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Summary 

Wave storms and river inputs have been found to be the dominant forcing mechanism 

of sediment transport in continental shelves dominated by medium to large rivers 

around the world (e.g. Drake and Cacchione, 1985; Sherwood et al., 1994; Ogston and 

Stemberg, 1999; Traykovski et al., 2000; Wadman and McNinch, 2008) and in the 

northwestern Mediterranean Sea (Jiménez et al., 1999; Puig et al., 2001; Guillén et al., 

2002, 2006; Palanques et al., 2002, 2011; Ferré et al., 2005; Roussiez et al., 2005; 

Ulses et al., 2008). However, the contribution of “small” Mediterranean river systems in 

fine-grained sediment dynamics is not well known. Flood and storm events redistribute 

not only sediment but also all the associated matter as well, such a heavy metals, 

which are indicators of the impact of industrial and urban activities. For these reasons, 

the present thesis project involves studying the dynamics of sediments and associated 

heavy metals across the inner continental shelf off the Besòs River (Barcelona), and in 

particular determining the effect of floods and storms in a littoral system affected by 

industrial and urban activities. To this end, several oceanographic surveys were carried 

out between 20 and 40 m water depths in the Barcelona continental shelf to obtain a 

variety of data: to register vertical hydrographical profiles (temperature, salinity and 

turbidity); to record time series of physical parameters (currents, salinity, temperature, 

turbidity and seabed variation) by deploying oceanographic equipment; and to take 

sediment samples (short cores and Van Veen grabs) and suspended and downward 

particulate matter from water samples and sediment traps for further sedimentological 

and geochemical analysis. 

The time period of the present study comprised three seasons, from autumn 2007 to 

spring 2008, which showed distinct features between them. The purpose of section 3 

was to describe the main hydrographic and hydrodynamic conditions during the study 

period to support the interpretation of sediment transport processes. Three different 

periods in terms of storm and river activity matched the natural seasons of the year: 

The period comprised between end of September 2007 and December 2007 (autumn) 

was characterized by an intense frequency of northeastern-eastern storms mostly 

coupled with high but short river discharges and a convergence of the across-shelf 

current between 20 m and 30 m water depths; between January and early March 2008 

(winter), the wave and river activity and frequency were reduced significantly with 

offshore currents dominating the across component; and finally, from March to mid 

June 2008 (spring), specially between May and June 2008, river discharges lasted 
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more than one month and occurred under low wave energy conditions or in conjunction 

with S-SE and SW wave storms.  

The sediment response to the forcing conditions observed during the study period was 

analyzed in section 4. The grain size and porosity measurements taken in all the 

sediment samples collected during the experiment (sediment cores, sediment grabs 

and sediment traps) showed a high spatial and temporal variability of the bottom 

sediment properties, downward sediment fluxes and near-bottom sediment 

concentrations across the inner-shelf. Those changes were associated to periods of 

high wave shear stress, river and current energy and therefore, were more intense in 

autumn 2007 and spring 2008. However, an across shelf spatial variability was 

observed during this period which was associated to the sediment availability (i.e. 

critical shear stress gradients). As a result, the same storm produced larger near-

bottom sediment concentration in deeper waters due to the limitation on the availability 

of resuspendable sediment in the near-shore. 

The resultant sediment dynamics across the inner shelf and results in sediment 

transport modeling during a resuspension event were then addressed in section 5. In 

the inner shelf off Barcelona, the general circulation of sediment transport was mainly 

directed towards the southwest (along-shelf) during the study period, however, the 

seaward component was considerably relevant and favored the segregation of coarse 

and fine sediment from the nearshore towards deeper areas. Nonetheless, noticeable 

differences in sediment transport patterns were observed across the inner shelf. Near-

bottom sediment transport at 20 m water depth was mainly offshore, while in deeper 

parts of the inner shelf the along-shelf component dominated the sediment transport. 

The resulting sediment transport and its variability across the shelf, deposited riverine 

and storm-derived fine sediment in an along-shelf path towards the southwest between 

20 m and 30 m water depth and only under the strong storms were transferred 

seaward toward the 40 m water depth site and to deeper areas. These differences had 

in turn a strong seasonal component related to the availability of fine sediments from 

river inputs and the energy of waves and currents. In this sense, autumn and spring 

registered events affected mostly at 20 m water depth and autumn and early winter 

months were more energetic at deeper waters reversing the sing of sediment transport 

gradients across the shelf. During this event, the sediment transport model captured 

adequately the transport rates across the inner shelf and allowed the estimation of the 

integrated vertical sediment flux in 10 meters of the water column above the seabed. 

Consequently with the observed and modelled pattern of sediment transport, the 
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seabed variation was higher at 30 m than at 20 m water depth, with a total seabed 

erosion of about 10 cm and 4 cm, respectively. 

The implications of the sediment dynamics during the study period in the transference 

of heavy metals from the Besòs River across the shelf was analyzed in section 6. The 

Besòs River introduced heavy metal pollutants into the nearshore continuously 

associated with the regular regime and sporadically during increments in river 

discharge. Only during high wave and current energy the anthropogenic contamination, 

previously deposited in the shallow inner-shelf, reached deeper areas. As a result, the 

most contaminated sediment accumulated southwestward from the river and sewer 

mouths along the inner shelf decreasing offshore. The most affected area associated to 

the Besòs river influence was located around the tripod sites, especially between 20 m 

and 30 m water depths decreasing offshore.  

Finally, the main conclusions and proposals for future research of this thesis are 

discussed in section 7. In it, the importance of "small" Mediterranean river systems in 

the transfer of sediment across the continental shelf is highlighted from the sediment 

transport events observed during the study period. 
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Resumen 

El oleaje durante temporales y los aportes fluviales han sido considerados como los 

mecanismos de forzamiento dominantes del transporte de sedimento en las 

plataformas continentales afectadas por ríos medianos y grandes en todo el mundo 

(por ejemplo, Drake y Cacchione, 1985; Sherwood et al., 1994; Ogston y Stemberg, 

1999; Traykovski et al., 2000; Wadman y McNinch, 2008) y en el Mediterráneo 

noroccidental (Jiménez et al., 1999; Puig et al., 2001; Guillén et al., 2002, 2006; 

Palanques et al., 2002, 2011; Ferré et al., 2005; Roussiez et al., 2005; Ulses et al., 

2008). Sin embargo, la contribución de "pequeños" sistemas fluviales mediterráneos 

en la dinámica de sedimento está poco estudiada. El oleaje y las tormentas no solo 

redistribuyen sedimentos si no también toda la materia asociada, así como, metales 

pesados, que son indicadores del impacto de las actividades industriales y urbanas. 

Por estas razones, el presente proyecto de tesis implica el estudio de la dinámica de 

sedimento y metales pesados asociados a través de la plataforma continental del río 

Besòs (Barcelona), y en particular, determinar el efecto de los temporales y tormentas 

en un sistema litoral afectado por actividades industriales y urbanas. Para este fin, 

varias campañas oceanográficas se llevaron a cabo entre 20 y 40 m de profundidad en 

la plataforma continental de Barcelona donde se tomaron gran variedad de datos y 

muestras: perfiles verticales hidrográficos (temperatura, salinidad y turbidez); series 

temporales de parámetros físicos (corrientes, salinidad, temperatura, turbidez y la 

variación del fondo) mediante el anclaje de equipos oceanográficos, y muestras de 

sedimento (testigos cortos de sedimento y dragas Van Veen) y de partículas en 

suspensión (a partir de muestras de agua y trampas de sedimentos) para análisis 

sedimentológicos y geoquímicos. 

El período de estudio comprendió tres estaciones, desde otoño de 2007 a primavera 

de 2008, que mostraron características distintas entre ellas. En la sección 3 se 

describen las principales condiciones hidrográficas y la hidrodinámica durante el 

período de estudio para apoyar la interpretación de los procesos de transporte 

sedimentario. Se identificaron tres periodos diferentes en función de la actividad fluvial 

y la del oleaje que coincidieron con las estaciones naturales del año: El período 

comprendido entre finales de septiembre de 2007 y diciembre de 2007 (otoño) se 

caracterizó por una intensa frecuencia de temporales del noreste-este junto con 

incrementos en la descarga del río y una convergencia de la componente across-shelf 

de la corriente entre 20 m y 30 m de profundidad; entre enero y principios de marzo de 

2008 (invierno), la actividad y la frecuencia del oleaje y del río se redujeron 
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significativamente con predominio de la componente offshore de la corriente; y, por 

último, de marzo a mediados de junio de 2008 (primavera), especialmente entre mayo 

y junio de 2008, las descargas fluviales se intensificaron durante más de un mes 

produciéndose en condiciones de baja energía del oleaje o en combinación con 

temporales del S-SE o SW. 

La respuesta del sedimento del fondo a las condiciones de forzamiento observadas 

durante el período de estudio se analizó en la sección 4. El tamaño medio de grano y 

la porosidad de todas las muestras de sedimento recogidas durante el experimento 

(testigos, dragas y trampas) mostraron una alta variabilidad espacial y temporal. Los 

flujos verticales de sedimento y la concentración de sedimento en suspensión cerca 

del fondo también variaron a través de la plataforma interna durante el periodo de 

estudio. Estos cambios se asociaron a eventos de fuerte oleaje y corrientes y a 

descargas del río y, por tanto, fueron más intensas en otoño de 2007 y primavera de 

2008. Sin embargo, se observó una variabilidad espacial a través de la plataforma 

interna durante estos eventos que se asoció a la disponibilidad de sedimento (es decir, 

a gradientes de “critical shear stress”). Como resultado, una misma tormenta produjo 

una concentración de sedimento cerca del fondo mayor en aguas más profundas 

debido a que la disponibilidad de sedimento fino era limitada en aguas someras. 

En la sección 5, se analiza la dinámica de sedimento resultante a través de la 

plataforma interna y los resultados obtenidos en el modelado del transporte de 

sedimento durante un evento de resuspensión. En la plataforma interna de Barcelona, 

la circulación general del transporte sedimentario se dirigió principalmente hacia el 

suroeste (along-shelf) durante el período de estudio, sin embargo, la componente 

onshore fue bastante relevante y favoreció la segregación de sedimento grueso y fino 

desde la costa hacia zonas más profundas. Sin embargo, se observaron diferencias 

notables en el transporte de sedimento a través de la plataforma interna. A 20 m de 

profundidad, el transporte de sedimento fue principalmente onshore, mientras que 

zonas más profundas de la plataforma interna la componente along-shelf dominó el 

transporte. Este patrón de transporte, depositó sedimentos del río y depositados 

previamente en una trayectoria along-shelf hacia el suroeste entre 20 m y 30 m de 

profundidad y sólo durante los temporales más fuertes fueron transportados hacia 40 

m de profundidad y probablemente a zonas más profundas de la plataforma 

continental. Estas diferencias tuvieron a su vez una fuerte componente estacional 

relacionada con la disponibilidad de sedimentos fluviales finos y la energía del oleaje y 

las corrientes. En este sentido, en otoño y primavera los eventos registrados afectaron 
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mayormente a 20 m de profundidad y a finales de otoño y comienzos del invierno 

fueron más activos en aguas profundas, cambiando el gradiente del transporte 

sedimentario a través de la plataforma. Durante este evento, el modelo de transporte 

sedimentario capturó adecuadamente las tasas de transporte a través de la plataforma 

y permitió estimar el flujo vertical integrado de sedimento en 10 metros de columna de 

agua sobre el fondo marino. En consecuencia con el patrón de transporte de 

sedimento observado y modelado, la variación del fondo marino fue superior a 30 m 

que a 20 m de profundidad, con una erosión de alrededor de 10 cm y 4 cm, 

respectivamente. 

Las implicaciones de la dinámica sedimentaria durante el período de estudio en la 

transferencia de metales pesados des del río Besòs a través de la plataforma se 

analizó en la sección 6. El río Besòs introdujo metales pesados cerca de la costa 

continuamente durante el régimen de descarga regular y esporádicamente en 

incrementos de caudal del río. Sólo durante las condiciones más altas de oleaje y 

corrientes la contaminación antropogénica, previamente depositada en la parte somera 

de la plataforma, alcanzó zonas más profundas. Como resultado, el sedimento más 

contaminado se acumuló hacia el suroeste del río y de las desembocaduras de los 

pluviales. La zona más afectada asociada a la influencia del río Besòs se localizó 

especialmente entre 20 m y 30 m de profundidad disminuyendo en profundidad. 

Por último, las principales conclusiones y propuestas de futura investigación de la 

presente tesis se abordan en la sección 7. En ella, se destaca la importancia de 

"pequeños" sistemas fluviales mediterráneos en la transferencia de sedimento a través 

de la plataforma continental que se manifiesta a partir de la secuencia de eventos de 

transporte sedimentario observada durante el periodo de estudio. 
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1 Introduction 

1.1 Effects of floods and storms on the continental shelf 

The importance of events like floods and storms on sediment delivery and reworking on 

river-dominated continental shelves has been recognized in many studies during the 

last few decades. Wave storms and river inputs have been found to be the dominant 

forcing mechanism of sediment flux in continental shelves (e.g. Drake and Cacchione, 

1985; Sherwood et al., 1994; Ogston and Stemberg, 1999).  

The delivery of sediment from rivers to inner shelves occurs as hypopycnal and 

hyperpycnal plumes, whose trajectories, the timing of the high discharge conditions 

and their relationship with physical oceanographic processes in the receiving basin can 

impact the fate of fluvial sediment in the marine environment. In large river systems as 

the Mississippi or the Amazon (Wright and Coleman, 1974; Nittrouer and DeMaster, 

1987; Cacchione et al., 1995), the annual sediment load is delivered continuously to 

the shelf mainly as hypopycnal plumes. Periods of elevated water discharge last over 

3-4 months and are associated with seasonal flooding. Due to the size of the drainage 

basin and the duration of the elevated discharge, there is little direct coupling between 

season floods and conditions in the coastal ocean. A fraction of the fine-grained 

sediments deposited over these months are transported to the distal portions of the 

dispersal system during the remainder of the year (Palinkas et al., 2005). Instead, in 

small rivers systems (drainage basins < 104 km2), where most of the annual sediment 

load is discharged during episodic events, the short duration of floods may lead to a 

more important role of synoptic scale (days to weeks) meteorological forcing on the 

fate of the sediment discharged onto the continental shelf (Geyer et al., 2000).  

In continental shelves controlled by tides and swells, the interactions of small rivers 

sediment supply and physical oceanographic energy have been defined as “oceanic 

storm” (Wheatcroft and Borgeld, 2000), “wet/dry storms” (Ogston et al., 2000) and 

“high/low concentration regimes” (Fan et al., 2004). The terms oceanic storm, wet 

storm and high concentration regime have been used to describe events of small 

mountainous river systems where flooding and sediment delivery often coincide with 

energetic oceanic conditions such as large waves and fast currents. The magnitude 

and distribution of sediment-suspension and transport events are controlled primarily 

by storms and episodic floods, the concurrence of which provides conditions for strong 
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across-shelf transport. Under these conditions, deposition in shallow water is limited 

and sediment can be widely dispersed, resulting in a seabed deposit that is located 

offshore and downstream of the river mouth (e.g. the Eel River - California, USA: Geyer 

et al., 2000). In this context, Geyer et al. (2000), Ogston et al. (2000) and Traykovski et 

al. (2000) showed that the river plumes formed by the Eel River did not provide the 

offshore transport of sediment required to reach the mid-shelf. Rather, the river deliver 

the sediment to the bottom boundary layer on the inner shelf, possibly leading to the 

formation of an ephemeral mud deposit, and then the transport of sediment into the 

mid-shelf and off-shelf must occur due to processes within the bottom boundary layer, 

including wave induced resuspension and the gravity-driven transport of dense 

suspensions.  

However, recent studies presented a challenge to the preceding ideas suggesting that 

other factors are important in the fate of sediment in the shelf, particularly differences in 

shelf gradients and timing of floods and storms. In this context, although, gravity-driven 

flows have been reported off other small high-load river systems discharging into 

energetic shelves, such as the Fly River in Papua New Guinea or the Waiapu and 

Waipaoa rivers in New Zealand (Wright and Friedrichs, 2006), the pattern of flood and 

sedimentation seemed to vary for each system. Wadman and McNinch (2008) and 

Bever et al. (2011) showed that the Waipaoa River dispersal system differed from a 

paradigm developed for those small rivers because significant sediment deposition 

occurred in the nearshore during oceanic storms. 

Conversely, small river floods that occur during the onset of relatively quiet physical 

conditions, when limited tidal currents and generally small significant wave heights 

result in limited bed shear stress for reworking and advection offshore, the discharged 

sediment can remain in shallow water close to the river mouth. Sediments that are 

deposited nearshore can be subsequently resuspended and transported to distal 

portions of the dispersal system when shear stresses become sufficiently high. The 

suspended load is then the main sediment transport mechanism resulting in sediment 

winnowing and erosion across the shelf and bypassing of a portion of the sediment 

over the shelf edge. Allison et al. (2000) inventoried the formation of a 1-3 cm thick 

annual flood deposit on the Atchafalaya (Louisiana – USA) inner shelf during the high 

river discharge period (March-April) that persisted for several months as a function of 

the relatively low energy of this margin. The subsequent winter resuspension events 

redistributed the sediment from shallower to deeper parts of the shelf.  
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In this context, the NW Mediterranean Sea is a micro-tidal, low-energy system. 

However, most of the fluvial systems that discharge into the NW Mediterranean Sea 

are smaller and have lower sediment and water supplies than “small” rivers around the 

world. In fact, “small” rivers around the world, such as the Eel River or the Atchafalaya 

River, have similar dimensions (water and sediment supplies) to “medium” rivers in the 

Mediterranean Sea. Therefore, the dominant of hydrodynamic forcing are likely to be 

different from that shelves that receive higher water and sediment discharges from 

rivers. 

Floods and storm-generated wave effect on coastal sediment resuspension and 

transport in the shelf has been emphasized by several studies in “medium” to “large” 

Mediterranean Rivers systems on the Ebro margin (Jiménez et al., 1999; Puig et al., 

2001; Guillén et al., 2002; Palanques et al., 2002) and on other margin of the north-

western Mediterranean such as the Gulf of Lions (Ferré et al., 2005; Roussiez et al., 

2005; Guillén et al., 2006; Ulses et al., 2008; Palanques et al., 2011). These studies 

revealed that the wave-induced bottom shear stress is generally the main stirring factor 

for sediment resuspension which is counteracted by the immersed density of the 

particles. The near-bottom suspended sediment concentration and wave-orbital 

velocity are generally correlated during storms that occur without relevant continental 

runoff. When wave-storm and floods occur simultaneously, the effect is combined and 

the results in terms of sediment dynamics are diverse depending on the intensity, 

duration and the sequence of events. Although along-shelf sediment fluxes are 

dominant during most of the time in NW Mediterranean continental shelves, such as 

the Ebro (Palanques et al., 2002), in the Gulf of Lions, extreme floods and storms can 

lead to an across- and along-shelf sediment transport about the same order of 

magnitude (Bourrin et al., 2008; Ulses et al., 2008; Palanques et al., 2011). However, 

the Gulf of Lions is probably a privileged area in the Mediterranean Sea for across-

shelf export due to be more often affected by relatively stronger storms, dense shelf 

water cascading and the wind-induced cyclonic circulation (Durrieu de Madron et al., 

2005; Palanques et al, 2006; Canals et al., 2006; Ogston et al., 2008). 

Nonetheless, few studies have addressed sediment dynamics in continental shelves off 

a typical “small” Mediterranean river system (e.g. Têt River in the Gulf of Lions: Guillén 

et al., 2006; Bourrin et al., 2008). In these regard, Guillén at al. (2006) differentiated 

episodes of sediment dispersal in the inner shelf of the Têt River (Gulf of Lions) during 

“wet storms” when storm conditions coincided with local precipitation and elevated river 

discharge and “dry storms” when wave storms occur in the absence of significant river 
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discharge. The main differences between the wet and dry storms arose after the storm. 

This “small” Mediterranean river system allows the deposition of fine-grained 

particulate material near the river mouth during flood events as ephemeral layers. Their 

location above the storm wave base make them subjected to regular resuspension 

events that transport these fine materials further offshore. 

Available 1D theoretical models can be useful for the study of the interactions between 

bottom sediments and combined wave and current flows in continental shelves (Wiberg 

et al., 1994; Harris and Wiberg, 1997; Wiberg et al., 2002; Traykovski et al., 2007; 

Ferré et al., 2010; Bever et al., 2011). These models use as input observational waves, 

currents and sediment characteristics to calculate suspended sediment profiles, 

velocity profiles and sediment transport (e.g. Wiberg and Smith, 1983; Wiberg et al., 

1994; Harris and Wiberg, 2001). Most models of continental shelf transport have been 

applied over times for which detailed flow and sediment data are available, with 

implementations ranging from a single transport event to a number of months, and are 

fitted to measurements of flow velocity and water turbidity at different points above the 

bottom. Although, a reference concentration or flux boundary condition at the bottom is 

required to establish the concentration of sediment at each water level, Wiberg et al. 

(1994) argued that adding a limit on the depth in the bed from which sediment available 

for resuspension imposes a maximum suspended volume for each fraction. This 

surface sediment bottom layer within which bed sediment is “well mixed”, and can 

therefore reach the surface and be suspended, is referred as the “active layer depth”, 

and in the Wiberg et al. (1994) one-dimensional sediment transport model is used for a 

dynamic representation of the bed armoring. 

In this context, the grain size of the available sediment is one of the crucial parameters 

for the application of models because it determines the bottom roughness, the critical 

conditions for resuspension and the presence of armoring. However, the inputs and 

changes of bottom sediment characteristics due to the presence of sediment sources 

are not taken into account in these models. A detailed bottom and suspended grain 

size characterization is required of any site, specially those close to a sediment source 

if an accurate estimation of the sediment fluxes is to be achieved, and therefore, an 

evaluation of the model performance in the study site. 

In any case, the majority of open-coast studies directed towards understanding 

sediment dynamics have focused on the mid to outer parts of energetic shelves or in 

the inner shelves of medium-sized Mediterranean river systems. However, the 
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contribution of “small” Mediterranean river systems in fine-grained sediment dynamics 

is not well known. In this context, the amount of sediment captured in these regions, 

the time-scales of deposition-erosion and the patterns of sediment transport across the 

shelf in these typical Mediterranean systems are poorly understood. 

1.2 The role of across-shelf gradients in sediment dynamics 

On many shelves, including those off Barcelona and the Mediterranean coast, along-

shelf transport often dominates sediment flux (Palanques et al., 2002). However, the 

largest gradients in sediment flux are across the shelf (Harris and Wiberg, 2002). 

These flux gradients may arise from spatial gradients in wave energy, current velocity, 

sediment properties and/or the proximity to sediment sources. The net deposition or 

erosion of sediments in the continental shelf is leaded for those cross-shelf 

divergences and convergences in sediment flux (Harris and Wiberg, 2002). Therefore, 

to adequately analyze sediment dynamics on the shelf, it is important to resolve the 

across shelf variation of sediment resuspension and dispersion processes (Wright et 

al., 1999) and the factors that may enhance or prevent these processes such as 

seabed sediment properties (e.g. Drake and Cacchione, 1989; Wiberg et al., 1994) or 

biological control (e.g. Wright et al., 1997). 

For given surface wave conditions, the magnitude of the wave-generated bed shear 

stress decreases with increasing water depth. These shear stress gradients are 

present on any wave-dominated shelf, and they may produce gradients in suspended 

sediment flux that contribute to erosion and deposition across the shelf (Harris and 

Wiberg, 2002).  

Further, Wright et al. (2002) concluded that pulsational gravity-induced transport of 

sediment suspended by waves is likely to be an important mode of across-shelf 

transport on the inner shelf of energetic sandy environments and the mid-shelf of 

energetic muddy environments. 

The continental shelf may be also affected by intense currents near the bottom which 

can be able to transport particles resuspended by waves. The influence of local wind in 

shelf motions and sediment dynamics has been widely reported (e.g. Lentz et al., 1999; 

Geyer et al., 2000; Hendrickson and MacMahan, 2009). While in the mid-shelf the wind 

stress together with the Coriolis Force is the dominant across-shelf transport 

mechanism (Ekman transport – Lentz et al., 1999), on the inner shelf, as the water 
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depth decreases, the along-shelf surface stress becomes increasingly balanced by the 

bottom stress instead of the Coriolis force reducing Ekman surface boundary layer 

(Dever et al., 2006). Observations in some inner shelf regions along the US coast 

(Lentz et al., 1999; Fewings et al., 2008; Kirincich et al., 2009) found that alongshore 

winds are not sufficient mechanism in driving across-shelf exchange on the inner shelf. 

Hendrickson and MacMahan (2009) observed that when onshore winds (Sea breeze) 

occur the cross-shelf exchange of material is onshore near the surface and offshore 

near the sea bed but during the relaxation period (land breeze), the surface stress is 

not large enough and material is not transported cross-shore.  

The importance of physical sediment properties such as particle size and water content 

on seabed erosion has long been recognized (e.g. Einsele et al., 1974; Amos et al., 

1997, 2004; Stevens et al., 2007; Law et al., 2008) and how they can limit or enhance 

transport rates across the shelf (Wiberg et al., 1994; Amos et al., 1997; Harris and 

Wiberg, 2002; Roussiez et al., 2005; Guillén et al., 2006). In a heterogeneous bed, the 

wave and current shear stresses preferentially resuspend fine sediment leaving a 

coarser layer of sediment at the bed surface that prevents the flow from suspending 

underlying fine sediment. This process is referred to as “bed armoring” (Wiberg et al., 

1994). In a consolidated muddy bed, cohesive strengths reduce erodibility (Amos et al., 

1997, 2004). Bed texture on many shelves grades from coarser sediments on the inner 

shelf to fine-grained sediments over the middle and outer shelf. Seabed off of some 

rivers, including those of the NW Mediterranean Sea, exhibits a distinct mud deposit 

that can be traced to fluvial sources (Palanques and Diaz, 1994). Therefore, bed 

texture varies across the shelf and thereby their potential erodibility under storm 

conditions as well. However, previous observations documented the episodic nature of 

flood sediment deposition and the modification of seabed texture (grain size, sorting, 

grading) and therefore, the rates of suspended sediment flux on the continental shelf 

(e.g., Sommerfield and Nittrouer, 1999; Wheatcroft and Borgeld, 2000; Harris and 

Wiberg, 2002; Roussiez et al., 2005; Guillén et al., 2006; Bever et al., 2011). Those 

flood or storm event muddy beds with high water content are more easily resuspended 

and, having a lower settling velocity, are more likely to remain in suspension once 

mobilized.  

Guillén et al. (2005) observed that sedimentation and erosion events produced 

changes in the grain size of the surface bottom sediment as well as along a 20-cm 

thick layer on the Ebro inner shelf. The main processes responsible for sediment 

changes were associated to sedimentation events caused by river floods or wave 
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storms, and selective winnowing of the sediment during low-energy conditions and 

probably by bioturbation of the bottom sediment. Roussiez et al. (2005) showed that in 

the Gulf of Lions (NW Mediterranean), fine-grained deposits from the rivers prodeltaic 

structures that according to their mean grain size mainly stand below the storm wave 

base, also exist above the storm wave limits due to an intense mud accumulation 

creating cohesive strengths that limit significantly post-deposit erosion. Further, 

Stevens et al. (2007) observed, along the 20 m isobath of the western Adriatic Sea, 

that during wintertime muddy sediment with lower porosity were more easily eroded 

due to the presence of sand-sized particles than those without it suggesting that the 

presence of sand-sized particles enhances erodibility.  

One-dimensional models cannot capture spatial gradients in wave energy, current 

velocity or sediment properties and although the temporal and spatial (in the vertical) 

variability of the sediment grain size can be a major source of error in models like that 

which consider a moving active layer in a homogeneous sediment (Guillén et al., 

2005), those models are useful to examine sediment resuspension in response to 

oceanographic forcing and to easily realize a sensitivity test of locals factors before 

applying more complex sediment transport models. 

Therefore, the sediment physical properties (grain size and porosity), the mutual 

interaction between cohesive and non-cohesive sediment, the bioturbation of the 

bottom sediment as well as their variability in time and space, determined by the 

sediment dispersion system and sequence of flood and storm events, influence the 

amount of near-bottom suspended sediment concentration and therefore, the seabed 

sediment erosion, transport and deposition across the inner shelf. 

1.3 Heavy metals in the littoral system 

Flood and storm events redistribute not only sediment but also all the associated 

matter as well, such an organic matter and pollutants. A frequent group of 

contaminants in sediment of Mediterranean coastal systems and continental shelves 

are heavy metals, which are indicators of the impact of industrial and urban activities. 

In areas heavily affected by these activities, the irregular regime of rivers, storm sewers 

and outfalls along with the episodic character of many of the discharges made through 

them makes the contaminants to reach the sea in sporadic pulses that are difficult to 

predict and quantify.  
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Heavy metals have a high affinity with fine sediment particles (silt and clay) (Gibbs, 

1973; Eisma, 1981, 1993) and therefore, the transport and fate of these contaminants 

are also associated with the transport and deposition of suspended particulate matter 

(SPM) discharged into the sea. The SPM and its associated contaminants are 

dispersed by mixing and advective processes. The ultimate sink is influenced by the 

prevailing short-term currents (Csandady, 1981). After sedimentation, contaminants 

can be resuspended either by bioturbation or by physical erosion. However, due to 

processes of particle aggregation, to the micro-tidal regime and the moderate wave 

energy of the Mediterranean Sea, an important part of sludge contaminated with heavy 

metals and waste is deposited near the coast, before being sufficiently diluted, 

generating anomalous contents on the seabed. Thus, the distribution of the heavy 

metals anomalies found in the sediments of some Mediterranean continental shelves 

show a maximum pattern located nearby contaminant discharge points, such as rivers 

and collectors, with a preferred distribution along the internal shelf near the shore 

(Frignani et al., 1978; Added et al., 1980; Modamio, 1986b; Alonso et al., 1986; 

Palanques and Diaz, 1994; Puig et al., 1999).  

The dynamic of the contaminated sediment deposits is more complex nearby urban 

and industrial areas with a heavy anthropogenic pressure because the marine 

environment not only receives inputs from natural sources (rivers, wind) but also by 

artificial regulations systems (storm sewers and outfalls) some of them located offshore 

(sewage pipelines, or dump sites).  

Nowadays, developed countries control the levels and address the problem of heavy 

metals pollution in the marine environment to estimate the economic and social impact 

of the different sources of contamination and to undertake preventive and corrective 

actions. 

Numerous studies have demonstrated that the near-shore sediments from coastal 

areas near large industrial and urban areas are highly contaminated with heavy metals 

(Duedall et al. 1983; Krom et al. 1983) and some of this studies have detected heavy 

metals anthropogenic impact on the suspended particulate matter (SPM) and 

sediments discharged by the Besòs River (Cros and García-Rey, 1980; Modamio, 

1986a; Palanques and Díaz, 1994; Palanques, 1994) and the Llobregat River 

(Modamio, 1986b; Puig et al., 1999; Palanques et al., 2008). Those authors showed 

that the inner part of the Barcelona continental shelf, in front of Barcelona, was one of 

the most polluted areas in the Mediterranean. This littoral system was affected by a 
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complex situation with a variety of pollution sources (rivers, sewage collectors, sewers, 

etc.) and a historic contamination dating from the early 20Th century at the Besòs 

prodeltaic deposit was reported (Palanques et al., 1998). 

However, all these studies reported historical contamination or where carried out 

previously to the generalization of the implementation of corrective actions in industries 

and urban areas. A detailed spatial and temporal resolution study of heavy metals 

downward fluxes and bottom sediment pollution levels in the inner continental shelf of 

Barcelona have been carried out to understand the present day transfer and deposition 

of suspended particulate matter and associated heavy metal pollution across this 

contaminated area. 

1.4 Study area 

Barcelona is located in the NE coast of Spain in the NW Mediterranean Sea (Figure 

1.1). The Barcelona continental shelf extents from the Foix Canyon (southern limit) to 

the Blanes Canyon (northern limit). It is a narrow shelf (6 – 20 km) consisting on an 

inner, middle and outer regions separated by the 30 – 40 and the 80 m isobaths, 

respectively, with the shelf break at 110 – 120 m depth (ITGE, 1989).  

 
Figure 1.1. Map of the Barcelona continental shelf showing the study area and the wave data 
points used in this project. The map projection is UTM zone 31N datum ED50. 
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Our study focused on the Besòs River and the adjacent part of the Barcelona inner 

continental shelf (NW Mediterranean Sea) (Figure 1.1). The Llobregat and Besòs rivers 

discharges represent the main sediment supply to this region of the Barcelona 

continental shelf. The suspended load in the lower part of the Besòs river is variable 

and relatively high (Palanques, 1994). These values are usual for a short river with 

mountainous basin affected seasonally by heavy rains. The Besòs river basin has an 

area of 1029 km2 and its main course flows north-south along 52 km from the Catalan 

Coastal Ranges to the Mediterranean Sea. The Besòs River annual sediment 

discharge has been averaged in 15000 T/year which forms a delta of 8.3 km2 with a 

coastal development of 7.6 km shifted south-westwards from the river mouth as a 

result of the dominant littoral circulation (Liquete et al., 2007). Mean water discharge 

between 1968 and 2008 was 6.8 m3/s at Santa Coloma de Gramenet gauging station, 

2.8 km far from the water mouth (433347.3; 4589242.6; UTM zone 31N; datum ED50), 

where the maximum water discharge of 270 m3/s was measured in May 9th 1991 

(Liquete et al., 2009). 

In this region the tidal range is lower than 0.2 m, and the waves are the main 

hydrodynamic forcing acting on the continental shelf. Statistical analysis of wave 

conditions in the region from 1984 to 2004 shows mean significant wave height values 

(Hs) of 0.70 m, with Hs maxima of 4.61, maximum wave heights of 7.80 m and 

averaged mean period of 4.29 s (Gómez et al., 2005). Storms occur mainly from 

October to April and the most important ones are those coming from the East, due to 

the combination of the coast orientation and the Mediterranean climate. The wind 

regime is characterized by small inter-annual variability (Font, 1990). The predominant 

winds come from the north and northwest, primarily during autumn and winter, where 

its energy concentrated in low frequencies associated with synoptic passage of low-

pressure systems, which in the Catalan Sea corresponds to 3-12 days. In summer and 

spring, the dominant winds are southwesterly, with the dominant frequencies being the 

synoptic and diurnal (sea breeze) bands (Font, 1990). Grifoll et al. (2012) identified 

that, in the Catalan Sea, the variability of the along-shelf current flow is influenced 

basically by local wind-forcing and sea level gradients, and also by water column 

stratification and the influence of rapid pulses of river discharge.  

Sediment resuspension in the Western Mediterranean Sea is caused primarily by the 

wave-storm activity when wave heights and periods increase significantly (Jiménez et 

al., 1999; Puig et al., 2001; Guillén et al., 2002; Palanques et al. 2002; Ferré et al., 

2005). Guillén et al. (2002) showed that sediment resuspension, in response to storm 
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waves on the Ebro area is mainly effective on the inner-shelf region. In addition, Puig et 

al. (2001) reported that strong north-eastern wave-storm (Hs>4.5 m and Ts>11 s) could 

also resuspend fine-grained sediments from the mid-shelf mud-belt, at 60 m depth, and 

transported off-shelf through the bottom nepheloid layer. The surface sediment 

distribution and the location of the prodeltaic mud deposits were observed to be 

coherent with the hydrodynamic processes and induced near-bottom sediment fluxes. 

Palanques et al. (2002) reported that on the Ebro shelf, fine sediment accumulated 

mainly on the mid-shelf, where the lowest mean combined wave-current shear stresses 

occurred, whereas on the inner shelf some mud accumulated, but was frequently 

resuspended due to the high combined wave-current shear stresses occurring on that 

region. On the Barcelona continental shelf, sediment tends to be transported south-

westward due to the action of the dominant littoral drift and the Northern Current, a 

geostrophic current that flows over the continental slope and shows episodic incursions 

on the continental shelf and some permanent mesoscale features (Font el al., 1995; 

Flexas et al., 2002; Rubio et al., 2005). Fine-grained suspended sediment derived from 

rivers plumes or storms resuspension can be transferred to the slope and beyond 

through permanent nepheloid layers (Puig and Palanques, 1998; Palanques et al., 

2008). 

Liquete et al. (2007) recognized two main morphosedimentary domains (Figure 1.2): a 

modern, river-influenced area, and a relict sediment depleted area. The modern, river-

influenced shelf includes the Llobregat and Besòs adjacent prodeltas, which represents 

the main Holocene depocenter in the area. The finest fluvial material is preferentially 

accumulated along-shelf, south-westwards, from both river mouths as a result of the 

dominant littoral circulation. 

The sediment distribution has the same characteristics of other Mediterranean shelves 

that receive significant discharges by rivers (Palanques et al 1990; Diaz et al., 1994; 

Palanques and Diaz, 1994; Puig et al., 1999; Liquete et al., 2010): (1) medium well 

sorted sand (2 phi) in less than 15 to 20 m water depth; (2) mostly silt and clay (7 - 8 

phi) distributed to the south from the mouth of the Besòs River between isobaths of 20 

and 60 m; and (3) biogenic relict silty sand (3 to 4 phi), which covers the shelf between 

60 m depth until the continental slope.  

Barcelona city has approximately 13 km of coastline containing the city harbor, in the 

southernmost part of the city, three marinas, some storm sewers and more than three 

kilometers of beaches. The northern area of the beaches had almost disappeared by 
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the 1980s due to the invasion of urban and industrial areas to the harbor and marinas 

proliferation and to the decrease in the input of sediments to the coastal zone. The 

current beaches were created as part of the renewal plan that took place for the 1992 

Olympic Games, when the old industrial infrastructures were demolished to create the 

Olympic Village (now transformed into a residential district) and new beaches were 

built north and south of the Olympic Marina. 

In 1979, the Barcelona-Besòs water treatment plant was built near the Besòs River 

mouth, which discharged sludge waste through a 4-km-long pipeline at 56 m depth until 

the 1990s. Nearshore the pipe was placed within up to 2 m deep narrow trench, while 

seaward the tube emerged progressively till lying on the sea floor. Leakages from the 

Besòs pipeline resulted in several mound-shaped features along its path (Liquete et al., 

2007). This pipeline was taken away and a new one was built. The new one, following 

the environmental regulations, only discharge water treated from the Barcelona-Besòs 

water treatment plant. 

 
Figure 1.2. Sketch showing the general zonation of the Barcelona shelf. Map projection is UTM 
31N WGS84. From Liquete et al. (2007). 

The continental shelf in front of the city of Barcelona is an example of a coastal 

environment heavily affected by human action. This shelf receives the impact of heavy 

metals contamination discharged from the Besòs River, the water treatment plant and 

the old sewers of the city. In addition, present day storm sewers and many human 

infrastructures and activities have major impacts on sediment dispersal patterns that 



1. Introduction 

13  

are reflected on the seafloor cover, which is largely reworked by dredging, anchoring, 

and trawling activities (Liquete et al. 2007, 2010; Palanques et al., 2009). 

The distribution of heavy metal pollution associated with suspended particulate matter 

on the  Barcelona continental shelf was addressed by Palanques (1994) and 

Palanques et al. (1998) that reported high levels of Pb, Cr, Cu, Cd and Ni in the 

suspended particulate matter (SPM) and the surface sediments on the inner shelf of 

this Mediterranean area. The Besòs River, the Bogatell sewer and the sewage sludge 

produced in the Barcelona-Besòs wastewater treatment plant were identified as the 

main sources of heavy metal pollution in the continental shelf of Barcelona. Palanques 

and Díaz (1994) also reported anthropogenic heavy metal pollution associated to the 

sediment fine fraction (clay and silt) of the Besòs prodelta shallower than 50 m, 

between the river mouth and about 10 km southward. These authors showed that, in 

this continental shelf, the highest values of heavy metals were located around the 

Besòs river and the Bogatell sewer mouths and in the mound-shaped features along 

the sewage pipeline path (Figure 1.3) where the silt + clay content was higher than 90 

%. Heavy metals pollution decreased from that point southward. In the outer shelf, 

contamination by heavy metals was relatively low, except at the mouth of the old 

pipeline of the water treatment plant (56 m depth) in the transitional zone between the 

prodeltaic sediments and the relict sand of the outer shelf (Palanques and Diaz, 1994).  

 
Figure 1.3. Distribution of surface contaminated sediments by heavy metals on the continental 
shelf of Barcelona. * Pipeline Mouth of the treatment plant. From Palanques et al. (1998). 
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Nowadays, the corrective actions that have been implemented in industries and urban 

areas in the Besòs basin should have been produce a decrease in the heavy metals 

contamination levels discharged by the Besòs River and the waste treatment plant 

pipeline, which is only discharging water waste. 

1.5 Main objectives 

The present thesis project involves studying the dynamics of sediments and associated 

heavy metals across the inner continental shelf off the Besòs River (Barcelona), and in 

particular determining the effect of floods and storms in a littoral system affected by 

industrial and urban activities.  

The continental shelf off Barcelona has been previously studied in terms of dispersion 

processes (Font, 1990; Grifoll et al., 2012), modern and relict sedimentary features 

(Liquete et al., 2007, 2010), sediment accumulation rates (Sanchez-Cabeza et al., 

1999) and heavy metal contamination (e.g. Palanques and Diaz, 1993; Palanques, 

1994; Palanques et al., 1998, 2002). These studies provided a first interpretation of the 

inner-shelf motions and sediment properties that can support studies of sediment 

transport dynamics and associated contaminants in this area. However, these authors 

also reported the need of investigation in terms of across-shelf dynamics of sediments 

and associated heavy metal contamination. 

In addition, the study of sediment dynamics across the shelf and the quantification of 

sediment transport in a micro-tidal inner shelf, influenced by a “small” Mediterranean 

river and moderate wave energy is necessary to complete the knowledge of the fate of 

sediment from rivers into oceans and how the particles are dispersed and accumulated 

across different sedimentary environments of the continental margins. 

Particularly, the aims of the study are: 1) to characterize the discharges of sediment 

and associated heavy metals from the Besòs River and to determine the conditions in 

which they occur; 2) To quantify the sediment fluxes and associated heavy metals; 3) 

To study the transport and resuspension processes in the Besòs system sedimentary 

deposit addressing the factors controlling sediments dynamics across the inner shelf 

and; 4) To obtain valuable data for applying numerical models of sediment dynamics in 

the study area. In all these aims, special emphasis is placed on storm events, heavy 

rainfalls and fast currents.  
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2 Methods 

2.1 Field work and instrumentation 

During the SEDMET Project, several oceanographic surveys were carried out to obtain 

a variety of data: to register vertical hydrographical profiles (temperature, salinity and 

turbidity); to record time series of physical parameters (currents, salinity, temperature, 

turbidity and seabed variation) by deploying oceanographic equipment; and to take 

sediment samples (short cores and Van Veen grabs) and suspended and downward 

particulate matter from water samples and sediment traps for further sedimentological 

and geochemical analysis.  

Four SEDMET cruises were carried out between September 2007 and June 2008 in 

the inner continental shelf off Barcelona (Figure 1.1) aboard of the R/V García del Cid 

of the Consejo Superior de Investigaciones Científicas and the R/V Sarmiento de 

Gamboa of the Ministerio de Ciencia y Tecnologia: 

The SEDMET-I cruise was carried out between the 27th and 29th of September of 

2007, at the beginning of the autumn season which is the most energetic season of the 

year in this Mediterranean region. The objective of this cruise was to perform the 

hydrographic profiles to characterize the water column at this time of the year which 

corresponded to beginning of the study period, to deploy the equipment and to take 

representative samples of the bottom sediment.  

The SEDMET-II cruise (28th – 30th of November 2007) was scheduled for the end of the 

energetic season in order to recover the data from the equipment and take some 

representative samples of the bottom sediment and the hydrographic conditions at end 

of autumn and beginning of winter.  

During the SEDMET-III (28th and 29th of February of 2008), the maintenance tasks of 

the deployed equipment was performed, the bottom sediment was sampled and the 

hydrographic structure was recorded.  

Finally, during SEDMET-IV (19th of June 2008) the equipment was recovered and the 

bottom sediment sampling and the hydrographic profiles were performed to 

characterize the area at the end of the spring season which corresponded to the end of 

the study period.  
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In addition, monitoring monthly oceanographic surveys were carried out along the 

study period. The objective of these surveys was to register vertical hydrographical 

profiles (temperature, salinity and turbidity); to collect suspended particulate matter 

samples (SPM) from water samples; and to take sediment samples (Van Veen grabs) 

in order to track the study area and to calibrate some equipment during the 

deployments period. 

Suspended sediment matter samples were also collected from the Besòs River close to 

the water discharge gauging located nearby the river mouth. The river sampling period 

was scheduled to one month interval, approximately. 

The locations of the recording and sampling sites are shown in the following sections. 

2.1.1 Benthic tripods 

The use of benthic tripods coupled with numerous sensors for the study of the 

hydrodynamic and sedimentary processes in coastal seas has been widely applied. 

Investigations from benthic tripods over the past fifty years have had a major impact on 

scientific knowledge: 1) validation and application of boundary-layer and sediment 

transport theory in the sea; 2) documentation and identification of the range of physical 

processes and associated sediment transport on continental shelves; and 3) data input 

for development and evaluation of numerical models of shelf circulation and 

sedimentology (Sternberg, 2005).  

In addition, the use of these instrumented tripod coupled with an altimeter to observe 

event-scale sedimentary dynamics was applied as a new approach to quantify changes 

in seabed level (erosion or accumulation) that occur during discrete resuspension or 

deposition events in muddy inner-shelf shelves (Guillén et al., 2006; Palinkas et al., 

2010). These studies showed that the altimeter can be used to directly observe 

changes in sea bed on a muddy inner shelf and allowed quantification of the net 

seabed change during short-lived resuspension events that are difficult to observe with 

other methods. 

Three benthic tripods were deployed in the Barcelona continental shelf at 20, 30 and 

40 m water depth (Be09, Be08 and Be07, respectively, Figure 2.1) during the field 

cruises SEDMET to evaluate vertical and horizontal sedimentary fluxes and their 

driving forcing conditions in the inner northern Barcelona continental shelf.  
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Figure 2.1. Position of the benthic tripods deployed: Be09 at 20 m water depth, Be08 at 30 m 
depth and Be07 at 40 m depth. The map projection is UTM zone 31N datum ED50. 

Each tripod was equipped with several sensors and instruments (Figure 2.2):  

• An Aanderaa Doppler current meter (RCM-9) that measured current speed and 

direction every 20 minutes. The RCM-9 uses the Doppler Shift principle as the 

basis for its measurements. The sensor transmits acoustic pulses of 2 MHz into 

the water in sequence. As the sound propagates, small particles or air bubbles 

in the water reflect a portion of the energy. The black-scattered energy is picked 

up by the transducers and analyzed. A microprocessor computes vector 

averages current speed and direction over the last sampling interval in an area 

of 0.5 – 2 m from the instrument. The sensor was placed at 0.58 meters above 

bottom (mab). 

• Together with the current speed and direction, RCM units are coupled with a 

pressure sensor set at a range of 0-20 MPa for the two shallower tripods (20 

and 30 m water depth) and the deepest one (40 m water depth) set at a 0-700 

KPa range, a temperature sensor (Low range: 9.3 – 33.4 C) and an inductive 

cell conductivity sensor (0 – 74 mS). In addition, RCM-9 models were also 

equipped with two Aanderaa optical back-scatter turbidimeters calibrated with 

Formazin into two different sensitivity range 0 – 20 NTU (Nephelometric 
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Turbidity Unit) for normal hydrodynamic conditions, and 0 – 500 NTU for storm 

conditions. These sensors were at 0.53 meters above bottom (mab). 

 
Figure 2.2. Picture of the benthic tripod used in this project. 

• An NKE ALTUS 2 Hz altimeter that measured the seabed position and water 

depth every 15 minutes. Altus is a high frequency acoustic submersible 

recording altimeter. It is based on a 2 MHz echo sounder which transducer was 

located on a light frame at 0.22 cm from the bed. This frame avoids any 

sediment scouring in the measurement area. A separate container includes 

altimeter electronics, data logger, pressure sensor and energy. 
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Figure 2.3. Schematic drawing of the sediment trap used in this study. 

• A sediment trap which incorporates a carousel with 12 rotary collectors for 

sampling settling particulate matter (Figure 2.3). Sediment traps are tools for 

studying downward particle composition and fluxes to the seafloor over periods 

of weeks to years. The trap collecting hull is mainly cylindrical with a height of 

97 cm and an inner diameter of 13 cm with an aspect ratio (height/diameter) of 

7.5. Many trap-users (see Reynolds et al., 1980) have chosen an aspect ratio of 

either 3.0 or 5.0 as the minimum value to prevent particle resuspension in traps. 

In fact, the minimum trap aspect ratio to prevent particle resuspension can be 

even lower and depends on the bottom shear stress inside the trap (and thus, 

on R) and on the particles collected (Butman et al. 1986). The lower part is 

conical and ends in a connecting cylinder. The carousel (Technicap model 

PPS3) is controlled by a programmable motor that allow the presetting of 

variable sampling intervals for each of the 12 sample tubes (Heussner et al., 

1990). During the experiment, the sampling interval was set at 5 days for the 

first deployment (SEDMET-I) and 7.5 days for the second and the third 

deployment (SEDMET-II and SEDMET-III), depending on the recording period 

(2 and 3 months, respectively), and the total sampling period was from October 

2007 until June 2008. The top of the trap remained at 1.51 mab.  
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During the tripods recording period, there were some problems in the functioning and 

the localization of the instruments and some of the data and samples were not 

recovered. Table 2.1 shows a recompilation of all the data available along the study 

period. During SEDMET-I and SEDMET-II the three tripods were deployed and all the 

sensors recorded data for the entire deployment period, except for the altimeter 

sensors. However, at SEDMET-III cruise only the tripods located at Be09 and Be08 (20 

and 30 m isobaths) were recovered, so for the SEDMET-III and SEDMET-IV only data 

from those locations was recorded. In addition, the current meter installed at 30 m 

water depth broke down during the SEDMET-III recording period (at the end of March 

2008), no data was recovered from this time to the end of the study period. 

 
Table 2.1. Available field data along the SEDMET project. * The last sample container did not 
closed and the sample period changed to 27 days. 
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2.1.2 Hydrographical and meteorological data 

In order to characterize the hydrographic and nepheloid structure in the study area, 17 

vertical profiles distributed in four hydrographic transects were made during the 

SEDMET oceanographic surveys. The hydrographic profiles along the tripods transect 

(Be10, Be09, Be08, Be07 and Be06, Figure 2.4) were made using a Sea-Bird SBE 9 

CTD. Selected hydrographic sections along and across the inner Barcelona continental 

shelf were represented, using the “Ocean Data View” software (Schlitzer, 2003). Along 

this transect, water samples were collected during each cast near the bottom and at 

the surface by means of twelve-liter Niskin bottles mounted on a General Oceanics 

CTD rosette sampler. The remaining hydrographic stations (see Figure 2.4 for location) 

were made using a Sea-Bird SBE 25 CTD. Both CTD were coupled with a Seapoint 

turbidimeter. Data collection was carried out in one day in order to obtain a quasi-

synoptic picture of the hydrographic and nepheloid structures. 

In addition, during the monthly monitoring surveys, hydrographic profiles were 

performed at the tripod sites using the Sea-Bird SBE 25 CTD coupled with a Seapoint 

turbidimeter. Water samples were collected from the deepest tripod site (Be07 site, 

Figure 2.4) with a Niskin bottle mounted on the winch used with the CTD.  

 
Figure 2.4. Location of hydrographic stations during SEDMET surveys. WANA 2066051 is the 
model point of oceanographic data and the text annotation BESÒS RIVER marks the mouth of 
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the river. The thick black line is the old pipeline from the water waste plant located near the river 
mouth. The map projection is UTM zone 31N datum ED50. 

During the surveys, water samples were filtered through three different types of filters 

to determine suspended particulate matter concentration and heavy metals 

concentration (see section 2.2). 

Wave measurement from the Llobregat buoy (XIOM, www.xiom.cat) were used as 

wave conditions during the study period. This buoy is located at a depth of 45 m 

(417205.22; 4542537.95; UTM zone 31N; datum ED50, Figure 1.1) and has been 

directional since 2004, recording data every hour. Interruptions in the buoy time series 

were filled in with data from the WANA model (node 2066051: 437376.97; 4580862.89; 

UTM zone 31N; datum ED50; 50m water depth, Figure 1.1), which provides directional 

wave information every three hours. The WANA data has been computed by the 

Spanish National Institute of Meteorology using the HIRLAM and WAM numerical 

model since 1991 (Spanish Port Authority, www.puertos.es). Wave height and period 

data from the WANA model were calibrated through linear regression using the buoy 

observations from October 2001 to December 2008 (Sancho-García et al., 2012).  

The Besòs river daily discharge was obtained from the Agència Catalana de l’Aigua 

(Generalitat de Catalunya) water discharge gauging located at Santa Coloma de 

Gramenet gauging station, 2.8 km from the Besòs river mouth (433347.3; 4589242.6; 

UTM zone 31N; datum ED50). 

2.1.3 Bottom sediment sampling 

During the four SEDMET cruises, 20 sediments short cores were collected from the 

northern Barcelona continental shelf (see Figure 2.5 for location): 8 during SEDMET-I, 

3 during SEDMET-II and SEDMET-III (Be07, Be08 and Be09) and 6 during SEDMET-

IV (Be07, Be08, Be09, Be21, Be03 and Be22). The timing and depths of core 

extractions are shown in Table 2.2. 

In addition, 19 sediment grabs were taken in the monthly monitoring survey carried out 

from approximately the beginning of the study period in October 2007 and in April 2008 

(Figure 2.7). The samples were stored at 4 degrees Celsius for further laboratory 

analysis (see section 2.2). 
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Figure 2.5. Location of sediment cores sampling stations during SEDMET surveys. WANA 
2066051 is the model point of oceanographic data and the text annotation BESÒS RIVER 
marks the mouth of the river. The rectangle is the old pipeline from the water waste plant 
located near the river mouth. The map projection is UTM zone 31N datum ED50. 

A small box corer with one acrylic cylindrical core tube (inner diameter = 135 mm) was 

used (Figure 2.6). This corer is designed to obtain an undisturbed sediment core with a 

maximum length of 30 cm by plunging through the water column and penetrate by 

striking the bottom with velocity. The corer is lowered vertically until it impacts with the 

seabed. While pulling the corer out of the sediment a spade swings underneath the 

sample to prevent loss. When hauled back onboard, the spade is under the box. 

The cores were sliced in 1 cm thick intervals aboard the vessel and stored at 4 degrees 

Celsius for further laboratory analysis (see section 2.2).  
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Table 2.2. Timing and depths of sediment cores extractions. 

 
Figure 2.6. Picture of the box corer used in this project (model Haps corer by KC-Denmark). 
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Figure 2.7.  Sediment grabs sampling locations in the study area during two monthly monitoring 
surveys. WANA 2066051 is the model point of oceanographic data and the text annotation 
BESÒS RIVER marks the mouth of the river. The thick black line is the old pipeline from the 
water waste plant located near the river mouth. The map projection is UTM zone 31N datum 
ED50. 

The Van Veen grab, used in this project, is a lightweight sampler designed to take large 

samples in soft bottoms. The weighted jaws, chain suspension, and doors and screens 

allow flow-through during lowering to the bottom and assure vertical descent where 

strong underwater currents exist. The relatively large surface area and the strong 

closing mechanism allow the jaws to excavate relatively undisturbed sediments. 
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2.2 Laboratory Works 

2.2.1 Preparation and treatment of sediment traps samples 

Before trap deployments, the sample tubes were rinsed and filled with a 5% formalin 

solution prepared from formaldehyde 40% mixed with 0.45 µm filtered seawater to 

avoid the degradation of organic matter in the trapped sediment. The solution was 

buffered (pH = 7.5 – 8) with sodium borate. After recovery of the sediment traps, pH 

was checked and the tubes were kept at 4º Celsius in the dark, until they were 

processed in the laboratory. 

Before the sample treatment, two kinds of filters were prepared: 47 mm diameter glass 

microfibre Whatmann GF/F filter of approximately 0.45 µm mesh (GFF) and 47 mm, 

0.45 µm mesh nitro-cellulose white HAWP Millipore filter (NF). Before its use, the GFF 

were rinsed with distilled water and then placed for 24 hours in an oven at 550º Celsius 

allowing those to cool for another 24 h. The NF filters were rinsed with distilled water 

and dried at 40º Celsius for 24 h in a desiccation bowl. 

The samples were treated following the procedures described by Heussner et al. 

(1990). Once all particles were completely settled after a period of repose and the 

solution above the material was crystal clear, the supernatant was gently pumped, its 

pH checked, and stored at 4º Celsius. Swimmers (those organism deemed to have 

actively entered the trap) were removed from the samples to avoid errors in the 

measured fluxes. They were separated by wet-sieving through a 1 mm nylon mesh with 

filtered sea water, and stored in 5% formalin solution for further analysis. Large 

aggregates were supposed to be part of the passive flux and hence returned to the 

samples. 

The sieved material was poured in a 2000 ml flask and filled with 0.45 µm filtered 

seawater. The flask was placed in a shaking table in order to keep the material 

suspended and homogenized to guarantee equality between aliquots. The whole 

sample was equally fractioned and distributed with a peristaltic pump (Jencons Ltd) 

and a robot “xy” arm into several flasks. 

Through successive partitions, the original sample was divided in order to obtain 

fractions of about 50 mg (dry weight) for geochemical analysis. Other fractions were 

also obtained and stored at 4º Celsius in formalin solution for further grain size 
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analysis. Subsamples for total and organic carbon and also Mercury concentrations 

were filtered onto GFF filters, while those for major and trace heavy metals analysis 

were filtered onto NF filters. The filters with the sample were dried to constant weight at 

40º Celsius and then placed for 24 h in a desiccation bowl. 

2.2.2 Treatment of sediment cores and grabs 

The acrylic tubes containing the sediment cores were placed in an extruding device 

that works as a piston pushing the sediment upward, allowing subsampling the cores at 

desired intervals. They were split into 1 cm-slices, and each slice sealed in a plastic 

bag and frozen at -14º Celsius before treatment.  

Sediment grabs also were sealed in a plastic bag and frozen at -14º Celsius just after 

their collection and before treatment.  

Core samples and grabs were dried on a stove at 40º Celsius until constant weight was 

attained.  

Water contents (% of total weight) and moisture (% of dry weight) were calculated from 

non-homogenized samples that were weighed before and after drying. 

2.2.3 Grain size analysis 

The grain size distribution from the cores and drags sediment samples were 

determined by a settling tube for the >50-µm fraction and by a Sedigraph 5100D 

(Micrometrics) for the <50-µm fraction following the method described by Giró and 

Maldonado (1985). 

Best particle size distribution results are obtained from sediment samples free of 

organic matter, thus representing clay-silt and fine sand sized minerogenic material. 

Organic matter content causes unreliable and non reproducible results using 

Sedigraph. For that reason, the dry sample is treated with 20% H2O2 for a week, in 

order to eliminate organic matter. Ensuing, pyrophosphate is added (24-48 h) to avoid 

particle flocculation. 

Coarse and fine fractions of the treated sample are separated with a 50-µm sieve. The 

<50-µm fraction is analyzed with a Sedigraph 5100 particle size analyzer.  
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The Sedigraph 5100 system uses both particle falling rates and the amount of X-ray 

absorption for particle size analysis. Particle falling rates (according to Stoke’s Law) are 

used to determine the points in the cell beyond which certain particles have fallen. X-

ray absorption is used to determine the percentage of total particle mass at different 

points in the cell. The resulting particle size distribution data are processed by the 

system computer. Since different particles usually have different shapes, the standard 

measure used to report particle size is the “equivalent spherical diameter”. This is the 

diameter of a sphere of quartz with the same settling rate. 

The >50-µm fraction is dried at 60º Celsius for 24-48 h and sorted with sieves of 50, 

2000, 4000 and 6000 µm. The 50-2000 µm fraction is analyzed in the sedimentation 

tube.  

The sedimentation tube is based on Stoke’s Law (free falling of particles within a fluid) 

and measures the pressure difference between two water columns connected by a 

metallic membrane. This pressure difference is produced by the particles passing near 

the traducer and is proportional to the quantity of particles. These measurements are 

integrated through time to represent the distribution of grain size frequencies, given 

that grains fall more rapidly with increasing size. 

Finally, data from the sedimentation tube, the Sedigraph and the >2000-µm fractions, 

are integrated by the program INTEGRA’03 to produce the full grain-size distribution. 

The software outputs the percentages of gravel, sand, silt and clay, and also provides 

the mean, mode, standard deviation and other statistics from the curve of 

granulometric distribution, in metric units (mm) and phi (Φ) units. 

Traps sediment grain size was determined by a laser granulometer Horiba LA950 V2 in 

the Laboratori de Sedimentologia of the Institut de Ciències del Mar (ICM-CSIC). 

2.2.4 Major elements and heavy metal analysis 

Selected major elements and heavy metals were determined in all sediment samples 

taken during the study period: bottom sediment samples (cores and grabs) taken from 

the northern Barcelona continental shelf, settling particulate matter collected by the 

three sediment traps moored and suspended particulate matter (SPM) from the Besòs 

River water. 
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Core subsamples and drag samples, previously dried (see section 2.2.2), were 

homogenized in an agate mortar for the analysis of major elements and heavy metals. 

Sediment samples (cores and drags) and settling particulate samples in the NF filters 

were totally digested using the acid digestion protocol. All samples are introduced into 

a Teflon container. 2.5 ml of pure nitric acid is added and the container is immediately 

closed to avoid gas leakage. Teflon containers are introduced into a stove at 90º 

Celsius during 4 h minimum. Samples are poured into a test tube using milliQ water. 

The tubes are centrifuged for 20 minutes at 2500 rpm and the supernatant is removed 

using a pipette from the tubes and are placed in a 100 ml flask. This process is 

repeated three times as to obtain a solid part in the tubes and another liquid part in the 

flasks. 

The solid fraction remaining in the tubes is collected by 2.5 ml of nitric acid and 7.5 ml 

of pure hydrofluoric acid (HF) and placed again in Teflon containers. The containers 

are placed into the stove for at least 4 hours at a temperature of 90º Celsius. After that 

time are placed on a hot plate at 245º Celsius, adding 2.5 ml of perchloric acid after a 

while. Once the acid evaporates, a solid residue remains in the container that 

represents the non-volatile metal part of the sample attacked. This residue is removed 

by 2.5 ml of pure nitric acid and stored in the flask containing the supernatant of the 

sample. The Teflon containers are cleaned with milliQ water and made to volume end 

of the flasks of 100 ml with milliQ water. The samples are placed in special plastic 

containers and stored at 4º Celsius until further analysis. 

Concentrations of selected major elements and heavy metals in the samples dissolved 

in the resultant HNO3 solution were analyzed by atomic emission spectrometry using 

the induced coupled plasma spectrometers from the Universitat de Barcelona (Serveis 

Científico Tècnics UB). In each round of digestion, a duplicate, a blank and a certified 

reference material (CRM) PACS-2 coastal marine sediment are also analyzed following 

the same procedure explained above.  

Mercury was determined directly from samples and fiberglass filters using a LECO 

Mercury Analyzer. 
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2.2.5 Enrichment factor of main heavy metals in sediments 

It is widely known that the clay-silt fraction is the principal carrier of metal 

contamination. Thus, it is necessary to correct the sand fraction for each sample to 

obtain a good index of the extent of this contamination. This index was provided by 

dividing the metal concentration of each sample by the fraction of silt-clay (Krom et al., 

1983). This procedure assumes that all of the acid-leachable metals are in the fine 

fraction of sediment. 

The excess of heavy metals in the analyzed sediments was quantified using the 

concept of relative enrichment factor (REF). Heavy metal concentrations obtained in 

the previous analysis were compared to their natural levels extracted from 

uncontaminated samples collected along the Catalan coast (reference samples). The 

heavy metals concentrations from both, the reference samples and the study area 

samples, were normalized against the aluminium, obtaining the ratio of each heavy 

metal concentration according to the aluminium concentration. The levels of heavy 

metals contamination in the sediments analyzed from the study area are indicated for 

the enrichment factor equation (Baut-Ménard, 1979).  

 

From all heavy metals analyzed, only those with enrichment factors above 2.5 (i.e. 

concentrations above 2.5 times more than their natural levels) were selected to 

evaluate the degree of contamination of the study area. Thus, the heavy metals 

selected for discussion were Cr, Pb, Cd, Cu, Zn and Hg. 

2.3 Data calculations 

2.3.1 Near-bottom wave orbital velocity 

Interactions between surface waves and the seabed are most conveniently expressed 

in terms of the wave-induced orbital fluid motion close to the bed. Significant wave 

height (Hs), peak period (Tp) and the angular wave frequency (w) obtained from the 

Llobregat buoy and the WANA calibrated dataset were used to calculate the near-bed 

orbital velocity (Ub) for linear wave theory: 
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Where H is the significant wave height (Hs), T the wave period, k the wavenumber, a 

the amplitude and ω the orbital velocity. The kh (wavenumber*depth), required for 

orbital-velocity calculations using linear theory, is calculated using a MATLAB function 

of the Soulsby (2006) Newton-Raphson interactive method implemented by Wiberg 

and Sherwood (2008). 

2.3.2 Calibration of Seapoint turbidimeters 

The Seapoint Turbidity Meter measures turbidity by detecting scattered light from 

suspended particles in the water using dual 880 nm light sources and dual silicon 

photodiode detectors with visible light blocking filters. The intensity of light scattering is 

calibrated to Formazin Turbidity Units (FTU) by the manufactured (Seapoint). 

Along with the Seapoint turbidity sensor coupled to the Sea-Bird SBE 9 CTD, water 

samples were collected during the cruises near the bottom and at the surface by 

means of twelve-liter Niskin bottles mounted on a General Oceanics CTD rosette 

sampler along the tripod transect (Be10, Be09, Be08, Be07 and Be06 stations in Figure 

2.4). For the turbidimeter attached to the Sea-Bird SBE 25 CTD, the water samples 

used for the calibration of the sensor were obtained during monthly surveys carried out 

during the SEDMET project. 

The water samples were vacuum-filtered up to filter saturation into a pre-weighed 

Nuclepore polycarbonate filters (0.4 μm pore size). The weight of the dry residue, 

divided by the volume of water filtered, rendered suspended sediment concentration 

(SSC) in units of mg l-1. 

Therefore, two linear regressions were used to calibrate the optical sensors: 

• For the Seapoint turbidimeter coupled to the Sea-Bird SBE 9 CTD used in the 

tripods hydrographic transect, Be10, Be09, Be08, Be07 and Be06 stations in 

Figure 2.4, the following equation was obtained: 

SSC (mg l-1) = 0.62 x FTU + 0.11   (n = 24; r2 = 0.74) 
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• For the Seapoint turbidimeter coupled to the Sea-Bird SBE 25 CTD used in the 

remaining hydrographic stations, Be02, Be03, Be04, Be05, Be12, Be13, Be14, 

Be15, Be16, Be17, Be18 and Be19 (Figure 2.4), the calibration equation 

obtained was: 

SSC (mg l-1) = 0.76 x FTU + 0.07   (n = 24; r2 = 0.79) 

2.3.3 Calibration of Aanderaa turbidimeters 

Aanderaa turbidimeters express the light scattering intensity as equivalent of 

Nephelometric or Formazin turbidity Units (NTU or FTU). This calibration was 

conducted by the manufacturer (Aanderaa) using Formazin (turbidity calibration 

standards). 

No water samples were collected during the deployment periods at those locations. 

Therefore, in order to convert NTU units into concentration units (mg l-1), turbidity 

sensors were transformed using the measurements carried out by Guillén et al. (2000) 

obtained from 25 northwestern Mediterranean samples, taken in a nearby area. The 

intensity of the light backscattered by particles was calibrated with a nephelometric 

solution to calculate the suspended sediment concentration (SSC) with the equation: 

SSC (mg l-1) = 1.21 x NTU + 0.43   (r2 = 0.46) 

Because the 0-20 NTU calibrated sensors were out of range in times of relatively 

elevated SSC, probably underestimating maximum values, data from the 0-500 NTU 

sensor was used in times when SSC was above of approximately 25 mg l-1.  

2.3.4 Along- and across-shelf currents and advective fluxes 

Aanderaa current meters output the module of the current speed and the current 

direction measured from the North. These were previously decomposed to u and v 

components with positive values towards N and E, respectively. The along- and 

across-shelf components were then defined following the orientation of the isobaths at 

each site, with positive values towards the NE and offshore, respectively. 

Assuming that the output of the back scatter sensors was largely attributable to 

suspended particles and that particles move with the velocity of the water within which 
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they are suspended (Wright, 1995), the instantaneous sediment flux of particles in 

g/m2s is obtained as the product of the velocity module and the SSC (suspended 

sediment concentration, in mg/l), with the same direction as the flow: 

q(t) = c(t)*SSC(t), 

Averaging the instantaneous sediment flux over time produces the estimated 

magnitude of the horizontal flux and its direction from each sampling site during the 

experiment.  

The along-shelf and across-shelf instantaneous sediment flux components where 

obtained in the same manner, as the product of the SSC and the along and across 

components of the velocity fields. Integrating sediment flux values over time results in 

the amount of sediment transported and the direction of the transport at each site. 

2.3.5 Downward total mass fluxes 

Total dry mass of sediment trap samples was determined gravimetrically. Several 

replicates were filtered into preweighed Millipore cellulose acetate membrane filters, 

rinsed with distilled water (to remove sea salt) and dry to constant weight at 40 degrees 

Celsius.  

Total max flux (TMF) expressed in mg m-2 d-1, was calculated with the formula:  

TMF = Sample dry weight (mg) / (collecting area (m2) · sampling interval (days)). 

2.3.6 Altimeter calibration and Seabed erosion/deposition 

The ALTUS altimeter is an autonomous 2 MHz acoustic transducer coupled with a 

pressure sensor. This device allows long term monitoring (Deloffre et al., 2006), but is 

also suitable for high-frequency surveys (sampling frequency up to 1 Hz) with a data 

storage capacity of several weeks. The ALTUS provides bed elevation and water level 

measurements with resolution of 0.2 mm and 20 mm respectively. For this study, the 

transducer was positioned 22 cm above the bed, with a sampling frequency of one 

measurement every fifteen minutes. 

Thus, the altimeter data was processed to determine the distance to the seabed every 

fifteen minutes. The pressure record for each deployment was also analyzed and 



2. Methods 

34  

evidences of tripod sinking were found and removed from the seabed variation record 

at 20 m tripod site (Be09). However, the pressure sensors at 30 m and 40 m sites were 

out of range during the deployments and therefore, possible tripod sinking episodes 

could not be identified. Thus, at 30 and 40 m depth, seabed deposition was not taken 

into account and seabed erosion was treated as minimum erosion. 

After removing the sea level variation from the seabed variation record, the minimum 

distance between the sensor and the seabed was taken as a reference level to 

measure the seabed deposition/erosion events. 

2.3.7 One-dimensional (vertical) sediment transport model 

A 1D sediment transport model (Wiberg and Smith, 1983; Wiberg et al., 1994; 2002; 

Harris and Wiberg, 1997) was used to calculate suspended-sediment transport rates 

during resuspension events. The model represented the frictional momentum balance 

in the bottom boundary layer using an eddy viscosity profile enhanced by wave-current 

interaction. The 1D vertical model requires as input values of steady horizontal current 

velocity at a specific elevation (z), near-bottom wave-orbital velocity and associated 

period and direction and bed sediment characteristics.  

The near-bottom (0.58 mab) current velocities recorded by the three tripod current 

meters and the calculated near-bottom orbital velocities (section 2.3.1) were used as 

input to the model at each site. The model calculates the wave shear velocity (U*w), the 

current shear velocity (U*c) and the nonlinear combined wave-current shear velocity 

(U*cw). The total shear stress was then calculated using U*cw and the water density (ρ) 

as τcw = ρU*cw. The models calculates an eddy viscosity profile proportional to U*cwz in 

the wave boundary layer and the current stress velocity profile (U*cz) in the mean 

current boundary layer. 

The sediment size classes and fractions used in the model were based on the upper 

centimeter of samples collected at the tripod sites in the study period surveys. Critical 

shear stress and settling velocities for particles in each of the modeled sediment 

classes was calculated according to Soulsby (1997). Suspended sediment 

concentrations are computed for any specified number of size classes. The near-bed 

reference concentration is a function of the volume of sediment concentration of a bed, 

the resuspension parameter (γ0) and the excess shear stress. A mean value of γ0 = 
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0.004 was used for the computation based on profiles of suspended sediment 

concentration measured in the inner Ebro continental shelf (Guillén et al., 2002).  

The Wiberg et al. (1994) model was modified by Harris and Wiberg (1997) to account 

for the changing size distribution at the bed surface during a resuspension event by 

modeling the upper 15 cm of the sediment bed as two layers: a superficial active layer 

that is well mixed and available for resuspension; and an underlying layer containing 

sediment that is inaccessible for resuspension. This active-layer depth is the depth on 

the seabed at which the critical shear stress and wave-current shear stress are 

equivalent.  

The model calculates the bed size distribution as a function of depth below the bed 

surface as follows. At each time step the volume of sediment in suspension is 

calculated for every size class and removed from the active layer. Bed armoring is 

accounted for by limiting the volume of each size class suspended by the amount 

available within the active layer. Between steps any sediment in suspension is 

“redeposited” on top of the active layer in a fining upward sequence to simulate settling 

out of the water column. 

2.3.8 Definition of sediment flux events 

The measurements at site Be09 (20 m depth) provide the necessary information to 

identify sediment transport events and non-events intervals during the deployments 

from September of 2007 to June of 2008. Based on the observational data, sediment 

transport events were identified whenever the magnitude of the instantaneous 

sediment flux (fi) exceeded 1.5 g/m2s and non-transport intervals as times when fi < 0.3 

g/m2s (background level). Hours with intermediate magnitude immediately preceding 

and following a sediment transport event were incorporated into that event. In addition, 

periods of fi > 1.5 g/m2s separated for a period of fi < 0.3 g/m2s not longer than 24h 

were considered the same event. In this manner, sediment transport events were 

extended to include both resuspension and river sediment supply events along with 

events of increased current activity. 
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3 Forcing conditions 

The climatology of the NW Mediterranean sea displays seasonal variations in terms of 

storm passing frequency and intensity that play an important role over the delivery and 

the dynamics of sediment in the continental shelf. The time period of the present study 

comprised three seasons, from autumn 2007 to spring 2008, which showed distinct 

features between them. The purpose of this section is to describe the main 

hydrographic and hydrodynamic conditions during the study period to support the 

interpretation of sediment transport processes.  

3.1 Wind and waves 

The mean wind speed during the period that is considered here was 4.6 m/s, with the 

strongest winds (14.4 m/s) blowing from the northeast and associated to a storm event. 

Wind speeds higher than 12 m/s were reached during most of the storm episodes 

(Figure 3.1 A) with a blowing direction similar to the direction of wave propagation but 

slightly rotated (Figure 3.3 B1), i.e. NE-ENE in the majority of the storm events and few 

episodes of winds blowing from the SW. Although, about another 20% of the wind 

record felt into the third quadrant (Figure 3.3 B2), no more wind events of significantly 

increased strength and duration were associated to those wind directions. 

The wave data between end of September 2007 and mid June 2008 showed a frequent 

but moderated wave storms in the inner continental shelf (Figure 3.1). During the study 

period, more than ten storm events were recorded with Hs and Tp over 2 m and 9 s, 

respectively, most of them coming from the ENE. Indeed, more than 35% of the wave 

direction record felt between the ENE and ESE directions and over about a 20% felt 

between S-SW directions (Figure 3.3 A1). The most energetic episode, between the 

15th and 18th of December 2007, was characterized by the strongest storm recorded 

over the study period, a two peak wave storm with significant wave height (Hs) up to 

3.47 m and peak period (Tp) about 11 s, followed by a minor second peak storm event 

(Hs > 2.5 m and Tp > 11 s) after less than 2 days of relatively calm conditions. Both 

storm events presented an eastern component in the direction of wave propagation 

(Figure 3.3 A1).  

Figure 3.2 show the significant near-bottom wave orbital velocity (Ubs) calculated for 

each tripod site depth using the recorded wave data. The maximum number of wave 

storm events and maximum Ubs values occurred throughout the autumn months. 
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During this period, maximum bottom wave velocities higher than 80, 60 and 40 cm/s 

were obtained at Be09-20m, Be08-30m and Be07-40m sites, respectively. However, 

after two months of relatively calm conditions (from early January to early March 2008), 

it can be observed another period of significant increment on wave activity and 

frequency of storm events. During the spring months, maximum bottom wave velocities 

reached more than 60, 40 and 20 cm/s at 20, 30 and 40 m depth, respectively. 

 
Figure 3.1 Wave, wind and river discharge conditions during the experiment, collected nearby 
the study area. (A) Wind speed at WANA model point 2066051; (B) and (C) wave data at 
WANA model point 2066051 calibrated with Llobregat buoy data; (D) water discharge at the 
Besòs River gateway. 
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Figure 3.2. Time-series of significant wave orbital velocity at location (A) Be09-20m, (B) Be08-
30m and (C) Be07-40m. 

 
Figure 3.3. Time series of wave (A1) and wind (B1) directions at WANA model point 2066051 
during the study period. (A2) and (B2) rose diagram of the relative frequency of the record of 
wave and wind direction, respectively. 
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Spectral analysis of significant wave orbital velocities showed important peaks at 15 

and 5 days periods, approximately, and a minor peak in periods of 2-3 days (Figure 3.4 

A). Dominant frequencies in wind velocities were obtained by applying spectral analysis 

after projection the wind velocity into across- and along-shelf directions. Firstly, higher 

power content was observed for the along-shelf wind velocity component (Figure 3.4 

B2), which is in keeping with the above mentioned presence of higher velocities under 

NE or SW winds. In the along-shelf component, most of the energy was present in the 

low frequency band, with two peaks in periods of 15 and 4-5 days, but another 

additional peak was observed in the frequency band of approximately 1 day. Although 

across-shelf winds presented peaks in the same frequency bands than along-shelf 

winds but with lower power content, additional peaks in periods of 2-3 days were also 

observed (Figure 3.4 B1).  

Therefore three different periods in terms of storm activity matched the natural seasons 

of the year. Thus, the period comprised between end of September 2007 and 

December 2007(autumn) was characterized by an intense frequency of northeaster-

eastern storm passages with moderated intensity; between January and early March 

2008 (winter), the wave activity and frequency were reduced significantly; and finally, 

from March to mid June 2008 (spring), specially between May and June 2008, another 

period of increasing wave activity took place, this time the storm events were from the 

S-SE and some SW, more moderated and less frequent than in the first 

period.
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Figure 3.4. Spectral analysis of forcing agents time series. (A) Significant near-bottom wave 
orbital velocity, (B1) Across-shelf winds and (B2) Along-shelf winds. 
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3.2 Hydrography and water river discharge 

The hydrographic transects conducted during the cruise SEDMET-I (28th of September 

2007) correspond to the end of the summer stratified conditions of the water column, 

as shown in the temperature and density (sigma-0) sections (Figure 3.5 A). In the SSC 

sections it can be identified a well developed bottom nepheloid layer, with thickness 

around ten of meters and maximum concentrations higher than 3 mg/l.  

In SEDMET-II and SEDMET-III (conducted by the end of November and end of 

February, respectively) the temperature, salinity and density sections evidence vertical 

mixing of the water column (Figure 3.5 B and Figure 3.6 A), which shows that the 

autumn and winter storm passages were capable of destroy the previous vertical 

structure. During both surveys the bottom nepheloid layer is well identified with 

maximum concentrations between 3 and 4 mg/l. However, the relatively high wave 

energy conditions during the November cruise survey developed a bottom nepheloid 

layer thickness around 20 m with concentration values of 1 mg/l reaching the surface.  

The final situation of the study period, June 2008 (SEDMET-IV), corresponds to the 

onset of stratification, as shown in the sections of Figure 3.6 B. The bottom nepheloid 

layer is also well identified with maximum concentrations between 3 and 4 mg/l.  

The hydrography of the studied zone is also modified for continental freshwater inputs, 

especially the Besòs river water discharges. The Besòs river water discharge record, 

shown in Figure 3.1 D, presented a typically episodic pattern with pulses of water 

discharge occurring mainly during autumn and spring seasons. Average river discharge 

during the period of study was 3.8 m3/s with discharge peaks up to 15 m3/s and 18 m3/s 

in October 2007 and May-June 2008, respectively. In October 2007, the increments in 

river water discharge were characterized by short and fast water pulses accompanied 

by increments in wave activity. During spring 2008, river discharges lasted longer than 

in autumn 2007, especially the discharges of June 2008 that occurred under low 

energy wave conditions. The influence of the river discharge can be observed in the 

salinity and density sections taken at that time (Figure 3.6 B) where the stratification of 

the water column is disturbed in the onshore limit of the sections.  
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Figure 3.5. Across-shelf sections of temperature, salinity, SSC and density over the study area 
during (A) the SEDMET-I (September 2007) and (B) SEDMET-II (November 2007) cruises. The 
location of the stations is shown in the left map of each box. 
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Figure 3.6. Across-shelf (lower box) sections of temperature, salinity, SSC and density over the 
study area during (A) the SEDMET-III (February 2008) and (B) the SEDMET-IV (June 2008) 
cruises. The location of the stations is shown in the left map of each box. 
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3.3 Near-bottom currents 

Times series of current speed and current vectors fields measured at 0.58 mab from 

the Be09-20m, Be08-30m and Be07-40m sites are shown in Figure 3.7. Near-bottom 

current speed showed similar values at all sampling sites with an average about 7 

cm/s. The highest near-bottom current speeds were associated with storm events on 

the inner shelf (Figure 3.1 and Figure 3.2) with peak values up to 27 cm/s at 20 and 30 

m water depth (Figure 3.7 A1 and B1, respectively) and up to 32 cm/s at the deepest 

site (Be07-40m, Figure 3.7 C1). Both, current and wave activities were more energetic 

and frequent in autumn. The current direction was slightly variable among sampling 

locations (Figure 3.7 A2, B2 and C2). The dominant direction was NE – SW at Be09-

20m site, following the orientation of the isobaths, during the three deployments. 

However, the dominant direction was NNE – SSW at Be08-30m and Be07-40m sites 

with 20º and 15º of rotation towards the north, respectively, and a major spread in the 

negative values of the u component especially at site Be08-30m.  

The current speed and direction were transformed to along- and across-shelf 

components following the orientation of the isobaths at each site, with positive values 

towards the NE and offshore, respectively. The along- and across-shelf currents 

observed during the study period were variable in time with higher values in the along-

shelf flow than in the across-shelf one (Figure 3.8). However, while the along-shelf 

current component flew towards approximately the same direction and reached similar 

values at all sites, the across-shelf component was spatially variable in magnitude and 

direction, highly affecting the resultant current velocity.  

In the spectral analysis of current components shown in Figure 3.9, it can be observed 

the differences of the frequencies that dominate along-shelf and across-shelf 

components at the three locations. The higher power content in the along-shelf flow 

was basically reflected at lower frequencies, whereas at high frequencies (higher than 

0.5 times per day, i.e. periods shorter than 2 days) both components showed a similar 

level of intensity. The along-shelf current at the three locations presented the highest 

energy for the frequency band corresponding to periods between 3 and 5 days, which 

was higher at the 20 m depth site decreasing offshore. Although, the across-shelf flow 

also presented a significant power content in this low frequency band, in this flow 

direction, the energy was higher at the 30 m depth site than at the two other sites. The 

spectral analysis also presented some energy content at higher frequencies, 

corresponding to periods around 1 day, which was detected only at 20 m and 30 m 
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depth in the across-shelf flow and at 20 m depth in the along-shelf one and decreased 

offshore. 

In the along-shelf component, these low-frequency currents with fluctuations of 3-5 

days reached more than 20 cm/s at all tripod locations between autumn and early 

winter (Figure 3.8). However, the across-shelf speed values were under 10 cm/s at 20 

m depth (Figure 3.8 A1) and under 15 cm/s at 30 m and 40 m depth (Figure 3.8 B1 and 

C1, respectively). 
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Figure 3.7. Time series of current speed during the study period (left boxes) and current components fields (right boxes) measured at 0.58 mab at the 
study sites (A1) and (A2) Be09-20m, (B1) and (B2) Be08-30m and (C1) and (C2) Be07-40m.  
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Progressive vector representing flow conditions during the recording period available 

for each site (Figure 3.8 A2, B2 and C2), also show the above-mentioned spatial 

variability of the current flow. At the end of the first deployment (end of red line in 

Figure 3.8), the along-shelf component dominated at 20 and 40 m depth with a virtual 

current displacement about 150 km towards NE but slightly offshore (53 km) and 60 km 

towards NE and slightly onshore (36 km), respectively. However, at 30 m depth the 

flow was directed mainly landward (about 121 km) ending at the same location in the 

along-shelf direction after some fluctuations.  

Between November 2007 and March 2008 (black line in Figure 3.8), and specifically 

after the December 2007 eastern storm, an evident reversal in current direction 

determined the flow behavior in such a way that the virtual current displacements were 

mainly seaward at 20 m depth and southeastward (i.e. along-shelf) at 30 m depth. 

During this period, the main difference between both sites was related to an increment 

in the along-shelf current intensity at 30 m depth more than to prevailing currents of 

opposite directions as recorded in the previous period. At the 20 m site, the across-

shelf virtual displacement was almost four times higher (59 km seaward) than the 

resultant along-shelf displacement (16 km towards SW) reversing the circulation 

pattern recorded during the previous period (Figure 3.8 A2). In the case of the 30 m 

site, the virtual displacement in the along-shelf direction was relatively high (267 km 

towards SW) compared to the across-shelf flow (96 km offshore) and specially respect 

to the previous period (Figure 3.8 B2). 

From March to the end of the record (blue line in Figure 3.8), at the Be09-20m site, a 

notable change occurred in the intensity and direction of the current. The across-shelf 

current intensity increased progressively while the along-shelf current intensity 

decreased significantly along this period. In relation to the direction of the current, both 

along and across components showed a reversion in the flow direction, towards the NE 

and seaward, respectively.  

Therefore, two different patterns were observed in the behavior of water fluxes in the 

inner shelf: One along autumn 2007, an strong along-shelf current dominated at Be09-

20m and at the deepest site (Be07-40m) resulting in a virtual current displacement 

about 150 km towards the NE and about 100 km towards the NNE, respectively, 

whereas at the 30 m depth site (Be08-30m) the across-shelf component dominated 

during this period with a resultant virtual displacement of more than 100 km onshore. 

The other pattern, between late autumn 2007 to the end of the record, showed that the 
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across-shelf component dominated at 20 m depth with a resultant offshore direction 

about 100 km, while at 30 m depth the along-shelf component was much higher 

compared to the previous period which resulted in a major reversal in the current 

direction with a current virtual displacement towards SW and seaward.  
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Figure 3.8. Times series of transformed across-shelf and along-shelf current components and the progressive vectors in those directions at (A1) and 
(A2) Be09-20m, (B1) and (B2) Be08-30m and (C1) and (C2) Be07-40m, respectively. Positive values are towards the NE in the along-shelf direction 
and offshore across the shelf. 



3. Forcing conditions 

50  

 
Figure 3.9. Spectral analysis of across-shelf (left boxes) and along-shelf (right boxes) current 
components. (A1) and (A2) Be09-20m location, (B1) and (B2) Be08-30m location and (C1) and 
(C2) Be07-40m location. Note different scales for the Y axis. 
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3.4 Processes affecting currents during the study period 

The frequency spectra of the along-shelf and across-shelf currents show increasing 

energy in the low frequencies corresponding to periods over 3 days and 1 day (Figure 

3.9). High energy were also observed in those frequency bands from the spectral 

analysis of the along- and across-shelf winds (Figure 3.4) suggesting that the wind 

regime controlled current fluctuations in a certain way during the study period. Wind 

velocities and near-bottom currents show correlation in times with increased current 

velocity. However, the occurrence of events with relatively high near-bottom currents 

under weak wind energy and the high current variability suggest that other processes 

may also control the current intensity and changes in current direction such as sea 

level gradients (Grifoll et al., 2012) and wave-driven currents (Lentz et al., 2008).  

High current velocities were recorded under relatively high wind stress. The along-shelf 

current flowed mainly towards the SW during relatively high north-easterly winds (e.g. 

October and December 2007 storms) and toward the NE during winds blowing from the 

SW (February 2008 storm). This is consistent with the result obtained from Grifoll et al. 

(2012) on the Catalan inner-shelf which suggested that, under storm conditions, north-

easterly winds generate a negative sea level gradient along the Catalan coast resulting 

in high SW along-shelf currents, while south-westerly winds reverse along-shelf current 

toward the northeast. Along-shelf winds also force cross-shelf circulation over the 

inner-shelf (Lentz, 2001). In this sense, northeastern winds were downwelling-favorable 

and the return flow generated an offshore current near the bottom in the across-shelf 

component, while southwestern winds favored upwelling and near bottom onshore 

flows. However, the across-shelf flow showed high variability and the correlation 

between down- and up-welling favorable winds and the direction of the across-shelf 

current was not as clear as in the along-shelf component. Fewings et al. (2008) 

suggested that cross-shelf winds can be more effective than along-shelf winds at 

driven across-shelf flows in the inner-shelf. Indeed, the high power content in the 1 cpd 

frequency band of the across-shelf winds and currents also suggests a contribution of 

diurnal breezes (cross-shelf winds) to the across-shelf near-bottom currents, specially 

during spring (May and June 2008) where the predominant winds are also associated 

with diurnal sea-breezes (Font, 1990).  

During events characterized by relatively high currents unrelated with local winds other 

processes may contribute to the near-bottom flow. The importance of wave forcing to 

drive flow circulation over the inner-shelf has been proposed as an active mechanism 
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(Lentz et al., 2008). During events of high wave incidence angle, wave-driven flows can 

enhance the magnitude of along-shelf currents (16th and 20th of November 2007 and 4th 

of January 2008 events) or even, increase the seaward component of the near-bottom 

current (27th of May 2008), if waves propagate perpendicular to the coast. In addition, 

Grifoll et al. (2012) showed that during weak local winds, the along-shelf current flows 

toward southwest when the sea level gradient is positive associated with general 

dynamics of the NW Mediterranean. When the sea level gradient is negative, Grifoll et 

al. (2012) showed that the along-shelf current switches northeastward associated 

presumably with the excursion of water from the south. This mechanism could explain 

the relatively high northeastern currents during the 12th of October and 1st of November 

events, where the current speed reached values around 25 cm/s under relatively low 

wind and wave energy. 

The along-shelf current variability was similar across-shelf, but the across-shelf current 

velocities observed at the inner-shelf sites frequently differed between each other 

(Figure 3.8). As a result, near-bottom flows varied not only in magnitude, but also in 

direction, meanly eastward in 20 m, onshore in 30 m and northeastward in 40 m of 

water, during early autumn, and offshore and southward means at 20 m and 30 m 

water depth, respectively, during the period comprised between end of November 2007 

and January 2008 (Figure 3.8). This pattern suggest a flow convergence between 20 

and 30 m water depths after the sequence of events occurred in early autumn and a 

net flow offshore after late autumn and winter in the across-shelf component of near-

bottom currents. The spatial variability of near-bottom currents across the shelf can be 

explained by the relatively importance of wind and wave forcing depending on water 

depth. Through the inner-shelf, as the water depth increases, the circulation is 

dominated first by wave forcing, cross-shelf wind forcing and then along-shelf wind 

forcing (Lentz et al., 2008; Fewings et al., 2008).  
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4 Sediment characteristics 

Seabed granulometry and physical properties play and important role for understanding 

sediment dynamics in response to the oceanographic conditions. With this aim, this 

section presents the grain size and porosity measurements taken in the sediment 

samples collected during the experiment (sediment cores, sediment grabs and 

sediment traps) and their temporal evolution and spatial distribution in the study area. 

Near-bottom suspended sediment concentration (SSC) is also presented to describe 

the sediment response to the forcing conditions and water fluxes introduced in the 

previous section. Here we discuss the controlling factors of SSC across the inner shelf.  

4.1 Bottom sediment variability 

The bottom sediment analyzed in the continental shelf of Barcelona, between 20 and 

60 m isobaths, was mainly composed of mud with a percentage of sand increasing 

towards the coast and to the river mouth. Considering their relative abundance in the 

sediment, three modal granulometric fractions were identified in the study area: very 

fine sand (63-125 μm), medium to fine silt (8-31 μm) and clay (< 4 μm). The down-core 

logs of grain size and porosity analysis for all the cores sampled in September 2007 

during the SEDMET-I cruise are shown in Figure 4.2 and Figure 4.3.  

At 20 m depth (Be09-20m site), the sand fraction dominated the upper 10 cm with a 

median grain size between 80 and 100 μm. The lower 10 cm was mainly sandy mud 

with 70-80 % of mud (silt + clay) content and a 20-30 % of sand. This distribution 

indicated a coarsening trend towards the surface with a sharp gradient in the upper 10 

cm. The porosity was lower in the upper 10 cm than in the lower part of the core that 

presented a peak around 10-12 cm depth decreasing smoothly towards the core base.  

In most of the cores sampled at 30 m water depth (Be08-30m in Figure 4.2 and Be21-

30m, Be03-30m and Be22-30 m in Figure 4.3), the grain size presented a coarsening 

trend towards the surface, with a percentage of mud (silt + clay) around 90 % (median 

grain size of 10 μm) at the lower part, and between 70 and 80 % (median grain size of 

25-35 μm) in the surface layer of the cores. However, this trend was not linear and 

most of the cores presented a sharp change around 10-15 cm core depth: the site 

closest to the river mouth (Be21-30m) presented a median grain size maximum peak of 

140 μm at 11 cm core depth. While the Be08-30m and Be03-30m cores presented a 

minimum grain size at 10 cm (10 μm) and 15 cm (5 μm), respectively. At all 30 m depth 
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sites, the porosity trend to increase towards the surface, with some fluctuation along 

the core depth, reaching values between 0.65 and 0.75. Therefore, along the 30 m 

isobath, the median grain size averaged 30 μm at the surface and 10 μm at the bottom 

of the core, with differences along the core depth, especially at the one sampled 

closest to the river mouth (Be21-30m core). The porosity content was about the same 

order of magnitude with values fairly constants towards the base of the cores, except 

for the core sampled at the tripod site Be08-30m (close to the old pipeline) where 

around the 10 cm depth the porosity increases 0.12 towards the surface. 

Finally, at the cores sampled at 40 and 50 m water depths, the mud (silt + clay) fraction 

dominated the sediment column with a percentage around 90 % with slightly changes 

in the median grain size and porosity, mostly in the upper centimeters of the cores. The 

bottom sediment properties display spatial variability across and along the shelf. In 

terms of across-shelf gradients, the median grain size increase with decreasing water 

depth. The porosity, however, behave in an opposite way increasing in water depth, 

specially, between 30 and 40 m isobaths. Along-shelf differences in bottom sediment 

properties were noted basically near the Besòs river mouth. The median grain size at 

the closest location (Be21-30m in Figure 4.3) was more than 140 µm at some layers of 

the core whereas where towards the south the median grain size fluctuated slowly with 

values between 30 and 15 µm. The porosity was quite similar between all sites along 

the 30 m isobath but slightly lower closest to the river mouth and at the Be08-30m 

tripod site (Figure 4.3 and Figure 4.2, respectively). 

The bottom sediment spatial variability can also be observed in the mud content and 

median grain size distribution maps interpolated from grab sediment samples taken 

during the October 2007 and April 2008 monitoring surveys (Figure 4.1). The general 

pattern is an offshore increasing of the mud content that is modified near the river 

mouth. The median grain size distribution shows an area under the influence of the 

river sediment supply and an onshore coarsening gradient, more pronounced the 

further from the river mouth. 

In Figure 4.1, a temporal coarsening trend of the bottom sediment is also appreciable 

between October 2007 and April 2008. In detail, Figure 4.4 shows the temporal 

variability, along the experiment, of the median grain size and porosity at the three 

tripod locations. Changes in grain size and porosity ranged from the surface to at least 

8 cm at 20 m water depth and to at least 10 cm at 30 and 40 m water depths. At 20 m 

depth, the main change in the grain size distribution was a decreasing in median grain 
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size between September and November 2007, with a maximum vertical gradient in 

November 2007. Median grain size trended to a coarsening towards the end of the 

record (June 2008) ending in a uniform layer of 8 cm in thickness, in the fine sand 

fraction. In general, the variability of the porosity during the study period at that depth 

behaved opposite to the variability of the median grain size, decreasing with 

coarsening, but increasing with decreasing sediments grain size. Regarding to the 30 

m site, there was a coarsening trend of the 2-3 surface centimeters from November 

2007 to February 2008, ending in a finer quasi-uniform median grain-size distribution in 

the sediment column at the end of the study period (June 2008). Changes in porosity 

are associated to those changes in the median grain size increasing with decreasing 

sediment grain size. No major changes in grain size and porosity were observed at the 

deepest site because the grain size variability moves at very finer sediment range. 

However, the observed trend was also a coarsening towards the end of the record 

(June 2008) where the small patches of clayey sediment detected in previous sampling 

surveys disappeared. 

Those changes in grain size and porosity described from the sediment cores and from 

the grabs showed a high spatial and temporal variability of the seabed. Changes in the 

sediment properties were observed to at least 8 cm depth of the sediment cores 

sampled at 20, 30 and 40 m water depth. This variability appears related to the seabed 

response to the forcing conditions occurred during the experiment as main changes in 

grain size and porosity were observed after periods of high wave and current energy.



4. Sediment characteristics 

56  

 
Figure 4.1. (A) and (B) Mud content (%) and (C) and (D) median grain size of the superficial bottom sediment from Barcelona continental shelf. Red 
diamonds correspond to the surface sediment samples (grabs) taken in October 2007 monitoring survey (A and C) and April 2008 monitoring survey (B 
and D). The black lines correspond to the bathymetry of the study area. The maps projection is UTM zone 31N datum ED50. 
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Figure 4.2. Down-core logs of grain size, porosity and organic and inorganic carbon content of 
the studied sediment cores taken in the tripods transect in September 2007. See location at 
Figure 2.5. 
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Figure 4.3. Down-core logs of grain size, porosity and organic and inorganic carbon content of 
the studied sediment cores taken at 30 m and 40 m depth in September, 2007. From north to 
south. See location at Figure 2.5. 
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Figure 4.4. Temporal variability of (A) median grain size (d50 in mm) and (B) porosity between 0 
and 10 cm depth of the cores sampled at 20, 30 and 40m water depth (Be09-20m, Be08-30m 
and Be07-40m sites) from figure top to bottom. 
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4.2 Particulate matter downward fluxes 

Total downward fluxes collected by the traps during the deployment decreased with 

increasing water depth with mean values around 350 g/m2d, 230 g/m2d and 200 g/m2d 

between 20 and 40 m isobaths. Many of the peaks of total mass flux were coincident in 

time at the different sites. Although in general terms, the total downward flux decreased 

with depth along the study period, there was a clear temporal variability in the amount 

of downward fluxes collected by the traps with a period of similar downward fluxes at 

20 m and 30 m water depth. At 20 m depth, the maximum near bottom downward flux 

occurred between the 26th of October and the 1st of November 2007 with maximum 

values of 1100 g/m2d. At that time, at 30 m water depth (Be08-30m site) the maximum 

downward flux was about 500 g/m2d while the maximum flux collected by the trap took 

place between December 2007 and January 2008 coinciding with the strongest 

recorded storm (the 15th to 18th of December episode). During this episode, the traps 

collected 620 g/m2d and 550 g/m2d at the 20 m and 30 m depth sites, respectively. At 

40 m depth (Be07-40m site) the maximum flux event coincided with the same period of 

the Be09-20m site with a maximum downward flux of 363 g/m2d. 

 
Figure 4.5. Bar graphs illustrate the time series of total mass fluxes of particulate matter for 
each sediment trap during the study period: (A) Be09-20m trap at 20 m water depth, (B) Be08-
30m trap at 30 m depth and (C) Be07-40m trap at 40 m water depth. 
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The temporal variability of median grain size in the traps sediment samples (Figure 4.6) 

showed a coarsening trend from clay to very-fine sand between October and late 

December 2007 at both sites, 20 and 30 m depth, corresponding with the most 

energetic period in terms of storm activity. After that, the suspended sediment samples 

at 20 m depth showed some fluctuations in the median grain size distribution coinciding 

with times of relatively increasing of wave and current intensities. However, in the 

samples available from that time at the 30 m site the median grain size decreased 

sharply and no fluctuations were observed. 

 
Figure 4.6. Temporal variability of the median grain size (d50 in μm) of the trap samples 
collected at the tripod sites (Be09-20m, Be08-30m and Be07-40m) during the experiment. 

4.3 Near-bottom suspended sediment concentration and shear 
stress 

The near-bottom suspended sediment concentration (SSC) and shear stress during the 

recording period also showed a high temporal and spatial variability. Across the shelf at 

0.53 mab, the SSC reached values up to 90 mg/l at 20 m, up to 70 mg/l at 30 m water 

depth and up to 35 mg/l at 40 m water depth during autumn 2007 and winter 2008 

(Figure 4.7, Figure 4.8 and Figure 4.9, respectively). However, the maximum of SSC at 

the 20 m water depth site was recorded at mid May, during a period of relatively 

increase in wave and river activity (Figure 3.1), when the SSC reached about 140 mg/l 

at the 20 m depth site. Although in general terms, the near-bottom SSC decreased with 

depth, there were two events with SSC values equal or even higher at 30 m than at 20 

m depth. Both events occurred between December 2007 and January 2008, the first 

one, classified as the strongest recorded storm (the 15th to 18th of December episode), 

generated an increment of SSC about 70 mg/l at 30 m depth while at 20 m the 

concentration values were about 40 mg/l. 
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Wave induced stress dominated over that caused by currents at all sites (Figure 4.7, 

Figure 4.8 and Figure 4.9), with wave shear velocity (U*w) generally 2 or 3 times larger 

than the current shear velocity (U*c). The bed shear stress averaged 0.11 N/m2, 0.04 

N/m2 and 0.03 N/m2 but reached as high as 2.1 N/m2, 1.3 N/m2 and 0.6 N/m2 at 20 m, 

30 m and 40 m water depth sites, respectively. Along the study period, wave and 

current shear velocities decreased with increasing depth across the shelf, but current 

shear velocities were about the same magnitude at 30 m and 40 m isobaths. 

As observed in previous sections, three different periods can be also identified 

analyzing the variability of the SSC and shear stress along the experiment: A first 

period of high frequency of SSC peaks corresponding to relatively high shear stresses 

during autumn and early winter; a second period of lower near-bottom suspended 

sediment concentration under fair-weather conditions with intermittent increments in 

shear stress and; a third period, from early May 2008 to end of the recording period, of 

relatively high near-bottom SSC associated with an increase in wave activity but 

especially in river discharge. 

 
Figure 4.7. Time series of (A) current shear velocity, (B) wave shear velocity, and (C) SSC at 20 
m depth (Be09-20m site). 
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Figure 4.8. Time series of (A) current shear velocity, (B) wave shear velocity, and (C) SSC at 30 
m depth (Be08-30m site). 

 
Figure 4.9. Time series of (A) current shear velocity, (B) wave shear velocity, and (C) SSC at 40 
m depth (Be07-40m site). 
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4.4 Factors controlling SSC 

River sediment inputs and bed shear stresses change seabed texture (grain size, 

sorting, grading) modifying the availability of fine-grained sediment on the seabed and 

therefore, the SSC during resuspension events. In this sense, Guillén et al., (2006) 

analyzed sediment flux observations from the inner shelf offshore of the Têt River in 

the Gulf of Lions. They showed the influence of the formation of flood-derived deposits 

(ephemeral layers) previously to a storm passage that enhanced bottom sediment 

erodibility and SSC respect to other storms because of the higher porosity and water 

content of the fresh sediment. Conversely, shear stresses preferentially resuspend 

finer-sediment leaving a coarser layer of sediment at the bed surface that prevents the 

flow from suspending underlying fine sediment (“bed armouring”; Wiberg et al., 1994) 

and limiting sediment availability and SSC during resuspension events. 

During the study period, increases of suspended sediment concentration at all tripod 

sites are consistent with higher bed shear stresses, with SSC peaks close to the peak 

of the storms (Figure 4.7, Figure 4.8 and Figure 4.9). The importance of surface gravity 

waves in shelf sediment flux has been reported by many studies (e.g., Cacchione et al., 

1995; Sherwood et al., 1994), so this association is not unexpected and it is indicative 

of resuspension of bed sediment induced by the wave shear stress. However, the 

current shear velocity during periods of high SSC were not as different as other times 

when there was an increment in current shear velocity but not in SSC and therefore, 

resuspension was not associated to the current shear stress.  

In the other hand, the relatively high river discharge during May and June 2008 induced 

a period of a significant increment in SSC not associated to high shear stresses (Figure 

4.7). This association of near-bottom suspended sediment concentration and river 

discharge suggests that riverine sediment reached directly the seabed at least at 20 m 

water depth registering values of SSC three orders of magnitude above the 

background level and therefore, the formation of a temporal bottom nepheloid layer at 

this location. 

When wave storms and river floods occurred at the same time, the additional sediment 

discharged from the river can increase the suspended sediment concentration near the 

bottom (Ogston et al., 2000; Fan et al., 2004). Early autumn and some spring events 

during which wave storms coupled with increased river water discharge reached higher 

values of SSC than during other events with similar wave energy conditions but without 
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simultaneous river discharge. Indeed, the maximum SSC at 20 m water depth was 

recorded during the highest river water discharge coupled with one of the most 

energetic storm of the experiment (10th – 15th of May 2008). 

In many cases, the comparison between bed shear stress and the SSC during waves 

events reveals a lack of proportionality suggesting that the conditions of the bottom 

sediment previous to resuspension were different between events. From the sequence 

of events occurred between October 2007 and January 2008 at 20 m water depth can 

be derived that the Besòs river delivered riverine sediment into the shelf that 

conditioned directly or indirectly the SSC during intermixed and subsequent wave 

storm events. Waves and river inputs increased SSC up to 90 mg/l during October 

2007 probably leaving a deposit of fresh sediment in shallow waters (ephemeral layer). 

During the subsequent storms occurred in November 2007, the SSC reached values 

higher than expected considering wave conditions (around 70 mg/l) because the higher 

erodibility of the flood-derived storm deposits generated during preceding events. The 

December 2007 and January 2008 waves storms were much more energetic but the 

SSC was less of 50 mg/l presumably because all the fine particles in shallow areas had 

already been winnowed by the preceding storms. This interpretation is consistent with 

the downward fluxes and grain-size variability of the suspended sediment collected by 

the sediment traps (section 4.2). During the October and November 2007 events, total 

downward fluxes at 20 m water depth registered their maximum of the study period 

with a median grain-size around 30-40 µm. During December 2007 and January 2008 

events, the median grain-size was much larger (around 60-80 µm) but the downward 

fluxes were lower than the preceding period indicating a lower bottom sediment 

erodibility during resuspension events. Therefore, the chronology of the events on the 

shelf plays a crucial role in SSC, since small storm events can produce larger SSC 

depending on the sequence of previous flood and storm event. 

Although riverine sediment inputs and bed shear stresses decrease with increasing 

water depth during the study period, the influence of these processes was also 

observed at deeper areas of the inner shelf (Be08-30m and Be07-40 m sites). Changes 

in the textural characteristics of the bottom sediment occurred at least 8 cm below the 

water-sediment interface, at the three tripods sites (section 4.1). The across shelf 

gradient in critical shear stress was then modified and therefore, the availability of 

resuspendable sediment. The mean critical shear stress of the bottom sediment 

median grain size was estimated in 0.142 N/m2 for the 20 m water depth site, 0.094 

N/m2 for the 30 m site and 0.031 N/m2 for the 40 m site.  At the beginning of the study 
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period, the offshore gradient in critical shear stress was estimated in -0.13 mPa/m and 

-0.08 mPa/m between 20 m and 30 m and 30 m and 40 m isobaths, respectively, with 

similar values in November 2007 and June 2008 (Figure 4.10). However, the 

coarsening of the surface layer observed at 30 m depth (section 4.1) in February 2008 

reduced drastically the estimated offshore gradient in critical shear stress of the bottom 

sediment between 20 m and 30 m water depth sites. This suggests that the December 

2007 and January 2008 storms removed fine-grained sediment from the 30 m water 

depth presumably because the limitation of fine-grained sediment at shallow areas. 

This is consistent with the higher values of SSC and downward sediment fluxes 

recorded at this depth compared to the values obtained at 20 m water depth during the 

same events. Therefore, the across shelf variation of sediment availability (i.e. critical 

shear stress gradients) also plays an important role in SSC, since the same storm 

produce larger SSC in deeper waters depending on the availability of resuspendable 

sediment across the inner shelf. 

 
Figure 4.10. Temporal variability of the across-shelf critical shear stress estimated for median 
grain size of sediment samples from the inner-shelf off Barcelona. 
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5 Patterns of sediment transport 

The observations analyzed in previous sections show the episodic characteristics of 

wave storms, increments in river discharge and near-bottom currents in the Barcelona 

inner shelf and suggest that near-bottom suspended sediment concentration (SSC) 

was induced by resuspension produced by relatively large waves and sediment inputs 

by the Besòs River. These mechanisms placed sediment into the water column which 

were transferred by currents to other areas of the shelf.  

This section discusses near-bottom sediment fluxes in terms of temporal and spatial 

variability in the study area during the period comprised between September 2007 and 

June 2008 (Table 5.1). In addition, the applied 1D shelf sediment transport model used 

to estimate the concentration of sediment in suspension and sediment transport during 

resuspension events (Wiberg et al., 1994) is correlated against observed SSC during 

the study period at 20 and 30 m water depth. In particular, the most significant 

resuspension event from the study period is accurately analyzed in order to validate the 

estimation of vertically integrated sediment fluxes during a resuspension event in the 

inner-shelf off Barcelona. Near-bottom sediment transport rates across the inner shelf 

are then addressed from observational and modeled data with the aim of 

understanding sediment transport gradients and erosion/deposition patterns across the 

inner continental shelf of Barcelona. 

5.1 Near-bottom sediment fluxes 

In order to address sediment transport patterns in the area under study, sediment flux 

events and non-events intervals were defined from the sediment magnitude flux 

calculations using the current and SSC measurements at site Be09-20m (see criteria in 

section 2.3.4). Fourteen sediment flux events were identified between September 2007 

and June 2008 (Figure 5.1). These included eight sediment transport events during 

autumn 2007, two events during winter 2007-2008 (January – February 2008) and four 

events during spring 2008 (May –June 2008). Note that event A and H were divided 

into two sub-events due to the occurrence of significant changes in the hydrodynamics 

during the events (Table 5.2). 

During the study period, the magnitude of the instantaneous near-bottom sediment flux 

reached maximum values of 15, 14 and 4.5 g/m2s at 20 m, 30 m and 40 m water 

depths, respectively (Figure 5.1). In general, the magnitude of the instantaneous 
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sediment flux decreased offshore, except in events H and I (December 2007 and 

January 2008 storms) when it was higher at 30 m than at 20 m water depth. Mean and 

net near-bottom sediment fluxes during the three deployments are shown in Table 5.1. 

The mean sediment flux was higher during the first deployment (September – 

November 2007). To compare between the three locations, the mean sediment flux 

from September to November 2007 was 584 mg/m2s at the 20 m site, 462 mg/m2s at 

30 m water depth and 473 mg/m2s at 40 m water depth. The mean along-shelf near-

bottom flux was higher than the across-shelf flux at all recording sites, specially at 

shallow water (Table 5.1), with an across/along relation increasing offshore. In addition, 

the percentage of the along-shelf transport represented a 77 % of the total near-bottom 

sediment transport occurred in autumn when the majority of the defined events 

occurred, 44 % during winter and 58 % during spring when less energetic processes 

controlled the near-bottom sediment transport at the 20 m isobath. This implies that 

along-shelf sediment fluxes were controlled by the largest storms, whereas across-

shelf fluxes also occurred as the sum of less energetic processes. 

Sediment flux events at 0.58 mab represented the 54 % of the total sediment flux along 

the study period. The contribution of the events, however, differed along each season, 

which represented the 70 %, 34 % and 53 % in autumn, winter and spring, 

respectively. This is roughly proportional to the number of events in each season. 

During autumn a high frequency of moderate eastern wave storms, moderate river 

discharge and greater current magnitude characterized the near-bottom sediment flux 

events (events A to H). Two moderate storm (events I and J) occurred in winter and 

two river discharge combined with two southern wave storms (events K, L, M and N) in 

spring ,  contributed to the total near-bottom sediment flux. 

In autumn 2007, near-bottom sediment fluxes decreased with increasing depth as a 

result of the offshore decrease in wave shear stress, current speed and SSC. The 

instantaneous sediment flux reached values one order of magnitude higher than the 

background level (12 g/m2s – event D) at the shallowest site (Be09-20m), while at 30 m 

and 40 m water depths the instantaneous flux was under 5 g/m2s. At the end of autumn 

and beginning of winter 2007-2008, the excess of shear stress, the SSC and the 

current speed increased offshore. Under these conditions, the magnitude of the 

sediment flux was higher at 30 m depth than at 20 m during most of the storms, with 

peak values of 14 g/m2s and 9 g/m2s (event H1 and I, respectively).  
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Spring 2008 was characterized by a notable increment in river discharge that lasted 

more than one month. The near-bottom sediment flux reached the maximum of the 

study period at 20 m water depth with values of 15 g/m2s during event K. After this 

event, wave and current energy decayed and the sediment flux was induced mainly by 

the high SSC associated to the river discharge (events L, M and N). 

 
Table 5.1. Near-bottom sediment fluxes in mg/m2s at the tripod locations during the three 
surveys. 

 
Figure 5.1. Time series of the magnitude of sediment flux near the bottom at the three tripod 
locations. (A) Be09-20m at 20 m depth, (B) Be08-30m at 30 m depth and (C) Be07-40m at 40 m 
depth. Letters indicated the selected sediment fluxes events defined at site Be09-20m.  
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Table 5.2. Characteristics of sediment flux events at 20 m water depth from September 2007 to 
June 2008. Italic and bold numbers correspond to mean and maximum values, respectively. 

5.2 Evaluation of a 1D Sediment transport model 

Using measured hydrodynamic times series as model inputs to calculate the 

suspended sediment concentration and verified at a reference level against tripod 

turbidity measurements allowed the evaluation of the model procedure. The model runs 

were performed with the times series from Be09-20m and Be08-30m sites.  
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Figure 5.2. Model evaluation of observed (blue) and calculated (red) SSC at 0.53 mab at sites 
(A) Be09-20m and (B) Be08-30m. 

In terms of resuspension events frequency and relative magnitude between events, the 

model performed very well and agreed with the observational data. At all tripod 

locations, the highest frequency of modeled suspended sediment concentration 

occurred during autumn 2007 as observed. In general terms, observed and modeled 

SSC were about the same order of magnitude along the study period. The model 

clearly capture the most significant resuspension event during the measurement period 

(event H1) at both sites, also capturing the higher value of SSC at 30 m water depth 

respect to the shallower site. The subsequent resuspension events occurred until 

March 2008 (events H2, I and J) were also capture and agreed strongly with the 

observational data. 

However, during some events of increased SSC associated to increments in shear 

stress, model results were slightly low compared to measurements (e.g. events A, D 

and G). Additionally, there were also observations of elevated SSC that did not 

correspond to elevated bed shear stresses (e.g. M and N at Be09-20m), but coincided 

with periods of elevated river water discharge. Therefore, it is evident that the model 

does not adequately reproduces all observations and that these discrepancies may be 
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partially related with seasonal and eventual changes in bottom sediment properties no 

detected during the sediment sampling interval. These changes were usually 

associated to either advection of SSC resuspended elsewhere, changes during and 

after a storm event or riverine inputs. 
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Figure 5.3. Correlation forced to zero between observed data (after removing background levels) and model results: (A) and (B) along the study period 
and between December 2007 and February 2008 at Be09-20m and Be08-30m, respectively; and (C) and (D) for the December 2007 storm and at the 
peak of the event at Be09-20m site and Be08-30m site, respectively. 
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The correlation between observed and modeled SSC (after removing background 

levels) obtained along the entire study period reflects a better model performance at 

the 30 m water depth site than the obtained at the 20 m site, with correlation 

coefficients (R2) of 0.43 and 0.37, respectively, and improves when using data from 

periods of negligible river influence with R2 values of 0.62 at the 20 m water depth site 

and 0.66 at the 30 m site (Figure 5.3 A and B). Therefore, the model better performed 

during periods without river discharge and when farther the site from sediment sources 

(late autumn and winter and 30 m depth, respectively) as it is assumed that most of the 

SSC is due to resuspension. It is intriguingly that the model fits better at 30 m than 20 

m water depth, in spite of bottom sediment changes were higher at the deeper site 

(Figure 4.4 and Figure 4.10). It is hypothesized that changes in sediment properties 

were better captured with the scheduled sampling interval at the 30 m water depth site 

than at the other site probably because the influence of river inputs and shear stresses 

decreased offshore and changes in the bottom sediment properties were less frequent 

in deeper than in shallow waters. 

The correlation obtained between observed and modeled SSC during Event H at both 

sites (Figure 5.3 C and D) improved respect the one obtained from the longer time 

series presented above. Accounting all data during event H, the correlation coefficients 

were 0.62 and 0.73 at 20 m and 30 m water depths, respectively, reaching values of 

0.69 and 0.87 if only the first storm was compared (Event H1). These correlation 

coefficients show fair agreement between observed and modeled SSC during event H. 

The observed discrepancies occurred, especially, during the second storm (Event H2) 

where the model overpredicted the SSC, in absence of external sediment inputs. This 

fact suggests that seabed sediment properties varies during a storm event. In this 

sense, the model simulates SSC as non-cohesive material whose availability is limited 

by the thickness of an active layer. However, event H1 underwent erosion at both sites 

(see Figure 5.6) and probably more cohesive sediment were exposed during and after 

this resuspension event and the seabed became more difficult to erode. 

The temporal and spatial (in the vertical) variability of sediment properties in the inner 

shelf has been demonstrated in a number of studies during last few decades. These 

studies showed that grain size distribution and porosity changes as a result of the 

contribution from known sediment sources or regional supply or for the wave-energy 

affecting the bottom sediment during storms (e.g. Wheatcroft and Borgeld, 2000; Harris 

and Wiberg, 2002; Guillén et al, 2005; 2006; Stevens et al., 2007; Law et al., 2008; 

Ferré et al., 2010; Bever et al., 2011). Data from sediments grain size and porosity 
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taken on the inner shelf showed that sediment characteristics varies temporally and 

spatially in the inner shelf off Barcelona as well (see 4.1). A continuous control of 

bottom and suspended sediment grain size is then required if an accurate evaluation of 

the SSC and sediment fluxes is to be achieved. Nonetheless, the good agreement 

between observed and modeled SSC during event H, specially during the first storm 

(event H1), gives a fair validation to estimate near-bottom sediment fluxes and vertically 

integrated suspended sediment fluxes during a resuspension event in the inner shelf 

off Barcelona. 

Therefore, the results obtained during event H1 were accounted for the analysis of 

sediment dynamics in the following section. The vertical profiles of model suspended 

sediment concentration, current speed and the sediment flux components during event 

H1 are shown in Figure 5.4. The SSC was lower at the 20 m than at the 30 m isobath 

over 10 meters above bottom (mab) except for the lower 0.20 m (Figure 5.4). The 

current magnitude through the lower 10 m of water column was slightly higher at 20 m 

water depth than at the deeper site. However, the across-shelf component at 20 m 

water depth displayed a change in the sing in the profile, offshore up to 7 mab but 

onshore between 7 and 10 mab (Figure 5.4). Consequently, the estimated vertically 

integrated total sediment flux during the peak of the event H1 was higher at 20 m than 

at 30 m water depth with values of 4000 and 3800 g/m2s, respectively, although the 

observed and modeled suspended sediment flux at the reference level was higher at 

the deepest site. 
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Figure 5.4. Model profiles of SSC, current speed and components at Event H1 peak (A1 and A2) and along-shelf (B1 and B2) and across-shelf (C1 and C2) 
sediment fluxes during Event H1 at 20 m and 30 m water depth, respectively. * Reference level during the peak of Event H1. 
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5.3 Sediment dynamics across the shelf 

Fluctuations in the across-shelf component of the current velocity combined with 

across-shelf gradients in bed shear stress can produce a net drift of sediment on – 

offshore. Across the shelf, divergences and convergences of sediment flux depend on 

the across-shelf gradient in wave energy and the direction of the across-shelf current 

but also on the availability of suspendable sediment across the shelf which the 

combined effect lead to net erosion or deposition of the seabed (Harris and Wiberg, 

2002). 

Altimeter data collected during the deployments showed the seabed to be very 

dynamic, with significant bottom sediment erosion coinciding with periods of increased 

wave and current activity (Fig 3.1 and 3.8, respectively). Although the seabed at both, 

20 m and 30 m water depth sites, underwent a net sediment erosion over the study 

period, the net seabed variation was higher at 30 m (Figure 5.6 B) than at 20 m water 

depth (Figure 5.6 A), with an erosion of about 10 cm and 4 cm, respectively. In terms of 

event-scale changes, differences in sediment erosion/deposition were also evident 

between the two sites. Two major seabed erosion events were recorded at 30 m 

isobath during this period, an erosion event of more than 6 cm associated to the most 

energetic episode of the record (Event H1) and a second event of more than 3 cm 

(Event I). At 20 m depth, the variation recorded at the same time was a deposition of a 

3 cm layer which was rapidly eroded and an erosion event of 2 cm, respectively, 

although this site presented more dynamism in terms of frequency of 

erosion/deposition events along the study period. 

In the inner shelf off Barcelona, the sediment transport was mainly directed towards the 

southwest (along-shelf) during the study period (Figure 5.5), however, the seaward 

component was considerably relevant and favored the segregation of coarse and fine 

sediment from the nearshore towards deeper areas. Nonetheless, noticeable 

differences in sediment transport patterns were observed across the inner shelf. Near-

bottom sediment transport at 20 m water depth was mainly offshore, while in deeper 

parts of the inner shelf the along-shelf component dominated the sediment transport. 

This is consistent with previous studies carried out in the area that located a mud belt 

between 30 m and 60 m water depths shifted southwestward (Checa et al., 1988; 

Palanques and Diaz, 1994; Liquete et al., 2007).  
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Figure 5.5. Along-shelf and across-shelf cumulative sediment transport near the bottom for the 
recording period at (A) Be09-20m site, (B) Be08-30m site and (C) Be07-40m site. Positive 
values are towards the NE in the along-shelf direction and offshore, across the shelf. Letters 
inside the plots represent the selected events. 

 
Figure 5.6. Seabed evolution at (A) Be09-20m and (B) Be08-30m sites. Letters inside the plots 
represent the selected events. 
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During the study period, near-bottom sediment transport intensity at 20 m water depth 

mainly depended on the availability of fine-sediment to be resuspended, while in 

deeper parts of the inner shelf fine sediment was most of the time available and the 

near-bottom sediment transport intensity was only controlled by waves and currents. 

The availability of resuspendable fine-sediment during autumn 2007 was conditioned 

directly or indirectly by the Besòs river inputs that deposited fresh river-derived 

sediment in shallow waters (ephemeral layers). The combined action of wave and 

current energy resulted in a convergence of the flux between 20 m and 30 m water 

depths, preventing the spread of the riverine sediment, which was trapped mostly 

shallower than 30 m water depth. During subsequent events (e.g. C, D and E), waves, 

river inputs and currents increased near-bottom sediment fluxes more than expected 

considering wave conditions because the higher erodibility of the river-derived storm 

deposits generated during preceding events. The more energetic waves during event E 

probably caused the erosion of the storm-derived deposit and transported part of it 

from the nearshore across the shelf. The subsequent events (G and H) were much 

more energetic however the estimated sediment transport was relatively lower than the 

obtained during previous events presumably because most of the fine particles in 

shallow areas had already been winnowed by the preceding storms. The net near-

bottom sediment transport during this period was 650 kg/m2 mainly offshore (80º) at the 

20 m isobath, 550 kg/m2 mainly onshore (285º) at the 30 m isobath and 300 kg/m2 

toward the NE (39º) at the 40 m isobath (Figure 5.5). Therefore, this pattern of near-

bottom sediment transport would suggest an accumulation zone shallower than 30 m 

water depth between events A and D. This would be supported by a layer of finer 

sediment between 3 and 8 cm below seabed observed at the 20 m depth core (see 

section 4.1). However, during events E and G, without riverine inputs and offshore 

directed currents dominating across the entire inner shelf, most of the river-derived fine 

sediment in shallow waters was winnowed to deeper areas. 

The most significant transport event of the late autumn and winter period (Event H1) 

resulted on a net near-bottom suspended sediment transport of 260 kg/m2 mainly 

southwestward and slightly offshore (205º - SSW) and 465 kg/m2 southwestward and 

offshore (192º - S) at 20 and 30 m water depth, respectively (Figure 5.5). For the same 

event, the model estimated adequately the net near-bottom sediment transport in 312 

kg/m2 toward the SSW (211º) and 493 kg/m2 toward the S (191º), respectively and 

estimated a cumulative vertically integrated sediment transport of 123000 kg/m2 at 20 

m water depth which 120000 kg/m2 are transported southwestward and 30000 kg/m2 

offshore, while at 30 m water depth, a total of 160000 kg/m2 is decomposed into 
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140000 kg/m2 southwestward and 80000 kg/m2 offshore. Therefore, accounting the 

whole resuspension event, the along-shelf and across-shelf cumulative transport was 

also lower at 20 m than at 30 m water depth, specially in the across-shelf direction 

where the sediment transported during the event was 2.5 times higher at the deepest 

site. Consequently with observations and modeling, a 6 cm layer was eroded at 30 m 

water depth during this event (Figure 5.6). This erosion occurred because, as 

previously described in other areas (Harris and Wiberg, 2002), an offshore flow 

becomes erosive across the shelf where the flow first encounters fine-grained 

sediment. At 20 m water depth, the seabed level displayed smaller variations (< 1 cm 

erosion) denoting moderate across-shelf gradients of sediment transport at the 

shallower inner shelf (Figure 5.6). In late autumn then, fine sediment was limited at 

shallow areas when the strongest storm of the period occurred and its effect was 

greater at deeper areas of the inner shelf due to the location of resuspendable 

sediment, reversing the sing of the across shelf gradient in sediment transport. Similar 

behavior was observed during the subsequent events occurred in late autumn and 

early winter (H2 and I) eroding the seabed at 30 m water depth preferentially (about 3 

cm during event I) until the across shelf gradient in critical shear stress decreased 

again between 20 m and 30 m water depths (Figure 4.10). At that time, the gradient in 

sediment transport smoothed across the shelf. In the last even occurred in winter 

(event J), sediment transport rates were again higher at the shallower site and the 

seabed variation was more intense at shallow waters becoming depositional, with a 

deposit of 2 cm at 20 m water depth versus few millimeters at the 30 m water depth site 

(Figure 5.6). The resulting net near-bottom sediment transport at that time was 

therefore, 500 kg/m2 and 1500 kg/m2 mainly southwestward and offshore (200º- SSW) 

at the 20 m and 30 m water depth sites, respectively, transporting sediment toward 

deeper areas of the shelf but mainly southwestward at 30 m water depth. 

In spring 2008, the conditions during sediment transport events were different and the 

resulting net sediment transport and seabed erosion were lower than occurred during 

autumn and winter. In May 2008, river intensity increased and two moderate 

southeastern storms were recorded together with offshore prevailing currents at the 

beginning of the increment in the water discharge. The first storm (Event K) eroded a 

1.5 cm layer at 20 m water depth and hardly affected the seabed at 30 m water depth; 

conversely to the second storm (Event L) that only eroded the seabed at the deeper 

site (about 1 cm - Figure 5.6), which was partially deposited previously to the storm, 

under low energy conditions. The two subsequent events (M and N) were related with 

the high riverine inputs under low wave energy conditions, but the observed sea bottom 
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changes were unrelated with these events. However, a continuous erosion was 

observed at 30 m water depth during the last two weeks of the deployment. The 

mechanisms responsible of the sediment accumulation previous to event L and the 

erosional trend at 30 m water depth during the final period of deployment remain 

unclear. It is hypothesized that the presence of a thermocline can play a role. Typically 

in this zone the thermocline begins to be generated close the surface in March-April 

and deepening progressively. A thermocline associated with a high near bottom SSC 

was located around 30 m water depth at June 2008 (Figure 5.7). Previous studies have 

reported the occurrence of internal waves on Mediterranean shelves such as the Ebro 

continental shelf (Puig et al., 2001), the Adriatic Sea (Puig et al., 2007) and the 

Llobregat prodelta (Urgeles et al., 2011) and the potential role in resuspending and 

transporting sediments where the seasonal thermocline intersects with the seabed. On 

the other hand, the sedimentation event probably occurred when the thermocline 

intersect the sea bottom shallower than 30 m. In that conditions, resuspended 

sediment  associated to the thermocline could be thereafter transported offshore and 

deposited by the prevailing offshore currents. During the spring events, the cumulative 

net sediment transport was 150 kg/m2 towards the NE and offshore (90º-E) at 20 m 

water depth and at the end of the study period 650 kg/m2 were transported offshore 

and about 100 kg/m2 along-shelf towards the southwest at that site. 

 
Figure 5.7. CTD profile of temperature and turbidity in June 2008 waters at the Be08-30m site. 



6. Heavy metal pollution in sediments 

82  

6 Heavy metal pollution in sediments 

This section focuses on the evaluation of the associated heavy metal contamination in 

the settling particulate matter and the surface bottom sediment across the inner 

continental shelf off Barcelona. Mean fluxes and mean concentrations were estimated 

as time-weighted mean fluxes and flux-weighted mean concentration, which is 

equivalent to what had been collected by a single cup during the entire deployment 

period.  

6.1 Distribution and pollution levels of heavy metals 

The impact of anthropogenic heavy metals in the Barcelona inner shelf is represented 

by maps constructed from the metals levels evaluated for the fine-grain fraction (Figure 

6.1). These maps show sources of pollution and degree of dispersion. The most 

contaminated sediment accumulates southwestward from the Besòs River and the 

Bogatell sewer along the inner shelf and there is a decreasing gradient of metal 

contamination towards deeper areas. In the inner shelf, the maximum heavy metal 

contamination associated to the Besòs river is located around the tripod sites, specially 

between Be09-20m and Be08-30m (Figure 2.1 and Figure 6.1).  

The mean concentrations of Cr, Pb, Cd, Cu, Zn and Hg in  the Besòs River suspended 

and in the settling particulate matter and bottom sediment at the three tripod sites, are 

summarize in Table 6.1. Mean concentration values from most of the heavy metals 

analyzed were higher at the Besòs River suspended sediment than the values obtained 

at the tripod sites for both settling particulate matter and bottom sediment. At all tripod 

sites, concentration of heavy metals in the settling particulate matter were about the 

same order of magnitude of those analyzed from the bottom sediment samples taken 

at the same locations. In general, contents of heavy metals were higher at sites Be09-

20m and Be08-30m than at Be07-40m site in both settling particulate matter and 

bottom sediment (Table 6.1 and Figure 6.1).  

Mean heavy metals concentrations presented in Table 6.1 were compared with their 

natural concentration levels obtained from unpolluted bottom sediment samples taken 

in the Northwestern Mediterranean Sea (section 2.2.5). The comparison allowed to 

calculate the enrichment factor of those heavy metals and to evaluate the pollution 

levels affecting this littoral environment. The results obtained are shown in Table 6.2. In 

the study area, the higher ratios of metal contamination in relation to natural levels 
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were found in the Besòs River suspended sediment for all the selected heavy metals 

except for Hg. Conversely, Hg produced the highest impact in the inner shelf settling 

particulate matter and bottom sediment, with more than 20 times its natural level, 

reaching more than 30 times at the Be08-30 m site bottom sediment. Hg presented a 

level of contamination 3 times higher than the other pollutants in the inner shelf. 

However, the other metals levels were still very high in the area under study. 
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Figure 6.1. Maps showing the surface distribution of the most important heavy metal contaminants in the fine fraction of the bottom sediment sampled in October 
2007. Metal concentrations are expressed in ppm. 
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Table 6.1. Mean concentration of heavy metals in the Besòs River suspended sediment and 
settling particulate matter and bottom sediment of the three tripod locations in September 2007. 

 
Table 6.2. Enrichment Factor of the mean concentration of heavy metals in the Besòs River 
suspended sediment and settling particulate matter and bottom sediment of the three tripod 
locations in September 2007. 

6.2 Temporal variability of heavy metals concentrations 

The temporal variability of main heavy metals concentrations in the Besòs River 

suspended sediment and in settling particulate matter and bottom sediment in the inner 

shelf sites are shown in Figure 6.2, Figure 6.3 and Figure 6.4, respectively. Most of the 

heavy metals analyzed (Cr, Cd, Pb, Cu and Zn) showed a similar trend in time in the 

Besòs River sediment and also in the inner shelf settling particulate matter and bottom 

sediment. However, Hg concentrations in the Besòs River sediment and together with 

Cd concentrations in the inner shelf settling particulate matter followed independent 

patterns. 

 
Figure 6.2. Temporal variability of heavy metals concentration in the Besòs River suspended 
sediment during the study period.  
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In the inner shelf, heavy metals concentrations in the settling particulate matter 

samples were considerably lower than in the river suspended sediment being most of 

the fluctuations under one order of magnitude (Figure 6.3). As mentioned before, 

concentrations of Cr, Pb, Cu and Zn in settling particulate matter sediment followed a 

similar trend while Hg and Cd values changed differently along the study period. At 20 

m depth, Cr, Pb, Cu and Zn concentrations reached their maximum in December of 

2007 dropping slowly after some fluctuations from that time to March of 2008 and 

increasing again to June of 2008 (Figure 6.3 A). In general, those pollutants followed a 

similar pattern between them and across the shelf during the time that samples were 

available.  

In the surface bottom sediment sampled at the tripod sites, heavy metals concentration 

changed moderately in time compared with their fluctuations in the settling particulate 

matter sediment. Across the shelf, concentrations of heavy metals in the bottom 

sediment varied with depth. At 20 m water depth (Be09-20m site - Figure 6.4 A) all 

analyzed heavy metals, except Hg, increased from October to June of 2008. At that 

site, Hg concentrations decreased in December of 2007 but peaked also in March of 

2008 decreasing in June of 2008. In the bottom sediment at 30 m water depth (Figure 

6.4 B), Cr, Pb, Cu, Zn and Cd concentrations fluctuated along the study period: 

increasing to November of 2007 and decreasing from that time to June of 2008. 

However, Hg concentrations at site Be08-30m, dropped and rocketed in March of 2008 

and in June of 2008, respectively. Finally, concentration values of all analyzed heavy 

metals, at 40 m water depth (Be07-40m site - Figure 6.4 C), decreased between 

October and November 2007 and between March and June 2008 but increased 

between December 2007 and March 2008 peaking at that time. 

In general, there was a correlation between most analyzed heavy metals river inputs 

and concentrations in the inner shelf sediments. In both river sediment and inner shelf 

settling particulate matter sediment, heavy metal concentrations increased during 

autumn coinciding with wave and current energetic conditions and water discharge 

events; decreased during the dry winter season; and finally, raised moderately during 

spring, a period of relatively increment in river water and sediment inputs. The surface 

bottom sediment record also reflected changes along the study period, however those 

changes were dilated in time and varied with water depth. 
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Figure 6.3.Temporal variability of heavy metals concentration in the settling particulate matter during the study period at A) Be09-20m site, B) Be08-
30m site and C) Be07-40m site. 
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Figure 6.4.Temporal variability of heavy metals concentration in the bottom sediment during the study period at A) Be09-20m site, B) Be08-30m and C) 
Be07-40m.  
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6.3 Implications for the fate of heavy metals in the inner shelf 
off Barcelona 

The higher contamination of shelf sediment is usually found associated to big coastal 

cities and the mouths of contaminated rivers. Accumulation of waste on the shelf 

depends on the balance between waste discharge and current dispersal. These 

currents are weak on average in shelves of epicontinental and semi-enclosed seas 

such as the Mediterranean Sea. This favors the accumulation of contaminated solids in 

nearshore areas around the discharging sources of these seas. This situation was 

observed in continental shelf such as the Gulf of Lions (Roussiez et al., 2006; 

Radakovitch et al., 2008), the Ebro continental shelf (Palanques et al., 1990) and the 

continental shelf off Barcelona (Palanques and Díaz, 1993; 1994; Puig et al., 1999). 

Palanques and Diaz (1994) found that the most important sources of contaminants in 

the northern Barcelona continental shelf were the Besòs River, the Bogatell sewer and 

the old pipeline of the Besòs waste treatment plant (see Figure 2.1 for location). This 

heavy metal contamination showed an along-shelf pattern of distribution affecting 

mainly the sediments of the inner Besòs prodelta, decreasing gradually southward and 

more sharply seaward from the river mouth. Our observations agreed well with these 

results (section 6.1) although it can be observed a general decreasing in heavy metals 

levels respect to previous studies. In the study area, the most contaminated sediment 

accumulates southwestward from the river and sewer mouths along the inner shelf 

decreasing offshore (Figure 6.1). The most affected area associated to the Besòs river 

influence was located around the tripod sites, specially between 20 m and 30 m water 

depths decreasing offshore. However, a temporal variability was observed along the 

study period which changed the across shelf gradient of heavy metal contamination. As 

a result of the high affinity between metals and fine particles, distribution of 

anthropogenic metals in coastal systems is mainly affected by the same dynamics as 

fine sediment. Therefore, it is expected that fine sediment dynamics derived from the 

observations in the inner-shelf off Barcelona could explain the distribution and fate of 

heavy metals in this region. 

The metal content in the suspended sediment of the Besòs River near the river mouth 

indicates that there is a high temporal variability associated with increments in the 

water river discharge that enhance the concentration of heavy metals in the river 

suspended sediment. However, values of heavy metals contents were always above 

their natural levels along the study period (Figure 6.2). During the study period, the 

maximum heavy metals contents in the suspended sediment of the Besòs river, except 
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for Hg, were found in Autumn 2007, when events of increase water discharge took 

place (Figure 6.2). In the inner shelf, SPM and most of the associated heavy metals 

responded to a similar behaviour than river suspended sediment along this period, 

specially at 20 and 30 m water depths, with increments in SPM and heavy metal 

concentrations during increased river discharge (Figure 6.4). Although, the metal 

concentrations of the SPM in the inner-shelf sites were much lower than those of the 

river suspended sediment. Therefore, an apparent direct association between river 

discharges and suspended heavy metals reaching the inner shelf occurred during this 

period. This association was expected as fine sediment and associated heavy metals 

tend to accumulate at the river bed during low river flow conditions and are mostly 

resuspended and transported toward the sea when the water discharge increases 

during river floods (Puig et al., 1999). As a result, during high river discharges heavy 

metals are removed and discharged onto the Barcelona inner-shelf and their contents 

increased in the bottom sediment at both sites (Figure 6.3). Indeed, fine river-derived 

sediment and therefore, associated heavy metals, accumulated shallower than 30 m at 

the beginning of the season which was transported offshore during late autumn  and 

winter events.  

Riverine inputs decreased at the end of autumn and were low during winter 2008. At 

that time, Cr, Pb, Cu and Zn contents decreased in river suspended sediment and in 

SPM in the inner-shelf sites. The high near-bottom sediment fluxes occurred at 20 m 

and 30 m sites transported fine grained sediment southwestward and offshore. This 

offshore flux partially accumulated around 40 m water depth which can explain the 

increment of heavy metal contents at that depth (Figure 6.4). That implies that only 

during high wave and current energy the anthropogenic contamination, previously 

deposited in the shallow inner-shelf, reached deeper areas. Thus, river sediment inputs 

during autumn events presumably reached the outer part of the inner-shelf later than 

their discharge into the nearshore by the Besòs River.  

However, Hg and Cd followed a different pattern denoting that other factors controlled 

their concentration in the inner-shelf. Roussiez et al. (2006) found that the silt fraction 

likely regulated the accumulation of anthropogenic Cd in the vicinity of rivers 

discharging in the Gulf of Lions. This association can be applied in our study area since 

the grain size sediment collected by the traps during Cd concentration peaks were 

higher than 50 μm, specially at the 20 m site, during winter resuspension events 

(Figure 4.6). Hg concentrations, though, showed a more dispersed pattern along the 
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inner-shelf with clear background contamination levels and increasing concentrations 

associated to increments of the clay fraction in bottom sediment (Figure 6.4).  

The suspended sediment discharge along spring events, differing from those occurred 

in autumn, presented lower concentrations of SPM and therefore, heavy metal 

concentration in river suspended sediment decreased respect to the previous period. 

Differences in the inputs of suspended sediment and associated heavy metal 

contamination levels between these two periods of increased river discharged could be 

related to the type and duration of the discharge events. In Autumn 2007, events of 

river discharge were shorter and more episodic than during spring events when Besòs 

river discharged quasi-continuously during one month. During high and long river water 

discharges, anthropogenic metals transported by the river are probably mixed by large 

amounts of non-contaminated riverine sediment eroded in its drainage basin, which 

dilute the metal contamination transferred to the shelf. However, heavy metal contents 

in SPM and bottom sediment slightly increased at 20 m water depth during this period 

probably because the river discharge occurred in conjunction with low wave and 

current energy conditions which favor the deposition of fine riverine sediments and 

associated contamination in shallow waters.  

Consequently, riverine sediments and associated heavy metals inputs depended not 

only on the amount of water discharge by the river but also on the conditions of the 

discharge and the receiving waters. Thus, during high but short river discharges, 

contents of heavy metals were higher than during longer discharges as fine sediment 

and associated heavy metal accumulated in the bed river which are eroded and 

discharged into the sea at the beginning of the storm but diluted with unpolluted eroded 

sediment if the water discharge last longer. In addition, if the discharge occurs under 

high wave and current conditions, SPM and associated heavy metals could be retained 

in shallow waters or transported offshore depending on the magnitude and direction of 

the currents. However, if the discharge occurs under low energetic conditions riverine 

sediments and associated contaminants are probably deposited in shallow waters. The 

resulting sediment transport and its variability across the shelf, produced a deposition 

of heavy metals contaminants in an along-shelf path at 20 m water depth and 

transferred partly offshore. At 30 m depth, most of the sediment and associated heavy 

metals were transported southwestward and only under the strong storms the 

sediments and associated heavy metals were transferred seaward toward the 40 m 

water depth site and to deeper waters. 
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7 Conclusions and further research 

The observations and modeling of sediment dynamics across the inner-shelf off 

Barcelona provide a better understanding of sedimentary processes mainly in relation 

to the sediment delivered for small rivers and the dispersion by waves and currents. 

The contribution of the Besòs River discharges, the effect of waves and currents with 

or without simultaneous river discharges and how these processes varied across the 

shelf gave some clues of the pattern of sediment dynamics across the shelf and 

seabed evolution between Autumn 2007 and Spring 2008. During the study period, 

sediment dynamics in the inner-shelf off Barcelona was a good example of multi-event 

sediment transport across a Mediterranean continental shelf affected by the discharges 

of a “small” contaminated river that despite its size had an appreciable influence in 

continental shelf dynamics and the fate of anthropogenic heavy metals. 

The importance of “small” Mediterranean river systems in the transference of sediment 

from the continent to the sea is shown. The observed events of river discharge 

introduced sediment to the coastal area increasing the magnitude of the downward 

sediment flux and the suspended sediment concentration near the bottom. During 

these events, evidences of the formation of ephemeral sediment layers were found, 

which increased the availability of fine sediment on the seabed to interact with 

resuspension and transport processes and changed bottom sediment properties. When 

events of increased river discharge occur in conjunction with high wave activity (“wet 

storms”), the magnitude of downward sediment fluxes and near-bottom suspended 

sediment concentration increase due to the combination of riverine inputs and wave 

sediment resuspension. Additionally, the chronology of the events on the shelf also 

plays a crucial role in sediment dynamics and bed evolution, since small storm events 

produce larger suspended sediment concentration and transport rates depending on 

the sequence of previous flood and storm events. 

Most near-bottom suspended sediment transport on the inner shelf occurred during 

major storm events. The along-shelf sediment transport was higher than across-shelf at 

the inner shelf during storm events. However, the net across-shelf sediment transport 

was higher than along-shelf at shallow waters (20 m) because along-shelf transport 

was compensated by events of opposite transport direction. At 30 m water depth, most 

of the sediment was transported along-shelf towards the southwest and only during the 

most energetic storms there was an offshore transport.  
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Changes in the availability of fresh-fine grained sediment and in the across-shelf 

current component can modify sediment flux gradients and lead to zones of preferential 

accumulation or erosion. The across-shelf sediment flux magnitude decreased offshore 

when fresh-fine-grained sediment was available across the shelf. When fine grained 

bottom sediment has been winnowed from shallow areas (20 m water depth) and 

deposited offshore (30 m water depth), sediment fluxes and seabed erosion were 

higher offshore because the excess of the critical shear stress and sediment availability 

increased. The seabed erosion reached 4 and 10 cm at 20 and 30 m water depth 

respectively. It is also hypothesized that the concentration of internal waves energy in 

the intersection between the thermocline and the seabed also generated an area of 

preferential erosion. 

The modeled SSC adequately reproduced observations along the entire study during 

periods of negligible river influence as it was assumed that most of the SSC was due to 

resuspension. The good agreement between observed and modeled SSC during a 

resuspension event gives a fair validation to estimate vertically integrated suspended 

sediment fluxes during a resuspension event in the inner shelf off Barcelona. The 

observed discrepancies between observations and model suggest that seabed 

sediment properties varied in response to sediment inputs from nearby sources, 

advection and changing hydrodynamic conditions during resuspension events. 

Therefore, a continuous control of bottom and suspended sediment grain size is then 

required if an accurate evaluation of the SSC and sediment fluxes is to be achieved.  

River inputs and storm events redistribute not only sediment but also all the associated 

contamination, such as heavy metals, which concentration and dispersion depend both 

on the amount of river water discharge and on the conditions of the discharge and the 

receiving waters. During high but short river discharges, contents of heavy metals are 

higher than during longer discharges. Fine sediment and associated heavy metals 

accumulate in the river bed and are mainly eroded and discharged to the sea at the 

beginning of the event but become depleted during long events. In addition, during 

relatively high waves and currents conditions, riverine inputs are dispersed on the 

continental shelf but during low energy events and between events the discharge of 

heavy metals from the Besòs River accumulates in the inner-shelf. This heavy metal 

contamination shows an along-shelf distribution pattern affecting mainly the sediments 

of the inner Besòs continental shelf, decreasing gradually southward and more sharply 

seaward from the river mouth. The most contaminated sediment is accumulated 

southwestward from the river along the inner shelf. The metals levels decrease 
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offshore. Our observations about heavy metal distribution on the inner shelf agree well 

with previous studies, although also show a temporal decreasing trend of the heavy 

metals levels in the study area.  

This thesis has provided greater insight into sediment dynamics of “small” 

Mediterranean high contaminated river systems from an observational and modeling 

approach. However, the high variability observed along the study period and the 

relatively short data set used to analyze sediment dynamics in this region leave to the 

necessity of a long-term approach to assess the reprensentativity of the observed 

sediment transport pattern. In this sense, the validation of the 1D sediment transport 

model achieved in this thesis can support further studies of sediment dynamics using 

available long-term wave data if a previous statistical current data set is obtained. In 

addition, any future modeling approach must be subject to an extensive analysis of the 

variability of the bottom sediment properties. 
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