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Memòria per aspirar al grau de Doctor
per la Universitat Politècnica de Catalunya
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Chapter 1

Portfolio Credit Risk Modeling

1.1 Introduction

It is important for a bank to manage the risks originated from its business activities.
In particular, the credit risk underlying the credit portfolio is often the largest risk in a
bank. The measured credit risk is then used to assign risk capital to absorb potential
losses arising from its credit portfolio.

The first Basel Accord of 1988, also known as Basel I, laid the basis for international
minimum capital standard and banks became subject to regulatory capital requirements,
coordinated by the Basel Committee on Banking Supervision (BCBS). This committee
has been founded by the Central Bank Governors of the Group of Ten at the end of 1974.

The rules of the Basel Committee do not have any legal force. The supervisory rules
are rather intended to provide guidelines for the supervisory authorities of the individual
nations such that they can implement them in a suitable way for their banking system.
The main focus of the first Basel Accord was on credit risk as the most important risk
in the banking industry. Within Basel I banks are supposed to keep at least 8% equity
in relation to their assets. The assets are weighted according to their degree of riskiness
where the risk weights are determined in four different borrower categories (state, bank,
mortgages, companies and retail customers). Hence the portfolio credit risk is measured
as a sum of risk weighted assets, that is the sum of notional exposures weighted by a
coefficient reflecting the credit-worthiness of the counterparty.

Basel I, however, does not account for methods to decrease risk as, for example, by
means of portfolio diversification. Moreover, the approach measures risk in an insuffi-
ciently differentiated way since minimal capital requirements are computed independent
of the borrower’s credit-worthiness. These drawbacks lead to the development of the
Second Basel Accord from 2001 onwards. In June 2004 the BCBS released a Revised
Framework on International Convergence of Capital Measurement and Capital Standards
(Basel II,[BCBS04]). The rules officially came into force on January 1st, 2008, in the
European Union. However, in practice they had been applied already before that date.

Basel II is structured in a three pillar framework. Pillar one sets out details for adopting
more risk sensitive minimal capital requirements, so called regulatory capital, for banking
organizations. Pillar two lays out principles for the supervisory review process of capital
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2 Chapter 1. Portfolio Credit Risk Modeling

adequacy and Pillar three seeks to establish market discipline by enhancing transparency
in bank’s financial reporting.

The main goal of Pillar one is to take care of the specific risk of a bank when measuring
minimal capital requirements. Within Basel II banks may opt for the standard approach
which is quite conservative with respect to capital charge and the more advanced, so
called internal rating based (IRB) approach when calculating regulatory capital for credit
risk. In the standard approach, credit risk is measured by means of external ratings
provided by rating agencies such as Standard&Poor’s, Moody’s or Fitch Ratings. In the
IRB approach, the bank evaluates the risk itself. This approach can only been applied
when the supervisory authorities accept it. The bank has to prove that certain conditions
concerning the method and transparency are fulfilled. Basel II distinguishes between
expected loss and unexpected loss. The former directly charges equity whereas for the
later banks have to keep the appropriate capital requirements.

The supervisory review process of Pillar two is achieved by the supervisory authorities
which evaluate and audit the compliance of regulations with respect to methods and
transparency which are necessary for a bank to be allowed to use internal ratings.

The main target of Pillar three is to improve market discipline by means of trans-
parency of information concerning a bank’s external accounting.

The Merton model is the basis of the Basel II IRB approach. It is a Gaussian one
factor model such that default events are driven by a latent common factor that is assumed
to follow the Gaussian distribution. Under this model, loss only occurs when an obligor
defaults in a fixed time horizon. If we assume certain homogeneity conditions, this one
factor model leads to a simple analytic asymptotic approximation of the loss distribution
and value at risk (VaR). This approximation, usually called Asymptotic Single Risk Factor
(ASRF) model, works well for a large number of small exposures but can underestimate
risks in the presence of exposure concentrations (see [Gie06]).

Concentration risks in credit portfolios arise from an unequal distribution of loans to
single borrowers (name concentration) or different industry or regional sectors (sector or
country concentration). Moreover, certain dependencies as, for example, direct business
links between different borrowers, can increase the credit risk in a portfolio since the
default of one borrower can cause the default of a dependent second borrower. This effect
is called default contagion and is linked to both name and sector concentration.

In credit risk management one is particularly interested in the portfolio loss distribu-
tion. Since the portfolio loss is usually modeled as a sum of random variables, the main
task is to evaluate the probability density function (PDF) of such a sum. The PDF of a
sum of random variables is equal to the convolution of the respective PDFs of the indi-
vidual asset loss distributions. The analytical evaluation of this convolution is a difficult
problem, computationally is very intensive and, in full generality, is impractical for any
realistically sized portfolio.

Monte Carlo (MC) simulation is a standard method for measuring credit portfolio
risk in order to deal with exposure concentration. However this method is very time-
consuming when the size of the portfolio increases, making the computation unworkable
in many situations, due to the fact that a financial company has to re-balance their credit
portfolios frequently.
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In summary, credit risk managers in a bank are interested overall in the following
issues:

• How can concentration risk be quantified?

• How can risk measures be computed in short times?

• How can the contribution of individual transactions to the total risk be computed?

To answer these questions, several methods have been developed in the last years. The
Saddle Point (SP) approximation due to [Mar01a] gives an analytical approximation of
the Laplace inversion of the moment generating function (MGF). This method has been
improved by [Mar06] based on conditional independence models. Huang and Oosterlee
([Hua07a],[Hua07b]) perform a SP approximation based on the conditional independence
framework and compare the results with the Normal Approximation (NA) and the Im-
portance Sampling method. [Gla07] applies the methodology developed by [Aba00] to
the multi-factor Merton model. First, the Bromwich integral is approximated by an infi-
nite series using the trapezoidal rule and second, the convergence of the infinite series is
accelerated by a method called Euler summation. They have shown that the cumulative
distribution function (CDF) is comparatively accurate in the small loss region, whereas
the accuracy worsens in the tail region. This is because the infinite series obtained by the
Euler summation is an alternating series, each term of which has a very large absolute
value. They also compare the results with the Recursive Approximation (RA) which is
extremely slow in big portfolios.

Another approach to numerically invert the Laplace transform has been studied by
[Hoo82] and [Ahn03] consisting in applying the Poisson algorithm to approximate the
Bromwich integral by an infinite series, as in [Aba00] for then to use the quotient-difference
(QD) algorithm to accelerate the slow convergence of the infinite series. We will refer
to this approach as the Hoog algorithm. [Tak08] has applied this methodology to the
multi-sector Merton model. The numerical examples presented show that in contrast
with the Euler summation technique, Hoog algorithm is quite efficient in measuring tail
probabilities.

The Granularity Adjustment (GA) has been developed as an extension of the ASRF
model. As an asymptotic approximation, the GA formula might not work well on small
portfolios. We give a brief revision of this method in Chapter 3.

In this dissertation we present a novel methodology for computing the risk measures
and contributions in a factor model, through numerically inverting the Laplace transform
of the CDF of the loss function, once we have approximated it by a finite sum of Haar
wavelets basis functions. The idea is up to certain extent similar to the one in [Aba96],
which uses Laguerre polynomials instead of wavelets. In the financial context, [Hav09]
also performs a Laplace transform inversion for option pricing purposes using a series
expansion in terms of the Franklin hat wavelets. The authors numerically compute the
coefficients of the approximation by minimizing the average of squared errors between
the true option prices and estimated prices. The technique to get the coefficients in our
method is quite different in the sense that the analytical treatment that we implement
allows us to give an expression of the wavelets coefficients in terms of the Cauchy’s integral
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theorem for then, to compute them, through an ordinary trapezoidal rule, avoiding this
way the infinite series in [Gla07] and [Tak08]. The power of the Wavelet Approximation
(WA) method mostly resides in the good balance between the computational time and
the accuracy for both small and high loss levels as well as for a wide range of portfolios,
independently of the concentration type and size. The Saddle Point approach, as an
asymptotic method, tends in general to work better for high VaR confidence levels and
when the size of the portfolio increases. Moreover, if the loss distribution is not smooth
due to exposure concentration, a straightforward implementation may be insufficient.
Finally, it is important to remark that Haar wavelets are naturally capable to reproduce
the step-like form distribution derived from the Merton model, even when dealing with
extremely small or concentrated portfolios.

It is very important to underline that the WA approach computes the whole loss
function, and not only the risk measures, with almost no extra effort. This fact has
implications in the pricing of a Collateralized Debt Obligation (CDO), where it is not
sufficient to know a quantile of the loss function. Also, once the risk measures have
been calculated, and following the Euler allocation principle, the risk contributions can
be derived as the partial derivatives of the risk measure with respect to the exposures.
Finally, we extend the wavelet approximation method to the multi-factor setting by means
of Monte Carlo and quasi-Monte Carlo methods.

1.2 General Model Settings

To represent the uncertainty about future events, we specify a probability space (Ω,F ,P)
with sample space Ω, σ-algebra F , probability measure P and with filtration (Ft)t≥0

satisfying the usual conditions. We fix a time horizon T > 0. Usually T will equal one
year.

1.2.1 Risk Parameters

As this dissertation focus on the quantification of name concentration risk, which can only
be measured at portfolio level, we consider a credit portfolio consisting of N obligors. Any
obligor n can be characterized by three parameters: the exposure at default (EAD) En,
the loss given default (LGD) Ln and the probability of default (PD) Pn, each of them
estimated from empirical default data. The EAD of an obligor denotes the portion of the
exposure to the obligor which is lost in case of default. The LGD of a transaction describes
the extent of the loss incurred in the event of default, also called severity. Finally, the
PD measures the uncertainty whether an obligor will default or not, also termed arrival
risk. Let us explain in detail the three risk parameters briefly described above.

The exposure at default consists in general in two parts, the outstandings and the
commitments. The outstandings refers to the portion of the exposure already drawn by
the obligor. In the case of borrower’s default, the bank is exposed to the total amount of
the outstandings. The commitments can be divided in two portions, undrawn and drawn,
in the time before default. The total amount of commitments is the exposure the bank
has promised to lend to the obligor at her or his request. Historical default experience
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shows that obligors tend to draw on committed lines of credit in times of financial distress.
Therefore, the commitment is also subject to loss in case of the obligor’s default, but only
the drawn (prior default) amount of the commitments will actually contribute to the
loss on loan. The fraction describing the decomposition of commitments in drawn and
undrawn portions is a random variable due to the optional character commitments have
(the obligor has the right but no the obligation to draw on committed lines of credit).
Therefore, it is natural to define the exposure at default by,

EAD = O + η · C, (1.1)

where O denotes the outstandings and C the commitments of the loan and η is the ex-
pected portion of the commitments likely to be drawn prior to default. More precisely, η is
the expectation of the random variable capturing the uncertain part of the EAD, namely
the utilization of the undrawn part of the commitments. Obviously, η takes place in the
unit interval. As we are assuming the EAD to be a deterministic quantity, we directly
deal with the expectation η, hereby ignoring the underlying random variable. For the
IRB approach, the Basel Committee proposes that banks eligible for this approach will
be permitted to use their own internal estimates of EAD for transactions with uncertain
exposure. From this perspective, it makes much sense for major banks to carefully think
about some rigorous methodology for calibrating EAD to borrower and facility specific
characteristics. For example, banks that are able to calibrate the parameter η in (1.1) on a
finer scale will have more accurate estimates of the EAD, better reflecting the underlying
credit risk. The more the determination of regulatory capital tends towards risk sensitiv-
ity, the more will banks with advanced methodology benefit from a more sophisticated
calibration of EAD.

The loss given default is far from being straightforward, because it depends on many
driving factors, for example on the quality of collateral (securities, mortgages, guarantees,
etc.) and on the seniority of the bank’s claim on the borrower’s assets. It is usually
modeled as a random variable describing the severity of losses in the default event. In
case the applied credit risk model admits only a constant value for LGD, one usually
chooses the expectation of this severity. A bank external source for recovery data comes
from the rating agencies. For example, Moody’s provide recovery values of defaulted
bonds, hereby distinguishing between different seniorities. Unfortunately many banks do
not have good internal data for estimating recovery rates. In fact, although LGD is a key
driver for risk measurement, there is little progress in comparison with other risk drivers
like PD made in moving towards a sophisticated calibration.

Assigning a default probability to every borrower in the bank’s credit portfolio is quite
complicated. One approach is to calibrate default probabilities from market data. This is
done, for example, in the concept of expected default frequencies from KMV Corporation.
Another method is to compute the default probabilities from the credit risk inherent in
certain credit spreads of traded products, e.g. credit derivatives such as credit default
swaps. Default probabilities can also be calibrated from ratings that are assigned to
borrowers either by external rating agencies such Moody’s, Standard and Poor’s or Fitch,
or by bank-internal rating methods. Basically, ratings describe the creditworthiness of
customers. Hereby quantitative as well as qualitative information is used to evaluate a
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client. In practice, the rating procedure is often more based on the experience of the rating
analyst rather than on pure mathematical procedures with strictly defined outcomes. In
other words, statistical tools provide a first indication regarding the rating of a customer,
but due to the various soft factors underlying a rating, the responsibility to assign a final
rating remains the duty of the rating analyst. It is important to know that the rating
agencies have established and ordered scale of ratings in terms of a letter system describing
the creditworthiness of rated companies. The rating categories of Moody’s and Standard
and Poor’s are slightly different, but it is not difficult to find a mapping between the two.
Table 1.1 shows the Standard and Poor’s rating categories. The process of assigning a
default probability to a rating is called a calibration.

AAA Best credit quality.
Extremely reliable with regard to financial obligations.

AA Very good credit quality. Very reliable.

A More susceptible to economic conditions. Still good credit quality.

BBB Lowest rating in investment grade.

BB Caution is necessary. Best sub-investment credit quality.

B Vulnerable to changes in economic conditions.
Currently showing the ability to meet its financial obligations.

CCC Currently vulnerable to non payment. Dependent on favourable economic conditions.

CC Highly vulnerable to a payment default.

C Close to or already bankrupt. Payments on the obligation currently continued.

D Payment default on some financial obligation has actually occurred.

Table 1.1: Standard and Poor’s rating categories.

1.2.2 Risk Measures and Contributions

Let us consider an obligor n subject to default in the fixed time horizon T . We introduce
Dn, the default indicator of obligor n taking the following values:

Dn =

{
1, if obligor n is in default,
0, if obligor n is not in default,

where P(Dn = 1) = Pn and P(Dn = 0) = 1− Pn.
Let L be the portfolio loss given by,

L =
N∑
n=1

Ln,

where Ln = En · Ln ·Dn.
In general, credit risk can be split in expected losses (EL), which can be forecasted

and thus can easily be managed, and unexpected losses (UL) which are more complicated
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to quantify. The latter can be distinguished in systematic risk and idiosyncratic risk.
The former arises from dependencies across individual obligors in the portfolio and from
common shocks, while the latter arises from obligor specific shocks. Idiosyncratic risk can
be diversified away, whereas systematic risk can not be eliminated but can be reduced
by shifting exposures in a way to reduce correlation. Economic capital (EC) is held for
unexpected losses that arise from systematic and idiosyncratic risk. From now on, we will
always suppose that the following assumption holds.

Assumption 1.2.1. The exposure at default En, the loss given default Ln and the default
indicator Dn of an obligor n are independent.

Denote by ELn the expectation value of Ln, therefore,

EL = E(L) =
N∑
n=1

En · ELn · Pn.

The deviation of losses from the EL is usually measured by means of the standard deviation
of the loss variable, however, since there is a significant likelihood that losses will exceed
the portfolio’s EL by more than one standard deviation of the portfolio loss, holding the
UL of a portfolio as a risk capital for cases of financial distress might not be appropriate.
The concept of EC is a widely used approach for bank internal credit risk models and will
be defined latter.

Let α ∈ (0, 1) be a given confidence level, the α-quantile of the loss distribution of L
in this context is called Value at Risk (VaR). Thus,

VaRα = inf{l ∈ R : P(L ≤ l) ≥ α} = inf{l ∈ R : FL(l) ≥ α},

where FL is the cumulative distribution function of the loss variable. Usually the α of
interest is very close to 1. This is the measure chosen in the Basel II Accord (at a
confidence level of α = 0.999) for the computation of capital requirement, which means a
bank that manages its risks with Basel II must to reserve capital of an amount of VaRα

to cover extreme loss. By its definition, VaR gives no information about the severity of
losses which occur with a probability less than 1 − α. If the loss distribution is heavy
tailed, this can be quite problematic. This is a major drawback of the concept as a
risk measure and also the main intention behind the innovation of the alternative risk
measure expected shortfall (ES). Moreover, VaR is not a coherent risk measure since it
is not sub-additive (see [Art97], [Art99], [Blu03]). This means that, if we have two loss
distributions FL1 and FL2 for two portfolios and we denote the overall loss distribution of
the merged portfolio L = L1+L2 by FL, then we do not necessarily have that VaRα(FL) ≤
VaRα(FL1) + VaRα(FL2). Hence, the VaR of the merged portfolio is not necessarily
bounded above by the sum of the VaR of the individual portfolios which contradicts
the intuition of diversification benefits associated with merging portfolios.

Example 1.2.1. Consider two independent loans with default indicators following a
Bernoulli distribution B(1, p) with 0.006 ≤ p < 0.01 and exposures equal to 1. Define
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two portfolios A and B, each of them consisting of one unit of the above introduced loans.
Then if we denote the corresponding portfolio losses by LA and LB,

VaR0.99(LA) = VaR0.99(LB) = 0.

Now if we consider a portfolio C defined as the union of portfolios A and B and denote
by LC = LA + LB. Then,

P(LC = 0) = (1− p)2 < 0.99,

and therefore,
VaR0.99(LC) > 0,

so that,
VaR0.99(LC) > VaR0.99(LA) + VaR0.99(LB).

Example 1.2.2. Consider a portfolio of 100 defaultable corporate bonds. We assume that
default of corporate bonds are independent, moreover the default probability is identical for
all bonds and is equal to 2%. The current price of the bonds is 100. If there is no default,
a bond pays in T an amount of 105, otherwise there is no repayment. Hence, Ln, the
loss of bond n, is equal to 100 when the bond defaults and to −5 otherwise. Denote by
Dn the default indicator of firm n, i.e. Dn is equal to one if bond n defaults and equal to
zero otherwise. We get Ln = 100Dn − 5(1 −Dn) = 105Dn − 5. Hence Ln is a sequence
of i.i.d. random variables with P(Ln = −5) = 0.98 and P(Ln = 100) = 0.02. Let us
compare now two portfolios, both with current value equal to 10000. Portfolio A is fully
concentrated and consists of 100 units of bond one. Portfolio B is completely diversified,
it consists of one unit of each of the bonds. Economic intuition suggests that portfolio
B is less risky than portfolio A and hence it should have a lower VaR. Let us compute
VaR at a confidence level of 95% for both portfolios. For portfolio A the loss is given by
LA = 100L1, so VaR0.95(LA) = 100VaR0.95(L1). Now P(L1 ≤ −5) = 0.98 ≥ 0.95 and
P(L1 ≤ l) = 0 < 0.95 for l < −5. Hence, VaR0.95(L1) = −5 and therefore VaR0.95(LA) =
−500. For portfolio B we have,

LB =
100∑
n=1

Ln = 105
100∑
n=1

Dn − 500.

Noting that the sum
∑100

n=1 Dn has a binomial distribution B(100, 0.02), we get by inspec-
tion that P(

∑100
n=1Dn ≤ 5) ' 0.984 ≥ 0.95 and P(

∑100
n=1Dn ≤ 4) ' 0.949 < 0.95, so

VaR0.95(LB) = 105 · 5 − 500 = 25. In this case, a bank would need an additional risk
capital of 25 to satisfy a regulatory working with VaR at the 95% level. Clearly, the risk
capital required for portfolio B is higher than for portfolio A.

The two examples presented above illustrate that measuring risk with VaR can lead
to nonsensical results.

Definition 1.2.1. Denote by L∞ the space of bounded real random variables defined on
the probability space stated before. A mapping γ : L∞ → R is called a coherent risk
measure if the following properties hold,



1.2. General Model Settings 9

1. Subadditivity: for all X, Y ∈ L∞, γ(X + Y ) ≤ γ(X) + γ(Y ).

2. Monotonicity: for all X, Y ∈ L∞ with X ≤ Y a.s., γ(X) ≤ γ(Y ).

3. Positive homogeneity: for all λ > 0, X ∈ L∞, γ(λX) = λγ(X).

4. Translation invariance: for all x ∈ R, X ∈ L∞, γ(X + x) = γ(X) + x.

The first axiom, as mentioned before, reflects the fact that due to diversification effects
the risk inherent in the union of two portfolios should be less than the sum of the two
portfolios considered separately. The second axiom reflects the fact that if almost surely
the losses of portfolio X are lower than the losses of portfolio Y then the required risk
capital for portfolio X should be less than the required risk capital of portfolio Y . The
homogeneity axiom states that if we have a portfolio with loss X and we scale all exposures
by a factor of λ then, the loss X changes to a scaled loss λX. Accordingly, the originally
required risk capital γ(X) will also change to λγ(X). Finally, translation invariance
axiom tell us that if x is some capital which will be lost (gained) on a portfolio with
certainty at the considered horizon, then the risk capital required for covering losses in
this portfolio can be increased (reduced) accordingly. Translation invariance implies the
natural property γ(X − γ(X)) = 0 for every loss X ∈ L∞.

VaR as a risk measure defined on L∞ has translation invariance, is positively homo-
geneous and monotone, but not subadditive as showed in the examples above. [Tas00b]
showed that expected shortfall to a great extent enjoys the coherence properties.

Expected shortfall can be interpreted as the expected loss that is incurred in the event
that VaR is exceeded. Thus, the tail behavior of the loss distribution is taken into account.
Formally, we define ES as follows,

ESα = E (L|L ≥ VaRα) ,

or alternatively,

ESα =
1

1− α

∫ +∞

V aRα

xfL(x)dx,

where fL is the density function of the portfolio loss variable L.
Another important risk measure, as mentioned before, is the so called economic capital

ECα for a given confidence level α. It is defined as the VaR at level α of the portfolio loss
L minus the expected loss of the portfolio,

ECα = VaRα − EL.

Hence, it represents the capital that a bank should reserve to limit the probability of
default to a given confidence level. The VaR is reduced by the EL due to the common
decomposition of total risk capital, that is VaR, into a part covering expected losses and
a part reserved for unexpected losses.

In the worst case, a bank could lose its entire credit portfolio in a year. Holding capital
against such an unlikely event is economically inefficient. Since banks want to spend most
of their capital for profitable investments, there is a strong incentive to minimize the
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capital a bank holds. Hence the problem of risk management in a financial institution is
to find the balance between holding enough capital to be able to meet all debt obligations
(also accounting for times of financial distress) on the one hand, but minimizing economic
capital to make profits, on the other hand.

We can consider also how to decompose the risk measured by the VaR or the ES
into individual transactions. In this purpose and following [Tas00a], we consider the
allocation principle simply given by the partial derivative of the risk measure with respect
the exposure of an obligor. Thus, let us define the risk contribution to VaR (VaRC) of
obligor n at confidence level α by,

VaRCα,n ≡ En ·
∂VaRα

∂En
, (1.2)

and the risk contribution to ES (ESC) of obligor n at confidence level α by,

ESCα,n ≡ En ·
∂ESα
∂En

. (1.3)

These definitions satisfy the additivity condition,

N∑
n=1

VaRCα,n = VaRα,
N∑
n=1

ESCα,n = ESα.

1.3 The Merton Model

Credit risk models can be divided into two fundamental classes of models, structural or
asset-value models and reduced-form or default-rate models.

Asset-value models have their origin on the famous Merton model, where the default
of a firm is modeled in terms of the relationship between its assets and the liabilities that
it faces at the end of a given time period. In models of this type default risk depends
mainly on the stochastic evolution of the asset value and default occurs when the random
variable describing this asset value falls below a certain threshold which represents the
liabilities. Two famous industry models descending from the Merton approach are the
KMV model and the CreditMetrics model, the first one developed by Moody’s KMV and
the second one by JPMorgan and the RiskMetrics Group.

In reduced-form models one directly models the process of credit defaults instead of
constructing a stochastic process of the firm’s asset value which indirectly leads to a
model of the firm’s default. This class of models is also called mixture models. The most
representative industry model for this kind of models is CreditRisk+, developed by Credit
Suisse Financial Products.

Further information about these industry models can be found in [Lut09].

1.3.1 The General Framework

The model proposed by [Mer74] is the precursor of all asset-value models and, although a
lot of extensions haven been developed since that time, the original Merton model remains
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influential and is still popular in the practice of credit risk analysis. The Merton model
assumes that the asset value of a firm follows an stochastic process (Vt)t≥0. There are
only two classes of securities; equity and debt. It is assumed that equity receives no
dividends and that the firm cannot issue new debt. The model also assumes that the
company’s debt is given by a zero-coupon bond with face value B that will become due at
a future time T . The firm defaults if the value of its assets is less than the promised debt
repayment at time T . In the Merton model, default can occur only at the maturity T of
the bond. Let us denote the value at time t of equity and debt by St and Bt, respectively.
In the market, assuming that there are no taxes or transaction costs, the value of the
firm’s assets is given by the sum of debt and equity, i.e., Vt = St + Bt, 0 ≤ t ≤ T . At
maturity there are only two possible scenarios:

(i) VT > B: the value of the firm’s assets exceeds the debt. In this case the debtholders
receive BT = B, the shareholders receive the residual value ST = VT −B and there
is no default.

(ii) VT ≤ B: the value of the firm’s assets is less than its debt. Hence the firm can-
not meet its financial obligations and defaults. In this case, the debtholders take
ownership of the firm, and the shareholders are left with nothing, so that we have
BT = VT , ST = 0.

Combining the above two results, the payment to the shareholders at time T is given by,

ST = max(VT −B, 0) = (VT −B)+, (1.4)

and debtholders receive,

BT = min(VT , B) = B − (B − VT )+. (1.5)

This shows that the value of the firm’s equity is the payoff of an European call option on
the assets of the firm with strike price equal to the promised debt payment. By put-call
parity, the firm’s debt comprises a risk-free bond that guarantees payment of B plus a
short European put option on the firm’s assets with exercise price equal to the promised
debt payment B. The Merton model thus treats the asset value Vt as any underlying. It
assumes that under the real-world probability measure P the asset value process (Vt)t≥0

follows a geometric Brownian motion of the form,

dVt = µV Vtdt+ σV VtdWt, 0 ≤ t ≤ T, (1.6)

for constants µV ∈ R, σV > 0, and a standard Brownian motion (Wt)t≥0. Furthermore, it
makes all the other simplifying assumptions of the Black-Scholes option pricing formula
(see [Bla73]). The solution at time T of the stochastic differential equation (1.6) with
initial value V0 can be computed and is given by,

VT = V0e
(µV − 1

2
σ2
V )T+σVWT .
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This implies in particular that,

lnVT ∼ N

(
lnV0 +

(
µV −

1

2
σ2
V

)
T, σ2

V T

)
.

Hence the market value of the firm’s equity at maturity T can be determined as the price
of a European call option on the asset value Vt with exercise price B and maturity T . The
risk neutral pricing theory then yields that the market value of equity at time t < T can
be computed as the discounted expectation (under the risk neutral equivalent measure
Q) of the payoff function (1.4), i.e.

St = EQ
[
e−r(T−t)(VT −B)+

∣∣Ft] ,
and is given by,

St = Vt · Φ(dt,1)−B · e−r(T−t) · Φ(dt,2),

where dt,1 =
ln(Vt/B)+(r+ 1

2
σ2
V )(T−t)

σV
√
T−t and dt,2 = dt,1 − σV

√
T − t. Here r denotes the risk-free

rate interest rate which is assumed to be constant. Also, according to equation (1.5) we
can value the firm’s debt at time t ≤ T as

Bt = EQ
[
e−r(T−t)(B − (B − VT )+)

∣∣Ft]
= Be−r(T−t) −

(
Be−r(T−t)Φ(−dt,2)− VtΦ(−dt,1)

)
.

We discount the payment B at the risk-free rate because that payment is risk-free since
we stripped out the credit risk as a put option.

The default probability of the firm by time T is the probability that shareholders
will not exercise their call option to buy the assets of the company for B at time T , i.e.
it is precisely the probability of the call option expiring out-of-the-money1. It can be
computed as,

P(VT ≤ B) = P(lnVT ≤ lnB) = Φ

(
ln B

V0
− (µV − 1

2
σ2
V )T

σV
√
T

)
. (1.7)

Equation (1.7) shows that the default probability is increasing in B, decreasing in V0 and
µV and for V0 > T , increasing in σV , which is all perfectly in line with economic intuition.
Under the risk neutral measure Q we have,

Q(VT ≤ B) = Q

(
ln B

V0
− (r − 1

2
σ2
V )T

σV
√
T

≤ −d0,2

)
= 1− Φ(d0,2).

Hence, the risk-neutral default probability, given information up to time t, is given by
1− Φ(dt,2).

1An option is said to be in-the-money if it has positive intrinsic value, respectively out-of-the-money
if it has zero intrinsic value. A call is in-the-money if the value of the underlying is above the strike price.
A put is in-the-money if the value of the underlying is below the strike price.
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Although the Merton model provides a useful context for modeling credit risk and
practical implementations of the model are being used by many financial institutions, it
also has some drawbacks like to assume that the firm’s debt financing consists of a one-year
zero coupon bond, which is an oversimplification. Moreover, the simplifying assumptions
of the Black-Scholes model are questionable in the context of corporate debt. In particu-
lar, the assumption of normally distributed losses can lead to an underestimation of the
potential risk in a loan portfolio. Alternatively, [Alb07] describes the portfolio loss within
the context of a one-factor Lévy model. Compared to a model with normally distributed
asset returns, using a distribution with fatter tails as, for example, the Variance Gamma
distribution, leads to an increase in the economic capital of the portfolio. Finally, and
this might be the most important shortcoming of the Merton model, the firm’s value is
not observable which makes assigning values to it and its volatility problematic.

1.3.2 The Multi-Factor Merton Model

In credit risk analysis it is desirable to explain the firm’s economic success by means of
some global underlying influences. This leads to the introduction of the so-called factor
models. Factor models provide a possibility to interpret the correlation between single
loss variables in terms of some underlying economic variables such that large portfolio
losses can be explained by these economic factors. The Merton model can be understood
as a multi-factor model as it will be explained in this section. Here we focus only on
the default mode version, where the Merton model is of Bernoulli type and the decision
about default or survival of a firm at the end of a time period is made by comparing the
firm’s asset value with respect to a certain threshold value. If the firm value is below this
threshold, the firm defaults and otherwise it survives.

Let us consider the portfolio of N obligors described in Section 1.2. Each of the obligors
has exactly one loan with principal En. We fix a time horizon T > 0. The Merton model
is a so-called asset-value model, meaning that the loss distribution is derived by focusing
on a description of the firm’s asset value. Therefore, we define V

(n)
t to be the asset value

of the counterparty n at time t ≤ T . For every counterparty there exists a threshold Tn
such that counterparty n defaults in the time period [0, T ] if V

(n)
T < Tn, i.e., when the

asset value at maturity T is less than the threshold value. If we understand for example
Tn as counterparty n’s liabilities then, V

(n)
T can be viewed as a latent variable driving the

default event. Therefore, for n = 1, . . . , N , we define,

Dn = χ{V (n)
T <Tn}

∼ B
(

1,P(V
(n)
T < Tn)

)
, (1.8)

where B(1, p) denotes the Bernoulli distribution such that the event 1 occurs with prob-
ability p.

Let us now consider the borrower n’s asset-value log return rn: log
(
V

(n)
T /V

(n)
0

)
. In

the factor model approach, the main assumption is that the asset value process depends
on some underlying factors which represent the industrial and regional influences as well
as on some idiosyncratic terms.

Assumption 1.3.1. Asset returns rn depend linearly on K standard normally distributed
risk factors X = (X1, . . . , XK) affecting the borrowers’ defaults in a systematic way as well



14 Chapter 1. Portfolio Credit Risk Modeling

as on a standard normally distributed idiosyncratic term εn. Moreover, εn are independent
of the systematic factors Xk for every k ∈ {1, . . . , K} and the εn are uncorrelated.

Under this assumption and after standardization, the borrower n’s asset value log-
return admits a representation of the form,

rn = βnYn +
√

1− β2
nεn, (1.9)

where Yn denotes the firm’s composite factor and εn represents the idiosyncratic shock.
The factor loading βn illustrates borrower n’s sensitivity to the systematic risk. Hence,
it captures the linear correlation between rn and Yn. Yn can be decomposed into K
independent factors X = (X1, . . . , XK) by,

Yn =
K∑
k=1

αn,kXk.

The weights αn,k describe the dependence of obligor n on an industrial or regional sector k
represented by factor Xk. Since the idiosyncratic shocks and the risk factors are assumed
to be independent, the correlation of the counterparties’ asset returns depend only on the
correlation of the composite factors Yn. Computing the variances of both sides of equation
(1.9) yields,

V(rn) = β2
n · V(Yn) + (1− β2

n) · V(εn).

This expression can be understood as splitting the total risk of counterparty n into a
systematic and an idiosyncratic risk component. Then, the quantity β2

n ·V(Yn) expresses
how much of the volatility of rn can be explained by the volatility of Yn and, thus,
quantifies the systematic risk of the counterparty n. The term (1 − β2

n) · V(εn) captures
the idiosyncratic risk which cannot be explained by the common factors Xk. Since we
assumed that the asset returns rn, the systematic risk factors Xk and the idyosincratic
terms εn are all standard normally distributed, we have to make sure that Yn has unit
variance. Therefore, the coefficients αn,k must satisfy

∑K
k=1 α

2
n,k = 1.

Now we can rewrite equation (1.8) as,

Dn = χ{rn<tn} ∼ B(1,P (rn < tn)) ,

where tn is the threshold corresponding to Tn after exchanging V
(n)
T by rn. Assuming the

time horizon to equal 1 year, i.e. T = 1. We denote the one-year default probability
of obligor n, by Pn. We have Pn = P(rn < tn) and, since rn ∼ N (0, 1), we obtain
tn = Φ−1(Pn), where Φ denotes the cumulative standard normal distribution function and
Φ−1 its inverse. Hence, the default probability of obligor n conditional on a specification
yn =

∑K
k=1 αn,kxk can be written as,

Pn(yn) ≡ Φ

(
tn − βnyn√

1− β2
n

)
. (1.10)

The left plot of Figure 1.1 represents the dependence of the conditional default proba-
bility on the state of the economy in a single factor setting. Here we used an unconditional
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default probability of 0.01 and an asset correlation of β2 = 0.15. The right plot shows the
dependence of the conditional default probability Pn(y) with respect to the unconditional
default probability Pn for a fixed correlation of β2 = 0.15 and three different stages of the
economy. The solid graph corresponds to a bad state of the economy where the systematic
risk factor takes the values y = −4. The dotted graph corresponds to a risk factor y = 0
and the dotted-dashed graph to a good state of the economy with y = 5.
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Figure 1.1: Conditional default probabilities.

The next purpose is to find an expression for the portfolio loss variable L. Since Ln
is assumed to be independent from the default indicator Dn and, since the conditional
expectation of the default indicator equals the probability that rn lies below the threshold
tn conditional on the risk factors, we obtain,

E (L|Yn = yn) =
N∑
n=1

En · ELn · Φ

(
tn − βnyn√

1− β2
n

)
. (1.11)

The determination of the portfolio loss distribution requires a Monte Carlo simulation of
the systematic risk factors X1, . . . , XK . The default indicator variables Dn are Bernoulli
distributed with parameter Pn = P(Dn = 1) such that for any dn ∈ {0, 1} we have
P(Dn = dn) = P dn

n · (1 − Pn)1−dn . Now, instead of the default probabilities Pn, consider
the conditional default probabilities Pn(yn) given by the composite factor Yn. Then we
can compute the joint distribution of the default indicator variables by integrating the
conditioning on the factors Yn as,

P(D1 = d1, . . . , DN = dN) =

∫
RN

N∏
n=1

Pn(y)dn · (1− Pn(y))1−dndFY (y),

for dn ∈ {0, 1} and n ∈ {1, . . . , N}, where FY denotes the distribution function of the
composite factors Y1, . . . , YN . Now we make the substitution qn = Pn(y), i.e. y = P−1

n (qn).
Note that the joint distribution function of the qn’s is given by the joint distribution
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function of the conditional Pn’s which are normally distributed. So we obtain,

P(D1 = d1, . . . , DN = dN) =

∫
[0,1]N

N∏
n=1

qdnn · (1− qn)1−dndF (q1, . . . , qN),

with the distribution function F explicitly given by,

F (q1, . . . , qN) = ΦN(P−1
1 (q1), . . . , P−1

N (qN); Γ),

where ΦN(·; Γ) denotes the cumulative multivariate centered Gaussian distribution with
correlation matrix Γ = (γnm)1≤n,m≤N containing the correlation of the asset returns rn.

Assuming a constant loss given default equal to Ln for obligor n, the portfolio loss
distribution can then be derived from the joint distribution of the default indicators as,

P(L ≤ l) =
∑

(d1,...,dN )∈{0,1}N∑N
n=1 En·Ln·dn≤l

(
N∑
n=1

En · Ln · dn

)
· P(D1 = d1, . . . , DN = dN).

Remark 1.3.1. In the next section we present an analytical approximation for the qth

percentile of the loss distribution in the one-factor framework, under the assumption that
portfolios are infinitely fine-grained such that the idiosyncratic risk is completely diversi-
fied.

1.4 The Asymptotic Single Risk Factor Model

The already mentioned Revised Framework incorporates new developments in credit risk
management as it is more flexible and risk sensitive than the former Basel I accord. More-
over, within Basel II banks may opt for the standard approach, which is quite conservative
with respect to capital charge, and the more advanced IRB approach when calculating
regulatory capital for credit risk. Financial companies that opt for the IRB approach are
allowed to use their own internal credit risk measures as inputs to the capital calculation
whenever these are approved by the supervisory authorities. Therefore banks have to
prove that certain conditions concerning the method and transparency are fulfilled. In
the IRB approach, banks are allowed to determine the borrower’s default probabilities
using their own methods while those using the advanced IRB approach are further per-
mitted to provide own estimates of LGD and EAD parameters. The Basel II risk weight
formulas then translate these risk measures into risk weights and regulatory capital re-
quirements which are intended to ensure that unexpected losses can be covered up to a
certain confidence level prescribed by the supervisors.

The risk weight formulas for the computation of regulatory capital for unexpected
losses are based on the already mentioned Asymptotic Single Risk Factor model developed
by the Basel Committee and in particular by [Gor03]. This model was constructed in a
way to ensure that the capital required for any risky loan should not depend on the
particular portfolio decomposition it is added to. This so-called portfolio invariance was
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necessary for reasons of applicability relying on straightforward and fast computations of
capital requirements. However, portfolio invariance comes along with some drawbacks as
it makes recognition of diversifications effects very difficult. Judging whether a loan fits
well into an existing portfolio requires the knowledge of the portfolio decomposition and
therefore contradicts portfolio invariance. The ASRF model is based on the assumption
of a well diversified portfolio. Actually, no real bank can exactly fulfill this assumption
and therefore banks are expected to account for this existence of concentration risk in
Pillar two. Models for this task will be presented in the following chapters.

The ASRF model developed by [Gor03] is based on the law of large numbers. An
ordinary portfolio consists of a large number of exposures of different sizes. When exposure
sizes are equally distributed, the idiosyncratic risk associated with every single exposure is
almost diversified away, meaning that the idiosyncratic risk cancel out one-another. Note
that this requires a very huge portfolio. When idiosyncratic risk is diversified away, only
systematic risk affecting many exposures remains. Such a portfolio is also called infinitely
fine-grained. It is needless to say that such perfectly fine-grained portfolios does not exist
in practice. Real bank portfolios have a finite number of obligors and lumpy distributions
of exposure sizes. The asymptotic assumption might be approximately valid for some of
the largest bank portfolios, but clearly would be much less satisfactory for portfolios of
smaller or more specialized institutions. Thus, any capital charges computed under the
assumption of an asymptotically fine-grained portfolio can underestimate the required
capital for a real finite portfolio. Therefore, banks have to account for this non-diversified
idiosyncratic risk under Pillar two. In the ASRF model all systematic risks in a portfolio
are modeled by a single systematic risk factor representing for example the economic
cycle. The two following assumptions are the two main assumptions of the ASRF.

Assumption 1.4.1. 1. Portfolios are infinitely fine-grained, i.e. no exposure accounts
for more than an arbitrarily small share of total portfolio exposure.

2. Dependence across exposures is driven by a single systematic risk factor Y .

Consider the portfolio of N risky loans described in Section 1.2. We express loss
not in absolute value but in percentage of total exposure. Therefore, if we denote the
exposure share of obligor n by sn = En∑N

n=1 En
, then the portfolio loss ratio L is given by

L =
∑N

n=1 Dn · Ln · sn. The first condition in Assumption 1.4.1 is satisfied when the
sequence of positive constant exposures En satisfies the following conditions.

Assumption 1.4.2. 1.
∑N

n=1En ↑ ∞ and

2. there exist a positive ζ such that the largest exposure share is of order O(N−( 1
2

+ζ)).

These assumptions are sufficient to guarantee that the share of the largest single
exposure of the total portfolio exposure vanishes to zero as the number of exposures in
the portfolio increases. As a practical matter, the restrictions are quite weak and would
be satisfied by any conceivable real-word large bank portfolio. Under these conditions
the following theorem follows directly from the strong law of large numbers (see [Gor03],
Proposition 1 for a formal proof).
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Theorem 1.4.1. Under assumptions 1.4.1 and 1.4.2 the portfolio loss ratio conditional
on any realization y of the systematic risk factor Y satisfies,

L − E(L|Y = y)→ 0 almost surely as N →∞.

In intuitive terms, this theorem says that as the exposure share of each asset in the
portfolio goes to zero, idiosyncratic risk in portfolio loss is diversified away perfectly. In
the limit, the loss ratio converges to a fixed function of the systematic factor Y given by
E(L|Y ). We refer to this limiting portfolio as infinitely fine-grained or as an asymptotic
portfolio.

If we now want a practical model for the calculation of regulatory capital, we first have
to find a way to derive conditional default probabilities. This is done by an adaptation
of Merton’s model. We recall that in the Merton model an obligor defaults if its asset
value falls below a threshold given by its obligations and within the Merton model the
asset value is described by a normally distributed random variable. The Basel Committee
adopted this assumption of normally distributed risk factors.

Hence, the ASRF model can be described as a factor model such that the return on
the firm’s assets is of the form (1.9), i.e.,

rn =
√
ρnY +

√
1− ρnεn, n = 1, . . . , N,

with normally distributed systematic risk factor Y an idiosyncratic shocks εn. Here rn
denotes the log-asset return of obligor n and ρn captures the correlation between rn and
the single risk factor Y :

corr(rn, Y ) =
cov(rn, Y )

dev(rn) · dev(Y )
= E(rn · Y )− E(rn) · E(Y )

= E
((√

ρnY +
√

1− ρnεn
)
· Y
)

=
√
ρn · E

(
Y 2
)

=
√
ρn,

due to the fact that 1 = V(Y ) = E (Y 2)− (E(Y ))2 and E(Y ) = 0.
Moreover, the return on the firm’s assets of two obligors are correlated as follows,

corr(rn, rm) =
cov(rn, rm)

dev(rn) · dev(rm)
= E(rn · rm)− E(rn) · E(rm)

= E
((√

ρnY +
√

1− ρnεn
)
·
(√

ρmY +
√

1− ρmεm
))

= E
(√

ρnρmY
2 +

√
ρn(1− ρm)Y · εm +

√
(1− ρn)ρmεn · Y+

+
√

(1− ρn)(1− ρm)εn · εm
)

=
√
ρnρm.

If the loss given default Ln is assumed to be deterministic, the conditional expectation
can be written as in (1.11),

E (L|Y = y) =
N∑
n=1

sn · Ln · Φ
(
tn −

√
ρny√

1− ρn

)
. (1.12)
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For quantification of the credit risk, the Value at Risk on confidence level α can be used,
that is the α-quantile VaRα of the loss variable, in which α ∈ (0, 1) is the target solvency
probability. In the context of the ASRF framework, taking into account the Theorem
1.4.1 and the fact that the α-quantile of L is simply the (1−α)-quantile of the systematic
risk factor Y , we have,

VaRα(L)− E(L|Y = l1−α(Y ))→ 0 almost surely as N →∞, (1.13)

where l1−α(Y ) stands for the (1− α)-quantile of the systematic risk factor Y . By (1.12),
(1.13) and recalling that Y is normally distributed, the VaR of the portfolio L equals,

VaRA
α =

N∑
n=1

sn · Ln · Φ
(
tn +

√
ρnΦ−1(α)

√
1− ρn

)
, (1.14)

where the index A denotes that the risk measure has been calculated by means of the
ASRF method. The VaR contributions for obligor n can now be calculated easily making
use of expression (1.2),

VaRCA
α,n = sn ·

∂VaRA
α

∂sn
= sn · Ln · Φ

(
tn +

√
ρnΦ−1(α)

√
1− ρn

)
.

We have already noted that in general, VaR is not a coherent risk measure because it is not
necessarily sub-additive. As long as we stay in the ASRF framework, this characteristic is
not problematic because in this context the VaR is exactly sub-additive2. But if we leave
the ASRF framework, this behavior is not guaranteed anymore. For this reason in the
following chapters we will also consider the ES as an alternatively risk measure to deal
with risk concentrated portfolios.

The variable ρn describes the degree of the obligor’s exposure to the systematic risk
factor by means of the asset correlation and is determined by the borrower’s asset class.
In the Revised Framework the asset value correlation for a given asset class, represented
by the according unconditional default probability Pn, is given by,

ρn = 0.12 · 1− e−50·Pn

1− e−50
+ 0.24 ·

(
1− 1− e−50·Pn

1− e−50

)
. (1.15)

We see that asset correlation ρn decrease with increasing Pn. This is based both on
empirical evidence and intuition. Intuitively, for instance, the effect can be explained as
follows: the higher the Pn, the higher the idiosyncratic (individual) risk components of a
borrower, i.e., the default risk depends less on the overall state of the economy and more
on individual risk drivers. The behavior of the correlation coefficient ρn with respect Pn is
shown in Figure 1.2. The dashed lines denote the upper and lower bound of the correlation
coefficient which are given by 24% and 12% respectively. Correlations between these limits
are given by the exponential weighting function (1.15) describing the dependence on the
probability of default.

2This can be seen in formula 1.13 considering that the expectation operator is additive.
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Figure 1.2: Correlation in dependence of the default probability.

Now, we want to compute the loss distribution function in an infinitely granular port-
folio. For simplicity we start assuming a homogeneous portfolio in the sense that all
obligors have the same default probability Pn = P , for n = 1, . . . , N , and we assume
that Ln = 100% for n = 1, . . . , N . The correlation parameter ρ is constant since default
probabilities are also constant. Then,

E (L|Y = y) =
N∑
n=1

sn · Φ
(

Φ−1(P )−√ρy
√

1− ρ

)
= Φ

(
Φ−1(P )−√ρy
√

1− ρ

)
,

since the sum over the exposure shares equals 1. Hence, the percentage portfolio loss L
tends to the conditional default probability L → P (y) almost surely as N → ∞. Thus,
in an infinitely fine-grained portfolio, the conditional default probability P (y) describes
the fraction of defaulted obligors. Denote the percentage number of defaults in such a
portfolio by L. Then we can compute the probability density function fAL of L as follows.
For every 0 ≤ x ≤ 1 we have,

FA
L (x) ≡ P(L ≤ x) = P(P (y) ≤ x) = P

(
−y ≤ 1

√
ρ

(√
1− ρ · Φ−1(x)− Φ−1(P )

))
= Φ

(
1
√
ρ

(√
1− ρ · Φ−1(x)− Φ−1(P )

))
,

and differentiating respect to x we obtain the probability density function,

fAL (x) =
∂FA(x)

∂x
=

√
1− ρ
ρ
· 1√

2π
e−

1
2ρ(
√

1−ρ·Φ−1(x)−Φ−1(P ))
2

· ∂
∂x

(
Φ−1(x)

)
=

√
1− ρ
ρ
· e−

1
2ρ(
√

1−ρ·Φ−1(x)−Φ−1(P ))
2

· e
1
2(Φ−1(x))

2

.

Let us now consider an infinitely granular portfolio A with a default probability of 5% and
a correlation of ρ = 13% and an infinitely granular portfolio B with default probability
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of 10% and a correlation of 12%. Here, the correlation values have been computed via
the correlation function (1.15). The left plot of Figure 1.3 shows the graph of the density
function fAL , represented by a continuous line for portfolio A and a dashed line for portfolio
B. The VaR value computed at 95% confidence level for portfolio A is 0.13 and the VaR
for portfolio B at the same confidence level is 0.22. The right plot of Figure 1.3 shows
the cumulative distribution function of both portfolios.
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Figure 1.3: Densities and distributions for portfolios A and B.

1.5 Concentration Risk

Historical experience shows that concentration of risk in asset portfolios has been one of
the major causes of bank distress. Failures of large borrowers like Enron or Parmalat
where the source of sizable losses in a number of banks. Furthermore, the relevance of
sector concentration risk is demonstrated by the recent developments in conjunction with
the sub-prime mortgage crisis.

Let us explain the issue of concentration risk in more detail based on the example
of the Asymptotic Single Risk Factor model. Under the ASRF framework it is assumed
that bank portfolios are perfectly fine-grained, that is, idiosyncratic risk has been fully
diversified away, so that economic capital depends only on systematic risk. Real world
portfolios are not, of course, perfectly fine-grained. The asymptotic assumption might be
approximately valid for some of the largest bank portfolios, but clearly would be much
less satisfactory for portfolios of smaller or more specialized institutions. When there
are material name concentrations of exposure, there will be a residual of undiversified
idiosyncratic risk in the portfolio, and the IRB formula will underestimate the required
economic capital. Moreover, the single risk factor assumption of the ASRF model does
not allow for the explicit measurement of sector concentration risk.

There are in the literature some simple ad-hoc measures for concentration risk. All of
them have advantages and drawbacks based on a set of desirable properties which ensure
a consistent measurement of concentration risk. We give a brief overview of these simple
measures.
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A concentration index for a portfolio of N loans should satisfy the following properties:

1. The reduction of a loan exposure and an equal increase of a bigger loan must not
decrease the concentration measure (transfer principle).

2. The measure of concentration attains its minimum value, when all loans are of equal
size (uniform distribution principle).

3. If two portfolios, which are composed of the same number of loans, satisfy that
the aggregate size of the k biggest loans of the first portfolio is greater or equal to
the size of the k biggest loans in the second credit portfolio for 1 ≤ k ≤ N , then
the same inequality must hold between the measures of concentration in the two
portfolios (Lorenz-criterion).

4. If two or more loans are merged, the measure of concentration must not decrease
(super-additivity).

5. Consider a portfolio consisting of loans of equal size. The measure of concentration
must not increase with an increase in the number of loans (independence of loan
quantity).

6. Granting an additional loan of a relatively low amount does not increase the con-
centration measure (irrelevance of small exposures).

It can be proved that if an index satisfy properties 1 and 6 then it satisfies all six properties.
Common used concentration indexes are Concentration Ratio, Lorenz Curve, Gini

Coefficient and the Herfindahl-Hirschman Index (HHI) which is used extensively partic-
ularly in the empirical literature. For this reason, later in Chapter 3, we use the HHI
index to measure the concentration of the sample portfolios. The HHI index is defined
as the sum of squared market shares, measured in fractions of the total portfolio, of each
market participant,

HHI =

∑N
n=1 E

2
n

(
∑N

n=1 En)2
=

N∑
n=1

s2
n.

The HHI index is a continuous measure with zero corresponding to the fully granular case
(each participant has an infinitesimal share) and unity corresponding to monopoly (there
is only one participant). Holding all else equal, the closer the HHI of a portfolio is to 1,
the more concentrated the portfolio is. It can be shown that the HHI index satisfies the
all six properties stated above.

However, neither the HHI index nor the rest of the mentioned indexes can incorporate
the effects of obligor specific credit qualities, which are, for example, represented by
obligor specific default probabilities. For these reasons, certain model-based methods
for measuring concentration risks have been developed which can deal more explicitly
with exposure distribution, credit quality and default dependencies. In the following
chapters we will discuss some of these model-based approaches for the measurement of
concentration risk.
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The aim of this dissertation is to present a novel methodology based on wavelets to
approximate the loss distribution function of a credit portfolio in presence of exposure
concentration. We refer it as the Wavelet Approximation (WA) method. The WA method
is especially suitable for small or name concentrated portfolios where the ASRF model
tends to fail. In order to introduce the methodology in Chapter 2 we present a numerical
Laplace transform inversion method based on the Haar wavelets especially suitable for
stepped shape functions. Then, in Chapter 3, we approximate the loss function of a credit
portfolio by a summation of Haar wavelet basis and calculate the VaR value once we have
recovered the loss distribution function. Finally in Chapter 4 we make an extension of
this new method for computing the ES measure and the risk contributions to the VaR and
the expected shortfall. Furthermore, we present an improvement in the Gauss-Hermite
quadrature that allows us to obtain, in an efficient and fast way when compared to
conventional Monte Carlo methods, the risk measures and contributions.





Chapter 2

On the Haar Wavelets Method for
Numerically Inverting the Laplace
Transform

2.1 Introduction

This chapter is devoted to the development of a new method based on wavelets for nu-
merically inverting the Laplace transform, which is especially suited for stepped shape
functions. First of all, we review the Haar wavelets which underlies the approximation
presented to carry out the inversion. Second, we present the most popular methods
for inverting the Laplace transform and finally we introduce the Wavelet Approximation
method.

2.2 Numerical Analysis of Wavelet Methods

Since the 1960’s, multi-scale methods have been used in numerous areas of applied math-
ematics as diverse as signal analysis, statistics, computer aided geometric design, image
processing and numerical analysis. The mathematical background underlying these meth-
ods was substantially reinforced with the emergence of wavelet basis in the 1980’s.

Roughly speaking, multi-scale methods are based on approximations (fj)j≥0 to the
data (or the unknown function) f of a given problem, at various resolution levels indexed
by j. The corresponding scales of resolution hj are usually chosen to be of order 2−j and
the approximation fj should thus be viewed as a sketchy picture of f that cannot oscillate
at a frequency higher than 2j. As an example, if f is a univariate continuous function,
one could choose for fj the unique function such that fj(2

−jk) = f(2−jk) and such that
fj is affine when restricted to [ k

2j
, k+1

2j
] for all k ∈ Z. Formally, one obtains a multi-scale

decomposition by expanding f into the sum of its coarsest approximation and additional
details,

25
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f = f0 +
∞∑
j=0

gj,

where each gj = fj+1−fj represents the fluctuation of f between the two successive levels
of resolution j and j + 1.

In practice, these approximations and decompositions can be defined and implemented
in various ways. In contrast with the one and unique Fourier transform, a multi-scale
transform can be picked out among a versatile collection of mathematical tools. Further-
more, some of them can be implemented by means of fast algorithms, and therefore they
are more appealing for numerical applications. In the context of numerical computations,
one can be interested in further decomposing each fluctuation gj into local contributions.
For specific types of multi-resolution approximations, this task can be achieved using a
wavelet basis for this purpose: one introduces an appropriate mother function ψ (in the
case where f is a univariate function) that is well localized both in space and frequency,
oscillates in the sense that

∫
ψ = 0, and allows us to expand gj according to,

gj =
∑
k∈Z

dj,kψj,k,

where dj,k are scalar coefficients and each wavelet ψj,k(x) = 2
j
2ψ(2jx − k) contributes to

the fluctuation of f at scale 2−j in a neighborhood of size 2−j|supp(ψ)| around the point
2−jk.

The word wavelet is used in mathematical analysis to denote a kind of orthonormal
basis in L2 with remarkable approximation properties. The theory of wavelets was devel-
oped by Y. Meyer, I. Daubechies, S. Mallat and others at the end of 1980’s (see [Mey97],
[Dau92], [Mal98], [Coh03] and [Wal02]).

Qualitatively, the difference between the usual sine wave and a wavelet may be de-
scribed by the localization property: the sine wave is localized in frequency domain, but
not in time domain, while a wavelet is localized both in frequency and time domain. By
saying localized frequency we do not mean that the support of a wavelet is compact, we
rather mean that the mass of oscillations of a wavelet is concentrated on a small interval.
Clearly this is not the case for a sine wave. The Fourier orthonormal basis is composed of
waves, while the aim of the theory of wavelets is to construct orthonormal basis composed
of wavelets.

Besides the already discussed localization property of wavelets there are other remark-
able features of this technique. Wavelets provide a useful tool in data compression and
have excellent statistical properties in data smoothing.

Wavelets allow to simplify the description of a complicated function in terms of a
small number of coefficients. Often the necessary coefficients needed are less than in the
classical Fourier approximation.

Example 2.2.1. Let f(x) be of the form shown in Figure 2.1. The function is

f(x) =


sin(8πx), x ∈ [0, 1

2
],

sin(32πx), x ∈ (1
2
, 1],

0, otherwise.
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The support of f is made of two intervals [a, b] = [0, 1/2] and [c, d] = [1/2, 1]. On [a, b] the
frequency of oscillations of f is smaller than on [c, d]. When doing the Fourier expansion,
we should include both frequencies, ω1, the frequency of [a,b] and ω2, the frequency of
[c,d]. But since the sine waves have infinite support, we are forced to compensate the
influence of ω1 on [c, d] and ω2 on [a, b] by adding a large number of higher frequency
terms in the Fourier expansion. Using wavelets, only we need essentially only two pairs
of time-frequency coefficients, (ω1, [a, b]) and (ω2, [c, d]).
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Figure 2.1: Two waves with different frequency.

2.2.1 The Haar Basis Wavelets System

Consider the space L2(R) = {f :
∫ +∞
−∞ |f(x)|2 dx < ∞}. For simplicity, we can view

this set as the functions f(x) which get small in magnitude fast enough as x goes to
plus and minus infinity. Let f be a function in L2(R). We can define piecewise constant
approximations fj of f at scale 2−j by means of,

fj(x) = 2j
∫
Ij,k

f(t)dt, (2.1)

for all x ∈ Ij,k, k ∈ Z,where Ij,k = [ k
2j
, k+1

2j
), i.e. f is approximated by its mean value on

each interval Ij,k, k ∈ Z. Let us make three simple comments on this particular choice for
fj:

1. We first remark that the choice of the mean value makes fj the L2-orthogonal
projection of f onto the space,

Vj = {f ∈ L2 : f is constant on Ij,k, k ∈ Z}.

Indeed, an orthogonal basis for Vj is given by the family

φj,k(x) = 2
j
2χIj,k(x) = 2

j
2φ(2jx− k), k ∈ Z,
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where φ(x) = χ[0,1)(x), and clearly fj can be written as,

fj =
∞∑

k=−∞

〈f, φj,k〉φj,k,

with the usual notation 〈f, g〉 =
∫
R f(t)g(t)dt. We will thus denote fj by Pjf where

Pj is the orthogonal projector onto Vj, i.e.,

Pj : L2(R)→ Vj,

and we will also use the notation,

cj,k = 〈f, φj,k〉 = 2
j
2

∫
Ij,k

f(t)dt, (2.2)

for the normalized mean values which are the coordinates of Pjf in the basis
(φj,k)k∈Z.

2. We also note that this approximation process is local : the value of Pjf in Ij,k is
only influenced by the value of f in the same interval. In particular, we can still
use (2.1) to define Pjf when f is only locally integrable, or when f is only defined
in a bounded interval such as [0, 1] (in this case Pjf makes sense only for j ≥ 0).
As an example, we display in Figure 2.2 the function f(x) = sin(2πx) and its
approximation P4f on [0, 1].

3. Finally, since Vj ⊂ Vj+1, it is clear that Pj+1f contains ”more information” on f
than the coarser approximation Pjf , then the mean values on the intervals of size

1
2j+1 entirely determine those on the coarser intervals of double size 1

2j
just by taking

their averages. More precisely, we have,

Pjf|Ij,k =
Pj+1f|Ij+1,2k

+ Pj+1f|Ij+1,2k+1

2
. (2.3)

Let us consider the orthogonal complement Wj of Vj into Vj+1, that is Vj+1 = Vj⊕Wj.
Then, we can also define the orthogonal projection Qjf = Pj+1f − Pjf onto Wj. From
(2.3), it is clear that Qjf ”oscillates” in the sense that,

Qjf|Ij+1,2k
= −Qjf|Ij+1,2k+1

. (2.4)

As an example, Figure 2.3 shows the components P3f and Q3f on [0, 1], for f(x) =
sin(2πx). We have thus decomposed P4f of Figure 1.2.1 into the sum of the coarser
approximation P3f and the oscillating component Q3f .

The oscillatory property (2.4) allows us to expand Qjf into,

Qjf =
∞∑

k=−∞

dj,kψj,k,
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Figure 2.2: The function f(x) = sin(2πx) and its approximation P4f .
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Figure 2.3: The approximation P3f and the fluctuation Q3f for f(x) = sin(2πx).

where ψj,k(x) = 2
j
2ψ(2jx− k) and ψ(x) = χ[0, 1

2
) − χ[ 1

2
,1).

Since the ψj,k, k ∈ Z are also an orthonormal system, they constitute an orthonormal
basis for Wj and we thus have,

dj,k = 〈f, ψj,k〉.

We have thus re-expressed the ”two-level” decomposition of Pj+1f into the coarser
approximation Pjf and the additional fluctuations Qjf , according to,

∞∑
k=−∞

cj+1,kφj+1,k =
∞∑

k=−∞

cj,kφj,k +
∞∑

k=−∞

dj,kψj,k. (2.5)

This decomposition can be iterated for any arbitrary number of levels: if j0 < j1, we
can rewrite the orthogonal decomposition,
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Pj1f = Pj0f +

j1−1∑
j=j0

Qjf, (2.6)

according to,

∞∑
k=−∞

cj1,kφj1,k =
∞∑

k=−∞

cj0,kφj0,k +

j1−1∑
j=j0

∞∑
k=−∞

dj,kψj,k. (2.7)

Both (2.6) and (2.7) express and additive multi-scale decomposition of Pj1f into a
coarser approximation and a sequence of fluctuations at intermediate scales. Formula
(2.7), however gives a local description of each contribution and should be viewed as an
orthonormal change of basis in Vj1 : both {φj1,k}k∈Z and {φj0,k}k∈Z ∪ {ψj,k}j0≤j<j1,k∈Z are
orthonormal bases for Vj1 , and any function in Vj1 has thus a unique decomposition in
each of these bases.

Note the different roles played by the functions φ and ψ: the former is used to char-
acterize the approximation of a function at different scales, while the later is needed to
represent the fluctuation between successive levels of approximation. In particular, we
have

∫
ψ = 0, reflecting the oscillatory nature of these fluctuations. In the more general

multi-resolution context, φ is called the scaling function and ψ the mother wavelet, in the
sense that all the wavelets ψj,k are generated form translations and dilations of ψ. We
display in Figure 2.4 the functions φ2,3 and ψ2,3.
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Figure 2.4: Scaling (φ2,3) and wavelet (ψ2,3) functions.

Example 2.2.2. Define the step function,

f(x) =


−1, x ∈ [−1

2
, 0],

1, x ∈ (0, 1
2
],

0, otherwise.
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This function is poorly approximated by its Fourier series. The Fourier expansion for
f(x) has the form,

f(x) =
∞∑
k=1
k odd

4

πk
sin(2πkx) =

∞∑
k=1
k odd

bkϕk(x), (2.8)

where ϕk(x) =
√

2 sin(2πkx) and bk = 2
√

2
πk

. The left plot of Figure 2.5 shows this function
together with the approximated Fourier series with 5 terms. The Fourier coefficients bk
decrease as O(k−1) which is a slow rate and one needs many terms of the Fourier expansion
to approximate f with a good accuracy. The right plot of Figure 2.5 shows the step function
f(x) with the Fourier expansion using 50 terms in (2.8). If we include 500 terms in
this Fourier expansion it would not look drastically different from what we already see in
Figure 2.5. As it is well known, the Fourier approximation tends to keep the undesirable
oscillations near the jump point and at the endpoints of the interval.

Wavelets are more flexible in this situation. In fact, wavelet systems localize the jump
putting small and extremely oscillating wavelets around it. This involves only one (or a
small number) of coefficients, in contrast to the Fourier case. One of such wavelet system
is given by the Haar basis with mother wavelet,

ψ(x) =


1, if 0 ≤ x < 1

2
,

−1, if 1
2
≤ x < 1,

0, otherwise,

scaling function,

φ(x) =

{
1, if 0 ≤ x < 1,

0, otherwise,

and their scaled and translated versions ψj,k = 2
j
2ψ(2jx−k) and φj,k = 2

j
2φ(2jx−k). It is

clear that with such a basis the step function in Figure 2.5 can be perfectly represented by
two terms or coefficients, f(x) =

√
2

2
φ1,0(x) −

√
2

2
φ1,−1(x), whereas using a Fourier series

with 50 terms still produces wiggles in the reconstruction.

Clearly, the union of the approximation spaces Vj is dense in L2(R), i.e.,

lim
j→+∞

‖f − Pjf‖L2 = 0, (2.9)

for all f ∈ L2(R). Combining (2.9) with (2.7), we obtain that the orthonormal family
{φj0,k}k∈Z∪{ψj,k}j≥j0,k∈Z is a complete orthonormal system of L2(R). Then, any function
f ∈ L2(R) can be decomposed into,

f(x) =
∞∑

k=−∞

cj0,kφj0,k(x) +
∞∑
j=j0

∞∑
k=−∞

dj,kφj,k(x), (2.10)

where the series converges in L2(R).



32 Chapter 2. The Haar Wavelets Approximation

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.4 -0.2  0  0.2  0.4

x

Step function
Fourier (5 coefficients)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.4 -0.2  0  0.2  0.4

x

Step function
Fourier (50 coefficients)

Figure 2.5: The step function and the Fourier series with 5 terms (left) and 50 terms (right).

Remark 2.2.1. Of course we can apply the same method to decompose a function that
is defined on a bounded interval. In particular, φ and the ψj,k’s for j ≥ 0 and 0 ≤ k < 2j

constitute an orthonormal basis for L2([0, 1]). This basis was introduced in 1909 by A.
Haar, and is therefore referred as the Haar system.

If the function f is defined on the whole R, we can also let the coarsest level j0 go to
−∞ in (2.10). It turns out that the coarse scale approximation vanishes in the L2 sense,
when passing to this limit, i.e., for any f ∈ L2(R), we have,

lim
j→−∞

‖Pjf‖L2 = 0. (2.11)

In order to prove (2.11) we first suppose that f = χ[a,b], for some a < b. Then, when j
is negative and large enough so that 2−j ≥ max{|a|, |b|}, we have cj,k = 0 if k is not 0 or
−1 (the functions f and φj,k have disjoint supports). Thus, for this range of j, we have,

‖Pjf‖2
L2 = |cj,0|2 + |cj,1|2 ≤ 2

(
|a− b|2

j
2

)2

,

which implies (2.11) for f = χ[a,b] and thus for any finite linear combination of such a
characteristic functions.

For an arbitrary f ∈ L2(R) and ε > 0, there exists a function g which is of the type

g =
N∑
i=0

ciχ[ai,bi],

such that,
‖f − g‖L2 ≤ ε,

(finite linear combinations of characteristic functions of finite intervals are dense in L2(R)).
Since ‖Pjg‖L2 tends to zero as j goes to −∞, we have ‖Pjg‖L2 ≤ ε for j large enough
negatively, and therefore,

‖Pjf‖L2 ≤ ‖Pjg‖L2 + ‖Pj(f − g)‖L2 ≤ ‖Pjg‖L2 + ‖f − g‖L2 ≤ 2ε.
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Since ε is arbitrary, this proves (2.11) for a general function f ∈ L2(R).
An immediate consequence of (2.11) is that the set {ψj,k}j,k∈Z constitutes an orthonor-

mal basis for L2(R). This fact might appear as a paradox: a function f can be expanded
in terms of basis functions that all have vanishing integral, even if

∫
f 6= 0. This is possi-

ble, simply because the convergence of Pjf to zero as j goes to −∞ holds in L2 but not
in L1, for a general function f ∈ L1 ∩ L2. Indeed, according to the definition of Pj using
(2.1), we clearly have

∫
Pjf =

∫
f , so that Pjf cannot go to zero in L1 as soon as f has

a non-zero integral.
In the context of applications of multi-scale decompositions in numerical computations,

one does not make so much use of the full wavelet basis {ψj,k}j,k∈Z and of the fact that
Pjf goes to zero in L2 as j tends to −∞. Indeed, most problems are confined to a
bounded domain that limits the coarseness of the analysis scale. In our context, we will
consider multi-scale decompositions of the type (2.10) for a fixed minimal scale level j0,
which quite often will be chosen to be j0 = 0. More important for the numerician is the
behavior of Pjf as j grows, in particular concerning approximation results dealing with
the size of error f − Pjf .

From a computational point of view, if we want to implement the decomposition of
a function in the Haar system, we also need to limit the resolution level from above: we
shall start out analysis from an approximation fj1 =

∑∞
k=−∞ cj1,kφj1,k of a function f at

the finest resolution level j1. We then have to deal with the following problem: how can
we compute the coefficients cj0,k and dj,k, j0 ≤ j < j1 from the coefficients cj1,k at the
finest scale?

Remark 2.2.2. Note that this problem makes sense even if fj1 is an approximation of
f in Vj1 that differs form its projection Pj1f : we are then interested in decomposing
this particular approximation into multi-scale components. This point is crucial, since
in numerical analysis applications, the approximate solution of a problem is rarely the
L2-orthogonal projection of the true solution.

To answer this question, we start from the ”two level” decomposition (2.5). From (2.3)
and the L2 normalization of the functions φj,k and ψj,k, we derive the simple relations,

cj,k =
cj+1,2k + cj+1,2k+1√

2
, (2.12)

and,

dj,k =
cj+1,2k − cj+1,2k+1√

2
. (2.13)

Another way to derive relations (2.12) and (2.13) is to insert the identities φj,k =
φj+1,2k+φj+1,2k+1√

2
and ψj,k =

ψj+1,2k−ψj+1,2k+1√
2

inside cj,k = 〈f, φj,k〉 and dj,k = 〈f, ψj,k〉. These

relations show the local aspect of the change of basis in (2.5), the vectors (cj,k, dj,k)
and (cj+1,2k, dj+1,2k+1) are related by a simple orthogonal transformation. The inverse
transform is given by,

cj+1,2k =
cj,k + dj,k√

2
, (2.14)
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and,

cj+1,2k+1 =
cj,k − dj,k√

2
. (2.15)

From these four relations, we can derive simple decomposition and reconstruction
algorithms.

Decomposition algorithm:

1. Start from finest scale approximation coefficients cj1,k.

2. Compute the sequences cj1−1,k and dj1−1,k using (2.12) and (2.13).

3. Store the details dj1−1,k and iterate the decomposition for the approximation coef-
ficients cj1−1,k.

4. Iterate the decomposition from fine to coarse scales.

5. Stop the decomposition when the coarsest level coefficients cj0,k and dj0,k are reached.

Reconstruction algorithm:

1. Start from the coarsest level coefficients cj0,k and dj0,k.

2. Compute the sequence cj0+1,k using (2.14) and (2.15).

3. Iterate the reconstruction from coarse to fine scales.

4. Stop the reconstruction when the finest approximation coefficients cj1,k are com-
puted.

In practice, the function to be decomposed is defined (and approximated at the finest
level) on a bounded domain. In turn, the sequence cj,k has finite length, allowing a
computer to perform these algorithms. For example, if the function f is defined on the
interval [0, 1], these algorithms operate on 2j1 coefficients.

The total number of operations for both algorithms is therefore given by
∑j1

j=j0
2j+1 =

O(N) where N = 2j1 is the length of the finest approximation sequence. This complexity
is ”optimal”, in the sense that the number of required operations is of the same order as
the number of computed values. A general linear transformation would require O(N2) op-
erations. From a linear algebra point of view, the Haar decomposition and reconstruction
algorithm can thus be viewed as a smart factorization of a linear transform. A similar
situation is encountered when implementing the discrete Fourier transform by the Fast
Fourier Transform algorithm which has complexity O(N logN).
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2.2.2 Multiresolution Analysis

In a more general setting, we can define a structure for wavelets in L2(R) which is called
a Multi-Resolution Analysis (MRA).

We start with a family of closed nested subspaces,

... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ...,

in L2(R) where, ⋂
j∈Z

Vj = {0},
⋃
j∈Z

Vj = L2(R),

and,
f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1.

If these conditions are met, then there exists a function φ ∈ V0 such that {φj,k}k∈Z is an
orthonormal basis of Vj, where,

φj,k(x) = 2j/2φ(2jx− k).

In other words, the function φ, called the scaling function, will generate an orthonormal
basis for each Vj subspace.

Then we define Wj such that Vj+1 = Vj ⊕Wj as we have already seen. This says that
Wj is the space of functions in Vj+1 but not in Vj, and so, L2(R) =

∑
j ⊕Wj. Then (see

[Dau92]) there exists a function ψ ∈ W0 such that {ψj,k}k∈Z is an orthonormal basis of
Wj, and {ψj,k}j,k∈Z is a wavelets basis of L2(R), where,

ψj,k(x) = 2j/2ψ(2jx− k).

The function ψ is called the mother function, and the ψj,k are the wavelets functions.
For any function f ∈ L2(R) a projection map of L2(R) onto Vm,

Pm : L2(R)→ Vm,

is defined by,

Pmf(x) =
m−1∑
j=−∞

k=+∞∑
k=−∞

dj,kψj,k(x) =
∑
k∈Z

cm,kφm,k(x). (2.16)

where,

dj,k =

∫ +∞

−∞
f(x)ψj,k(x)dx,

are the wavelets coefficients and,

cm,k =

∫ +∞

−∞
f(x)φm,k(x)dx,

are the scaling coefficients. The first part in (2.16) is a truncated wavelets series. If j
were allowed to go to infinity, we would have the full wavelets summation. The second
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part in (2.16) gives an equivalent sum in terms of the scaling functions φm,k. Considering
higher m values, meaning that more terms are used, the truncated series representation
of our function improves.

To develop our work, we have used the Haar system defined in the previous section.
The unique thing about using wavelets as opposed to Fourier series is that the wavelets
can be moved (by the k value), stretched or compressed (by the j value) to accurately
represent a function local properties. Moreover, φj,k is nonzero only inside the interval
[ k
2j
, k+1

2j
). These facts will be used later to compute the VaR without the need of knowing

the whole distribution of the loss function.

2.2.3 Behavior of Haar Coefficients Near Jump Discontinuities

Suppose that f(x) is a function defined on [0, 1], with a jump discontinuity at x0 ∈ (0, 1)
and continuous everywhere else in [0, 1]. The fact that the Haar functions ψj,k(x) have
good localization in time leads us to ask the question: do the Haar coefficients dj,k such
that x0 ∈ Ij,k behave in a different way than the Haar coefficients such that x0 /∈ Ij,k? In
particular, can we find the location of a jump discontinuity just by examining the absolute
value of the Haar coefficients? We will give an affirmative answer and see that these two
facts are closely related.

For simplicity, let us assume that the given function f(x) is C2 in the intervals [0, x0]
and [x0, 1]. This means that both f ′(x) and f ′′(x) exist, are continuous functions, and
hence are bounded on each of these intervals. We fix integers j ≥ 0 and 0 ≤ k ≤ 2j − 1,
and let xj,k be the midpoint of the interval Ij,k, that is, xj,k = k+1/2

2j
. There are now two

possibilities, either x0 /∈ Ij,k or x0 ∈ Ij,k.

Case 1: x0 /∈ Ij,k. If x0 /∈ Ij,k, then expanding f(x) about xj,k by means of Taylor’s
formula, it follows that for all x ∈ Ij,k,

f(x) = f(xj,k) + f ′(xj,k)(x− xj,k) +
1

2
f ′′(ξj,k)(x− xj,k)2,

where ξj,k is some point in Ij,k. Now, using the fact that
∫
Ij,k

ψj,k(x)dx = 0,

dj,k =

∫
Ij,k

f(x)ψj,k(x)dx

= f(xj,k)

∫
Ij,k

ψj,k(x)dx+ f ′(xj,k)

∫
Ij,k

ψj,k(x)(x− xj,k)dx+

+
1

2

∫
Ij,k

ψj,k(x)(x− xj,k)2f ′′(ξj,k)dx

= −1

4
f ′(xj,k)2

−3j/2 + rj,k(x),
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where,

|rj,k(x)| = 1

2

∣∣∣∣∣
∫
Ij,k

ψj,k(x)(x− xj,k)2f ′′(ξj,k)dx

∣∣∣∣∣
≤ 1

2
2j/2 max

x∈Ij,k
|f ′′(x)|

∫
Ij,k

(x− xj,k)2dx

=
1

24
max
x∈Ij,k

|f ′′(x)| 2−5j/2.

If j is large, then 2−5j/2 will be very small compared with 2−3j/2, so we conclude
that for large j,

|dj,k| '
1

4
|f ′(xj,k)| 2−3j/2. (2.17)

Case 2: x0 ∈ Ij,k. If x0 ∈ Ij,k, then either it is in I lj,k = [ k
2j
, k+1/2

2j
) or it is in Irj,k =

[k+1/2
2j

, k+1
2j

). Let us assume that x0 ∈ I lj,k (the other case is similar). Expanding
f(x) in a Taylor series about x0, we have,

f(x) = f(x−0 ) + f ′(ξ−)(x− x0), x ∈ [0, x0), ξ− ∈ [x, x0],

f(x) = f(x+
0 ) + f ′(ξ+)(x− x0), x ∈ (x0, 1], ξ+ ∈ [x0, x],

Therefore,

dj,k =

∫
Ij,k

f(x)ψj,k(x)dx

= 2j/2
∫ x0

2−jk

f(x−0 )dx+ 2j/2
∫ 2−j(k+1/2)

x0

f(x+
0 )dx−

− 2j/2
∫ 2−j(k+1)

2−j(k+1/2)

f(x+
0 )dx+ εj,k,

where,

εj,k =

∫ x0

2−jk

f ′(ξ−)(x− x0)ψj,k(x)dx+

∫ 2−j(k+1)

x0

f ′(ξ+)(x− x0)ψj,k(x)dx.

Thus,

|εj,k| ≤ max
t∈Ij,k−{x0}

|f ′(t)|
∫
Ij,k

|x− x0| |ψj,k(x)| dx

≤ max
t∈Ij,k−{x0}

|f ′(t)| 2j/2
∫
Ij,k

|x− x0| dx

≤ 1

4
max

t∈Ij,k−{x0}
|f ′(t)| 2−3j/2.
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If j is large, then 2−3j/2 will be very small compared with 2−j/2, so we conclude
that for large j,

|dj,k| ' 2j/2
∣∣x0 − 2−jk

∣∣ ∣∣f(x−0 )− f(x+
0 )
∣∣ .

The quantity |x0 − 2−jk| can in principle be small if x0 is close to the left endpoint
of I lj,k and can even be zero. However, we can expect than in most cases, x0 will

be in the middle of I lj,k so that |x0 − 2−jk| ' 1
4
2−j. Thus, for large j,

|dj,k| '
1

4

∣∣f(x−0 )− f(x+
0 )
∣∣ 2−j/2. (2.18)

Comparing (2.18) with (2.17), we see that the decay of |dj,k| for large j is considerably
slower if x0 ∈ Ij,k than if x0 /∈ Ij,k. That is, large coefficients in the Haar expansion of
a function f(x) that persist for all scales suggest the presence of a jump discontinuity in
the intervals Ij,k corresponding to the large coefficients.

2.3 Numerical Transform Inversion

2.3.1 The Laplace Transform

Suppose that f is a real- or complex-valued function of the variable x > 0 and s is a real
or complex parameter. We define the Laplace transform of f as,

f̃(s) =

∫ +∞

0

e−sxf(x)dx = lim
τ→+∞

∫ τ

0

e−sxf(x)dx, (2.19)

whenever the limit exists (as a finite number).
The parameter s belongs to some domain on the real line or in the complex plane. We

will choose s appropriately so as to ensure the convergence of the Laplace integral (2.19).
In a mathematical and technical sense, the domain of s is quite important. However, in
a practical sense, the domain of s is routinely ignored.

Although the Laplace transform exists for many functions, there are some for which
the integral (2.19) does not converge.

Example 2.3.1. For the function f(x) = ex
2
,

lim
τ→+∞

∫ τ

0

e−sxex
2

dx = lim
τ→+∞

∫ τ

0

ex
2−sxdx = +∞,

for any choice of the variable s, since the integrand grows without bound as τ → +∞.

The integral (2.19) is said to be absolutely convergent if,

lim
τ→+∞

∫ τ

0

∣∣e−sxf(x)
∣∣ dx,
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exists. If f̃(s) converges absolutely, then,∣∣∣∣∣
∫ τ ′

τ

e−sxf(x)dx

∣∣∣∣∣ ≤
∫ τ ′

τ

∣∣e−sxf(x)
∣∣ dx→ 0,

as τ → +∞, for all τ ′ > τ . This then implies that f̃(s) also converges in the ordinary
sense of (2.19).

Since we can compute the Laplace transform for some functions and not for others,
such as ex

2
, we introduce a large class of functions that have a Laplace transform. For

this purpose we make few restrictions on the functions we wish to consider.

Definition 2.3.1. A function f is piecewise continuous on the interval [0,+∞) if,

1. limx→0+ f(x) = f(0+) exists.

2. f is continuous on every finite interval (0, b) except possibly at a finite number of
points τ1, τ2, . . . , τn in (0, b) at which f has a jump discontinuity.

The second consideration of our class of functions possessing a well-defined Laplace
transform has to do with the growth rate of the functions. In the definition,

f̃(s) =

∫ +∞

0

e−sxf(x)dx,

when we take s > 0 (or <(s) > 0), the integral will converge as long as f does not grow
too fast. We have already seen by Example 2.3.1 that f(x) = ex

2
grows too rapidly for

our purposes. A suitable rate of growth can be made explicit.

Definition 2.3.2. A function f has exponential order α if there exist constants M > 0
and α such that for some x0 ≥ 0,

|f(x)| ≤Meαx, x ≥ x0.

This large class of functions possesses a Laplace transform (see [Sch88] for a detailed
proof of next theorem).

Theorem 2.3.1. If f is piecewise continuous on [0,+∞) and of exponential order α,

then the Laplace transform f̃(s) exists for <(s) > α and converges absolutely.

We are now ready to derive and use the formula for the inverse Laplace Transform.
We state the inverse transform as a theorem (see [Dyk01] for a detailed proof).

Theorem 2.3.2. (Bromwich inversion integral) If the Laplace transform of f(x) exists,
then,

f(x) = lim
k→+∞

1

2πi

∫ σ+ik

σ−ik
f̃(s)esxds, x > 0, (2.20)

where |f(x)| ≤ eΣx for some positive real number Σ and σ is any other real number such
that σ > Σ.
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The usual way of evaluating this integral is via the residues method taking a closed
contour, often called the Bromwich contour. This contour consists of a portion of a circle
of radius R, together with a straight line segment connecting the two points σ − iR and
σ + iR. The real number σ must be selected so that all the singularities of the function
f̃(s) are to the left of this line. This follows from the conditions of Theorem 2.3.2.

The integral
∫
C
f̃(s)esxds, where C is the Bromwich contour is evaluated using Cauchy’s

residue theorem, perhaps with the addition of one or two cuts. The integral itself is the
sum of the integral over the curved portion, the integral along any cuts presents and∫ σ+iR

σ−iR f̃(s)esx, and the whole is 2πi times the sum of the residues of f̃(s)esx inside C.
The previous integral is made the subject of this formula, and as R → +∞ this integral
becomes f(x).

2.3.2 Laplace Transform Inversion

In this section we present some numerical algorithms in order to invert the Laplace trans-
form. A natural starting point for the numerical inversion of Laplace transforms is the
Bromwich inversion integral stated in Theorem 2.3.2. As it is usual in contour integrals,
there is plenty of flexibility in choosing the contour provided that it is to the right of
all singularities of f̃ . However, there is no need to be bothered by the complexities of
complex variables. If we choose a specific contour and perform a change of variables, then
we obtain an integral of a real valued function of a real variable. First, by making the
substitution s = σ + iu in (2.20), we obtain,

f(x) =
1

2π

∫ +∞

−∞
e(σ+iu)xf̃(σ + iu)du.

Then, since e(σ+iu)x = eσx(cos(ux)+i sin(ux)), sin(ux) = − sin(−ux), cos(ux) = cos(−ux),

=
(
f̃(σ + iu)

)
= −=

(
f̃(σ − iu)

)
and <

(
f̃(σ + iu)

)
= <

(
f̃(σ − iu)

)
, where =(z) and

<(z) denote the imaginary and the real part of z respectively, we obtain,

f(x) =
2eσx

π

∫ +∞

0

<
(
f̃(σ + iu)

)
cos(ux)du, (2.21)

and,

f(x) =
−2eσx

π

∫ +∞

0

=
(
f̃(σ + iu)

)
sin(ux)du.

Theorem 2.3.2 implies that f(x) can be calculated from the transform f̃ by performing a
numerical integration quadrature. Since there are many numerical integration algorithms,
there are many possible approaches to the numerical inversion via the Bromwich integral.
In this context, the remaining goal is to exploit the special structure of the integrand in
(2.21) in order to calculate the integral accurately and efficiently.

An approach that proves to be remarkably effective in this context is the trapezoidal
rule. If we use a step of size h, the trapezoidal rule applied to (2.21) gives,

f(x) ' fh(x) =
heσx

π
<
(
f̃(σ)

)
+

2heσx

π

+∞∑
k=1

<
(
f̃(σ + ikh)

)
cos(khx). (2.22)



2.3. Numerical Transform Inversion 41

Now, in order to use the approximation (2.22), we have to be aware of the different types
of errors we can have when using numerical integration. First, we have the discretization
error which comes from approximating f with fh. The second type of error comes from
the evaluation of the infinite sum in (2.22).

The following theorem (see [Aba00] for details) characterizes the first type of error.

Theorem 2.3.3. Under regularity conditions, the discretization error for the trapezoidal
rule approximation in (2.22) is,

eh(x) ≡ fh(x)− f(x) =
+∞∑

k=−∞
k 6=0

f

(
x+

2πk

h

)
e−2πkσ/h. (2.23)

Rather than just truncate the infinite sum in (2.22), [Aba00] applies a summation
acceleration method. They apply Euler summation, after transforming the infinite sum
in (2.22) into a nearly alternating series.

In order to control the round-off error, they introduce a parameter l which is a positive
integer that often can be given the default value l = 1. They convert (2.22) into a nearly
alternating series by taking h = π/lx and σ = A/2lx. After algebraic manipulation, we
get,

fA,l(x) =
+∞∑
k=0

(−1)kak(x), (2.24)

where,

ak(x) =
eA/2l

2lx
bk(x), k ≥ 0, (2.25)

b0(x) = f̃

(
A

2lx

)
+ 2

l∑
j=1

<
(
f̃

(
A

2lx
+
ijπ

lx

)
eijπ/l

)
,

and,

bk(x) = 2
l∑

j=1

<
(
f̃

(
A

2lx
+
ijπ

lx
+
ikπ

x

)
eijπ/l

)
, k ≥ 1. (2.26)

Also the aliasing error in (2.23) becomes,

eh(x) ≡ eA,l(x) =
+∞∑
j=1

e−Ajf ((1 + 2jl)x) . (2.27)

If |f(t)| ≤ C for all t ≥ (1 + 2l)x then the discretization error in (2.27) is bounded by,

|eA,l(x)| ≤ Ce−A

1− e−A
,

However, controlling this discretization error is not enough and [Aba00] also controls for
round-off error. If we can compute the bk(x) in (2.26) with an error of about 10−η, then,
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after multiplying by the pre-factor eA/2l

2lx
in (2.25), the final error in fA,l(x) will be about

10−η e
A/2l

2lx
. Since this round-off error estimate is increasing with A, while the discretization

error e−A (assuming that C = 1) is decreasing with A, the maximum of the two errors is
minimized when the two errors are equal. Then, [Aba00] finds an appropriate value for
the parameter A by means of solving the equation,

e−A = 10−η
eA/2l

2lx
,

which yields,

A =

(
2l

2l + 1

)
(η ln(10) + ln(2lx)) .

Let us now indicate how to apply Euler summation to approximate the infinite series in
(2.24). Euler summation can be simply described as the weighted average of the last
partial m sums by a binomial probability distribution with parameters m and p = 1/2. In
particular, let sn be the approximation fA,l(x) in (2.24) with the infinite series truncated
to n terms,

sn(x) =
n∑
k=0

(−1)kak(x).

The Euler sum approximation applied to m terms after the initial partial sum with n
terms E(m,n) is defined as,

E(m,n)(x) =
m∑
k=0

(
m
k

)
2−msn+k(x). (2.28)

In order to reduce computatinal time, we rewrite (2.28) in the following form,

E(m,n)(x) =
m∑
k=0

(
m
k

)
2−msn+k(x)

=
m∑
k=0

(
m
k

)
2−m (sn(x) + (sn+k(x)− sn(x)))

=
m∑
k=0

(
m
k

)
2−msn(x) +

m∑
k=1

(
m
k

)
2−m (sn+k(x)− sn(x))

= sn(x) +
m∑
k=1

(
m
k

)
2−msn+1:n+k(x),

where,

si:j(x) =

j∑
k=i

(−1)kak(x), i < j.

As pointed out in [Aba00], the Bromwich inversion integral is not the only inversion
formula and there are quite different numerical inversion algorithms. To illustrate this
fact, we mention two more. A first example is the Post-Wider inversion formula, which
involves differentiation instead of integration:
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Theorem 2.3.4. Under regularity conditions,

f(x) = lim
n→+∞

(−1)n

n!

(
n+ 1

x

)n+1

f̃ (n)((n+ 1)/x),

where f̃ (n) is the nth derivative of f̃ .

However in general, theorem (2.3.4) does not provide a very practical means for in-

verting the Laplace transform, since repeated differentiation of f̃ generally leads to very
complicated expressions. Another case is the Laguerre series representation given in
[Aba96] for inverting the Laplace transform, which is known to be an efficient method for
smooth functions. However, if f is not smooth at just one value of x, then the Laguerre
method has difficulties at any value of x.

Theorem 2.3.5. Under regularity conditions,

f(x) =
+∞∑
n=0

qnln(x), x ≥ 0, (2.29)

where,

ln(x) = e−x/2Ln(x), x ≥ 0,

Ln(x) =
n∑
k=0

(
n
k

)
(−x)k

k!
, x ≥ 0,

and the qn are obtained from the expansion,

Q(z) ≡
+∞∑
n=0

qnz
n =

1

1− z
f̃

(
1 + z

2(1− z)

)
.

The functions Ln in Theorem 2.3.5 are the Laguerre polynomials, while ln are the asso-
ciated Laguerre functions. The scalars qn in (2.29) are known as the Laguerre coefficients
and Q(z) is the Laguerre generating function (the generating function of the Laguerre co-
efficients). The Laguerre functions form and orthonormal basis for the space L2 ([0,+∞))
of square integrable functions on the nonnegative real line, so that the equality (2.29) is
understood (in the sense of convergence in L2 ([0,+∞)) for any f in L2 ([0,+∞)).

In the context of numerical Laplace inversion, [Gao03] recovers the function f with
a procedure based on wavelets. They consider s = β + iω in expression (2.20), where ω
is a real variable and β is a real constant that fulfills f(x)e−βx ∈ L2 (R), assuming that
f(x) = 0 when x < 0. Then, the equation (2.19) can be rewritten as,

f̃(β + iω) =

∫ +∞

−∞
e−βxe−iωxf(x)dx.

Defining,
h(x) = f(x)e−βx, then ĥ(ω) = f̃(β + iω), (2.30)
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where ĥ denotes the Fourier transform of h. Now, ĥ(ω) ∈ L2 (R) since h(x) ∈ L2 (R).
According to the theory of MRA they expand ĥ(ω),

ĥ(ω) =
+∞∑

k=−∞

cm,kφm,k(ω) +
+∞∑
j=m

+∞∑
k=−∞

dj,kψj,k(ω). (2.31)

where,

cm,k =

∫ +∞

−∞
ĥ(ω)φm,k(ω), dj,k =

∫ +∞

−∞
ĥ(ω)ψj,k(ω),

and φm,k(ω) = 2m/2φ(2mω − k), ψj,k(ω) = 2j/2ψ(2jω − k), being φ and ψ the scaling and
wavelet functions respectively.

The next step consists in inverting the expression (2.31) by means of the Fourier
inversion formula, yielding,

h(x) =
1

2π

+∞∑
k=−∞

cm,k

∫ +∞

−∞
φm,k(ω)eiωxdω +

1

2π

+∞∑
j=m

+∞∑
k=−∞

dj,k

∫ +∞

−∞
ψj,k(ω)eiωxdω

=
1

2π2m/2
φ̂
(
− x

2m

) +∞∑
k=−∞

cm,ke
ixk/2m +

1

2π

+∞∑
j=m

2−j/2ψ̂
(
− x

2j

) +∞∑
k=−∞

dj,ke
ixk/2j .

(2.32)

The coefficients cm,k and dj,k involve inner products with wavelet basis and are usually
difficult to calculate using ordinary numerical methods. It is possible to design wavelet
functions which allow to obtain these coefficients more easily. The authors choose Coiflets
wavelets to perform the approximation in (2.31). By the characteristics of Coiflets it can
be shown that,

cm,k ' 2−m/2ĥ

(
k +M1

2m

)
, with M1 =

∫ +∞

−∞
ωφ(ω)dω. (2.33)

If ĥ is a smooth function, the approximation above converge for significantly large scale
m. Now, using the expression (2.33) in (2.32) and again taking into account the theory
of MRA, the expression (2.32) can be rewritten as,

h(x) = lim
m→+∞

hm(x),

where,

hm(x) =
1

2m+1π
φ̂
(
− x

2m

) +∞∑
k=−∞

ĥ

(
k +M1

2m

)
eixk/2

m

.

Considering the expression (2.30), the formulae of Laplace inversion become,

fm(x) =
eβx

2m+1π
φ̂
(
− x

2m

) +∞∑
k=−∞

f̃

(
β + i

M1 + k

2m

)
eixk/2

m

,

f(x) = lim
m→+∞

fm(x).
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One drawback of this approximation is that the wavelet approach involves an infinite
product of complex series and the computation of the Fourier transform of some scaling
functions. This can look intimidating for practical applications and may also take rela-
tively long computational time. To address this problem, [Gao05] develops a simplified
approach in which the Fourier transform of the scaling function is approximated by a sin-
gle harmonic base in a certain domain. This approach yields a simple formula for Laplace
inversion via summation of a weighted harmonic series as,

f(x) ' fm(x) =
1

2m+1π

+∞∑
k=−∞

f̃

(
β + i

k

2m

)
ex(β+ik/2m),

where x ∈ [0, 2mπ] and β is a real constant which ensures f(x)e−βx ∈ L2 (R).
Based on operational matrices and Haar wavelets, [Chen01] presents a new method for

performing numerical inversion of the Laplace transform where only matrix multiplications
and ordinary algebraic operations are involved. However, the essential step in the method
consists in expressing the Laplace transform in terms of 1

s
, which is impossible when

we just know numerically the transform. Another drawback of this method is that the
matrices become very big for larger scales.

2.3.3 Generating Functions (z-Transforms)

As it is also well known, generating functions, also called z-transforms, are closely related
to Laplace transforms in the sense that we briefly review. Assume that f(t) is a continuous
function and we sample it at time intervals of T . We obtain the data,

f(0), f(T ), f(2T ), . . . , f(nT ), . . .

Assume also that the Dirac impulse function at t = T is denoted by δ(t−T ). If we denote
by f ∗ the sampled function, we can write,

f ∗(t) = f(0)δ(t) + f(T )δ(t− T ) + f(2T )δ(t− 2T ) + · · · =
+∞∑
n=0

f(nT )δ(t− nT ).

If we now denote by LT (f ∗) the Laplace transform of f ∗, i.e. LT (f ∗(t)) ≡ f̃ ∗(s) then,

f̃ ∗(s) = LT (f ∗(t)) =
+∞∑
n=0

f(nT )LT (δ(t− nT )) =
+∞∑
n=0

f(nT )e−nTs.

Setting z = e−sT or equivalently s = −(1/T ) ln(z), we can then define,

F (z) =
+∞∑
n=0

f(nT )zn.

This function F (z) is called the z-transform of the discrete time signal function f(nT ),
F (z) = ZT (f(t)). In other words,

ZT (f(t)) = F (z) = f̃ ∗(s) = f̃ ∗
(
− 1

T
ln(z)

)
=

[
LT

(
+∞∑
n=0

f(nT )δ(t− nT )

)]
s=− 1

T
ln(z)

.
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2.4 The Wavelet Approximation Method

In this next section we present a novel numerical inversion of the Laplace transform based
on Haar wavelets. This approximation fits especially well for the inversion of stepped form
functions, which particularly arise when we deal with cumulative distributions of discrete
random variables. Later on, this approximation will be used to recover the probability
distribution function of the loss function in credit risk portfolios.

Let f be a function in L2 ([0, 1]). According to the theory of MRA and to the Remark
2.2.1 we have,

f(x) =
2m−1∑
k=0

cm,kφm,k(x) +
+∞∑
j=m

2j−1∑
k=0

dj,kψj,k(x), (2.34)

or alternatively,

f(x) = lim
m→+∞

fm(x), with fm(x) =
2m−1∑
k=0

cm,kφm,k(x), (2.35)

where,

cm,k =

∫ k+1
2m

k
2m

f(x)φm,k(x)dx, k = 0, . . . , 2m − 1,

dj,k =

∫ k+1
2m

k
2m

f(x)ψj,k(x)dx, j ≥ m, k = 0, · · · , 2j − 1,

and {φm,k}k=0,...,2m−1∪{ψj,k}j≥m,k=0,··· ,2j−1 is the Haar basis system in L2 ([0, 1]). In what
follows, for simplicity we use expression (2.35) instead of expression (2.34) due to the fact
that expression (2.34) uses two indexes for the detail coefficients.

Let us consider the Laplace transform of the function f whenever it exists,

f̃(s) =

∫ +∞

0

e−sxf(x)dx,

where we can assume that f(x) = 0 for all x /∈ [0, 1]. The main idea behind the Wavelet

Approximation method is to approximate f̃ by f̃m and then to compute the coefficients
cm,k inverting the Laplace Transform. Proceeding this way,

f̃(s) =

∫ +∞

0

e−sxf(x)dx '
∫ +∞

0

e−sxfm(x)dx =

∫ +∞

0

e−sx

(
2m−1∑
k=0

cm,kφm,k(x)

)
dx

=
2m−1∑
k=0

cm,k

(∫ +∞

0

e−sxφm,k(x)dx

)
= 2m/2

2m−1∑
k=0

cm,k

(∫ k+1
2m

k
2m

e−sxdx

)

=
2m/2

s

2m−1∑
k=0

cm,ke
−s k

2m

(
1− e−s

1
2m

)
=

2m/2

s

(
1− e−s

1
2m

) 2m−1∑
k=0

cm,kLT
(
δ

(
x− k

2m

))

=
2m/2

s

(
1− e−s

1
2m

)
LT

(
2m−1∑
k=0

cm,k δ

(
x− k

2m

))
.
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Finally, making the change of variable z = e−s
1

2m ,

2m−1∑
k=0

cm,kz
k ' Qm(z),

where,

Qm(z) ≡ 2m/2 ln(z)f̃(−2m ln(z))

z − 1
. (2.36)

Here we note that Qm(z) is not defined at z = 0. However, if we assume that the
limit,

lim
z→0

Qm(z) = Q
0

m < +∞,

then,

Qm(z) ≡

{
Qm(z), if z 6= 0,

Q
0

m, if z = 0,

is analytic inside the disc of the complex plane {z ∈ C : |z| < r} for r < 1, since the
singularity in z = 0 is avoidable. Then, given the generating function Qm(z), we can
obtain expressions for the coefficients cm,k by means of the Cauchy’s integral formula.
This is,

cm,0 ' Qm(0),

cm,k '
1

2πi

∫
γ

Qm(z)

zk+1
dz, k = 1, ..., 2m − 1 (z 6= 0)

where γ denotes a circle of radius r, 0 < r < 1, about the origin.

Considering now the change of variable z = reiu, 0 < r < 1 we have,

cm,k '
1

2πrk

∫ 2π

0

Qm(reiu)

eiku
du =

1

2πrk

∫ 2π

0

[
<(Qm(reiu)) cos(ku) + =(Qm(reiu)) sin(ku)

]
du

=
2

πrk

∫ π

0

<(Qm(reiu)) cos(ku)du, k = 1, ..., 2m − 1,

(2.37)

where again <(z) and =(z) denotes the real and imaginary part of z respectively.

The integral in (2.37) can be evaluated by means of the trapezoidal rule. So we can
define,

I(r, k) =

∫ π

0

<(Qm(reiu)) cos(ku)du,

I(r, k;h) =
h

2

(
Qm(r) + (−1)kQm(−r) + 2

mT−1∑
j=1

<(Qm(reihj)) cos(khj)

)
,
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where h = π
mT

and hj = jh for all j = 0, . . . ,mT . Then,

cm,k '
2

πrk
I(r, k) ' 2

πrk
I(r, k;h)

=
1

mT rk

(
Qm(r) + (−1)kQm(−r) + 2

mT−1∑
j=1

<(Qm(reihj)) cos(khj)

)
, k = 1, ..., 2m − 1.

(2.38)

2.4.1 Error Analysis

We note that there are three sources of error in our procedure for computing the numerical
Laplace transform inversion using Haar wavelets. The first one is the truncation error,
which arises when approximating f by fm at scale m. Following the expression (2.34),

‖f − fm‖2
L2([0,1]) =

∥∥∥∥∥∥
+∞∑
j=m

2j−1∑
k=0

dj,kψj,k

∥∥∥∥∥∥
2

L2([0,1])

=
+∞∑
j=m

2j−1∑
k=0

|dj,k|2, (2.39)

since ‖ψj,k‖2
L2([0,1]) = 1. Then, the truncation error depends on the detail coefficients.

The second source of error is the discretization error, which is produced when approx-
imating the integral I(r, k) with I(r, k;h) using the trapezoidal rule. We can apply the
formula for the error of the compound trapezoidal rule considering,

qm,k(u) = <(Qm(reiu)) cos(ku), Em,k
T (h) = I(r, k)− I(r, k;h),

and assuming that q ∈ C2([0, π]). Then,∣∣∣Em,k
T (h)

∣∣∣ =
π3

12m2
T

∣∣∣q′′m,k(µ)
∣∣∣ , µ ∈ (0, π). (2.40)

Finally we must consider the round-off error. If we can calculate the sum in expression
(2.38) with a precision of about 10−η, then the round-off error after multiplying by the
factor 1

mT rk
is approximately 1

mT rk
· 10−η. Then, the round-off error decays to 0 when

r ↗ 1 and conversely, it becomes larger when r ↘ 0.
The Haar wavelets method is particularly suitable to invert stepped-form functions,

as we illustrate in the following example,

Example 2.4.1. Let f(x) = χ[x0,1)(x), x0 ∈ (0, 1) be a step function defined in [0, 1].
Then,

f̃(s) =

∫ +∞

0

e−sxχ[x0,1)(x)dx =
1

s

(
e−sx0 − e−s

)
,

is the Laplace transform of f . In order to invert the Laplace transform using the wavelet
approximation method, we need to compute the coefficients in expression (2.38). So,

Qm(z) =
2m/2 ln(z)f̃(−2m ln(z))

z − 1
=
−2m/2 ln(z) 1

2m ln(z)

(
e2mx0 ln(z) − e2m ln(z)

)
z − 1

=
z2m − z2mx0

2m/2(z − 1)
,
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for z 6= 0, and,

cm,0 = lim
z→0

z2m − z2mx0

2m/2(z − 1)
= 0.

Now,

Qm(reiu) =
r2mei2

mu − r2mx0ei2
mx0u

2m/2(reiu − 1)

=
r2m (cos(2mu) + i sin(2mu))− r2mx0 (cos(2mx0u) + i sin(2mx0u))

2m/2(r cos(u) + ir sin(u)− 1)
,

where u ∈ [0, π], 0 < r < 1, and,

<(Qm(reiu)) =
<(z1) · <(z2) + =(z1) · =(z2)

(<(z2))2 + (=(z2))2
, (2.41)

where,

z1 = r2m (cos(2mu) + i sin(2mu))− r2mx0 (cos(2mx0u) + i sin(2mx0u)) ,

z2 = 2m/2(r cos(u) + ir sin(u)− 1).

This is,

<(z1) = r2m cos(2mu)− r2mx0 cos(2mx0u), <(z2) = 2m/2(r cos(u)− 1),

=(z1) = r2m sin(2mu)− r2mx0 sin(2mx0u), =(z2) = 2m/2r sin(u).

Then, expression (2.41) casts into,

<(Qm(reiu)) =

=
r2m+1 cos(2mu− u)− r2m cos(2mu)− r2mx0+1 cos(2mx0u− u) + r2mx0 cos(2mx0u)

2m/2(r2 − 2r cos(u) + 1)
.

Now, we must choose an appropriate r in order to control the discretization and the
round-off errors. First of all, we consider the discretization error which can be estimated
by means of expression (2.40). We note that qm,k ∈ C2([0, π]) since,

0 < (r − 1)2 ≤ r2 − 2r cos(u) + 1 ≤ (r + 1)2, ∀u ∈ [0, π].

So we have,

q′m,k(u) =
d

du
<(Qm(reiu)) cos(ku)− k<(Qm(reiu)) sin(ku),

q′′m,k(u) =
d2

du2
<(Qm(reiu)) cos(ku)− 2k

d

du
<(Qm(reiu)) sin(ku)− k2<(Qm(reiu)) cos(ku).

and, ∣∣Re(Qm(reiu)
∣∣ ≤ r2m+1 + r2m + r2mx0+1 + r2mx0

2m/2(r − 1)2
' r2mx0 +O(r2mx0), (2.42)
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where the last approximation holds for suitably small values of the parameter r. For sake
of simplicity, we consider only the terms with smaller exponents in the parameter r for
the expressions d

du
<(Qm(reiu)) and d2

du2
<(Qm(reiu)). Then,∣∣∣∣ ddu<(Qm(reiu))

∣∣∣∣ ≤ 2m/2x0r
2mx0 + A(r)

(r − 1)4
' r2mx0 +O(r2mx0), (2.43)

and, ∣∣∣∣ d2

du2
<(Qm(reiu))

∣∣∣∣ ≤ 2m/2x2
0r

2mx0 +B(r)

(r − 1)8
' r2mx0 +O(r2mx0), (2.44)

where A(r) and B(r) are polynomials in r with degree greater than 2mx0, and the approx-
imations in (2.43) and (2.44) hold for suitably small values of the parameter r. Finally,
taking into account expressions (2.40),(2.42),(2.43) and (2.44) we have,∣∣∣Em,k

T (h)

∣∣∣ ≤ π3

12m2
T

(
r2mx0 + 2kr2mx0 + k2r2mx0

)
+O(r2mx0) =

π3

12m2
T

(
k2 + 2k + 1

)
r2mx0+O(r2mx0).

We note that
∣∣∣Em,k

T (h)

∣∣∣ → 0 as r ↘ 0 while the round-off error is increasing in r as r

approaches to zero. Then, the total error should be approximately minimized when the
two estimates are equal. This leads to the equation,

1

mT rk
· 10−η =

π3

12m2
T

(
k2 + 2k + 1

)
r2mx0 .

After algebraic manipulation,

rm,k =

(
12mT · 10−η

π3(k2 + 2k + 1)

) 1
2mx0+k

, k = 1, . . . , 2m − 1. (2.45)

In what follows we consider mT = 2m. Let us assume that x0 = 0.5 is the jump point
for function f . Observe that if we take m = 1, the approximation error in expression
(2.39) equals 0, due to the fact that dj,k = 0 for j ≥ 1 and k = 0, . . . , 2j − 1. Thus, the
approximation is exact and the only remaining errors are the discretization and the round-
off errors. If we assume that η = 10−15, then according to (2.45) r1,1 = 1.39108 ·10−8 and
we obtain c1,0 = 0, c1,1 = 0.707107. The plot of figure 2.6 shows the absolute error of this
approximation.

Let us now consider x0 = 0.75. In this case using m = 1 the approximation error is
greater than zero, since the detail coefficient d1,1 in expression (2.39) is not zero. However,
taking m = 2, the detail coefficients become zero for j ≥ 2 and k = 0, . . . , 2j − 1. Thus,
the approximation at scale 2 is exact for the step function with the jump discontinuity at
0.75. If we assume that η = 10−15, then we use r2,1 = 1.4026 · 10−4, r2,2 = 7.0325 · 10−4,
r2,3 = 2.14262 · 10−3 and we obtain c2,0 = 0, c2,1 = 0, c2,2 = 0, c2,3 = 0.5.

Although this is not the case of the former examples, we observe that for large values
of m, the computation of the coefficients can be intensive since the long sum in (2.38)
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Figure 2.6: Absolute error of the approximation to the step function with x0 = 0.5.

must be evaluated for k = 1, . . . , 2m − 1. If we take mT = 2k instead of mT = 2m this
leads to the following expression,

cm,k '
2

πrk
I(r, k; 2k)

=
1

2krk

(
Qm(r) + (−1)kQm(−r) + 2

2k−1∑
j=1

<(Qm(reij
π
2k )) cos(kj

π

2k
)

)

=
1

2krk

(
Qm(r) + (−1)kQm(−r) + 2

k−1∑
j=1

(−1)j<(Qm(reij
π
2k ))

)
, k = 1, ..., 2m − 1,

(2.46)

so the computation time considerable reduces for large scale approximations. If we perform
the numerical inversion by means of formula (2.46) then, assuming again that η = 10−15,
we obtain r2,1 = 1.17944 · 10−4, r2,2 = 7.0325 · 10−4, r2,3 = 2.29242 · 10−3 and c2,0 = 0,
c2,1 = 0, c2,2 = 0, c2,3 = 0.5.

The left plot of figure 2.7 represents the absolute error of the approximation with
h = 2m, while the right plot shows the absolute error with h = 2k.

Observe that if x0 is not a dyadic rational number, that is, x0 6= p
q

with q = 2t, t ∈ Z,
then for each scale of approximation, there exists only one detail coefficient which is
nonzero. So, if we assume that x0 is not a dyadic rational number, then taking into
account expressions (2.18) and (2.39) the approximation error yields,

‖f − fm‖2
L2([0,1]) =

+∞∑
j=m

2j−1∑
k=0

|dj,k|2 =
+∞∑
j=m

|dj,km |2 '
1

16

+∞∑
j=m

1

2j
=

1

2m+3
,

since dj,k = 0 for j ≥ m, k 6= km and x0 ∈
[
km
2m
, km+1

2m

]
.

Remark 2.4.1. For the applications that will be presented later, we have developed the
numerical inversion method in the L2 ([0, 1]) space. However, the method can be easily
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Figure 2.7: Absolute error of the approximation of the step function with x0 = 0.75, fixed step
h = 2m (left) and changing step h = 2k (right).

extended to L2(R), allowing the parameter k in expressions (2.34) and (2.35) to go to
−∞ and +∞,

f(x) =
+∞∑

k=−∞

cm,kφm,k(x) +
+∞∑
j=m

+∞∑
k=−∞

dj,kψj,k(x).

In this case we can expect that the coefficients converge to zero quickly, due to the fact
that f ∈ L2(R), so the parameter k can be truncated conveniently.



Chapter 3

The WA Methodology to Quantify
Losses

3.1 Introduction

This chapter is devoted to the application of the Wavelet Approximation method devel-
oped in Chapter 2 to compute the distribution of losses from default in a credit portfolio,
under the one-factor model framework. This new method has been recently develop by
[Mas11] and has been published in Quantitative Finance. Direct generation of loss distri-
bution may require Monte Carlo simulation which is time consuming and is not effective.
To overcome the computational complexity, in the literature a number of approaches have
been undertaken based on assumptions imposed in the input parameters, the accepted
level of tolerance and computational errors. A large effort has been dedicated to gen-
eration of loss distributions for credit portfolios. We will briefly review those methods
applied to a one-factor Merton model framework for credit risk which are widespread
used in the industry. The calculation of the tail probabilities of losses is a prerequisite to
calculation of the VaR and the Expected Shortfall values. In the Merton model, latent
variables drive default for each firm. Defaults are triggered when the latent variables
fall below a threshold. The model typically assumes that the latent variables, normally
distributed, are dependent on underlying risk factors reflecting the state of the economy
(or the business cycle) as well as specific risk factors. Conditional on the systematic risk
factor, default indicators random variables are independent and the probabilities of de-
fault known. This implies that, conditional on the systematic risk factor, the total loss
from default in the credit portfolio is a weighted sum of independent Bernoulli random
variables. The main problem here is that we want to estimate the distribution of the
total losses from default when the systematic risk factor is not known, the unconditional
loss distribution. An exact formula for its distribution is almost always unknown and
numerical techniques are required to approximate it.

53
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3.2 Methods for Computing the Loss Distribution

This Chapter focuses on the measurement of name concentration in loan portfolios. The
model framework is the one-factor Merton model. We can decompose credit risk in loan
portfolios into a systematic and an idiosyncratic component. Systematic risk represents
the effect of unexpected changes in macroeconomic and financial market conditions on
the performance of borrowers while idiosyncratic risk represents the effects of risks that
are particular to individual borrowers.

We give an overview of the most recent research concerning analytical and numerical
methods for calculating the tail of the credit portfolio loss distributions. Furthermore,
we present our alternative method based on wavelets which is particularly suitable for
small or concentrated portfolios due to the fact that the stepped form of the cumulative
distribution of losses appears to be accentuated. The Wavelet Approximation method is
accurate, fast and robust as we show in the numerical examples section.

3.2.1 The Granularity Adjustment

The Asymptotic Single Risk Factor model discussed in Chapter 1 assumes that portfolios
are fully diversified with respect to individual borrowers, so that economic capital depends
only on systematic risk. Thus, the IRB formula omits the contribution of the residual
idiosyncratic risk to the required economic capital. This form of credit concentration risk
is sometimes also called lack of granularity. In this section we discuss an approach how
to assess a potential add-on to capital for the effect of lack of granularity in a general
risk-factor framework. We follow the revised methodology developed in [Gor07], which is
similar to the granularity adjustment that was included in the Second Consultative Paper
of Basel II (see [BCBS01]).

The Granularity Adjustment has been developed as an extension of the ASRF model
which underpins the IRB model. Let Y denote the systematic risk factor, Un denote the
loss rate in position n and consider our portfolio L of N risky loans as in Section 1.4,

L =
N∑
n=1

sn · Un.

When economic capital is measured as Value at Risk at the αth percentile, we wish
to estimate VaRα(L). The IRB formula, however, delivers the αth percentile of the ex-
pected loss conditional to the systematic factor VaRα(E(L|Y )). The difference, VaRα(L)−
VaRα(E(L|Y )) is the adjustment for the effect of undiversified idiosyncratic risk in the
portfolio. If we define the functions µ(Y ) = E(L|Y ) and σ2(Y ) = V(L|Y ) as the condi-
tional mean and variance of the portfolio loss respectively, and let φ be the probability
density function of Y , then, for ε = 1 the portfolio loss L is given by,

L = E(L|Y ) + ε(L − E(L|Y )).

The asymptotic expansion for the calculation of the αth quantile of the portfolio loss as
shown in [Wil01] is based on a second order Taylor expansion in powers of ε around the
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conditional mean E(L|Y ). Evaluating the resulting formula at ε = 0, we obtain,

VaRα(L) = VaRα(E(L|Y )) +
∂

∂ε
VaRα (E(L|Y ) + ε(L − E(L|Y ))) |ε=0+

+
1

2

∂2

∂2ε
VaRα (E(L|Y ) + ε(L − E(L|Y ))) |ε=0 +O(ε3).

Hence, the granularity adjustment of the portfolio is given by,

GA =
∂

∂ε
VaRα (µ(Y ) + ε(L − µ(Y )) |ε=0 +

1

2

∂2

∂2ε
VaRα (µ(Y ) + ε(L − µ(Y ))) |ε=0.

Using Lemma 1 in [Gou00], it can be proved that the first derivative in the Taylor ex-
pansion of the quantile vanishes. So taking this fact into account, [Gou00] finally proves
that the remaining second derivative in the Taylor expansion, and thus the granularity
adjustment, can be expressed as,

GA =
−1

2φ(l1−α(Y ))
· ∂
∂y

(
σ2(y)φ(y)

µ′(y)

) ∣∣∣
y=l1−α(Y )

.

As the GA is derived as an asymptotic approximation, the GA formula might not work
well on small portfolios. GA overstates the effect of granularity, but is quite accurate for
modest sized portfolios of about 200 obligors (for a low quality portfolio) or like 500
obligors (for and investment-grade portfolio).

3.2.2 Recursive Approximation

The Recursive Approximation was pioneered by [And03] in order to obtain the distribution
of portfolio losses for single-tranche CDO sensitivity calculations. Consider the credit
portfolio L with N obligors as before. Let Lk be the credit portfolio consisting of the first
k obligors, this is Lk = E1D1 + · · · + EkDk, where we have assumed constant loss given
default 100%. This random variable takes values in the set Lk ∈ {0, . . . , lmax,k}, where

lmax,k =
∑k

i=1 Ei.
Given the systematic risk factor Y , the probability that the loss for the credit portfolio

with the first k obligors is l will be denoted by P k(l|Y ) ≡ P(Lk = l|Y = y). These
probabilities satisfy the recursive relationship,

P k+1(l|Y ) = P k(l − Ek+1|Y )Pk+1(y) + P k(l|Y )(1− Pk+1(y)), (3.1)

since,

P k+1(l|Y ) = P(Lk+1 = l|Y = y) = P(Lk+1 = l|(Y = y) ∩ (Dk+1 = 1))P(Dk+1 = 1)+

+ P(Lk+1 = l|(Y = y) ∩ (Dk+1 = 0))(1− P(Dk+1 = 1))

= P(Lk+1 = l − Ek+1|(Y = y) ∩ (Dk+1 = 1))P(Dk+1 = 1)+

+ P(Lk = l|(Y = y) ∩ (Dk+1 = 0))(1− P(Dk+1 = 1))

= P(Lk = l − Ek+1|Y = y)Pk+1(y) + P(Lk = l|Y = y)(1− Pk+1(y)).
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The initial condition of this recursive relationship is P 0(l|Y ) = δ0l, where δ0l = 1 if l = 0
and 0 otherwise. This initial condition and the recursive relationship (3.1) allow to find
the final distribution of the total loss for the credit portfolio,

PN(l|Y ) = P(LN = l|Y = y) = P(L = l|Y = y).

Now, to obtain the conditional tail probability for the loss of the credit portfolio
P(L > l|Y = y), we need to add the conditional tail probabilities over all the possible
losses above l,

P(L > l|Y = y) =
lmax∑
l̄>l

P(L = l̄|Y = y), where lmax =
N∑
i=1

Ei.

Finally, we can integrate numerically over the risk factor Y in order to evaluate the
unconditional tail probability P(L > l) for the loss of the credit portfolio.

[Gla07] implements the recursive approximation in the one-factor and multi-factor
setting and conclude that the method performs well and give accurate estimates for the
tail probability of the losses when the number of obligors is small, however, the quality
of the approximations obtained with this method deteriorate quickly as the number of
obligors increase.

3.2.3 Normal Approximation

The Normal Approximation is a direct application of the central limit theorem (CLT) and
can be found in [Mar04]. We recall that the CLT roughly states that, under appropriate
conditions, the distribution of the sum of a large number of independent random variables
is normally distributed. When the portfolio is not sufficiently large for the law of large
numbers to hold, or not very homogeneous, unsystematic risk arises. Then we need to
take into account the variability of portfolio loss L conditional to the common factor Y.
This can be easily approximated using the CLT. Conditional on the common factor Y, the
portfolio loss L is normally distributed with mean µ(Y ) and variance σ2(Y ) such that,

µ(Y ) =
N∑
n=1

En · Pn(y), σ2(Y ) =
N∑
n=1

E2
n (Pn(y)) (1− Pn(y)) ,

where Pn(y) are the conditional default probabilities, and we have assumed Ln = 1 for
simplicity and clarity. Then, it follows that the conditional tail probability reads,

P(L > x|Y ) = Φ

(
µ(Y )− x
σ2(Y )

)
.

The unconditional default probability can then be obtained by integrating over the factor
Y,

P(L > x) = E
(

Φ

(
µ(Y )− x
σ2(Y )

))
=

∫
R

Φ

(
µ(y)− x
σ2(y)

)
φ(y)dy,
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where φ is the PDF of the standard normal distribution.
If the number of assets in the portfolio is large, and the individual default probabilities

are not too small, this is a good approximation. However, in general, it is quite a poor
approximation in practice, because credit loss distributions by their nature are asymmetric
(the downside is much more severe than the upside). In fact, the normal approximation is
particularly bad at estimating the tail of the distribution, that is, the region of high losses.
In [Luc99] there is a detailed numerical analysis about the quality of this approximation.

3.2.4 Saddle Point Approximation

The computation of the PDF of the sum of independent random variables can be facili-
tated by the use of the MGF, which is defined by MX (s) = E(esX ). For a finite sequence
of independent random variables Xi for i = 1, . . . , n, with known analytic moment gen-
erating functions MXi , the MGF of the sum X =

∑n
i=1Xi is the product of MGF of

Xi,

MX (s) =
n∏
i=1

MXi .

The moment generating function of the loss random variable L =
∑N

n=1 Ln with density
fL is defined as the analytic function,

ML(s) = E(esL) =

∫ +∞

0

eslfL(l)dl,

of a complex variable s, provided that the integral exists. Inverting the above formula
gives the well known Bromwich integral,

fL(l) =
1

2πi

∫ +i∞

−i∞
e−slML(s)ds, (3.2)

where the path of integration is the imaginary axis. Saddle Point approximation arises in
this setting to give an accurate analytic approximation. Further details of this approxi-
mation can be found in [Jen95]. The Saddle Point method provides a tool to derive the
PDF of such a sum of random variables by approximating the integral in the inversion
formula (3.2).

Define the cumulant generating function (CGF) of L as KL(s) = ln (ML(s)). Thus,
we can write equation (3.2) as,

fL(l) =
1

2πi

∫ +i∞

−i∞
eKL(s)−slds. (3.3)

The saddle points are the points at which the terms in the exponential are stationary,
i.e. the points s for which,

∂

∂s
(KL(s)− sl) =

∂KL(s)

∂s
− l = 0. (3.4)
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Having found these points, the Saddle Point approximation method consists in ap-
plying a second order Taylor expansion to the term KL(s) − sl and then computing the
resulting Gaussian integral. By equation (3.4) for a fixed value l the saddle point l̂ satisfies,

∂KL(s)

∂s

∣∣∣∣∣
s=l̂

=
1

ML(l̂)
· ∂ML(s)

∂s

∣∣∣∣∣
s=l̂

= l. (3.5)

It can be shown that for each l in the distribution of L there exists a unique l̂ on the
real axis that solves (3.5) since the cumulant generating function is convex. Note that for
l̂ = 0 we have,

∂KL(s)

∂s

∣∣∣∣∣
s=0

=
1

ML(0)
· ∂ML(s)

∂s

∣∣∣∣∣
s=0

=

∫ +∞

0

u · fL(u)du = E(L),

implying that l̂ = 0 is the saddle point corresponding to the value l = E(L). If we think
of l being a quantile of the distribution of L then, due to equation (3.5), we can relate
quantities l of the distribution of L to KL evaluated at the saddle point l̂. This is an
important feature for applications in credit risk. Moreover, this is also one reason to
obtain analytical expressions for the portfolio VaR.

Applying a second order Taylor expansion to the term KL(s)−sl around l̂ in equation
(3.3),

KL(s)− sl ' KL(l̂)− ll̂ +
1

2
K ′′L(l̂)

(
s− l̂

)2

,

and then computing the resulting Gaussian integral we obtain,

fL(l) =
1

2πi

∫ +i∞

−i∞
eKL(s)−slds ' eKL(l̂)−ll̂

2πi

∫ +i∞

−i∞
e

1
2

(s−l̂)2K′′L(l̂)ds =
eKL(l̂)−ll̂√
2πK

′′
L(l̂)

. (3.6)

Here we use that the first term in the Taylor expansion vanishes at l̂ due to the
definition of the saddle point l̂. Note that by applying equation (3.3) we can compute the
tail probability as,

P(L > l) =

∫ ∞
l

fL(u)du =

∫ ∞
l

(
1

2πi

∫ +i∞

−i∞
eKL(s)−suds

)
du

=
1

2πi

∫ +i∞

−i∞,(0+)

[
eKL(s)−su

−s

]∞
u=l

ds =
1

2πi

∫ +i∞

−i∞,(0+)

eKL(s)−sl

s
ds,

where the integration path is the imaginary axis and the notation (0+) denotes that the
contour runs to the right of the origin to avoid the pole there. Thus, by applying formula
(3.6) the tail probability of L can be recovered from the CGF by a contour integral of the
form,

P(L > l) =
1

2πi

∫ +i∞

−i∞,(0+)

eKL(s)−sl

s
ds ' eKL(l̂)−ll̂

2πi

∫ +i∞

−i∞,(0+)

e
1
2

(s−l̂)2K′′L(l̂)

s
ds.
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This can be further elaborated and we finally obtain,

P(L > l) '


eKL(l̂)−ll̂+ 1

2
l̂2K
′′
L(l̂)Φ

(
−
√
l̂2K

′′
L(l̂)

)
, for l > E(L),

1
2
, for l = E(L),

1− eKL(l̂)−ll̂+ 1
2
l̂2K
′′
L(l̂)Φ

(
−
√
l̂2K

′′
L(l̂)

)
, for l < E(L),

(3.7)

where Φ denotes the cumulative normal distribution function.
Provided that one can calculate KL(s), K

′
L(s), K

′′
L(s) for any value of s, it is quite

easy to use the Saddle Point method in practice. For example, to calculate the VaR
at a confidence level α, i.e., the value l such that P(L > l) = 1 − α, for a given value
α ∈ (0, 1), we use (3.7) with l replaced by K

′
L(l̂) and adjust l̂ until the right-hand side of

(3.7) becomes equal to 1− α. This is a straightforward root-finding problem.
If all of the Ln are identically distributed, the relative errors of both approximations

in (3.6) and (3.7) are known to be O(N−1). Higher order approximations of the density
and the tail probability are given by [Dan87],

fL(l) =
φ(z1)√
K
′′
L(l̂)

({
1 +

(
− 5K

′′′
L (l̂)2

24K
′′
L(l̂)3

+
K

(4)
L (l̂)

8K
′′
L(l̂)2

)}
+O(N−2)

)
,

with φ the PDF of the standard normal distribution, and the Lugannani and Rice (see
[Lug80]) formula,

P(L > l) = 1− φ(z1) + φ(z1)

(
1

z2

− 1

z1

+O(N−3/2)

)
, (3.8)

where z1 = sgn(l̂)

√
2(ll̂ −KL(l̂)) and z2 = l̂

√
K
′′
L(l̂).

The Saddle Point approximation is highly accurate in the tail of a distribution. The
use of saddle point approximations in credit loss portfolio is pioneered by a series of papers
by R. Martin, K. Thompson and C. Browne ([Mar01a], [Mar01b], [Mar01c]). They apply
the Saddle Point approximation to the unconditional moment generating function, despite
the fact that the individual loss variables Li are not independent. A different approach
has been proposed by [Hua07a] that consists in applying the Saddle Point approximation
to the conditional moment generating function instead of the unconditional moment gen-
erating function, so that L is a weighted sum of independent Bernoulli random variables.
This is the situation where the Saddle Point approximation works well. In this approxi-
mation, a uniform accuracy of density and tail probability for different levels of portfolio
loss L is achieved at the expense of some extra computational cost, due to the fact that
the saddle points need to be found for each realization of the factor Y . However, if there
is a strong concentration in the portfolio, for instance, if the exposure is dominated by a
few loans, a straightforward approximation may be insufficient.

Recall that in the one-factor model framework, if the systematic factor Y is fixed,
default occurs independently because the only remaining uncertainty is the idiosyncratic
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risk. The MGF conditional on Y is thus given by the product of each obligor’s MGF as,

M̄L(s; y) ≡ E(esL | Y = y) =
N∏
n=1

E
(
esEnLnDn | Y = y

)
=

N∏
n=1

[
1− Pn(y) + Pn(y)esEnLn

]
,

where Pn(y) for n = 1, . . . , N are the conditional default probabilities.
Notice that we are assuming non stochastic LGD. If we define wn = LnEn and the

conditional CGF K̄L(s; y) = ln M̄L(s; y),

K̄L(s; y) =
N∑
n=1

ln (1− Pn(y) + Pn(y)ewns) ,

K̄ ′L(s; y) =
N∑
n=1

wnPn(y)ewns

1− Pn(y) + Pn(y)ewns
,

K̄ ′′L(s; y) =
N∑
n=1

(1− Pn(y))w2
nPn(y)ewns

(1− Pn(y) + Pn(y)ewns)2
,

K̄ ′′′L (s; y) =
N∑
n=1

(
(1− Pn(y))w3

nPn(y)ewns

(1− Pn(y) + Pn(y)ewns)2
− 2(1− Pn(y))w3

nP
2
n(y)e2wns

(1− Pn(y) + Pn(y)ewns)3

)
,

K̄
(4)
L (s; y) =

N∑
n=1

(
(1− Pn(y))w4

nPn(y)ewns

(1− Pn(y) + Pn(y)ewns)2
− 6(1− Pn(y))w4

nP
2
n(y)e2wns

(1− Pn(y) + Pn(y)ewns)3
+

+
6(1− Pn(y))w4

nP
3
n(y)e3wns

(1− Pn(y) + Pn(y)ewns)4

)
.

(3.9)

With the above expressions available, we are able to calculate the conditional loss density
and conditional tail probability by the Saddle Point approximation. Since K̄ ′L(s; y) is a
monotonically increasing function of s, and it is bounded in the interval [0,

∑N
n=1wn], the

equation K̄ ′L(s; y) = l admits a unique solution l̂ for l ∈ [0,
∑N

n=1 wn]. So, once we have
calculated the conditional tail probability P(L > l | Y = y), we can integrate over the Y
factor and the unconditional tail probability yields,

P(L > l) =

∫
R
P(L > l | Y = y)φ(y)dy.

3.3 The Wavelet Approximation Method for Com-

puting Portfolio Losses

Let us consider the portfolio L =
∑N

n=1 Ln, with N obligors where Ln = En · Ln · Dn

and let F be the cumulative distribution function of L. Without loss of generality, we
can assume

∑N
n=1En = 1 and constant loss given default Ln = 100%. To describe the

obligor’s default and its correlation structure, we use the one-factor Merton model with
constant correlation ρ,

rn =
√
ρY +

√
1− ρεn,
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where Y and εn, ∀n ≤ N are i.i.d. standard normally distributed. Hence, the default
probability of obligor n conditional on a specification Y = y according to (1.10) can be
written as,

Pn(y) ≡ Φ

(
tn −

√
ρy

√
1− ρ

)
,

where tn = Φ−1(Pn), and Φ denotes the cummulative standard normal distribution func-
tion and Φ−1 its inverse.

Let us consider also,

F (x) =

{
F (x), if 0 6 x 6 1,
1, if x > 1,

for a certain F defined in [0, 1].
Recall that the MGF conditional to Y is given by the product of each obligor’s MGF,

¯̄ML(s; y) =
N∏
n=1

[
1− Pn(y) + Pn(y)e−sEn

]
.

Notice that we are assuming non stochastic LGD. Taking the expectation value of this
conditional MGF yields the unconditional MGF,

M̃L(s) ≡ E(e−sL) = E(E(e−sL | Y = y)) = E( ¯̄ML(s; y)) = E

[
N∏
n=1

[
1− Pn(y) + Pn(y)e−sEn

]]

=

∫
R

N∏
n=1

[
1− Pn(y) + Pn(y)e−sEn

] 1√
2π
e−

y2

2 dy.

(3.10)

Let us note a property regarding the CDF F previously defined. Since the loss can
take only a (very big) finite number of discrete values (2N at most), the PDF of the loss
function is a sum of Dirac delta functions and then the CDF is a discontinuous function.
Moreover, the stepped form of the CDF makes Haar wavelets a natural and very well-
suited approximation procedure.

Since F ∈ L2([0, 1]), according to the theory of MRA we can approximate F in [0, 1]
by a summation of scaling functions,

F (x) ' Fm(x), Fm(x) =
2m−1∑
k=0

cm,kφm,k(x), (3.11)

and,

F (x) = lim
m→+∞

Fm(x). (3.12)

But if fL is the probability density function of the loss function, then the unconditional
MGF is also the Laplace transform of fL:
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M̃L(s) ≡ E(e−sL) =

∫ +∞

0

e−sxfL(x)dx = f̃L(s). (3.13)

Also, as we have noticed before,

fL(x) =
2N∑
i=1

µiδ(x− xi), x1, x2, ..., x2N ∈ [0, 1]. (3.14)

where δ(x − xi) is the Dirac delta at xi. Each Dirac delta can be thought as a density
distribution of a unit of mass concentrated in the point xi (i.e.

∫ +∞
0

g(x)δ(x − xi)dx =
g(xi), for every test function g(x)). Probabilistically, a distribution like (3.14) corresponds
to a situation where only the scenarios x1, x2, ..., x2N are feasible and with respective
probabilities µ1, µ2, ..., µ2N . Of course these probabilities must be positive and sum up to
1. This is,

2N∑
i=1

µi = 1.

As it is also well known in the context of generalized functions, the derivative of the
Heaviside step function is a Dirac delta. In this context (and of course in the context of
regular functions) we can integrate by parts the expression (3.13),

M̃L(s) =

∫ +∞

0

e−sxF ′(x)dx = e−s + s

∫ 1

0

e−sxF (x)dx. (3.15)

So,
(
M̃L(s)− e−s

)
/s is the Laplace transform of F . Then, we can apply the Wavelet

Approximation method developed in Section 2.4 in order to invert the Laplace transform
of F . Following the formula (2.36) and making the change of variable z = e−s

1
2m , we

consider,

Qm(z) =
2m/2 ln(z) · M̃L(−2m ln(z))−z2m

−2m ln(z)

z − 1
=
M̃L(−2m ln(z))− z2m

2m/2(1− z)
, z 6= 0, (3.16)

and,

Q(0) =

∫
R
∏N

n=1 [1− Pn(y)] 1√
2π
e−

y2

2 dy

2
m
2

.

Finally, for a fixed scale of approximation m, we can compute the coefficients of the
approximation by,

cm,0 '
∫
R
∏N

n=1 [1− Pn(y)] 1√
2π
e−

y2

2 dy

2
m
2

,

and,

cm,k '
2

πrk

∫ π

0

<(Qm(reiu)) cos(ku)du, k = 1, . . . , 2m − 1. (3.17)

We can evaluate this integral by means of the ordinary trapezoidal rule with the required
accuracy to obtain the coefficients. As a matter of fact, in the numerical examples section
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we see that when computing VaR values at 99.9% confidence level, taking 2m subintervals
we converge towards the Monte Carlo result. Also is worth to mention that the MGF
in the expression (3.10) is also accurately computed using a Gauss-Hermite quadrature
formula with 20 nodes.

3.3.1 Computation of the Coefficients cm,k

Let us explain in detail the computation of the coefficients in expression (3.17). The
integral can be evaluated by means of the trapezoidal rule. So we consider,

I(r, k) =

∫ π

0

<(Qm(reiu)) cos(ku)du, (3.18)

I(r, k;h) =
h

2

(
Qm(r) + (−1)kQm(−r) + 2

mT−1∑
j=1

<(Qm(reihj)) cos(khj)

)
, (3.19)

(3.20)

where h = π
mT

and hj = jh for all j = 0, . . . ,mT . Then, the coefficients can be approxi-
mated by,

cm,k '
2

πrk
I(r, k) ' 2

πrk
I(r, k;h)

=
1

mT rk

(
Qm(r) + (−1)kQm(−r) + 2

mT−1∑
j=1

<(Qm(reihj)) cos(khj)

)
, k = 1, ..., 2m − 1.

(3.21)

Here, we must control the discretization and the round-off errors, the last one arising when
we multiply by the prefactor (mT r

k)−1 in expression (3.21). If we can compute I(r, k;h)
with a precision of about 10−η, then the round-off error is approximately (mT r

k)−1 · 10−η

after multiplying by the prefactor.
Considering the expression (3.16),

Qm(reiu) =
M̃L(−2m ln(reiu))− (reiu)2m

2m/2(1− reiu)
,

where M̃L is the unconditional Moment Generating Function (3.10).
If we define z1 = M̃L(−2m ln(reiu))− (reiu)2m and z2 = 2m/2(1− reiu) then we have,

<(Qm(reiu)) =
<(z1)<(z2) + =(z1)=(z2)

(<(z2))2 + (=(z2))2
, (3.22)

where,

<(z1) = <(M̃L(−2m ln(reiu)))− r2m cos(2mu), <(z2) = 2m/2(1− r cos(u)),

and,

=(z1) = =(M̃L(−2m ln(reiu)))− r2m sin(2mu), =(z2) = −2m/2r sin(u).
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Let us define gm(u) ≡ <(Qm(reiu)), Ngm(u) ≡ <(z1)<(z2) + =(z1)=(z2) and Dgm(u) ≡
(<(z2))2 + (=(z2))2. Now,

Dgm(u) = 2m(1 + r2 cos2(u)− 2r cos(u)) + 2mr2 sin2(u) = 2m(1 + r2 − 2r cos(u)).

Observe that,

0 < 2m(1− r)2 ≤ Dgm(u) ≤ 2m(1 + r)2, ∀u ∈ [0, π],∀r ∈ (0, 1), (3.23)

and,∣∣Ngm(u)

∣∣ ≤ 2m/2
(∣∣∣<(M̃L(−2m ln(reiu)))

∣∣∣+ r2m
)

(1+r)+2m/2
(∣∣∣=(M̃L(−2m ln(reiu)))

∣∣∣+ r2m
)
r.

(3.24)
Joining the expressions (3.23) and (3.24) we have,

|gm(u)| ≤

(∣∣∣<(M̃L(−2m ln(reiu)))
∣∣∣+ r2m

)
(1 + r) +

(∣∣∣=(M̃L(−2m ln(reiu)))
∣∣∣+ r2m

)
r

2m/2(1− r)2
.

Moreover, if we consider expression (3.10),

|M̃L(−2m ln(reiu))| ≤
∫
R

N∏
n=1

∣∣∣1− Pn(y) + Pn(y)e2mEn ln(reiu)
∣∣∣ 1√

2π
e−

y2

2 dy

≤
∫
R

N∏
n=1

(
|1− Pn(y)|+ |Pn(y)r2mEn|

) 1√
2π
e−

y2

2 dy

≤
∫
R

N∏
n=1

(1− Pn(y) + Pn(y))
1√
2π
e−

y2

2 dy = 1.

Finally,

|gm(u)| ≤
(
1 + r2m

)
(1 + r) +

(
1 + r2m

)
r

2m/2(1− r)2
=

(
1 + r2m

)
(1 + 2r)

2m/2(1− r)2
.

Now, if we define qm,k(u) ≡ gm(u) cos(ku) and Em,k
T (h) = I(r, k)− I(r, k;h), then,∣∣∣Em,k

T (h)

∣∣∣ =
π3

12m2
T

∣∣∣q′′m,k(µ)
∣∣∣ , µ ∈ (0, π).

Taking into account that q
′′

m,k(u) = −k2gm(u) cos(ku)− 2kg′m(u) sin(ku) + g
′′
m(u) cos(ku),

then, ∣∣∣Em,k
T (h)

∣∣∣ ≤ π3

12m2
T

((
1 + r2m

)
(1 + 2r)

2m/2(1− r)2
k2 + 2|g′m(µ)|k + |g′′m(µ)|

)
.

Let us assume that |g′m(u)| ≤ B1(r) and |g′′m(u)| ≤ B2(r) for all u ∈ [0, π] such that the
limits limr→0B1(r) and limr→0B2(r) exist. Then,∣∣∣Em,k

T (h)

∣∣∣ ≤ π3

12m2
T

((
1 + r2m

)
(1 + 2r)

2m/2(1− r)2
k2 + 2B1(r)k +B2(r)

)
.
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We recall that the parameter k ranges from 1 to 2m − 1, where m is the scale of the
approximation. For small values of k, the discretization error can be very small taking
the number of subintervals mT suitably large. For large values of k and assuming r small,
the expression above is approximately π3k2/12m2

T2m/2. At this point, it is important to
underline that the calculation of <(Qm(reiu0)) for a given u0 ∈ [0, π] is computationally
intensive, particularly for very big portfolios. So we must control the discretization error
choosing mT as small as possible. As we show in the numerical examples section, taking
mT = 2m we get convergence with MC results at high loss levels.

As mentioned before, the round-off error arises when multiplying the sum in expression
(3.21) by the pre-factor (mT r

k)−1. With mT = 2m the k of interest is k = 2m− 1 which is
the greatest value that this parameter can take (small values of k do not cause round-off
error).

The left plot of Figure 3.1 represents the pre-factor for values of r ≥ 0.9, while the
right plot shows the pre-factor values for r ≥ 0.999. We also display in Table 3.1 the
pre-factor values (mT r

k)−1 for different values of r and scales m = 8, m = 9 and m = 10.
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Figure 3.1: Pre-factor (mT r
k)−1 for mT = 2m, k = 2m − 1 and scales m = 8, m = 9 and m = 10.

On the one hand, it is clear that we must concentrate in this second interval in order
to get a reasonable round-off error and on the other hand, the discretization error grows
when r is close to 1. For the numerical examples section, we have chosen r = 0.9995, the
middle point of the interval [0.999, 1).

Proceeding this way we have to find an expression for the computation of <(M̃L(−2m ln(reiu)))
and =(M̃L(−2m ln(reiu))). Introducing the change of variable y =

√
2x in (3.10) we ob-

tain,

M̃L(s) =

∫
R

N∏
n=1

[
1− Pn(

√
2x) + Pn(

√
2x)e−sEn

] 1√
π
e−x

2

dx.

We can approximate this integral by means of a Gauss-Hermite formula,

M̃L(s) '
l/2∑
j=1

aj

(
M̂L(s;x−j ) + M̂L(s;x+

j )
)
, (3.25)
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Scale
r m = 8 m = 9 m = 10

0.9000 1.8194 · 109 4.7077 · 1020 6.3040 · 1043

0.9100 1.0869 · 108 1.6618 · 1018 7.7688 · 1038

0.9200 6.6968 · 106 6.2395 · 1015 1.0833 · 1034

0.9300 4.2522 · 105 2.4885 · 1013 1.7047 · 1029

0.9400 2.7807 · 104 1.0529 · 1011 3.0193 · 1024

0.9500 1.8717 · 103 4.7203 · 108 6.0042 · 1019

0.9600 1.2960 · 102 2.2394 · 106 1.3373 · 1015

0.9700 9.2550 · 100 1.1230 · 104 3.3283 · 1010

0.9800 6.7470 · 10−1 5.9457 · 101 9.2347 · 105

0.9900 5.0674 · 10−2 3.3201 · 10−1 2.8503 · 101

0.9990 5.0415 · 10−3 3.2566 · 10−3 2.7177 · 10−3

0.9991 4.9145 · 10−3 3.0942 · 10−3 2.4532 · 10−3

0.9993 4.6699 · 10−3 2.7934 · 10−3 1.9990 · 10−3

0.9995 4.4376 · 10−3 2.5219 · 10−3 1.6289 · 10−3

0.9997 4.2169 · 10−3 2.2768 · 10−3 1.3274 · 10−3

0.9999 4.0072 · 10−3 2.0555 · 10−3 1.0818 · 10−3

Table 3.1: Pre-factor (mT r
k)−1 for mT = 2m, k = 2m − 1 and scales m = 8, m = 9 and m = 10.

where M̂L(s;x) = 1√
π

∏N
n=1

[
1− Pn(

√
2x) + Pn(

√
2x)e−sEn

]
, x−j = −x+

j and aj are the
nodes and weights of the quadrature respectively. This is, we can compute,

<(M̃L(−2m ln(reiu))) '
l/2∑
j=1

aj

(
<(M̂L(−2m ln(reiu);x−j )) + <(M̂L(−2m ln(reiu);x+

j ))
)
,

(3.26)
and,

=(M̃L(−2m ln(reiu))) '
l/2∑
j=1

aj

(
=(M̂L(−2m ln(reiu);x−j )) + =(M̂L(−2m ln(reiu);x+

j ))
)
.

(3.27)
We notice that,

M̂L(−2m ln(reiu);x) =
1√
π

N∏
n=1

[
1− Pn(

√
2x) + Pn(

√
2x)r2mEn(cos(2mEnu) + i sin(2mEnu))

]
.

So using polar coordinates this expression casts into,

M̂L(−2m ln(reiu);x) =
1√
π

N∏
n=1

(Rn)θn =
1√
π

(
N∏
n=1

Rn

)
∑N
n=1 θn

,

where Rn = |zn|, θn = arctan
(
=(zn)
<(zn)

)
and,

zn = 1− Pn(
√

2x) + Pn(
√

2x)r2mEn(cos(2mEnu) + i sin(2mEnu)).
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Finally, expanding these expressions we conclude,

Rn =

√
(1− Pn(

√
2x))2 + r2m+1EnP 2

n(
√

2x) + 2Pn(
√

2x)(1− Pn(
√

2x))r2mEn cos(2mEnu),
(3.28)

θn = arctan

(
r2mEnPn(

√
2x) sin(2mEnu)

1− Pn(
√

2x) + Pn(
√

2x)r2mEn cos(2mEnu)

)
. (3.29)

<(M̂L(−2m ln(reiu);x)) =
1√
π

(
N∏
n=1

Rn

)
cos

(
N∑
n=1

θn

)
, (3.30)

=(M̂L(−2m ln(reiu);x)) =
1√
π

(
N∏
n=1

Rn

)
sin

(
N∑
n=1

θn

)
. (3.31)

3.3.2 The Computation of VaR

Taking into account (2.2) it can be easily proved that,

0 ≤ cm,k ≤ 2−
m
2 , k = 0, 1, ..., 2m − 1,

and,

0 ≤ cm,0 ≤ cm,1 ≤ ... ≤ cm,2m−1.

Considering an approximation in a level of resolution m, VaR can now be quickly
computed with m coefficients due to the compact support of the basis functions. Observe
that due to the approximation (3.11) we have,

F (VaRα) ' Fm(VaRα) = 2
m
2 · cm,k,

for a certain k ∈ {0, 1, ..., 2m − 1}. Thus, we can simply start searching VaRα by means
of the following simple iterative procedure: first we compute Fm(2m−1

2m
). If Fm(2m−1

2m
) > α

then we compute Fm(2m−1−2m−2

2m
), otherwise we compute Fm(2m−1+2m−2

2m
), and so on. This

algorithm finishes after m steps storing the k value such that Fm( k
2m

) is the closest value
to α in our m resolution approximation. It is worth to highlight that there is almost
any difference between calculating m coefficients and the whole distribution, i.e. 2m

coefficients.
In fact, due to the stepped shape of the Haar wavelets approximation, Fm(ξ) =

Fm( k
2m

), for all ξ ∈
[
k

2m
, k+1

2m

)
. In what follows let us take, VaRW (m)

α = 2k+1
2m+1 , the middle

point of this interval, as the VaR value computed by means of this wavelet algorithm at
scale m.

Let us also consider the relative error at scale m defined by,

RE(α,m) =
VaRW (m)

α − VaRα

VaRα

.
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Assuming that VaRα is well approximated by a value, VaRM
α , obtained by means of a

Monte Carlo method that will be taken as benchmark, as is common in this kind of
studies, we will use the estimation,

RE(α,m) ' RE(α,m), where RE(α,m) =
VaRW (m)

α − VaRM
α

VaRM
α

.

Observe that we consider the relative error without applying absolute value in order
to maintain the economical sense, since a negative RE indicates an underestimation of
the risk measure, while a positive value results in a over-estimation of the risk.

3.4 Numerical Examples and Discussions

In this section we present a comparative study to calculate VaR using the Wavelet Approx-
imation, the Saddle Point, the ASRF and the Monte Carlo method. As it is well known,
MC has a strong dependence between the size of the portfolio and the computational
time. When the size increases, MC becomes a very time consuming method.

Real situations in financial companies show the existence of strong concentrations
in their credit portfolios, while Basel II formulae to calculate VaR are supported under
unrealistic hypothesis, such as infinite number of obligors with small exposures. For these
reasons, we also test our methodology with small and concentrated portfolios.

The Saddle Point method presented in Section 3.2.4 is known to be an accurate and
fast approximation for the tail of the loss distribution. Under the conditional framework,
the approach works out well, however, this method can fail if we introduce severe name
concentration in the credit portfolio. To show this fact, we present the following two
examples,

Portfolio 3.1. We consider N = 100 obligors, with Pn = 1%, En = 1/N , n = 1, . . . , N ,
ρ = 0.2 and we assume constant loss given default 100%.

Portfolio 3.2. We consider N = 102 obligors, with Pn = 0.1%, En = 1, n = 1, . . . , 100,
E101 = E102 = 20, ρ = 0.3 and we assume constant loss given default 100%.

In both cases we normalize the exposures in order to meet the condition
∑N

n=1 En = 1
and we consider the Luganani and Rice formula (3.8) to calculate the conditional tail of
the loss function P(L > l|Y = y). Finally, we integrate over the risk factor Y , using
a Gauss-Legendre quadrature of 100 points, to obtain the unconditional tail of the loss
function P(L > l).

Note that Portfolio 3.1 is totally homogeneous and so the saddle points can be cal-
culated very quickly without the need of applying a numerical root finding algorithm.
Considering K̄ ′L(s; y) in expression (3.9) and assuming that En = E and Pn(y) = P (y)
for all n = 1, . . . , N then,

K̄ ′L(s; y) =
N∑
n=1

wnPn(y)ewns

1− Pn(y) + Pn(y)ewns
=

N∑
n=1

E · P (y)eEs

1− P (y) + P (y)eEs

=
N · E · P (y)eEs

1− P (y) + P (y)eEs
=

P (y)eEs

1− P (y) + P (y)eEs
,
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since E = 1/N . Finally,
P (y)eEs

1− P (y) + P (y)eEs
= l,

yields a unique solution for the saddle point,

l̂ = N · ln
(
l(1− P (y))

P (y)(1− l)

)
.

The left plot of Figure 3.2 shows the tail of the loss distribution for the first portfolio, while
the right plot represents the loss distribution for the second one. We have also represented
a Monte Carlo approximation using five million scenarios which serve us as a benchmark,
and finally the Asymptotic Single Risk Factor model. The ASRF model underestimates
the risk in both portfolios. Although the first one is totally homogeneous, we recall
that this method works out well for very big portfolios. The Saddle Point method gives
good approximations in the first case, however it can not deal with the strong exposure
concentration of the second portfolio where almost the 30% of the exposure belongs to
only two obligors. Consequently it underestimates the risk at 99.9% loss level, while
overestimates the risk at 99.99% loss level.
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Figure 3.2: Tail probability approximation of a homogeneous portfolio (left) and a heterogeneous
portfolio (right).

For comparison in Table 3.2 we give the VaR values computed for Portfolio 3.2 using
the Saddle Point method, the Monte Carlo method and the ASRF model at loss level
99.9%. We also provide the same result with the Wavelet Approximation method at scale
m = 10, where we take l = 20 nodes of Gauss-Hermite quadrature to evaluate expression
(3.25) and mT = 2m subintervals for the trapezoidal rule to compute the coefficients in
(3.21).

We see that the Wavelet Approximation method is capable to deal with severe exposure
concentration at a high loss level. Furthermore, the WA is fast, robust and accurate as we
show with the following examples. We consider six portfolios ranging from 10 to 10000
obligors as described in Table 3.3.
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Method VaR0.999 Relative Error

Monte Carlo 0.1500
ASRF 0.0474 −68.39%
Saddle Point 0.1270 −15.37%
Wavelet Approximation 0.1490 −0.69%

Table 3.2: Computation of VaR for Portfolio 3.2 with severe exposure concentration. Relative errors
are computed with respect to Monte Carlo results.

Portfolio N Pn En ρ HHI 1
N

P1 100 0.21% C
n 0.15 0.0608 0.0100

P2 1000 1.00% C
n 0.15 0.0293 0.0010

P3 1000 0.30% C
n 0.15 0.0293 0.0010

P4 10000 1.00% C
n 0.15 0.0172 0.0001

P5 20 1.00% 1
N 0.5 0.0500 0.0500

P6 10 0.21% C
n 0.5 0.1806 0.1000

Table 3.3: Portfolios selected for the numerical examples. In each case, C is a constant such that∑N
n=1En = 1.

In order to consider concentrated portfolios, we have taken En = C
n

(where C is a

constant such that
∑N

n=1En = 1), except for Portfolio P5 which is totally diversified. We
provide also the Herfindahl-Hirschman index discussed in Section 1.5 for quantifying expo-
sure concentration. This index can take values from 1

N
to 1 (this latter value corresponds

to a portfolio with only 1 obligor). Well-diversified portfolios with a very large number of
very small exposures have a HHI value close to 1

N
, whereas heavily concentrated portfolios

can have a considerably higher HHI value. We note that P5 is a small and completely
diversified portfolio while P6 is a small but strongly concentrated one. The correlation
parameter ρ, which measures the degree of the obligor’s exposure to the systematic risk
factor, and the probabilities of default Pn have been taken as representative examples.
The potential loss increases when considering higher probabilities of default. This fact
will be shown when comparing the VaR value of Portfolios P2 and P3 where the remaining
parameters are unchanged.

The main numerical results are displayed in Table 3.4. We have computed1 the VaR
value at 99.9% confidence level with the WA method at scales 8, 9 and 10 and also
the VaR value using the MC method with 5 × 106 random scenarios, which serve us as
a benchmark. For WA we take again l = 20 nodes of Gauss-Hermite quadrature and
mT = 2m subintervals for the trapezoidal rule to compute the coefficients in (3.21). Plots
at scales 9 and 10 corresponding to Portfolios P1, P2, P3 and P4 can be seen in Figures 3.3,

1Computations have been carried out sequentially in a personal computer Dell Vostro 320 under
GNU/Linux OS, Intel CPU Core 2 E7500, 2.93GHz, 4GB RAM and using the gcc compiler with opti-
mization level 2.
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3.4, 3.5 and 3.6 respectively.

Portfolio VaR
W (8)
0.999 RE(0.999, 8) VaR

W (9)
0.999 RE(0.999, 9) VaR

W (10)
0.999 RE(0.999, 10) VaRM

0.999

P1 0.1934 −0.19% 0.1963 1.32% 0.1938 0.06% 0.1937
P2 0.1934 1.01% 0.1924 0.50% 0.1919 0.25% 0.1914
P3 0.1426 1.46% 0.1416 0.77% 0.1411 0.42% 0.1405
P4 0.1621 0.24% 0.1611 −0.36% 0.1616 −0.06% 0.1617

Table 3.4: Results of 99.9% VaR computation using the Wavelet Approximation at scales 8, 9 and 10
and the Monte Carlo simulations with 5× 106 random scenarios. RE estimations are also provided.

In Table 3.5 we provide as well the computational time in seconds in both for MC
method and WA method at scales 8, 9 and 10. WA at scale 10 give us very accurate
results in a short computational time when compared with Monte Carlo. RE estimations
for Portfolios P1, P2 and P4 at scale 8 are less or equal than 1%, displaying already very
accurate and fast computed approximations (in particular for P2 and P4 which are big
portfolios), while Portfolios P2, P3 and P4 are very well approximated at scale 9, with
computational time needs reducing to 3.6, 3.6 and 36.1 seconds respectively.

In order to assess the robustness of the WA method we increased up to 100 the number
of nodes in the Gauss-Hermite quadrature. With this setting we computed VaR values
at 99.9%, 99.99% and 99.999% confidence levels at scale 10 for Portfolios P1, P2, P3 and
P4. The results obtained in all cases were coincident with the errors with respect to MC
using only 20 nodes.

Portfolio VaR
W (8)
0.999 VaR

W (9)
0.999 VaR

W (10)
0.999 VaRM

0.999

P1 0.2 0.4 0.7 58.3
P2 1.8 3.6 7.2 571.6
P3 1.8 3.6 7.2 567.6
P4 18.2 36.1 72.4 1379.1

Table 3.5: Computational time (in seconds) for Portfolios P1, P2, P3 and P4 needed to compute
the VaR value at 99.9% confidence level.

We have also assessed the robustness of the WA method doubling the number of
subintervals used in the trapezoidal rule of integration, to compute the wavelet coefficients
at scale 10 for Portfolios P1, P2, P3 and P4. Numerical results are presented in Table 3.6.
We get the same VaR values using mT = 2m or mT = 2m+1 subintervals.

We have shown the suitability of the WA method to deal with concentration in port-
folios of considerable size like P1, P2, P3 and P4. It is remarkable how the Haar wavelets
are naturally capable of detecting jumps in the cumulative distribution function, making
the approximation very precise both at small and high loss levels. To demonstrate that
this interesting property still remains in small portfolios, we consider P5 and P6 plotted
in figure 3.7, both at scale 10. Since P5 and P6 are very small portfolios, the non-smooth
features appear accentuated. However the MC and WA plots are indistinguishable one
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from the other, showing again the fast convergence of the WA method towards MC. The
ASRF model systematically underestimates the risk in all these sample portfolios.

210

Portfolio VaR
W (10)
0.9999 RE(0.9999, 10) VaR

W (10)
0.99999 RE(0.99999, 10)

P1 0.2251 −0.07% 0.2935 −1.70%
P2 0.2622 −0.46% 0.3325 −1.80%
P3 0.1812 −0.10% 0.2290 −1.88%
P4 0.2261 −0.25% 0.2935 −1.30%

211

Portfolio VaR
W (10)
0.9999 RE(0.9999, 10) VaR

W (10)
0.99999 RE(0.99999, 10)

P1 0.2251 −0.07% 0.2935 −1.70%
P2 0.2622 −0.46% 0.3325 −1.80%
P3 0.1812 −0.10% 0.2290 −1.88%
P4 0.2261 −0.25% 0.2935 −1.30%

MC

Portfolio VaRM
0.9999 VaRM

0.99999

P1 0.2253 0.2985
P2 0.2634 0.3386
P3 0.1813 0.2334
P4 0.2267 0.2973

Table 3.6: VaR values at 99.99% and 99.999% confidence levels for Portfolios P1, P2, P3 and P4
using 2m and 2m+1 subintervals (with WA approximation at scale m = 10) for the trapezoidal rule.
MC with 5× 106 random scenarios and RE estimations are also provided.
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Figure 3.3: Tail probability approximation of Portfolio P1 at WA approximation scales m = 9 and
m = 10.

In summary, we have presented a numerical approximation to the loss function based
on Haar wavelets in order to avoid the computational effort of running Monte Carlo
simulations. First of all we approximate the discontinuous distribution of the loss function
by a finite summation of Haar scaling functions, and then we calculate the coefficients
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Figure 3.4: Tail probability approximation of Portfolio P2 at WA approximation scales m = 9 and
m = 10.

1e-04

1e-03

1e-02

1e-01

1e+00

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

T
ai

l p
ro

ba
bi

lit
y

Loss level

Wavelet Approximation (scale 9)
Monte Carlo

ASRF

1e-04

1e-03

1e-02

1e-01

1e+00

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

T
ai

l p
ro

ba
bi

lit
y

Loss level

Wavelet Approximation (scale 10)
Monte Carlo

ASRF

Figure 3.5: Tail probability approximation of Portfolio P3 at WA approximation scales m = 9 and
m = 10.

of the approximation by inverting its Laplace transform. Due to the compact support
property of the Haar system, only a few coefficients are needed for the VaR computation.

We have shown the performance of the numerical approximation in six sample portfo-
lios. These results, among other simulations, show that the method is applicable and very
accurate to different sized portfolios needing also of short time computations. Moreover,
the Wavelet Approximation is robust since the method is very stable under changes in
the parameters of the model. The stepped form of the approximated distribution makes
the Haar wavelets natural and very suitable for the approximation.

We also remark that the algorithm is valid for continuous cumulative distribution
functions, and that it can be used in other financial models without making conceptual
changes in the development. For instance, we can easily introduce stochastic loss given de-
fault (just changing a bit the unconditional moment generating function) and to consider
the multi-factor Merton model as the model framework as well.
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Figure 3.6: Tail probability approximation of Portfolio P4 at WA approximation scales m = 9 and
m = 10.
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Figure 3.7: Tail probability approximation of Portfolio P5 (left) and P6 (right) at scale m = 10.

We have also compared the Wavelet Approximation with the Saddle Point method for
a diversified portfolio and a concentrated portfolio. The SP method is fast and accurate
to calculate the VaR in the first portfolio, while clearly underestimate the risk in the
concentrated one. It has been also shown that the ASRF model, which underpins the
Basel II formulae, is not capable to deal with realistic portfolios which often entail name
concentration.



Chapter 4

Credit Risk Contributions with the
Wavelet Approximation Method

4.1 Introduction

This Chapter is devoted to the computation of the ES as an alternative measure to VaR,
as well as to the derivation and accurately calculation of the marginal contributions to
the VaR and the ES under the one-factor Merton model framework. This work has been
recently developed by [Ort11] and submitted to the Journal of Computational Finance.

Both VaR and ES can be decomposed as a sum of sensitivities (see [Tas00a]). These
sensitivities, which are commonly named risk contributions, can be understood as the
marginal impact on the risk of the total portfolio and are very important for loan pricing
or asset allocation, to cite two examples.

In practice, each risk contribution is usually computed by means of MC calculated as
the expected value of the loss distribution conditioned on a rare event, the VaR value,
which represents an extreme loss for the credit portfolio. The usual Plain Monte Carlo
presents practical inconveniences due to the large number of simulations required to get
the rare events. Although in this context of MC simulation, [Gla05] develops efficient
methods based on importance sampling to calculate VaR and ES contributions in the
multi-factor Merton model, the computational effort is still very important. For this
reason, analytical or fast numerical techniques are always welcome. One of such analytical
techniques for VaRC computations is the Saddle Point method pioneered by Martin et al.
([Mar01a] and [Mar01b]), which has been introduced in Section 3.2.4 to calculate the VaR
value. They apply the approximation to the unconditional Moment Generating Function
(MGF) and obtain accurate results at very small tail probabilities. This method is known
to perform well with big portfolios at high loss levels. [Hua07a] computes the risk measures
and contributions implementing a higher order Saddle Point method in the Merton model
and apply the approximation to the conditional MGF instead of the unconditional MGF,
where the Saddle Point works better, with an extra computational time. [Hua07b] presents
a comparative study for the calculation of VaR and VaRC with the SP method, MC with
importance sampling (IS) and the normal approximation (NA) method. They conclude
that there is not a perfect method that prevails among the others and the choice is a trade-

75
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off between speed, accuracy and robustness. NA is an accurate method and the fastest one
but is not capable of handling with exposure concentration. IS is the most robust method
but is highly demanding from a computational point of view when estimating the VaRC.
The SP method preserves a good balance between speed and accuracy and is better
than normal approximation to deal with exposure concentration. However, if the loss
distribution is not smooth due to exceptional exposure concentration, a straightforward
implementation of SP may be insufficient, and an adaptive SP should be employed instead.
Alternatively, [Tak08] addresses the problem of calculating the marginal contributions
using a numerical Laplace transform inversion of the MGF in the multi-sector setting
and provide precise results in big size portfolios. In this Chapter we extend the work
undertaken with the estimation of the VaR value with the WA method in Chapter 3 and
we develop a new methodology for the computation of the ES, the VaR contributions
and the ES contributions. We recall that this methodology approximate the credit loss
cumulative distribution function (CDF) by a finite combination of Haar wavelets basis
functions in order to invert the Laplace transform of the unconditional MFG. It was tested
under the one-factor Merton model, showing accurate and fast results for a wide range of
portfolios at very high loss levels. We will show that WA can get very accurate results even
in presence of extremely exposure concentration when computing the risk measures and
contributions, where a straightforward implementation of SP would fail. The key point
for the calculation of the VaR, ES, VaRC and ESC is how to evaluate the coefficients of
the wavelet expansion and their derivatives with respect to exposures. We have explained
in detail the calculation of the coefficients in Chapter 3. Now, we get the same accuracy
with fewer nodes by means of truncating the integration variable in the Gauss-Hermite
quadrature representing the business cycle, obtaining also a proportional reduction in the
computational time. We point out that although we apply the WA method at scale ten in
order to maintain accurate results in all the sample portfolios, the WA performs very well
with smaller scales with a considerable reduction in the computational effort (essentially
the CPU time is divided by two when moving from scale m to m− 1).

In the following we consider, as in Chapter 3, a portfolio L =
∑N

n=1 Ln, with N

obligors where Ln = En ·Ln ·Dn. Without loss of generality, we can assume
∑N

n=1En = 1
and constant loss given default Ln = 100%. To describe the obligor’s default and its
correlation structure, we follow the one-factor Merton model with constant correlation ρ,

rn =
√
ρY +

√
1− ρεn,

where Y and εn, ∀n ≤ N are i.i.d. standard normally distributed. Hence, the default
probability of obligor n conditional on a specification Y = y can be written as,

Pn(y) ≡ Φ

(
tn −

√
ρy

√
1− ρ

)
,

where tn = Φ−1(Pn), and Φ denotes the cummulative standard normal distribution func-
tion and Φ−1 its inverse.
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4.2 Haar Wavelets Approach

Let F be the cumulative distribution function of L. It is crucial for risk measurement and
risk management to allocate the risk to individual obligors. So, after we have selected
the risk measure and following (1.2) or (1.3) we must consider the partial derivative of
the measure with respect to the exposures En. Then, for a given E = (E1, . . . , EN) let us
consider,

F (E, x) =

{
F (E, x), if 0 6 x 6 1,
1, if x > 1,

for a certain F defined in [0, 1]. Following the work in Chapter 3, we approximate the
distribution function by a finite sum of Haar wavelets basis functions with convergence in
L2([0, 1]),

F (E, x) ' Fm(E, x), Fm(E, x) =
2m−1∑
k=0

cm,k(E)φm,k(x), (4.1)

where m is the scale of the approximation and k is the translation parameter.
The unconditional moment generating function,

M̃L(E, s) ≡ E(e−sL) = E(E(e−sL | Y )) =

∫
R

N∏
n=1

[
1− Pn(y) + Pn(y)e−sEn

] 1√
2π
e−

y2

2 dy,

(4.2)
is also the Laplace transform of the density function fL of L,

M̃L(E, s) ≡ E(e−sL) =

∫ +∞

0

e−sxfL(E, x)dx. (4.3)

Integrating by parts the expression (4.3) and using the approximation in (4.1), the coef-
ficients cm,k are recovered by the Laplace transform inversion, giving us the expressions,

cm,0 '
∫
R
∏N

n=1 [1− Pn(y)] 1√
2π
e−

y2

2 dy

2
m
2

,

and,

cm,k(E) ' 2

πrk

∫ π

0

<(Qm(E, reiu)) cos(ku)du, k = 1, ..., 2m − 1, (4.4)

where,

Qm(E, z) ≡
2m−1∑
k=0

cm,k(E)zk ' M̃L(E,−2m ln(z))− z2m

2
m
2 (1− z)

. (4.5)

In Chapter 3 the coefficients cm,k are accurately computed by means of the ordinary
trapezoidal rule and the MGF is evaluated using Gauss-Hermite formulae with 20 nodes.
The results show a fast convergence towards the value obtained by means of a Monte Carlo
method with five million sampling scenarios, which serves as a benchmark. However, the
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speed of the algorithm is highly conditioned by the number of times that we have to
evaluate the MGF, i.e., the number of subintervals in the trapezoidal rule, the number of
nodes used in Gauss-Hermite integration and the size of the portfolio. It has been proved
that 2m subintervals are enough to integrate (4.4) using the trapezoidal rule, getting
accurate VaR values at 99.9%, 99.99% and 99.999% confidence levels. Later on, we present
an improved version of the algorithm which again reduces significantly the computational
cost when a large number of nodes of GH are required, or when the portfolio contains a
big number of obligors.

4.3 Credit Risk Measures and Contributions

In this section we recall the calculation of the VaR value and present a numerical formula
for the estimation of the Expected Shortfall using the Wavelet Approximation method
presented previously. We also apply this method to compute the marginal contribution
of the obligors to the total risk at portfolio level.

4.3.1 VaR and Expected Shortfall

Let us consider a portfolio with exposures E = (E1, . . . , EN) and let α ∈ (0, 1) be a given
confidence level. The α-quantile of the loss distribution of L in this context, is called
Value at Risk. This is,

VaRα(E) = inf{l ∈ R : P(L ≤ l) ≥ α} = inf{l ∈ R : F (E, l) ≥ α},

where again we underline the dependence on the exposures. This is the measure chosen
in the Basel II Accord for the computation of capital requirement, meaning that a bank,
managing its risks according to Basel II, must reserve capital by an amount of VaRα(E)
to cover extreme losses.

It has been extensively detailed in Chapter 3 that considering a wavelet approximation
in a level of resolutionm, the VaR value at confidence level α calculated by the WA method
is of the form VaRW (m)

α (E) = 2k+1
2m+1 for a certain k ∈ {0, 1, ..., 2m−1}, where k is such that

Fm

(
E,VaRW (m)

α (E)
)
' α.

A crucial property for a coherent risk measure is the sub-additivity condition. As
mentioned previously, the VaR measure fails to satisfy this condition although the measure
is widely used in practice. This can be explained by the fact that when distributions are
normal, or close to normal, it can be shown that VaR and ES are quite close and behave
similarly. However, as soon as a distribution is characterized by a long tail behavior, the
similarity between VaR and ES does not hold anymore. In this case, employing the VaR
measure may lead to a considerable underestimation of risk.

By definition, the Expected Shortfall at confidence level α is given by,

ESα(E) =
1

1− α

∫ +∞

V aRα(E)

xfL(E, x)dx.
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Then, integrating by parts and using the approximation in (4.1) we have,

ESα(E) =
1

1− α

(
1− αVaRα(E)−

∫ 1

V aRα(E)

F (E, x)dx

)
' ESW (m)

α (E), (4.6)

where,

ESW (m)
α (E) ≡ 1

1− α

1− αVaRW (m)
α (E)− 1

2
m
2

+1
cm,k(E)− 1

2
m
2

2m−1∑
k=k+1

cm,k(E)

 .

For sake of clarity, the explicit dependence of all ES and VaR expressions that appear in
next sections with respect to E from now on will be dropped.

4.3.2 VaR Contributions and Expected Shortfall Contributions

Let us consider how to decompose the total risk into individual transactions. We carry out
the allocation principle given by the partial derivative of the risk measure with respect to
the exposure of an obligor. In this way following [Tas00a] we define the risk contribution
of obligor i to the VaR value at confidence level α by,

VaRCα,i ≡ Ei ·
∂VaRα

∂Ei
,

which satisfies the additivity condition,
∑N

i=1 VaRCα,i = VaRα.
Taking into account that F (E,VaRα) = α then,

VaRCα,i ≡ Ei ·
∂VaRα

∂Ei
= −Ei ·

∂F (E,VaRα)
∂Ei

F (E,x)
∂x

∣∣∣
x=VaRα

= −Ei ·
∂F (E,VaRα)

∂Ei

fL(E,VaRα)
. (4.7)

Now according to (4.1), F (E, x) '
∑2m−1

k=0 cm,k(E)φm,k(x). Taking partial derivatives
with respect to Ei we get,

∂F (E, x)

∂Ei
'

2m−1∑
k=0

∂cm,k(E)

∂Ei
φm,k(x), (4.8)

and evaluating this expression in VaRα and using the approximation to the VaR value
given by VaRW (m)

α , we have,

∂F (E,VaRα)

∂Ei
'

2m−1∑
k=0

∂cm,k(E)

∂Ei
φm,k(VaRα) '

2m−1∑
k=0

∂cm,k(E)

∂Ei
φm,k(VaRW (m)

α ) = 2
m
2

∂cm,k(E)

∂Ei
,

(4.9)
due to the fact that,

φm,k(x) =

{
2
m
2 , if k

2m
≤ x < k+1

2m
,

0, elsewhere.
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Finally, considering the expressions (4.7) and (4.9) we obtain,

VaRCα,i ' VaRC
W (m)
α,i , (4.10)

where VaRC
W (m)
α,i ≡ C · Ei ·

∂cm,k(E)

∂Ei
and C is a constant such that

∑N
i=1 VaRC

W (m)
α,i =

VaRW (m)
α .

In a similar way we define the ESC for the obligor i at confidence level α as,

ESCα,i ≡ Ei ·
∂ESα
∂Ei

,

satisfying the additivity condition
∑N

i=1 ESCα,i = ESα. For the computation of these
expected shortfall contributions we have taken the derivative of the expected shortfall
expression in (4.6) with respect to Ei and used the approximation (4.8). That is,

ESCα,i ≡ Ei ·
∂ESα
∂Ei

= Ei ·
1

1− α

(
−α∂VaRα

∂Ei
+
∂VaRα

∂Ei
F (E,VaRα)−

∫ 1

VaRα

∂F (E, x)

∂Ei
dx

)
' ESC

W (m)
α,i ,

(4.11)

where,

ESC
W (m)
α,i ≡ −Ei ·

1

2
m
2

· 1

1− α
·

1

2

∂cm,k(E)

∂Ei
+

2m−1∑
k=k+1

∂cm,k(E)

∂Ei

 .

Later, in the numerical examples section, we will test the accuracy of the WA method
for the calculation of VARC and ESC by means of Monte Carlo estimates, which will
serve us as a benchmark. Under appropriate conditions the marginal VaR contribution
at confidence level α of the obligor i is,

VaRCα,i = E(Li|L = VaRα), (4.12)

and the marginal contribution at confidence level α to the expected shortfall is,

ESCα,i = E(Li|L ≥ VaRα). (4.13)

Thus, in both cases, the marginal risk contributions are conditional expectations of
the individual loss random variables, conditioned on rare values of the portfolio loss L.
We note that the expressions (4.12) and (4.13) decompose the total risk,

N∑
i=1

E(Li|L = VaRα) = E

(
N∑
i=1

Li|L = VaRα

)
= E(L|L = VaRα) = VaRα,

and,

N∑
i=1

E(Li|L ≥ VaRα) = E

(
N∑
i=1

Li|L ≥ VaRα

)
= E(L|L ≥ VaRα) = ESα.
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We estimate risk contributions by means of Monte Carlo simulations in two steps.
First, we compute the VaR value through an ordinary Monte Carlo simulation and then
we use the estimated VaR in (4.12) and (4.13). In this second step, for a given loss level
l, we consider the problem of estimating E(Li|L = l) and E(Li|L ≥ l). Both cases can
be treated together considering Ci = E(Li|L ∈ A) where A = l or A = [l,∞). For each
sampled scenario we proceed as follows,

1. Generate the systemic factor Y .

2. For each obligor generate the idiosyncratic component εi, i = 1, ..., N .

3. Finally, generate the default indicators Di and the individual losses Li, i = 1, ..., N .

These steps are repeated till K independent scenarios are generated. Let L(k) = L(k)
1 +...+

L(k)
N be the total portfolio loss on the k-th replication. To estimate the risk contributions

Ci, we use,

Ĉi =

∑K
k=1 L

(k)
i χ{L(k)∈A}∑K

k=1 χ{L(k)∈A}
.

To measure the variability of this estimator we use the following proposition (since Ĉi is
a ratio estimator, we can not use a simple standard deviation to measure its precision.
For a detailed explanation of the MC method for risk contributions see [Gla05]).

Proposition 4.3.1. Suppose P(L ∈ A) > 0 and let

σ̂2
i =

K
∑K

k=1(L(k)
i − Ĉi)2χ{L(k)∈A}(∑K

k=1 χ{L(k)∈A}

)2 ,

taking the ratio to be zero whenever the denominator is zero. Then the distribution of
Ĉi−Ci
σ̂i/
√
K

converges to the standard normal and (Ĉi − zδ/2σ̂i/
√
K, Ĉi + zδ/2σ̂i/

√
K) is an

asymptotically valid 1− δ confidence interval for Ci, with Φ(zδ/2) = 1− δ/2.

4.4 An Adaptive Gauss-Hermite Integration Formula

An important issue regarding the computation of the coefficients cm,k in (4.4) and
∂cm,k(Ei)

∂Ei

in (4.8) is the way to compute <(Q(E, reiu)) and ∂<(Q(E,reiu))
∂Ei

for a fixed loss level u. In
this section we present, in addition, a simplification in the GH formula that considerable
reduces the computational effort.
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4.4.1 Fast computation of cm,k(E)

We have explained in detail the calculation of the coefficients cm,k in Section 3.3.1. There
are three key points that essentially determine the computational complexity of the
Wavelet Approximation method. The first one is the portfolio size, N , which is fixed.
The second one is the number of times that the MGF must be evaluated (2m + 1) and the
last one the number of nodes (l) to be used in the GH quadrature every time the MGF
is computed at a loss level u. Let us show in the following paragraphs an interesting fact
regarding this last point.

We remark that, in practice, financial institutions tend to calibrate the parameter of
probability of default of a company from their rating systems and they get in this way
several pools. This means that portfolio obligors are classified in rating categories, being
the parameter Pn identical for all the obligors inside the same group, and distinct among
different groups.

For sake of simplicity, and without loss of generality, let us assume that we have a
unique rating category over the whole portfolio. This is Pn = P for all n = 1, ..., N , and
consequently, Pn(y) = P (y) for all n = 1, ..., N . Considering (3.28) and (3.29) we observe
that under this hypothesis,

lim
P→0

Rn = 1, lim
P→0

θn = 0,

and,

lim
P→1

Rn = r2mEn , lim
P→1

θn = 2mEnu.

Then, given a tolerance ε, we can simplify (3.30) and (3.31) by doing,

<(M̂L(E,−2m ln(reiu);x)) ' 1√
π
, =(M̂L(E,−2m ln(reiu);x)) ' 0,

for all x ≥ x1 where x1 is such that,

P (
√

2x1) < ε, (4.14)

this is, when y > Φ−1(P )−
√

1−ρΦ−1(ε)√
ρ

.

In a similar way,

<(M̂L(E,−2m ln(reiu);x)) ' 1√
π
r2m cos(2mu),

and,

=(M̂L(E,−2m ln(reiu);x)) ' 1√
π
r2m sin(2mu),

for all x ≤ x2 where x2 is such that P (
√

2x2) > 1− ε, i.e. when y < Φ−1(P )−
√

1−ρΦ−1(1−ε)√
ρ

.
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Taking into account these facts we have that (3.26) and (3.27) can be computed as,

<(M̃L(E,−2m ln(reiu))) '

'
l/2−n2∑
j=1

aj<(M̂L(E,−2m ln(reiu);x−j )) +

l/2−n1∑
j=1

aj<(M̂L(E,−2m ln(reiu);x+
j ))+

+
1√
π

(n1 + n2r
2m cos(2mu)),

(4.15)

and,

=(M̃L(E,−2m ln(reiu))) '

'
l/2−n2∑
j=1

aj=(M̂L(E,−2m ln(reiu);x−j )) +

l/2−n1∑
j=1

aj=(M̂L(E,−2m ln(reiu);x+
j ))+

+
1√
π
n2r

2m sin(2mu),

(4.16)

where n1 (respectively n2) is the number of nodes in the Gauss-Hermite quadrature greater
(respectively smaller) or equal than x1 (respectively x2). Thus, given a tolerance ε we
have truncated the left and right tails of the integration variable representing the business
cycle making use of the limit behavior instead of continuing with the quadrature. In the
section devoted to numerical examples we show the large amount of computation time
saved this way, while the accuracy remains the same.

4.4.2 Fast computation of
∂cm,k(E)
∂En

Let us explain the computations of the partial derivatives of the coefficients of the WA with
respect to the exposures. Again in this case we perform a truncation of the integration
variable in a similar way as in the previous section.

Taking the derivative of (4.4) with respect to En we get,

∂cm,k(E)

∂En
' 2

πrk

∫ π

0

∂<(Qm(E, reiu))

∂En
cos(ku)du.

Then taking into account (3.22) we have,

∂<(Qm(E, reiu))

∂En
=

∂<(M̃L(E,−2m ln(reiu)))
∂En

<(z2) + ∂=(M̃L(E,−2m ln(reiu)))
∂En

=(z2)

(<(z2))2 + (=(z2))2
,

and again using the Gauss-Hermite quadrature we have,

∂<(M̃L(E,−2m ln(reiu)))

∂En
'

l/2∑
j=1

aj

(
∂<(M̂L(E,−2m ln(reiu);x−j ))

∂En
+

+
∂<(M̂L(E,−2m ln(reiu);x+

j ))

∂En

)
,

(4.17)
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and,

∂=(M̃L(E,−2m ln(reiu)))

∂En
'

l/2∑
j=1

aj

(
∂=(M̂L(E,−2m ln(reiu);x−j ))

∂En
+

+
∂=(M̂L(E,−2m ln(reiu);x+

j ))

∂En

)
.

(4.18)

Now following steps similar to the end of Section 3.3.1 one obtains,

∂<(M̂L(E,−2m ln(reiu);x))

∂En
=

1√
π

(
N∏
n=1

Rn

)[
1

Rn

∂Rn

∂En
cos

(
N∑
n=1

θn

)
− ∂θn
∂En

sin

(
N∑
n=1

θn

)]
,

∂=(M̂L(E,−2m ln(reiu);x))

∂En
=

1√
π

(
N∏
n=1

Rn

)[
1

Rn

∂Rn

∂En
sin

(
N∑
n=1

θn

)
+
∂θn
∂En

cos

(
N∑
n=1

θn

)]
,

∂Rn

∂En
=

2mr2mEn

Rn

(
r2mEnP 2

n(
√

2x) ln r + Pn(
√

2x)(1− Pn(
√

2x)) (ln r cos(2mEnu)− u sin(2mEnu))
)
,

∂θn
∂En

=

2mr2mEnPn(
√

2x)
(
θDn (ln r sin(2mEnu) + cos(2mEnu)u)− θNn (ln r cos(2mEnu)− u sin(2mEnu))

)
(θNn )2 + (θDn )2

,

with,
θNn = r2mEnPn(

√
2x) sin(2mEnu),

θDn = 1− Pn(
√

2x) + Pn(
√

2x)r2mEn cos(2mEnu).

Again we try to reduce the computational effort in the Gauss-Hermite quadratures
(4.17) and (4.18). To this end we take into account that,

lim
P→0

∂Rn

∂En
= 0, lim

P→0

∂θn
∂En

= 0,

and,

lim
P→1

∂Rn

∂En
= 2mr2mEn ln r, lim

P→1

∂θn
∂En

= 2mu.

Then, given a tolerance ε we have,

∂<(M̂L(E,−2m ln(reiu);x))

∂En
' 0,

∂=(M̂L(E,−2m ln(reiu);x))

∂En
' 0,
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for all x ≥ x1 where x1 is such that,

P (
√

2x1) < ε, (4.19)

this is, y > Φ−1(P )−
√

1−ρΦ−1(ε)√
ρ

.

Also,

∂<(M̂L(E,−2m ln(reiu);x))

∂En
' 1√

π
2mr2m(ln r cos(2mu)− u sin(2mu)),

∂=(M̂L(E,−2m ln(reiu);x))

∂En
' 1√

π
2mr2m(ln r sin(2mu) + u cos(2mu)),

for all x ≤ x2 where x2 is such that P (
√

2x2) < ε, i.e. y < Φ−1(P )−
√

1−ρΦ−1(ε)√
ρ

.

Taking into account these facts, (4.17) and (4.18) can be computed by means of,

∂<(M̃L(E,−2m ln(reiu)))

∂En
'

'
l/2−n2∑
j=1

aj
∂<(M̂L(E,−2m ln(reiu);x−j ))

∂En
+

l/2−n1∑
j=1

aj
∂<(M̂L(E,−2m ln(reiu);x+

j ))

∂En
+

+
1√
π
n22mr2m(ln r cos(2mu)− u sin(2mu)),

(4.20)

and,

∂=(M̃L(E,−2m ln(reiu)))

∂En
'

'
l/2−n2∑
j=1

aj
∂=(M̂L(E,−2m ln(reiu);x−j ))

∂En
+

l/2−n1∑
j=1

aj
∂=(M̂L(E,−2m ln(reiu);x+

j ))

∂En
+

+
1√
π
n22mr2m(ln r sin(2mu) + u cos(2mu)),

(4.21)

where n1 (respectively n2) is the number of nodes in the Gauss-Hermite quadrature greater
(respectively smaller) or equal than x1 (respectively x2). Again, given a tolerance ε, we
have truncated the left and right tails of the quadrature in the variable of the business
cycle and used the limit behavior instead.

This method is specially suitable for very big portfolios or when the GH quadrature
would require a considerable number of nodes. The improvements are shown in the next
section devoted to numerical examples.
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4.5 Numerical Examples and Discussions

We test1 the methodology for the computation of ES, VaRC and ESC developed in the
previous sections considering four different portfolios. All them with exposure concen-
trations and ranging from 10 to 10000 obligors. The common set of parameters used for
the Wavelet Approximation method are: scale m = 10, 2m intervals for the trapezoidal
quadrature in the coefficients formula (4.4) and r = 0.9995 (as in Section 3.4).

Portfolio 4.1. This portfolio has N = 10000 obligors with ρ = 0.15, Pn = 0.01 and
En = 1

n
for n = 1, ..., N , as Portfolio P4 in Section 3.4.

Portfolio 4.2. This portfolio has N = 1001 obligors, with En = 1 for n = 1, ..., 1000, and
one obligor with E1001 = 100. Pn = 0.0033 for all the obligors and ρ = 0.2 as in [Hua07b].

Portfolio 4.3. This portfolio has N = 100 obligors, all them with Pn = 0.01, ρ = 0.5 and
exposures,

En =


1, n = 1, ..., 20,
4, n = 21, ..., 40,
9, n = 41, ..., 60,
16, n = 61, ..., 80,
25, n = 81, ..., 100,

as in [Gla05].

Portfolio 4.4. This portfolio has N = 10 obligors, all them with ρ = 0.5, Pn = 0.0021
and En = 1

n
for n = 1, ..., N as Portfolio P6 in Chapter 3.

For practical purposes and without loss of generality, in all cases we normalize dividing
En by

∑N
n=1En to meet the condition

∑N
n=1En = 1.

From now on, let VaRM
α , ESMα be the VaR and ES values computed by means of a

Plain Monte Carlo simulation with 5 million scenarios and VaRCM
α,i, ESCM

α,i the VaRC
and ESC values computed by means of a Plain Monte Carlo simulation with 100 million
scenarios to be used as a benchmark.

In what follows let us denote by VaRW (m)
α (l), ESW (m)

α (l),VaRC
W (m)
α,i (l), ESC

W (m)
α,i (l) the

result of the Wavelet Approximation method for computing risk measures and contribu-
tions, remarking that, we use a Gauss-Hermite quadrature with l nodes for the integrals
(3.26) and (3.27) in the case of VaR and ES, and also for the integrals (4.17) and (4.18)

in the case of VaRC and ESC. Analogously, VaRW (m)
α (l, ε), ESW (m)

α (l, ε), VaRC
W (m)
α,i (l, ε),

ESC
W (m)
α,i (l, ε) denote Wavelet Approximation results when computing risk measures and

risk contributions considering l-nodes in the Gauss-Hermite quadrature, but using the
expressions (4.14), (4.15) and (4.16) in the case of VaR and ES, and (4.19), (4.20), (4.21)
in the case of VaRC and ESC.

Let VaRA
α and VaRCA

α,i be the VaR and VaR contributions evaluated by the Asymptotic
Single Risk Factor (ASRF) model (further details about this method can be found in

1Computations have been carried out sequentially in a personal computer Dell Vostro 320 under
GNU/Linux OS, Intel CPU Core 2 E7500, 2.93GHz, 4GB RAM and using the gcc compiler with opti-
mization level 2.
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Section 1.4 and in [Lut09]). Table 4.1 presents the very high confidence VaR values for
portfolio 4.1 computed by means of Monte Carlo, ASRF and the Wavelet Approximation
method. The number of negative (l/2 − n2) and positive (l/2 − n1) nodes where the
conditional MGF is evaluated are also specified. Observe that with the approximations
VaRW (10)

α (20, 4·10−1) and VaRW (10)
α (20, 6·10−1) the MFG is not evaluated in positive nodes,

due to the fact that the conditional default probabilities (4.14) are extremely small at this
points. The relative error presented for the VaR value at 99.999% confidence level is about
−1% when using the WA method. Figure 4.1 represents the loss distribution for the WA
method with a 20-nodes GH formula and ε = 6 · 10−1, which only requires the evaluation
of the MGF in the first 7 negative nodes to achieve a high precision. We also provide the
result for the ASRF method and Monte Carlo (which, as always, give us the benchmark).
The estimation of VaR by means of the VaRW (10)

α (20, 6 ·10−1) approximation requires 25.3
seconds of CPU time, while the VaRW (10)

α (20) approximation needs of 71.5 seconds. This
is, the implementation of the asymptotic truncation of Sections 4.4.1 and 4.4.2 represents
an important improvement. It is also worth to underline that VaR

W (9)
0.9999(20, 6 · 10−1) and

VaR
W (8)
0.9999(20, 6 ·10−1) give also very accurate results (with relative errors equal to −0.47%

and −0.90% respectively) and computation times of 12.7 and 6.4 seconds respectively.
We also want to remark that the ASRF method clearly underestimates the risk due to
the presence of name concentration.

The Expected Shortfall calculated at several confidence levels with ESW (10)
α (20, 6·10−1)

is presented in Table 4.2 (we omit the computational time because there is almost no
difference between VaR and ES calculation in terms of computational effort). As the
results show again, a high precision is achieved in terms of the relative error. Figures 4.2
and 4.3 represent the contributions to the expected shortfall at 99% and 99.9% confidence
levels respectively by means of the WA method with a 20-nodes GH formula and ε = 10−4

(we present the ESC instead of the VaRC due to the robustness of plain Monte Carlo
simulation for the first measure). For sake of clarity in the plots, we have represented
only the 250 biggest and smallest risk contributions. The convergence towards Monte
Carlo is clear and the sum of the risk contributions shown in Table 4.3 are very close
to the ES values given in Table 4.2. ESCW (10)

α,n (20, 10−4) takes 622.5 seconds of CPU to

evaluate the partial derivative of the MGF in 14 nodes, while the ESCW (10)
α,n (20) method

needs of 671.8 seconds.

Method l/2− n2 l/2− n1 α = 0.9999 α = 0.99999

VaRM
α 0.2267 0.2973

VaRA
α 0.1683 (−25.76%) 0.2322 (−21.91%)

VaRW (10)
α (20) 10 10 0.2261 (−0.25%) 0.2935 (−1.30%)

VaRW (10)
α (20, 4 · 10−1) 9 0 0.2261 (−0.25%) 0.2944 (−0.97%)

VaRW (10)
α (20, 6 · 10−1) 7 0 0.2261 (−0.25%) 0.2944 (−0.97%)

Table 4.1: VaR values at 99.99% and 99.999% confidence levels for Portfolio 4.1. Errors relative to
Monte Carlo are shown in parenthesis.

Next we consider Portfolio 4.2 which is a well diversified portfolio where a big exposure
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Method l/2− n2 l/2− n1 α = 0.99 α = 0.999 α = 0.9999

ESMα 0.1290 0.1895 0.2553

ESW (10)
α (20) 10 10 0.1290 (−0.02%) 0.1895 (−0.01%) 0.2556 (0.12%)

ESW (10)
α (20, 4 · 10−1) 9 0 0.1289 (−0.12%) 0.1895 (−0.01%) 0.2556 (0.12%)

ESW (10)
α (20, 6 · 10−1) 7 0 0.1289 (−0.11%) 0.1896 (0.00%) 0.2559 (0.25%)

Table 4.2: ES values at 99%, 99.9% and 99.99% confidence levels for Portfolio 4.1. Errors relative
to Monte Carlo are shown in parenthesis.
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Figure 4.1: Tail probability approximation of Portfolio 4.1 with WA using a 20-nodes GH formula
and ε = 6 · 10−1.

(representing about 9% of the total portfolio exposure) has been added. So it presents
exposure concentration. As pointed out in [Hua07b], a straightforward Saddle Point
approximation fails for all the quantiles preceding the point of non smoothness. However,
WA method is capable to deal with this problem as we illustrate in Figure 4.4.

We also note that we obtain the same accuracy with the evaluation of only 15 nodes
of the asymptotic formulae (which needs only 5.6 seconds of CPU time) and using the
full one with 64 nodes (which needs of 23.4 seconds). The risk contributions to the 99.9%
ES are also provided in Table 4.6 using different ε. We present only the biggest and the
smallest risk contributions. Relative errors are almost identical with 33 and 64 nodes and
the computation times are 78.4 and 103.5 seconds. It is important to mention that, in
practice, we only need to compute the contributions for two different exposures. However,
we have performed the calculations for the whole portfolio in order to have an idea of the
computational effort for a portfolio of this size.

Let us consider now the Portfolio 4.3. The plot of Figure 4.5 shows the portfolio
loss distribution approximated with the WA method with a 64-nodes GH formula and
ε = 10−1. Table 4.8 contains different scenarios changing the parameter ε. It is remarkable
the high precision achieved when using ε = 10−1, which means that the conditional
MGF has been just evaluated in 12 negative nodes. The VaRW (10)

α (64) approximation
needs 2.3 seconds while the approximation VaRW (10)

α (64, 10−1) needs only 0.6 seconds.
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Figure 4.2: Risk contributions to the ES at 99% confidence level for the Portfolio 4.1.
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Figure 4.3: Risk contributions to the ES at 99.9% confidence level for Portfolio 4.1.

The 99.9% VaR contributions are presented in Table 4.9 and plotted in Figure 4.6. To
compute the VaR contributions by means of Monte Carlo simulation we have considered
A = (VaRM

α − 5 · 10−4,VaRM
α + 5 · 10−4) instead of A = VaRM

α , due to the fact that
VaR is a rare event. Moreover, we have generated 99% confidence intervals for the risk
contributions as detailed in Proposition 4.3.1. The risk contributions calculated by the
WA method using a 64-nodes GH formula and ε = 10−4 lie in the 99% MC confidence
intervals, showing again the excellent accuracy of the method. The ES contributions at
99.9% and 99.99% confidence levels are presented in Tables 4.10 and 4.11 respectively
(and plotted in Figure 4.7). The ESCW (10)

α,n (64, 10−4) approximation shows very accurate
results except for the 20 smallest exposures at confidence level 99.99% which considerably
underestimates the risk. The ESCW (10)

α,n (64) method takes 8 seconds for the computations

while ESCW (10)
α,n (64, 10−4) needs of 4.5 seconds. Like in the previous example, we have

calculated all the risk contributions.

In order to highlight the power of the WA method regarding the computational time,
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Method l/2− n2 l/2− n1 α = 0.99 α = 0.999∑N
n=1 ESCMα,n 0.1290 0.1892∑N
n=1 ESCW (10)

α,n (20) 10 10 0.1293 0.1891∑N
n=1 ESCW (10)

α,n (20, 10−4) 10 4 0.1293 0.1890

Table 4.3: Comparison of the total ES contributions at 99% and 99.9% confidence levels for Portfo-
lio 4.1.

Method CPU time

VaRW (10)
α (20, 6 · 10−1) 25.3

VaRW (9)
α (20, 6 · 10−1) 12.7

VaRW (8)
α (20, 6 · 10−1) 6.4

ESCW (10)
α,n (20, 10−4) 622.5

Table 4.4: Computational time (in seconds) for Portfolio 4.1.

we have shown the most relevant results in Tables 4.4, 4.7 and 4.12. Roughly speaking,
the WA approximation is more than 100 times faster than plain MC simulation.
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Method l/2− n2 l/2− n1 α = 0.999 α = 0.9999

VaRM
α 0.1077 0.1532

VaRA
α 0.0679 (−37.00%) 0.1195 (−21.99%)

VaRW (10)
α (64) 32 32 0.1079 (0.18%) 0.1538 (0.41%)

VaRW (10)
α (64, 10−8) 32 13 0.1079 (0.18%) 0.1538 (0.41%)

VaRW (10)
α (64, 10−4) 30 3 0.1079 (0.18%) 0.1538 (0.41%)

VaRW (10)
α (64, 10−2) 25 0 0.1079 (0.18%) 0.1538 (0.41%)

VaRW (10)
α (64, 5 · 10−1) 15 0 0.1079 (0.18%) 0.1538 (0.41%)

ESMα 0.1274 0.1809

ESW (10)
α (64) 32 32 0.1273 (−0.02%) 0.1810 (0.09%)

ESW (10)
α (64, 10−8) 32 13 0.1273 (−0.02%) 0.1810 (0.09%)

ESW (10)
α (64, 10−4) 30 3 0.1273 (−0.02%) 0.1810 (0.09%)

ESW (10)
α (64, 10−2) 25 0 0.1273 (−0.02%) 0.1810 (0.09%)

ESW (10)
α (64, 5 · 10−1) 15 0 0.1273 (−0.02%) 0.1810 (0.09%)

Table 4.5: VaR and ES values at 99.9% and 99.99% confidence levels for Portfolio 4.2. Errors relative
to Monte Carlo are shown in parenthesis.
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Figure 4.4: Tail probability approximation for Portfolio 4.2 with WA using a 64-nodes GH quadrature
and ε = 5 · 10−1.
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Method l/2− n2 l/2− n1 α = 0.999

ESCMα,1001 0.082016

ESC
W (10)
α,1001(64) 32 32 0.081075 (−1.15%)

ESC
W (10)
α,1001(64, 10−8) 32 13 0.081075 (−1.15%)

ESC
W (10)
α,1001(64, 10−6) 32 9 0.081075 (−1.15%)

ESC
W (10)
α,1001(64, 10−4) 30 3 0.081075 (−1.15%)

ESCMα,1 0.000045

ESC
W (10)
α,1 (64) 32 32 0.000046 (2.04%)

ESC
W (10)
α,1 (64, 10−8) 32 32 0.000046 (2.04%)

ESC
W (10)
α,1 (64, 10−6) 32 9 0.000046 (2.04%)

ESC
W (10)
α,1 (64, 10−4) 30 3 0.000046 (1.92%)∑N

n=1 ESCMα,n 0.1274∑N
n=1 ESCW (10)

α,n (64) 32 32 0.1274 (−0.01%)∑N
n=1 ESCW (10)

α,n (64, 10−8) 32 32 0.1274 (−0.01%)∑N
n=1 ESCW (10)

α,n (64, 10−6) 32 9 0.1274 (−0.01%)∑N
n=1 ESCW (10)

α,n (64, 10−4) 30 3 0.1273 (−0.05%)

Table 4.6: ES contributions at 99.9% confidence level for Portfolio 4.2. Errors relative to Monte
Carlo are shown in parenthesis.

Method CPU time

VaRW (10)
α (64, 5 · 10−1) 5.6

ESCW (10)
α,n (64, 10−4) 78.4

Table 4.7: Computational time (in seconds) for Portfolio 4.2.

Method l/2− n2 l/2− n1 α = 0.999 α = 0.9999

VaRM
α 0.4350 0.6859

VaRA
α 0.4209 (−3.25%) 0.6661 (−2.89%)

VaRW (10)
α (64) 32 32 0.4341 (−0.21%) 0.6870 (0.16%)

VaRW (10)
α (64, 10−8) 22 6 0.4341 (−0.21%) 0.6870 (0.16%)

VaRW (10)
α (64, 10−4) 17 1 0.4341 (−0.21%) 0.6870 (0.16%)

VaRW (10)
α (64, 10−2) 14 0 0.4341 (−0.21%) 0.6870 (0.16%)

VaRW (10)
α (64, 10−1) 12 0 0.4341 (−0.21%) 0.6870 (0.16%)

ESMα 0.5445 0.7576

ESW (10)
α (64) 32 32 0.5449 (0.08%) 0.7621 (0.59%)

ESW (10)
α (64, 10−8) 22 6 0.5449 (0.08%) 0.7621 (0.59%)

ESW (10)
α (64, 10−4) 17 1 0.5449 (0.08%) 0.7621 (0.59%)

ESW (10)
α (64, 10−2) 14 0 0.5449 (0.08%) 0.7621 (0.59%)

ESW (10)
α (64, 10−1) 12 0 0.5450 (0.09%) 0.7624 (0.63%)

Table 4.8: VaR and ES values at 99.9% and 99.99% confidence levels for Portfolio 4.3. Errors relative
to Monte Carlo are shown in parenthesis.
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Method CPU time

VaRW (10)
α (64, 10−1) 0.6

ESCW (10)
α,n (64, 10−4) 4.5

Table 4.12: Computational time (in seconds) for Portfolio 4.3.
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Figure 4.5: Tail probability approximation for Portfolio 4.3 using WA with a 64-nodes GH formula
and ε = 10−1.

Finally we present the results for Portfolio 4.4. The computation of the 99.99% ES
and the 99.99% ESC have been carried out by means of the plain WA method with a
20-nodes GH formula, since this portfolio is extremely small and the computational effort
is tinny to consider other improvements. The results are presented in Tables 4.13 and
4.14. With this example we just want to remark that the WA method is very versatile
and it can also deal with very small portfolios.

Method α = 0.9999

ESMα 0.6833

ESW (10)
α (20) 0.6814 (−0.29%)

Table 4.13: ES at 99.99% confidence level for Portfolio 4.4. Relative error to Monte Carlo is shown
in parenthesis.

This Chapter extends a previous work undertaken in Chapter 3. It is based on a
Haar wavelet approximation to the cumulative distribution of the loss function with the
computation of the ES as an alternative coherent risk measure to VaR. Moreover, a de-
tailed procedure for the calculation of the risk contributions to the VaR and the ES in a
credit portfolio is provided. The risk contributions are known to be very computation-
ally intensive to be estimated by means of MC because they are the expected value of
the individual loss conditioned on a rare event. Therefore, analytical or fast numerical
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Figure 4.6: VaR contributions at 99.9% confidence level for Portfolio 4.3 using the WA method and
GH integration formulas with 64 nodes and ε = 10−4.
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Figure 4.7: Expected Shortfall contributions at 99.9% (left) and 99.99% (right) confidence levels for
Portfolio 4.3 using the WA method and GH integration formulas with 64 nodes and ε = 10−4.

methods are welcome to overcome this problem. The model framework is the well known
one-factor Merton model, a one-period default model, which is the basis of the Basel II
Accord.

There are technical points taken into account that contribute to a considerable im-
provement of the WA method. We avoid the evaluation of the MFG in all the nodes of
the Gauss-Hermite formulas by means of using its asymptotic behavior. Proceeding this
way the speed of the WA method increases while accuracy remains. These improvements
are also applied to the computation of risk contributions to VaR and ES, although the
impact in the speed of the algorithm is much more relevant for risk measures than for risk
contributions.

This new methodology has been tested in a wide sized variety of portfolios, all them
with exposure concentration, where the Asymptotic Single Risk Factor Model fails due
to the name concentration. The results presented show that the Wavelet Approximation
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Obligor ESC
W (10)
0.9999,n(20) ESCM0.9999,n Relative error

1 0.340472 0.338706 0.52%
2 0.128672 0.128885 −0.17%
3 0.059568 0.059426 0.24%
4 0.041619 0.042070 −1.07%
5 0.028044 0.028805 −2.64%
6 0.023233 0.022825 1.79%
7 0.019335 0.019348 −0.06%
8 0.016606 0.015935 4.21%
9 0.014527 0.014614 −0.60%
10 0.012971 0.012227 6.08%∑N

n=1 ESC
W (10)
0.9999,n(20) 0.6850 0.6828 0.32%

Table 4.14: ES contributions at 99.99% confidence level for Portfolio 4.4 with the WA method.

method is highly competitive in terms of robustness, speed and accuracy being a very
suitable method to measure and manage the risks that arise in credit portfolios of financial
companies.





Chapter 5

The WA Extension to Merton Model
with Several Factors

The Asymptotic Single Risk Factor model for the computation of regulatory capital that
underlies Basell II, does not provide an appropriate quantitative framework for analyzing
sector concentration risk, due to the fact that it is based on a credit portfolio model
which is only applicable under the assumptions that the bank portfolios are perfectly
fine-grained and there is only a single source of systematic risk. The simplicity of the
model ensures its analytical tractability. However it makes it impossible to model risk
concentrations in a realistic way. Neither is name concentration captured, as we have
demonstrated in Chapters 3 and 4, nor is it possible to define sector concentration in this
one-factor model.

To account for sector concentration we make use of the WA method under the multi-
factor Merton model presented in Section 1.3.2, which involves the computation of high
dimensional integrals. To do this, we introduce the low discrepancy sequences and quasi-
Monte Carlo methods (QMC).

5.1 Low Discrepancy Sequences

Discrepancy is a measure of deviation from uniformity of a sequence of real numbers. In
particular, the discrepancy of n points x1, . . . , xn ∈ [0, 1]d, d ≥ 1, is defined by,

D(d)
n = sup

E

∣∣∣∣A(E;n)

n
− λ(E)

∣∣∣∣ ,
where the supremum is taken over all the subsets of [0, 1]d of the form E = [0, t1)× · · · ×
[0, td), 0 ≤ tj ≤ 1, 1 ≤ j ≤ d, λ denotes the Lebesgue measure, and A(E;n) denotes the
number of the xj that are contained in E.

A sequence x1, x2, . . . of points in [0, 1]d is a low discrepancy sequence if,

D(d)
n ≤ c(d)

(log n)d

n
, ∀n > 1,
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where the constant c(d) depends only on the dimension d. A detailed analysis of low
discrepancy sequences can be found in [Nie92] and in references therein. The author gives
a general method for constructing (t, d)-sequences, which are low discrepancy sequences
such that the discrepancy of the first n points is given by,

D(d)
n ≤ c(t, d, b)

(log n)d

n
+O

(
(log n)d−1

n

)
,

where b ≥ 2 is an integer parameter, upon which the sequence depends, c(t, d, b) '
bt/d! · (b/2 log b)d and t ≥ 0. The value t = 0 is desirable.

The generalized Faure sequence (see [Tez95]) is a (0, d)-sequence and is obtained as
follows. For a prime number b ≥ d and n = 0, 1, . . . , consider the base b representation
of n, i.e.,

n =
+∞∑
i=0

ai(n)bi,

where ai(n) ∈ [0, b) are integers. The j-th coordinate of the point xn is then given by,

x(j)
n =

+∞∑
k=0

x
(j)
n,kb

−k−1, 1 ≤ j ≤ d,

where,

x
(j)
n,k =

+∞∑
s=0

c
(j)
k,sas(n).

The matrix C(j) =
(
c

(j)
k,s

)
is called the generator matrix of the sequence and is given by

C(j) = A(j)P j−1, where A(j) is a nonsingular lower triangular matrix and P j−1 denotes
the j − 1 power of the Pascal matrix1, 1 ≤ j ≤ d.

Definition 5.1.1. If f is sufficiently differentiable, then the variation of f on [0, 1]d in
the sense of Hardy and Krause is,

V (f) =
d∑

k=1

∑
1≤i1<···<ik≤d

V (k)(f ; i1, . . . , ik),

where,

V (k)(f ; i1, . . . , ik) =

∫ 1

0

· · ·
∫ 1

0

∣∣∣∣ ∂kf

∂xi1 · · ·xik

∣∣∣∣ dxi1 · · ·xik ,
is the restriction of f to the k-dimensional face {(x1, . . . , xd) ∈ [0, 1]d : xj = 1, j 6=
i1, . . . , ik}.

In order to conclude, we state the Koksma-Hlawka inequality which establishes the
relationship between low discrepancy sequences and multivariate integration (see [Nie92]

1Pascal matrix is an infinite matrix containing the binomial coefficients.
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for details). If f is a real function defined in [0, 1]d, of bounded variation, V (f), in the
sense of Hardy and Krause, then for any sequence x1, . . . , xn ∈ [0, 1)d we have,∣∣∣∣∣

∫
[0,1]d

f(x) dx− 1

n

n∑
i=1

f(xi)

∣∣∣∣∣ ≤ V (f)D(d)
n . (5.1)

5.2 The WA method for the Multi-Factor Merton

Model

Let us consider the distribution of losses from default for a credit portfolio over a fixed
time horizon [0, T ], which again is usually one year. Let us consider the total loss from
default given by L =

∑N
n=1 Li, where N is the number of obligors or firms to which the

portfolio is exposed, Li = En · Dn, En are the exposures and Dn the default indicators.
Note that, without loss of generality, we are assuming constant loss given default 100%.

The indicator of default for the obligor n is assumed to be represented in terms of a
latent variable rn and a threshold Tn, Dn = χ{rn<Tn}, where the latent variables can be
represented as,

rn = an,1X1 + · · ·+ an,dXd + bnεn, n = 1, . . . , N, (5.2)

withX = (X1, . . . , Xd) representing systematic risk factors, εn, n = 1, . . . , N , idiosyncratic
factors and an,1, . . . , an,d, bn, n = 1, . . . , N their corresponding factor loadings. Although
the common factors X1, . . . , Xd may be correlated, we can transform them into indepen-
dent random variables by a factorization of their covariance matrix. So we assume that
X1, . . . , Xd, ε1, . . . , εN are independent standard normal random variables and,

a2
n,1 + · · ·+ a2

n,d + b2
n = 1, n = 1, . . . , N.

This implies that r1, . . . , rN are standard normal random variables with correlation,

cov(rn, rm) =
N∑
i=1

an,iam,i, n 6= m.

Let us define Tn = Φ−1(Pn), n = 1, . . . , N , where Pn are the default probabilities and
Φ is the cumulative distribution function of the normal standard distribution. Now,
conditional on a realization of the systematic risk factors x = (x1, . . . , xd), the default
indicators D1, . . . , Dn are independent and, using (5.2), the conditional probability of
default for the obligor n is given by,

Pn(x) = P(Dn = 1|X = x) = P(rn < Tn|X = x) = P

(
εn <

Tn −
∑d

k=1 an,kxk
bn

)

= Φ

(
Tn −

∑d
k=1 an,kxk
bn

)
, n = 1, . . . , N.
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In order to avoid Monte Carlo simulation for the entire portfolio, we consider the WA
approximation for credit portfolios developed in Section 3.3, using the multi-factor setting
instead of the one-factor model. The only difference now, is that the approximation (3.10)
for computing the unconditional moment generating function M̃L(s) is a d-dimensional
integral and it would be too computationally intensive to apply the Gauss-Hermite method
used for the one dimensional case. Concretely, we have to calculate,

M̃L(s) =

∫
Rd

N∏
n=1

[
1− Pn(x) + Pn(x)e−sEn

] 1

(2π)
d
2

e−
‖x‖2

2 dx, (5.3)

where ‖ · ‖ represents the euclidean norm in Rd.
We observe that although Monte Carlo methods are desirable in high dimension, a

large number n of integrand evaluations can be required since the expected error decreases
as n−

1
2 . Instead, we propose quasi-Monte Carlo methods, which evaluate the integrand

at deterministic points in contrast with MC methods, which evaluate the integrand at
random points. The deterministic points belong to low discrepancy sequences which,
roughly speaking, are uniformly spread as we have seen in the previous Section.

The Koksma-Hlawka inequality (5.1) states that low discrepancy sequences yields a
worst case error for multivariate integration bounded by a multiple of (log n)d/n, where
n is the number of evaluations and d is the dimension of the integrand. For d fixed
and n large, the error (log n)d/n beats the MC error n−

1
2 , but for n fixed and d large,

the (log n)d/n factor looks ominous. Then, it was believed that QMC methods should
not be used for high dimensional problems (d = 12 was considered high). However,
several authors have tested QMC methods for high dimensional problems arising in finance
and, although the results are empirical, QMC methods consistently beat MC methods
([Pas95],[Pap96]).

High dimensional problems in market risk management have been address using the
generalized Faure sequence by [Pap99], which concludes that QMC retains its superior
performance for modest n an large d often used in risk management. For this reason, we
test our WA approximation by means of computing the multidimensional integral (5.3)
with both, the generalized Faure sequence and a Monte Carlo method. As we did with the
one-factor model, a plain Monte Carlo simulation for the entire portfolio with 5 million
scenarios will serve us as a benchmark.

Making the change of variable xj = Φ−1(tj), j = 1, . . . , d, expression (5.3) reads,

M̃L(s) =

∫
[0,1]d

N∏
n=1

[
1− P̃n(t) + P̃n(t)e−sEn

]
dt,

where,

P̃n(t) = Φ

(
Tn −

∑d
k=1 an,kΦ

−1(tk)

bn

)
, n = 1, . . . , N.

Finally, M̃L(s) can be approximated by,

M̃
(l)
L (s) =

1

l

l∑
i=1

N∏
n=1

[
1− P̃n(ti) + P̃n(ti)e

−sEn
]
, (5.4)
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where,

P̃n(ti) = Φ

(
Tn −

∑d
k=1 an,kΦ

−1(ti,k)

bn

)
, n = 1, . . . , N,

and ti = (ti,1, . . . , ti,d) ∈ [0, 1]d, i = 1, . . . , l are l consecutive terms of the generalized
Faure sequence.

Let us consider the following test2 portfolio:

Portfolio 5.1. This portfolio has N = 100 obligors, with d = 25, Pn = 0.1, an,k =
1√
26
, bn = 1√

26
, k = 1, . . . , d, n = 1, . . . , N and exposures,

En =


25, n = 1, ..., 20,
16, n = 21, ..., 40,
9, n = 41, ..., 60,
4, n = 61, ..., 80,
1, n = 81, ..., 100.

The set of parameters used for the Wavelet Approximation method are: scale m = 10,
2m intervals for the trapezoidal quadrature in the coefficients formula (4.4) and r = 0.9995.
The left plot of Figure 5.1 shows the WA approximation with a MC method with l = 20000
to compute (5.4), while the right plot of Figure 5.1 represents the WA approximation with
a QMC method with the generalized Faure sequence and l = 20000 to compute (5.4). For
this example, the QMC approach seems to fit better than the MC method in the tail of
the distribution. Anyway, this behavior must be further investigated with different sized
portfolios and with other low discrepancy sequences.
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Figure 5.1: Tail probability approximation of Portfolio 5.1 with the WA method using a MC method
(left) and a QMC method (right).

The risk measures and contributions can also be calculated once we have computed
the loss distribution by means of the WA approximation with several factors. Although

2Computations have been carried out sequentially in a personal computer Dell Vostro 320 under
GNU/Linux OS, Intel CPU Core 2 E7500, 2.93GHz, 4GB RAM and using the gcc compiler with opti-
mization level 2.



104 Chapter 5. The WA Extension to Merton Model with Several Factors

the approximation of multidimensional integrals with MC or QMC methods can be time
consuming, the direct estimation of the risk contributions is much more computationally
intensive with plain Monte Carlo simulation. Moreover, in contrast with MC simulation,
the Wavelet Approximation allows us to have an explicit expression of the cumulative
distribution function. An adaptive method over the unit cube should also be investigated,
comparing the convergence of the adaptive method with the convergence of the method
used directly to solve the problem.



Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this dissertation we have investigated the credit risk measurement of a credit portfolio
under the asset-value model framework.

We have designed and implemented a new numerical method for inverting the Laplace
transform based on Haar wavelets basis. This method is particularly well suited for
stepped-shape functions, often arising in discrete probability models. Haar wavelets are
capable to approximate a step function with just two coefficients while Fourier series with
lot of terms still produces poor approximations at the jump point.

This inversion method have been successfully applied to the calculation of the risk
measures VaR and Expected Shortfall in a credit portfolio under the one-factor Merton
model. Many numerical tests have been performed, showing that the Wavelet Approxi-
mation is capable to deal with concentrated or small portfolios at high loss levels, where
the ASRF model tends to fail. Moreover, the indirect Saddle Point approach has been
also implemented and compared with the Wavelet Approximation. The results show that
WA is very accurate and fast even when the credit portfolio contains a high degree of
name concentration, while the Saddle Point underestimates the risk at certain loss levels
and overestimates the risk at other loss levels. It is important to highlight that the WA
approach computes the entire distribution of losses without extra computational time,
while Saddle Point only calculates the quantile of the loss distribution function at the
desired confidence level.

Furthermore, we have accurately computed the risk contributions to the VaR and the
risk contributions to the ES with the WA method. The small relative errors obtained
with respect to Monte Carlo methods in a wide variety of credit portfolios confirms the
power of our method. An adaptive integration method for the Gauss-Hermite quadrature
has been also implemented, with an important reduction of the amount of time needed
when calculating the risk measures and contributions. VaR and ES can be calculated for
very big portfolios with a personal computer in a few seconds, with a relative error less
than 1%.

The WA method has been extended to the multi-factor case by means of a quasi-
Monte Carlo method for computing high dimensional integrals, showing again accurate
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results when benchmarking with a plain Monte Carlo method. However, more tests must
be provided in order to assess whether QMC methods outperform MC methods for high
dimensional integrals.

6.2 Future Research

Further extensions of the Wavelet Approximation method can be investigated in order to
accommodate stochastic LGD instead of constant LGD. Moreover, empirical analysis have
shown that the distribution of the LGD often exhibits a bimodal shape. This character-
istic is intuitively reasonable when considering two possible developments of a defaulted
loan. First, the obligor may recover and continues the contractual repayment covenants.
This results in a very small loss amount basically driven by administrative costs. Sec-
ondly, the obligor may not recover which results generally in a higher loss amount. In
accordance with the bimodal shape that the empirical results exhibit, the LGD modeling
can be carried out by means of a bimodal model, considering a mixture of two beta distri-
butions. Bimodal distributions are constructed by mixing canonical distributions under
some certain assumptions. Since the LGD is in general a value between zero and one,
it is reasonable to use distributions with a bounded support, e.g., beta distributions on
the unit interval. The generation of the density function of a random variable following a
multi-mode distribution resulting from a mixture of random variables is just the convex
combination of the densities of these random variables.

Empirical findings have revealed certain dependence between the PD and the LGD
parameters as highlighted by [Gie06] among others authors, so this fact should also be
integrated in the WA method. It is now well understood that LGD is positively correlated
to the default rate, in other words, LGD is high when the default rate is high, which
suggests that there is also systematic risk in LGD, just like in the default rate parameter.
Then, it would be worth to account for the influence of the systematic factors on the LGD
somehow.

We should include in our models the effect that financial distress, initially affecting
only a single obligor or a small group of obligors, can spread to a large part of the
portfolio or even to the whole economy. Interactions which can be due to direct business
links between firms, such as borrower-lender relationship, can provide a channel for the
spread of financial distress within an economic system or a portfolio. We refer to this
source of default correlation risk as default contagion, as pointed out in Chapter 1.

One drawback in the Merton model is that default can occur only at the maturity T of
the bond and then, it is limited to the default-only mode. Regarding this point, it would
be worth to incorporate credit migrations that allow us to observe how the probability of
default of an obligor evolves. Credit migration can also be accommodated in a Merton-
type model as noticed by [Lut09]. We can consider a firm which has been assigned to
some rating category at time zero. The time horizon is fixed to T , and we assume that the
transition probabilities of a firm are available for all rating grades (transition matrices
can be estimated form empirical default data). The transition probability denotes the
probability that the firm belongs to a certain rating class at the time of maturity T . In
particular, one rating class among these rating grades denotes the default probability PD
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of the firm. This important issue should be also investigated.
Finally, compared to a model with normally distributed asset returns as the Merton

model, using a distribution with fatter tails as, for example, the Variance Gamma (VG)
distribution, leads to an increase in the economic capital of the portfolio. We should assess
the impact in the economic capital buffer substituting the normally distributed factors in
the Merton model by VG distributed ones, or more generally speaking, by a Lévy model.
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