heartrates a significant spread in
identified phases may be observed.

Since the identification of the end-systolic and end-diastolic phases
was based on the intensities of the original images, we extracted the left
ventricle and the biventricular meshes at this point, as the result of tem-

porally aligning those shapes separately would not be influenced.

After the temporal alignment, we also aligned the shapes spatially.
With iy, landmarks describing each of our shapes, we denote the point set
in R3 equivalent to shape vector 7 as the ny, x 3 matrix X . The mean phase
)_Zﬂlput of each subject j was translated to position its center of gravity

at the origin. Then, it was rescaled to have unit norm. Subsequently,
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Procrustes alignment [63] was performed on these shapes, which, for each
subject 7, yielded a translation t rotation R and isotropic scaling s;.
Then, for each phase 7,

X7 55 X x X7

output T = input

R, +1. (3.13)

This way, the spatial relationships within the cycles were preserved. Re-
moval of those relationships would reduce the overall variation observed
in the data set, which in turn would lead to smaller reconstruction errors.
By retaining the relationships instead, we possibly sacrificed some extrap-
olation accuracy in exchange for clinical meaningfulness of the results.

3.3.2. Experiments

We performed leave-n-out experiments with increasing training set
sizes (n = {40,20,10,5}). Thus, we divided our set of subjects into
% disjoint subsets, where each subset plays the role of test set once and
forms part of the training set for the remainder of cases, as illustrated
on the left side of Fig. 3.6. For each of the subjects from the test sub-
set, five phases were used to derive the subject parameterization using
the constructed model, shown at the top right in Fig. 3.6. The remaining
ten phases were then approximated (bottom right in Fig. 3.6) and the re-
construction errors recorded. Errors were grouped by phase and model
dimensionality, and by phase set. The four sets of five phases covered
systole, diastole, rest, and a combination of these (2 each from systole
and diastole, 1 from rest), respectively.

3.3.3. Extrapolation

What we wish to do amounts to extrapolation, which is only one of
several applications of bilinear models, as is shown in Tenenbaum and
Freeman [194]. For a set of data Ynew deﬁned over an incomplete set of
content classes associated with BlnC C B in a new style with unknown
parameterization @, the missing elements need to be reconstructed us-
ing the characteristics of those contents learned from the training data
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(other styles) and the style characteristics that are to be derived from the
newly presented observations.

The models we built were symmetric models so that we could reduce
the dimensionality of both sets of parameterizations to eliminate noise
and improve robustness. Knowing which are the phases we have for de-
riving the new subjects’ parameters, we used the phase parameters from
the model associated with these known phases:

— pd T
CYT=wvTp, . (3.14)

What remains is a linear system of equations
}_}new = C_”ld)new (315)

which, when solved, gives us a parameterization @, of the new subject.
This system has many more equations than unknowns (the ratio running
into the tens of thousands). Therefore, a least squares approximation is
found.

Since computing both the subject parameters @; and phase parameters
52- in the models involves SVDs, the last column of both A and B should
be a zero vector. In practice we have found that this is not always the
case, possibly due to limitations in numerical precision. Additionally, the
last few columns typically contain but noise as observed in the data. We
used the dimensionality reduction as described in Section 3.2.3 to remove
these columns. In the first iteration, we use the associated singular values
to determine the number of dimensions required to capture at most 95%
of the variance observed, both between subjects and between phases. The
resulting dimensionalities are then fixed throughout the remainder of the
training procedure.

3.3.4. Reconstruction

Using the resulting (new from (3.15), we approximate the remaining
set of phases Yiem by
C*;/T _ VTR

rem?’

(3.16)
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Figure 3.6: Overview of the leave-n-out experiments. (See next page)
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Figure 3.6: (See previous page) Overview of the leave-n-out experiments. Dark
grey blocks represent known shape data. White blocks with a 5# and dny de-
note phase parameterizations from the model and new subject parameterizations,
respectively. The subscript N is used to indicate that this is a newly derived pa-
rameterization. Arrows with open heads indicate that the elements on either side
are the same, yet transported for clarity of the figure. Each of the %0 disjoint sets
of n subjects (left side) is used as a test set once, with the other sets combining
to form the training data. For each of the subjects in the test set, a set of shapes,
corresponding to an equally sized known set of phases (in the figure this is the
set {11,...,15}), is used to derive the subject parameterizations dn (top right),
using w (not in the figure) and the phase parameterizations from the model. The
resulting subject parameterizations are then combined with W and the remain-
ing phase parameterizations to extrapolate the shapes to the other phases for the
test subjects (bottom right). The resulting shapes are represented in the figure by
light grey blocks, and correspond to the block with the question mark (left side).
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Yiew = Catfnew, (3.17)
with
(érem C B) AN <§rem N Binc = ®> . (318)

The reconstruction error is then recorded as the RMS P2S error between
each predicted shape ¥em, in Yiem and its corresponding ground truth
shape:

2
RMS() = 2.4 : (3.19)

ny

where 7y, again is the number of landmarks used to describe each of the
shapes, and d; is the distance from the ¢-th landmark of g to the surface
defined by the ground truth shape ¥ of the corresponding phase and sub-
ject.

3.3.5. Comparison to Direct Approximation

In image sequence segmentation, it is not uncommon that the segmen-
tation result of a phase is used as the initialization for the next phase. We
believe that the bilinear models can provide an alternative in offering an
initialization for a larger part of the sequence, or even the entire sequence,
based on a (preliminary) result on the first phase. Subsequently the sub-
ject parameters would be optimized to complete the segmentation.

In order to compare the initialization for multiple phases based on one
phase, we used an experiment similar to the one described in the previous
sections. However, this time we extrapolated five phases from one, for
each of the three cardiac periods: systole, diastole, and rest. We compare
the extrapolation errors — initialization errors in the segmentation setting
— to the errors we would obtain should we use the one phase directly for
the initialization of these phases.

78




“main” — 2013/12/4 — 15:53 — page 79 — #101

3.4. RESULTS

Table 3.2: The main statistics for the reconstruction errors using the largest
training set. Statistics were computed using all 3200 reconstructions for each
model type.

Structure Median Min Max
] LV 1.869 mm 0.978 mm 7.224 mm
With temporal
alignment LV+RV 2212mm 1.084 mm 7.940 mm
Full heart | 2.344 mm 1.380 mm 6.642 mm
Without LV 1.999 mm 0.820 mm 8.557 mm
temporal LV+RV 2359 mm 1.102mm 8.923 mm
alignment Full heart | 2.436 mm 1.401 mm 7.473 mm

3.4. Results

3.4.1. Extrapolation

The results are presented for four sets of phases {1...5}, {6...10},
{11...15} and {4, 5, 9, 10, 15} used for the derivation of a new subject’s
parameters and thus for the four groups of 10 reconstructed remaining
phases. The results were produced using the temporally and spatially
aligned data, unless stated otherwise.

The results of the LV models, the biventricular models and the full
heart model results were highly correlated. Therefore we refrain from
reporting the results on the biventricular and full heart models in the same
detail as those from the LV models. Overall results are summarized in
Table 3.2.

In Figure 3.7, we present the mean RMS error of the worst and best re-
constructed phases in the LV models, as well as the mean over all phases,
against the size of the training sets (and consequently against the number
of folds). It can be noted that larger training set sizes generally produced
more accurate reconstructions. Additionally, the tendency of the curves
suggests that some performance improvement could be achieved by fur-
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Figure 3.7: The best, worst and mean RMS P2S reconstruction errors for the left
ventricular model plus and minus one standard error in mm, after deriving the
new subjects’ parameters using (a) phases 1 through 5, (b) 6 through 10, (c) 11
through 15, and (d) phases 4, 5, 9, 10 and 15, using models built with increasing
training set sizes.

ther increasing the training set size. The errors are comparable to the dif-
ferences between subsequent phases, reported in Figure 3.2. Figure 3.8
shows the mean reconstruction errors and the standard errors for each set
of phases used for extracting the subject parameters, for the biventricular
and full heart models. The same tendency can be observed here, although
it is more obvious in the results for the more complex structure.
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Figure 3.8: The mean RMS P2S reconstruction errors for (a) the biventricular
models and (b) the full heart models, plus and minus one standard error in mm,
using models built with increasing training set sizes. Each line represents a set
of phases used for the derivation of the new subjects’ parameters, numbered in
the order as they occur in Figure 3.7.

From Figure 3.7, it is possible to conclude that, in general, the worst
and best reconstructed phases retain that status irrespective of the training
set size. Thus, the quality of the reconstruction depends to some extent on
the reconstructed phase, yet quite likely more on the combination of the
reconstructed phase and the phases used for parameter extraction. The set
of phases used for parameter extraction alone has some influence, but dif-
ference between the results for phase set 4 ({4, 5,9, 10, 15}) and the other
phase sets, presented in Figures 3.7 (d) and 3.8, would best be attributed
to the spread of the phases instead of the phases themselves.

Figure 3.9 shows the RMS P2S errors against the percentage of recon-
structions, both for the data set that was aligned spatially and temporally,
and for the set that was only aligned spatially. It gives an idea of the dis-
tribution of the error sizes. For each of the structures, the median error
lies around 2 mm, while an error of 3 mm or more is well past the 80th
percentile.

Another factor that has a certain degree of influence is which subjects’
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Figure 3.9: The cumulative his- Cumulative error histogram
togram of errors for the left ven- 100 e
tricular (black), biventricular (dark /7
grey) and full heart (light grey)
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shapes are being reconstructed. Figure 3.10 shows the mean approxima-
tion error for each subject in the 16-fold experiments. The order of the
subjects in the plot follows that of the folds. It is obvious that the shapes
of certain subjects turn out to be reconstructed poorly at every phase, re-
gardless of the phase set used for deriving the subject parameters. Thus,
the model did not generalize well to these subjects.

Finally, the local errors of the reconstructions are shown in Figure
3.11. The errors are color-coded on the surface representations of the re-
constructions with the median RMS P2S error, while the wireframe mesh
shows the ground truth shape. Figure 3.11 (c) shows that some error can
accumulate in the most complex subparts, namely the atria, and especially
in Figure 3.11 (b) it shows that the greater number of points on the right
ventricle can result in lower accuracy for the left ventricle.
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Figure 3.11: Reconstructions of the shapes with the median RMS P2S errors,
constructed using the highest dimensional models. (a) Left ventricle (1.869 mm),
(b) biventricular (2.212 mm) and (c) full heart (2.344 mm). The wireframe shows
the ground truth for these shapes. In (b) and (c), the difference in point density
between the left ventricle and the other structures is clearly visible. Reproduced
in color on page LXIX.

3.4.2. Comparison to Direct Approximation

We present the comparison between the approximation errors obtained
using phases 1, 6 and 11 as approximations for the 5 following phases, and
the approximation errors obtained when the subject parameterizations are
derived from these same phases, each one separately, is presented in Fig-
ure 3.12 (a), (b) and (c) for the LV, biventricular and full heart model,
respectively. In the set of phases approximated using the first phase, we
can see that the bilinear approach clearly outperforms the direct approxi-
mation. This set of phases shows a dramatic change in shape as the heart
goes from a state of rest to full contraction. The bilinear approach main-
tains the mean error within 3 mm. Less dramatic is the shape change in
the second set of phases, approximated using phase 6. This is diastole,
during which the heart does not return entirely to its full resting state.
Recall from section 3.3.1 that the end of diastole was identified as the
phase of greatest deceleration; the heart is still relaxing after this point.
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Figure 3.12: The approximation errors plus and minus one standard error when
deriving subject parameters from one phase only, for (a) the LV, (b) biventricular
model and (c) the full heart model. These would be the initialization errors if
used in a segmentation setting. Note that phase 1 is approximated using phase
11, as if it were the 16th phase. Plot (d) shows the errors per distance from the
one phase that was used to derive the subject parameters, for each of the three
model types: left ventricular, biventricular and full heart.

In this group, the bilinear approach is more favored as the distance from
the original phase increases. For the final set of phases, the direct use of
phase 11 is favored, although the difference with the bilinear approach is
not always significant.
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In Figure 3.12 (d) we show how the two approaches compare overall,
with respect to the number of phases separating the approximated phase
and the phase used for the approximation or subject parameter extraction.
It is clear to see that the big differences from the first set of phases domi-
nate.

3.5. Discussion and Future Work

In the previous section we reported extrapolation errors obtained us-
ing bilinear models of the heart of varying complexity. We compared the
performance of the models built from spatially and temporally aligned
shape data with merely spatially aligned data, and we compared the ex-
trapolation errors with the differences between the ground truth of phases,
simulating the initialization for image sequence segmentation, which is
our intended future use of these models.

Errors of up to 3 mm, as observed in both experiments, should be
considered very acceptable, given that the approximated shapes were not
seen before. This contrasts with the generalization ability measure com-
monly used to evaluate PCA-based shape models [187], where the shape
to be approximated is known. When providing the initialization for image
segmentation, it can offer a better initialization than using a mean shape
or the segmentation result of the previous phase, and it can accumulate
evidence to improve the initialization as one progresses through the se-
quence.

We confined ourselves to test data with phases matching those that
the model was built with. As is demonstrated in [194], this is not a pre-
requisite. We are keen to look into the performance of the extrapolation
regarding both phase and subject, and to include this in the application of
the models to image sequence segmentation.

Although we find the performance of the models very acceptable,
there are certainly some limitations regarding both the modeling and the
temporal alignment which may have influenced the results. For one, the
acquisition scheme as shown in Figure 3.2 is geared towards maximizing
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visibility of the coronary arteries. Therefore, phases 14 and 15 both have
a short time span. The bulk of cardiac motion, however, lies just behind
the The complex of Q, R, and S waves in the ECG (QRS complex), re-
sulting in the first five to six phases to be integrated over a time interval
with larger spatial changes than the rest. A different temporal sectioning
might therefore influence the results. More specifically, higher frequency
sampling should result in improved performance both without the tempo-
ral alignment as well as of the temporal alignment. Additionally, seda-
tion of patients with higher heart rates would have reduced the spread in
heart rate and the resulting mismatch of the phases (up to 5 phases for
end-systole and up to 7 phases for end-diastole, as shown in Figure 3.5)
before the temporal alignment step.

Secondly, the poor approximations of certain subjects’ shapes, as seen
in Figure 3.10, may be due to the fact that both training and testing data
were mixes of healthy and pathological heart shapes. The ratios of these
shapes (3:1:1) may have resulted in a bias towards the healthy hearts,
resulting in poor derivations of the subjects’ parameters in case of pathol-
ogy. While it was out of the scope of this chapter, whether the bilinear
models are powerful enough to separate these groups may be a topic of
further research. Also, whether the results would be better if model and
test data consisted of only a single class — healthy, or one specific pathol-
ogy — is an issue that warrants further looking into. When this point is
resolved by patient selection, bilinear statistical shape models may pro-
vide a means to homogenize multiple acquisition protocols, which could
greatly facilitate retrospective studies.

As the statistics in Table 3.2 and the reconstructions in Figure 3.11
suggest, it is not a given that the more complex shape will always be more
difficult to reconstruct. There seems to be a tradeoff between complexity
and the amount of information that can be extracted from the example
shapes used for the derivation of the new subjects’ parameters. However,
considering the greater variability that can be observed in the atrial area,
and especially around the trunks of the attached vessels and arteries, one
would have expected the biventricular models to outperform the full heart
model.
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How to align sequences of shapes is a question that is not answered
entirely. We believe to have taken the most straightforward approach by
aligning the mean shapes of each cycle after the temporal alignment step,
such that the mean would be computed over the same phases for each
subject. It would deserve preference, however, to use a more unified ap-
proach to align the shapes both temporally and spatially at the same time.
Nevertheless, Figure 3.9 does show that employing the temporal align-
ment indeed improves the extrapolation performance.

We reported the RMS P2S errors of the reconstructions. While these
numbers were not unsatisfactory, they do not necessarily have a clini-
cal meaning. Future experiments will focus on the prediction of clinical
parameters such as Left Ventricular Volume and Ejection Fraction, Wall
Thickening and Wall Motion, and classification of the dynamics based on
the parameters acquired using the models.

Finally, the reconstruction errors could decrease further if the training
set were larger, which can clearly be concluded from Figures 3.7 and 3.8.
Assuming that an appropriate number of training samples for PCA-based
models of a complex shape, such as the human heart, easily runs into
the triple digits [149], there is room for improvement by increasing the
number of training samples for the bilinear model as well.

3.6. Conclusion

We have shown in this chapter how to construct bilinear models of the
human heart, and how to derive parameters for new subjects using these
models and a limited amount of data from these new subjects. For the
construction, simple SVDs and vector transpositions of the data matrix
were employed to establish parameterizations for the training subjects and
phases, after which a mixing matrix was computed by solving a linear
system. The extraction of subject parameters was also reduced to a linear
system.

Subsequently, we showed that with such parameters we could predict
the shape of the heart over the previously unseen remaining two thirds
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of cardiac phases with a median RMS P2S error around 2 mm, and that
90% of predictions returned an error below 3.5 mm. Additionally the
extraction of parameters from one phase and extrapolation over five fol-
lowing phases returned errors that compare favorably with the differences
between subsequent phases. This suggests that a bilinear factorization
of the heart shape may be appropriate to separate inter-subject variation
from dynamics.
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Abstract

We present a novel procedure for the initialization of computational sim-
ulations of cardiac electrophysiology. By exploiting both volumetric and
surface point correspondence, we derive the correlation between domain
geometry and results from earlier simulations with similar choices of
models. Upon introduction of a new geometry with point correspondence,
a prediction of the simulation result is derived from the prior knowledge.
We show that the prediction error is typically less than 5% for all model
variables, with most variables showing even greater accuracy. When ini-
tializing simulations with the predicted model states, it is demonstrated
that simulation times can be cut by at least 50% and potentially more.
Overall, these results increase the clinical applicability of detailed com-
putational electrophysiology studies.
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4.1. Introduction

Computational simulation of electrophysiology (EP) is an increas-
ingly important field in the understanding of cardiac pathophysiology.
However, current multiscale approaches require the integration of a large
number of variables to account for the dynamic behavior from molecu-
lar to organ scale. The trend to incorporate more biological data as it
becomes available has a large impact on modeling techniques used to
simulate cardiac electrophysiology. The cost associated with running a
simulation on a high-resolution personalized anatomy, in terms of com-
putation time and human interaction, limits its translation into a clinical
environment and in large scale trial studies.

One of the most important drawbacks of this methodology is the highly
nonlinear nature of the models that describe the dynamic behavior of ion
channels at the cellular level. This nonlinearity requires a stabilization
process before any simulation is carried out. For their use in a three-
dimensional anatomy, it is not sufficient to do this stabilization on its basic
zero-dimensional building blocks, i.e., isolated cells only. It must be done
in the three-dimensional anatomy, allowing the action potentials (APs) of
individual cells to be affected by electrotonic currents, specifically the AP
amplitude and relative differences in transmembrane currents [32]. The
accurate reproduction of AP morphologies is of paramount importance
for simulating the complex patterns of tissue activation that may arise
with cardiac problems at the cellular level [31, 32, 200].

Specifically this requirement of stabilization prior to introducing a
pathological and/or pharmacological modification to the cell behavior can
be an obstacle, requiring the simulation of thousands of time steps, which
can take days or even weeks to complete in high-resolution meshes of
realistic anatomies. In practice, this has led researchers to obtaining a
steady state in one reference anatomy or in single isolated cells, and us-
ing this for multiple studies. This stands in the way of one of the most
rudimentary kinds of personalization of the simulation, namely that of the
anatomy.

Additionally, researchers have used the action potential duration (APD)
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Figure 4.1: (a) Action potential duration for four nodes of different type, and
(b) Purkinje model state variables at rest, at each heart beat. It appears that
stabilization of the action potential duration does not imply stabilization of the
model state.

to define correspondence; typically a change of less than 1%, or between
2 and 3 ms, is used. In Fig. 4.1 we can see that for the simulations we run,
the APDy, (shown in the left panel for one case) ceases to change after
only one single heart beat. In contrast, the right panel shows that some
variables in the Stewart Purkinje model [184] continue to change more
than 10%, averaged over ten cases, for up to nine heart beats. This would
suggest not only that the APDy alone is not a sufficiently accurate indica-
tor of convergence, but also that the number of heart beats to be simulated
for stabilization may exceed 10 when using models more complex than
those employed in this chapter.

In this chapter, we capitalize on a method to establish node correspon-
dence between cardiac ventricular anatomies, to transfer cellular states
from one or multiple anatomies (for which electrical simulations have al-
ready been carried out) into a new anatomy. The node correspondence
allows us to use the notion of similarity between anatomies for identify-
ing a most suitable steady state of cell models in realistic anatomies from
the set of available steady states. We show that this data-driven prediction
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is accurate enough to significantly reduce the time to achieve the steady
state in the new anatomy. As more examples become available, accuracy
should improve and consequently so should the benefit from using the
prediction.

4.1.1. Related Work

Simulations have been used for several decades to gain insights into
the physiological behavior of living tissues, organisms and populations.
More recently, applying computational physiology to interventional or
surgical planning has garnered a great deal of interest. This aim imposes
additional challenges in terms of patient-specific modeling, to provide
individualized treatment, and computational efficiency of the simulations,
to be applicable in the clinical setting. Our group focuses on this latter
challenge.

While a large body of literature in computational mechanics has fo-
cused on optimizing the computational demands of multiscale models,
to the best of our knowledge, there has been very little work focused on
how to accelerate the convergence to the steady state of the cardiac EP
cell model that is required to simulate different therapeutic scenarios and
their outcome. We briefly review the two areas where most of the progress
in this acceleration has been made:

Mesh Morphing for Simulation Personalization

Finite Element (FE) modeling was introduced in biomedical research
over 40 years ago, with an application to orthopaedics [23]. Since then,
FE modeling has taken hold in many areas of biomedical research, even
though the complexity of anatomical structures has presented a challenge
for the construction of quality volumetric meshes for this purpose.

Depending on mesh requirements, quality mesh construction can be
a computationally expensive task. In addition, each anatomy, under the
same requirements and with the same meshing approach, will return a
different mesh in numbers of nodes and elements, and connectivity. This
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impedes the comparison of simulation results between anatomies. Re-
cently, the question was raised whether the mesh for an anatomy could be
a morphed version of an existing mesh of a different anatomy.

To our knowledge, mesh morphing for FE analysis was first intro-
duced for blood flow studies. This was done using either mesh-to-image
registration [9, 218] or using the deformations obtained from image-to-
image registration [10]. Later, meshes for orthopaedic studies were mor-
phed based on either an energy minimizing mapping to and from the sur-
face of a low complexity constructive solid geometry, or on the manual
identification of matching landmarks and interpolating the deformation
using Thin Plate Splines (TPS) [181]. Later, the same group demonstrated
two other methods, using parametric descriptions of the template domain
[182].

Recently, mesh morphing was also introduced in simulations of car-
diac mechanics through the matching of the surfaces of a template vol-
umetric mesh and a patient-specific surface mesh [214, 215], as well as
image-to-image registration [105, 106]. In both cases, the application
to meshes of cubic Hermite elements requires re-calculation of material
properties at the mesh nodes after morphing.

For cardiac electrophysiological simulation, in a previous study, we
used TPS to morph a template volumetric mesh of the human left ventri-
cle [76, 77, 153]. The simulations were based on solving the Eikonal
equations with fast marching methods, providing only local activation
times without regard for physiology at the cellular level. As a result,
low-resolution volumetric meshes sufficed to produce mesh independent
results.

In this chapter, the TPS approach is applied to high-resolution meshes
for detailed multiscale biophysical simulations. The node correspondence
resulting from the morphing is exploited to estimate the resting state of
ionic model variables on patient-specific meshes.
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Faster Cardiac Electrophysiology Simulations

Cell models for cardiac electrophysiology simulation typically em-
ploy non-linear Ordinary Differential Equations (ODEs). Solving these
on the millions of nodes that typically make up the computational mesh is
the most resource intensive of patient-specific simulations, both in hard-
ware and in time. However, many recent developments on the numerics
side have contributed to the general notion that cardiac EP simulation will
have a future in the clinic.

Firstly, there is the development of solvers specifically for cardiac
electrophysiology and electromechanics [211, 159, 71, 22]. Addition-
ally, more and improved use is made of parallelization [5, 207, 104] and
Graphics Processing Units (GPUs) [116, 91].

Lately, reduced basis methods [4, 147] have received increased atten-
tion for biomedical applications [165, 141]. The objective is to discover
the manifold of solutions to a parameterized problem, under the assump-
tion that this manifold will be of lower dimensionality than the problem,
facilitating more efficient solution in new cases. However, its applica-
tion to nonlinear reaction-diffusion equations in general [64], and cardiac
electrophysiology simulation in particular [21], is still very limited.

In this chapter, we use a data-driven method to initialize simulations
of cardiac electrophysiology. Rather than computing a regression model
using the electrocardiogram as in [223], we use the notion of morpho-
logical similarity between cardiac anatomies to choose one or multiple
anatomies from a database, and use their steady cell model states for a
new anatomy as initial steady-state cell precondition of a new cardiac
model outside the database. As the database can be computed off-line and
be as extensive as desired, this enables a good trade-off between off-line
and on-line computations to make complex simulations more amenable to
clinical applications. The database is generated from a statistical cardiac
atlas learned from a database of human cardiac images.
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4.2. Methods

The methods employed in this chapter comprise a full pipeline for
generating volumetric meshes with node correspondence, based on sur-
face meshes with point correspondence. This enables the construction of
a database of completed simulations, of which the EP cell model states
can be transferred to a new anatomy in a straightforward manner. Once
transferred, these states can accelerate the simulation in the new anatomy.
The overall scheme to obtain the node correspondence and to populate
the database is illustrated in Fig. 4.2. Although the pipeline has been built
making specific choices regarding deformation, cell, and fiber models,
and choosing a specific numerical solver, these are merely concrete de-
sign choices to illustrate our proposed approach in a concrete application
but do not reflect any constraints imposed by the pipeline. The various
elements of the pipeline are outlined in the following subsections.

4.2.1. Generation of Anatomical Surface Meshes

The pipeline as implemented here assumes point or surface correspon-
dence between surface meshes, without imposing any restrictions on the
number of points used to describe the anatomies. Additionally, although
for easy distinction from volumetric meshes we use the term ‘surface
mesh’, points do not actually need to lie on the surface. Furthermore, the
methodology is entirely independent of the mesh element type (triangles,
quadrangles, hexagons or a mixture). In this chapter, we use triangulated
surface meshes obtained using the aforementioned atlas-based approach
[75].

At this stage, a representative anatomy is to be derived from a set of
surfaces S. Given that there is point or surface correspondence between
the elements of S, one could consider generating a mean anatomy S,
or one could pick the element minimizing the total dissimilarity to the
remainder of the set. For simplicity, we continue to use .S, to indicate this
representative anatomy.

We used eleven human cardiac left ventricle (LV) anatomies obtained
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Figure 4.3: Surface renderings of the eleven geometries, with endocardium (red)
and epicardium (blue). Reproduced in color on pages LXIX.

using an atlas-based approach as described in [75], and shown in Fig. 4.3.
The anatomies were drawn from a larger population of subjects who had
undergone a multislice Computed Tomography (CT) scan (Toshiba Aquil-
ion 64, Toshiba Medical Systems, Tochigi, Japan) as part of a standard
clinical protocol. The CT image resolution was 0.4 x 0.4 x 2.0 mm?,
and scans covered the full heart. The LVs were described by a closed
triangulated surface mesh with 3, 577 vertices and 6, 778 faces.

While the first ten anatomies already show clear variations in shape,
the eleventh anatomy was chosen specifically to differ from S, twice as
much as the farthest among the first ten, with the aim to study whether
greater distance from the reference anatomy would strongly influence the
prediction accuracy.

4.2.2. Generation of Anatomical Volumetric Meshes

From the representative anatomy S, the template volumetric mesh
V,, 1s generated. The requirements for this volumetric mesh depend on
the equations to be solved and the dynamics of the particular ionic model.
However, one should keep in mind that these requirements should remain
satisfied under deformation of the volumetric mesh. As is the case with
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the surface meshes, the pipeline itself does not impose any specific reso-
lution, element type or element dimensionality.

In this work, we centered a regular grid of hexahedra, with edge
lengths of 0.40 mm, on the template surface mesh, covering it entirely.
Each hexahedron with its center inside the surface mesh was assigned
to the volumetric mesh. The remaining hexahedra were discarded. The
resulting mesh consisted of 2,481, 028 nodes and 2, 318, 956 elements.

4.2.3. Personalized Peripheral Conduction System

A vital part of cardiac anatomy for the synchronized activation of the
ventricles is the Purkinje system [37, 210, 169]. In this work, a single
Purkinje network P, is generated by applying the tree growing algorithm
proposed in [178] to S,,. The method comprises three steps, each provid-
ing a specific part of the network, building on the previous step.

First, the Bundle of His is generated starting from the basal section
of the septal wall, running down to the apex and back up again, with
a maximum length constraint. The bundle branches break away from
the His Bundle in the upper third of the septal wall, curving round the
anterior and posterior walls to the approximate location of the papillary
muscle insertions. Some redundant connectivity bundles are generated to
complete the first step.

The Purkinje Backbone Branches are then generated based on Linden-
mayer systems (L-systems) [83, 115], presenting rules by which construc-
tion of further branches proceeds. Distributions of the variables involved
are derived from a morphological characterization of stained bovine tissue
samples, as in [178].

Finally, the Purkinje Terminal Branches are generated also using L-
systems, with a different set of parameter values set to mimic the morphol-
ogy of these branches upon visual inspection. The Purkinje network pro-
duced is completely independent from the underlying ventricular model
used; no nodes are shared, and connections between the two exist only as
Purkinje-myocardial junctions (PMJs).
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4.2.4. Myocardial Fiber Architecture

In cardiac electrophysiology, the myocardial fiber architecture is an
important component; the anisotropic conductivity of cardiac muscle cells
has been studied extensively [168, 175, 81, 204, 26, 12]. Our fiber orienta-
tion model is based on the measurements reported by Streeter et al. [185],
which were fit to linear and quadratic equations [179] to define a helix
angle o, () and a transmural angle oy () at a location x as

ap(z) = 1.90w(x) + 0.86 4.1)

and
ay(x) = O.215¢(3:)2 + 0.0089¢(z) — 0.0093, “4.2)

given the normalized distance w(z) of z to the endocardial surface, and
the polar angle ¢(z) characterizing the distance between x and the base
of the ventricle. The resulting fiber angle between epicardium and endo-
cardium typically rotates from —60° to 60°, corresponding to the obser-
vations in [185].

The pipeline allows for elements to be kept out of the morphing, or
more precisely, to be added to the myocardial and Purkinje meshes after
they have been morphed. In principle, the fiber architecture could be de-
fined prior to morphing. However, as the architecture comprises vector-
valued elements, morphing the architecture with nonrigid deformations
would require reorientation of the vectors. As we are using a rather sim-
ple Streeter-like model, both approaches should yield very similar fiber
architectures, but at different computational costs.

4.2.5. Template-to-Anatomy Mesh Adaptation

The pipeline illustrated in Fig. 4.2 was previously used to morph low-
resolution volumetric meshes for simulation of electrical activation based
on Eikonal equations and fast marching methods [76]. The morphing is
done using Thin Plate Splines [19]. TPS is a specific instance of a ker-
nel or landmark-based transform; the displacement of a set of landmarks
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is defined, and a kernel matrix is computed, which interpolates the de-
formation between these landmarks. If one makes no assumptions about
the means with which the surface correspondence between template and
new surface comes about, this is to be considered one of the most natural
deformation models.

In our population, surface correspondence was obtained through an
atlas-based approach [75]. However, other approaches to segmenting
the structure of interest may also produce surface or point correspon-
dence. Specifically the popular Active Shape Model and Active Appear-
ance Model [40, 39] provide point correspondence automatically. In cases
where no correspondence is provided automatically, surface-to-surface
registration may be used either to obtain correspondence, or to directly
derive a warp for use in the pipeline.

4.2.6. Prediction of Steady State

Cellular models for electrophysiology simulation typically consist of
a set of non-linear ODEs. Those equations are usually pre-stabilized as
an individual cell, i.e., when a single-cell simulation is run, each cardiac
cycle will be the same from the start. The stabilization of a single cell
might require a simulation of a few hundred stimuli, which is feasible in a
0D model but not for a large 3D model. Additionally, when a tissue sheet
or block is considered or when we consider patient-specific anatomies,
cells in the region or organ will interact with one another in a complex
manner that will incorporate both knowledge on the type of interacting
cells and their distribution in the region or organ. The steady state at-
tained in such configuration is thus the result of complex interactions and
cannot be assumed to be the steady state of the individual isolated cellular
models. F, in Fig. 4.2 denotes this newly attained steady state; the goal
of this work is to estimate this steady state without requiring simulations
lasting several cardiac cycles, or alternatively to use such an estimated
steady state as the initial cell model state to attain the steady state for a
new anatomy in fewer cardiac cycles of simulation.

In Fig. 4.4, we illustrate how the prediction may be included in the
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Figure 4.4: Flow diagram of the prediction and its inclusion into the pipeline for
the automated construction of volumetric and computational meshes.

pipeline of Fig. 4.2. Again, the diagram is generic regarding the type of
predictor used.

The most basic approach to predicting the steady state of the cell
models from the LV anatomy is by exploiting measures of morpholog-
ical similarity in the high-dimensional cartesian space inhabited by the
anatomies. Interpolation or label transfer from the k nearest neighbors is
a well-known technique in classification. In manifold learning, it forms
the basis of various approaches ([11, 50, 170, 177]). When sufficient ex-
amples are available, the mapping between the anatomy manifold and the
manifold of steady states could be learned. Note that ‘sufficient’ here
would likely mean hundreds or thousands of cases.

Let xy be an anatomy represented as a single-column vectorization
of its surface mesh vertex coordinates, and X = [x;---X,] a matrix
constructed through a side-by-side arrangement of a set of n anatomies
in the same representation, with known steady states represented sim-
ilarly as Y = [y;---y,]. Then X' consists of the k columns of X
such that, treating matrices as sets of column vectors, (x; € X' A x; €

102




“main” — 2013/12/4 — 15:53 — page 103 — #125

4.3. EXPERIMENTS AND RESULTS

X\ X') = d(x0,x;) < d(x0,x;) for some distance or dissimilarity func-
tion d. Then, a vector w( of weights is computed as the least-squares
solution to xo = woX’'. A predicted steady state y, is then generated
using

Yo =woY’, 4.3)

where Y’ contains the k& columns of Y corresponding to the & columns
of X that make up X'. In addition to the unconstrained set of weights wy
we also used normalized sets of weights

Wo

k
i1 Wo,
to ensure that predicted model state values fall within a plausible range.
When using vy with k£ = 1, this reduces to a dictionary approach.

Vo =

Y

4.3. Experiments and Results

The benefits of the method can be assessed in terms of both time gain
and its accuracy, compared to obtaining the steady states by simulation
using the conventional initialization from isolated-cell steady states. This
holds for both the prediction of the initial cellular steady state and its use
to initialize simulations of cardiac electrophysiology. We used a leave-
one-out approach in this assessment.

4.3.1. Data — Computational Meshes

The volumetric mesh V), of the mean anatomy S, was generated to ob-
tain regular hexahedra with edge lengths of 0.40 mm, producing 2, 481, 028
nodes and 2, 318, 956 elements, as reported before. Note that the hexahe-
dral shape was no longer regular after applying the mesh morphing. Edge
lengths of the meshes after morphing are summarized in Fig. 4.5(a). Af-
ter mesh adaptation, edge lengths did not exceed 0.74 mm in any segment
of the first ten anatomies. The maximum edge length in the eleventh
anatomy was 0.90 mm.
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Figure 4.5: Edge length distributions in (a) the myocardial mesh and (b) the
Purkinje network, showing minimum, mean and maximum percentile values
over the ten subjects.

In V,,, nodes within 0.80 mm from the epi- and endocardial surfaces
(defined in S, and colored blue and red, respectively, in Fig. 4.3) were la-
beled as epi- and endocardial nodes, accounting for 260, 541 and 167,013
nodes, respectively. The remainder was labeled as mid-myocardium. This
labeling was fixed throughout the datasets, i.e., not re-assigned after mor-
phing.

The Purkinje network P, was generated on S, with edge lengths not
exceeding 0.27 mm, yielding edge lengths after morphing below 0.5 mm
as shown in Fig. 4.5(b). The resulting network consisted of 21,004 1D
elements, and of its 20, 898 nodes, 4,664 were terminals. The Purkinje
network was coupled to the myocardium by connecting these terminals to
those nodes in V,, within a distance of 0.5 mm. These PMJs were modeled
as 0D resistances.

The TPS warps were computed from the 3,524 vertices of the LV
surface meshes. In order to achieve further reduction in total processing
time, the number of landmarks could be reduced [77]. However, the influ-
ence of this reduction on detailed biophysical simulations such as those
performed here has not been assessed at this point and its analysis is be-
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yond the scope of this work. Computation of the TPS took 2 hours and 7
minutes for each case. Details of the hardware for this step are provided
in Sec. 4.3.3.

We should note that we used the same mean anatomy .S,, throughout
the experiments, computed over the first ten anatomies. Thus generally
the test anatomies were included for the computation of this mean. This
was done to maintain a single reference frame for comparison of the re-
sults.

4.3.2. Data — EP Simulations

In order to study the method as a proof of concept, we chose to use a
cell model with few parameters, that still allows for sufficiently accurate
simulations. Such candidates would be the minimal Bueno-Orovio model
[24], which has four parameters, or the six-parameter model presented in
[13]. We chose to use the minimal Bueno-Orovio model. Figure 4.6 il-
lustrates the action potential curves in each of the tissue types (epicardial,
endocardial, and mid-myocardial).

Specific cell models for the human Purkinje system have been de-
veloped recently [184, 176]. Despite their much greater dimensionality
compared to the minimal model, we chose to use the Stewart model [184]
for appropriateness. The higher resolution of the Purkinje network mesh
is due to this increase in model complexity with respect to the minimal
model used for the myocardium. The action potential curve of Purkinje
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nodes is also depicted in Fig. 4.6, in grey.

Cell coupling at tissue level was performed using the monodomain
model. The accuracy of such a tissue model was demonstrated to be sim-
ilar to the bidomain model [162], and with lower computational require-
ments.

4.3.3. Hard- and Software

Three types of hardware were employed in these experiments; the
TPS warps and the predictions were computed on a desktop computer
equipped with an Intel Core i7 CPU at 2.67 GHz, with 6 GB of memory,
under the Windows 7 operating system. The implementation was in C++
using the Visualization Toolkit [100]. As mentioned before, the warps
were computed in about two hours.

Simulations were carried out on two computing clusters using the
Elvira solver [71] employing a semi-implicit integration scheme with fixed
time steps of 0.02 ms. The first cluster (UPF) is equipped with 24 blades,
each containing two Intel Xeon 5355 64-bit quad-core processors running
at 2.66 GHz and 16 GB of memory. The second cluster (UZ) is heteroge-
neous, yet the subcluster used features 16 blades with two quad-core Intel
Xeon 5520 64-bit processors at 2.27 GHz and 24 GB of memory each.
Inter-blade communication in both clusters is via a high-speed infiniband
network. Where relevant, distinction between the clusters will be made in
the results reported further on.

4.3.4. Baseline Steady State of 3D Models

On the models as described in the previous section, 10,000 ms of
cardiac activity were simulated with step sizes of 0.02 ms and with the
heart rate set to 60 beats per minute. In all cases both the myocardial
tissue and the His-Purkinje system showed normal activation sequences
with total activation times within physiological ranges. The state after
each beat was recorded, and the normalized RMS (NRMS) difference
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between consecutive beats was computed as

100 x RMS(yt_l,yt)

max(y;—1) — min(ye_1) '

NRMS(}’t—h Yt) =

As such, the difference is expressed as a percentage of the range of values
in the cell model states. This range was recomputed for each model vari-
able. While APDy, the usual indicator of convergence, showed a steady
state after a single beat, variables in the cell models required much longer
simulation times (see Fig. 4.1). After an average of 8.64 beats, all vari-
ables in the myocardium and Purkinje model showed an NRMS change
of less than 10%. The exact number of beats for each case is shown in
Table 4.1.

Table 4.1: CPU Times to Stable State

CPU time (days)
case cluster cores beats percore total
1 UPF 8 8 17.85  142.81
2 UPF 8 9 18.36  146.84
3 UPF 8 8 2547  203.79
4 UPF 8 8 14.26  114.05
5 UPF 8 9 23.46  187.66
6 UPF 8 9 15.72  125.74
7 UPF 8 9 19.10  152.77
8 UPF 8 9 16.78  134.25
9 UPF 8 8 17.27  138.15
10 uz 16 9 2.52 40.31
11 Uz 16 9 1.41 22.55
Mean UPF 149.56
Median UPF 142.81
Mean UZ 31.43
Mean 128.08
Median 138.15
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As our gold standard we use the simulation states after ten heart beats,
using the conventional initialization. The accuracy of the predictions is
measured as NRMS errors.

Prediction errors on the eleventh anatomy at time ¢ = 5 were invari-
ably greater than the errors on the first ten anatomies. They were statis-
tical outliers for one myocardial cell model variable, and for all Purkinje
model variables but one. However, in light of the good overall results,
the results on the eleventh geometry have been included in the aggregated
results presented from here on.

In Fig. 4.7 we report the model state NRMS errors for the myocar-
dial and Purkinje models for the various k (number of nearest neighbors),
based on the weights w( in the left-hand panels of the top and middle
rows and on the weights v in the right-hand panels and the entire bottom
row. Despite the use of different ranges for the vertical axis, it is clear that
the normalized weights v yield better accuracy than wy. It also shows
that, although with £ = 1 the predictions are slightly worse than with
k > 1, no clear improvement with increasing k is observed, with best per-
formance, in most cases observed around £ = 5, seldom more than 1%
better than the £ = 1 result.

Figures 4.8 and 4.9 illustrate the spatial distribution of the prediction
errors with £ = 1; unsigned relative errors were averaged over all sub-
jects. The figures show the distributions for each of the myocardial cells’
parameters, and for a selection of the Purkinje cells’ parameters, corre-
sponding to the ionic concentrations and the transmembrane potential. In
addition, histograms of the error distributions are shown to illustrate that
the mean unsigned relative error is well below 1% for the vast majority of
nodes.

Figure 4.7: (See next page) Dependence on k£ (number of nearest neighbors)
of NRMS errors at (a-d) time ¢ = 5 and (e-f) time ¢ = 10 of the predictions
of (a,b,e) myocardium and (c,d,f) Purkinje (Pk) model states, with (a,c) original
weights (wg) and (b,d-f) normalized weights (v(). Highlighted Purkinje model
variables are the voltage variable, or outliers in any of the plots shown here.
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Figure 4.7: Dependence on k of NRMS errors at time ¢ = 5 and time ¢ = 10 of
the predictions of myocardium and Purkinje model states. (See previous page)
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Figure 4.8: Mean unsigned relative prediction errors at time ¢ = 5 color coded
on the surface of the mean myocardium. Each pair of a surface rendering and
histogram corresponds to a model state variable. Color bar upper limits were set
to the 95th percentile. Reproduced in color on page LXX.
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The surface renderings in Fig. 4.8 show that the larger errors are con-
centrated near Purkinje terminal sites. As the connection between the
Purkinje network and myocardium was done after morphing, and was
based on a node-to-node distance, inevitably a variability in this connec-
tivity was introduced in the population. Yet, although variable v shows
a large maximum error, only very few nodes (1.36%) actually have an
average error of 10% or greater.

Prediction errors in the Purkinje cell model states were almost exclu-
sively below 1%. For variable x,; (not shown), at 16.04% of Purkinje
network nodes, the error fell in the 1% to 10% range.

4.3.5. Prediction Times of the Steady States

For the predictions that had their accuracy reported in Fig. 4.7, com-
puting times were recorded and presented in Fig. 4.10. The main deter-
minant is the amount of data taken up by the cell model states rather than
the nearest neighbor search. Consequently, computing time scales lin-
early with £ for £ > 1. It is clear that this process took mere seconds,
peaking at just under 20 seconds for £ = 9.

The amount of time spent on the nearest neighbor search depends on
the complexity of the surface meshes, the size of the database and on
whether a data structure for increased search efficiency already exists.
With ten neighbors to search and only a few thousand landmarks to de-
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scribe the surface meshes, its influence on the computing times here was
negligible.

4.3.6. Accuracy of Simulations Using Predicted Initial
States

We used the predictions with £ = 1 at the fifth beat to initialize simu-
lations; while not a steady state with respect to the Purkinje model param-
eters, it allows the assessment of usefulness of the predictions in reaching
the steady state faster.

In Fig. 4.11, we show using the solid lines the mean residual error for
each variable as it converges toward the state after 10 beats. The dashed
lines running from the fifth beat onwards correspond to the same vari-
ables, initialized with the predictions at ¢ = 5. The left panel shows that
the 5% prediction errors for the myocardial models are largely removed
after a single beat. For the Purkinje models, most variables are predicted
close to the correct state at five beats, and the convergence from the pre-
diction appears very similar to that of the ground truth. This suggests that
the predictions are very effective as an initial cell model state.

After running the simulations from ¢ = 5 for an additional five beats,
the mean unsigned relative differences are color-coded on the myocardial
and Purkinje mesh surfaces in Figs. 4.12 and 4.13. While the maximum
error has not been reduced, the portion of myocardial nodes with errors
in variable v greater than 10% has dropped to 0.0014% (35 nodes), while
the cell model states in 86.28% of nodes are the same between the two
approaches to machine precision.

For the Purkinje system, the error ranges have been compressed, and
now all nodes’ errors for all variables are below 1%, with only three vari-
ables (including [Na™]; and V, shown in Fig. 4.13) presenting errors in
the 0.1% to 1% range, for 0.46% ([Na*];), 2.12% and 0.019% (V) of
nodes, respectively.

Combining these results with those reported in Sec. 4.3.5, we have
achieved nearly identical cell model states in only 50% of the time. The
speed with which the myocardial cell model state variables converge to
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Figure 4.11: Residual errors in model states of (a) myocardium and (b) Purkinje
(Pk) network with respect to ¢ = 10, for the simulations from scratch (solid lines)
and from prediction at ¢ = 5 (dashed lines). Each line represents one model
state variable, averaged over the subjects. Lines for corresponding variables have
equal markers. Highlighted Purkinje model variables are the voltage variable,
and the four slowest converging variables.

the ground truth, and the initial accuracy of the Purkinje cell model state
prediction (see Fig. 4.11), suggest that prediction at ¢ = 9 could yield a
90% reduction in computing time.

4.4. Discussion and Conclusions

We have presented a method to automate the construction of com-
putational meshes for cardiac electrophysiology with node correspon-
dence. We have also proposed a method to predict cellular steady states
to initialize cardiac EP simulations on high-resolution meshes of realistic
cardiac anatomies, driven by data obtained from simulations on similar
anatomies.

With a computation time for the prediction best expressed in seconds,
we have demonstrated that the time required to obtain a steady state of the
cell models can be reduced by at least 50% and possibly even up to 90%,
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Figure 4.12: Mean unsigned relative differences between the two approaches to
reach time ¢ = 10 color coded on the surface of the mean myocardium. Each
pair of a surface rendering and histogram corresponds to a model state variable.
Color bar ranges are the same as in Fig. 4.8. Reproduced in color on page LXXII.
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Figure 4.13: Mean unsigned relative differences between the two different approaches to reach time ¢ = 10 color
coded on the Purkinje network corresponding to the mean geometry. Each pair of a tree rendering and histogram
corresponds to a model state variable. Only the ionic concentrations and the voltage V' are shown. Color bar ranges
are the same as in Fig. 4.9. Reproduced in color on page LXXIII.
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thus further enabling the use of personalized EP simulations in the clinic,
as well as studies on larger populations than previously have been used.

Good performance was obtained by employing a k-nearest neighbor
approach and linear interpolation of cell model states, with prediction er-
rors varying only slightly between & = 1 and & = 5. This could allow
optimization of cell state stabilization in a larger population of anatomies
through the construction of a processing tree. With larger populations,
the effect of k£ on the prediction accuracy may also be better assessed,
and more elaborate (non-linear) manifold learning techniques may be em-
ployed.

The implementation of the framework in Fig. 4.2 as used in our ex-
periments was based on surface mesh point correspondence. This is not
a requirement, as long as a dense deformation to be applied to the vol-
umetric mesh and Purkinje network can be obtained. This is possible
either during segmentation in an atlas-based segmentation approach, or in
absence of an inherent point or surface correspondence, can be obtained
using surface-to-surface registration. Note that the role of the template
surface mesh in the pipeline might change.

Although the results are encouraging, some elements of this work pro-
vide some clear avenues for future work.

Convergence of the simulations initialized using the predicted steady
state is not guaranteed, an issue which becomes more pertinent as the
model complexity increases. However, our results show that the predic-
tions for the Purkinje model are a better approximation of the target state
than the cell models’ steady state in isolation. Consequently, the likeli-
hood of convergence is expected to increase rather than decrease.

One could consider that the use of one single solver and a predominant
type of mesh element may lead to biased results. However, the use of
hexahedral elements provides a hard limit on the number of neighboring
nodes, which benefits simulation speed. Therefore, time gains on meshes
with irregular tesselations are expected to be greater.

A second limitation is that we have used a mesh at normal resolu-
tion for the representative anatomy. As the deformation includes local
stretching of a number of edges, one may choose the mesh resolution for
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the representative anatomy based on the expected stretching; to maintain
edge lengths below 0.5 mm for the population used here this would re-
quire 30% shorter edge lengths, accounting for three times as many mesh
nodes. The introduction of an adaptive meshing approach into or immedi-
ately after the morphing could reduce the initial resolution requirements.
An additional step in the prediction would then encompass the interpo-
lation to newly inserted nodes. As a consequence, this would enable the
application of our method to a greater range of anatomical variation.

Conversely, the extensibility and modularity of the framework lends
itself to adaptation to more complex simulation scenarios.

Firstly, cell and tissue properties were set to reflect a healthy heart.
We believe the method could be extended to cases where local conduc-
tion properties may deviate from the normal due to electrical remodeling.
When such regions have typical locations and morphology (e.g., ventric-
ular ischemic areas are linked to coronary irrigation; atrial ablation is
typically done in the coronary sinus), databases for various templates of
abnormal regions could be constructed. In addition, prediction results
from various databases could be combined to better match a pattern not
captured by one single database.

Additionally, the use of a myocardial fiber model based on Streeter’s
measurements [185] is a simplistic approach which does not incorporate
population variability in the fiber architecture. As this work provides a
proof of concept, this was of no consequence. However, development of
data-driven models for fiber orientation is already underway [118, 111,
113], and could straightforwardly be inserted in the framework.

Finally, we opted for a low-dimensional cell model in the myocardium.
Although this model accurately reproduces myocyte action potentials, it
does not explicitly incorporate any elements of cellular anatomy, which
could be considered a limitation in studying pathological changes. Thus,
extendability of the method to more complex myocardial cell models
(e.g., [164, 199, 86, 201]) should be an important avenue for further re-
search. However, in this direction, the results regarding the more complex
Purkinje cell models are encouraging.
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Chapter 5

CONCLUSIONS AND
OUTLOOK

5.1. Overview

The challenges that this thesis addressed relate to the processing of
large quantities of data for atlas construction, to the computational re-
quirements for both population studies and personalization in the clinical
setting of electrophysiological simulations, and to the question of statisti-
cal modeling of spatio-temporal shape variation.

In each of the three preceding chapters I presented a method which
addresses each of these issues, thus bringing the Virtual Physiological
Human (VPH) closer to becoming a reality. The conclusions specific to
each of these issues are already covered by the respective chapters’ own
concluding remarks (Secs. 2.6, 3.6 and 4.4).

The first chapter showed that one can generate an anatomical atlas
from high-resolution CT image volume sequences largely automatically.
Optimization of the registration parameters was done on a mere 5% of the
population. Selection of the initial reference required the use of only 10%
of the population as ‘dummy’ candidates during an initial affine registra-
tion step and performing Groupwise Mutual Information (GWMI) rank
averaging; the ultimately chosen reference was not one of the 10%. After-
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ward, the removal of bias toward this reference took five interaction-free
iterations.

The second chapter illustrated how one can construct a bilinear model
to separate anatomical variation from functional variation in a popula-
tion of cardiac shapes. One would exploit point correspondence between
shapes, and one may generate temporal correspondence between sequences,
in order to construct a model consisting of a mixing matrix while at the
same time obtaining the subject and phase parameterizations required for
reconstructing the training set. The generative power of the model was
demonstrated by extrapolating two-thirds of a cardiac cycle from only
one third of available shapes, as well as extrapolating one-third of the
cycle from a single available shape.

The final contribution took the shape of another predictive model, al-
beit rudimentary due to the small sample size. The differences in normal
electrophysiological function, based only on different cardiac geometry,
are sufficiently small to use linear interpolation between shapes to pre-
dict the state of cell models used in simulation. Sufficiently small mean-
ing specifically that such predictions can cut simulation time significantly
compared to current practice in simulation initialization. Even though we
know that the EP processes are highly nonlinear, which is reflected in the
model equations [145], [146], [24], [201], [36], [184], [176], the resting
states themselves appear to be closely linked with geometry.

Tying the second and third contribution together is the atlas in Chapter
Two.! The volumetric correspondence obtained through the image regis-
tration was translated into point correspondence by constructing a surface
mesh representation of the atlas. This correspondence was exploited to
construct the spatio-temporal statistical shape model.

In the third contribution, the surface correspondence was exploited
to be able to receive a new geometry —output from an image segmenta-
tion algorithm— and construct a computational mesh with node correspon-

I'The shapes used in Chapter Three are not those from Chapter Two. They were from
an earlier version of the atlas, constructed using simpler techniques [149]. While this
seemed to work, the work done for the preliminary version could not be reproduced. A
new atlas was constructed, which is the one presented in Chapter Two.
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dence. This in turn is exploited in the interpolation step.

5.2. Outlook

As could be expected, the methods presented in the preceding chapters
are not definite answers to the questions addressed. Each elicited new
questions and opened avenues for future research. In some cases, new
research has already treaded those avenues.

5.2.1. Atlases, Cardiac and Other

Unbiased atlas construction and atlas-based segmentation are resource-
heavy operations that have only relatively recently gained momentum in
the medical imaging field. Even if computational resources will become
more and more accessible and computing power continues to increase ac-
cording to Moore’s law, it will remain resource-heavy. Either we will
want to use more cases, use more detailed data, or we come up with a
better method that demands yet more resources.

While the atlas served to illustrate the framework, the framework it-
self is of great importance to enable the construction of other atlases. The
framework presented in Chapter Two (Fig. 2.1) allows for the replace-
ment of its elements with other methods for equivalent operations, either
simply better, or better suited for the data at hand. For some of these el-
ements, future work can be clear-cut. However, the framework itself is
based on the idea that for large databases, we cannot optimize for each
case separately. Our database contained 138 cases, but as a prime ex-
ample the database of the Cardiac Atlas Project (CAP) comes to mind,
which already contains around 3,000 image volumes. Of those, only a
few hundred have been segmented into three parts [95, 190, 59]. Manual
processing of the remaining datasets is not feasible even with three parts.

While the brain has received much attention in atlas construction, and
the framework was presented on a cardiac atlas construction problem, the
framework could be applied to other structures in the body. Any structure
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that could be subdivided into smaller parts, logically from an anatomi-
cal perspective (the subdivision is anatomically well-defined) as well as
a clinical perspective (the parts are actually large enough to be seen on
clinical scans). What comes to mind are the liver, where segmentation
has focused on the gross anatomy only [72] and the lungs, where lobe
segmentation has only recently attracked interest [202, 108]. Addition-
ally, some (musculo-)skeletal complexes are likely to be modeled more
holistically using atlases [140, 29].

Another avenue, which has already been explored for atlases of brain
structures, is the incorporation of multiple modalities in the atlas con-
struction. These could be any of the clinical imaging modalities, or a clin-
ical modality combined with an ex vivo modality such as micro-CT (uCT)
or histology, or currently research-only in vivo modalities such as diffu-
sion tensor MRI (dtMRI). As inter-modality registration already presents
a number of challenges [125, 135, 183], some would be exacerbated by
the specifics of the modalities involved, like color in histological and mi-
croscopy images, field of view and resolution in histological, microscopy,
and micro-CT images, and the non-scalar nature of tensors in 4CT and
dtMRI. All of these challenges will introduce a need for some level of
human interaction; with larger databases, this interaction must be smart
and minimal.

Finally, possibly the biggest challenge technically, is to let go of an
assumption one invariably encounters: that of fixed topology throughout
the population. The topology of structures in the human body may vary.
Some structures are more stable in this respect, but many structures, either
naturally or pathologically, will exhibit topological differences through-
out a population. How to deal with this is a very open question, with a
great challenge even in distinguishing between the anatomical and mathe-
matical sense of the term. Integration of state-of-the-art registration tech-
niques in the atlas stratification approach of [18] may be a step in this
direction. At the level of shape-based atlases, constituent parts could be
modeled separately to be combined at time of segmentation, as was done
in [157], and statistical models could be mixture models as illustrated
in [41]. Stratification of the training images could automate the model
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building process for this approach.

5.2.2. Spatio-temporal Models of Shape

The bilinear models of Chapter Three were built after a temporal
resynchronization of the input data. For the method of alternating Sin-
gular Value Decomposition (SVD), this was a necessity. However, when
minimizing the reconstruction error (Eq. 3.8) directly, full temporal syn-
chronicity is not a requirement. The requirement becomes that for each
time point to be returned, samples are provided for multiple, not all, sub-
jects. Such an approach may allow for the incorporation of training data
from multiple modalities of different temporal resolution. How then to
deal with the different spatial detail that may be observed, is another ques-
tion to look into.

Since the publication of the chapter as an article, few other methods
have been proposed to unify modeling of spatial and temporal variations
[2]. In image registration, some headway was made in four-dimensional
transformation models to generate time-consistent registrations through-
out a cardiac cycle [46], and to register entire image sequences [138].

Bilinear models have been used now to segment the LV from Mag-
netic Resonance (MRI) [226], and also to segment the prostate [88]. Other
structures where a spatio-temporal state model could be of use would be
lungs, diaphragm and the liver, which exhibit respiratory motion. As the
bilinear models do not assume cyclicity of the motion, complexes of joints
and muscles are also candidates.

5.2.3. Recycling Electrophysiology Simulations

The VPH’s reliance on computer simulation studies can be seen as
a bottleneck. While computational power and its availability are still
increasing, so is its demand with the desire to include more and more
measured data in the simulations. As a result, the computational burden
of computer simulations is not decreasing very rapidly. Other ways to
achieve significant reduction are a necessity. In Chapter Four, we ex-
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plored the possibility to ‘recycle’ simulation results or states. We used
a mixture of a simple myocardial cell model [24] and a more complex
Purkinje cell model [184]. The results on the Purkinje cells suggest that
the method might also work for more complex myocardial cell models
[201, 36, 184, 176], and perhaps also to relate our method to the reduced
basis approach [165, 141, 64].

The mesh morphing used in the chapter was rather straightforward,
and the resolution of the mean volumetric mesh was set to make element
size not an issue after morphing, given the population used. An adaptive
meshing step could have alleviated this, but could also have complicated
the prediction step. However, for the prediction approach to become more
universally applicable, it probably is a necessity.

From the eleven geometries used in the study, with the surfaces de-
scribed by some 3, 500 vertices and the simulation states by some 10 mil-
lion state variables, one could not hope to approximate the manifold that
the surface meshes and the simulation states span. However, it is likely
that both populations —generally— span a low-dimensional nonlinear man-
ifold embedded in their respective (in this thesis) 10, 000-dimensional
and 10, 000, 000-dimensional spaces. With the size of the populations
required by a clinically effective VPH, these manifolds may be learned
and mapped to each other, resulting in statistics-based predictive mod-
els. These should be expected to provide greater prediction accuracy and
robustness in more complex —pathological— cases.

5.3. The Virtual Physiological Human’s Prog-
nosis

Seeing the Virtual Physiological Human as a concept rather than as
the collective VPH initiatives, it is probably safe to say that it is an in-
evitable future reality. “Mission impossible yet also mission imperative”
is another way it has been characterized [212]. The motivations as laid
out in the introduction of the Future and Emerging Technologies research
roadmap for the VPH [209], are and will remain valid: we cannot look
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at parts of the body in isolation, be such parts anatomical subdivisions or
single physiological scales.

As comorbidities become more frequent with age, this problem will
be exacerbated by the ageing society we live in, and even more so by the
ageing society that the developing world will see soon: all four of the so-
called BRIC countries? are among the ten most populated in the world,
currently accounting for over 40% of the world population [203]. The
value of a Virtual Physiological Human as the pinnacle of evidence-based
medicine towards optimizing healthcare quality and efficiency is almost
impossible to ignore.

2Brazil, Russia, India, China
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Figure 2.5: The full atlas mesh, corresponding to the synthesized mean image.
Different colors indicate different structures.
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Figure 3.11: Reconstructions of the shapes with the median RMS P2S errors,
constructed using the highest dimensional models. (a) Left ventricle (1.869 mm),
(b) biventricular (2.212 mm) and (c¢) full heart (2.344 mm). The wireframe shows
the ground truth for these shapes. In (b) and (c), the difference in point density
between the left ventricle and the other structures is clearly visible.

Figure 4.3: Surface renderings of the eleven geometries, with endocardium (red)
and epicardium (blue).
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Figure 4.8: Mean absolute prediction errors at time ¢ = 5 color coded on the
surface of the mean myocardium. Each pair of a surface rendering and histogram
corresponds to a model state variable. Color bar upper limits were set to the 95th
percentile.
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Figure 4.12: Mean absolute differences between the two approaches to reach
time ¢ = 10 color coded on the surface of the mean myocardium. Each pair of
a surface rendering and histogram corresponds to a model state variable. Color

bar ranges are the same as in Fig. 4.8.
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