

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Contributions to Presence-Based

Systems for Deploying Ubiquitous

Communication Services

Victoria Beltran Martinez

Wireless Network Group, Department of Telematics

Technical University of Catalonia

Advisor: PhD Josep Paradells Aspas

Co-advisor: PhD Henning Schulzrinne

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

2011 December

mailto:vbeltran@entel.upc.edu
http://www.upc.edu

Abstract

Next-Generation Networks (NGNs) are expected to build a single network

infrastructure for ubiquitous connectivity and service access. This plat-

form will network any person and device from anywhere and at any time

through intelligent interfaces and with enriched media. The ultimate goal

of NGNs is to bring value to human life through new experiences and con-

venient services as well as to provide a playground for everybody to create,

share, compose, and deliver services. Personalization is a required feature

in any next-generation service. Users should be capable to customize their

services’ behavior and appearance based on their needs over time. Pres-

ence information is considered as a key enabler of next-generation services’

personalization. Presence information greatly contributed to the worldwide

success of applications such as instant messengers. Presence information

includes all the information about users that applications need to take in-

telligent decisions for establishing and managing user communications. SIP

for Instant Messaging and Presence Leveraging Extensions (SIMPLE) is

the framework that will be used to handle presence information and instant

messages in NGNs. Next-generation services are expected to rely on context

dissemination to a large extent, which entails scalability and performance

issues in network operators. The fact that it is desirable that these services

be used worldwide in order to maximize operator revenue makes scalabil-

ity crucial in NGNs. However, SIMPLE is a verbose subscription-based

protocol that entails much signaling traffic for maintaing subscriptions and

disseminating presence updates. Thus, presence-based services may harm-

fully impact centralized serves in operator networks and user devices with

scarce resources. On the other hand, presence-based services are not still

part of everyday life. It is necessary to find out intuitive, easy-to-use services

that rely on presence information for adapting to the needs of general users,

thereby incorporating technology into their daily lives. This would bring

value to human life through new experiences and convenient applications.

Although nowadays there is a multitude of convenient services spread over

Internet, they do not cooperate with each other; they can not be composed

automatically, and hence the potential of web services is not exploited. The

main goal of this thesis is to contribute to the deployment and success of

next-generation services. To this end, this thesis addresses the scalability of

the presence service, and the design and composition of presence-enabled,

value-added services. In addition, this thesis provides a comprehensible

analysis of SIMPLE, and an unified view of what the presence service is

and its usefulness in ubiquitous computing.

iv

Acknowledgements

Contents

List of Figures xi

List of Tables xvii

Glossary xix

1 Introduction 1

2 Background 5

2.1 Instant Messaging . 5

2.2 Context Information . 9

2.3 Presence Information . 10

2.3.1 Advantages and Uses Cases . 12

2.3.2 Requirements on Presence Systems 14

2.4 Fixed Mobile Convergence . 17

2.4.1 IP Multimedia Subsystem . 19

2.4.2 Device-Independent Communications 20

2.5 Publish/Subscribe Communication Paradigm 22

2.6 Instant Messaging and Presence Protocols 24

2.6.1 XMPP . 25

2.6.1.1 Architecture and Operation 25

2.6.1.2 Instant Messaging and Presence 26

2.6.2 SIMPLE . 26

2.6.2.1 Architecture and Operation 26

2.6.2.2 Instant Messaging and Presence 27

2.6.3 IMPS . 28

iii

CONTENTS

2.6.3.1 Architecture and Operation 28

2.6.3.2 Instant Messaging and Presence 29

2.6.4 Which Makes a Difference? . 30

2.7 SIMPLE Framework . 32

2.7.1 Session Initiation Protocol . 35

2.7.2 Instant Messaging and Presence Protocol 37

2.7.3 Presence Documents . 39

2.7.4 Optimizations . 41

2.8 Platforms for Presence-Aware Services and Automatic Service Composition 42

2.8.1 Automatic Web Service Discovery, Composition, and Invocation 47

2.9 Challenges in Presence Services . 48

2.9.1 Interoperability . 49

2.9.2 Privacy . 50

2.9.3 User Customization . 52

2.9.4 Scalability . 53

2.9.5 Presence Federation Scenarios . 59

2.9.6 Wireless Communications . 60

2.9.7 Differentiated Treatment and Consistency of Presence Attributes 62

2.9.8 Pull vs. Push Models for Presence Updates 64

2.9.9 Behavior of Presence Applications’ Users 66

3 Filters for Fine-Grained Notification Control 67

3.1 Multi-Throttling . 69

3.2 Enhanced XML Schema for Notification Filters 70

3.2.1 Min-Interval and Max-Interval Trigger Conditions 72

3.2.2 Never and Once Trigger Conditions 73

3.2.3 General Rules and Example Document 74

3.3 Conclusions . 76

4 Optimization of Presence Publication Traffic: Proposal, Mathemati-

cal Model and Performance Estimation 79

4.1 Publication Filters for Presence Sources 83

4.1.1 Multi-rate Control of Publications 84

4.1.2 Pull Model for Publications . 85

iv

CONTENTS

4.1.3 Implementation . 86

4.2 Mathematical Analysis of Publication Rate Control 88

4.2.1 Modeling Presence Changes as State Diagrams 88

4.2.2 Presence Information Probability Distribution 89

4.2.3 Mathematical Analysis of Byte Rate with Single-Throttling . . . 91

4.2.4 Mathematical Analysis of Byte Rate with Multi-Throttling . . . 93

4.2.5 Byte Rate Estimation . 95

4.2.5.1 Use Case: a Technical Employee 97

4.2.5.2 Results with Single-Throttling 98

4.2.5.3 Results with Multi-Throttling 100

4.3 Sojourn-Based Publication Rates . 105

4.3.1 Byte Rate Estimation . 107

4.4 Conclusions . 110

5 Strategies for Reducing Inter-domain Presence Traffic: a Performance

Analysis and Novel Proposal 115

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis . . . 119

5.1.1 Methodology and Assumptions 119

5.1.2 Common Notify . 123

5.1.2.1 Overview . 123

5.1.2.2 Traffic Calculation . 125

5.1.3 View Sharing . 127

5.1.3.1 Overview . 127

5.1.3.2 Traffic Calculation . 129

5.1.4 Common Subscribe . 131

5.1.4.1 Overview . 131

5.1.4.2 Traffic Calculation . 133

5.1.5 Estimation and Analysis of Presence Traffic 134

5.1.5.1 Conditional Notifications 137

5.1.5.2 View Sharing . 138

5.1.5.3 Privacy Filtering . 139

5.1.5.4 Watcher List in CN . 144

5.2 CS and FCS Enhancement for Minimizing the Disclosure of Privacy Rules146

v

CONTENTS

5.2.1 Calculation of Traffic Related to Privacy Rules 148

5.2.1.1 Privacy-Filters Subscriptions in CS 149

5.2.1.2 Traffic Related to Privacy Rules in FCS 150

5.2.2 Analysis of Traffic Related to Privacy Rules 152

5.3 Conclusions . 154

6 Capacity Demands of Inter-domain Traffic Optimizations on the IMS

Network Servers 159

6.1 IMS Signaling Flows . 161

6.1.1 Common Notify . 162

6.1.2 View Sharing . 162

6.1.3 Common Subscribe . 164

6.1.4 Federated Common Subscribe . 165

6.2 Impact of Traffic Optimization on the IMS CSCF 166

6.2.1 Privacy Filtering . 171

6.2.2 Impact of an Application Server for Traffic Optimization on the

IMS . 172

6.3 Conclusions . 176

7 SIP/SIMPLE Resource List Server: Optimization or Burden for Pres-

ence Systems? 179

7.1 Calculation of RLS Traffic on the Access Link 181

7.2 Estimation of RLS Traffic on the Access Link 184

7.3 Conclusions . 186

8 Queueing System and Adaptive QoS Mechanism for Controlling the

Rate of Presence Publications and Notifications 189

8.1 Design . 192

8.2 Analytical Modeling of Publication Receiver 195

8.2.1 Loss Probability of PUBLISH Messages 197

8.2.2 Average Length of the Publication Queue 198

8.2.3 Average Waiting Time of PUBLISH Messages 198

8.2.4 Mathematical Analysis . 198

8.3 Analytical Modeling of Notification Throttling 201

8.3.1 Loss Probability of NOTIFY Messages 203

vi

CONTENTS

8.3.2 Average Length of the Notification Queue 204

8.3.3 Average Waiting Time of NOTIFY Messages 204

8.3.4 Mathematical Analysis . 204

8.4 Analytical Modeling of Publication Throttling 209

8.5 Adaptive Control Algorithm . 210

8.5.1 Performance Evaluation . 214

8.6 Use of Sojourn-Based Intervals . 218

8.7 Conclusions . 219

9 Personal Proxy 223

9.1 Design . 224

9.1.1 Presence PP . 225

9.1.2 Multimedia PP . 226

9.2 Software Architecture: a Middleware-Based Approach 227

9.2.1 Management Layer . 228

9.2.2 SIP/SIMPLE Layer . 230

9.2.3 Presence Filtering . 231

9.2.4 Implementation and Stage . 232

9.3 Presence Traffic Optimization . 233

9.3.1 Analytical Estimation . 235

9.4 HTTP Traffic Optimization . 238

9.4.1 Experimental Results . 239

9.5 Conclusions . 243

10 Context-Aware Rule-Based Service Composition Platform: Sense Ev-

erything, Control Everything 245

10.1 Overview . 246

10.2 The SECE Language . 248

10.2.1 Time-Based Rules . 250

10.2.1.1 Single-Event rules . 250

10.2.1.2 Recurrent-Event Rules 254

10.2.1.3 Hourly, Minutely, and Secondly Recurrent-Event Rules 261

10.2.2 Calendar-Based Rules . 262

10.2.3 Location-Based Rules . 264

vii

CONTENTS

10.2.3.1 Operation . 266

10.2.4 Request-Based Rules . 267

10.2.5 Context-Based Rules . 270

10.2.5.1 States vs. Events . 271

10.2.6 Error Detection and Handling . 272

10.3 Architecture . 273

10.3.1 The Software Components of SECE 277

10.4 Enhancing SECE Toward Ontology-Based User-Defined Rules for Auto-

matic Service Discovery . 278

10.4.1 Design . 279

10.4.2 Implementation . 280

10.4.3 SECE Ontology-Based Sublanguage 283

10.4.4 Future Work Towards Automation 284

10.4.4.1 Automatic Learning of SECE Rules 284

10.4.4.2 Event-Based Context-aware Web Service Composition . 285

10.5 Conclusions . 286

11 Discussion 289

A Example of Presence Document 305

B Example of RLMI Document 309

C Example of Notification Filter Document 311

D Example of Presence Authorization Document 313

E Example of Watcher Information Document 315

F Detailed Formulas for Estimating Inter-Domain Presence Traffic 317

G ICalendar and SECE Translation 323

H ANTRL Grammar for the SECE Language 329

viii

CONTENTS

I List of Publications 335

I.1 Book Chapters . 335

I.2 International Journals . 335

I.3 International Conferences . 336

I.4 Demonstrations at International Conferences 338

I.5 National Conferences . 338

I.6 Papers under Review Process . 338

Bibliography 339

ix

CONTENTS

x

List of Figures

2.1 IM graphical user interfaces . 6

2.2 Processing of presence information . 16

2.3 Main components of the IMS . 20

2.4 SIMPLE presence subscription and publication 34

2.5 IMPP presence model . 38

2.6 Structure of an example IMPP presence document 40

2.7 Web Service Composition . 48

2.8 SIP presence subscription flow . 53

2.9 SIP presence publication flow . 54

2.10 Watcher subscription in the IMS . 55

2.11 RLS subscription to a presentity in the IMS 55

3.1 Aggregation of presence changes when a throttling interval expires . . . 70

4.1 Publication and resulting notifications flows 79

4.2 Publication filtering . 87

4.3 A state diagram for changes in three particular presence attributes . . . 89

4.4 Markovian property outline . 92

4.5 Markov chain for three particular presence attributes 99

4.6 Probability of change at each throttling timeout 100

4.7 Bytes sent at each throttling timeout . 100

4.8 Rate of bytes during each throttling interval 101

4.9 Probability of each attribute having changed after throttling timeouts . 101

4.10 Probability of presence change after each throttling interval 102

4.11 Bytes sent at each throttling interval . 102

xi

LIST OF FIGURES

4.12 Rate of bytes during each throttling interval (A=30, M=30, S=10) . . . 103

4.13 Rate of bytes during each throttling interval (A=30, M=5, S=10) 103

4.14 SC for the audio attribute . 107

4.15 SBIs calculated at each throttling timeout over time 108

4.16 Probability of presence change at each throttling timeout with SBIs . . 109

4.17 Probability of change at each timeout with static and sojourn-based

intervals . 110

4.18 Rate of bytes during throttling static and sojourn-based intervals 110

5.1 Sketch for dialog optimization . 121

5.2 Sketch for the Common Notify strategy 123

5.3 Sketch for the View Sharing strategy . 128

5.4 Sketch for the Common Subscribe strategy 131

5.5 Presence traffic of all the strategies . 135

5.6 Presence traffic of all the strategies when NO is applied 136

5.7 Presence traffic of CN when different percentages of watchers support NO137

5.8 Effect of the number of views on VS traffic 139

5.9 Traffic of CN, VS, and CS over the number of views 140

5.10 Traffic of VS, CN, and CS combined with NO over the number of views 140

5.11 Maximum percentage of watchers seeing a different presence view up to

which VS4 is recommended . 141

5.12 Privacy-filters and presence event traffic of CN 142

5.13 Privacy-filters event traffic over the number of changes in privacy filters 143

5.14 CN traffic over the number of changes in each privacy filter 143

5.15 Privacy-filters event traffic with the basic and list-based methods over

the number of privacy filters . 144

5.16 CN traffic with WLN and winfo subscriptions over the number of watchers145

5.17 CN traffic with WLN and winfo subscriptions over the number of pres-

ence changes . 145

5.18 Recommended maximum number of presence changes per hour, per pre-

sentity, for using WLN instead of winfo subscriptions 146

5.19 Traffic related to privacy rules without inactive rules 153

5.20 Traffic related to privacy rules with inactive rules 153

xii

LIST OF FIGURES

5.21 Traffic related to privacy rules with inactive rules and conditional noti-

fications . 154

6.1 IMS architecture overview . 161

6.2 Common Notify’s message flows . 163

6.3 View Sharing’s message flows . 164

6.4 Common Subscribe’s message flows . 165

6.5 Federated Common Subscribe’s message flows 166

6.6 Number of presence messages when no privacy filtering is performed . . 170

6.7 Number of inter-domain messages per second at the subscriber side S-

CSCF . 171

6.8 Number of presence messages as the number of views per presentity

increases . 172

6.9 Number of presence messages as the impact percentage increases 172

6.10 Signaling flows of presence subscriptions without any optimization . . . 174

6.11 Signaling flows of presence subscriptions with an RLS 175

6.12 Number of inter- and intra-domain SIP messages/second at the sub-

scriber side S-CSCF . 176

7.1 Presence traffic with and without RLS, and partial-state documents . . 184

7.2 Traffic of an RLS with partial-state RLMI documents, and direct sub-

scriptions . 185

7.3 Maximum number of presentities recommended to use direct subscriptions185

7.4 Traffic of direct subscriptions, and an RLS with partial-state RLMI doc-

uments and conditional notifications (NO) 187

7.5 Traffic of optimized direct subscriptions, and an RLS with partial-state

presence documents and conditional notifications (NO) 187

8.1 Presence Server components . 193

8.2 Proposed queuing system . 194

8.3 State transition diagram of the publication queue 195

8.4 Effect of λp on WP . 199

8.5 Effect of Np on WP (λp = 0.2, µP = 10) 199

8.6 Effect of λp on LP . 200

xiii

LIST OF FIGURES

8.7 Distribution of LP with different values of ρP 201

8.8 Effect of SP on LPP . 201

8.9 State transition diagram of a notification queue 203

8.10 Effect of λp on Ww . 205

8.11 Effect of θw on Ww (µw = 30, λp = 1, Npδw = 30) 206

8.12 Effect of δw on Ww (µw = 10, λp = 0.2, Np = 120, θw = 8) 207

8.13 Effect of λp on Lw . 207

8.14 Effect of θw on Lw . 208

8.15 Distribution of Lw with different values of traffic intensity ρw 208

8.16 Distribution of Lw with different values of ρw and θw = 10 209

8.17 Distribution of Lw with ρw = 1 and different values of θw 209

8.18 Effect of Sw on LPw, with different values of λp 210

8.19 Effect of Sw on LPw, with different values of θw 210

8.20 Minimum queue sizes over preferred notification rate 215

8.21 Output throttling rates over preferred notification rate 215

8.22 Waiting times over preferred notification rate 216

8.23 Queue loss probabilities over preferred notification rate 216

8.24 Waiting times over preferred notification rate with θwmax = 0 217

8.25 Output rates over preferred maximum notification delay 217

8.26 Waiting times over preferred maximum notification delay 218

8.27 Waiting times over PUBLISH arrival rate of each presentity 219

8.28 Output rates over PUBLISH arrival rate of each presentity 220

8.29 Waiting times over PUBLISH arrival rate of each presentity without the

adaptive algorithm . 220

9.1 PP scenario . 224

9.2 Interaction between PPs . 226

9.3 Logical modules of PP . 229

9.4 Interaction flows of the PP modules . 229

9.5 Outline of the the presence documents for different watchers 232

9.6 Presence traffic over the wireless link when a user uses a PP 236

9.7 Size of presence documents encoded by XML and WBXML 237

xiv

LIST OF FIGURES

9.8 Scenario where some PP functionality is placed into a proxy server for

HTTP optimization . 240

9.9 Average size of HTTP requests on uplink 242

9.10 Average improvement in Response Time (%) 243

10.1 Comparison to related work . 247

10.2 Third-party services of SECE rules and some actions 248

10.3 iCalendar-SECE mapping . 251

10.4 Sketch for single-event rules (optional parameters in parenthesis) 251

10.5 Grammar rule for single-event rules . 252

10.6 Grammar rule for date expressions . 253

10.7 Sketch for recurrent-event rules (optional parameters in parenthesis) . . 254

10.8 Sketch for calendar-based rules . 263

10.9 Grammar rule for calendar-based rules 263

10.10Sketch for location rules . 264

10.11SECE geographical database GUI . 265

10.12Grammar rule for location rules . 266

10.13Grammar rule for the location element of location rules 266

10.14Operation flows for a new location rule entered into SECE 267

10.15Operation flows for a location change . 268

10.16Sketch for request-based rules (optional parameters in parenthesis) . . . 268

10.17Grammar rule for request-based rules 270

10.18Sketch for context-based rules . 270

10.19Grammar rule for context-based rules 271

10.20Example of point-based and interval-based event timestamps 273

10.21SECE architecture . 274

10.22SER SIP server and SECE interaction model 275

10.23Partial user information registry . 275

10.24The architecture of sensors and actuators gateway 276

10.25Snapshot of the SECE web service . 277

10.26The software components of SECE . 278

10.27SECE, GloServ, front-end applications, and web services 280

10.28Sequence diagram from entering a web service rule to querying GloServ 281

xv

LIST OF FIGURES

10.29Grammar rule for web service rules . 284

10.30Grammar rule for ontproperty elements in web service rules 284

xvi

List of Tables

2.1 Proposals for standardizing context information 10

2.2 SIMPLE RFCs . 36

2.3 Examples of characteristics and state for person, service, and device entities 40

4.1 Assumed times and transition rates . 98

5.1 Constants used to estimate federated presence traffic 121

5.2 Types of events involved in CN based on its configuration 126

5.3 Types of events involved in VS based on its configuration 129

5.4 Types of events involved in CS based on its configuration 133

5.5 Variables for estimating the traffic related to privacy rules 150

5.6 Most efficient strategy (the percentage of the other strategies’ traffic

saved in parenthesis) . 155

5.7 Number of views up to which each strategy is preferable to the others . 156

6.1 Variables for estimating presence load in number of messages 167

6.2 Types of incoming flows involved in subscription maintenance 169

6.3 Incoming flow weight for each optimization strategy 169

7.1 Variables for estimating the RLS traffic 182

8.1 Variables that describe the queuing system 212

10.1 Some SECE actions (optional parameters in parenthesis) 249

10.2 Date expressions and frequency types 256

10.3 Effect of at conditions on hourly, minutely, and secondly recurrences . . 262

10.4 Types of SECE composition . 287

xvii

GLOSSARY

xviii

Glossary

3GPP 3rd Generation Partnership Project

ACL Access Control List

API Application Programming Interface

AS Application Server

ASE Application Service Element

BPEL Business Process Execution Lan-

guage

CC/PP Composite Capability/Preference

Profile

CIR Communications Initiation Request

CLCD Connected Limited Device Configu-

ration

CLI Command Line Interface

CLP Command Line Protocol

CN Common Notify

CoA Care-Of-Address

CoAP Constrained Application Protocol

CPM Client Presence Middleware

CPP Common Profile for Presence

CPU Central Processing Unit

CS Common Subscribe

CSCF Call State Control Function

CSP Client-Server Protocol

CSS Cascading Style Sheets

DHT Distributed Hash Table

DIAL Device Independent Authoring Lan-

guage

DNS Domain Name System

DOM Document Object Model

EDGE Enhanced Data rates for GSM of

Evolution

EIM Enterprise Instant Messaging

EMAIL electronic mail

ETSI European Telecommunications Stan-

dards Institute

EXI Efficient XML Interchange

FCFS First Come First Served

FCS Federated Common Subscribe

FIPA Foundation for Intelligent Physical

Agents

FMC Fixed Mobile Convergence

GCalendar Google Calendar

GContacts Google Contacts

GEOPRIV GEOgraphic Location/PRIVacy

GLatitude Google Latitude

GloServ Global Service Discovery Architec-

ture

GMail Google e-Mail

GMaps Google Maps

GUI Graphical User Interface

GUP Generic User Profile

GVoice Google Voice

GZip GNU Zip

HA Home Agent

HSDPA High Speed Downlink Packet Access

HSS Home Subscriber Server

HTTP HyperText Transfer Protocol

HTTPS HTTP Secure

xix

GLOSSARY

IETF Internet Engineering Task Force

IM Instant Messaging

IMP Instant Messaging and Presence

IMPP Instant Messaging and Presence Pro-

tocol

IMPS Instant Messaging and Presence Ser-

vice

IMS IP Multimedia Subsystem

IRT Internet Real Time lab

ITU International Telecommunication

Union

IP Internet Protocol

J2ME Java 2 Micro Edition

J2SE Java 2 Standard Edition

JCR Journal Citation Report

JSR Java Specification Request

LBS Location-Based System

LoST Location-to-Service Translation Pro-

tocol

MGCF Media Gateway Control Function

MGW Media Gateway

MIDP Mobile Information Device Profile

MIME Multipurpose Internet Mail Exten-

sions

MLP Mobile Location Protocol

MPEG Moving Picture Experts Group

NGN Next-Generation Network

NO Notify Optimization

OMA Open Mobile Alliance

OS Operating System

OTA Over-The-Air

OWL Ontology Web Language

OWL-DL OWL Description Logic

P2P Peer to Peer

PIDF Presence Information Data Format

PC Personal Computer

PGP Pretty-Good-Privacy

PIDF-LO PIDF Location Object

PP Personal Proxy

PS Presence Server

PSTN Public Switched Telephone Network

PTM Push To Multimedia

PTT Push To Talk

PUA Presence User Agent

RAM Random-Access Memory

QoE Quality of Experience

QoS Quality of Service

RDF Resource Description Framework

REST Representational State Transfer

RFC Request For Comments

RFID RFID Radio Frequency IDentifica-

tion

RLMI Resource List Meta Information

RLS Resource List Server

S/MIME Secure Multipurpose Internet Mail

Extensions

SAP Service Access Point

SASL Simple Authentication and Security

Layer

SBI Sojourn-Based Interval

SER SIP Express Router

SIMPLE SIP for Instant Messaging and Pres-

ence Leveraging Extensions

SIP Session Initiation Protocol

SMIL Synchronized Multimedia Integra-

tion Language

xx

GLOSSARY

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SPM Server Presence Middleware

SSP Server-Server Protocol

TISPAN Telecoms and Internet converged

Services and Protocols for Advanced

Network

TLS Transport Layer Security

UA User Agent

UAC User Agent Client

UAProf User Agent Profile

UAS User Agent Server

UDDI Universal Description, Discovery and

Integration

URI Uniform Resource Identifier

URL Uniform Resource Locator

VoD Video on Demand

VoIP Voice over IP

VS View Sharing

W3C World Wide Web Consortium

WAP Wireless Application Protocol

WBXML WAP Binary XML

WG Working Group

WiMAX Worldwide Interoperability for Mi-

crowave Access

WSDL Web Service Description Language

WSP Wireless Session Protocol

WURLF Wireless Universal Resource FiLe.

WWW World Wide Web

XCAP XML Configuration Access Protocol

XML eXtensible Markup Language

XMPP eXtensible Messaging and Presence

Service

xxi

GLOSSARY

xxii

1

Introduction

Next-Generation Networks (NGNs) are expected to build a single IP (Internet Protocol)

network infrastructure for ubiquitous connectivity and service access. This platform

will network any person and device from anywhere and at any time through intelligent

interfaces and with enriched media. NGNs will enable the desired global convergence of

wired and wireless networks, which is known as Fixed Mobile Convergence (FMC). The

foundation for such a new generation of communication networks is the IP Multimedia

Subsystem (IMS) [1], introduced in the Universal Mobile Telecommunication System

(UMTS) by Release 5/6. IMS evolves mobile operators towards an all IP technology

for the support and integration of advanced multimedia services. The ultimate goal of

NGNs is to bring value to human life through new experiences and convenient services

as well as to provide a playground for everybody to create, share, compose and deliver

services. Thus, a key factor in the success of network convergence is to provide users

with value-added services that encourage them to communicate in an always-on, more

dynamic way. These services will improve users’ Quality of Experience (QoE) and bring

greater revenues to service and network providers. Personalization is a required feature

in any next-generation service. Users should be capable to customize their services’

behavior and appearance based on their needs, which may change over time. Presence

information is considered as a key enabler of next-generation services’ personalization.

Presence information greatly contributed to the worldwide success of applications such

as instant messengers. Presence information includes all the information about users

that applications need to take intelligent decisions for establishing and managing user

communications. The presence service forms part of the IMS specification, and plays an

1

1. INTRODUCTION

increasingly important role in existing and emerging multimedia services. The Session

Initiation Protocol (SIP) [2] is the session signaling protocol chosen by the IMS. Thus,

the SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE) [3] has

become the de facto protocol for managing presence.

Three players take part in the implantation and success of NGNs: technology, oper-

ators and end users. Technology provides the means of implementating and deploying

ubiquitious services, which operators provide to end users. The industry has entered in

a new era in which the level of technology development exceeds the level of customer de-

sire [4]. There is an overwhelming emergence of mobile and wired technologies; UMTS,

Worldwide Interoperability for Microwave Access (WiMAX), Wireless MeshNetworks,

The Semantic Web, and The Internet of Things are just some examples. This boom in

technology makes the operators’ investment in infrastucture more complex and costly.

Such investment is restraining operators from moving towards NGNs. On one hand,

operators need to adopt a customer-need-driven model for deploying the services that

attract the largest number of people, thereby maximizing revenue the most. On the

other hand, operators need to be sure that such revenue will compensate for the invest-

ment done and the impact of the provided services on the network. The capacity impact

of next-generation services on the operator network is far from trivial due to multiple

reasons. These services will be ubiquitous, device- and access-network-independent.

They will in large measure rely on context information, enriched data, and social re-

lationships. These features require complex functionality and introduce traffic load,

which operators should be capable to bear for world-wide used services. Furthermore,

the presence service is responsible of timely disseminating all the context needed by

applications to handle user communications in NGNs. SIMPLE is a subscription-based

framework, which periodically notifies subscribers of the presence information of in-

terest. Presence subscriptions must be refreshed periodically to prevent their lifetime

from expiring, which would result in their elimination. Whenever some presence infor-

mation changes, all the entities subscribed to this information are notified. Moreover,

SIMPLE encodes presence information by the eXtensible Markup Language (XML),

which provides interoperability but results in verbose, large documents. These features

cause presence-based applications to generate a great amount of traffic. Such over-

load may be specially critic in location-based systems (LBSs) that need to disseminate

location updates very frequently and large-scale applications that distribute presence

2

information among million of users worldwide. IMS relies on a set of centralized SIP

servers that handle all the messages sent and received by end users. The number of

nodes in the signaling path and the stateful nature of these servers involve scalability

issues in the IMS. Thus, the IMS presence service is particularly challenging because of

its constant flows of signaling traffic, which may impact the IMS performance severely

and introduce end-to-end delays.

On the other hand, context-aware computing is not yet a seamless part of everyday

life. Intuitive, easy-to-use, and ubiquitous services that incorporate technology into

the daily lives of general users in an always-on mode remain to be find out. Nowadays

millions of people use instant messages, Short Message Service (SMS), electronic mail

(email), Twitter and Facebook everyday. Technology is somewhat part of these users’

life. However, these Internet services are not automated and programmable by end-

users, decreasing their utility. Moreover, although these services handle very similar

information (e.g., calendar, buddies status, presence, messages and user history), they

do not communicate with each other. Such a lack of service cooperation and automa-

tion forces users to check services one after another and manually copy data or configure

services based on other services. Unfortunately, there is currently no easy way to create

new services that integrate multiple third-party services such as location, presence, cal-

endar, address book, Instant Messaging (IM), SMS, calls, email, Facebook, and Twitter.

Networked sensors and actuators for lights, temperature, humidity, smoke, and motion

are also becoming popular both in residential and commercial environments. Sensor

information may therefore play an important role in user-created service composition.

As web services proliferate, a framework is needed where multiple services can be au-

tomatically discovered and composed for a particular user within a certain context.

The Semantic Web is aimed to provide automatic web service discovery, composition

and execution through ontological descriptions of web services. Such semantic-based

automatic composition of web services will drastically increase the potential of web

services. However, to date, there is not any platform for context-aware, automatic or

user-created, service composition. A platform of this kind should be proactive and

provide tools for creating compositionsintuitive enough for non-technical users.

The main goal of this thesis is to contribute to the deployment and success of next-

generation ubiquitous services. To this end, this thesis addresses the above-mentioned

3

1. INTRODUCTION

key issues in NGNs: the scalability of the presence service, and the design and composi-

tion of presence-enabled, value-added services. Moreover, we provide a comprehensible

analysis of SIMPLE, all its technical specifications and related work. This is intended

to enlighten readers about the SIMPLE framework, which is spread over numerous

Internet Engineering Task Force (IETF) specifications and may therefore be hard to

understand.

4

2

Background

The goal of this section is to provide a complete picture and state of the art of presence

systems so as to help the reader to comprehend the contributions discussed in this

thesis. This section discusses what presence information is, what it is useful for, and

the underlying technologies involved in presence applications. Moreover, this section

addresses the current and future use of presence services as well as the challenges this

kind of service needs to face in ubiquitous, proactive applications.

2.1 Instant Messaging

Instant Messaging (IM) is the killer application that along with e-mail has most con-

tributed to the success of the Internet. IM allows sending instantaneous text messages

to the users specified in a contact list (also so-called “buddy list” or “friend list”).

Grouping known users in a contact list differentiates IM from online chat. The success

of IM stems from the perceived synchronicity of communications by users since mes-

sages are exchanged in real-time. Today’s IM applications go beyond simple real-time

text-based communication. IM applications usually include additional features such as

video-conference, file sharing, subgroups of contacts, backgrounds, avatars, emoticons,

user profiles, and offline auto-reply messages, among others. Lastly, some IM clients

have integrated social networks such as Facebook, Linkedln, and MySpace. Figure 2.1

shows some typical IM interfaces, which basically list a set of known users and some

convenient information to consider when initiating a communication. This “convenient

information” is the birth of presence information and a key feature that differentiates

5

2. BACKGROUND

Figure 2.1: IM graphical user interfaces

IM from e-mail. Presence was conceived as an indicator of the willingness of users to

communicate with others through basic states such as online, idle, busy, and so on.

This novel feature was crucial for the great acceptance of IM. Without presence, a

sender using short messaging might interrupt a receiver because the sender did not

know the receiver’s status. However, the sender can choose a better time for IM by

learning the receiver’s presence. A survey of 443 IM users [5] (in particular, college

students in three universities in the United States) demonstrates the important role

of social presence in IM. This study also finds out five motivations for IM: social util-

ity, interpersonal utility, convenience, entertainment/relaxation and information. The

authors of [6] finds that IM provides a more social experience than email communi-

cations. Other study [7] determines that students mainly instant message for social

entertainment and attention.

The first IM applications, such as write, talk, who, or finger, had a great acceptance

among the most assiduous users of personal computers. These basic applications did

not provide, however, presence information. The first application that incorporated

some basic presence information was Internet Relay Chat (IRC) in 1988. This basic

information included the user’s IP address, “away” status, descriptive textual message,

and last input time. In 1996, ICQ (“I seek you”) showed up with a simple and easy-

to-use Graphical User Interface (GUI) that first provided a list of users with status

icons. ICQ had a great success, and its appearance and mode of operation have been

6

2.1 Instant Messaging

adopted by many posterior IM applications. After that, the telecommunications mag-

nates Yahoo, Microsoft, and America Online formed part of the IM industry with so

popular applications such as Yahoo! Messenger (YMSG), Microsoft Messenger (MSN),

and AOL Instant Messenger (AIM). From then, other IM clients have emerged with

their own proprietary protocols such as Excite, Skype, Ubique, Brosix, and Zephir. This

variety of propriety Instant Messaging and Presence (IMP) protocols and clients made

users run multiple client applications when they wish to connect to multiple IM net-

works. To ease this lack of interoperability, numerous third-party clients that connect

to multiple IM services have showed up such as Adium, Digsby, Meebo, Pigdin, Qute-

Com, and iChat among others. These all-in-one instant messengers require users to

add a user account for each IM service to which they wish to connect. Basically, these

applications control the user’s connections to each service, and merge each service’s con-

tacts, updates and profiles in a single GUI. The success of all-in-one instant messengers

and IM users’ clamor for interoperability have led the biggest IM services to move on

towards interoperability. In 2006, YMSG and MSN launched clients that are able to

interoperate with each other without the need to create an account on the other service.

In 2007, Google and AOL announced their interoperability through the Google e-Mail

(GMail) Integrated chat. However, full interoperability between Google Talk and AIM

clients have not yet been launched despite of several promising announcements from

the companies. Actually, these two business agreements evidence a growing battle for

the largest IM customer database. The two camps, with Google and AOL on one

side and Yahoo and Microsoft on the other, support competing IMP protocols. The

former supports eXtensible Messaging and Presence Protocol (XMPP) and the later

SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE), both part

of standards-making processes in the IETF. XMPP has received a great acceptance,

and is used by popular IM applications such as Google Talk, Facebook, and Gizmo5.

Most multi-protocol clients interoperate with XMPP as for example Adium, eBuddy,

Digsby, Emphaty, Palringo and IChat. SIMPLE took form later, after the acceptance

of XMPP, which is the main reason why less IM clients support this protocol. Some

IM clients that do support SIMPLE are YMSG, QuteCom, Pidgin, SIP Communica-

tor, and MSN. IM has already reached the mobile world. IM providers such as Yahoo,

Skype, Microsoft and AOL already provide support for mobile platforms such as mobile

phones, laptops, and smart phones. In addition, numerous multi-protocol clients have

7

2. BACKGROUND

been launched to run on portable devices such as MXit, Yamingo, Fring, Palringo,

IM+, and Beejive. Mobile IM is also offered by browser-based applications such as

Meebo and eBuddy Web Messenger, which do not require downloading any software to

the handset.

Although IM was initially conceived as a social tool, specially popular among young

people, it has been also adopted in business environments. The authors of [8] show the

results of an extensive survey of IM users in the United States in 2004. This survey

revealed that by then 53 million American adults used IM. Around 21% of them were

used to IM at work, which increased productivity and interoffice cooperation. As well,

other survey [9], which was carried out in the United States in 2006, concludes that IM

in the workplace promotes more frequent communications and reduces interruptions.

Other studies [10][11] state that IM is desirable at workplaces due to its immediacy,

presence features, and rich communications. The works [12] and [13] analyze IM ap-

plications’ traffic in corporation environments and show that IM is widely used during

working hours. In response to the demand for business-grade IM and the communica-

tion security that corporations need, new Enterprise IM (EIM) solutions have emerged

such as IBM Lotus Sametime, Microsoft Office Communication Server, and Cisco Uni-

fied Presence. EIM platforms are aimed to medium and large companies by offering

more Quality of Service (QoS) and interoperability with multiple IM services.

A recent study [14] conducted in 2010 reveals that there are 2.4 billion IM accounts

worldwide, and this number will grow to 3.4 billion by 2014. The authors of [15] analyze

behavioral data from the Microsoft Messenger system on a planetary scale. The dataset

contains 30 billion conversations among 240 million people. A survey of Internet users

in New York [16], which was carried out in 2009, shows that the amount of time spent

with communication tools such as IM and email has declined by 8% since 2003. One

of the reasons of this decline is the extreme success of social networks in the last years.

This does not mean, however, that IM is past history. On the contrary, users still

instant message but, instead of using traditional IM clients, social networks allow them

to instant message a wider audience, from different platforms and with more context

awareness.

8

2.2 Context Information

2.2 Context Information

The word context is defined as the situation in which something happens and that

helps you to understand it. Context plays a key role in smart environments that

proactively adapt to users’ needs and preferences by examining their surroundings and

circumstances. Context-aware services need to obtain, interpret, describe and dissem-

inate context information. This involves monitoring the resources and entities that

participate in the service. It is therefore necessary to reach a consensus about what

context information is and how it can be obtained and manipulated. In the frame of

telecommunications, multiple classifications of context have emerged according to en-

tity, role and low- and high-level information, for example. The authors of [17] provide

the possibly most accepted definition of context information. This definition says that

context information is any information that is susceptible of characterizing the state

of an entity. Entity can be any element that is relevant in the interaction between

an application and a user. The state of an entity includes innumerable aspects such

as physical and computational characteristics of components that interact with the

system, history of user activity, preferences, and other kinds of personal information.

This definition of context information fits those that have been proposed by the main

standard organizations: World Wide Web Consortium (W3C), Open Mobile Alliance

(OMA), 3rd Generation Partnership Project (3GPP), and Foundation for Intelligent

Physical Agents (FIPA). Based on the kind of entity to characterize, there exist dif-

ferent classifications of context information. For example, user context could include

a diversity of entities such as the user himself/herself, other users, and his or her en-

vironment, location, preferences, circumstances, etc. Context-aware services use this

information for adapting their behavior to the users’ needs. This adaption could be

targeted at providing diverse functionalities: user-personalized contents, device inde-

pendence, multimodal interactions and so on. Due to the broad nature of context,

real systems need to limit the number of entities and their characteristics according

to their needs. These systems should carefully study the most appropriate methods

for abstracting, representing, merging, disseminating, and reusing context information.

These tasks are specially challenging since context information can come from diverse

sources as for example sensor networks, localization services, operator networks, and

third-party information repositories. Intelligent systems should be capable to inference

9

2. BACKGROUND

new context information from that obtained from context sources. For instance, the

user’s activity at a given moment may be deduced from his or her location and calendar

information.

Context-aware services typically have a partial view of a problem and focus on con-

crete applications and environments. Context-awareness can be found in the Ubiquitous

Web [18], agent-based systems, presence services, Peer-to-Peer (P2P) applications for

file sharing, sensor and actuator networks, user-personalized services of mobile opera-

tors, multimedia contents, etc. Such countless context-aware applications have led to

many frameworks for context handling that overlap each other. To provide interoper-

ability, a number of proposals have come out as Table 2.1 shows. The great number of

proposals along with the heterogeneity of devices and protocols make interoperability

specially challenging.

Context type Proposed Standards

User GUP [19], CC/PP [20], UAProf [21], SIMPLE [22][23]

Service GUP [19], SIMPLE [22][24], OWL-S [25], BPEL [26],

WSDL [27], UDDI [28], FIPA Ontology Service [29]

Content MPEG-21[30], CSS3 (Media Queries) [31], SMIL [32],

DIAL [33]

Device FIPA Device Ontology [34], CC/PP [20], UAProf [21],

WURLF [35], Device Description Repository [36], SIMPLE [24]

Location MLP [37], GEOPRIV [38]

Table 2.1: Proposals for standardizing context information

2.3 Presence Information

Presence information is a well-known concept on the Internet and is widely used by

applications such as IM and Push-to-Talk (PTT) as explained in Section 2.1. In these

applications, a user can discover the willingness of other users in his or her buddy list

to communicate with him or her, through the presence states of online, offline, busy

or absent, among others. This basic understanding of presence is evolving towards a

much more generic and flexible concept that includes all context that allows a user

or application to adapt and control communications in a more efficient, personalized

manner. Presence includes a wide range of information about a user, such as his or her

localization (at different levels: region, place or GPS coordinates), the activities that

10

2.3 Presence Information

the user is doing at a specific time, ambient conditions, communications preferences,

and devices on which the user is available.

Although the concept of presence is understood as a type of context information,

the distinction between context and presence is blurred. We know that all presence

information is context but not all context information is presence. Thus, we should

answer the question What makes some context information be defined as presence?. We

answer this question by two parameters: the object and the goal of the information.

Context characterizes all relevant entities in any kind of interaction between a user

and an application (i.e., the object). This information helps applications to build all

kind of intelligence that is aware of the user’s environment (i.e., the goal). On the

other hand, presence is used to characterize entities that can affect the management

of user communications (i.e., the object). This information allows applications to take

intelligent decisions about the start, continuation and end of user communications (i.e.,

the goal).

The traditional view of presence revolves around communicating with a human

being. However, the concept of presence is evolving towards a more powerful and

pervasive concept that is not restricted to human users. The research community

reflects this evolution. For instance, the authors of [39] and [40] highlight the need

to have presence systems capable of describing entities other than human users such

as objects and places. The former includes an attribute in presence documents that

indicates the type of presentity. The latter describes an IM application that allows

interacting with physical things such as printers and rooms in a buddy list. The patent

[41] models rooms, guests, and accommodation services through presence information.

Other patent [42] models web services through presence documents. Thus, we propose

a revised definition of presence as follows:

“Presence is any information that characterizes the state and nature of an

entity that is capable to communicate with other entities. This information

is relevant to take decisions about the entity’s communications or can have

some kind of influence on the way others communicate with this entity.

Here, the term “communication” should be understood in a wide scope. It

not only means virtual communications based on text, audio, and video, but

also real-world communications and any interaction relevant to the entity.

11

2. BACKGROUND

Entity could be a human being, a software process, or a physical device,

for example. An entity can be indivisible (e.g. a printer or human) or

composed by subentities (e.g., a smart room, a corporation and a commu-

nication network). A composed entity’s presence information is formed by

its subentities’ presence information.”

2.3.1 Advantages and Uses Cases

Presence information offers a world of attractive possibilities for self-expression by

letting our friends and contacts know how we are and by seeing how they are in an

instant. We are thereby able to choose the most suitable time to contact our buddies

since we know when they are most available and the condition in which we will find

them. Thus, we can avoid failed call attempts that sometimes end in voicemail, which

in turn allows us to save money. As described in Section 2.1, users of IM applications

rely on presence information to handle their communications that, apart from instant

messages, include voice calls and videoconferences. There are many authors that have

addressed the use of presence information for call handling. For example, the authors

of [43] describe a system for call forwarding based on the caller’s and callee’s presence

information. The authors of [44] describe a router that uses presence information for

handling communications and in general building application chains. UbiPhone [45] is

an ubiquitous phone service that automatically handles phone calls based on the caller’s

and callee’s presence status, location, calendar and social relationships, for example.

A similar but simpler application is Live AddressBook [46], which helps users make

telephone calls by providing their contacts’ dynamic presence information. LESS [47]

is an XML-based scripting language for call handling that can use some basic presence

information (e.g., time and online status) to trigger actions.

Presence information offers other definite advantages beyond communication han-

dling. Presence and mobility are intrinsically connected. Mobile devices are personal

and pervasive; the user always keeps them close in a manner always-on, and stores

personal information in them, such as a diary or favorite media. Presence-based mo-

bile applications bring out exciting possibilities. An experimental study of the use of

mobile social presence [48] from the Motorola Social Media Research Lab probes the

usefulness of presence in users’ daily life. Participants in this study used three presence

applications that let users know their contacts’ motion status, played music, and posted

12

2.3 Presence Information

photos. This study found out that participants used contextual presence to coordinate

their daily activities. Thus, mobile presence systems can help people manage their

everyday coordination tasks in a less disruptive, more natural way. The authors call

it perceptual microcoordination. The authors also report other two advantages

of presence information: constant awareness and shared experience. Constant

awareness refers to the ability of users to connect to others’ rhythms and activities

throughout the day, without the need to communicate. This provides a feeling of con-

nectedness and safety. Shared experiences let participants feel a connection to others

whom they could not physically be with at a given time. As the authors state, all these

advantages can persuade people to initiate communications, thereby providing better

experiences to users and increasing service providers’ revenues.

As presence is innately associated to the mobile world, location information is a key

part of presence information. Buddies’ location information has become a hot feature in

some IM applications. AOL Instant Messenger already provides a plugin that enables

users to check out the location of their buddies. Chatsquare [49] allows discovering and

communicating with nearby people. BuddyFinder [50] tracks the location of the users’

buddies through SMSs. The authors of [51] propose an algorithm for detecting when

any contact gets into a user-defined vicinity. ContextContacts is an application on the

ContextPhone platform [52] that aggregates the contacts’ presence information from

multiple sources. This information includes user location and close-by friends. The

authors of [53] describe a mobile workforce management platform that integrates the

employees’ presence information with their vehicles’ status and location information.

A new emerging field of research and posibilites comes out from the integration of

presence information, specially location, and social networking. Foursquare [54] is a

phone application that allows Facebook’s, Twitter’s and other social networks’ users to

share their location regarding points of interest and presence status. The authors of [55]

describe an application for gathering presence information from sensors embedded in

mobile phones and exporting this information to Facebook. NFCSocial [56] is a mobile

application that uses Near Field Communication (NFC) technology to determine the

users’ location and to ease the update of presence information. Whenever a user’s

location is detected via NFC, her presence information is generated and updated in

her social networks. The user’s presence information includes a picture that represents

the user’s location and other picture for her mood. R-U-In? [57] is a social networking

13

2. BACKGROUND

system that relies on users’ activities and other presence information to help users

participating in activities of mutual interest.

The above-mentioned use cases are just a few examples; the most popular ones.

Enumerating all the use cases would be impossible because the possibilities of pres-

ence information are almost infinite and multidisciplinary. The following works shows

different areas in which presence information can also be useful. BusinessFinder [58]

is an application for matching customer requests to nomadic vendors. This relies on

customers’ and vendors’ presence information to find out the nearby vendors that are

available and best fit the requester’s needs. The patent [41] proposes a presence-enabled

property management system in which rooms, guests and services have presence infor-

mation associated. The patent [42] describes a system that model web services by

presence information. Thus, a users can group interesting services in a contact list and

access any of them from this list. The recommendation system for cellular networks

described by [59] considers users’ presence information to decide whether or not to send

out recommendation messages. The authors of [60] propose the presence service as a

mechanism for discovering web services. The work [61] describes a prototype social

television system that incorporates user presence and messaging.

2.3.2 Requirements on Presence Systems

A presence-based application should only permit a user to communicate with another

user by the services specified in the presence document of the latter. In addition, this

communication should have the characteristics indicated in that presence document,

for example, regarding target devices and content types allowed. Thus, users can re-

strict the way other users communicate with them by publishing information to this

effect in their presence documents. For example, a user may determine which com-

munications to accept depending on the relevance of the requesters, redirect calls to

secretaries or delegates when she is busy, accept different content types depending on

her circumstances (working, traveling, etc.), and so on.

Presence information has evolved into a much more complex and diverse data than

the first binary states online and offline. Such basic states came from a single IM

desktop application. Now, presence information may come from multiple sources such

as cellular phones, sensors, Personal Computers (PCs), calendar applications, location-

based systems (LBS), etc. Presence systems need to merge all these sources’ information

14

2.3 Presence Information

to create an unified view of the user’s presence information. This merging process

could detect information conflicts between two or more sources. Thus, an important

requirement that any presence system should support is composition policy. The goal

of a composition policy is to eliminate obsolete, redundant or contradictory information,

and possibly generate new presence information that is inferred as a result of composing.

The diversity of presence information also leads to other requirement: extensibility.

A presence system should be capable to extend the users’ presence information with

new information in a non-intrusive way for users. Due to the personal character of

presence information, other two important requirements are preference policy and

privacy policy. Exigencies on a presence application can greatly vary from one user to

another. The user’s exigencies can even vary over time. For example, one user may only

be interested in his or her workmates’ presence during working hours, while other user

may only wish to receive presence updates about his partner at any time. Preference

policies are therefore necessary to personalize presence application based on the users’

needs. Privacy policy is an indispensable feature of presence applications for avoiding

disclosing private information to users that are not allowed to see such information.

Figure 2.2 shows a schematic representation of how presence information should be

processed by a presence system that satisfies the aforementioned requirements. The left-

hand box represents the retrieval and composition of the user’s presence information.

The user is connected to several devices that let the presence system know about the

user’s presence information. The presence system merges the information from all the

sources according to a composition policy. This process produces the raw presence

document. The right-hand box shows the tasks that are accomplished when other

user is informed about the user’s presence information. The raw presence document

is filtered according to the user’s privacy rules about the recipient. This generates the

public presence document for the recipient. Before this document is delivered to the

recipient, it may be filtered again according to the recipient’s preferences.

The academia is actively putting efforts to develop presence-based systems that

satisfies the above-mentioned requirements. There are many authors that have ad-

dressed these issues, and we mention the most relevant ones: The authors of [62] and

[63] describe presence aggregation and composition within the SIMPLE framework (see

Section 2.7). They also present an XML format for users to express preferences on pres-

ence composition. The survey [64] is a complete description of presence management

15

2. BACKGROUND

Figure 2.2: Processing of presence information

and its benefits, requirements and challenges. In [65], a hierarchical architecture for re-

trieving presence information from distributed sources is described. The authors of [55]

and [66] aggregate information from sensors for forming the user’s presence informa-

tion. Moreover, the work [66] also allows users to determine how presence information

is aggregated for each recipient. The authors of [67] infer the willingness level of the

callee to accept calls based on the time of the day, call duration and the location. The

work [68] aggregates information from multiple sources for inferring a more complete

and informative description of the activity that the user is doing at a given time. The

application described by [69] infers presence information from the data gathered by

built-in microphones on laptops computers, access points and user calendars. These

sources allows inferring the user’s state (working and/or busy), activity and location.

The authors [53] describe a system that uses several sources for inferring and compos-

ing the presence information of a company’s employees. The presence sources are the

IM applications in which the employees are logged and their cell phones’ and vehicles’

location. The authors of [70] propose a method for composing the presence information

of the user’s buddies based on activities or events in common. This work also allows

users to specify privacy policies.

Due to the diverse nature of presence information, extensible formats are needed

to encode this information. The standard presence frameworks (see Section 2.6) use

XML-based formats, which define a basic but extensible set of common presence. Some

research works have already proposed extensions of XML-based presence formats, as

instance, for functions that describe the exactness of information decreasing over time

[66], information about vehicles [53], information about web services [60], non-human

16

2.4 Fixed Mobile Convergence

entities [39] and abstract things [71]. Other authors defend the use of ontologies for

modeling presence information such as those of [72], [73], [74], [68], [57] and [64].

2.4 Fixed Mobile Convergence

Fixed Mobile Convergence (FMC) means the convergence of the existing wireless and

wired networks independently of the end device’s characteristics and network access.

This network convergence is described straightforwardly by the survey paper [75]. A key

factor in the success of network convergence is providing services with new and value-

added services that encourage them to communicate in an always-on, more dynamic

way. These services will improve users’ Quality of Experience (QoE) and bring greater

revenues to service and network providers. Personalization is a required feature in

any FMC service. Users should be capable to customize their services’ behavior and

appearance based on their needs, which may change over time. Presence information

is considered as a key enabler of FMC services’ personalization.

FMC is based on an all-IP approach that allows any IP-enabled device to access any

service regardless of the access technology. It is expected that this convergence will rely

on the introduction of IMS into Next-Generation Networks (NGN) for allowing users

and next-generation services from radio and fixed broadband access networks to com-

municate and interoperate. Section 2.4.1 briefly describes the IMS architecture, which

enables SIP-based multimedia communication services. NGNs define a single network

infrastructure for networking any person and device from anywhere and at any time

through intelligent interfaces and with enriched media. To achieve the promised global

convergence, device-independent mobile applications that are capable to adapt their

contents based on the devices’ hardware characteristics are necessary. Section 2.4.2

outlines this issue. The ultimate goal of NGNs is to bring value to human life through

new experiences and convenient services as well as to provide a playground for every-

body to create, share, compose and deliver services. International Telecommunication

Union (ITU) and European Telecommunications Standards Institute (ETSI) have been

actively working on the NGN standardization from 2003. Two fundamental recom-

mendations on NGN have been produced and approved: Y.2001 (General overview

of NGN) [76] and Y.2011 (General principles and general reference model for next-

generation networks) [77]. The authors of [78] discourse on the NGNs’ architecture,

17

2. BACKGROUND

key factors and challenges. As the authors state, to adopt this platform, network op-

erators should face the following issues: the need to provide services over broadband

accesses, the need to merge diverse network services, such as data, voice, telephony,

instant message and presence among others, and the desire of users to be able to access

services from anywhere.

Three players take part in the implantation and success of NGNs: technology, op-

erators and end users. Technology provides the means of implementing and deploying

ubiquitous services, which operators provide to end users. The industry has entered in

a new era in which the level of technology development exceeds the level of customer de-

sire [4]. There is an overwhelming emergence of mobile and wired technologies; UMTS,

WiMAX, Wireless MeshNetworks, The Semantic Web and The Internet of Things are

just some examples. This boom in technology makes the operators’ investment in in-

frastructure more complex and costly. Such investment is restraining operators from

moving towards NGN. Operators need to adopt a customer-need-driven model for de-

ploying the services that attract the largest number of people, and hence maximize

revenue the most. Moreover, operators need to be sure that such revenue will compen-

sate for the investment done and the impact of the provided services on the network.

The capacity impact of next-generation services on the operator network is far from

trivial due to multiple reasons. These services will be ubiquitous, device- and access-

network-independent. They will in large measure rely on context information, enriched

data, and social relationships. These features require complex functionality and in-

troduce traffic load, which operators should be capable to bear in world-wide used

services. Sections 2.9.4, 2.9.5 and 2.9.6 discuss scalability issues about the deployment

of presence systems. Finding out and implementing scalable and advanced services that

will attract the largest population of users is currently an active research topic. We

mention only some examples: the authors of [79] points out the need to integrate Hy-

perText Transfer Protocol (HTTP) and RTSP (Real Time Streaming Protocol) proxies

into IMS networks to reduce costs in web and streaming video applications. They pro-

pose a solution that integrates both protocols into a single and scalable element. The

authors of [80] and [81] propose a Push-to-Multimedia (PTM) application with fancy

communication features and an extensible framework that can be used to deploy IMS

services. They use an IMS simulator called Open IMS Playground [82]. The paper [83]

presents an IMS-based platform for managing community services such as multi-player

18

2.4 Fixed Mobile Convergence

video games, chat, video or streaming. In [84], a platform is described for managing

and coordinating multiple IMS services.

2.4.1 IP Multimedia Subsystem

UMTS Release 5/6 moves towards an all-IP network core through the IP Multimedia

Subsystem (IMS). This provides 3G network operators with three advantages: QoS,

charging and integration of different services. The IMS has been standardized by the

3GPP and 3GPP2 through a number of deliverables, specially the TS 23.228 [1]. The

IMS uses Internet protocols, which have been traditionally standardized by the IETF.

OMA also plays an important role in the IMS standardization by developing IMS ser-

vices and, in turn, issuing requirements. The IMS was born from the necessity to attract

customers to cellular IP-based services, that is, the mobile Internet. Although the cra-

dle of IMS was 3G operators, it is access-network independent and is being considered

as the common core to provide convergent IP-based services from any access technol-

ogy. IMS forms a substantial part of NGNs, which provides fixed broadband access to

IMS services. Presence is an indispensable service of IMS from its birth. The presence

service provides the necessary information for customizing services according to the

user’s needs and preferences. IMS uses SIP for establishing and managing multimedia

sessions and its extension, SIMPLE, for presence and instant messaging. The 3GPP

defined the presence service over the IMS in 3GPP TS 24.141 [85] but is not actively

progressing it. The definition of this service has moved to OMA, which describes the

IMS presence service mainly by the OMA Presence SIMPLE specification [86]. Figure

2.3 shows the main components in IMS, which are: CSCF (Call State Control Func-

tion), MGCF (Media Gateway Control Function) and MGW (Media Gateway). The

MGCF and the MGW are Public Switched Telephone Network (PSTN) gateways; they

enable the communication between the IMS and the CS (circuit-switched) network.

They perform the protocol translations that are necessary when an IMS user communi-

cates with a CS user, and vice versa. The Home Subscriber Server (HSS) is a database

that contains user-related information. The CSCF processes SIP signaling. There are

three types of CSCF: Proxy, Interrogating and Serving CSCF. The Proxy CSCF (P-

CSCF) is the first point of contact between the IMS terminal and the IMS network.

This is an outbound/inbound SIP proxy, and hence all the communications initiated by

or destined for the IMS terminal traverse the P-CSCF. The Serving CSCF (S-CSCF)

19

2. BACKGROUND

Figure 2.3: Main components of the IMS

is the brain in the IMS signaling plane. This is a SIP server and SIP registrar that

performs session control as well. All the SIP signaling sent by IM terminals traverses

the allocated S-CSCF. The main functions of the S-CSCF are to provide SIP routing

services and to enforce the policy of the network operator. The Interrogating CSCF

(I-CSCF) receives SIP requests and routes them to the appropriate destination, that

is, an S-CSCF or Application Server (AS). An AS is a sever that provides a particular

application service in the IMS. The address of a domain’s I-CSCF is registered in the

DNS (Domain Name System) records of the domain in order to permit external SIP

servers to route SIP messages towards this domain. Before an IMS terminal starts any

IMS-related operation, it needs to discover the IP address of the P-CSCF that will be

acting as an outbound/inbound proxy server. After this, the IMS terminal needs to

register within the IMS before initiating or receiving any other SIP signaling. This is

accomplished by regular SIP registration. When the registration is done successfully,

the IMS terminal can establish any session with other users or ASs. All the mes-

sages that the IMS terminal receives and sends go through the allocated P-CSCF and

S-CSCF. Thus, with services that generate large amounts of messages, these servers

could become bottlenecks. An obvious example is the presence service, which has to

timely disseminate publication, subscription and notification requests among different

domains.

2.4.2 Device-Independent Communications

A necessary feature of ubiquitous communication services is device independence. Cur-

rently, end users are who adapt to service requirements by choosing the devices that

20

2.4 Fixed Mobile Convergence

best fit these requirements. Services, therefore, need to move towards service-to-service

adaptations, which minimize user interaction as much as possible. Ubiquitous services

need to know the software and hardware characteristics of end devices, and accordingly

adapt their behavior and contents. Mobile users access the Internet and the World

Wide Web (WWW) via different wireless and cellular networks, each using different

radio interfaces and protocols. Mobile users also use a wide spectrum of mobile de-

vices, ranging from limited mobile phones to more advanced devices such as PDAs,

smart phones, and laptops. These devices have significant differences in memory, com-

putation power, networking and battery lifetime. Consequently, a contextualization

or profiling of user devices is needed to provide pervasive and device-independent web

access. Web services and user applications should automatically adjust their operation

and presentation to changes in the user environment, network state, and end devices’

capabilities.

Device characterization has already been considered by various standardization or-

ganizations, especially in the world of mobile communications. The most widespread

proposals are the CC/PP specification [20] presented by the W3C and the UAProf

specification [21] presented by the OMA. Although these frameworks provide good

tools for attaining a device-independent web environment, there are limitations in their

specifications and current implementations. The CC/PP specification exceeds in flex-

ibility since developers can define their own vocabularies. The lack of a consensus on

vocabularies hinders content adaptation and presentation. Regarding UAProf, the vast

majority of manufacturers only offer partial implementations. The main drawback to

all these frameworks is the fact that they are focused on mobile phones and do not

provide suitable solutions for other types of devices.

Content adaptation is of vital importance for services that interact with heteroge-

nous devices with different hardware and software capabilities. Such heterogeneity

affects the process of creating, delivering and presenting Internet contents. The WWW

provides users with an infinite variety of contents that includes almost every conceivable

kind of media in different formats and languages. Most of these contents are designed

to work out on personal computers, and hence it is necessary to adapt these contents

to other types of end devices. Moreover, a lot of networking and enterprise services

(i.e. instant messaging and presence services, VoD (Video on Demand), VoIP (Voice

21

2. BACKGROUND

over IP) , etc.) use web applications as front-ends for users to configure account set-

tings and even access their systems. This fact increases the interaction modalities and

communication possibilities that affect the delivery of web content.

2.5 Publish/Subscribe Communication Paradigm

Publish/subscribe-based systems interconnect information producers with information

consumers by means of events. Producers encapsulate information into events and con-

sumers subscribe to those events in which they are interested. When a new event is

generated and published in a publish/subscribe-based system, this system is responsi-

ble of checking out what subscriptions match the event, and delivering the event to the

consumers associated with these subscriptions. There are two models for disseminating

information: pull and push. In a pull model, event consumers initiate the transfer

of events by requesting them from the system while, in a push model, event produc-

ers are who initiate the transfer. Both models can adopt a periodic or asynchronous

communication. With a periodic communication, producers and consumers exchange

information periodically. On the contrary, with an asynchronous communication, the

timing of event transfers is not predetermined. A subscription is thought of as a filter

that specify the interest of a consumer in particular kinds of event. Publish/subscribe

systems can therefore be classified by their filtering model. The most popular systems

use expressive content-based mechanisms. With this kind of mechanism, consumers

can specify the notifications that they wish to receive based on the content of these

notifications. Content-based filters with boolean expressions about the content of no-

tifications are basically logical operators in the form of <attribute, operator, value>.

The publish/subscribe communication paradigm differs from traditional point-to-point

communication models on multiple aspects: anonymity (i.e., event consumers do not

necessarily know the identity of event produces and vice versa), asynchronicity (i.e.,

event producers can send events without any event request), multicasting (i.e., a single

event can be sent to multiple consumers through one message), and dynamism (i.e.,

the network infrastructure supports dynamic scenarios in which consumers and pro-

ducers connect to and disconnect from the network frequently). The publish/subscribe

paradigm allows decoupling, on one hand, event consumers from producers and, on the

22

2.5 Publish/Subscribe Communication Paradigm

other hand, the communication protocol from the underlying technology. Such a ca-

pacity of abstraction makes this paradigm applicable to diverse scenarios with different

goals.

The publish/subscribe paradigm has been widely studied for constituting the base

on which to build event-based distributed systems. Linda [87] proposed structuring

distributed programs by using several Central Processing Units (CPUs) with a common

memory indexed by attributes, which is known as tuple space. Later, systems such as

ISIS [88] and Information Bus [89] provided publish/subscribe-based proposals in which

event producers publish information and consumers subscribe to subsets of information.

Some publish/subscribe-based systems rely on network servers, which are known as

brokers, such as Sienna [90], Gryphon [91] and Kyra [92], while others have focused

on Distributed Hash Tables (DHTs), such as Scribe [93], Bayeux [94] and Chord [95].

Publish/subscribe systems have relied on fixed networks traditionally. Thus, most

systems are not concerned about the consumption of resources in mobile networks

with scarce resources and changing nodes. The authors of [96] and [97] discuss the

limitations of centralized solutions for event-based systems on mobile networks. Both

works propose distributed brokers that implement content-based subscriptions.

Sensor networks are based on events in nature since sensors periodically obtain new

measurements from their environment. Thus, the integration of the publish/subscribe

paradigm into such restricted networks is an exciting although challenging research

topic. The authors of [98] propose a technique in which the nodes organize their own

P2P relations based on the similarity of their subscriptions. This proposal therefore pro-

vides a fully-distributed approach. In [99], a middleware with some centralized elements

is proposed, in which sensors publish the kinds of information that they can generate.

Moreover, this middleware uses some information aggregation methods for reducing the

traffic at the centralized servers. Similar works that propose the use of centralized ele-

ments in sensor networks are those described in [100], SeNMi [101] and MQTT-S [102].

Other publish/subscribe middlewares for sensor networks propose flooding for prop-

agating subscriptions (e.g., DV/DRP [103]) and publications (e.g., REBECA [104]).

Constrained Application Protocol (CoAP) [105] is being defined by the CoRE IETF

Working Group (WG) [106] for providing a subset of Representational State Transfer

(REST) functionality on sensor networks. CoAP provides a subscribe/publish model,

which presents some limitations (e.g., on content-based filtering, aggregation of events,

23

2. BACKGROUND

maintenance of subscription state) due to the fact that this protocol is based on the

HTTP communication model. Some works such as [107], [109], and [108] adopt the

SIP publish/subscribe model [110] (see Section 2.7) and use gateways for translating

SIP to other publish/subscribe models optimized for sensor networks. In [107], a pub-

lish/subscribe model is used to interconnect remote ZigBee networks. In [108] and

[109], systems for interconnecting different sensor networks with other systems based

on generic events are presented.

The presence service matches the publish/subscribe paradigm perfectly: the enti-

ties that have presence information associated generate this information asynchronously

(i.e., presence changes) and other entities subscribe to the entities in which they are in-

terested. The vast majority of presence protocols are therefore based on this paradigm.

Section 2.6 describes the most popular presence protocols. For example, SIMPLE

defined centralized servers (i.e., brokers) for handling presence events through the dis-

tributed SIP publish/subscribe model. This protocol also includes content-based fil-

ters for classifying event subscriptions. Some works have addressed the integration of

presence services into sensor networks. This requires optimizing the existing presence

protocols or implementing new ones since the existing presence protocols have been

designed for Internet. TinySIP [109] optimizes SIP/SIMPLE for accessing to sensor

information in a resource-efficient manner. The authors of [111], [39] and [112] offer

proposals for interconnecting the presence service with sensor networks.

2.6 Instant Messaging and Presence Protocols

Due to the great diversification of IM systems, as described in Section 2.1, a number

of IMP protocols have emerged. Among them, the most relevant ones are XMPP,

SIMPLE and Instant Messaging and Presence Service (IMPS). IMPS was thought of

as a competitive IMP framework for the mobile world but lost much ground to SIM-

PLE. XMPP and SIMPLE are the two competing protocols for becoming the de facto

standard IMP protocol worldwide. Both protocols are supported by the IETF and

by different telecom magnates. This situation has caused an interoperability barrier

between IMP providers that is restraining the convergence of presence-based commu-

nications. Sections 2.6.1, 2.6.2 and 2.6.3 briefly describe the main features of XMPP,

24

2.6 Instant Messaging and Presence Protocols

SIMPLE and IMPS, respectively. Lastly, Section 2.6.4 analyzes some important factors

that may be determining to the adoption of these protocols.

2.6.1 XMPP

Jabber was released as an open-source protocol in 1999 and later, in 2004, was adopted

by the IETF under the name of eXtensible Messaging and Presence Protocol (XMPP).

XMPP core protocol was published as Request For Comments (RFCs) 3920 and 3921.

Nevertheless, these documents were revised recently, resulting in the most up-to-date

XMPP specification described in the RFCs 6120 [113], 6121 [114] and 6122 [115]. In ad-

dition to these specifications, to date, other 9 RFCs has been published and 2 Internet-

Drafts are under consideration by the IETF XMPP WG [116]. Besides the IETF, the

XMPP standards Foundation [117] has defined many XMPP extensions. This foun-

dation is a community of developers that provides both open-source and commercial

XMPP software.

2.6.1.1 Architecture and Operation

XMPP core is mainly defined by the RFCs 6120 [113] and 6121 [114]. The former defines

its core and the latter extends it to support instant messaging and presence. XMPP

supports IMP features such as group handling and off-line messages for users. However,

the RFC 6121 [114] limits presence to availability (i.e., basic states such as online,

busy and so on) and does not consider other kind of information. Although XMPP

is independent of the transport layer, its specification describes a binding to TCP. An

XMPP server is in charge of managing connections through XML streams and routing

XML stanzas. An XML stream works as a container for exchanging XML elements

between two entities. An XML stanza is a semantic entity that is sent through an

XML stream. XMPP defines the following stanzas: message (for sending information),

presence (for expressing availability) and iq (for queries). XML streams can convey

errors (e.g., bad format or conflict), which are irrecoverable and involve closing the

XML stream and the underlying TCP connection. An XMPP client needs to initialize

an XML stream before sending information to any entity. This initialization requires

negotiating with an XMPP server through the Simple Authentication and Security

Layer (SASL) protocol. Once an XML stream is established, the XMPP client can

send an undefined number of stanzas to any XMPP entity through this stream.

25

2. BACKGROUND

2.6.1.2 Instant Messaging and Presence

Message and presence stanzas provide IMP functionality. The former has a Type at-

tribute that identifies the type of the message. The most relevant message types are:

“normal”, which is sent to an XMPP user’s inbox, and “chat”, which is an instantaneous

message. Other message types are “groupchat” for multi-recipient IMs and “headline”

for describing the content of web services, broadcast, etc. A presence stanza is a basic

mechanism for subscribing and notifying presence information. XMPP only defines

five availability states as presence: “chat” (willing to talk), “away” (not available),

“xa” (extended not available) and “dnd” (do not disturb). These states are merely

informative and do not affect the communication protocol.

2.6.2 SIMPLE

SIP is an IETF standard for initiating, modifying and terminating multimedia com-

munications between two or more participants. This is a text-based protocol with a

transaction model that similar to that in HTTP. SIP for Instant Messaging and Pres-

ence Leveraging Extensions (SIMPLE) was born in 2004 and, to date, is composed by

a total of 30 RFCs that can be found on its IETF WG [3]. Although the high number

of RFCs may suggest that SIMPLE is a highly complex protocol, most of these speci-

fications are optional and deal with advanced IMP features. We estimate that a basic

SIMPLE-compliant system should satisfy around 7 of these RFCs. Section 2.7 explain

the whole SIMPLE framework in more detail.

2.6.2.1 Architecture and Operation

SIMPLE inherits the SIP’s architecture and operation as described in Section 2.7.1.

We summarize the SIP operation as follows. An end system that implements SIP

is formed by a User Agent Client (UAC), which generates SIP requests, and by a

User Agent Server (UAS), which responds to SIP requests. There exist three kinds of

SIP servers: Registrar, Proxy and Redirect. The first permits a user to bind a SIP

Uniform Resource Identifier (URI) to a contact address. Proxy and Redirect servers

route or redirect SIP requests, respectively. SIP defines defines the following types

of request message: INVITE (invites a user to initiate a session), ACK (confirms a

response), CANCEL (cancels an uncompleted request), OPTIONS (discovers a SIP

26

2.6 Instant Messaging and Presence Protocols

user’s capabilites), BYE (finishes an established session) and REGISTER (registers

contact information). The event notification framework specified in the RFC 3265

[110] extends the SIP core with two new SIP requests: SUBSCRIBE and NOTIFY. An

entity that is interested in a resource can subscribe to the resource’s state information

through a SUBSCRIBE message. Thus, this entity is called subscriber. When the

entity that handles the resource’s state information receives a SUBSCRIBE message,

it sends the requester a NOTIFY message that contains the state information. Thus,

this entity is called notifier. From then on, the notifier will send a NOTIFY message to

the subscriber whenever the resource’s state information changes. The mechanism for

publishing state information is defined in the RFC 3903 [118]. This extension defines a

PUBLISH request for resources to let other entities know about their state information.

SUBSCRIBE, NOTIFY and PUBLISH messages contain the type of state information

in an Event header. Extensions that define new values for the Event header are called

event packages.

2.6.2.2 Instant Messaging and Presence

Instant messaging and presence is easily integrated into the SIP architecture by means

of extensions. RFC 3428 [119] extends SIP with the MESSAGE request type, which

contains an instant message within a Multipurpose Internet Mail Extensions (MIME)

body. SIMPLE defines a new event type called presence in the RFC 3856 [120], which

also introduces additional concepts. A Presence Agent (PA) receives the user’s presence

information. When this information comes from multiple sources, it performs merging

functions to build a complete and consistent picture of the user’s presence information.

Other important function of PAs is handling of subscriptions. PAs receive SUBSCRIBE

messages, maintain the subscriptions’ state and, when a subscription’s state informa-

tion changes, send NOTIFY messages to the proper subscribers. A Presence Server

(PS) is a physical entity that can act as a PA or Proxy Server for SUBSCRIBE re-

quests. When a PS receives a SUBSCRIBE request to a user that is under its control,

it acts as a PA. Otherwise, it acts as a proxy by redirecting the request to other PS. In

addition, SIMPLE extends its event framework for supporting resource lists in the RFC

4662 [121]. A resource list is a set of zero or more resources whose state information

is seen as a single state and is therefore subscribed by means of a single request. This

supports the concept of contact list in IMP systems. Regarding presence information

27

2. BACKGROUND

format, SIMPLE defines the Presence Information Data Format (PIDF) in the RFC

3863 [22]. PIDF is a basic common profile for presence that is based on XML, and

thereby protocol-independent and extensible. There already exist several PIDF exten-

sions for personal information [23], information about services and devices [24], time

intervals [122] and contact information [123].

2.6.3 IMPS

IMPS [124] is a set of universal specifications for IMP mobile services. IMPS was

conceived into the Wireless Village iniciative, which was formed by Ericsson, Nokia and

Motorola in 2001. After Wireless Village was merged with OMA, IMPS was published

as OMA IMPS 1.0 in 2002. IMPS is constituted by 16 documents that describe its

architecture, requirements, use cases, protocols, data formats and presence information.

2.6.3.1 Architecture and Operation

IMPS has a client-server architecture in which IMPS servers communicate with each

other by the Server-Server Protocol (SSP) or other non-specified protocol in case of a

mobile network. As well, an IMP client can communicate with other IMPS clients by

the Client-Server Protocol (CSP) in a direct connection or through IMPS servers that

act as proxies. IMPS is composed of two different layers: application and transport,

which are independent from each other. There are multiple bindings between these

higher-lever application layers and the lower-level transport layers. CSP and SSP are

application protocols. CSP connects IMPS clients to servers and is capable to use

different transport means based on the clients’ capabilities. Transport bindings are split

into two channels: data and Communications Initiation Request (CIR). The former is

used to exchange CSP primitives and the latter serves to activate the former. The need

for a CIR channel depends on the particular application and the transport protocol

used. Protocol bindings defined for the data channel are Wireless Session Protocol

(WSP), HTTP, HTTP Secure (HTTPS) and SMS; they all except SMS require a CIR

channel. Regarding the network protocol, CSP can rely on SMS, 2.5/3G wireless IP

and Mobile IP and SSP usually is on wired IP networks. IMPS also defines multiple

syntax of application-level messages such as XML and WAP Binary XML (WBXML).

28

2.6 Instant Messaging and Presence Protocols

IMPS server are formed of a set of Application Service Elements (ASEs) that are

accessible by Service Access Points (SAPs). There are four ASEs: the Presence Ser-

vice Element, Instant Messaging Service Element, Group Service Element and Content

Service Element. The Content Service Element permits content sharing between IMPS

users, which basically means an exchange of the content’s Uniform Resource Locator

(URL). How contents are updated and downloaded is beyond the scope of IMPS. The

remaining ASEs are related to IMP and therefore defined in Section 2.6.3.2. A SAP

is the IMPS server’s interface to the outside. This provides IMPS clients, other IMPS

servers and external entities with a communication point to an IMS server. A SAP

offers the following main functions: authentication and authorization, service discovery

and negotiation, user profile management and service retransmission. Service discovery

allows an application to identify the services that may be of interest. Service negotia-

tion consists in finding out the service’s capabilities. Service retransmission routes the

service requests and responses through IMPS servers. IMPS defines a transaction-based

communication model in which requests and responses are grouped into transactions.

General transactions constitute the minimum level of interoperability. Specific trans-

actions are defined by each ASE. Transactions are exchanged in the frame of a session.

IMPS sessions are independent from the transport layer and are established by connect-

ing to a SAP. An IMPS session is always associated with context information such as

client capabilities, presence subscriptions and negotiated services. There are two kinds

of IMPS client: the embedded client and the Command Line Interface (CLI) client.

The former can be embedded in different mobile or fixed devices, which communicate

through the CSP protocol. A CLI client is a lighter version of an embedded client and

uses the Command Line Protocol (CLP) for communicating with IMPS servers.

2.6.3.2 Instant Messaging and Presence

The Instant Messaging Service Element provides operations for sending and receiving

instant messages. This supports group messages and two delivery methods: push

and notification/pull. In the push model, the IM service delivers the message to the

recipient and in the notification/pull model, the IM service notifies the recipient, whom

afterwards pulls it. This second method is appropriate for multimedia content, which is

much heavier than a textual content. The Presence Service Element retrieves, handles

and updates location and presence information. Presence information is structured in

29

2. BACKGROUND

presence attributes, which are composed of name, qualifier, and value. Some presence

attributes are time zone, geographical information, communication capabilities and

availability. IMPS classifies presence attributes into client-related (information about

physical devices and software) and user-related. The Group Service Element offers the

operations that are necessary to handle contact groups. A group can be public (i.e.,

created by a service provider) or private (i.e., created by an IMPS user).

2.6.4 Which Makes a Difference?

Determining which IMP framework is the best to win the war for standardization

would be a hard task. There are many factors to take into account and the choice may

depend less on technical merits than Industry interests. Instead, we compare XMPP,

SIMPLE and IMPS with regard to five factors, namely interoperability, complexity,

security, acceptance, and wireless communications, that are important to measure the

suitability of each protocol:

Interoperability: The IETF Instant Messaging and Presence Protocol (IMPP) WG

concluded a set of standard specifications for providing interoperability between

IMP systems (see Section 2.7.2). SIMPLE and XMPP satisfies these specifi-

cations, which makes it easy to implement gateways between them and other

IMPP-compliant systems. A mailing list called SIXPAC (SIP Interworking with

XMPP in Presence Aware Clients) [125] was created in the IETF for making it

easier for developers to create applications that work with both SIMPLE and

XMPP. SIMPLE has the advantage of being a SIP extension since SIP is the

standard protocol for VoIP. This fact promotes interoperability because there is

no need for a standalone protocol to work in parallel. SIMPLE is actually used

by the IMS, which is described in Section 2.4.1. IMPS complies IMPP except

for its presence information format. Regarding IMPS interoperability, its SSP

protocol was designed as the interface to other IMP systems through proprietary

gateways.

Complexity: Regarding to the specification size, SIMPLE is the biggest protocol.

However, a great part of the SIMPLE specification is dedicated to advanced fea-

tures and its core is around 7 RFCs. SIMPLE has been designed to be extended

30

2.6 Instant Messaging and Presence Protocols

from its birth and has evolved in a modular way. IMPS is composed of 16 specifi-

cations, which are are quite complex and interconnected. XMPP seems to be the

least complex specification since its total number of RFCs is 9. Nevertheless, its

specification is not only composed of IETF RFCs; the XMPP Standards Founda-

tion is defining numerous extensions (to date, 11 final extensions and much more

active drafts).

Security: SIMPLE and XMPP provides similar guarantees of security. Data integrity

and confidentiality is achieved by Transport Layer Security (TLS). Regarding

client-server authentication, XMPP uses SASL and SIMPLE any HTTP authen-

tication scheme. Regarding end-to-end authentication and confidentiality, XMPP

and SIMPLE use Pretty-Good-Privacy (PGP) and Secure MIME (S/MIME), re-

spectively. IMPS support user authentication through the 2-way and 4-way con-

trol mechanisms. The former consists in sending the user’s identifier and password

in plain text while the latter is a digest authentication based on a challenge sent by

the server. IMPS does not support a consistent data integrity and confidentiality.

HTTP-S can be used between client and servers but end-to-end confidentiality

is not guaranteed. However, as any MIME type is allowed for content of instant

messages, end-to-end authentication can be accomplished using S/MIME.

Industry acceptance: Currently there is a race on for IMP standardization between

SIMPLE and XMPP. The latter is more accepted by the Internet community

because of its open-source character as well as the fact it was launched before

SIMPLE. Most of the current IMP clients are based on XMPP and the Inter-

net magnate Google has selected XMPP for its Google Talk IM. Other compa-

nies that have been attracted by XMPP are Hewlett-Packard, Intel Capital and

France Telecom. In 2010, Facebook announced the integration of an XMPP inter-

face into the Facebook Chat for interoperability with other XMPP-based instant

messengers. On the other side, SIMPLE has been selected for IMS (see Sec-

tion 2.4.1), which means network operators are going to use this protocol. Rich

Communication Suite gives guidelines for deploying presence-based rich communi-

cation services on IMS, hence through SIMPLE. Heavyweights Microsoft, Yahoo

and IBM lined up behind SIP and SIMPLE. Moreover, the java community has

provided support for SIP and SIMPLE through the Java Specification Requests

31

2. BACKGROUND

(JSRs) 116 and 289 (SIP Servlet Application Programming Interfaces (APIs)),

125 and 32 (JAIN SIP APIs), 164 (SIMPLE presence API), 165 (SIMPLE Instant

Messaging API) and 180 (SIP API for Java 2 Micro Edition (J2ME)). IMPS is

widely deployed but not so marketed. Many mobile terminals from manufacturers

such as Ericsson, Nokia, Motorola and Siemens support IMPS with built-in IM

clients. However, there are only a few standalone IMPS-compliant clients such as

Mobjab, Agile Mobile Messenger and Yamigo. To date, there does not exist any

open-source IMPS client or server.

Mobile communications: XMPP is based on XML streams and therefore is much

heavier than SIMPLE. This is the main drawback of XMPP because XML streams

consume much bandwidth and processing resources. SIMPLE has more concern

on bandwidth consumption through several optimizations that have come out

from its WG. In addition, the JAVA community supports SIP for mobile devices

through the JSR 180 (SIP API for J2ME). Although IMPS was conceived for

wireless devices from the beginning, the fact that it has evolved to satisfy the

requirements of multiple telecom companies has made it a much heavier protocol

than expected.

2.7 SIMPLE Framework

SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE) is an IETF

standard for instant messaging and presence. SIMPLE is an extension of SIP and

therefore relies on the SIP architecture, which is described in Section 2.7.1. SIMPLE

was conceived to fully comply the IMPP requirements from its birth, and hence it is

based on the IMPP presence model. Section 2.7.2 describes this model and therefore

the main semantics of SIMPLE. As outlined in Section 2.6.2.2, instant messages are

included into SIP through the MESSAGE method, which is defined by the RFC 3428

[119]. SIMPLE builds upon the SIP publish/subscribe communication model, which

introduces the SUBSCRIBE, NOTIFY and PUBLISH methods as explained in Sec-

tion 2.7.1. SIMPLE extends this model with a new event type called presence and

introduces new concepts by the RFC 3856 [120]: a Presence Agent (PA) receives the

user’s presence information. When this information comes from multiple sources, it

performs merging functions to build a complete and consistent picture of the user’s

32

2.7 SIMPLE Framework

presence. Other important function of PAs is handling of subscriptions. PAs receive

SUBSCRIBE messages, maintain the subscriptions’ state and send NOTIFY messages

to the proper subscribers when the subscriptions’ state information changes. A Pres-

ence Server (PS) is a physical entity that can act as a PA or a Proxy Server (see Section

2.7.1) for SUBSCRIBE requests. When a PS receives a SUBSCRIBE request to a user

that is under its control, it acts as a PA. Otherwise, it acts as a proxy by redirecting the

request to other PS. In addition, SIMPLE extends its event framework with resource

lists by the RFC 4662 [121]. A resource list is a set of zero or more resources whose

state information is seen as a single state and are, therefore, subscribed by a single

request. Resource List Meta Information (RLMI) describes the subscription state of

the resources in a resource list. A resource’s subscription state is encoded by PIDF

as described in Section 2.7.3. Appendix B shows an example of RLMI document. A

Resource List Server (RLS) receives SUBSCRIBE messages to a resource list and in-

form the resource list’s watchers of changes in the list’s resources through NOTIFY

messages. Figure 2.4 outlines the operation of SIMPLE, which can be summarized as

follows. Presentities, or more specifically their Presence User Agents (PUAs) (see Sec-

tion 2.7.2), publish presence changes to their PSs by sending PUBLISH requests. When

a presence change occurs, the PS notifies the presentity’s watchers through NOTIFY

messages. On the other hand, watchers, or more specifically their Watcher User Agents

(WUAs) (see Section 2.7.2), subscribe to their RLSs. Although the use of an RLS is

common, watchers could subscribe to their presentities directly. When a subscription

between an RLS and a watcher is established, the RLS subscribes to each resource in

the list on behalf of the watcher. Any SUBSCRIBE message to a presentity is routed

to the presentity’s domain (that is specified in its SIP URI). Then, the presentity’s

domain redirects the request to the presentity’s PS. If the subscription is successful,

the PS will notify the RLS whenever a presence change occurs. In turn, the RLS will

notify the watcher of an RLMI document that contains the presence change.

The IETF is continuously working on SIMPLE and producing new extensions and

related documents. For this reason, it may be hard to figure out how SIMPLE works

and how the SIMPLE specifications interconnect. An Internet-Draft [126] addresses this

problem by enumerating and classifying all of the SIMPLE specifications. Regarding

presence, SIMPLE specifications are classified into six groups: core protocol, presence

documents, privacy and policy, provisioning, federation, and optimizations. Table 2.2

33

2. BACKGROUND

PUBLISH	

OK	

SUBSCRIBE	

OK	

NOTIFY	
 (RLMI	
 doc)	

OK	

SUBSCRIBE	

OK	

NOTIFY	
 (RLMI	
 doc)	

OK	

SUBSCRIBE	

OK	

NOTIFY	
 (RLMI	
 doc)	

OK	

Presentity

PS

RLS 1

RLS N

RLS 2

Watcher 1

Watcher N

Watcher 2

Figure 2.4: SIMPLE presence subscription and publication

shows these specifications classified by groups. SIMPLE specifications about the core

protocol and presence documents form the basis for the SIMPLE presence framework,

and hence are specially relevant in this thesis. Above, we introduced the core protocol

specifications and Section 2.7.3 gives details about the specifications related to presence

documents. Optimization specifications describe SIMPLE extensions for reducing the

load of presence information, and are described by Section 2.7.4. Presence federation

means the interconnection of different systems for exchanging presence and instant

messages. Provisioning refers to how data is managed by users and provisioned into

the presence system. Privacy and policy provides users with the capability to accept

and reject presence subscriptions, and decide what information is notified to authorized

watchers. Regarding instant messaging, the Internet-Draft [126] defines three groups:

page mode, session mode, and IM features. In page mode, instant messages are sent by

sending a SIP request. In session mode, instant messages are sent within a multimedia

session (set up by an INVITE request). The choice between page and session mode

is mainly a matter of efficiency: page mode is more efficient for short conversations

and session mode for longer conversations. Furthermore, session mode allows all of

the SIP features, such as forking and third party call control, in instant messaging.

Additionally, the SIMPLE WG is considering two Internet-Drafts for IM: one defines

34

2.7 SIMPLE Framework

an alternative to relay servers [127] and the other specifies a method for mapping MSRP

messages to sessions when application layer gateways change SDP contents [128]. Table

2.2 summarizes all of the SIMPLE RFCs to date for instant messaging in addition to

presence.

2.7.1 Session Initiation Protocol

Session Initiation Protocol (SIP) is an application protocol for establishing, modify-

ing and terminating multimedia sessions. RFC 3261 [2] defines its architecture and

operation. SIP supports name translation and service redirection seamlessly, which

permits user mobility. Each user is identified with a SIP URI in the form of “user-

name@domain”, which is a public identifier independent of network location. A user’s

SIP URI is associated with his or her contact address, which depends on his or her

current location. Moreover, SIP secure (SIPS) URIs can be used to ensure the use of

TLS for securing SIP messages. SIP relies on an infrastructure of network servers that

permits users to discover other users and register their localization, among other func-

tions. Nevertheless, SIP users are also able to communicate with each other directly,

without any intermediate server. An end system, which is called User Agent (UA), rep-

resents a software entity that implements SIP. UAs are formed by a User Agent Client

(UAC), which generates SIP requests, and a User Agent Server (UAS), which responds

to SIP requests. There exist three kinds of SIP servers: Registrar, Proxy and Redirect.

SIP Users register their contact addresses in Registrar servers in order to be reachable

by other users. A Proxy server is responsible for routing SIP requests to the recipients

on behalf of the requesters. Lastly, a Redirect server handles a SIP request, as a Proxy

does, but informs the requester of the recipient’s contact address instead of routing

the request. Once the requester receives the contact address, it is able to contact the

recipient directly. All the SIP servers rely on a database that is indispensable in the

SIP architecture: the localization service. This database maintains all the user contact

addresses. Only Registrar servers can update the localization service but Redirect and

Proxy servers can query it.

SIP responses contain a state code and a text that describes the response such

as “100 Trying”, “200 OK” and “400 Bad Request”. SIP defines the following types

of request message: INVITE (invites a user to initiate a session), ACK (confirms a

response), CANCEL (cancels an uncompleted request), OPTIONS (discovers a SIP

35

2. BACKGROUND

Identifier Type Short description

RFC 3265 Core Protocol SIP event notification framework

RFC 3856 Core Protocol Presence subscriptions to presentities, PS

RFC 4662 Core Protocol Presence subscriptions to resource lists, RLS

RFC 5367 Core Protocol Inclusion of resource lists into SUBSCRIBEs

RFC 3903 Core Protocol Presence publication

RFC 3863 Presence Document Presence Information Data Format (PIDF)

RFC 4479 Presence Document Semantics of presence documents

RFC 4480 Presence Document PIDF extension based on RFC 4479

RFC 4481 Presence Document Addition of time conditions to PIDF

RFC 4482 Presence Document Addition of contact information to PIDF

RFC 5196 Presence Document Device and service elements in PIDF

RFC 4745 Privacy&Policy Framework for expressing privacy preferences

RFC 5025 Privacy&Policy Document format for describing presence privacy policies

RFC 3857 Privacy&Policy Subscriptions to incoming watchers

RFC 3858 Privacy&Policy Document format for describing incoming watchers

RFC 4825 Provisioning Configuration Access Protocol (XCAP)

RFC 5875 Provisioning Mechanism for learning about changes

in XCAP documents

RFC 5874 Provisioning Document format for describing changes

in XCAP documents

RFC 4826 Provisioning Document format for resource lists, including sublists

RFC 4827 Provisioning XCAP usage to store “offline” documents

RFC 5344 Federation IMP use cases for federating between providers

RFC 4660 Optimization Mechanism for filtering presence notifications

RFC 4661 Optimization Document format for expressing notification filters

RFC 5262 Optimization Document format for partial-state presence documents

RFC 5263 Optimization Description of partial-state presence notifications

RFC 5264 Optimization Description of partial-state presence publications

RFC 5261 Optimization Changes in XML documents

RFC 5112 Optimization Dictionary for usage with Signaling Compression

RFC 3428 Page mode IM MESSAGE method for instant messages

RFC 5365 Page mode IM Multiple-recipient instant messages

RFC 4975 Session mode IM Message Session Relay Protocol (MSRP)

RFC 3862 Session mode IM Message format for providing meta-data information

in MSRP

RFC 4976 Session mode IM Extensions to MSRP for relay servers

RFC 3994 IM features Status of message composition (such as “is-typing”)

RFC 5438 IM features Delivery notifications of IM receipt

Table 2.2: SIMPLE RFCs

36

2.7 SIMPLE Framework

user’s capabilites), BYE (finishes an established session) and REGISTER (registers

contact information). SIP defines a transaction-based communication model between

UACs and UASs. A SIP transaction contains the UAC’s request, all the messages that

are exchanged before the UAS sends a final response, and the final response. If the final

response is positive, a SIP dialog is established between the UAC and the UAS. Both

parts of the communication have to maintain the dialog’s state until it is terminated.

SIP core is extended with an event notification framework by the RFC 3265 [110].

This framework introduces two new SIP requests: SUBSCRIBE and NOTIFY. An

entity that is interested in a resource can subscribe to the resource’s state information

through a SUBSCRIBE message. Thus, this entity is called subscriber. When the

entity that handles the resource’s state information receives a SUBSCRIBE request, it

sends a NOTIFY message that contains the state information to the requester. Thus,

this entity is called notifier. From then, the notifier will send a NOTIFY message to

the subscriber whenever the resource’s state information changes. The mechanism for

publishing state information is defined by the RFC 3903 [118]. This extension defines

a PUBLISH request that resources can use to let other entities know about their state

information. SUBSCRIBE, NOTIFY and PUBLISH messages specify the type of state

information in an Event header. Extensions that define new values of Event header are

called event packages.

2.7.2 Instant Messaging and Presence Protocol

Due to the great success of instant messaging and the diversity of proprietary proto-

cols, the IETF published a set of requirements that IMP protocols should satisfy for

the sake of interoperability in 2000. These requirements were named as Instant Mes-

saging and Presence Protocol (IMPP) and published by the RFCs 2778 [129] and 2779

[130]. IMPP was defined within the IETF IMPP WG [131], which is already concluded.

IMPP is an abstract model for designing IMP systems that defines the involved entities

and the services that these systems should provide. This protocol is the first stan-

dardized definition of an IMP system, which provides terminology and concepts that

can be applied to any specific IMP protocol. IMP systems have two kinds of clients:

presentities and watchers. A presentity is an entity that has associated presence in-

formation and somehow makes an IMP system aware of this information. A watcher

is an entity that receives presence information from an IMP system. There are three

37

2. BACKGROUND

Figure 2.5: IMPP presence model

kinds of watcher: fetchers, subscribers, and pollers. Subscribers are the watchers that

receive asynchronous notifications of presence information when changes of interest oc-

cur. Fetchers are the watchers that retrieve presence information from the IMP system

when necessary. Pollers are the watchers that retrieve presence information regularly

to check out whether any interesting change occurred. Presence information consists

in an arbitrary number of tuples. Each tuple contains a state sign (such as offline

and online) and an optional communication address. How the IMP entities interact is

outlined as follows. A Principal is the human being or program that connects to an

IMP service. A Presence User Agent (PUA) is the entity that allows a principal to

manipulate zero or more presentities. A principal could be associated with zero, one

or more presentities, each represents a different model of the principal’s presence infor-

mation. Likewise, a Watcher User Agent (WUA) is the entity that allows a principal

to manipulate zero or more watchers. Figure 2.5 shows this model.

RFC 2779 states three basic principles for the IMPP standard: security and privacy,

scalability, and wireless operation. The first principle states that the standard IMP

protocol must provide a means for exchanging short messages and publishing presence

in a secure and privacy-protected way. The second principle states that the standard

IMP protocol must work even for huge amounts of users distributed on the Internet,

while allowing comfortable conversational exchange of short messages. Lastly, the third

principle states that the standard IMP protocol must be usable via mobile IP wireless

access devices. Furthermore, IMPP includes other standards for interoperable IMP

protocols such as the Common Profile for Presence (CPP) [132] and PIDF [22]. The

former defines the high-level semantics and formats of information that are common to

38

2.7 SIMPLE Framework

IMP systems. The latter is a common presence data format for CPP-compliant IMP

protocols, which is described in Section 2.7.3.

2.7.3 Presence Documents

SIMPLE adopts the Presence Information Data Form (PIDF) as its basic common

format for presence, which was defined in the RFC 3863 [22] by IMPP (see Section

2.7.2). This is based on XML and, therefore, protocol-independent and extensible. A

PIDF document is formed by a set of tuples, each representing a different segment

of the presentity’s presence. Presence segmentation may be caused by multiple user

devices or applications as well as by different instant times at which the presence was

generated. A tuple can contain four XML elements: status, contact, timestamp and

note. A contact element indicates the tuple’s contact address. A status element specifies

the tuple’s status and contains a single “basic” element. This element expresses the

communication availability of the contact address indicated by the contact element.

PIDF only defines two values: “open” when the tuple is available and “closed” in other

case. The timestamp element indicates when the tuple was generated. A note element

is used to show a sentence on the GUI.

A Data Model for Presence, which is defined in RFC 4479 [133], relies on IMPP

and PIDF to go into the semantics of presence information in depth. This clarifies the

role of presence documents into communication systems, what a presence document

means and what it is for. This specification defines three main concepts in any pres-

ence system: Service, Device and Person. These three concepts are mapped to the

XML elements tuple, device, and person. A service is a means of communicating with

a person. A person represents a human user that has associated presence information.

A device models the physical environment where one or more services are running. Per-

son and presentity has different meanings. Person is equivalent to Principal in IMPP

[129], that is, an end user. We refer the reader to Section 2.7.2 for further information

about IMPP. Presentity is a complete image of a person, which combines informa-

tion about the person and its associated services and devices. Figure 2.6 shows the

hierarchical relationships between person, service and device elements in a particular

presence document. Person, device and service elements can have static and dynamic

presence attributes, which are called characteristics and state, respectively. Character-

istics are information that does not change under normal circumstances while state is

39

2. BACKGROUND

Figure 2.6: Structure of an example IMPP presence document

information that varies over time. Table 2.3 shows some examples of characteristics

and state.

Characteristics State

Person Age, weight location, activity, humor

Service communication type, work purpose duplex, media preferences

Device 1GB RAM, 6400x200 display off/on, battery level, network location

Table 2.3: Examples of characteristics and state for person, service, and device entities

PIDF is the basic frame from which new kinds of presence information can be

defined. There already exist several PIDF extensions, which are described below. Ap-

pendix B shows an example of PIDF document, which includes extensions defined in

the RFCs 4480 [23] and 4119 [38].

Personal information (RFC 4480 [23]): This mainly extends the person element

with presence attributes such as the type of place in where the person is, its

acoustic and luminous conditions, the person’s humour, activities and role, etc.

This also defines some information for services such as service class and privacy,

status icon and identifiers of the involved devices. Device elements are enriched

with class and user-input attributes.

Services and devices (RFC 5196 [24]): This introduces the servcaps and devcaps

elements for describing UA and device capabilities, respectively. The servcaps

element extends the tuple element for including information such as types of

accepted medias, service class, supported SIP methods and events, etc. The

40

2.7 SIMPLE Framework

devcaps element extends the device element for indicating the device’s mobility

and textual description.

Time intervals (RFC 4481 [122]): This defines the timed-status element for speci-

fying a service’s status that depends on time; thus, this specification extends the

tuple element. For example, a presentity could indicate that its availability is

offline from 3 to 6 p.m.

Contact information (RFC 4482 [123]): This adds contact information to PIDF

such as display name, homepage, business card, icon, and music that represent

the person. This information extends the person element or, less commonly, the

tuple element.

Location information (RFCs 4119 [38] and 5139 [134]): This defines a location

object format that contains geographical information [38] as well as civic infor-

mation [134] as an extension of the tuple element. This extension is called PIDF

Location Object (PIDF-LO). The RFC 5491 [135] gives recommendations on the

usage and interpretation of PIDF-LO. This extension has emerged from the Geo-

graphic Location/Privacy (GEOPRIV) WG [136], which is refining PIDF-LO and

other aspects of location handling such as authorization, integrity, and privacy.

2.7.4 Optimizations

The verbose nature of presence documents and the fact that presence publications and

notifications need to be timely disseminated introduce presence overload into SIMPLE

systems. This excessive traffic may have harmful effects on network servers, wireless

network accesses and devices with limited resources. Sections 2.9.4, 2.9.5 and 2.9.6

tackle presence information overload more deeply. To address this problem, the IETF

has proposed the following traffic optimization techniques:

Partial publication and notification: The RFC 5264 [137] defines a mechanism for

only publishing the presence changes that have occurred from the last publica-

tion. Likewise, the RFC 5263 [138] describes how presence notifications can only

contain the presence changes that have occurred from the last notification. These

two mechanisms use the document format for partial-state presence information

described in the RFC 5262 [139].

41

2. BACKGROUND

Notification Filtering: The RFC 4660 [140] defines event notification filtering for

subscribers to express what information presence notifications should include and

when notifications should be delivered. Notification filters are encoded by the

XML format described in the RFC 4661 [141].

Signalling compression: Sigcomp [142] defines a flexible framework for compressing

SIP messages in end-to-end communications. The RFC 5112 [143] provides a

Sigcomp dictionary for presence information in order to improve the Sigcomp

efficiency on presence messages.

XML Patch operations with XPath: The RFC 5261 [144] defines an XML struc-

ture for representing changes in XML documents. It avoids sending the whole

XML document when it changes, and is used by several SIMPLE optimizations

(e.g., partial presence)

Notification rate control: As the SIP event framework [110] mandates, each event

package specification defines an absolute maximum on the rate at which notifica-

tions are allowed to be generated by a single notifier. For example, the watcher-

info event package [145] recommends that the server generate notifications at a

rate no faster than once every five seconds, while the message-summary event

package [146] suggests a maximum of one notification per second.

Conditional notification: The RFC 5839 [147] proposes a mechanism that sup-

presses the sending of unnecessary notifies when subscriptions are refreshed or

terminated. This basically consists in including a Supress-If-Match header in

the SUBSCRIBE message that should not result in a notification if there are

not pending changes. This header must contain the entity-tag that the notifier

previously sent to the subscriber in the last NOTIFY message’s SIP-ETag header.

2.8 Platforms for Presence-Aware Services and Automatic

Service Composition

As described in Section 2.4, network convergence is intended to be a playground for

deploying new, more convenient ubiquitous services that will improve users’ QoE. The

42

2.8 Platforms for Presence-Aware Services and Automatic Service
Composition

users’ presence information is fundamental to the success of these services. This in-

formation allows applications to adapt user communications according to the users’

circumstances and preferences. A key factor in the success of network convergence

is providing users with value-added services that encourage them to communicate in

an always-on, more dynamic way. Personalization is a required feature in any FMC

service. Users should be capable to customize their services’ behavior and appearance

based on their needs, which may change over time. Simplified, intuitive and easy-to-use

interfaces are needed to attract general users. Section 2.3.1 introduces some research

works on applications that offer innovate and intelligent functionality based on presence

and context information. The industry and academia are alarmed by the scalability is-

sues that convergent presence-aware services are expected to generate, as introduced in

Section 2.4 and further explained in Section 2.9. Thus, supporting software platforms

that are scalable, interoperable and optimized for mobile environments are necessary

to deploy large-scale ubiquitous applications. Many authors have addressed context

management but only a few of them have presented solutions for disseminating pres-

ence information. For instance, the work [148] is a generic platform for provisioning

and handling context information in mobile environments. Although this work does

not consider presence information about the user and his or her buddies, it presents

some desirable features such as lighter user devices, and context management, reason-

ing, privacy and dissemination controlled by the user. The works [52] and [149] present

software platforms in which the user devices take the responsibility for context man-

agement, which is not suitable for limited mobile devices. The authors of [150] propose

a RESTful web service for providing lighter-weight presence services. However, HTTP

is not suitable for subscriptions and presents a number of issues difficult to overcome.

Subscriptions are simulated with persistent connections and chunked encoding. No re-

source list subscriptions are defined and the mapping between SIP addresses and URLs

is not evident. The authors of [151] present a platform for providing service integration

in the personal domain. This mainly consists of a personal proxy server that handles all

the user’s communication services and his or her end terminals’ presence information.

The authors claim that this solution is scalable since it is implemented in personal

domains. This personal proxy server recollects the user’s presence information that

comes from his or her devices. This acts as the user’s presence agent by publishing the

43

2. BACKGROUND

user’s aggregated presence information to the PS. This solution therefore relies on the

operator’s centralized PS.

Today’s users own advanced smart phones that support both cellular communi-

cation protocols (e.g., UMTS, High Speed Downlink Packet Access (HSDPA), and

Enhanced Data rates for GSM of Evolution (EDGE)) and wireless data services (e.g.,

WiFi and Bluetooth). Communication is not limited to telephony anymore, as millions

of users use IM, SMS, email, Twitter, and Facebook everyday. There is a growing trend

among users to trust web services to keep their personal information, calendars, pics,

presence and so on. Although these services handle very similar information, they do

not interoperate with each other. Such a lack of service cooperation and automation

forces users to check services one after another and manually copy data or configure

services based on other services. The WWW is advancing towards greater personal-

ization. Services on the Web, such as social networking, e-commerce, or search sites,

store user information in order to profile the user and target specific products or ads of

interest. Since web service functionality is increasingly relying on user information, a

user’s context is becoming more crucial towards creating a personalized set of services

within the Web. There is a world of communication and information technologies,

and the user context is available from multiple sources in the WWW. Users however

do not have the tools to exploit such a world full of possibilities. A framework is,

therefore, needed where multiple services can be composed and executed proactively

for a particular user within a certain context. This framework should let the end user

create service compositions and execute these compositions based on his circumstances

proactively. Although many authors have been interested in this exciting topic in the

last decade, complete solutions do not yet exist. Most authors describe or propose

theoretical work. The few that present real implementations are partial solutions or

domain-specific. CPL [152], LESS [47], SPL [153], VisuCom [154] and DiaSpec [155]

are attempts to allow end users to create services, but they are all limited to controlling

call routing. Also, CPL and LESS use XML, and hence even simple services require

long specifications. Moreover, XML-based languages are difficult to read and write for

non-technical end-users. Although the CPL specification does not consider presence

information, the authors of [156] and [157] add some basic presence attributes to CPL.

DiaSpec is very low level. Writing a specification in DiaSpec and then developing a

service using the generated framework is definitely not suitable for non-technical end

44

2.8 Platforms for Presence-Aware Services and Automatic Service
Composition

users. The authors of DiaSpec extended their initial work to support services beyond

telephony [158], which include sensors and actuators. However, DisSpec is still only

suitable for advanced developers. SPL is a scripting language that is suitable for end-

users but only for telephony events. VisuCom has the same functionality as SPL, but

allows users to create services visually via GUI components. CybreMinder [159] is a

context-aware tool that allows users to setup email, SMS, print out and on-screen re-

minders based not only on time but also location and presence status of other users.

This tool uses local sensors to detect a user’s location, and only displays reminders to

the end user (i.e., this does not take any actions). Also, CybreMinder is not as powerful

as scripting-based systems due to its form-based nature. Task.fm [160] is a similar SMS

and email remainder system that uses natural language to describe time instants when

email or SMS reminders will be sent. However, Task.fm only supports time-based rules

and does not include information from sensors. This tool does not take actions other

than reminding users via SMS, email or phone call.

Some authors have addressed the need to provide proactive, user-centric services.

Ubiphone [45] is a human-centered ubiquitous phone system for handling phone calls

proactively. This system takes intelligent and proactive decisions based on the user

context. Users, however, do not seem to have control on the actions to take when

particular events happen. This platform relies on a centralized server that retrieves user

context and handles it through a tree of Ontology Web Language (OWL) ontologies.

Other research works on call handling are [44], [43], and [161]. The authors of [44]

present an application router that determines what composition chain to follow based

on presence information. The bindings between the received SIP requests and the

invoked applications are statically configured in XML documents. The authors of [43]

provide an inbound call routing service within an IMS AS (see Section 2.4.1), which

allows incoming calls to be routed to the right person dynamically. This service makes

suggestions to the callee based on its, and caller’s, presence information. The work

described in [161] composes widgets on web pages based on Event-Condition-Action

(ECA) rules that are encoded by XML. This composition is only triggered by call

requests.

In the WWW, full proactivity will come with the automatic discovery, composition

and invocation of web services, as described in Section 2.8.1. SWORD [162] was one

of the first prototypes for web service composition. However, this tools offers a quite

45

2. BACKGROUND

limited composition that is not automatic and its scripting language is targeted at

developers. Ezweb [163] is a graphical tool whereby users can connect web services

manually. However, this tool does not provide automatic web service discovery or a

language for composing services. Moreover, service composition is not context-aware

and proactive. Yahoo Pipes [164] is other graphical tool for web service composition.

However, it presents the same limitations as Ezweb and its GUI is not really easy-

to-use and intuitive, which makes it difficult for non-technical users. A prototype

described in a research paper [165] offers event-based web service composition. This

means that service composition is triggered by events such as changes in the user’s

context rather than end users. However, this work does not provide any language or tool

for specifying the web service compositions and events that trigger them. The authors

seem to implement low-level compositions that may be personalized according to user

preferences. Thus, this work does not offer end users control of service composition.

This prototype seems not to be available in the Internet. The authors of [166] describe

a platform for users to create context-aware event-based compositions. Users define

their compositions through statecharts, which are translated into lower-level control

tuples. These tuples determine pre/post-conditions, service invocation and exception

handling. The platform only considers location and temporal conditions as context, and

provides a GUI rather than a scripting language. The work [167] tackle event-based

service composition, although it does not provide any platform. Only two illustrative

examples are given, which execute an image render service that modifies an image when

some time event occurs or the user types his or her mood.

To sum up, to the best of our knowledge, there is no implemented platform for

allowing end users to compose services of different kind based on events. The current

solutions are not proactive because the end-user is who triggers the composite services

or only provides template-based compositions (i.e., the user is not who defines the

compositions). There is neither a platform for event-based web service discovery. The

composition tools that take user context into account only consider a limited set of

context. The studied tools’s GUIs are quite limited and not flexible for non-technical

users. The scripting languages provided by some tools are neither suitable for non-

technical users and only support a limited set of context information. Moreover, none

of the studied tools proactively discover web services based on the user preferences.

46

2.8 Platforms for Presence-Aware Services and Automatic Service
Composition

2.8.1 Automatic Web Service Discovery, Composition, and Invoca-

tion

Web services have emerged as a standard mechanism for accessing information and

software components in an automatic and interoperable way. To call a web service, a

program has to send the service one or more messages, normally encoded by XML, and

then the program receives XML replies containing the returned values. This exchange

of messages has been standardized mainly through two technologies: Simple Object

Access Protocol (SOAP) [168] and Web Services Description Language (WSDL) [27].

WSDL defines the syntax of the input and output messages of the web service, as well as

other details needed for the invocation of the service. Although, WSDL is independent

from the underlying protocol and encoding, its specification only defines the bindings

to SOAP, HTTP GET/POST and MIME. SOAP is a protocol that allows web services

to exchange XML-based objects over HTTP. SOAP provides a request/response hand-

shake protocol and message formats for letting web services communicate with each

other. These technologies standardize web service communication and, hence, provide

interoperability. However, they do not deal with the semantics of web services and,

therefore, it is developers’ responsibility to compose semantically correct web services.

Rich semantic specification of web services is necessary to enable flexible automation

of service invocation and composition. To meet this need, the Semantic Web [169] is

working on languages and architectures for automating web service discovery, invoca-

tion and composition. Resource Description Framework (RDF) [170] and OWL are

standard languages for describing ontologies, and constitute the basis for the Semantic

Web. An ontology is a formal representation of the knowledge within a domain by a

set of concepts and the relationships between these concepts. An ontology consists of

“classes” of objects, their relationships and axioms that place constrains on classes and

the types of relationships permitted between them. These axioms provide semantics by

allowing systems to infer additional information based on the data explicitly provided.

OWL-S [25] is an ontology for web services expressed in OWL, which includes three

primary sub-ontologies: the service profile, service model, and grounding. The service

profile is used to describe what the service provides for and requires of agents (i.e.,

functional, classification and non-functional aspects). The service model is used to de-

scribe how the service is used (i.e., inputs, outputs, preconditions and results) and the

grounding is used to describe how to interact with the service (i.e., binding to WSDL).

47

2. BACKGROUND

1.a)	
 Adver+se	
 Service	
 Profile	
 	
 2.	
 Issue	
 Service	
 Query	

3.	
 Find	
 candidate	
 profiles	

5.	
 Construct	
 request	

WWW	

4.	
 Get	
 Service	
 Model	

WWW	

1.	
 b)	
 Publish	
 Service	
 Model	

Figure 2.7: Web Service Composition

The first two ontologies are thought of as abstract characterizations of services, while

the third one provides necessary concrete details to interact with services. Figure 2.7

shows a typical interaction to discover and invoke a web service automatically. A third-

party, which is called “Discovery Agency” in Figure 2.7, keeps advertised service profiles

and matches them with service discovery requests. To make a service discoverable and

reachable, the service provider registers the service’s profile into the Discovery Agency

and makes the service’s model available in the Web. When a service customer needs to

look up for a service that satisfies certain properties or capabilities, it sends a request

to the discovery agency. This request is contrasted with the advertised services’ profiles

and, as a result, the matching ones are sent to the requester. Then, the service con-

sumer selects the service with which to communicate and downloads its model from the

web (i.e., the service profile specifies the model’s web link). Once the service consumer

knows the service’s model it is able to interact with the service via HTTP. Automatic

web service composition and interoperation is a step further from web service discovery.

This involves discovering, selecting, composing and interoperating web services auto-

matically in order to perform some complex task given a high-level description of an

objective. OWL-S supports it by specifying services’ prerequisites and consequences as

well as composite data flow interactions. Service composition could be performed by

the service consumer itself or a third party.

2.9 Challenges in Presence Services

This section analyzes the main challenges and difficulties presence services need to

overcome for its success, which basically concern interoperability, privacy, user-centric

48

2.9 Challenges in Presence Services

customization, scalability, large-scale scenarios, mobile applications, and information

consistency. This section also gives an overview of the research efforts related to these

topics.

2.9.1 Interoperability

Two systems are interoperable when they are able to exchange information and use this

information. Presence information came into being in IM and PTT applications and has

been extended to social networks. The fact that these applications typically compete for

the largest user population has derived a serious interoperability problem. In a fight for

attracting the greatest number of users, IM and social networks are reluctant to let their

users communicate with each other and share their presence information. To face this

problem, the IETF has proposed two standards for IMP, namely XMPP and SIMPLE.

There are detractors and supporters of both protocols. However, the standardizing

organisms are inclined towards SIMPLE for several reasons. SIMPLE is an extension

of SIP, which inherits most of its characteristics from HTTP and Simple Mail Transfer

Protocol (SMTP). This fact is an advantage because these two protocols are the most

successful Internet protocols. Since SIP is based on HTTP, SIP service developers can

use all the service frameworks for HTTP, such as CGI (Common Gateway Interface)

and Java servlets. Moreover, SIP is a text-based protocol, which makes it easier to

extend, debug and use to build services. These reasons led the 3GPP to adopt SIP

as the session control protocol for the IMS, and hence SIMPLE for managing presence

and IM in the IMS. SIMPLE has become the standard protocol for providing presence-

based services in NGNs. We refer the reader to Section 2.4 for further information

about the IMS and NGN.

Besides the industry, the academia and research community is concerned about

the interoperability barrier in presence-based systems. The authors of [73] address the

need to provide user-centric, provider-agnostic presence services. They claim that ser-

vice providers offer presence services that are tightly bound to the provider network,

even when these services are built upon standard protocols. These provider-centric

presence services are restraining creation of ubiquitous and dynamic presence applica-

tions. The authors of [171] performed experiments on interoperability testing of the

presence service in an open source IMS platform. They applied some OMA test cases

for SIMPLE to two IMS clients from different vendors. The experiment results show

49

2. BACKGROUND

that the tested IMS clients do not support presence functionalities such as composition

rules, notification filtering and partial presence information. Moreover, these clients

are not capable to handle presence information that comes from multiple user devices.

Furthermore, the tested PS does not work properly when the watchers unsubscribe.

These results show that ensuring that all the components involved in a presence service

behave in the same way is hard even when they agree on a standard protocol. The

authors of [172] study the interoperability between SIMPLE and IMPS, and propose

a protocol mapping and framework for making them interoperable. In [173], trans-

lating gateways are proposed to solve the problem of interoperability between MSN,

AOL, Jabber (XMPP) and Yahoo IM networks. The authors of [174] propose a mid-

dleware that allows users to roam among IMP service providers with different IMP

protocols while maintaining their IMP sessions. This middleware permits to load the

visited network’s IMP implementation into the user’s device and reconstruct her pres-

ence information by communicating with her home IMP network. The authors of [175]

describe an approach for letting Internet services know about the presence of cellular

users. A centralized server discovers a user’s presence information by analyzing cellu-

lar events such as call establishments, location updates, network registration and SMS

reception. This server interacts with Internet services via SIP/SIMPLE. In [176], an

architecture model for multimedia communications based on NGN is described. The

authors’ goal is to ensure that a suitable level of interoperability is reached by all the

components involved in the communication process. The authors performed numerous

experiments of end-to-end residential communications between different IMS providers

in Europe. Regarding the presence service, half of the tests failed by internal AS

problems and SIP interoperability between terminals and the network. The authors

conclude that this interoperability issues are due to the flexibility of SIP and the coex-

istence of 3GPP, Telecoms and Internet converged Services and Protocols for Advanced

Network (TISPAN), and IETF standards. Moreover, user acceptance tests showed that

the ergonomics of presence-based applications needs improvements, and users demand

homogeneous user interfaces regardless of the terminal used.

2.9.2 Privacy

The success of presence information is to a great extent due to our innate curiosity

to see the context and circumstances of others that are important to us. However,

50

2.9 Challenges in Presence Services

a user’s presence information is likely to contain very sensitive information such as

location, meetings, likes and social relationships. A number of questions, therefore,

arise such as “Where is the limit between the satisfaction of watchers and the privacy

of users?” and “Can users trust service providers to maintain their presence infor-

mation?”. The answers are fuzzy and always depend on the needs and requirements

of each user. Presence systems should provide privacy mechanisms flexible enough to

accommodate the needs of users. This would empower users to hand their presence

information in, and hence privacy policy is a required precondition to the success of

presence applications. However, today’s presence standards are lacking of fine-grained

policy control that permits to customize presence information based on the requester.

A user may wish to notify different, for example, activities based on the recipient (e.g.,

“in a meeting” for his boss and “out of town” for his customers). The use of presence

information in enterprise environments, which was mentioned in Section 2.1, stresses

the importance of fine-grained control of the disclosure of presence information. Enter-

prise policy authorization mechanisms should provide employees with the capability to

control their presence information in a way consistent to their corporations’ goals and

privacy policies. Moreover, inter-domain federation introduces the non-trivial challenge

of sharing user information and ensuring user-defined privacy policies on this informa-

tion across different administrative domains. Federated domains should be able to

authenticate each other and users within other federated domains. The authors of [64]

discuss about the need of privacy policies in presence systems more deeply. In the frame

of SIMPLE, presence authorization rules [177] allow specifying the pieces of presence

information that is delivered to certain watchers. However, these rules do not permit to

customize the value of presence attributes based on the watchers. This mechanism also

allows automatically deciding about subscription requests. The mechanism to approve

or deny subscriptions in real time is provided by the winfo event-package [145], which

allows subscribing to SUBSCRIBE requests that are in place and waiting for approval,

and the XML format for describing this kind of event [178]. The IETF GEOPRIV

WG [136] works on extensions of PIDF for privacy rules that control the disclosure of

location information.

51

2. BACKGROUND

2.9.3 User Customization

The ability to change the behavior of presence applications based on the user’s needs,

requirements, and circumstances over time will bring the success of these applications.

To motivate the use of presence applications that handle rich presence information,

users need to feel that they have the control on their presence information and com-

munications. Users that are distrustful of service providers will be reluctant to use

presence applications or will end up handing in a reduced set of their information. In

our opinion, presence services should grant users control on privacy, communication,

presence information sharing and subscriptions to others’ presence information:

• Privacy. The user should be able to set rules to deliver the right presence in-

formation to the right watchers, as described in Section 2.9.2. These rules may

change over time based on the user’s context and circumstances. This includes

the ability to customize the value of presence attributes depending on multiple

factors, namely time, context and recipients. It would be also recommendable

to provide the users with mechanisms to reject or accept subscription requests

beyond the traditional blacklists and whitelists. For instance, a user may accept

a subscription request if the requester works in the user’s corporation, lives in his

or her home city or shares any of his or her hobbies.

• Communications. The user should be able to set his preferences on how others

communicate with him, which may depend on the time of the day and the re-

quester’s and user’s context. This capability is known as call handling. Section

2.3.1 mentions some recent works that merge presence and call handling. How-

ever, most of them rely on predefined rules for handling the user’s communications

that the user can not modify. A few of them provides the user with tools to de-

fine his own rules about how to handle communications. However, these tools are

not flexible and only include a very limited set of presence information and use

cases. For example, LESS [47] is a scripting language that includes a few presence

attributes for handling communications. The work [156] extends CPL, which is

other scripting language for call handling, with a few presence attributes. The

authors of [65] describe an IMS-based network architecture for managing pres-

ence information, which provides more flexible, user-centric preferences on user

communications.

52

2.9 Challenges in Presence Services

Figure 2.8: SIP presence subscription flow

• Handling of presence information . The user should be able to handle his presence

information automatically and decide the presence sources that contribute to his

presence at any moment. This would include rules such as “don’t include presence

from my personal phone during working hours”, “don’t include my location after

work”, “when I get my office, set my activity to working” and “During any event

in my calendar, set my state as busy”.

• Subscriptions to others’ presence information. The user should be able to choose

the circumstances under which he wishes to know about others’ presence infor-

mation. SIMPLE event notification filters [141] allows users to filter the presence

information that they receive based on the subject of the information and the kind

of change on the information (i.e., modification, addition or removal). However,

we think that this filtering process should also take the recipient’s circumstances

into account. For instance, the user may change his notification filters over time

(e.g., “let me know my boss’ activity from 8.00 to 17.00”) or based on his context

(e.g., “let me know my friends’ location when I get out of my office”).

2.9.4 Scalability

Presence subscriptions must be refreshed periodically to prevent their lifetime from

expiring, which would result in the elimination of their subscription state. A subscrip-

tion’s lifetime is restarted by sending a re-SUBSCRIBE message, which entails the

exchange of four messages as shown in Figure 2.8. On the other hand, typically when-

ever a presentity changes its state, a NOTIFY message is sent to the watchers that

are authorized to see the presence change, as shown in Figure 2.9. These operations

make presence-based applications generate a great amount of traffic as the number of

presentities, watchers and presence changes increases.

53

2. BACKGROUND

Figure 2.9: SIP presence publication flow

Presence traffic overload becomes even more harmful and critical in presence-based

LBSs since frequent location updates have to be timely disseminated through PIDF-

LO documents [38]. Even if presence updates and application traffic are discarded,

signaling traffic for keeping presence subscriptions alive may be pretty considerable.

Such an amount of signaling traffic may make the presence service unfeasible in the IMS

because of the number of centralized servers that presence flows traverse, as explained

in Section 2.4.1. Figures 2.10 and 2.11 show the messages that IMS servers need to

exchange when a user subscribes to his or her resource list. When the RLS receives the

subscription request (Figure 2.10), it subscribes to the contacts in the user’s resource

list. Figure 2.11 shows this process, which is repeated for each of the presentities in

the resource list. The subscription request is forwarded via the S-CSCF in the RLS

home network to the I-CSCF in the presentity’s network. The I-CSCF queries the HSS

to found out the S-CSCF that is allocated to the presentity and forwards the request

to this S-CSCF. The authors of [179] conclude that presence traffic can constitute

above 50% of the total traffic handled by the CSCF servers in IMS. This result is

alarming given that IMS is thought of as the network infrastructure that will support

NGNs. The performance analysis in [180] shows that SIP signaling traffic introduces

long transmission delays on the UMTS network. They study the end-to-end delay that

users of instant messengers perceive. This delay may reach so high values that IM

could not be considered as an instantaneous service anymore. Approximately 70% of

this delay is due to the network core and, hence, optimizing traffic on the radio access

side is insufficient for providing multimedia services in real time.

Since presence information plays a key role in some applications that are used

54

2.9 Challenges in Presence Services

Figure 2.10: Watcher subscription in the IMS

Figure 2.11: RLS subscription to a presentity in the IMS

55

2. BACKGROUND

worldwide, such as IM (see Section 2.1), presence traffic overload should be carefully

considered. The authors of [12] study the traffic generated by MSN and AOL instant

messengers within a corporation, and conclude that presence traffic constitutes the most

part of this traffic. Obviously, it is necessary to reduce the number and size of messages

that are sent through the network in SIP flows as well as the number of network ele-

ments through which the messages pass. Presence traffic should therefore be carefully

studied in order to design and apply the most suitable optimization techniques. Pres-

ence notifications constitute a large part of the excessive traffic generated by presence

applications [181][182]. In the SIMPLE framework, there are several techniques for re-

ducing the presence subscription traffic as described in Section 2.7.4. These techniques

include resource list subscriptions [121], partial notifications of presence [138], event

notification filtering [140], notification rate control and conditional notifications [147].

Although SIMPLE allows each event package specification to define the maximum rate

at which notifiers can send notifications, the notification rate is determined by the no-

tifier rather than the subscriber. The Internet-Draft [183] allows a subscriber to set the

maximum and minimum rate of event notifications generated by the notifier by means

of two new event parameters in SUBSCRIBE messages: “max-rate” and “min-rate”,

respectively. Thus, the notifier generates notifications at a rate that is higher than the

minimum rate and lower than the maximum rate. The maximum notification rate must

be always greater than or equal to the minimum notification rate for a notifier.

Some research papers have addressed the optimization of presence protocols. On

one hand, the notifier sends a notification when the time since the most recent no-

tification exceeds the reciprocal value of the “min-rate” parameter regardless of the

subscription’s state information has changed. However, it may be combined with con-

ditional notifications for suppressing the notification if no presence change has occurred.

Moreover, notifications sent at the minimum rate may contain partial-state presence

documents for notifying only the changes that have occurred from the last notification.

On the other hand, the notifier ensures that a time longer than the reciprocal value

of the “max-rate” parameter elapses between two consecutive notifications. An IETF

Internet-Draft [184] defines new event filters for location information that are based

on movement, speed, entering or exiting a region, changes in address labels and types

of location. The authors also propose the mechanism in [183] to set up minimum and

maximum times between two consecutive location notifications. In [185], two strategies

56

2.9 Challenges in Presence Services

are described to reduce the number of messages in presence subscriptions. One allows

subscribers to unsubscribe while keeping the RLS maintaining the subscription state

for a certain time. The subscriber sends a SUBSCRIBE message with the header “ex-

pires” set to zero and a new option tag telling the time during which the RLS should

keep subscribed to the presentities in the resource list. If the subscriber does not re-

subscribe during this time, the RLS eliminates the subscription. This optimization is

intended at mobile applications, which are likely to get inactive during long periods.

The other strategy proposed in [185] allows specifying a maximum notification interval

between two notifications through the Ut interface defined by XML Configuration Ac-

cess Protocol (XCAP). The authors of [186] propose maintaining hard-state presence

subscriptions between end users and the IMS with the aim of saving presence traffic on

the network access link. When a watcher subscribes to a presentity, a hard-state sub-

scription is created between the end user and an AS. This does not require the end user

to resubscribe for keeping the subscription alive. In turn, the AS creates a soft-state

presence subscription to the presentity by sending periodic presence resubscriptions.

An out-of-progress IETF Internet-Draft [187] addresses the temporal pause of presence

notifications. The authors propose an extension to pause and un-pause notifications,

and to perform pull requests within an established subscription dialog. This is achieved

by setting a new header in SUBSCRIBE messages, whose possible values are “off”, “on”

and “once” for pausing, un-pausing and pulling, respectively. Although this work did

not progress, we find it remarkable since no other authors have proposed a method for

pausing and afterwards pulling presence notifications without removing the subscrip-

tion presence state. Although the authors of [185] discuss about pausing notifications,

they do not provide a method for triggering one-time notifications in pauses. Some

queuing systems for controlling presence notification rate have emerged recently. The

authors of [188] propose a delayed threshold in order not to notify watchers of presence

changes immediately. When the PS receives a presence publication, it starts the delayed

timer, and once this timer expires it sends the corresponding notifications. This allows

aggregating presence changes that occur during the delayed timer, thereby saving no-

tifications. This mechanism requires a different buffer for each presentity, which may

be costly in large-scale presence services. Moreover, notifications are always delayed,

which introduces unnecessary delays in notifying when the arriving publication rate is

lower than the desirable output rate. The authors of [189] propose TNTC, which is a

57

2. BACKGROUND

token-bucket based mechanism for controlling the notification rate that the PS injects

into the network core. This mechanism ensures that the maximum output rate is the

token generating rate of the bucket. If the presence publication arrival rate is higher

than the token generating rate, the tokens will be consumed at some point. When it

happens, the arrival publications are queued until new tokens are generated. During

this time, new publications replace older publications in the queue; thus, this mech-

anism saves presence notifications. The main difference between this mechanism and

other notification control mechanisms [183][188] is that TNTC can change the maxi-

mum notification rate over time based on the publication arrival rate, while the others

assume a predefined rate. Although the authors of both [188] and [189] are concerned

about the probability of watchers accessing to consistent information, the notification

rate, either static [188] or dynamic [189], is chosen just to meet the PS policy on output

rate.

The PS is the intermediary in any presence publication and notification and, there-

fore, may easily become a bottleneck as the number of presentities, watchers and pres-

ence publications increases. Some authors have addressed the need to reduce the pres-

ence load at the PS. The authors of [190] propose a routing protocol for presence

subscription requests that are exchanged between distributed PSs in the IMS. They

claim that this protocol is useful in a kind of application denominated as Live Resource

Finders (LRFs), which dynamically matches clients and service providers based on their

presence information. The authors of [181] propose a queue system with vacation times

for NOTIFY messages at the PS. Their goal is to provide the PS with more time to

process other messages. The optimal value of the vacation time is calculated for pre-

venting the queue from becoming full. Nevertheless, this system does not save presence

traffic because notifications are not aggregated during the vacation times. A maximum

notification rate is not ensured because, once the PS start processing the NOTIFY

messages, it does not stop until the queue is empty. In [191], dropping presence pub-

lications selectively is proposed for reducing presence traffic load at PSs. The authors

describe a queuing mechanism in which the publication arrival rates are deduced from

a particular Markov chain. The research paper [192] tackles the scalability of IMP

systems in terms of databases. The authors analyze the latency of several database

architectures and recommend one based on subscriptions.

58

2.9 Challenges in Presence Services

2.9.5 Presence Federation Scenarios

Although the optimization strategies mentioned in Section 2.9.4 reduce the number

and size of the messages exchanged through presence subscriptions, they do not tackle

the volume of subscriptions. They are not therefore efficient enough in large-scale

presence federation scenarios where millions of users in a domain subscribe to millions

of users in other federated domains. IM is the most evident example of presence-

enabled application on a planetary scale, as described in Section 2.1. In such large-scale

scenarios, SIMPLE generate a volume of subscriptions that may be unbearable, one

for each different (watcher, presentity) pair. The authors of the IETF Internet-Draft

[193] makes a valuable contribution towards measuring inter-domain presence traffic.

They analytically estimate the number of messages and bytes exchanged between two

federated presence domains in three scenarios with different levels of federation. The

level of federation determines the number of cross-domain (watcher, presentity) pairs

and the number of presence changes. The reported results show that the domains

exchange 101.880, 152.820 and 44.046.000 megabytes during a session of 8 hours from

lowest to highest level of federation. The authors show that presence traffic overload

may become unbearable in large-scale scenarios. They also discuss about the complexity

of the presence service and the optimization techniques that may help in increasing

its scalability. Moreover, the authors describe a technique called dialog optimization,

which basically consists in a federated RLS that keeps a single subscription between a

watcher and its presentities in a particular federated domain. However, the estimation

of this strategy’s traffic [193] shows that it does not help in reducing presence traffic,

and hence the authors discourage it. The authors of [194] describe a technique called

Common Notify (CN) that consists in sending a single notification message to the

watcher domain. This message contains the presentity’s complete presence information

and the watcher domain is in charge of providing watchers with the piece of presence

that they are authorized to see. Although this optimization does not reduce the number

of subscriptions, it does reduce the number of notifications drastically. In addition, the

authors also describe batched notifications, which consist in aggregating the presence

documents of multiple presentities in a single NOTIFY message. The authors of other

IETF Internet-Draft [195] describe a mechanism called View Sharing (VS) that reduces

the number of presence subscriptions between two federated domains. The number of

59

2. BACKGROUND

subscriptions is determined by the number of privacy rules that the presentities set up

to their watchers. Unfortunately, the aforementioned Internet-Drafts [194] [195] do not

provide any traffic estimation and are no longer active in the IETF.

2.9.6 Wireless Communications

As described in Section 2.9.4, presence applications are likely to generate a large amount

of signaling traffic. This overload may restrain the use of presence applications on mo-

bile devices with limited processing resources and battery life. Mobile presence appli-

cations need to handle two kinds of traffic: presence subscriptions and presence pub-

lications. In the SIMPLE framework, subscription traffic includes traffic for handling

presence (about a presentity [120] or a resource list [121]) and winfo events [145]. These

subscriptions involve periodic subscription refreshes and notifications, which are likely

to involve a great amount of signaling traffic. Section 2.9.4 mentions some proposals for

optimizing subscription-related presence traffic as, for example, [121][138][140][183][147]

and [184].

Besides subscription-related traffic, limiting the number of presence publications

may be crucial in mobile presence-enabled LBSs. SIMPLE-compliant LBSs publish the

presentities’ location information encoded by the XML-based format PIDF-LO [38].

Since the presentities’ location information is likely to change very frequently, such

frequent publications may involve harmful consequences: PS overload, large amounts

of notifications on the network core, and overconsumption of radio access bandwidth

and wireless user devices’ battery life. In order to reduce the size of presence pub-

lications, SIMPLE defined partial presence information [137] to allow presentities to

publish only the changes that have occurred from the last publication rather than their

complete presence information. SigComp [142] and its presence-specific dictionary [143]

can be used to compress PUBLISH messages. The OMA Presence SIMPLE defines the

SOURCE-THROTTLE-PUBLISH parameter, which indicates a minimum passive in-

terval that must elapse between two presence publications. This parameter is configured

in client devices via Over-The-Air (OTA) provisioning. OMA also introduces Presence

Network Agents (PNAs) [196] into operator networks for saving presence publications.

These agents publish presence information that can be deduced from the network on

behalf of presentities. Unfortunately, there still is much information that cannot be

extracted from network services such as person-related information (e.g., mood and

60

2.9 Challenges in Presence Services

willingness). The patent [197] proposes a solution for limiting the number of presence

publications based on certain conditions that are set to the presentity. In the research

community, to the best of our knowledge, only the authors of [65] tackle the need to re-

duce presence traffic due to publications. They proposed an IETF Internet-Draft [198]

that defines a new event package for allowing presentities to be up to date with their

PSs’ presence requirements. Thus, presentities only publish the presence attributes

needed by their PSs, rather than their complete presence information. This Internet-

Draft expired without further progress, probably due to the overhead introduced by a

new kind of subscription between the presentity and the PS.

Besides traffic optimization in wireless networks, mobile presence applications face

limited user devices, multiple access technologies and unreliable communication chan-

nels. Thus, there is a number of challenging issues that should be considered carefully

when treating presence traffic:

• Providing confidentiality and security may add a considerable traffic overhead,

and hence a tradeoff between security and efficiency needs to be found according

to each real-world scenario (i.e., security and traffic optimization policies, network

traffic status, user devices’ capabilities, etc.).

• Global connectivity involves mobile applications interacting with Internet-designed

presence applications. As Internet applications are not concerned about traffic

overload, they may generate an amount of traffic that is excessive for mobile ap-

plications. Thus, network servers should drop such an excessive traffic off when

interacting with mobile users.

• Presence information of mobile users may be obtained from third-parties such as

network operators and service providers. Thus, presence aggregation and reason-

ing play a key role in mobile presence applications.

• Mobile users can be connected to heterogeneous systems, that is, devices with dif-

ferent capabilities and multiple access technologies. Device characteristics include

information related to software (e.g., supported libraries and operating system),

hardware (e.g., CPU speed, display and memory), and communication link (e.g.,

bandwidth). Traffic optimization should be performed according to the user de-

vice’s characteristics and network congestion status.

61

2. BACKGROUND

• Users may switch between terminal devices quite frequently while they are logged

on a presence application. For instance, a user may connect to her mobile phone

in the early morning, switch to a Personal Computer (PC) at her office and

occasionally connect to her laptop. Mobile presence applications need be able

to support session mobility by reconstructing application session and aggregating

presence from multiple sessions.

2.9.7 Differentiated Treatment and Consistency of Presence Attributes

The diverse nature of presence information reinforces the need for differentiated treat-

ment for presence attributes. Presence information may be composed of a diversity of

information such as location, profile, personal, device, and service information. How-

ever, not all the information is needed by watchers at any given time. Watchers are,

therefore, likely to have different preferences about what presence attributes are more

important and when these attributes are needed. For example, a watcher may be

very interested in location information, while mood or activities may be insignificant.

Presence information was conceived to be useful for watchers to establish communica-

tions with presentities. Therefore, the watchers’ needs for presence attributes should

be taken into account to only request the needed information from presentities so as

to unnecessary traffic. Limiting the rate at which watchers are notified for the sake

of optimization traffic may result in watcher applications keeping obsolete informa-

tion. This may make the presence service useless, since its success is actually due to

the instantaneous knowledge of presence changes. Watcher applications or the users

themselves may take inadequate decisions or assumptions based on wrong presence in-

formation. Thus, the watchers’ needs on notification rate and information consistency

should be considered when delaying presence notifications. Such needs may vary from

some presence attributes to others.

The authors of [65] point out the lack of strategies for configuring requirements

of urgency, cost, rate, and accuracy in both notification filters and presence sources.

Facing this issue, they propose a hierarchical structure of servers within the IMS. One

of the major functions of these servers is to balance source publications based on the

needs of watchers. The authors highlight the need to allow watchers to subscribe to

only the presence subsets of interest for saving unnecessary presence traffic. Moreover,

they proposed an IETF Internet- Draft [198], which defines a new event package that

62

2.9 Challenges in Presence Services

allows presentities to subscribe to their PSs requirements on urgency, rate, cost, etc.

Thus, presentities should publish presence changes according to PS requirements. This

draft expired without any further progress probably because the benefits of this new

subscription do not make up for the overload and complexity it causes. Other work [66]

introduces the arguments for which presence attributes should be treated differently

depending on their importance. The authors propose decay functions to describe how

the accuracy of presence attributes decreases over time in order to prevent watchers

from retaining obsolete values. This work emphasizes the need for different decay

functions depending on the presence attributes: each attribute has a different nature

and hence it changes at a different rate. For example, a user normally publishes changes

in basic personal information (such as state or activity) much more frequently than

changes in the properties of his or her device. If the decay function of a presence

attribute drops below its threshold value, this means that the probability that this

attribute has changed is too high and is no longer reliable. If this happens, the PS

should re-calculate the presence information that could be affected by a change in the

attribute. If the presence attribute is binary (i.e., only two values are possible), its new

value can be calculated automatically. Otherwise, the PS must somehow retrieve the

exact value of the attribute, which is out of the scope of this work. This strategy is

intended to prevent PSs from maintaining obsolete values of presence attributes, whose

publications have somehow been lost in the network or when the rate of publication

is being limited. Unfortunately, SIMPLE does not provide any mechanism for pulling

presence publications, as described in Section 2.9.8.

As described in Section 2.9.4, an IETF Internet-Draft [183] defines two new event

parameters, namely “min-rate” and “max-rate”, for subscribers to specify the desired

minimum and maximum notification rate. Thus, the notifier generates notifications

at a rate that is higher than the minimum rate and lower than the maximum rate.

Given that there can only be a single minimum and maximum rate per subscription,

all the presence attributes associated with a subscription are notified at the same rate.

Since the minimum rate triggers a notification when the time since the last notification

exceeds the reciprocal value of “min-rate”, this mechanism may generate much unneces-

sary traffic if conditional notifications and partial presence documents are not supported

(see Section 2.7.4). In order to avoid the subscriber keeping obsolete information for

too long, the subscriber should set the “min-rate” and “max-rate” headers according

63

2. BACKGROUND

to the rates desired for the most important presence attributes. This is however inef-

ficient under certain circumstances. The notifications generated at the minimum rate

may include presence attributes that change more frequently than this rate but are not

important. A low maximum rate may delaying in notifying the subscriber of presence

attributes that change much more rapidly than this rate for too long. This inefficient

behavior is specially evident for RLS subscriptions since a resource lists presence infor-

mation is composed of the presence attributes of all the presentities in the list. Event

notification filtering [140] has been defined for subscribers to express what information

presence notifications should include and when notifications should be delivered. The

IETF Internet-Draft [184] defines new event filters for location information that are

based on movement, speed, entering or exiting a region, changes in address labels and

types of location. The authors also propose the mechanism in [183] to set up mini-

mum and maximum times between two consecutive location notifications. However, as

mentioned above, these times are applied to the entire presence information, which is

especially inadequate for LBSs. Geographical coordinates change very frequently, and

hence if they were relevant for the watcher, a low minimum and maximum rate would

be required. In this case, all the presence information would be notified at so low rates.

Even when geographical coordinates are not important, a low minimum rate may be set

because of other presence attributes that are more urgent. This would involve notifying

location changes at such a low rate although it was not necessary.

2.9.8 Pull vs. Push Models for Presence Updates

Presence systems usually adopt a push model in which presentities proactively in-

form their PSs of any change in their presence information. Likewise, notifiers send

subscribers asynchronous notifications for letting them know about presence changes

instantaneously. However, under some circumstances, pausing and un-pausing publi-

cations and notifications may be very convenient to reduce presence traffic. It happens

when the watcher only needs the presence information occasionally, or well when pres-

ence changes are infrequent and the watcher can estimate when these changes occur.

In these cases, pulling presence changes would probably generate less traffic than main-

taining a subscription, since it generates much signaling traffic as described in Section

2.9.4. Currently, SIMPLE does not provide any means to this end. SIMPLE does inher-

ently permits to know a subscription’s resource state information instantaneously since

64

2.9 Challenges in Presence Services

every SUBSCRIBE request makes the notifier send a complete state notification. Out

of subscription state, SIMPLE also permits to fetch resource state information from

a notifier by sending a SUBSCRIBE message with its expiration interval set to zero.

However, this SUBSCRIBE-based pull method presents two important shortcomings.

First, subscribers are still not capable to pull particular presence attributes instead

of the complete presence information. Second, whenever the notifier receives a pull

request, it needs to fetch the resource state information again, send it to the requester

and, after that, eliminate all the state information. This behavior is not efficient if pull

requests are periodic and may introduce delays. A watcher should therefore be able

to pause and un-pause notifications while the notifier maintain the resource’s informa-

tion state up-to-date. There is not however any efficient and complete mechanism for

pulling information and pausing notifications in SIMPLE. Only the authors of the IETF

Internet Draft [187] address this problem. They define a new header in SUBSCRIBE

messages, whose possible values are “off”, “on” and “once” for pausing, un-pausing

and pulling notifications, respectively. Although this draft did not progress, to the best

of our knowledge, there have not been more similar proposals. The drawback of this

solution is the lack of fine-grained treatment for presence attributes.

As regards presence sources, SIMPLE does not provide any pull model for presence

publications and no other researchers have addressed this topic. Nevertheless, pausing

and pulling presence publications may reduce much presence traffic in some scenarios.

A presentity’s presence publications may be paused when its presence information is not

useful for other entities as, for example, when all the watchers are offline. Temporally

pausing publications of location information may reduce much presence traffic when

frequent updates are not needed. For instance, a user in a meeting is not supposed

to change his or her location before the meeting finishes. Then, a PS may be aware

of the user’s schedule through his o her calendar, and pause location updates until his

or her meeting finishes if traffic optimization was necessary. Attribute-based pulling

mechanisms are necessary to provide enough flexibility and information consistency.

For instance, a PS may need to receive any change in person-related information while

pausing publications about device information that usually does not change. Then,

the PS may pull device information occasionally to verify that this information has

not changed. Moreover, A PS may need to know some of the presentity’s presence

65

2. BACKGROUND

attributes immediately due to some information loss or some watcher needing these

attributes immediately.

2.9.9 Behavior of Presence Applications’ Users

The nature of presence information is very diverse; it may be used by a wide range of

applications with different requirements and patterns of use. Thus, there is a severe lack

of formal models of the behavior of presence applications’ users. However, user behavior

should be analyzed for designing efficient and scalable presence applications. Knowing

patterns of behavior allows saving presence updates when they are least needed. For

instance, studies about instant messengers [13][12][8] provide statistics showing that

users usually communicate with a low number of their buddies (between one or five

people). It is therefore reasonable to think that users only need frequent presence

updates from a few buddies, while the rest of buddies’ presence could be delivered

less frequently. Unfortunately, to date, there is not statistics about presence changes

in real-world applications because of the unpredictable behavior of these applications’

users.

Almost no authors have embarked on modeling presence changes formally. To the

best of our knowledge, only two research works [182][191] model presence changes

through Markov chains. In these models, each state of a Markov chain represents

a different combination of the values of the user’s presence attributes. The authors

of [182] describe a Markovian model for users’ online and offline times in presence

applications. In addition to the fact that only a presence attribute is analyzed, this

study is limited in several aspects. The authors assume that online and offline times at

night and day are independent from each other, which is not necessarily true in many

real-world applications. The authors of [191] model presence changes as a set of hops

between presence states, independently of presence attributes. Both models [182][191]

do not provide realistic behaviors of presence users and seem to be designed to facili-

tate mathematical calculations. Moreover, both of them rely on Markovian stationary

distributions, and hence state probabilities are time-independent. This assumption is

not valid in the vast majority of presence applications, in which the probability of users

having a particular combination of attribute values changes over time.

66

3

Filters for Fine-Grained

Notification Control

Presence information is a broad concept that includes a wide variety of presence at-

tributes (see Section 2.7.3). A presentity’s watchers may only be interested in a subset

of its presence information or they may have different levels of interest in its presence at-

tributes, as described in Section 2.9.7. It is even more probable for resource list watchers

because a resource list’s state information is composed by presence information about

all the presentities included in the list (see Section 2.7). SIMPLE takes the watchers’

needs into account for filtering the content of presence notifications [140]. Although

notification filters can be applied to any kind of subscription, they were conceived for

reducing the size of resource list notifications. Neither SIMPLE nor other researchers

are concerned about the subscriber’s needs on presence attributes when limiting the

rate of presence notifications. SIMPLE considers a single maximum notification rate

for all the presence information associated with a subscription [110]. The authors of

[183] describe a mechanism that allows watchers to specify the desirable maximum and

minimum notification rate when subscribing. All the presence attributes that compose

a resource’s state information are therefore notified at the same rate set by either the

notifier itself [110] or the subscriber [183]. This approach may be very inefficient if the

watchers have different consistency requirements on presence attributes. In this case,

the notifier should not delay in notifying a watcher of the most important attributes

too much (i.e, the attributes on which consistency is most required). If the notification

rate is set to inform the subscriber about the most important attributes frequently

67

3. FILTERS FOR FINE-GRAINED NOTIFICATION CONTROL

enough, this rate will be high. Thus, presence attributes that are not very necessary to

the subscriber but change frequently would generate unnecessary traffic. If the notifi-

cation rate is set to perform update aggregation by delaying notifications as much as

possible, this rate will be low. Thus, the important attributes that change frequently

would not be updated frequently enough. As described in Section 2.9.7, the watchers’

information consistency requirements should be taken into account when controlling

the rate of notifications in order not to introduce inapproppiate notification delays.

A pull model approach may save much presence traffic under some circumstances,

as described in Section 2.9.8. The vast majority of presence models use a push ap-

proach to inform watchers of their presentities’ presence information. This means that

a watcher is notified every time its presentities’ presence information changes. On the

contrary, in a pull model, no proactive notifications are sent but the watcher pulls

the presence information when necessary. Generally, the push model is more suitable

for presence systems. However, when traffic optimization is needed, the pull model

may be more efficient than the push one in some cases. When the watcher only needs

to know the presence information occasionally, maintaining a presence subscription is

useless and introduce unnecessary overhead. When presence changes are not frequent

and the watcher can estimate when these changes occur approximately, instantaneous

notifications do not compensate for the overhead introduced by a presence subscription.

Pull requests may be efficiently combined with pauses in notifications. For example,

when the user is not active (e.g., the mobile presence application is in background,

the PC is locked, etc.), presence notifications may be paused, and un-paused once the

user become active back. Temporally stopping notifications of presence attributes that

change frequently, such as geographical coordinates, may save much unnecessary pres-

ence traffic. As described in Section 2.9.8, SIMPLE does not provide any mechanism

for pausing notifications and pulling information when necessary.

We enhance SIMPLE notification filters for supporting fine-grained rate control

of presence notifications, and pulling and pausing notifications of particular presence

attributes. Section 3.1 introduces the concept of multi-throttling, and Section 3.2

proposes some extensions of the XML schema document for SIMPLE notification filters.

Some conclusions are given in Section 3.3.

68

3.1 Multi-Throttling

3.1 Multi-Throttling

We denominate multi-throttling as the use of multiple minimum intervals for controlling

the maximum rate at which the presence attributes that compose a presentity’s presence

information are notified. A minimum interval is a passive time that has to elapse

between two consecutive notifications. All the presence changes that occur during this

interval are aggregated and sent all at once when the interval elapses. Multi-throttling

is therefore an effective strategy for reducing the number of update messages that

are sent. This multi-rate mechanism reduces the number of times that non-important

presence attributes are notified while keeping higher notification rates for more relevant

attributes. Given the diversity of information that resource lists may enclose (Appendix

B gives an example), this mechanism greatly would reduce presence traffic between

watchers and their RLSs. For instance, it is reasonable that, during working hours,

workmates’ presence information is more relevant than that of friends. Thus, an RLS

could set a long minimum interval to relatives while leaving workmates out of rate

control (i.e., their presence updates are received instantaneously).

Figure 3.1 depicts what happens when a minimum interval elapses and full- and

partial-state notifications are sent [138]. The left-hand side shows the presence changes

that occur at the notifier during the set interval. The right-hand side shows the single

update message that would be sent to the subscriber with throttling. During the

throttling interval, all the changes are aggregated, and once the interval expires they

are sent into a partial- or full-state document. A full-state notification contains the

complete presence information. A partial-state notification only includes the presence

changes that have occurred during the interval are sent. Thus, partial-state notification

is more efficient when consecutive changes in the same attributes occur.

With multi-throttling, in order to reduce the number of message updates as much

as possible, it is convenient to include any change in the entire presence information

whenever a notification is going to be sent. However, a minimum interval may be

a means of withholding some resource state information due to some privacy policy.

For instance, a notifier may not want to notify a subscriber of location information so

frequent that the subscriber can figure out the complete route taken by the subscribed

presentity. Thus, the notifier may apply a long minimum interval to the presentity’s

location information for the subscriber. Such a minimum interval is mandatory in the

69

3. FILTERS FOR FINE-GRAINED NOTIFICATION CONTROL

Figure 3.1: Aggregation of presence changes when a throttling interval expires

sense that the location information should not be aggregated into any other notification

that is sent before this interval elapses. We classify control rate intervals based on their

goal, as shown below.

Control rate interval


Traffic optimization:

Non-mandatory

minimum interval

Other policy

{
Mandatory minimum interval (e.g., privacy)

Maximum interval (e.g., consistency)

3.2 Enhanced XML Schema for Notification Filters

Notification filters express the information is of interest (i.e., content of notifications)

and when this information should be notified (i.e., trigger conditions). The XML

schema for notification filters [141] states that a filter can contain one or more trigger

elements as well as one what element. The former describes the trigger conditions that

must be satisfied to send a notification and the latter the content of this notification.

Any filter must contain either a non-empty trigger or what element. If a filter does not

contain any trigger condition, any change in the resource state information described by

the what element triggers a notification. If there are more than one trigger conditions,

70

3.2 Enhanced XML Schema for Notification Filters

all of them must be satisfied to send a notification. In the case that the what element

is absent, the notifications include all the resource state information. The schema [141]

defines three kinds of trigger conditions: changed, added and removed. Appendix C

shows an example notification filter document.

We consider notification filters as a tool for not only expressing watchers’ prefer-

ences but also optimizing presence traffic. To this end, the XML schema document in

[141] is enhanced for controlling the timing of notifications of presence attributes. We

add four new types of trigger conditions: max-interval, min-interval, once and never.

These new conditions allow (1) controlling notification rate, (2) temporally pausing and

un-pausing notifications and (3) triggering one-time notifications (i.e., pull requests) of

presence attributes. Below, the proposed XML elements are shown, which are de-

fined within the complex type “TriggerType”. We propose the new XML namespace

urn:ietf:params:xml:ns:simple-filter:timing for this extension. Sections 3.2.1 and 3.2.2

describe the proposed elements, and Section 3.2.3 presents some general rules for these

elements and shows an example document.

<xs:complexType name=‘‘TriggerType’’>

<xs:sequence>

<xs:element name=‘‘changed’’ type=‘‘ChangedType’’

minOccurs=‘‘0’’ maxOccurs=‘‘unbounded’’/>

<xs:element name=‘‘added’’ type=‘‘xs:string’’

minOccurs=‘‘0’’ maxOccurs=‘‘unbounded’’/>

<xs:element name=‘‘removed’’ type=‘‘xs:string’’

minOccurs=‘‘0’’ maxOccurs=‘‘unbounded’’/>

<xs:any namespace=‘‘##other’’ processContents=‘‘lax’’

minOccurs=‘‘0’’ maxOccurs=‘‘unbounded’’/>

<xs:element name=‘‘max-interval’’ type=‘‘MaxIntervalType’’

minOccurs=‘‘0’’ maxOccurs=‘‘1’’/>

<xs:element name=‘‘min-interval’’ type=‘‘MinIntervalType’’

minOccurs=‘‘0’’ maxOccurs=‘‘1’’/>

<xs:element name=‘‘once’’ type=‘‘empty’’

minOccurs=‘‘0’’ maxOccurs=‘‘1’’/>

<xs:element name=‘‘never’’ type=‘‘empty’’

minOccurs=‘‘0’’ maxOccurs=‘‘1’’/>

</xs:sequence>

</xs:complexType>

<xs:complexType name=‘‘MinIntervalType’’ type=‘‘xs:nonNegativeInteger’’>

<xs:attribute name=‘‘mandatory’’ type=‘‘xs:boolean’’ use=‘‘optional’’>

<xs:attribute name=‘‘unit’’ type=‘‘xs:string’’ use=‘‘optional’’>

</xs:complexType>

71

3. FILTERS FOR FINE-GRAINED NOTIFICATION CONTROL

<xs:complexType name=‘‘MaxIntervalType’’ type=‘‘xs:nonNegativeInteger’’>

<xs:attribute name=‘‘unit’’ type=‘‘xs:string’’ use=‘‘optional’’>

</xs:complexType>

3.2.1 Min-Interval and Max-Interval Trigger Conditions

We define the min-interval and max-interval trigger types for limiting the number of

notifications and ensuring notifications, respectively. The former means the minimum

passive time that has to elapse between two consecutive notifications of the associated

presence information. The latter means the maximum time that can elapse between two

consecutive notifications of the associated presence information. These two concepts

were also introduced by the authors of [183]. However, they apply a single minimum

and maximum interval to the whole presence information, which we find less helpful and

efficient. On the contrary, we allow the subscriber to play with multiple maximum and

minimum intervals for different pieces of presence information. The proposed trigger

types naturally implement multi-rate control because trigger conditions can be bound

to particular pieces of a resource’s state information.

If a notifier receives a notification filter that contains a max-interval trigger, it sets a

timer to the specified time interval and restarts it whenever it expires. When a timeout

occurs, if no notification of the state information described by the filter’s what element

was sent since the last timeout, a notification is triggered. If the notifier receives a

notification filter that contains a min-interval condition, no notifications of the state

information described by the filter’s what element are allowed during the specified time

interval. Therefore, whenever a notification of this information is sent, the notifier

sets a timer to the specified time interval. Any presence change that occurs before the

timer expires is aggregated. Once the timer expires the aggregated presence changes

are notified all at once. If the min-interval trigger condition includes an attribute

“mandatory”, it means that the interval is mandatory. As described in Section 3.1, a

minimum interval is mandatory when the associated presence information can not be

attached to a notification of other presence information that is sent before this interval

expires.

If a subscriber wishes to include a max-interval or min-interval trigger condition

for controlling a set P of the subscription’s state information, it should perform as

follows. If P contains the complete resource state information and a filter without a

72

3.2 Enhanced XML Schema for Notification Filters

what element already exists, the trigger is added to this filter. Otherwise, a new filter

with no what element but does include the trigger should be created. If P is a subset of

the resource state information and a filter contains a what element that only includes

P, the trigger is added to this filter. Otherwise, a new filter with the trigger and a what

element that only contains P is created.

3.2.2 Never and Once Trigger Conditions

We define the never trigger condition for disabling notifications of some presence in-

formation. A notifier must never notify the information described by the what element

of any filter that has a never condition. If a filter containing a never condition does

not include a what element, notifications of changes in the entire presence information

are paused. If the watcher wishes to un-pause notifications, it only needs to remove

the filter. As [140] describes, the watcher should remove the filter by setting its remove

attribute to true and including the updated filter with a new identifier.

When notifications of some presence information are disabled, the watcher may

need sporadic information updates without enabling notifications back. Although a

re-subscription request can be used to make the notifier send a notification, such a

notification includes the complete presence information as stated in [110]. Conditional

notifications [147] were defined for suppressing the full-state notifications due to sub-

scription refreshes when the presence information has not changed from the last notifi-

cation. This strategy defines a Suppress-If-Match header to be added to re-subscription

requests, which corresponds to the full-state resource information. When a notifier sees

this header in a re-subscription request, it checks its value against the local tag of the re-

source information. In case of matching, no change occurred from the last notification,

and hence no notification is sent to the subscriber. Otherwise, a full-state notification

is sent to the subscriber. We define the once trigger condition to be combined with

conditional notifications for forcing the notifier to only notify some piece of presence

information. This allows disabling full-state notification completely and pulling the

presence attributes of interest when necessary. The presence of a notification filter con-

taining a once trigger modifies the notifier behavior defined in [147]. When a notifier

sees a Suppress-If-Match header in a re-subscription request that contains a filter with

a once trigger element, it ignores this header and immediately notifies the informa-

tion contained in the filter’s what element. If the what element is not present, all the

73

3. FILTERS FOR FINE-GRAINED NOTIFICATION CONTROL

resource information is notified. This notification only contains this information and

is sent regardless of whether this information has changed from the last time it was

notified. After notifying, any filter with a once condition is eliminated; these filters are

not stored since they only have effect once.

A filter that contains either a once or never trigger should not include other types of

trigger. However, a filter with a once trigger can contain the same what element as other

filter with a never trigger. This actually enables a pull model for presence notifications.

Moreover, once conditions can also trigger one-time notifications of information that has

not been paused previously. This allows pulling certain presence attributes, probably

due to information lost or unexpected requirements, while keeping notifications for

refreshes disabled.

3.2.3 General Rules and Example Document

A notifier and subscriber handling the proposed trigger elements in notification filters

should follow the general instructions in [140] except for the following considerations.

The what elements of all the notification filters associated with a resource determine

the view of the resource’s presence information that is notified to the subscriber. Thus,

full-state notifications contain the information determined by the what elements that

are not included in any filter with a never trigger. A filter containing either a never

or once trigger should not include any other kind of trigger. If a subscription request

includes a filter with a once trigger, the notifier replies with the information determined

by the filter’s what element. Note that this kind of trigger only should be present when

conditional notifications are applied, as described in Section 3.2.2. When a conditional

subscription request does not include a filter with a once trigger, the notifier follows

the procedures in [147] for determining whether to send a notification or not. A notifi-

cation filter can combine control rate conditions, namely min-interval and max-interval

triggers, with the changed, added and removed conditions specified in [141]. Changed,

added and removed trigger conditions determine the presence changes of interest when

they are combined with a min-interval trigger. This trigger determine the rate at

which the changes of interest are notified. Max-interval triggers do not modify the

effect of changed, added and removed triggers, since notifications of changes, additions

and removes are notified instantaneously.

74

3.2 Enhanced XML Schema for Notification Filters

An example document is shown below. The watcher is interested in the presentity’s

entire presence information. However, due to traffic optimization, updates in location

information are required only every 30 minutes. The user-input element is defined in [23]

as the usage state of the service and device based on human user input (e.g., keyboard,

pointing device or voice). This element can assume one of two values, namely active

and idle. It is expected that this element can change very frequently, especially for

mobile devices. In our use case, the watcher is not very interested in this information,

and hence notifications of the user-input element are paused until traffic optimization

is no longer necessary.

<?xml version="1.0" encoding="UTF-8"?>

<filter-set xmlns="urn:ietf:params:xml:ns:simple-filter">

<ns-bindings>

<ns-binding prefix="pidf" urn="urn:ietf:params:xml:ns:pidf"/>

<ns-binding prefix="rpid" urn="urn:ietf:params:xml:ns:pidf:rpid"/>

<ns-binding prefix="gp" urn="urn:ietf:params:xml:ns:pidf:geopriv10"/>

<ns-binding prefix="dm" urn="urn:ietf:params:xml:ns:pidf:data-model"/>

<ns-binding prefix="e1" urn="urn:ietf:params:xml:ns:pidf:rpid:usecase1"/>

</ns-bindings>

<filter id="8439" uri="sip:bob@example.com">

<what>

<include>

/pidf:presence/dm:device/gp:geopriv

</include>

</what>

<trigger>

<min-interval>30</min-interval>

</trigger>

</filter>

<filter id="8439" uri="sip:bob@example.com">

<what>

<include>

/pidf:presence

</include>

</what>

</filter>

<filter id="5681" uri="sip:bob@example.com">

<what>

<include>

/pidf:presence/dm:person/rpid:user-input

</include>

</what>

<trigger>

</never>

</trigger>

</filter>

75

3. FILTERS FOR FINE-GRAINED NOTIFICATION CONTROL

</filter-set>

3.3 Conclusions

We proposed an extension of the XML scheme for SIMPLE notification filters, which

consists in new triggers conditions for i) controlling the notification rate of presence

attributes, 2) pausing and un-pausing notifications of presence attributes and 3) trig-

gering notifications of presence attributes. This extension is aimed at facilitating the

differentiated treatment of presence attributes in presence notifications. Such a dif-

ferentiated treatment is necessary when controlling the rate of notifications is applied

for traffic optimization and the watchers have different consistency requirements on

presence attributes. Notification rate control is already being considered for SIMPLE.

However, it is applied to all the state information associated with a resource, and

hence this information (e.g, a resource list) is notified at the same rate. To overcome

this shortcoming, we include control rate conditions in notification filters, which allows

fine-grained multi-rate control of notifications. We allow a minimum and a maximum

interval between two consecutive notifications of a subset of presence information. No

notifications can be triggered before the minimum interval expires. As regards the max-

imum interval, if no notification was sent during this interval, a notification is triggered

regardless whether or not the information changed. We also define trigger conditions

for pausing, un-pausing and triggering notifications, which allows pulling subsets of

presence information while keeping notifications paused. These new trigger conditions

are enablers of pull approaches to obtain presence information, which may be useful to

optimize presence traffic in some circumstances. When applying throttling for traffic

optimization, we should avoid watchers from perceiving delays. When a watcher per-

ceives a delay, it means that it access obsolete values of presence attributes because

they are not updated frequently enough. This can lead the watcher to undesirable be-

haviors and, therefore, a tradeoff between traffic optimization and the watcher’s needs

should be found. Our strategy helps in finding such a tradeoff since multiple minimum

and maximum intervals can be established for a resource.

The proposed notification filters are specially interesting in location-based systems.

In these systems, location updates occur very frequently and are timely spread over

76

3.3 Conclusions

the network. Our approach permits to control the rate of location updates and to

pause, un-pause and pull them when necessary Regardless of the remaining presence

information. Nevertheless, we are conscious that the proposed attribute-based notifi-

cation rate control presents scalability issues and adds some complexity to the PS. The

PS needs to handle multiple maximum notification rates for each watcher subscribed

to a presentity. As the number of watchers and presentities increases, this approach

becomes unfeasible. Moreover, as stated in [140], processing of notification filters may

require a considerable amount of computation. Thus, we envision notification filters to

be used in small-scale scenarios such as corporations. On the other hand, the proposed

filters may be applied to presentities in a distributed manner. Each presentity may

handle the rates associated to its presence information independently, thereby solving

the scalability issue. Section 4 discusses this strategy and its efficiency at reducing

presence traffic on the access network.

77

3. FILTERS FOR FINE-GRAINED NOTIFICATION CONTROL

78

4

Optimization of Presence

Publication Traffic: Proposal,

Mathematical Model and

Performance Estimation

Presence publication triggers end-to-end notification flows to notify each of the presen-

tity’s watchers. Let’s repeat here as Figure 4.1 the illustration of notification flows for

a publication given as Figure 2.9 for convenience.

Figure 4.1: Publication and resulting notifications flows

A publication involves messages being exchanged by the presentity, its PS, the

watchers’ RLSs and finally the watchers themselves. Although Figure 4.1 does not show

the watchers’ RLSs for the sake of simplicity, the watchers normally do not subscribe

to their presentities directly. Instead, they subscribe to their RLSs, which in turn

79

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

subscribe to each of the watchers’ presenties, as described in Section 2.7. Thus, a

presentity’s presence publication results in (2+4*N) messages, assumed that N watchers

are subscribed to the presentity. As the number of presentities, watchers and presence

publications grows up, the impact of presence publications on network latency and

servers can be severe. Taking into account that large-scale federated presence services

are envisioned in NGNs (see Sections 2.4 and 2.9.5), easing the impact of presence

publications on the presence service is necessary. In radio access networks, the effect

of frequent presence publications may be especially dramatic on low-bandwidth links

and wireless devices with limited battery life and processing capabilities. Furthermore,

presence information has become a general concept that embraces all kind of context

about not only users but also places, objects and any relevant entity to communication

applications. In the near future, presence information will be enriched with diverse data

generated by calendar applications, social networks, sensor networks, social television,

pervasive gaming, etc. Such rich presence information is encoded by XML, which is

very verbose and therefore constitutes a heavy burden for devices and links with scarce

resources.

Section 2.9.6 introduces some SIMPLE optimizations that may be used for reduc-

ing presence traffic on the network access link. Most of these optimizations reduce

subscription-related traffic rather than the number and size of presence publications.

Presence subscriptions pave the way for traffic optimization because they involve peri-

odic refresh messages, which are used by subscribers and notifiers to interoperate. On

the contrary, publications are totally asynchronous and not bound to any state. This

makes the optimization of presence publications especially difficult, and hence there are

very few optimizations of presence publications. Partial presence information [137] and

presence compression [142] reduce the size of presence documents rather than the num-

ber of publications. Thus, the harmful notification flows depicted in Figure 4.1 are still

triggered. These flows may involve harmful consequences: PS overload, large amounts

of notifications on the network core, and overconsumption of radio access bandwidth

and the battery life of wireless devices. Some optimizations of subscription traffic, such

as event filtering [140] and notification rate control [183] (see Section 2.7.4) help in im-

peding the notification flows due to presence publications. A PS can filter the content

and control the rate of the presence notifications generated as a result of a publication

80

in order to save traffic on the network core. Equally, an RLS can perform so for reduc-

ing the number and size of RLMI notifications to resource list subscribers on the access

network link. Although these strategies decrease the presence traffic for notifications,

presence publications are not yet optimized, and hence processing resources at PSs and

at user devices, in addition to access link bandwidth, may still be over-consumed.

Limiting the number of presence publications is specially crucial in mobile presence-

enabled LBSs since the presentities’ location information is likely to change very fre-

quently. To reduce the number of presence publications on the network access link,

OMA has defined Presence Network Agents (PNAs) [196], which publish presence infor-

mation that can be deduced from the network on behalf of presentities. Unfortunately,

there still is much information that cannot be extracted from network services such

as person-related information. For instance, the presentity’s GPS coordinates have to

be published by the end device’s UA, which is probable to involve many publications

over the air interface. In the research community, almost no authors have tackled the

presence traffic that is due to publications. To the best of our knowledge, only the

work [65] addresses the need to limit the rate of presence publications in the IMS. The

authors propose a hierarchical structure of PSs, called Context Mediators, which are

specialized in managing particular kinds of presence. A Context Mediator only commu-

nicates with the presence sources that publish the kind of information that it manages.

These servers require advanced intelligence in order to perform presence aggregation

and balance the source publications with the needs of watchers. However, the impact

of multiple PSs on the IMS CSCF capacity may be severe since all the messages sent

and received by each PS need to be processed by the S-CSCF. Unfortunately, the au-

thors do not address the viability and impact of their proposal. Moreover, the authors

proposed an IETF Internet-Draft [198] that defines a new event package for allowing

presentities to be up to date with their PSs’ presence requirements. Thus, presentities

only publish the presence attributes needed by their PSs rather than their complete

presence information. Although this event package was specified to reduce the number

and size of presence publications, a new kind of subscription between the presentity

and its PS does not seem to be a good approach. Probably, the maintenance of this

subscription generates more traffic than presence publications and it was the reason

why this draft expired without further progress.

81

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

On the other hand, a pull model for presence publications may be helpful in reducing

presence traffic on the access network link under some circumstances, as described in

Section 2.9.8. Instantaneous presence publications are not efficient and useful if the

watchers only need to know the presentity’s presence information occasionally. In this

case, it would be more efficient to have the presentity not publishing presence changes

and the PS pulling presence changes periodically. As the needs of the PS and watchers

may change over time, it would be desirable to provide the PS with a mechanism for

pausing and un-pausing publications automatically.

As described in Section 2.9.7, the importance that watchers give to presence at-

tributes should be considered when optimizing presence traffic. A presentity’s presence

information may be composed by a wide range of presence attributes of different na-

ture. Some presence attributes, such as activity or location information, change more

rapidly than others, such as contact information or service capabilities. Moreover,

watcher applications generally are not interested in the full set of presence attributes.

Instead, they have different rate and accuracy restrictions on presence attributes. Due

to the fact that presence attributes change their values at different rates, the authors

of [66] define decay functions of subsets of presence information that allow the PS to be

aware of when some presence attributes are very probable to have changed their values.

When a decay function reaches a threshold value, the PS should somehow retrieve the

latest value of the presence information associated with the function. The PS may be

missing this latest value due to network losses or some publication rate control at the

presentity. Thus, the PS should be capable to pull this value if necessary. Although this

work does not tackle traffic optimization, they address the diverse nature of presence

information and the need to maintain information consistency between presentities and

watchers. The above-mentioned Internet-Draft [198] propose a new kind of subscription

for presentities to subscribe to their PSs’ QoS requirements on presence information

(e.g., urgency, rate ad cost). Thus, presentities are able to publish presence attributes

according to these requirements.

In order to optimize presence publications and tackle the afore-mentioned issues,

we propose applying the notification filters described in Section 3 to presentities. These

filters, henceforth called publication filters, can determine the presence changes that

trigger publications, the content of such publications and when to send them. The

proposed publication filtering enables i) fine-grained control of publication rate and

82

4.1 Publication Filters for Presence Sources

ii) pausing and un-pausing publications of presence attributes. We propose attribute-

based publication rates to limit the number of publications while satisfying the watch-

ers’ preferences on presence update rate. We also allow forcing presentities to publish

some presence attributes at minimum rates, which ensures that these attributes do

not become obsolete at watcher applications. We analytically estimate the traffic rate

generated by the proposed publication rate control mechanism. To this end, we model

the behavior of some presence applications’ users through a continuous-time Markov

process. Moreover, we propose a strategy for dynamically adapting a presentity’s maxi-

mum publication rate to the frequency at which its presence information changes, which

we refer to as sojourn-based rate. This strategy avoids setting too low publication rates,

which may lead to information inconsistency issues at the watchers.

Section 4.1 describes our proposal for implementing publication filtering. Section

4.2 discusses a mathematical model for estimating presence traffic rate when throttling

publications, and studies the performance of this strategy for a particular use case.

Section 4.3 presents sojourn-based rates and studies their performance. Finally, Section

4.4 gives some conclusions.

4.1 Publication Filters for Presence Sources

We propose setting presentities to apply publication filters that are defined by the XML

schema document described in Section 3.2. This XML schema is an extension of that

for SIMPLE event notification filters [141]. This allows the PS to perform dynamic

fine-grained control of its presentities’ presence publications by means of:

• Minimum and maximum publication rates of presence attributes.

• Pausing and un-pausing publications of presence attributes.

• Pulling presence attributes when publications are paused

• Triggering instantaneous publications of presence attributes

• Filtering the content of presence publications

Section 4.1.1 describes the use of minimum and maximum rates for throttling pub-

lications. Section 4.1.2 explains a pull model for presence publications. Section 4.1.3

discusses how to implement publication filtering.

83

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

4.1.1 Multi-rate Control of Publications

Limiting the number of presence publications is advisable for reducing presence traffic

in scenarios where presence changes occur frequently. The most obvious scenario is a

presentity publishing his or her geographical coordinates whenever they change. Setting

a passive interval between two publications, which we refer to as throttling, avoids

floods of presence publications. Presentities may be configured with such a passive

time statically or via OTA provisioning through the SOURCE-THROTTLE-PUBLISH

parameter defined by OMA. However, the maximum delays in presence updates that are

acceptable by watchers besides traffic optimization should be taken into account. Thus,

a presentity’s passive interval should be set to a value that ensures that publications

of the attributes that are most urgently needed by watchers are published frequently

enough. This involves publishing changes in a presentity’s entire presence information

at the highest rate required by watchers. This single interval is especially inadequate in

LBSs in which presentities’ geographical coordinates are crucial and therefore require

high rates. In presence systems that do not need location updates frequently, this

throttling technique may even be more inefficient because of a high minimum rate due

to some other important information. In this case, changes in geographical coordinates

would trigger presence publications at such high rate although it is unnecessary. On the

other hand, some location systems may require periodic location updates, even if the

location information has not changed or contains uncertainty, for working appropriately.

If we set a maximum interval that cannot elapse without publications of location,

whenever no location publications occurred during this interval, a publication should

be sent. If this publication is full-state, much unnecessary information will be published

at the same minimum rate.

Apart from traffic optimization, throttling could be a means of ensuring privacy

policies about device-specific presence information such as location information. Let

us consider a corporation that provides its employees with a presence application that

runs on laptops and smart phones. This presence application publishes the employees’

presence information including geographical coordinates during working hours. This

corporation has different privacy policies on the employees’ location based on their

position. Let us assume that any update in the location of the directors’ laptops is

required instantaneously by the system. However, the location of the directors’ phones

84

4.1 Publication Filters for Presence Sources

is more protected and should be spread every 1 hour as minimum. Presence multi-rate

control constitutes a safe and neat solution in this scenario. The corporation’s PS may

set the proper minimum publication rates of location for each employee’s device (e.g.,

one hour for director phones and none for director laptops). In this way, user devices

only disclose their location to their PSs according to the set intervals and PSs are free

of handling low-level authorization rules every time a location update is received. The

minimum interval for directors should be mandatory. The information associated to a

mandatory interval can not be attached to any publication of other information that is

sent before this interval expires, as described in Section 3.1.

We can tackle the afore-mentioned issues by using the XML schema described in

Section 3 for fine-grained multi-rate control. The min-interval and max-interval trigger

conditions allows associating the presence information included by a filter with a min-

imum and maximum interval between two consecutive publications, respectively. We

refer the reader to section 3.2.1 for more information about these trigger conditions.

4.1.2 Pull Model for Publications

Currently, PSs are not capable of pausing presence publications when it is needed to

reduce presence traffic. However, pausing and un-pausing publications may be very

convenient to reduce presence traffic on wireless links. A presentity’s presence publi-

cations could be paused when its presence information is not useful for other entities

as, for example, when all its watchers are offline. Temporally pausing publications in

location information could reduce much presence traffic when frequent updates are not

needed. For instance, a user in a meeting is not supposed to change location before

the meeting finishes. Then, a PS may be aware of the user’s schedule through his

calendar and pause location updates until his meeting finishes if traffic optimization

was necessary. If the meeting’s end time is unknown, the PS may throttle location

updates at low rates until a significant location change occurs. Moreover, there is no

means of requesting presentities to publish their presence information (or a subset of

it) immediately. This is because presence systems always adopt a push model in which

presentities proactively inform their PSs of any change in their presence information.

However, a PS may need to know a presentity’s presence information immediately due

to some information loss or some watcher in urgent need of certain presence attributes.

Pulling presence information may be conveniently combined with publication pauses.

85

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

For example, a PS may prefer to receive any change in person-related information but

to pause publications about device information that usually does not change. The PS

may pull device information occasionally for verifying that this information has not

changed.

We can pause publications by using the filters described in Section 3 to presentities.

These filters can include never conditions for pausing, and once conditions for triggering

publications of presence attributes. We refer the reader to Section 3.2.2 for more

information about these trigger conditions.

4.1.3 Implementation

We propose the PUBLISH method to be used by the PS for informing presentities

about publication filters. Thus, the PS is considered as a presentity whose presence in-

formation consists in publication filters. Although this approach does not correspond to

the PS role (i.e., notifier), we think it is the SIMPLE-based most efficient and simplest

means of configuring presentities. Figure 2 outlines the big picture of this strategy.

The presentity’s watchers send their notification filters to their RLSs, as described in

[140]. The RLSs attach these notification filters to the SUBSCRIBE requests sent to

the presentity. An RLS may modify the watcher’s notification filter or even create a

new one based on some administrative policy, such as traffic optimization. However,

the information sent to the watcher should always be according to his or her notifica-

tion filter. The presentity’s PS should find a tradeoff between the requirements of all of

the presentity’s watchers, create publication filters accordingly and publish them to the

presentity. Finding this tradeoff may be an arduous task, if not impossible. However,

the presence of watchers themselves is a sign of interest in being notified and can sig-

nificantly help in choosing suitable publication filters. States such as online, busy and

idle are indicators of the watcher’s interest in communicating and therefore in getting

presence information about their presentities. For example, if all of the presentity’s

watchers are offline, generally there is no need to publish or, at least, publications

should be sent much less frequently. In this case, the PS may send the presentity a

publication filter to pause publications of any presence attribute or set a long minimum

interval between two consecutive publications. In general, the greater the number of

online watchers, the higher the probability of the presentity’s presence information be-

ing useful. Even conversation history may be useful to deduce the watchers’ interest

86

4.1 Publication Filters for Presence Sources

SUBSCRIBE	
 (filter)	

OK	

PUBLISH	
 (filter)	

OK	

Watcher 1

SUBSCRIBE	
 (filter)	

OK	

Watcher 2

SUBSCRIBE	
 (filter)	

OK	

Watcher N

SUBSCRIBE	
 (filter)	

OK	

Watchers’	
 filters	
 +	

Traffic	
 op@miza@on	
 policy	
 +	

Privacy	
 policy	

RLS 1

RLS 2

RLS N

Presentity

PS

Figure 4.2: Publication filtering

in a presentity’s presence. The more frequently the watcher communicates with the

presentity, the greater the probability of this watcher being interested in the presen-

tity’s presence information. Therefore, the PS may prioritize the watchers’ notification

filters based on the probability of each one being actually watching the presentity. PSs

could choose more restrictive publication filters than those of watchers when optimizing

presence publications is crucial. For instance, if some presence attributes change too

frequently, a PS may decide to request them from the presentity at lower rates. The

presence of a presentity is a significant parameter to consider for reducing the number

of location updates. During working hours, for example, the user usually stays indoors

(i.e., in his or her office), and the PS could therefore request location updates at a very

low rate because location increments will be considerably small. When the user finishes

working, the PS could request presence updates at a higher rate.

Publication filtering follows the same funtional rules as those for notification filters

[140] excepting that filters are borne by PUBLISH rather than SUBSCRIBE requests.

Whenever a PS publication filter for a presentity changes, it sends a PUBLISH message

that contains the updated filter to the presentity. To this end, the PS should remove

the filter that changed by setting its remove attribute to true and including the updated

filter with a new identifier, as described in [140]. Moreover, The PS and the presentity

should follow the general rules for handling the proposed extensions described in Section

3.2.3.

87

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

4.2 Mathematical Analysis of Publication Rate Control

This section mathematically estimates the performance of throttling publications through

a single and multiple maximum rates. Section 4.2.1 discusses about modeling presence

changes through state diagrams. Section 4.2.2 proposes using such state diagrams for

modeling presence changes probabilistically by means of Markov chains. This section

also summarizes how to calculate the time-dependent state probability distribution of

Markov processes. Sections 4.2.3 and 4.2.4 mathematically analyze the byte rate with

single- and multi-throttling through the Markovian properties. Based on this analy-

sis, Section 4.2.5 analytically estimates the traffic rate after throttling intervals for a

particular use case.

4.2.1 Modeling Presence Changes as State Diagrams

While a user is connected to a presence application, this user takes the role of presentity

and his presence information goes through a series of states. Each state reflects a

different status of the presence information, and the sequence of states over time is

determined by the changes that the user (or even other authorized agents) makes in

his presence. This type of system can easily be represented by state diagrams: each

possible presence status is a state in the diagram. The states are connected by direct

arcs, which represent the actions that alter the presence. If the presentity’s presence

information is made up of AN attributes, where each attribute ak can take rk possible

values, the representative state diagram will have
∏AN
k=1 rk states. The number of states

will be smaller if there are incompatibilities between presence attributes because two

or more values cannot coexist. If we assume that presence changes occur one after the

other, the maximum number of arcs for each state in the diagram would be
∑AN

j=1(rj−1).

In contrast, if we assume that a presentity is able to change several attributes at the

same time, each state could be connected to all the others, and hence the maximum

number of arcs in the diagram would be N
∏AN
k=1(rk − 1). The presence diagram for a

presentity, therefore, contains its maximum number of arcs when there is no restriction

on the possible presence changes.

An illustration is given in Figure 4.3. This example presence information consists of

three presence attributes: audio (A), moving (M) and sphere (SPH). The first attribute

88

4.2 Mathematical Analysis of Publication Rate Control

Figure 4.3: A state diagram for changes in three particular presence attributes

indicates whether the level of noise at the presentity’s location is acceptable or inap-

propriate for incoming voice calls through the OK and noisy value, respectively. The

moving attribute indicates whether the user is moving so fast that he or she is likely

to be using a mode of transport, such as a motorcycle or a car. The sphere attribute

refers to the role of the presentity and only has two possible values: online (i.e., the

presentty is logged onto the application) and offline (i.e., the presentity is logged off

the application). As shown in Figure 4.3, the presentity’s presence information goes

through a series of states. Each presence state is a particular combination of attribute

values and represents the status of the user’s presence information at a given moment.

The arrows indicate transitions between states, which are due to changes in presence

attributes. For example, in Figure 3, the presence information goes from state 2 to

3 when the audio attribute changes from OK to noisy. Compared to other models of

presence changes [191][182], the transition graph in Figure 4.3 is more adaptable to

other scenarios since all the states except state 1 are connected. Thus, one could create

other presence change patterns by setting some transition rates to zero.

4.2.2 Presence Information Probability Distribution

The graphical representation of the dynamics of presence information discussed in Sec-

tion 4.2.1 closely matches the transition diagrams of Markov chains. Changes in pres-

ence information can be analyzed through a Markovian model only if the times at

which presence changes occur follow the exponential distribution, and hence the sys-

tem is memoryless [199]. This means that the probability of a state in the chain moving

89

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

to another only depends on the present state and is independent of the chain’s past his-

tory. The past history is completely summarized by the present state, which is known

as the Markov property [199]. To satisfy this property, we analyze presence changes

over short periods of time, such as working, having lunch and watching a movie, in

which changes occur according to particular patterns. In such short periods of time, it

is reasonable to assume that the time until the next presence change is exponentially

distributed. Thus, the current status of the user’s presence information summarizes all

the previous changes in this information. For example, call duration that determines

busy and idle states is an illustrative example that satisfies this assumption. We are

however conscious that some presence systems may not satisfy this assumption. Let

us consider a user that is driving at a constant speed on a non-congested road and

publishes his location at a constant rate. This is a periodic distribution and therefore

cannot be modeled as a Markov chain. Nevertheless, exponential distributions are more

pessimistic than periodic distributions, and hence assuming the former implies working

on the worst case.

We perform a non-steady analysis about the probability distribution of a Markov

chain that models changes in some presence information. Compared to other steady-

state analysis [182][191], this approach is closer to the nature of presence applications,

since presence changes are dependent on time and can occur at any instant of time.

Let n denote the number of states in the chain, each representing a particular status

of the presence information. Transition rates qij represent the rates at which the chain

moves from one state to another, that is, the rates at which presence changes occur.

Let Q be the transition rate matrix or infinitesimal generator of the chain, as shown

below:

Q =


∑

j 6=1−q1j q12 · · · q1n

q12
∑

j 6=2−q2j · · · q2n

...
...

. . . · · ·
q1n q2n · · ·

∑
j 6=n−qnj

 (4.1)

Let X(t) denote the state in which the Markov chain is found at time epoch t.

Setting

pxk(t) = P{X(t) = k}, 1 ≤ k ≤ n (4.2)

90

4.2 Mathematical Analysis of Publication Rate Control

From the Markov theory [199], the chain’s state probability distribution matrix

P x(t) can be expressed as (4.3). The general solution of this equation can be written as

(4.4), where λi is an eigenvalue of the matrix Q, Zi is the eigenvector that corresponds

to λi, and C is the 1-by-n constant coefficient matrix. The matrix C is calculated to

satisfy I0 = CΩ, where Ω is the n-by-n matrix of the eigenvectors Zi, i = 1, .., n, and I0

is the scalar vector that summarizes the initial state of the Markov chain.

dP x(t)

dt
= P x(t)Q (4.3)

pxj (t) =

n∑
i=1

C[1, i]Zi[j]e
−λit (4.4)

4.2.3 Mathematical Analysis of Byte Rate with Single-Throttling

This section analyzes the probability that a presence change in the presentity’s complete

presence information has occurred during a throttling interval, that is, the probability

of publishing after this interval. When a throttling interval expires, a presence change

has occurred if the Markov chain’s state is different from that in which the chain was

at the beginning of this interval. Let us define the change probability when a throttling

interval ϕ has expired at time tϕ, cpst(tϕ) as shown below:

cpst(tϕ) =
n∑
i=1

n∑
j=1(j 6=i)

P{X(tϕ) = j|X(tϕ − ϕ) = i} (4.5)

Stated differently, cpst(tϕ) is the probability of finding the chain in a given state at

the beginning of the throttling interval and in a different state when this interval ends.

Expression (4.5) disregards the possible intermediate transitions between the states

at the beginning and at the end of the throttling interval. The intermediate states

are summarized by the end state, and this is actually the advantage of throttling:

intermediate state changes do not need to be published. In Expression (4.2), pxi (t) is

the probability of the Markov chain being in state i at time t, which is built on the

scalar vector I0 that summarizes the initial state of the Markov chain. The Markovian

memoryless property states that the future probabilistic behavior of Markov chains

only depends on the current state of the chain, regardless of how the chain reached that

state. Therefore, in Expression (4.5), the condition X(tϕ − ϕ) = i can be summarized

by setting state i as the initial state for X(ϕ) = j. Let Xi(t) denote the state in which

91

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

Figure 4.4: Markovian property outline

the Markov chain is found at time t, assuming that the chain started in state i. We

can therefore rewrite Expression (4.5) as (4.6), assuming that the Markov chain always

starts in state 1 at t = 0. This assumption is reasonable in presence applications since

users initially have an offline status. Figure 4.4 outlines the idea behind the Expression

(4.6).

cpst(tϕ) =

n∑
i=1

n∑
j=1(j 6=i)

P{Xi(ϕ) = j|X1(tϕ − ϕ) = i}

=

n∑
i=1

n∑
j=1(j 6=i)

P{Xi(ϕ) = j}P{X1(tϕ − ϕ) = i} (4.6)

The variable Xk(t) only relies on the fact that state k was reached because this

state summarizes all the past history. Thus, the probability distributions of Xi(t) and

Xj(t) in Expression (4.6) are independent and can therefore be multiplied. Setting

ipk(t) = P{Xi(t) = k}, 1 ≤ i ≤ n, 1 ≤ k ≤ n (4.7)

where ipk(t) can be deduced by setting the initial vector I0 to state i, as described

in Section 4.2.2. Using (4.7), we can rewrite (4.6) as follows:

cpst(tϕ) =

n∑
i=1

1pi(tϕ − ϕ)

n∑
j=1(j 6=i)

ipj(ϕ) (4.8)

From Expression (4.8), we can estimate the byte rate during a throttle interval as

shown in (4.9), assuming that Bi,j is the average size of the presence document that

needs to be sent when the presence information changes from state i to j.

92

4.2 Mathematical Analysis of Publication Rate Control

brst(tϕ) =

∑n
i=1

1pi(tϕ − ϕ)
∑n

j=1,i 6=j
ipj(ϕ)Bij

ϕ
(4.9)

4.2.4 Mathematical Analysis of Byte Rate with Multi-Throttling

Expression (4.8) gives the probability of presence changes occurring during a throt-

tling interval when a single time interval is applied to the whole presence information.

This expression therefore works on the assumption that any presence change triggers

a presence publication when the throttling timer expires. However, when we apply

multi-throttling, we associate pieces of presence information with different throttling

intervals. Thus, when a throttling interval expires, only the changes in the piece of

presence information associated with this interval trigger a presence publication. Thus,

Expression (4.8) does not therefore work for calculating the change probability when

multi-throttling is applied; below, we address how to calculate this probability.

As described in Section 3.1, when a publication is going to be sent, all the changes

pending for publication are included into the publication commonly. This is a common

practice for reducing the overhead of multiple messages, which we refer to as non-forced

multi-throttling. However, when a minimum throttling interval for a piece of presence

information is mandatory, the publication of this information can only be sent when

this interval expires. We refer to this strategy as forced multi-throttling.

In the case of forced multi-throttling, the change probability of the presence at-

tributes associated with a throttling interval can be deduced from Expression (4.8) by

limiting states i and j to those that change these attributes. Let us assume the set TRf

to be composed of all the transitions qij in the Markov chain that change the value of

the presence attributes associated with a forced throttling interval of ϕ time units. The

change probability of these attributes when the throttling interval expires at time tϕ,

cpfmt(tϕ), and the corresponding byte rate, brfmt(tϕ), is given by Expressions (4.10)

and (4.11).

cpfmt(tϕ) =

1∑
i=k:(k,x)∈TRf

pi(tϕ − ϕ)

i∑
j=l:(i,l)∈TRf

pj(ϕ) (4.10)

brfmt(tϕ) =

∑1
i=k:(k,x)∈TRf pi(tϕ − ϕ)

∑i
j=l:(i,l)∈TRf pj(ϕ)Bij

ϕ
(4.11)

93

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

In the case of non-forced multi-throttling, any change is aggregated when a publi-

cation is going to be sent, and hence further considerations are necessary. Below, we

present an algorithm for calculating the change probability when a non-forced throt-

tling interval ϕ expires at time epoch tϕ, cpmt(tϕ), and the corresponding byte rate,

brmt(tϕ). A Markov chain’s state represents a particular configuration of attribute

values, and hence we denominate it as presence state. Whenever a new value of an

attribute is published, the PS watches a new state of the Markov chain that models the

presentity’s presence information. Thus, a publication of some presence information

means a publication of a presence state.

ATT = { set of attributes whose throttling interval expired at tϕ}
TRnf={set of transitions qij that change the value of any of the attributes in ATT}
tlast= last time that a throttling timer expired or 0 if no timeout before tϕ

For each state k

PLP (k, tϕ) = PLP (k, tlast) ∗k Pk(tϕ − tlast) (a)

PPS(k, tϕ) = 0

For each state i connected to k through a transition qik

If(qik /∈ TRnf)

PLP (i, tϕ) = PLP (i, tϕ) + PLP (i, tlast)
ipk(tϕ − tlast) (b)

else

PPS(k, tϕ) = PPS(k, tϕ) + PLP (i, tlast)
ipk(tϕ − tlast)

Bytes(tϕ) = Bytes(tϕ) + PLP (i, tlast)
iPk(tϕ − tlast)Bik

PLP (k, tϕ) = PLP (k, tϕ) + PLP (i, tlast)
ipk(tϕ − tlast) (c)

endIf

endFor

endFor

cpmt(tϕ) =
∑
e PPS(e, tϕ)

brmt(tϕ) =
Bytes(tϕ)

ϕ

When one or more throttling intervals expire at a time epoch tϕ, the change proba-

bility or, in other words, the probability of publishing a presence change, is calculated

and stored in the variable cpmt(tϕ). The variable PPS(e, t) (Probability of Publishing

State) provides the probability of publishing the presence state e at time t. The vari-

able PLP (e, t) (Probability of Last Published) provides the probability of the presence

state e being the last one that was published until t, and hence the state that is being

watched by the PS. The variable ATT contains the presence attributes associated with

the throttling intervals that expired at tϕ. The variable TRnf is the set of all the tran-

sitions in the Markov chain that change the value of any attribute in ATT . We store

94

4.2 Mathematical Analysis of Publication Rate Control

the probability of publishing the end state of a transition in TRnf in the PPS variable.

This is the probability of having published the transition’s origin state the last time

a throttling interval expired (PLP variable) and having transited to the transition’s

end state. This transition probability is shown in (4.7). Thus, the change probability

cpmt(tϕ) is the sum of the PPS probabilities for the end states of the transitions in

TRnf . The probability of each state e being the last published (PLP variable) when

a throttling timeout occurs is the sum of the following three probabilities, whose letter

identifies the corresponding line in the above algorithm:

(a) No transition probability. The probability that state e was the last published and

afterwards the Markov chain has not transited.

(b) Non-notifying transition probability. The probability that state e was the last

published and the Markov chain has transited to the other state e′, which does not

change the value of any attribute associated with the throttling timeout.

(c) Notifying transition probability. The probability that the Markov chain has tran-

sited to state e, which has changed the value of some attribute associated with the

throttling timeout.

The variable brmt(tϕ) is the byte rate during the non-forced throttling interval ϕ

that expires at time epoch tϕ. In other words, this is the rate byte during tϕ − tlast
time units. Other kind of measure is the total byte rate since the presence application

starts at t = 0 until the throttling interval ϕ expires at time tϕ. Let us order all the

interval timeouts that occur from t = 0 until tϕ increasingly: the first timeout is t1, the

second t2 and so on, up to the last, tϕ, which is tn. Thus, the total byte rate until tϕ is

calculated by Expression (4.12), where the variable Bytes(tk) is computed as described

in the algorithm above.

totalbrmt(tn) =

∑n
k=1Bytes(tk)

tn
(4.12)

4.2.5 Byte Rate Estimation

This section estimates the byte rate generated by a presence application that throttles

publications of the presence attributes in Figure 4.3. The presence application can-

not therefore send two consecutive presence publications in an interval shorter than a

95

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

throttling interval. The presence application aggregates any presence change that oc-

curs during this throttling interval. Once the interval expires, all the presence changes

are published by means of a single PUBLISH message. To estimate the presence ap-

plication’s byte rate over time, we assume that the application sets a timer to the

throttling interval. Whenever this timer expires, the application checks out whether

any presence change has occurred since the last timeout. In this case, the application

sends a PUBLISH message that contains the presence changes to the PS. This assump-

tion allows estimating the byte rate generated by the presence application during some

session time by using the mathematical formulas provided in Sections 4.2.3 and 4.2.4.

We assume that the presence information is sent to the PS through partial-state docu-

ments [139]. This means that only the presence attributes that have changed since the

last publication are sent. We assume partial-state presence documents of from 350 to

590 bytes depending on the presence attributes that are included. Below, an example

of a partial-state presence document that publishes the noisy attribute is shown:

<?xml version="1.0" encoding=‘‘UTF-8’’?>

<p:pidf-diff

xmlns=‘‘urn:ietf:params:xml:ns:pidf’’

xmlns:p=‘‘urn:ietf:params:xml:ns:pidf-diff’’

xmlns:r=‘‘urn:ietf:params:xml:ns:pidf:rpid’’

xmlns:d=‘‘urn:ietf:params:xml:ns:pidf:data-model’’

entity=‘‘pres:someone@example.com’’

version=‘‘568’’>

<p:replace sel=‘‘presence/person/place-is/audio/text()’’>

<r:noisy/>

</p:replace>

</p:pidf-diff>

We consider a session time of three hours, which is sufficient for the chain to reach

its stationary state. To perform the mathematical calculations introduced in Sections

4.2.3 and 4.2.3, we need to assign a value to each transition rate qi,j of the Markov

chain in Figure 4.3. Unfortunately, to date, there are not statistics about presence

changes in real-world presence applications. Section 4.2.5.1 discusses an alternative

method for estimating the transition rates for a particular use case. Sections 4.2.5.2 and

4.2.5.3 discuss the results obtained for this use case with single- and multi-throttling,

respectively.

96

4.2 Mathematical Analysis of Publication Rate Control

4.2.5.1 Use Case: a Technical Employee

The presence information described by the Markov chain in Figure 4.3 consists of three

presence attributes, namely sphere, audio an moving. The rhythm of presence changes

is determined by the transition rates qij , which mean the velocity at which the chain

transits between states. Ideally, these transition rates should be based on testbeds

with reliable patterns of state changes. The ideal sources of testbeds are logs of real-

world presence applications. However, there are not real testbeds or statistics about

the behavior of presence applications to date because of the unpredictable behaviour

of their users and the diverse nature of presence applications. We adopt an alternative

way of estimating the value of transition rates. The average time that a Markov chain

spends in a particular state is inversely proportional to the sum of the state’s outgoing

transition rates. We therefore can assume a reasonable time for the chain to transit

from one presence attribute’s value to another, and deduce the corresponding transition

rate as the inverse of this time. To this end, we consider a particular scenario which

serves as reference for estimating the average time that each presence attribute takes

to change value. We assume that the user (i.e., the presentity) is connected to her

smartphone that has two sensors; one of them acts as a sound level meter and the

other as an accelerometer. These two sensors pick up information about the ambient

acoustic conditions and movements, such as inclination, vibration and shock that the

user is experiencing. The presence application that is running on the user’s device

retrieves the information received by the sensors and modifies the presence attributes

accordingly. We also assume that the application automatically changes the value

of the sphere attribute to “online” and “offline” when the user logs on and logs off,

respectively. We assume that the presentity is a technical employee responsible for

maintaining some kinds of electrical machine (e.g. washing machines, refrigerators,

etc.) supplied by her company. Therefore, this user visits various homes, offices, shops,

etc., for offering technical support throughout the day. The employee’s supervisors are

subscribed to her presence information, and are therefore notified of the employee’s

sphere, audio and moving attributes. We assume that the employee’s attributes take

the average times in Table 4.1 to change value, which are, in our opinion, reasonable

for the described use case. Table 4.1 shows these average times and the corresponding

transition rates based on the states in Figure 4.3. For instance, when the employee is

97

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

Transition Time (mins) Rate

q12 10 0.1

q21 360 0.0028

q31 360 0.0028

q41 360 0.0028

q51 360 0.0028

q23 20 0.05

q24 30 0.033

q25 30 0.033

q32 20 0.05

q34 20 0.05

q35 20 0.05

q42 15 0.0667

q43 20 0.05

q45 5 0.2

q52 10 0.1

q53 15 0.0667

q54 15 0.0667

Table 4.1: Assumed times and transition rates

on her way to a new client’s place, it is probable that the ambient acoustic becomes

noisy. Thus, we assume an average time of 5 minutes for the chain to move from state

4 to 5, and hence the corresponding transition rate is 0.2. Figure 4.5 shows the Markov

chain with the assumed transition rates.

4.2.5.2 Results with Single-Throttling

Figure 4.6 shows the probability of presence changes occurring during each throttling

interval when time intervals of 1, 5, 10, 15 and 30 minutes are used. The throttling

interval of 6 seconds simulates the case of no throttling since this value is close to zero.

These probabilities are given by (4.8) and, stated differently, they mean the probability

of the presence application sending a PUBLISH message every time a throttling timer

expires. Figure 4.7 shows the total number of bytes sent every time the throttling

interval expires, which is given by the numerator in (4.9). We are mainly interested in

the byte rate per minute generated by presence applications because it is a clear signal

of the level of presence traffic on the network, which is given by (4.9). This formula

depends on two parameters: the probability of publishing presence changes and the time

98

4.2 Mathematical Analysis of Publication Rate Control

Figure 4.5: Markov chain for three particular presence attributes

interval during which publications are not allowed. Ideally, the publication probability

should be decreased and the throttling time should be increased for reducing the byte

rate. However, these two parameters are correlated; the longer the throttling interval,

the higher the probability of changes occurring during this interval. Since the maximum

value of the publication probability is the unit, the throttling interval is the most

determining factor for reducing the byte rate. Figure 4.12 shows the estimated byte

rate during each throttling interval. The byte rate for a throttling interval of 1 minute

is very close to the case of no throttling (i.e., that of 6 seconds). Thus, the reduction

in presence traffic achieved by using such a short interval does not compensate for

implementing throttling. It is not therefore recommended to apply throttling with an

interval equal to or shorter than 1 minute. The longer the throttling interval, the lower

the byte rate injected into the network. The byte rate is reduced by approximately

41%, 61%, 71% and 85% when throttling intervals of 5, 10, 15 and 30 minutes are

applied, respectively. However, the time during which the PS and the watchers keep

inconsistent information increases with the throttling interval. A trade-off between

traffic optimization and information consistency should be found. Let us assume the

average delay in publishing a presence change to be half the throttling interval. In the

case of a throttling time of 30 minutes, its average delay would be 15 minutes. It is

probable that the PS or some watchers find this delay excessive. However, a throttling

time of 15 minutes offers a shorter average delay of 7 minutes while its traffic reduction

is similar to that achieved with 30 minutes. The watchers’ and the PS’ needs about

the frequency of presence updates and traffic load may change over time. Thus, the PS

99

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

of
 p

re
se

nc
e

ch
an

ge
at

 e
ac

h
th

ro
ttl

in
g

tim
eo

ut

Time (minutes)

Throttling time=6 secs
Throttling time=1 min
Throttling time=5 mins
Throttling time=10 mins
Throttling time=15 mins
Throttling time=30 mins

Figure 4.6: Probability of change at each throttling timeout

Figure 4.7: Bytes sent at each throttling timeout

and the client presence applications should be sufficiently intelligent to properly change

the throttling interval.

4.2.5.3 Results with Multi-Throttling

Let us assume that each presence attribute of the user’s presence information described

in Section 4.2.5.1 (i.e., sphere, audio an moving attributes) is associated to a different

throttling interval. The efficiency of multi-throttling depends on the interval length set

for the presence attributes that change most frequently. In the best-case scenario, the

watchers have no strict requirements on the consistency of these attributes. Thus, the

presentity can delay in publishing these attributes through long throttling intervals. In

the worst-case scenario, the watchers need to be updated with these attributes quite

frequently, and hence only short throttling intervals should be used. The assignation

of throttling intervals may not only be based on the watchers’ requirements but also

on the PS policies such as traffic congestion. Figure 4.9 shows the change probability

100

4.2 Mathematical Analysis of Publication Rate Control

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

B
yt

e
ra

te
 p

er
 m

in
ut

e

fo
r

ea
ch

 th
ro

ttl
in

g
in

te
rv

al

Time (minutes)

Throttling time = 6 secs
Throttling time = 1 min
Throttling time = 5 mins
Throttling time = 10 mins
Throttling time = 15 mins
Throttling time = 30 mins

Figure 4.8: Rate of bytes during each throttling interval

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

ba
bi

lit
y

of
 a

ttr
ib

ut
e

ch
an

ge
du

rin
g

ea
ch

 th
ro

ttl
in

g
in

te
rv

al

Time (minutes)

Moving
Audio
Sphere

Figure 4.9: Probability of each attribute having changed after throttling timeouts

of each presence attribute every time a throttling interval of 10 minutes expires, which

is calculated as described in Section 4.2.4. This helps us to ascertain the frequency

of change of each presence attribute. The sphere attribute is much less dynamic than

the others. The audio attribute is the one that changes most frequently although it is

closely followed by the moving attribute.

To study the efficiency of multi-throttling, let us consider several scenarios of the

use case described in Section 4.2.5.1 that associate the presence attributes with different

levels of urgency:

1. The employee’s supervisors are not interested in the employee’s audio or moving

conditions; they only wish to know whether she is online, and hence able to

communicate. Thus, it is reasonable to assign a throttling interval of 10 minutes

to the employee’s sphere attribute, and one of 30 minutes to the audio and moving

attributes.

2. The employee’s supervisors need to know the most available employees at any time

101

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

0.2

0.4

0.6

0.8

1

Time (minutes)

P
ro

ba
bi

lit
y

of
 p

re
se

nc
e

ch
an

ge
 a

t e
ac

h
th

ro
ttl

in
g

tim
eo

ut

non−forced multi−throttling (A=30, M=30, S=10)
forced multi−throttling (A=30, M=30, S=10)
single throttling time = 30 min
single throttling time = 10 min

Figure 4.10: Probability of presence change after each throttling interval

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

100

200

300

400

500

600

Time (minutes)

B
yt

es
 s

en
t a

t e
ac

h
th

ro
ttl

in
g

tim
eo

ut

non−Forced multi−throttling (A=30, M=30, S=10)
Forced multi−throttling (A=30, M=30, S=10)
single Throttle interval = 30 min
single Throttling interval = 10 min

Figure 4.11: Bytes sent at each throttling interval

in order to assign tasks as quickly as possible. Thus, the employee’s audio and

moving conditions are important because they determine her capacity to maintain

high-quality voice calls. It is therefore reasonable to avoid delaying the audio and

moving attributes, and hence no throttling is applied to these attributes. On the

contrary, it makes sense to apply a throttling interval of 10 minutes to the sphere

attribute.

3. The employee’s supervisors are mainly interested in knowing whether the em-

ployee is using some means of transport because this indicates that she is headed

for the next customer. However, they do not pay regard for the employee’s am-

bient noise. Thus, it is reasonable to assign a throttling interval of 5 minutes, 30

minutes and 10 minutes to the moving, audio and sphere attributes, respectively.

Since the audio and moving attributes are the ones that change most frequently,

the first and second scenario are the best and worst cases for traffic optimization, re-

spectively. In the second scenario, no throttling is applied to the audio and moving

102

4.2 Mathematical Analysis of Publication Rate Control

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

5

10

15

20

25

30

35

40

Time (minutes)

B
yt

e
ra

te
 p

er
 m

in
ut

e
fo

r
ea

ch
 th

ro
ttl

in
g

in
te

rv
al

Non−forced multi−throttling (A=30, M=30,S=10)
Forced multi−throttling (A=30, M=30,S=10)
Throttling time = 30 min
Throttling time = 10 min

Figure 4.12: Rate of bytes during each throttling interval (A=30, M=30, S=10)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

10

20

30

40

50

60

Time (minutes)

B
yt

e
ra

te
 p

er
 m

in
ut

e

fo
r

ea
ch

 th
ro

ttl
in

g
in

te
rv

al

Forced multi−throttling (M=5,S=10,A=30)
Non−forced multi−throttling (M=5,S=10,A=30)
Single throttling interval = 30 min
Single throttling interval = 5 min

Figure 4.13: Rate of bytes during each throttling interval (A=30, M=5, S=10)

attributes. This means that any change in these attributes is published without delay.

This involves publishing the sphere attribute without delay too. This is due to the

fact that this attribute’s state transitions change the value of the audio and moving

attributes (see Figure 4.3). Thus, the byte rate for the second scenario is the same as

that when no throttling is applied. Figure 4.8 simulates this case with an interval of

6 seconds. In the first scenario, multi-throttling seems to be an efficient alternative.

Otherwise, the presence application would have to choose between traffic optimization

and satisfying the watchers’ urgency requirements. For the sake of traffic optimization,

a long throttle interval would probably involve the watchers keeping obsolete informa-

tion for too long. For the sake of information consistency, a short throttling interval

would involve a high number of publications of the audio and moving attributes, which

are not of interest to the supervisors and change frequently. Thus, multi-throttling

may be used to achieve a tradeoff between traffic optimization and information consis-

tency. Figure 4.10 shows the probability of sending a PUBLISH message every time a

103

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

throttling interval expires with non-forced and forced multi-throttling intervals. We are

mainly interested in non-forced multi-throttling because it is applicable to the vast ma-

jority of presence applications. The triangle-marked and square-marked lines represent

the publication probability when a single throttling interval of 30 and 10 minutes is

used, respectively. The former would be reasonable for a single-throttling strategy that

prioritize traffic optimization and the latter would be aimed at information consistency.

It can be seen that the change probability in non-forced multi-throttling is much lower

than the two single-throttling strategies at the expiration times that are not multiples

of 30. This is because, with single-throttling, the change probability at each expiration

time is mainly increased by changes in the audio and moving attributes. With multi-

throttling, only the sphere attribute is checked every 10 minutes, and hence the change

probability is lower. When the audio and moving attributes are checked, the change

probability increases significantly. However, this probability with non-forced multi-

throttling is always lower than that with single-throttling. This is because whenever

the sphere attribute is published any change in the other two attributes is attached. In

contrast, forced multi-throttling does not aggregate presence changes, and hence the

change probability every 30 minutes is equal to that with a single throttling interval of

30 minutes.

Figure 4.11 shows the bytes sent every time a throttling interval expires. This figure

shows the same pattern as that in Figure 4.10 because it is the result of multiplying

the change probabilities by the number of bytes that would be sent to publish each

change. It can be seen that the number of bytes at any expiration time is always lower

than that of the two single-throttling strategies. Figure 4.12 shows the total byte rate

per minute at each throttling timeout, which is calculated by (4.12). As time passes,

it can be seen that the byte rate with non-forced multi-throttling is almost equal to

that with a single throttling interval of 30 minutes, which is approximately 10 bytes

per minute. Thus, a rate similar to the best case (i.e., the longest interval) is achieved

while the required update frequency for the sphere attribute is maintained. Note that

multi-throttling decreases the byte rate when a single throttling interval of 10 minutes

is used by around 54%. Figure 4.13 shows the byte rate per minute at every throttling

timeout for the third scenario described above. It can be seen that the required update

frequency for the moving attribute is achieved. Moreover, this saves approximately

27% of the traffic that is generated when a single interval of 10 minutes is used.

104

4.3 Sojourn-Based Publication Rates

4.3 Sojourn-Based Publication Rates

Ensuring that a minimum time elapses between two consecutive publications can cer-

tainly reduce presence traffic on the radio access link, as showed in Section 2.4. However,

choosing this minimum time, which we refer to as throttling interval, is crucial. As the

throttling interval increases, more presence changes may be aggregated during this in-

terval, and so more presence load would be saved. On the other hand, the longer the

interval, the lower the publication rate. Although long throttling intervals are prefer-

able for traffic optimization, presence information that changes frequently should not

be published at such low rates. Otherwise, watchers would keep obsolete presence in-

formation for too long and publications would even turn out inefficient. If the presence

information changes much more rapidly than the publication rate, the short time during

which watchers see valid information does not compensate for the traffic generated to

publish such information. Moreover, the nature of presence information is very diverse;

some presence attributes such as geographical coordinates change frequently, while oth-

ers such as profile information rarely change. Furthermore, some presence attributes

may be more relevant than others to the watchers. Thus, the watchers’ needs on in-

formation consistency may vary from one presence attribute to another. For instance,

a watcher application may need timely notifications of the presentity’s luminosity and

noise conditions for call handling, while it may occasionally prefer a notification of

the presentity’s activities. Thus, the application of a single throttling interval to the

presentity’s complete presence information may not be efficient or suitable in many

circumstances. In some cases, a long throttling interval for traffic optimization may

retain presence attributes that change rapidly and are relevant to watchers. Watchers

keeping the wrong values of crucial information may involve harmful consequences. In

other cases, a short throttling interval may result in many publications of presence at-

tributes that change rapidly but are not relevant to watchers. This would involve more

updates of these attributes than necessary, thereby wasting bandwidth and processing

resources.

This section studies how to calculate throttling intervals when changes in presence

information can probabilistically be modeled, as described in Section 4.2.2. We con-

template both the dynamics of presence information and the watchers’ requirements

105

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

on information consistency. We propose calculating the throttling interval for the pres-

ence information pi over time by adding the average time that this information remains

without change Tpi(t) and a delay factor ω. We refer to this interval as the presence

information’s sojourn-based interval (SBI), which is shown in (4.13). Thus, the pres-

ence information’s sojourn-based rate (SBR) is SBI−1. The presence information pi

may be a presentity’s complete presence information or a subset of it (i.e., one or more

presence attributes).

SBIpi(t) = Tpi(t) + ω (4.13)

The delay factor (ω) for the presence information pi means the amount of time that

publications of such information can be delayed. We assume that the PS somehow can

deduce this factor based on some policies such as traffic optimization or the watcher’s

requirements on information consistency. The permanence time of the presence in-

formation pi (Tpi(t)) changes over time and is calculated from a Markov chain. This

approach relies on the assumption that certain users share the same pattern of changes

in their presence information and can therefore be modeled through the same Markov

chain. As instance, users within a corporation may be grouped by their responsibilities

(e.g., managers, secretaries, messengers, etc.) since users with the same responsibility

are likely to behave similarly. The PS therefore only needs to handle a state machine for

each different pattern of change rather than for each user, which makes the presented

approach computationally feasible.

The average time that a Markov chain spends in a state, which is the state’s sojourn

time, is given by the inverse of the sum of the state’s outgoing transition rates [199].

Thus, we can approximate the average time that the presence information pi remains

without change, that is, the permanence time of pi, Tpi(t) over time as (4.14).

Tpi(t) =
1

Φpi(t)
(4.14)

where Φpi(t) is the transition probability of the presence information pi. This

probability can be deduced from the Markov chain’s distribution probability P x(t) (see

Section 4.2.2) and transition rates. Let OSpi be the set of origin states of transitions

that change the value of the presence information pi. Let ESj,pi be the set of end states

of transitions that depart from state j and change the value of the presence information

106

4.3 Sojourn-Based Publication Rates

Figure 4.14: SC for the audio attribute

pi. We define the state of change for the presence information pi, SCpi, as a logical state

that is made up of all the states in OSpi and the outgoing transition rates from each

state j in this set to the states in its corresponding ESj,pi. From the state of change

SCpi, we can estimate Φpi(t), as shown in (4.15). Since state probabilities change over

time, the probability of the states in OSpi making a transition, which is the numerator

of Φpi(t), needs to be weighted with the probability of the chain being at any of these

states, which is the denominator of Φpi(t).

Φpi(t) =

∑
i∈OSpi

[
pxi (t) ∗

∑
k∈ESi,pi qi,k

]
∑

i∈OSpi p
x
i (t)

, i, k = 1...n (4.15)

As an example, Figure 4.14 shows the state of change for the audio attribute in

Figure 4.3, and Expression (4.16) shows its transition probability.

px1(t)q12 + px2(t)(q21 + q23 + q25)

+ px3(t)(q31 + q32 + q34) + px4(t)(q41

Φaudio(t) =
+q43 + q45) + px5(t)(q51 + q52 + q54)

px1(t) + px2(t) + px3(t) + px4(t) + px5(t)
(4.16)

4.3.1 Byte Rate Estimation

This section estimates the bytes rate generated by throttling publications of the pres-

ence attributes in Figure 4.3 with each attribute’s SBI. Section 4.2.4 describes an algo-

rithm for analytically estimating the byte rate that is generated by throttling presence

publications with multiple intervals over time, which is based on Expression (4.9). We

use this algorithm with SBIs for estimating the byte rate of presence traffic during

107

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

0

20

40

60

80

100

120

140

160

180

200

0

1
5

2
5

4
8

5
0

5
9

7
1

7
4

9
4

9
8

1
1

7

1
2

2

1
4

0

1
4

6

1
6

3

1
7

0

1
8

6

1
9

4

2
0

9

2
1

8

2
3

2

2
4

2

2
5

5

2
6

6

2
7

8

2
9

0

3
0

1

3
1

4

3
2

4

3
3

8

3
4

7

3
6

2

3
7

0

C
al

cu
la

te
d

 S
B

I
(m

in
u

te
s)

Throttling timeouts (minutes)

Sphere Moving Audio

Figure 4.15: SBIs calculated at each throttling timeout over time

some session time. This algorithm assumes that there is a recursive timer for each

subset of presence information whose publications are controlled. Each timer ensures a

minimum time between two consecutive publications of the presence information asso-

ciated. We assume that whenever the timer associated with some presence information

expires (i.e., throttling timeout), the SBI of this information is recalculated. Initially,

each attribute’s throttling interval is its SBI at t = 0. This study is based on the par-

ticular use case described in Section 4.2.5.1, which is a technical employee. Regarding

each presence attribute’s delay factor, we consider it as half of the maximum delay

in receiving a notification acceptable by watchers. Let us assume that the technical

employee’s watchers are willing to accept a maximum delay of 30 minutes for the audio

and moving attributes, and a maximum delay of 10 minutes for the sphere attribute.

Therefore, the PS sets a delay factor of 15 minutes for the audio and moving attributes,

and other of 5 minutes for the sphere attribute.

Figure 4.15 shows the SBI that is calculated for each presence attribute at throttling

timeouts. The X-axis shows the times at which timeouts occur. Each X coordinate for

a presence attribute is therefore the sum of the previous X coordinate for this attribute

(i.e., the time at which the last timeout occurred) and its corresponding Y coordinate

(i.e., throttling interval that was calculated at the last timeout). The assumed transition

rates in Table 4.1 describe a user who gets online quickly, and after that a long time

goes by until he or she goes offline. Thus, the sphere attribute’s SBI increases rapidly

over the first 50 minutes until reaching a high stationary value. The audio attribute is

the fastest to change, closely followed by the moving attribute.

Figure 4.16 shows the probability of publishing each presence attribute at each

108

4.3 Sojourn-Based Publication Rates

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350
0

0.2

0.4

0.6

0.8

1

Time (minutes)

P
ro

ba
bi

lit
y

of
 p

re
se

nc
e

ch
an

ge
at

 e
ac

h
th

ro
ttl

in
g

tim
eo

ut

Moving Timeout
Audio Timeout
Sphere Timeout

Figure 4.16: Probability of presence change at each throttling timeout with SBIs

timeout when the throttle intervals in Figure 4.15 are used. We have marked every

timeout with an identifier of the presence attributes associated with the expired interval.

The three presence attributes are very likely to change during the first 25 minutes. They

have the same transition probability at the beginning (see Figure 4.3). However, the

sphere attribute’s throttling interval is shorter than that for the audio and moving

attributes because of its shorter average delay. After a while, the audio attribute is a

little more dynamic than the moving attribute; thus, the throttling intervals for the

former become slightly shorter than those for the latter. When a presence attribute is

going to be published, the remaining attributes that changed since the last publication

are included into the publication. This is the reason why the moving attribute’s change

probability is lower than that of the audio attribute. The sphere attribute’s change

probability is quite low after the first minutes, and hence this attribute is checked very

few times during the session time.

Figures 4.17 and 4.18 compares the change probability and byte rate at each throt-

tling timeout, respectively, of sojourn-based and static throttling intervals. In the case

of static intervals, the PS is not aware of the dynamics of presence information, and

hence, for the sake of traffic optimization, it sets each attribute’s throttling interval

to its assumed maximum delay (i.e., 30 minutes for the audio and moving attributes,

and 10 minutes for the sphere attribute). Since the audio and moving attributes are

only checked every 30 minutes and these attributes change frequently, the probability

that the watchers keep wrong values of these attributes during the better part of this

interval is high. On the other hand, throttling with SBIs adapts to the dynamics of

presence information efficiently. It applies throttling intervals to the sphere attribute

109

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (minutes)

P
ro

ba
bi

lit
y

of
 p

re
se

nc
e

ch
an

ge
 a

t e
ac

h
th

ro
ttl

in
g

tim
eo

ut

multi−throttling (A=30, M=30, S=10)
sojourn−based multi−throttling

Figure 4.17: Probability of change at each timeout with static and sojourn-based intervals

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

5

10

15

20

25

30

35

40

Time (minutes)

B
yt

e
ra

te
 p

er
 m

in
ut

e
fo

r
ea

ch
 th

ro
ttl

in
g

tim
eo

ut

multi−throttling (A=30, M=30,S=10)
Sojourn−based multi−throttling

Figure 4.18: Rate of bytes during throttling static and sojourn-based intervals

that are much longer than 10 minutes because this attribute rarely changes. The au-

dio and moving attributes’ SBIs are shorter than 30 minutes because these attributes

change more frequently. This prevents watchers from keeping obsolete information for

too long. Figure 4.18 shows that the traffic rate with SBIs is slightly higher than with

static intervals. This is a small price to pay for adapting to the presence information’s

rate of change, which ensures that watchers are updated with sufficient frequency when

optimizing traffic.

4.4 Conclusions

We presented the need to reduce the great amount of presence traffic that presence

applications generate for making the presence service scalable in NGNs. Presence pub-

lications play a relevant role in presence traffic overload since each publication involves

sending and receiving messages by all the components of a presence system: the presen-

tity that makes the change, its PS, its watchers’ RLSs, and finally these watchers. Thus,

110

4.4 Conclusions

optimizing presence publications would be very effecient at reducing the overload on

the network and user devices. We proposed applying SIMPLE event notification filters

to presence sources, which we call publication filtering. We proposed the SIP PUB-

LISH method for implementing publication filtering. Publication filers let presentities

know about what information is important and when it should be published. Publica-

tion filtering prevents publishing information that is not necessary, and ensures that the

necessary information is published according to certain threshold conditions. Moreover,

controlling the rate of presence publications is necessary for deploying resource-efficient

mobile presence applications, specially in LBSs. We, therefore, proposed using the ex-

tended XML schema for notification filters described in Section 3. This schema permits

to control the presentity’s publication rate in a fine-grained manner by setting multiple

maximum rates for the presentity’s presence information. This schema also allows paus-

ing, un-pausing and requesting publications of presence attributes. Such a fine-grained

control of presence publications is convenient since the nature of presence attributes

is diverse (i.e., they change at different rates) and watchers may have different consis-

tency needs on presence attributes. Thus, attribute-based rate control mechanisms are

necessary to optimize traffic efficiently while satisfying the watchers’ needs.

We modeled presence changes through a continuous-time Markov chain, and proba-

bilistically estimated the traffic rate when throttling publications with a single minimum

interval (i.e., single-throttling) and multiple intervals (i.e., multi-throttling). We gave

a guideline about how to model presence changes through Markov chains, and took

an example model for estimating presence traffic. The presented mathematical model

is valuable because, to the best of our knowledge, there are not other mathematical

models of presence changes that are as general as it. The behavior of presence users

differs a great deal because the nature of presence applications is very diverse. Even,

the presence information of a particular application’s users usually does not follow

any particular pattern; the actions that users take and affect their presence informa-

tion (e.g., modifying personal state, mood, activities, location) are highly subjective

and depend on temporary circumstances. These issues make the analysis of presence

systems specially difficult.

We presented the mathematical formulas that calculate the probability of presence

changes occurring during each throttling interval with single- and multi-throttling.

111

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

From these formulas, we derived the total number and rate of bytes sent on the net-

work access link because of presence publications during a presence application session.

Regarding single-throttling, we analyzed throttling intervals of 5, 10, 15, and 30 min-

utes, which reduce the presence traffic by 41%, 61%, 71%, and 85%, respectively. Our

analysis validated some reasonable fundamentals: It is not recommended to apply a

very short throttling interval because it does not save presence publications and increase

the complexity of end devices. Moreover, the longer the throttling interval, the lower

the presence traffic rate. However, the delay perceived by the watchers increases with

the throttling interval length. It is therefore necessary to find a tradeoff between the

watchers’ information consistency and the saving of presence traffic. Multi-throttling

can actually help in finding such a tradeoff since it consists in setting attributes-based

throttling intervals. Multi-throttling makes it possible to set short intervals for the

most urgent information while the remaining information is regulated by longer inter-

vals. Thus, this technique may save publications of information that is not urgent or

important to the PS or watchers. We described an algorithm for calculating the change

probability of presence attributes with multi-throttling. Thus, we calculated the pres-

ence traffic rate when multi-throttling is applied to different scenarios. The efficiency

of multi-throttling depends on the level of importance that is set for the presence at-

tributes that change most frequently. In the best case, the attributes that change the

most are not important, and hence can be associated with long throttling intervals. In

the worst case, these attributes are the most important, and hence they have to be

notified at short intervals.

A throttling interval length should be chosen carefully because presence attributes

that change frequently should not be published at low rates. Otherwise, watchers

may keep obsolete presence information for too long and publications would even turn

out to be inefficient. If the presence information changes much more rapidly than

the publication rate, the short time during which watchers see valid information does

not compensate for the traffic generated to publish such information. We proposed

Sojourn-Based Intervals (SBIs) for limiting the rate at which presentities publish pres-

ence information while avoiding excessive delays in publishing. We probabilistically

compared the traffic rate generated by throttling publications with SBIs and fixed in-

tervals. While the former change over time for adapting to the presence attributes’

change frequency, the latter are predefined, static intervals. The reported traffic rate

112

4.4 Conclusions

shows that the application of SBIs increases the traffic rate generated by fixed intervals

slightly (by approximately 17%). This increase is due to the fact that SBIs are shorter

than the fixed intervals so as to publish the presence information at a rate that is close

to the change frequency of this information. This shows that SBIs can adapt well to

presence change patterns.

113

4. OPTIMIZATION OF PRESENCE PUBLICATION TRAFFIC:
PROPOSAL, MATHEMATICAL MODEL AND PERFORMANCE
ESTIMATION

114

5

Strategies for Reducing

Inter-domain Presence Traffic: a

Performance Analysis and Novel

Proposal

Future presence-based applications are expected to be used worldwide across different

administrative domains. Moreover, there is a strong indication that presence will be

a key enabler of the convergent services supported by the future NGNs, as described

in Section 2.4. There will be no administrative or technological barriers in these net-

works for communicating with users from different domains. The foundation for such

a new generation of communication networks is the IMS. This system evolves mobile

operators towards an all IP technology for the support and integration of advanced mul-

timedia services. We refer the reader to Section 2.4 for information on NGN and IMS.

The service of presence forms part of the IMS specification, and plays an increasingly

important role in existing and emerging multimedia services. As explained in Section

2.9.4, the IMS presence service is particularly challenging because of its constant flows

of signaling traffic, which are likely to impact the IMS centralized servers severely.

Presence subscriptions have to be refreshed periodically to prevent their lifetime from

expiring, which would result in their elimination. A subscription’s lifetime is refreshed

by sending a re-SUBSCRIBE message, which entails the exchange of four messages.

On the other hand, whenever a presentity changes its state, a NOTIFY message is sent

115

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

to all the watchers that are authorized to see the presence change. These operations

cause presence-based applications to generate a great amount of traffic as the number

of presentities, watchers and presence changes increases. Presence traffic overload be-

comes even more harmful and critical in LBSs, since frequent location updates have

to be timely disseminated through XML documents [38]. The authors of [200] discuss

important scalability issues of the IMS. The authors of [179] analytically estimate pres-

ence traffic, and thereby conclude that this traffic may account for more than 50% of

the total traffic handled by the IMS CSCF. The performance analysis in [201] shows

that SIP signaling traffic introduces long transmission delays on the UMTS network.

The authors study the end-to-end delay that IM users perceive. The reported results

show that this delay may reach so high values that IM can no longer be regarded as an

instantaneous service. Much of this delay is due to the network core, and hence opti-

mizing traffic on the radio access side is insufficient for providing multimedia services

in real time.

As mentioned in Section 2.7.4, in the SIMPLE framework, there are three techniques

that subscribers can apply for reducing inter-domain presence traffic on the network

core: partial notifications of presence [138], event notification filtering [140], notification

rate control [183] and conditional notifications [147]. Section 2.9.4 describes other re-

search works that may be used to reduce the number and size of presence notifications.

However, all these strategies do not deal with the volume of subscriptions, and hence

they are not efficient enough in large-scale presence federation scenarios. As described

in Section 2.9.5, scalability becomes critical in these scenarios where millions of users in

a domain subscribe to millions of users in other federated domains. Presence federation

simply refers to the interconnection of different domains for sharing presence informa-

tion. When two or more watchers in a domain are interested in a particular presentity

within a federated domain, the watchers’ domain creates a different subscription to

this presentity for each watcher. Each of these subscriptions is refreshed and kept up

to date on the presentity’s presence independently. Whenever the presentity’s pres-

ence information changes, the federated domain sends a different presence document to

each subscribed watcher regardless whether or not these documents contain the same

information. Some proposals for reducing inter-domain presence traffic in federation

scenarios have been proposed as IETF Internert-Drafts to date, namely dialog optimiza-

tion [193], Common Notify (CN) [194] and View Sharing (VS) [195]. Notwithstanding

116

these proposals have been discontinued, the need to ease the impact of inter-domain

presence traffic remains to achieve scalable presence services as pointed out in Section

2.9.5. Dialog optimization basically consists in a federated RLS that maintains a single

subscription between a watcher and all its presentities within a particular federated

domain. Although this technique was thought of for reducing presence traffic, the au-

thors conclude that this technique is not adequate for this end based on a mathematical

analysis of its traffic. The authors of [193] analytically estimate inter-domain presence

traffic when this optimization and conditional notifications are applied by the federated

domains. Only when the dialog optimization technique is combined with conditional

notifications, the inter-domain presence traffic is reduced. In two of the scenarios con-

sidered by the authors, this combination reduces the bytes exchanged by the federated

domains by approximately 22%. These scenarios are “Widely distributed inter-domain

presence” and “Intra-domain peering”. For further information on them, we refer the

reader to [193]. In the last scenario considered, which is “Large network peering”,

the reduction of presence traffic drops to 8%. This result is demotivating since this

scenario represents a large-scale presence federation. Moreover, the authors state that

dialog optimization worsens the scalability of the overall system, since it increases the

complexity of subscription state, interlinkage and notifications. Dialog optimization

is therefore no longer considered as an alternative for reducing inter-domain presence

traffic. Nevertheless, the authors make a substantial contribution towards analyzing

SIMPLE inter-domain presence load. They conclude that the scalability of presence

systems is far from being trivial from several perspectives: number of messages, net-

work bandwidth, state management and CPU load. Moreover, they stress that not all

the possible optimizations for reducing presence traffic have been done yet, and that

further work must be done by the IETF in order to provide better scalability. CN ba-

sically consists in sending a single presence notification to the federated domain, which

is therefore in charge of generating a different notification for each watcher within this

domain. VS proposes establishing a different inter-domain presence subscription for

each view of the presentity’s presence information that the watchers are authorized

to see. The authors of both CN and VS do not provide any mathematical analysis

or experimental result about these techniques’ efficiency. Thus, we do not know the

causes by which these works were discontinued.

117

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

No other alternatives for optimizing inter-domain presence traffic in large-scale fed-

eration scenarios have emerged apart form the aforementioned strategies. The authors

of [202] apply CN and batched notifications [194] to a service differentiation scenario.

Batched notifications consist in aggregating the presence documents of multiple presen-

tities in a single NOTIFY message. The authors state that the optimization techniques

tend to delay notifications. Thus, they do not apply optimization techniques to gold

customers, while the notifications to silver and copper customers are optimized by CN

and batched notifications, respectively. Batched notifications do delay presence notifi-

cations in order to aggregate changes from multiple presentities. However, the authors

do not justify the assumption that CN introduces delay. On the contrary, it is reason-

able to assume that a common NOTIFY message is generated more quickly for two

reasons: First, the PS does not need to perform privacy filtering, and secondly only

one NOTIFY message per presentity needs to be sent. In fact, the authors conclude

that the lower gold delay is achieved by a customer-based priority mechanism at the PS

rather than the lack of optimizations. While the authors present the first implemen-

tation of these strategies, they do not seem to address some implementation details.

Specially, they seem not to tackle the process of privacy filtering at the subscriber side

PS. CN requires this PS to obtain the presentities’ privacy rules in order to generate

the presence documents that its watchers are authorized to see. This process may

increase the inter-domain presence traffic, and hence it should be taken into account

when measuring the performance of CN.

Our contribution in the frame of inter-domain presence traffic optimization in large-

scale scenarios is as follows. Section 5.1 studies and analizes the performance of dialog

optimization, CN and VS. We define the formulas that calculate the number of bytes

per session exchanged between two federated domains that apply these strategies. We

also describe in detail the assumptions about the operation of each technique that we

had to make for the presented analysis. Such assumptions give an idea of the complexity

of each strategy and pave the way for other researchers on the subject. We tackle the

various parameters that affect the performance of these proposals. As well, we give

guidelines on which approach to choose based on these parameters. Our goal is to

figure out (1) how complicated the optimization of inter-domain presence may get to

be; (2) how the studied strategies perform; (3) what parameters network administrators

should take into account for optimizing inter-domain presence traffic; and last, but not

118

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

least, (4) what the sensitivity of each technique to these parameters is. Section 5.1 also

proposes a new strategy for reducing inter-domain presence traffic. We compare this

strategy’s efficiency with that of the afore-mentioned strategies. Section 5.2 enhances

the proposed strategy for disclosing as few privacy rules as possible, which in turn

involves a considerable reduction of presence traffic. Finally, Section 5.3 presents the

main contributions of this study.

5.1 Inter-Domain Presence Traffic Estimation and Sensi-

tivity Analysis

As described previously, SIMPLE involves much overload in large-scale federation sce-

narios because it generates a different presence subscription for each watcher. Thus,

the PSs at the subscriber- and notifier-side domains are extremely likely to maintain

numerous presence subscriptions to the same presentity. We refer to watcher intersec-

tion as the probability that watchers in a domain subscribe to the same presentities.

The optimization techniques CN and VS consider watcher intersection for reducing the

number of inter-domain presence notifications and subscriptions. We propose other

watcher-intersection-aware optimization strategy, which we refer to as Common Sub-

scribe (CS), that reduces the number of presence subscriptions to the maximum. We

analytically estimate the presence traffic generated by these three strategies and carry

out a deep comparison between them. Section 5.1.1 explains the method and general

assumptions behind all the traffic calculations presented in this section. Sections 5.1.2

and 5.1.3 describe CN and VS, respectively, while Section 5.1.4 explains our proposal

for reducing inter-domain presence traffic, that is, CS. Section 5.1.5 shows the results of

the traffic calculations, and evaluates the various factors and implementation decisions

that affect the performance of the studied strategies.

5.1.1 Methodology and Assumptions

We follow the methodology in [193] for estimating the presence traffic between two

federated domains. Since the traffic generated by the dialog optimization technique is

calculated in [193], we do not tackle it in the presented analysis. We only compare the

results about this technique presented in [193] with those presented in the following

sections. Figure 5.1 outlines this strategy for the sake of clarification. This consists in an

119

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

RLS (see Section 2.7) that handles the watchers’ lists of presentities within the federated

domain. In Figure 5.1, a watcher in DomainB, Alice, is interested in obtaining presence

information about Bob, John and Anna in DomainA. Alice sends a single SUBSCRIBE

message that contains an URI identifying her list of federated presentities in DomainA,

rather than creating three independent subscriptions.

Throughout the following sections, we refer to the domain that sends presence

subscription requests as subscriber or watcher domain (i.e., DomainB in Figure 5.1),

and to the domain that receives these subscriptions as notifier or watched domain (i.e.,

DomainA in Figure 5.1). We classify presence messages into three groups. The initial

messages are those in the initial phase of establishing a subscription. The steady state

messages are exchanged in the time that elapses between the initial subscription and the

termination of the subscription. They contain the notifications due to state changes and

subscription refreshes. Finally, the termination messages are those in the termination

phase of the subscription. Throughout this paper, we show a number of mathematical

formulas that calculate the traffic in bytes generated by the SIP subscriptions involved

in each optimization strategy. A subscription’s traffic is calculated as the sum of the

initial, steady and termination messages during the session time. We only show the

final formulas in the following sections. Appendix F shows the complete formulation

of the SIP subscriptions involved in the studied strategies. The presented formulas

are functions of the constants and variables in Table 5.1. The wat variable counts the

number of watchers who are subscribed to a particular presentity, which means the

intersection of watchers for that presentity. The other two variables are pch and pres,

which respectively mean the frequency at which presentities change their presence and

the total number of presentities. Section 5.1.5 assign these variables default values for

analyzing presence traffic. The remaining elements in this table are constants. We

assume the average subscription lifetime is 8 hours, and the average refresh interval to

keep subscriptions alive is 1 hour. The constants sub, sok, not and nok are the sizes

of subscription-related SIP messages; their values have been taken from [110]. The

constant doc is the average size of presence documents that contain person-related,

device and location information. We assumed presence documents of 3000 bytes, which

is a moderate assumption if device-related and location information are included into

these documents, as pointed out by the authors of [193]. Appendix B shows an example

presence document that contains this kind of information. The constant mpb is the size

120

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

Figure 5.1: Sketch for dialog optimization

Name Description Average value

slife Subscription lifetime 8 hours

pch Presence state changes / hour variable

sref Subscription refresh interval / hour 1

wat Number of watchers per presentity within the subscriber domain variable

pres Number of presentities within the notifier domain variable

sub SUBSCRIBE message size 450 bytes

sok 200 OK for SUBSCRIBE message size 370 bytes

not NOTIFY message size 500 bytes

nok 200 OK for NOTIFY message size 370 bytes

doc size of presence documents 3,000 bytes

wlit size of watcher elements in watcher lists 160 bytes

mpb Size of boundaries in Multipart bodies1 144 bytes

wlenv Size of XML envelopes in watcher lists 144 bytes

aclenv Size of XML envelopes in ACL lists 186 bytes

aclrl Size of rules in ACL lists 22 bytes

aclmb size of member elements in ACL lists 38 bytes

pfwat Percentage of watchers to which presentities apply privacy rules 50%

pfdoc Size of privacy authorization documents 1,000 bytes

Table 5.1: Constants used to estimate federated presence traffic

of a boundary in Multipart documents [203]. The constant pfdoc is the size of privacy

authorization documents (so-called privacy filters), which we have deduced from the

examples in [177] and [204]. Appendix D shows an example privacy filter document.

The constants wlit and wlenv are used to calculate the watcher list size in CN and

CS, and their values have been deduced from [178]. Appendix E shows an example of

watcher information. Lastly, the constants aclenv, aclrl and aclmb are used to calculate

the size of Access Control Lists (ACL), which describe the views of the presentities’

presence information in VS. We have considered the examples in [195] for choosing the

values of these variables.

121

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

Privacy filtering is a determining factor in the efficiency of any technique for opti-

mizing presence traffic. In the normal mode of operation of privacy filtering [204], when

the PS is going to notify a watcher of a presentity’s presence information, it determines

the set of privacy rules that match the watcher. The combined rules are applied to

the presentity’s presence information, thereby generating the presence document that

the watcher is permitted to watch. Presence privacy rules or policies [177] (also known

as authorization rules or policies) specify what presence information can be given to

which watchers. A privacy rule contains conditions, which determine under what cir-

cumstances the rule is to be applied, actions, which indicate what actions the PS has to

take, and transformations, which specify the visibility the watcher is granted. Appendix

D shows an example privacy authorization document. With watcher-intersection-based

strategies, the PS notifies a presence document to a set of watchers rather than a sin-

gle watcher. Thus, this type of strategy needs more complicated operation modes for

privacy filtering than were previously required. Privacy filtering operates in a differ-

ent way for each of the optimization techniques and therefore is explained in Sections

5.1.2.1, 5.1.3.1, and 5.1.4.1. Nevertheless, we have some general assumptions for all

them. We assume that all the privacy rules (i.e., rule XML element in Appendix D)

that match a particular watcher are contained in a single document, which is called the

watcher’s privacy rules document or privacy filter. Thus, if privacy filtering is applied

to a watcher, the watcher is associated with a privacy rules document (or privacy fil-

ter) that contains all the rules that concern the watcher. We assume that each privacy

filter contains a single watcher for simplifying calculations. Privacy filters are therefore

individual and unique. Moreover, we assume that the privacy filters have already been

created when watchers subscribe to presentities and do not change during the session

time.

1Multipart messages combine different sets of data in a single body. Each ”body part” is preceded

by an encapsulation boundary

122

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

Figure 5.2: Sketch for the Common Notify strategy

5.1.2 Common Notify

5.1.2.1 Overview

With CN [194], when a presentity changes its presence information, the PS sends a

single NOTIFY message to all the watchers within the same domain that are subscribed

to the presentity. This single NOTIFY message carries a presence document that

contains the presentity’s complete presence information. Thus, the watcher domain is

responsible for providing watchers with the presence documents that they are allowed

to see. This domain needs therefore to know each watcher’s privacy rules, which are set

in the presentity’s domain. Figure 5.2 is a straightforward illustration of this strategy.

Three watchers in DomainB are interested in John’s presence information and wish

to subscribe to him. The PS in DomainA receives three requests from DomainB to

watch John, and creates a separate subscription for each authorized watcher. When

John changes his presence information, the PS sends a single NOTIFY message to

Domain B rather than three separate messages through each subscription. This strategy

eliminates the need to send individual NOTIFY messages from the domainA’s PS to

each watcher within DomainB. A positive feature of CN is that it does not need the

watcher domain’s PS to work as a proxy for any subscription request. In very large

scale domains, this feature could be helpful to save overload at the servers. Section 6

discusses about how the studied strategies overload the PS and other network servers.

As described in [194], implementing CN involves resolving two main issues:

Knowledge of watchers to whom the common NOTIFY is targeted: When a

watcher domain receives a common NOTIFY, it needs to know to which watchers

this message is targeted. There are three different ways to obtain the watcher

list: (1) maintaining the list on the subscriber side PS, (2) including the list in

notifies and (3) obtaining the list by subscribing to a winfo package. In the first

123

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

one, the watcher domain’s PS creates and constantly updates the list of watchers

who are watching the presentity’s presence. This means that all SUBSCRIBE

messages must go from watchers to presentities through the watcher domain’s

PS. In the second way, the common NOTIFY messages include the list of watch-

ers to whom these messages are sent. Lastly, with winfo event subscriptions, the

watcher domain’s PS subscribes to the presentity’s winfo event package [145].

Thus, whenever a new watcher subscribes to the presentity, a watcher list docu-

ment is notified to the watcher’s PS. The last two ways follow the format described

in [178] for watcher lists; Appendix E shows an example watcher list document.

Knowledge of privacy rules: Privacy filtering has to be performed to provide watch-

ers with the presence documents generated according to presentities’ privacy rules.

There are two ways to define privacy filtering: domain-based and watcher-based

privacy filters. The former sets the same privacy filter for all the watchers in

the same domain and, therefore, privacy filtering can be performed by the pre-

sentity’s PS. The latter defines privacy filters based on particular watchers, and

hence privacy filtering must be applied by the watcher domains. With watcher-

based filters, a presentity’s complete presence state information and privacy filters

must be sent to the watcher domain. As the technical report [205] describes, the

watcher domains may subscribe to a new event package that would represent the

privacy filters associated with a presentity. The presentity’s PS would handle

this event package and generate a NOTIFY message whenever a privacy filter

changed. NOTIFY messages may contain privacy rules themselves (in a full-

or partial-state document) or a URL that points to a privacy rules document

handled by an XCAP server [206]. We denominate this new event package as

“privacy-filters”, and assume that notifications of this event carry privacy rule

documents. Since the authors of [205] do not give any detail about this new

event package implementation, we need to take some design decisions. We as-

sume that if a watcher does not have any associated privacy rule, it means that

the watcher is allowed to see the presentity’s complete presence. Thus, only the

watchers which are restricted to see a subset of the presentity’s presence have

privacy rules associated. Moreover, we consider two options for subscribing to a

privacy-filters event:

124

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

1. Basic privacy-filters subscriptions: When a watcher domain subscribes to a

presentity’s privacy-filters event, the presentity’s PS notifies all the privacy

rules related to any watcher within this domain, regardless of whether the

watcher is actually active, that is, watching the presentity. Since privacy

filters are unlikely to change often, once the subscriber downloads the rules,

almost no notifications will be received normally.

2. List-based privacy-filters subscriptions: The SUBSCRIBE messages sent by

the watcher domain include the list of watchers who are interested in obtain-

ing the presentity’s presence (i.e., the watchers to who the privacy rules will

be applied). Thus, the presentity’s PS only notifies the privacy rules related

to the watchers on this list. The drawback of this option is the amount

of re-SUBSCRIBE messages that are sent for obtaining new watchers’ pri-

vacy rules. Whenever a watcher of a particular presentity becomes active

(i.e., starts watching), the presentity’s privacy rules for this watcher must

be downloaded. Moreover, the watchers must use their PS as gateway to

send their presence subscription requests because the PS has to know the

watchers that are really watching the presentity.

5.1.2.2 Traffic Calculation

Table 5.2 shows the different alternatives for implementing CN, and the types of sub-

scription that these alternatives involve. When watcher-based filtering is applied, these

alternatives assume basic privacy-filters subscriptions, which are described above. This

is because the basic method for privacy-filters subscriptions is expected to generate less

traffic than the list-based method. Nevertheless, we include the traffic calculation for

the list-based method below because a comparison between the two methods is given in

Section 5.1.5.3. Note that the mark (*WLN) indicates that the watcher list is included

in NOTIFY messages. The traffic for each alternative is calculated as the sum of all

the involved events’ traffic. The formula that results of this sum is omitted because

of their extensive length. The following points show the formulas that calculate each

event’s traffic in bytes.

• Subscriptions to presence events

125

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

ID Description Presence

event

Privacy-

filters

event

winfo event

CN1 Domain-based privacy filters,

WLs in notifies

YES (*WLN) NO NO

CN2 Domain-based privacy filters,

WL with winfo subscription

YES NO YES

CN3 Domain-based privacy filters,

WL in watchers’ PSs

YES NO NO

CN4 Watcher-based privacy filters,

WLs in notifies

YES (*WLN) YES NO

CN5 Watcher-based privacy filters,

WL with winfo subscription

YES YES YES

CN6 Watcher-based privacy filters,

WL in watchers’ PSs

YES YES NO

Table 5.2: Types of events involved in CN based on its configuration

Calculating this type of traffic depends on the means for obtaining the watcher

lists. As described in Section 5.1.2.1, there are two possibilities that involve

traffic:

1. Including the list in the NOTIFY messages: pres ∗wat ∗ (sub+ sok+ not+

doc+ nok) ∗ (slifesref + 1) + (pch ∗ slife− 2) ∗ pres ∗ (not+mpb+ doc+mpb+

wlenv + wat
2 ∗ wlit+ nok).

We assume that, by the time a presence change occurs, the average number

of active watchers is half the total number of watchers. This assumption

determines the size of the watcher list included in each presence notification.

2. Obtaining the list by subscribing to a winfo event: pres ∗wat ∗ (sub+ sok+

not+ doc+ nok) ∗ (slifesref + 1) + (pch ∗ slife− 2) ∗ pres ∗ (not+ doc+ nok).

• Subscriptions to winfo events: pres ∗ (sub+ sok + not+ wlenv + nok) ∗ (slifesref +

1) + pres ∗wlit ∗ wat2 ∗ (slifesref + 2 +wat) + pres ∗ (wat− 1) ∗ (not+wlenv + nok)

We have made the following assumptions in these calculations. The PS notifies

the watcher domain of the watcher list whenever a new watcher subscribes to

the presentity. Winfo notifications are full-state, which mean the watcher lists

contain all the watchers that are active at the notification time. By the time

126

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

the watcher domain resubscribes to keep a winfo subscription alive, the average

number of watchers subscribed is half the total number of watchers.

• Subscriptions to privacy-filters events: pres∗(sub+sok+not+ pfwat∗wat
100 ∗(mpb+

pfdoc) + nok) ∗ (slifesref + 1)

• List-based subscriptions to privacy-filters events: pres ∗ ((sub + wlenv + sok +

not+ nok+
pfwat∗wat

100
+1

2 ∗ (mpb+ pfdoc)) ∗ (slifesref +wat) +wlit ∗ wat2 ∗ (slifesref + 2 +

wat)− 2 ∗mpb− pfdoc)

We assume that at anytime when the subscription state is refreshed, the number

of watchers that are active and have an associated privacy filter is equal to the

average of one plus pfwat per cent of the total number of watchers (note that

as minimum one watcher is already active when refreshes occur). This number

determines the number of privacy filters that the NOTIFY messages for refreshes

contain.

5.1.3 View Sharing

5.1.3.1 Overview

VS classifies the presentity’s watchers based on the part of the presentity’s presence that

they are authorized to see. It is referred as the watcher’s “view” on the presentity. A

view is a particular sequence of presence documents that come about as a consequence

of a particular authorization and privacy policy. Two watchers who share the same

view will always receive the same presence document when the presentity’s presence

changes. The key idea in VS is that the watcher domain handles a single subscription

for the watchers that share a particular view of the presentity’s presence. Whenever

the watcher domain is notified of a new presence document associated with a particular

view, it is responsible for distributing this document to all the watchers who are allowed

to see that view. Contrary to CN, with VS, there is no need to obtain the watcher lists

and the privacy filters. No privacy filters exchange is a significant advantage from the

point of view of security, and constitutes the main benefit of VS. Figure 5.3 outlines this

strategy. The presentity John is watched by three watchers in DomainB, and hence the

DomainB’s PS may manage a maximum of three different views (i.e., three different

subscriptions). This is the case depicted in Figure 5.3.

127

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

Figure 5.3: Sketch for the View Sharing strategy

The first time that the watcher domain’s PS receives a SUBSCRIBE message to a

presentity, it resends this message to the presentity. The presentity’s domain replies

with a NOTIFY message that contains an ACL whose XML scheme follows the spec-

ifications in [195]. In the ACL document, each view is represented by a rule element

and identified by a unique ID attribute. Each view contains a set of member elements

that contain the URIs of the watchers authorized to see the view. An ACL document’s

content depends on the level of trust the notifier domain grants to the watcher domain.

As described in [195], there are three levels of trust:

Full trust: The ACL documents include all the watchers in the requester domain,

associated with their respective views. There is only one backend subscription

from the watcher domain to the PS for each view. The PS discloses the complete

association of watchers with views, and does not know the full set of watchers

currently subscribed.

Partial trust: A watcher’s ACL document includes the watcher and all the other

watchers that are authorized to see the view associated with the watcher. As

with full trust, there is only a backend subscription between the watcher domain

and the PS for each view, and the PS does not know the full set of watchers

currently subscribed. However, the PS only discloses the watchers who see the

same view, not the full set of them.

Minimal trust: A watcher’s ACL document only includes the watcher, and there is

therefore a backend subscription for each watcher. However, if multiple watch-

ers share a particular view, the presence changes are sent through one of the

subscriptions and the watcher domain distributes the changes to all of the other

watchers. The PS never discloses the list of authorized watchers or their views

and has full knowledge of the watchers actually subscribed.

128

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

ID Description Presence event

VS1 Domain-based privacy filtering and full trust YES

VS2 Domain-based privacy filtering and partial trust YES

VS3 Domain-based privacy filtering and minimal trust YES

VS4 Watcher-based privacy filtering and full trust YES

VS5 Watcher-based privacy filtering and partial trust YES

VS6 Watcher-based privacy filtering and minimal trust YES

Table 5.3: Types of events involved in VS based on its configuration

In the case of minimal trust, VS applies the idea behind CN to the scope of views.

A presence subscription is established for each watcher, but when a presence change

occurs, a single NOTIFY message is sent per view. The watcher domain only knows

a watcher’s view when this watcher becomes active and then a watcher subscription

is created. However, with partial and full trust, the watcher domain gets to know all

the watchers associated with a view, regardless whether they are active or not. In the

case of partial trust, only active views (i.e., views that are actually being observed by

some watcher) are disclosed, while full trust gives all the views in. These two methods

create a subscription and a watcher list for each view. When the watcher PS receives

a SUBSCRIBE message to a presentity, it checks the available ACLs and determines

whether the user is associated with some active view (i.e., subscription). In this case,

the watcher is added to the subscription’s watcher list. Otherwise, the SUBSCRIBE

message is forwarded to the presentity and, if the request is successful, a subscription

state and a watcher list, which contains the watcher, is created for the view. Regarding

state notifications, the NOTIFY messages for refreshes must include the most recent

ACL and presence document, while the NOTIFY messages for presence changes only

include the presence document.

5.1.3.2 Traffic Calculation

Table 5.3 shows the possible alternatives for VS, which only involve the presence event

and drastically differentiate from each other based on the type of trust. The following

points give the formulas that estimate each type of trust’s traffic in bytes. In these

formulas, the percentage of watchers with privacy restrictions is given by the variable

pfwat (see Table 5.1). The domain-based privacy filtering is done when pfwat is set to

129

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

0. Thus, the calculations below, from up to down, represent the VS3, VS2, and VS1

cases in Table 5.3 when this variable is 0; otherwise, the VS6, VS5, and VS4 cases.

• Minimal trust (VS3 and VS6): pres ∗wat ∗ (sub+ sok+not+mpb+ doc+mpb+

aclenv+ aclrl+ aclmb+nok) ∗ (slifesref + 1) + (pch ∗ slife− 2) ∗ pres ∗
pfwat∗wat

100
+1

2 ∗
(not+ doc+ nok).

• Partial trust (VS2 and VS5): pres∗((sub+sok+not+mpb+doc+mpb+aclenv+

aclrl + (wat− pfwat∗wat
100 ∗ aclmb+ nok)) + pfwat∗wat

100 ∗ (sub+ sok + not+mpb+

doc+mpb+ aclenv+ aclrl+ aclmb+nok)) ∗ (slifesref + 1) + (pch ∗ slife− 2) ∗ pres ∗
pfwat∗wat

100
+1

/2 ∗ (not+ doc+ nok)

• Full trust (VS1 and VS4): pres ∗ (sub+ sok+ not+mpb+ doc+mpb+ aclenv+

aclrl+(wat− pfwat∗wat
100)∗aclmb+ pfwat∗wat

100 ∗ (aclrl+aclmb)+nok)∗ (pfwat∗wat100 +

1) ∗ (slifesref + 1) + (pch ∗ slife− 2) ∗ pres ∗
pfwat∗wat

100
+1

2 ∗ (not+ doc+ nok)

The calculations above require doing the following assumptions. The watchers with

no restrictions on presence, that is, (100−pfwat)% of watchers, are added to a default

view that includes the full presence information. The presentity’s PS knows all the

possible watchers, and hence they are always associated with a specific view or the

default one. Whenever a presence change occurs, it affects half of the total views, and

hence every presence change is notified through half of the total number of subscriptions.

Each view is associated with a single watcher, and hence each watcher to which privacy

filtering is applied has a different view of the presentity’s presence. With minimal trust,

the watcher domain maintains a view for each watcher, and hence the number of ACL

documents that it handles is wat. With full trust, the watcher domain handles a single

ACL document that contains information about all the presentity’s views. This ACL

document has a different rule element for pfwat per cent of the watchers. Each of these

rule elements contains a single member element with the URI of the watcher that is

authorized to see the view. Another rule element is the default view, which contains the

remaining watchers. With partial trust, the watcher domain handles a different ACL

document for each view, which includes a single rule and a single member element. It

also handles an ACL document for the default view, which includes a single member

element and as many member elements as (100−pfwat)wat
100 . Therefore, the number of

ACL documents that it handles is 1 + pfwat∗wat
100 .

130

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

Figure 5.4: Sketch for the Common Subscribe strategy

5.1.4 Common Subscribe

5.1.4.1 Overview

CS is our proposal for reducing inter-domain presence traffic. This strategy creates

a single subscription for each presentity between the subscriber and notifier domains

(see Figure 5.4). This single subscription saves much signaling traffic for managing

multiple watcher subscriptions for each presentity. CN maintains a different subscrip-

tion between the subscriber and notifier domains for each (watcher,presentity) pair.

This means that a great deal of traffic is generated for refreshing subscriptions. How-

ever, these subscriptions do not serve to send presence notifications. They are simply

means of letting the notifier domain know and authorize the watchers that are actually

watching each presentity.

In CS, the watcher domain must obtain the presentities’ privacy filters for generating

the presence documents that watchers are authorized to see. The domains only manage

one subscription per presentity, which is associated with all the watchers interested in

the presentity. Therefore, the subscriber domain has to somehow let the notifier domain

know about the watchers that are actually watching some presentity. Sending this list

in the body of SUBSCRIBE messages is a reasonable solution. It requires the watcher

domain’s PS to work as a proxy for all the SUBSCRIBE messages sent by watchers

within this domain. When this PS receives a subscription request to a presentity, it

sends a common SUBSCRIBE message to the presentity. This message’s body contains

the presentity’s watcher list that includes the new requester. When the presentity’s PS

receives a common SUBSCRIBE message, it examines the watcher list in this message

and accordingly updates the common subscription’s watcher list. The PS adds any

new watcher, as long as it is authorized to see the presentity’s presence, to the list

and removes the missing watchers. Then, the updated watcher list is included in the

131

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

body of the NOTIFY message that is sent in response to the subscription request. This

message has a multipart body in which one part is the presence document and the other

part is the watcher list. Both the subscriber and notifier domains know the watchers to

which presence notifications are directed and no other techniques (e.g., those in CN) are

necessary. Should a presentity revoke the authorization of a watcher to see its presence,

the presentity’s PS sends a NOTIFY message that includes the watcher list without

the rejected watcher. Regarding privacy filtering, the watcher domain subscribes to

the presentities’ privacy-filters events for getting their filters, which was described in

Section 5.1.2.1.

Each presentity is associated with two subscriptions for each watcher domain: one

to presence information and other to privacy filters. Let us consider these two events

as the two parts of a more general event that represents all the information about

a presentity that a watcher domain is authorized to see. We refer to this event as

“federated-presence”. When a presentity’ PS receives a federated-presence subscription

request, if the requester domain is authorized, the PS generates a subscription status to

the presentity’s presence and privacy-filters events for the requester domain. The PS,

therefore, sends both the presence document and the privacy filters in the NOTIFY

message as a result of a subscription request. Nevertheless, a change in the presentity’s

presence or privacy filter information only results in notifying the information that

changed (the presence document or the filter). Federated-presence subscriptions save

the SUBSCRIBE, OK and NOTIFY messages for subscribing, refreshing and termi-

nating privacy-filters subscriptions. We denominate this variation of CS as Federated

Common Subscribe (FCS).

As described in Section 2.7.4, conditional notifications [147] avoid sending the NO-

TIFY messages as a result of re-subscription requests when no presence changes have

occurred from the last notification. With CS, if these NOTIFY messages were saved,

the subscriber would not be able to know whether or not the watched domain autho-

rized the list of watchers given by the re-SUBSCRIBE message. The NOTIFY messages

can not be saved since they carry the list of authorized watchers. However, conditional

notifications can still be combined with CS. The purpose of this optimization is to save

the resource state information that is sent in response to subscription refreshes. A pre-

sentity’s resource state information is the presentity’s presence; watcher list information

is control data. With CS, conditional notifications must not be applied to the watcher

132

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

ID Description presence

event

privacy-

filters

event

federated-

presence

event

CS1 Domain-based privacy filters YES NO NO

CS2 Watcher-based privacy filters YES YES NO

CS3 Watcher-based privacy filters NO NO YES

Table 5.4: Types of events involved in CS based on its configuration

list information. Therefore, this optimization does not save sending the NOTIFY mes-

sages for refreshes but just avoids including the presentity’s presence document in these

messages when it is unnecessary.

5.1.4.2 Traffic Calculation

Table 5.4 shows the alternatives for implementing the CS strategy and their involved

events. Each alternative’s total traffic is the sum of the associated event subscriptions’

traffic. The formula that results of this sum is omitted because of its extensive length.

The following points show the formulas that calculate each event’s traffic in bytes. The

calculation for the privacy-filter event’s traffic is omitted since it was already presented

in Section 5.1.2.2.

• Common subscriptions to presence event: pres ∗ (sub+ sok + 2 ∗ wlenv + not+

doc+ nok+ 2 ∗mpb) ∗ (slifesref +wat) + pres ∗wlit ∗wat ∗ (slifesref +wat+ 2) + (pch ∗
slife− 2) ∗ pres ∗ (not+ doc+ nok)

The above formula is based on the following assumptions. The first SUBSCRIBE

message that is sent for creating a common subscription contains a single watcher

(i.e., the first to send a subscription request). By the time the session finishes and

therefore the subscription is terminated, all the watchers are active. The watcher

list in common SUBSCRIBE and NOTIFY messages is full-state (i.e., contain

all the watchers associated with the common subscription). When the watcher

domain refreshes a common subscription, half of the total number of watchers are

active on average.

• Common subscriptions to federated-presence event: pres∗(sub+sok+2∗wlenv+

not + doc + nok + 2 ∗mpb + pfwat∗wat
100 ∗ (mpb + pfdoc)) ∗ (slifesref + wat) + pres ∗

wlit ∗ wat ∗ (slifesref + wat+ 2) + (pch ∗ slife− 2) ∗ pres ∗ (not+ doc+ nok)

133

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

This kind of event subscription operates in the same way than presence subscrip-

tions excepting that the privacy rules are sent in any notification. Thus, all the

assumptions done above are valid for this event too.

5.1.5 Estimation and Analysis of Presence Traffic

We estimate the presence traffic exchanged between two federated domains when CN,

VS, and CS are applied for reducing network traffic. We use the mathematical for-

mulas given in Sections 5.1.2.2, 5.1.3.2, and 5.1.4.2 to assess the performance of these

strategies. These formulas give us each strategy’s traffic in bytes, and are based on the

variables and constants in Table 5.1. We take the value in Table 5.1 from a presence

scenario described in [193]. This scenario has 40,000 presentities (pres variable) that

are watched by 20 watchers (wat variable). Presentities change their presence at a rate

of three changes per hour (pch variable) on average. As the authors of [193] state,

these assumptions are pretty moderate compared to the statistics about real systems

that they provide. As described previously, other presence scenarios are considered

in [193], which represent higher levels of federation. We assume the afore-mentioned

scenario becuase it represents a moderate level of federation, and hence the result of

applying traffic optimizations to it can be extrapolated to larger systems. In the re-

search report [207], we show that the qualitative results of each strategy are the same

on all the studied presence scenarios. It is important to highlight that, although we

find the above-mentioned assumptions reasonable, we do not set out to analyze specific

presence systems or make rigorous general models of the behavior of presence systems.

This would be an arduous, if not impossible, task since presence users do not follow

any particular statistical pattern that could be applied to all of them.

Figure 5.5 shows the traffic generated with the dialog optimization strategy (RLS),

the case of no optimizations (BASIC), and the various configurations in CN (CN1-

CN2), CS (CS1-CS3), and VS (VS1-VS6) that are shown in Tables 5.2, 5.4, and 5.3,

respectively. In the case of the dialog optimization strategy, we assume that the RLS

sends partial-state RMLI documents for notifying watchers of the presentities’ pres-

ence. Conditional notifications are not applied to any strategy; this optimization is

analyzed in Section 5.1.5.1. Figure 5.5 shows that dialog optimization is by far the

least scalable strategy. Whenever a presence change occurs, the federated RLS notifies

a different RLMI document to each of the presentity’s watchers. However, the other

134

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

0.E+00

2.E+10

4.E+10

6.E+10

8.E+10

1.E+11

1.E+11

To
ta

l t
ra

ff
ic

 (
b

yt
e

s)

Figure 5.5: Presence traffic of all the strategies

three strategies reduce the number of notifications per presence change to one in the

case of CN and CS, and to the number of different views in the case of VS. In addition,

these strategies do not introduce overhead for RLMI-related data in the notifications.

Cases CN1-CN3, CS1 and VS1-VS3 deal with domain-based privacy filtering. This

means that all the watchers in a domain that are subscribed to a particular presentity

have the same privacy rules, and can therefore see exactly the same presence documents.

In this case, when VS is applied with partial or full trust (cases VS1 and VS2) there is

a single subscription between the watcher domain and the presentity, as happens with

CS. These two cases do not inform the presentity’s PS of the watchers who are currently

watching the presentity; the PS only knows one of them (i.e., the first one to subscribe).

However CN and CS are designed to always provide the presentity’s domain with full

knowledge about watchers. If such knowledge is not needed by the watched domain,

the VS strategy with partial or full trust is strongly recommended. Both cases generate

the same amount of traffic since there is a single view per domain. Then, VS saves

58% and 85% of the traffic in CS and CN, respectively. However, if the presentity’s PS

needs to know the full set of watchers, the VS strategy is only permitted in the case

of minimal trust (case VS3). In this case, the VS traffic is multiplied by more than

sevenfold and exceeds the CN traffic. The most efficient strategy is CS, which reduces

VS3 traffic by 68% and CN traffic by 65-68%. CN reduces VS3 traffic by between 1,2%

and 9,4% depending on its configuration.

Cases CN4-CN6, CS2, CS3, and VS4-VS6 deal with watcher-based privacy filtering,

which is applied to pfwat% of watchers. CS is doubtless the most efficient strategy at

reducing presence traffic between domains. Case CS2 reduces the VS traffic by 60%,

57% and 69% with full, partial, and minimal trust, respectively. Moreover, this case

135

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

0.0E+00

1.0E+10

2.0E+10

3.0E+10

4.0E+10

5.0E+10

6.0E+10

7.0E+10

8.0E+10

CN1 CN2 CN3 CN4 CN5 CN6 CS1 CS2 CS3 VS1 VS2 VS3 VS4 VS5 VS6 RLS BASIC

To
ta

l t
ra

ff
ic

 (
b

yt
e

s)

Figure 5.6: Presence traffic of all the strategies when NO is applied

reduces the CN traffic by around 57-60% based on the configuration of CN. Case CS3

(i.e., federated-presence subscriptions) involves more traffic than CS2 because it sends

both presence information and privacy rules in any NOTIFY message. Section 5.1.5.1

shows how conditional notifications improve the FCS efficiency. Case CN4 introduces

fewer bytes than case CN5 because the former adds the watcher list to the NOTIFY

messages, rather than using the winfo event package. Section 5.1.5.4 discusses these

two methods in depth. Case CN6 is obviously the most efficient configuration for CN

since no traffic is involved in obtaining the watcher lists. Despite that Figure 5.5 shows

that CS is very efficient, our assumptions to calculate its traffic are pessimistic. When-

ever a watcher becomes active, a SUBSCRIBE message with a watcher list containing

the new watcher is sent. However, the watcher domain may have a throttling mecha-

nism for aggregating new watchers’ requests in a single SUBSCRIBE message, which

may be specially useful in rush hours. Moreover, we count the SUBSCRIBE mes-

sages for refreshing and adding new watchers separately. However, in a real system,

the SUBSCRIBE messages for new watchers would also refresh the subscriptions by

restarting their expiration timer. Thus, the watcher domain would need to send fewer

re-SUBSCRIBE messages to refresh the subscriptions.

The following sections analyze a number of parameters that affect the performance

of CN, VS, and CS. Section 5.1.5.1 analyzes the effect of conditional notifications on

these strategies. Section 5.1.5.2 studies the performance of VS. Section 5.1.5.3 stud-

ies how the strategies are affected by privacy filtering, specially with privacy-filters

subscriptions. Finally, Section 5.1.5.4 tackles the management of watcher lists in CN.

136

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

000.0E+0

5.0E+9

10.0E+9

15.0E+9

20.0E+9

25.0E+9

30.0E+9

35.0E+9

40.0E+9

45.0E+9

50.0E+9

CN4- 0% CN4- 20% CN4- 50% CN4- 80% CN4- 100% CS1 CS2 CS3

N
u

m
b

e
r

o
f

b
yt

e
s

Figure 5.7: Presence traffic of CN when different percentages of watchers support NO

5.1.5.1 Conditional Notifications

Conditional notifications [147] suppress the unnecessary notifications sent in response

to the SUBSCRIBE requests for keeping the subscriptions alive. The traffic estima-

tion in [193] show that this technique is very efficient at reducing subscription traffic.

Henceforth, we refer to this technique as NOTIFY optimization (NO) for differentiating

its acronym from that of the Common Notify strategy (i.e., CN). Figure 5.6 shows the

result of applying this technique to the traffic in Figure 5.5. The presence traffic in

both figures follows the same pattern. Using domain-based filtering, the best strategy

is VS (with partial or full trust), followed by CS. However, in the case of watcher-based

filtering, the most efficient strategy is CS, followed by CN. Dialog optimization (RLS

case) is the least efficient strategy; this even generates more traffic than the BASIC case

in which no strategies for reducing traffic are applied. This is because we assume that,

in the BASIC case, either all the watchers implement NO or all the subscription re-

quests go through the watcher domain’s PS that implements NO. Ensuring that all the

watcher apply NO may however be more difficult to ensure in real scenarios. With FCS

(CS3 case), the NOTIFY messages due to refreshes carry privacy filters in addition to

presence documents, and hence NO saves around 61% of its traffic. NO is very effective

in CN and VS with minimal trust because these strategies handle a different presence

subscription to a particular presentity for each watcher. Therefore, saving the notifica-

tions for refreshing all the subscriptions reduces inter-domain traffic significantly. With

CN, when the watcher domain’s PS does not work as a proxy, this reduction is not

achieved unless all the watchers implement NO, which may not a realistic situation as

mentioned previously. The federated RLS, CS, and VS strategies however always need

137

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

the watcher domain’s PS to work as a proxy, which allows implementing NO between

this PS and the notifier domain’s PS. With CN, the number of watchers that apply

NO should therefore be carefully considered in their presence subscriptions. Figure

5.7 shows the CN4 traffic when different percentages of watchers implement NO. As

expected, CN is only nearly as efficient as CS if all the watchers support NO. For ex-

ample, if we take an optimistic case in which 80% of watchers implement NO, it can

be seen that the CN traffic is almost twice that of CS.

5.1.5.2 View Sharing

Figure 5.5 shows that VS is not as efficient as expected. Case VS6 implements minimal

trust which offers full knowledge about watchers to the notifier domain. This case is the

least efficient; it involves more bytes than any configuration of CN. Like CN, minimal

trust maintains one presence subscription per watcher, per presentity. However, case

VS6 introduces more overload because (1) a single presence change may result in noti-

fying more than one subscription and (2) the NOTIFY messages for refreshes contain

ACL documents. If the notifier domain does not need to be aware of the watchers sub-

scribed to the presentity, it is preferable to apply partial trust (VS5) to full trust (VS4)

because the former notifies smaller ACL documents. Case VS5 saves approximately

8% of the VS4 traffic. Although Figure 5.5 shows that the VS traffic with partial trust

is hardly lower than the CN traffic, a number of issues concerning the performance

of VS should be considered. Its performance may be seriously affected by changes in

privacy filters. For our calculations, we assume that privacy filters do not change once

they are created. This assumption is optimistic since changes in privacy filters may

involve updating watcher lists, removing the subscriptions associated with views that

have become invalid, and creating subscriptions for new views. In addition, we assume

that all the possible watchers are already known by the presentity’s PS and, therefore,

included in ACLs. This assumption is also optimistic in partial and full trust since

it avoids SUBSCRIBE messages that would be necessary for obtaining the views that

unknown watchers are authorized to see.

With partial trust (VS5) or full trust (VS4), the federated domains must handle as

many presence subscriptions as the number of views associated with watchers. Thus,

these techniques generate more traffic as the number of views increases. With minimal

trust (VS3 and VS6), although the number of subscriptions is always equal to the

138

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12
x 1010

Percentage of watchers that see a different presence view

P
re

se
nc

e
tr

af
fic

 (
by

te
s)

VS6 with 3 presence changes/hour
VS6 with 6 presence changes/hour
VS4 with 3 presence changes/hour
VS4 with 6 presence changes/hour

Figure 5.8: Effect of the number of views on VS traffic

number of watchers, the number of views does affect the amount of NOTIFY messages

for changes to send. The number of notifications per presence change is equal to the

number of views affected by the change. We assume that each presence change affects

half of the number of views. The variable pfwat means the percentage of watchers to

which privacy filtering is applied and is set to 50% for our calculations. Each of these

watchers has a different privacy filter and therefore watches a different view of the

presentity’s presence (through a different presence subscription). Figure 5.8 shows how

VS with full trust (VS4) and minimal trust (VS6) are affected by the increase in views.

Partial trust is omitted because its performance on view growth is very similar to that

of full trust. The increase in views obviously has a more harmful effect on full trust,

and when 80% of watchers have a different view associated, the application of minimal

trust is more efficient than partial trust. The number of presence changes significantly

increases the traffic of both cases.

5.1.5.3 Privacy Filtering

Figure 5.9 shows the effect of the increase in views on VS4, CN4 and CS2 when three

and six presence changes occur per hour. The number of views for a presentiy is equal

to the number of privacy filters created by this presentity. It can be seen that VS

involves more traffic than the other techniques as the number of views increases. The

average number of presence changes also drastically affects VS. The CS and CN traffic

does not significantly increase as the number of filters grows, since these strategies

handle a constant number of presence subscriptions regardless of the number of privacy

filters. These strategies do not worsen as the number of presence changes increases

139

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12
x 1010

Number of presence views per presentity

P
re

se
nc

e
tr

af
fic

 (
by

te
s)

CN4 with 3 pres. changes/hour
CN4 with 6 pres. changes/hour
VS4 with 3 pres. changes/hour
VS4 with 6 pres. changes/hour
CS2 with 3 pres. changes/hour
CS2 with 6 pres. changes/hour

Figure 5.9: Traffic of CN, VS, and CS over the number of views

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10
x 1010

Number of presence views per presentity

P
re

se
nc

e
tr

af
fic

 (
by

te
s)

CN4 with 3 pres. changes/hour
CN4 with 6 pres. changes/hour
VS4 with 3 pres. changes/hour
VS4 with 6 pres. changes/hour
CS2 with 3 pres. changes/hour
CS2 with 6 pres. changes/hour

Figure 5.10: Traffic of VS, CN, and CS combined with NO over the number of views

because the number of presence notifications does not depend on the number of views

(i.e., notifications are only sent through one presence subscription). Figure 5.10 is the

result of applying NO to the traffic in Figure 5.9. It can be seen that the difference

between VS and the other two strategies becomes even greater when this optimization

is applied.

Figure 5.11 shows the thresholds from which the case VS4 starts to generate more

bytes than CN4 and CS2 based on the percentage of the presentity’s watchers that

watch a different view. Stated differently, this figure shows the maximum percentage of

watchers watching a different view per presentity that is advisable to use VS (i.e., VS

generates fewer bytes than CN and CS up to that percentage). Since these percentages

refer to a total of 20 watchers, the numbers on the columns denote the advisable

maximum number of views (i.e., privacy filters). VS is only preferable to CS when

140

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

0

20

40

60

80

100

3c/h 6c/h 3c/h&NO 6c/h&NO

m
ax

im
u

m
 %

 o
f

w
at

ch
e

rs

w
it

h
 a

 p
ri

va
cy

 f
ilt

e
r

fo
r

V
S

compared to CN

compared to CS

3 2 3 2

10
8

4 3

Figure 5.11: Maximum percentage of watchers seeing a different presence view up to

which VS4 is recommended

there are almost no privacy filters per presentity (three or two in case of three and

six presence changes/hour, respectively). The choice between VS and CN very much

depends on whether the latter applies NO or not. Without this optimization, VS is

more efficient than CN up to ten and eight different views in the case of three and six

changes/hour, respectively.

CN and CS need privacy-filters subscriptions to get the prensentities’ privacy filters,

which involves a considerable amount of traffic. One may notice this fact in Figure 5.5,

specially in CN4 and CN1 cases. The single difference between these cases is that

CN4 creates privacy-filters subscriptions; this is the reason why CN4 case generates

more traffic. Since the CN and CS strategies handle privacy-filters subscriptions in the

same manner, we take CN as a reference for analyzing this kind of traffic. Figure 5.12

shows the CN4 traffic as the number of privacy filters per presentity increases. This

traffic is split into presence-related and filters-related traffic. The maximum number of

filters per presentity is 20 because the presentities have 20 watchers. This figure also

shows the CN4 traffic when NO is applied to privacy-filters subscriptions. In the best

case, no privacy filters are created, and therefore there is only one default filter per

presentity. In this ideal case, the traffic due to privacy-filters subscriptions constitutes

2.5% or, if NO is applied, 0.9% of the total traffic. In the worst case, the presentities

create a specific privacy filter for each watcher (i.e., 20 filters per presentity) and the

privacy-filters subscriptions’ traffic represents 18.6% or if NO is applied, 3.1%, of the

total traffic.

Presence event subscriptions involve less traffic in CS than CN, and hence the traffic

related to privacy filters accounts for a higher proportion of traffic in CS. Privacy-filters-

related traffic in CS (case CS2) accounts between 7.3% in the best case and 40.8% in

141

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5
x 1010

Number of privacy rule documents

P
re

se
nc

e
tr

af
fic

 (
by

te
s)

presence event traffic
privacy−filters event traffic
privacy−filters event traffic with NO

Figure 5.12: Privacy-filters and presence event traffic of CN

the worst case of the total traffic. When NO is applied, these percentages are reduced

to 2.8% in the best case and 8.9% in the worst case.

The following sections discuss the effect of changes in privacy filters on privacy-filters

subscriptions and the use of watchers lists in these subscriptions.

Changes in privacy rules We assume that presentities do not change their privacy

filters after creating them. Although we believe that this is a reasonable assumption

for many scenarios, it may not be true in others. Whenever a presentity changes a

privacy rule, its PS notifies the subscriber domain of the privacy filters that are affected

by the change. Figure 5.13 shows the effect of changes in privacy filters on privacy-

filters subscriptions’ traffic. Each presentity is subscribed by 20 watchers and therefore

can create up to 20 different privacy filters. We consider the minimum case (one

privacy filter per presentity), the average case (10 privacy filters per presentity) and the

maximum case (20 privacy filters per presentity). Figure 5.13 shows that the increase in

changes in privacy filters worsends the efficiency of privacy-filters subscriptions. Figure

5.14 shows the traffic related to privacy-filters and presence events in CN4 when each

presentity creates 10 privacy filters. The sum of these two types of traffic is the total

traffic in CN4. It can be seen that the traffic related to privacy filters becomes a greater

part of the total traffic as the number of changes increases. Both Figures 5.13 and 5.14

assume that NO is applied to all the subscriptions.

List-based privacy-filters subscriptions As described in Section 5.1.2, there are

two methods for subscribing to a presentity’s privacy-filters event: list-based and ba-

sic subscriptions. The former includes the list of subscribed watchers in SUBSCRIBE

142

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 1010

Number of changes per privacy filter during a session

P
riv

ac
y−

fil
te

rs
 e

ve
n

tr
af

fic
 (

by
te

s)

20 privacy filters per presentity
10 privacy filters per presentity
1 privacy filter per presentity

Figure 5.13: Privacy-filters event traffic over the number of changes in privacy filters

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5
x 1010

P
re

se
nc

e
tr

af
fic

 (
by

te
s)

Number of changes per privacy filter during a session

presence event traffic
privacy−filters event traffic

Figure 5.14: CN traffic over the number of changes in each privacy filter

messages for allowing the notifier to send only the privacy filters associated with the

watchers on the list. The idea behind list-based subscriptions is to provide watcher

domains with only the privacy rules that are actually useful. Basic subscriptions do

not include a watcher list but just use standard SUBSCRIBE messages. Thus, the

notifier sends all the privacy filters associated with any watcher within the subscriber

domain whether or not the watcher is active (i.e., watching the presentity). Figure

5.15 shows the traffic for these two types of subscription with and without NO. In the

case of list-based subscriptions, NO cannot save the NOTIFY messages in response

to the re-SUBSCRIBE messages aimed at downloading new watchers’ privacy filters.

Thus, the subscriber must tell the notifier which re-SUBSCRIBE messages are sent for

downloading privacy filters and which are just for refreshing the subscription. This

can be easily done by removing the “Suppress-if-match” header from the SUBSCRIBE

messages for downloading privacy filters. Section 2.7.4 outlines how conditional notifi-

143

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 1010

Number of privacy filters per presentity

P
riv

ac
y−

fil
te

rs
 tr

af
fic

 (
by

te
s)

privacy−filters subscriptions
list−based privacy−filters subscriptions
privacy−filters subscriptions with NO
list−based privacy−filters subscriptions with NO

Figure 5.15: Privacy-filters event traffic with the basic and list-based methods over the

number of privacy filters

cations work. Figure 5.15 shows that list-based subscriptions involve more traffic than

the basic method, even with NO. This is because whenever a watcher becomes active, a

re-SUBSCRIBE message is sent to download its privacy filter. However, with the basic

method, the first SUBSCRIBE message to a presentity’s privacy-filters event triggers

a notification of all of the presentity’s privacy filters. After that, only re-SUBSCRIBE

messages for refreshes are sent. The drawback of this strategy is that the watcher do-

main may waste bandwidth and memory resources for privacy filters that will never be

used.

5.1.5.4 Watcher List in CN

With CN, watchers subscribe to the presentities directly, and hence the watcher domain

must ascertain which watchers are currently subscribed when it receives a common

NOTIFY request. There are three possibilities, as described in Section 5.1.2.1: (1)

maintaining the watcher list on the subscriber side PS; (2) including the watcher list in

notifies (hereinafter, WLN); and (3) obtaining the list by subscribing to the presentities’

winfo event. Concerning WLN, the authors of [194] state: “This has a disadvantage

when the number of watchers from domain B is very large, every NOTIFY message

increases in size proportionately”. However, they do not mention anything about the

performance of winfo subscriptions. Thus, readers may gain the initial impression

that the WLN efficiency deteriorates as the number of watchers increases while winfo

subscriptions do not. Figure 5.16 shows that such an impression is not true. As the

144

5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

2

4

6

8

10

12
x 10

11

Number of watchers per presentity

C
N

’s
 p

re
se

nc
e

tr
af

fic
 (

by
te

s)

Watcher list in notifies (CN1)
Watcher list with WINFO subs. (CN2)

Figure 5.16: CN traffic with WLN and winfo subscriptions over the number of watchers

1 2 3 4 5 6 7 8 9 10
5

6

7

8

9

10
x 10

10

Number of presence changes per hour, per presentity

C
N

’s
 p

re
se

nc
e

tr
af

fic
 (

by
te

s)

Watcher list in notifies (CN1)
Watcher list with WINFO subs. (CN2)

Figure 5.17: CN traffic with WLN and winfo subscriptions over the number of presence

changes

number of watchers grows, winfo subscriptions generate more traffic than WLN. This

is because whenever the watcher domain resubscribes to a presentity’s winfo event, the

complete list of watchers is notified. The difference between the two proposals is more

noticeable with large watcher lists. For example, with 150 watchers per presentity,

winfo subscriptions generate more than 120% of the WLN traffic. The performance of

WLN is more affected by the number of presence changes than the number of watchers,

as shown in Figure 5.17. This is due to the fact that any time a presence change occurs,

the presentity’s watcher list is included in the notification.

Figure 5.18 gives the maximum average number of presence changes up to which

WLN generates less traffic; thus, it is preferable to include the watcher list in the

NOTIFY messages (CN1) rather than subscribing to the winfo events (CN2) in CN.

The maximum number of changes depends on the number of watchers per presentity.

As the number of watchers increases, winfo subscriptions involve more bytes, and hence

145

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

 m
ax

im
u

m
 n

u
m

b
e

r
o

f

p
re

se
n

ce
 c

h
an

ge
s

/
h

o
u

r
fo

r
W

LN

Number of watchers per presentity

With Notify Optimization Without Notify Optimization

Figure 5.18: Recommended maximum number of presence changes per hour, per presen-

tity, for using WLN instead of winfo subscriptions

WLN is preferable up to a higher number of presence changes. Without NO, when four

presence changes occur each hour on average, WLN generates less traffic regardless of

the number of watchers. If the presentities have a maximum of 16 watchers and four

presence changes occur per hour on average, winfo subscriptions are more suitable. As

the number of watcher increases, winfo subscriptions only perform better than WLN if

the presentities are highly active. For instance, if there are 40 watchers per presentity,

winfo subscriptions are more efficient as long as the average number of changes per

hour is higher than seven. When NO is used, winfo subscriptions generate less traffic,

and hence the average number of presence changes up to which WLN is recommended

decreases.

5.2 CS and FCS Enhancement for Minimizing the Disclo-

sure of Privacy Rules

Section 5.1.5 shows that Common Subscribe (CS) and Federated Common Subscribe

(FCS) greatly help in decreasing the amount of bytes exchanged between two federated

presence domains. However, these strategies require a greater level of trust between

the federated domains since privacy filtering has to be performed by the subscriber side

domain. Every presence change is notified by means of a common NOTIFY message,

which contains the presentity’s complete presence information. The subscriber domain

needs therefore to generate the presence document that each watcher is allowed to see.

146

5.2 CS and FCS Enhancement for Minimizing the Disclosure of Privacy
Rules

This is done by filtering the presence information with the presentity’s privacy rules.

This section discusses some slight variations of the normal operation of CS and FCS

that minimize the exchange of privacy rules. A privacy rule [204] states the presence

that one or more watchers are authorized to see. When a watcher is not active (i.e., is

not actually subscribed and watching the presentity), no presence notifications are sent

to the watcher. A privacy rule is, therefore, useless for the subscriber side domain while

all of its associated watchers remain inactive. In this case, we say that the privacy rule

is inactive. The proposed variations of CS and FCS only let the subscriber side PS

obtain the privacy rules that are active. Our purpose is twofold: on one hand, these

variations enhance the privacy of presentities to some extent, since inactive privacy

rules are not disclosed; on the other hand, they save notifying unnecessary privacy

rules, which probably reduces the overall traffic generated by FCS and CS. Below, the

proposed variations are outlined.

With CS, when a domain subscribes to a presentity’s presence event, afterwards it

also subscribes to the presentity’s privacy-filters event in order to obtain the presen-

tity’s privacy rules (see Section 5.1.4). This privacy-filters subscription notifies all the

presentity’s privacy rules for any watcher within the requester domain, regardless of

whether the watchers are active. However, the presentity’s PS always has knowledge

about the active privacy rules, since it knows the watchers that are watching the pre-

sentity through the common subscription. This is because CS requires the subscriber

side PS to include the watcher list in every presence subscription request. Therefore, we

propose that the presentity’s PS only notify the active privacy rules as a result of any

privacy-filters subscription request. Henceforth, we refer to this as active-privacy-filters

subscriptions. Furthermore, the PS should proactively notify a privacy rule whenever it

becomes active. This happens when one of the privacy rule’s watchers becomes active.

With FCS, the subscriber side PS does not subscribe to presence events but rather to

federated-presence events, as described in Section 5.1.4. This means that any federated-

presence notification sent as a result of a subscription request contains both the pre-

sentity’s presence information and privacy rules. Like CS, the presentity’s PS is aware

of the active watchers because the requester domain attaches the watcher list to any

subscription request. Thus, we propose that the presentity’s PS only include the active

privacy rules into any notification. Moreover, whenever a privacy rule becomes active,

the PS should send a federated-presence notification containing that rule.

147

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

As shown in Section 5.1.5.3, the exchange of privacy rules may involve a considerable

amount of traffic in CS and FCS. In the case of CS, it may account for approximately

40% of the total traffic when the presentities create a different privacy rule for each

watcher. The following sections analyze privacy-filters-related traffic in more detail

than Section 5.1, which is valuable to understand the variables that affect this traffic

and therefore to optimize it. Section 5.2.1 presents the formulas for calculating the

number of bytes that two federated domains need to exchange because of privacy rules.

Section 5.2.2 estimates the amount of traffic related to privacy rules in a presence

scenario.

5.2.1 Calculation of Traffic Related to Privacy Rules

This section gives the formulas for calculating the number of bytes involved in ex-

changing privacy rules, in both FCS and CS, with and without the variations described

previously. We take the same approach as that in Section 5.1.1 for the presented math-

ematical formulas. The total traffic related to privacy rules during a presence session

is split into three categories: initial, termination and steady-state traffic. Initial and

termination traffic are due to the establishment and termination, respectively, of the

presentities privacy-filters or FCS subscriptions. Steady-state traffic is all the traffic ex-

changed in the time elapsed between the initial subscription and the termination of the

subscription. Since we assume that privacy rules do not change over time (and already

exist when the session begins), steady state traffic only contains subscription refreshes.

We assume the federation scenario described in Section 5.1.1, which is summarized in

Table 5.5 for convenience.

This scenario consists of a total of 40,000 presentities (pres variable) that are

watched by 20 watchers (wat variable). The variables sub, sok, not and nok are the

sizes of subscription-related SIP messages, and their values have been taken from [110].

The average session time is 8 hours (slife variable). The subscription lifetime is 1 hour

(sref variable), which is the default value for presence subscriptions [120]. The other

variables in Table 5.5 are related to privacy filters. We assume an average number of

views per presentity, which is given by the views variable. As described in Section 5.1.3,

a view on a presentity’s presence information is the subset of information that a set of

watchers are authorized to see. Thus, a view is determined by a privacy rule, and hence-

forth we use the terms “presence view” and “privacy rule” indistinctly. We assume that

148

5.2 CS and FCS Enhancement for Minimizing the Disclosure of Privacy
Rules

the number of watchers associated to each view is uniformly distributed and therefore

calculated as wat/views. The constants rule, rid and rsetb are used to calculate the

size of privacy rule documents and are deduced from the examples in [177] and [204].

Basically, a privacy rule document is a set of rules, each containing a list of authorized

watchers and a set of elements that state what presence they can see. Appendix D

shows an example privacy rule document. Each authorized watcher is indicated by an

XML element identity (rid variable) and the granted presence information is deter-

mined by an XML element transformations (rule variable). The variable rsetb is the

size of the XML data that wraps the rule set. We calculate the average size of the pre-

sentities’ privacy rule document as prdsi = rsetb+ i∗ (rule+ rid∗ (wat/views)), where

i is the number of privacy rules included in the document, and hence 1 ≤ i ≤ views is

satisfied.

Below we present the formulas for calculating the number of bytes involved in the

exchange of privacy rules, both in FCS and in privacy-filters subscriptions. In the

normal mode of operation of CS and FCS, privacy rule documents always contain

all the presentity’s privacy rules regardless of whether the rules are active. Thus, the

average size of these documents is prdsviews. We assume that when the watcher domain

refreshes a privacy-filters or federated-presence subscription, half the total number of

privacy rules on average are active. Furthermore, by the time the session finishes, all

the privacy rules are active. Notifications due to refreshes are full state and therefore

contain all the active privacy rules.

5.2.1.1 Privacy-Filters Subscriptions in CS

The initial, refreshes and termination variables below count the initial, steady-state,

and termination traffic, respectively.

• Normal mode of operation

initial = np ∗ (sub+ sok + not+ prdsviews + nok)

refreshes = (stime/sref − 1) ∗ np ∗ (sub+ sok + not+ prdsviews + nok)

termination = np ∗ (sub+ sok + not+ prdsviews + nok)

149

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

Name Description Default

Default average value

slife Subscription lifetime 8 hours

sref Subscription refresh interval / hour 1

wat
Total number of watchers per presentity within the

subscriber domain
20

pres
Total number of presentities within the notifier

domain
40,000

views Number of views per presentity (1 ≤ views ≤ wat) variable

aviews Number of active views (1 ≤ aviews ≤ views) variable

sub SUBSCRIBE message size (bytes) 450 bytes

sok 200 OK for SUBSCRIBE message size 370 bytes

not NOTIFY message size (bytes per presentity) 500 bytes

nok 200 OK for NOTIFY message size 370 bytes

rid
Average size of a rule’s identity element in a privacy

rule document
50 bytes

rule Average size of a rule in a privacy rule document 600 bytes

rsetb
Average size of the ruleset boundary in a privacy

rule document
200 bytes

Table 5.5: Variables for estimating the traffic related to privacy rules

• Active-privacy-filters subscriptions

The activations variable calculates the traffic due to privacy rules that become

active. These rules are notified through partial-state privacy rule documents that

only contain the privacy rule that has become active.

initial = np ∗ (sub+ sok + not+ prds1 + nok)

refreshes = (stime/sref − 1) ∗ np ∗ (sub+ sok + not+ prdsaviews/2 + nok)

termination = np ∗ (sub+ sok + not+ prdsaviews + nok)

activations = np ∗ (aviews− 1) ∗ (not+ prds1 + nok)

5.2.1.2 Traffic Related to Privacy Rules in FCS

We only take into account the privacy rules contained in federated-presence notifica-

tions. Subscription request and response messages are not exclusively aimed at ob-

taining privacy rules, but also presence information. Thus, these messages are not

considered as privacy-filters-related traffic. FCS generates extra subscription requests

150

5.2 CS and FCS Enhancement for Minimizing the Disclosure of Privacy
Rules

for letting the presentity’s PS know about the watchers that are actually subscribed;

this involves notifying the presentity’s privacy rules. The total number of federated-

presence subscription requests that are sent to a presentity because of watchers that

become active is aviews∗(wat/views). The newwatchers variable below calculates this

traffic, which includes the initial traffic. The refreshes and termination variables count

the steady state and termination traffic, respectively.

• Normal mode of operation

refreshes = np ∗ ((stime/sref − 1)) ∗ prdsviews
newwatchers = np ∗ aviews ∗ (wat/views) ∗ prdsviews
termination = np ∗ prdsviews

• Awareness of the active privacy rules

The activations variable below counts the traffic due to the privacy rules that be-

come active. Contrary to CS (Section 5.2.1.1), FCS does not establish a privacy-

filters subscription to the presentity. Instead, the privacy rules, together with the

presence information, constitute the presentity’s federated-presence event. The

presentity’s PS is aware of when a watcher is subscribed to the presentity because

it is added to the common subscription’s watcher list by means of a re-subscription

request. The first watcher among those associated with a privacy rule to be sub-

scribed leads, for first time, to the inclusion of the privacy rule in a notification.

Notifications triggered from subscription requests must be full-state [110] (i.e.,

all the resource state information is included). Thus, federated-presence notifica-

tions for subscription refreshes must include all the privacy rules that are active,

as well as the presentity’s presence document and watcher list. This is the reason

for the summation in the activations variable. This variable takes account of

the privacy rule notifications that are triggered the first time a watcher of each

privacy rule becomes subscribed. However, the newwatchers variable counts the

notifications for the remaining watchers that become active, and hence the first

notification of each privacy rule is subtracted.

151

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

refreshes = (stime/slife− 1) ∗ np ∗ (prdsaviews/2)

newwatchers = np ∗ (aviews ∗ (wat/views)− aviews) ∗ prdsaviews/2
termination = pres ∗ (prdsaviews)

activations = np∗
aviews∑
i=1

prdsi = np∗ (views∗ rsetb+ (rule+ (wat/views)∗ rid)∗

(aviews ∗ (aviews+ 1)/2))

5.2.2 Analysis of Traffic Related to Privacy Rules

We use the mathematical formulas presented in Section 5.2.1 for estimating the traffic

that is due to privacy rules during a presence session. Figure 5.19 shows this traffic

as the number of privacy rules increases (views variable in Table 5.5). We assume

that all the privacy rules are active, and the aviews variable in Table 5.5 is therefore

equal to views. It can be seen that even when all the rules are active, the proposed

variations (“CS active-privacy-filters subscription traffic” and “FCS traffic related to

active privacy rules” in Figure 5.19) save traffic. This is because they avoid notifying

all the privacy rules once the subscription has been established. Instead, privacy rules

are notified only when they become active. Figure 5.20 shows the amount of traffic

related to privacy rules when there are rules that never become active. We assume

that presentities create 5 privacy rules on average. Thus, up to 4 privacy rules may be

rendered useless if their associated watchers are not subscribed during the session time.

Note that there is at least one active rule per presentity; this is the one containing

the first watcher that subscribes to the presentity and therefore leads to establish the

presentity’s common subscription. One may observe that the number of rules that

are active does not affect privacy-filters subscriptions, since these subscriptions always

notify the complete set of privacy rules. However, it does affect FCS. If a rule does

not become active, it is because none of its associated watchers has subscribed to the

presentity. This saves the subscriber side PS from refreshing the federated-presence

subscription to add these watchers to the common subscription, as well as the resulting

notifications. The proposed variations perform better as the number of inactive views

increases. The FCS variation saves from 45% (when all the rules are active) up to 81%

(when only one rule is active) of the traffic related to privacy rules in the regular FCS.

152

5.2 CS and FCS Enhancement for Minimizing the Disclosure of Privacy
Rules

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15
x 10

9

Number of presence views per presentity (0 inactive views)

T
ra

ffi
c

re
la

te
d

to
 p

riv
ac

y
ru

le
s

(b
yt

es
)

CS privacy−filters subscription traffic
FCS traffic related to privacy rules
CS active−privacy−filters subscription traffic
FCS traffic related to active privacy rules

Figure 5.19: Traffic related to privacy rules without inactive rules

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

9

Number of active presence views per presentity (given 5 views per presentity)

T
ra

ffi
c

re
la

te
d

to
 p

riv
ac

y
ru

le
s

(b
yt

es
)

CS privacy−filters subscription traffic
FCS traffic related to privacy rules
CS active−privacy−filters subscription traffic
FCS traffic related to active privacy rules

Figure 5.20: Traffic related to privacy rules with inactive rules

Active-privacy-filters subscriptions save from 18% (when all the rules are active) up to

60% (when only one rule is active) of the regular privacy-filters subscription traffic.

Conditional notifications [147] suppress the notifications that are sent in response

to subscription refreshes when no changes have occurred from the last notification.

Section 5.1.5.3 shows that this optimization can considerably reduce the amount of

traffic related to privacy rules. In privacy-filters subscriptions, since we assume that

the presentities do not modify their privacy rules, this optimization saves all the noti-

fications except the first that notifies the complete set of privacy rules. In the case of

FCS, however, the watcher domain cannot apply conditional notification to the SUB-

SCRIBE messages that are sent when a new watcher wishes to subscribe to a presentity.

This is because the presentity’s PS has to acknowledge the watcher list included in this

message by sending a NOTIFY message in response to the request. Figure 5.21 shows

the effect of conditional notifications on the traffic related to privacy rules. We assume

that the presentities create an average of 5 privacy rules. Compared to Figure 5.20, it

is clear that conditional notifications save a considerable amount of traffic. In the case

153

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

9

Number of presence active views per presentities (given 5 views per presentity)

T
ra

ffi
c

re
la

te
d

to
 p

riv
ac

y
ru

le
s

(b
yt

es
)

CS privacy−filters subscription traffic
FCS traffic related to privacy rules
CS active−privacy−filters subscription traffic
FCS traffic related to active privacy rules

Figure 5.21: Traffic related to privacy rules with inactive rules and conditional notifica-

tions

of FCS and its proposed variation, conditional notifications reduce their traffic to the

same degree. The reduction of traffic achieved by the proposed variation is therefore

the same as that without conditional notifications (from 45% up to 82%). In the case of

privacy-filters subscriptions, almost all the traffic of these subscriptions is due to sub-

scription refreshes. Thus, conditional notifications reduce this traffic to such an extent

that the regular privacy-filters subscription outperforms its proposed variation when

many privacy rules are active. In particular, Figure 5.21 shows that active-privacy-

filters subscriptions generate more traffic than privacy-filters subscriptions when more

than half the privacy rules become active. This is because active-privacy-filters sub-

scriptions trigger a notification anytime a privacy rule becomes active. On the other

hand, privacy-filters subscriptions notify all the privacy rules at once and no more

notifications are sent because conditional notifications are applied.

5.3 Conclusions

We described a number of alternatives for reducing inter-domain presence traffic and

estimated how efficient these strategies are. Our motivation comes from an IETF

Internet-Draft [193] that mainly studies how far the technique dialog optimization

reduces presence traffic. This study shows that this technique is not efficient enough

and highligthts the need to further work on strategies to reduce presence traffic with

the aim of making presence services scalable.

We analyzed and studied the performance of two strategies that were proposed as

IETF Internet-Drafts: CN and VS. Although these Internet-Drafts have been discon-

tinued in the IETF, studying CN and VS is valuable to understand how complicated

154

5.3 Conclusions

knowledge of subscribed watchers

IS required

knowledge of subscribed watchers

IS NOT required

watcher-based CS CS

privacy filtering (VS:57-69% CN:57-60%) (VS:57-69% CN:57-60%)

domain-based CS VS with partial or full trust

privacy filtering (VS:68% CN:65-68%) (CS:58% CN:85%)

Table 5.6: Most efficient strategy (the percentage of the other strategies’ traffic saved in

parenthesis)

the reduction of presence traffic is. Moreover, there is no more proposals in the SIM-

PLE framework for reducing inter-domain presence traffic. Thus, we proposed and

studied a novel strategy called CS. We defined the formulas that calculate the number

of bytes per session that are exchanged between two federated domains for the three

aforementioned strategies. We also described the assumptions about the operation of

each technique that we had to make in order to estimate presence traffic. These as-

sumptions give an idea of the complexity of each strategy and may serve as a guideline

for other researchers on the subject. We carefully considered the parameters that af-

fect the efficiency of each strategy, made a comparison between the strategies and gave

some indicators of the suitability of each strategy based on these parameters. Table

5.6 shows what of the three strategies is the most efficient at reducing presence traffic

based on the reported results. This table is a function of the type of privacy filtering

and whether or not the notifier domain needs to know the watchers actually subscribed

to any presentity. This table also shows the percentage of the other strategies’ traffic

saved by the most efficient strategy in parenthesis. CS is considerably more efficient

at reducing presence traffic than VS and CN. The only exception happens when the

presentities set the same privacy rules for all the watchers in a particular domain (i.e.,

domain-based privacy filtering) and the presentities’ domain does require to know the

list of subscribed watchers. In this improbable case, it is preferable to apply VS with

partial or full trust. However, when the presentities’ domain needs to know the sub-

scribed watchers, only VS with minimal trust is applicable and it always generates

more traffic than CS and CN.

In the estimation of presence traffic, privacy filtering is an impacting factor to

take into account. We assumed that each presentity applies a privacy filter to 50%

of its watchers; Table 5.6 relies on this assumption. However, we also analyzed what

155

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

CS CN VS

CS preferable to always views ≥ 16% watchers

CN preferable to never views ≥ 52% watchers

VS preferable to views < 16% watchers views < 52% watchers

Table 5.7: Number of views up to which each strategy is preferable to the others

happens when presentities create different numbers of privacy filters. Since each privacy

filter determines a different view of the presentity’s presence information, Table 5.7

summarizes our findings in terms of views. This shows the maximum number of views

(i.e., privacy filters) up to which it is recommended to use each strategy. This number

is a function of the percentage of watchers to which a different privacy filter is applied

and, therefore, watch a different view.

We proposed a variation of CS, which we refer to as FCS, that basically consists in

aggregating presence and privacy rule information into a single event. FCS generates

more traffic than CS excepting when conditional notifications are applied. When FCS

is combined with conditional notifications, it saves 3% of the CS traffic. Conditional

notifications actually help to reduce the presence traffic of any of the studied strategies.

This doubles the efficiency of CN but requires all the watchers to either support this

optimization or have the PS as a proxy for any subscription request. When VS and

CN are combined with conditional notifications, the number of views up to which VS

is preferable to CN drops to 24% of the watchers.

Below, we summarize other findings based on the reported results:

Dialog optimization: This strategy always generates much more traffic than the

other strategies. If conditional notifications are applied, dialog optimization does

not decrease but increases the presence overload on the network (i.e., not to apply

any optimization generates less traffic).

VS: The operation and performance of VS is strongly affected by two parameters:

the type of trust between the domains and the number of privacy filters. Partial

trust always involves a smaller number of bytes than full and minimal trust. If the

presentities’ domain needs to know which watchers are currently subscribed, this

domain must establish a minimal trust with the subscriber domain. In this case,

VS is discouraged because it involves much more traffic than the other strategies.

156

5.3 Conclusions

The number of privacy filters determines the number of views and, therefore,

the number of presence subscriptions in VS with partial and full trust. This is

the reason why the efficiency of VS considerably drops as the number of views

increases. Although minimal trust generally generates more traffic than partial

or full trust, minimal trust is more efficient when there are numerous views.

The reported results show that when 80% of the watchers have a different view,

minimal trust is preferable. The increase in the number of presence changes

has more harmful effects on VS than the other strategies. This is because a

single presence change may involve notifying through more than one subscription

(i.e., more than one view). Likewise, changes in the presentities’ privacy filters

may have disastrous effects on VS, since a single change may involve modifying,

creating, or eliminating one or more presence subscriptions.

CN: This strategy’s traffic is increased when two methods for obtaining the watcher

lists are used: 1) the notifier domain adds the list to the body of NOTIFY

messages and 2) the watcher domain subscribes to the presentities’ winfo event.

The increase in the number of watchers affects the latter more seriously than

the former. The main parameter that affects the first method is the number of

presence changes per presentity. We advise that the presentities’ average activity

be considered in making a choice between one of the two methods. In general,

when presence changes occur very frequently, the second method is more efficient

than the first.

Subscriptions to privacy filters account for a considerable part of CS and FCS traffic,

and notify sensitive information (i.e., authorization rules set by presentities). Thus, we

enhanced CS and FCS by reducing the number of privacy rules that are disclosed. We

analyzed the variables that affect the traffic related to privacy filters in more detail.

The proposed enhancements of CS and FCS rely on the fact that the presentities’ PS

always knows the set of watchers that are actually subscribed. Thus, this PS only

notifies the privacy rules that contain at least one subscribed watcher rather than all

the presentities’ privacy rules. We say that a privacy rule containing any watcher that

is actually subscribed is an active rule. We estimated the number of bytes exchanged

between two federated domains due to privacy rules, during a presence session. The

reported results show that the proposed enhancements lead to a considerable reduction

157

5. STRATEGIES FOR REDUCING INTER-DOMAIN PRESENCE
TRAFFIC: A PERFORMANCE ANALYSIS AND NOVEL PROPOSAL

in this traffic, even when all the rules are active. The reduction of bytes is inversely

proportional to the number of privacy rules that become active during the session.

The enhanced FCS saves between 45% and 81% of the traffic related to privacy rules

in the regular FCS. The enhanced CS saves between 18% and 60% of the privacy-

filters subscriptions’ traffic in the regular CS. We studied the effect of conditional

notifications on our proposals. This optimization greatly reduces the traffic related

to privacy rules and is, therefore, strongly recommended in both FCS and CS. The

application of conditional notifications to the enhanced FCS is always recommended.

However, in the case of CS, the reported results show that when more than half the

presentities’ privacy rules become active during the presence session, the enhanced CS

with conditional notifications performs worse than the regular one with conditional

notifications. Thus, the regular CS with conditional notifications is preferable to the

enhanced CS.

On the basis of the presented study, we conclude that the proposed enhancement

of FCS combined with conditional notifications is a good solution to save inter-domain

presence traffic as far as possible. The main drawback of FCS is that the process of

privacy filtering must be delegated to the subscriber side PS. Nevertheless, the fact that

two domains exchange presence information and allow their users to communicate is an

indication that some degree of trust relationship exists between them. Thus, delegating

privacy filtering to the subscriber side domain would simply mean an extension of an

existing trust. Likewise, VS needs some kind of trust relationship since the presentities’

domain needs to trust the watcher domain to distribute the right views to the right

watchers. Regarding the interoperability of privacy rules, PSs only need to exchange

the rules encoded in the SIMPLE proposed standard for encoding authorization rules

[177] regardless of their low-level implementations of privacy filtering.

158

	figureList.pdf
	List of Figures

	tableList.pdf
	List of Tables

	glossary.pdf
	Glossary

	introduction.pdf
	1 Introduction

	background.pdf
	2 Background
	2.1 Instant Messaging
	2.2 Context Information
	2.3 Presence Information
	2.3.1 Advantages and Uses Cases
	2.3.2 Requirements on Presence Systems

	2.4 Fixed Mobile Convergence
	2.4.1 IP Multimedia Subsystem
	2.4.2 Device-Independent Communications

	2.5 Publish/Subscribe Communication Paradigm
	2.6 Instant Messaging and Presence Protocols
	2.6.1 XMPP
	2.6.1.1 Architecture and Operation
	2.6.1.2 Instant Messaging and Presence

	2.6.2 SIMPLE
	2.6.2.1 Architecture and Operation
	2.6.2.2 Instant Messaging and Presence

	2.6.3 IMPS
	2.6.3.1 Architecture and Operation
	2.6.3.2 Instant Messaging and Presence

	2.6.4 Which Makes a Difference?

	2.7 SIMPLE Framework
	2.7.1 Session Initiation Protocol
	2.7.2 Instant Messaging and Presence Protocol
	2.7.3 Presence Documents
	2.7.4 Optimizations

	2.8 Platforms for Presence-Aware Services and Automatic Service Composition
	2.8.1 Automatic Web Service Discovery, Composition, and Invocation

	2.9 Challenges in Presence Services
	2.9.1 Interoperability
	2.9.2 Privacy
	2.9.3 User Customization
	2.9.4 Scalability
	2.9.5 Presence Federation Scenarios
	2.9.6 Wireless Communications
	2.9.7 Differentiated Treatment and Consistency of Presence Attributes
	2.9.8 Pull vs. Push Models for Presence Updates
	2.9.9 Behavior of Presence Applications' Users

	Chapter_3.pdf
	3 Filters for Fine-Grained Notification Control
	3.1 Multi-Throttling
	3.2 Enhanced XML Schema for Notification Filters
	3.2.1 Min-Interval and Max-Interval Trigger Conditions
	3.2.2 Never and Once Trigger Conditions
	3.2.3 General Rules and Example Document

	3.3 Conclusions

	Chapter_4.pdf
	4 Optimization of Presence Publication Traffic: Proposal, Mathematical Model and Performance Estimation
	4.1 Publication Filters for Presence Sources
	4.1.1 Multi-rate Control of Publications
	4.1.2 Pull Model for Publications
	4.1.3 Implementation

	4.2 Mathematical Analysis of Publication Rate Control
	4.2.1 Modeling Presence Changes as State Diagrams
	4.2.2 Presence Information Probability Distribution
	4.2.3 Mathematical Analysis of Byte Rate with Single-Throttling
	4.2.4 Mathematical Analysis of Byte Rate with Multi-Throttling
	4.2.5 Byte Rate Estimation
	4.2.5.1 Use Case: a Technical Employee
	4.2.5.2 Results with Single-Throttling
	4.2.5.3 Results with Multi-Throttling

	4.3 Sojourn-Based Publication Rates
	4.3.1 Byte Rate Estimation

	4.4 Conclusions

	Chapter_5.pdf
	5 Strategies for Reducing Inter-domain Presence Traffic: a Performance Analysis and Novel Proposal
	5.1 Inter-Domain Presence Traffic Estimation and Sensitivity Analysis
	5.1.1 Methodology and Assumptions
	5.1.2 Common Notify
	5.1.2.1 Overview
	5.1.2.2 Traffic Calculation

	5.1.3 View Sharing
	5.1.3.1 Overview
	5.1.3.2 Traffic Calculation

	5.1.4 Common Subscribe
	5.1.4.1 Overview
	5.1.4.2 Traffic Calculation

	5.1.5 Estimation and Analysis of Presence Traffic
	5.1.5.1 Conditional Notifications
	5.1.5.2 View Sharing
	5.1.5.3 Privacy Filtering
	5.1.5.4 Watcher List in CN

	5.2 CS and FCS Enhancement for Minimizing the Disclosure of Privacy Rules
	5.2.1 Calculation of Traffic Related to Privacy Rules
	5.2.1.1 Privacy-Filters Subscriptions in CS
	5.2.1.2 Traffic Related to Privacy Rules in FCS

	5.2.2 Analysis of Traffic Related to Privacy Rules

	5.3 Conclusions

