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Summaries 

  





1.1 English 

The aim of this thesis is the development and implementation of a set of data 

mining tools to aid in the reconstruction of biological circuits through analysis 

and integration of large biological datasets. These circuits are important because 

they regulate all processes that maintain life and health in organisms. 

The main part of the thesis is focused on analyzing bibliomic data, for which I 

developed two tools. One of the tools, Biblio-MetReS, extracts information 

about co-occurrence of proteins and/or biological processes from scientific 

documents, relying on the idea that if genes or proteins co-occur in the same 

document(s) they are likely to be functionally related. The detection of such co-

occurrence can be used for the reconstruction of Protein-Protein Interaction 

network and to identify the processes in which the networks are involved. The 

other text-mining tool, CheNER, identifies different types of chemical 

compound names in scientific documents. The identification of such names is 

the starting step to implement subsequent tools that identify how the chemical 

compounds regulate proteins and biological processes, in both health and 

disease. 

The final tool I developed focuses on the integration of methods for structural 

analysis and modeling of proteins with docking methods for the prediction of 

native protein-protein physical complexes. This integration might in the future 

facilitate using these methods to further assist in biological network 

reconstruction. 
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1.2 Català 

L'objectiu d'aquesta tesi és desenvolupar i implementar un conjunt d'eines de 

mineria de dades per ajudar en la reconstrucció de circuits biològics a través de 

l'anàlisi i la integració de grans conjunts de dades biològiques. Aquests circuits 

són importants perquè regulen tots els processos que controlen la vida i la salut 

dels organismes . 

El treball principal de la tesi es centra en l'anàlisi de les dades bibliòmiques, 

desenvolupant-se amb aquest fi dues eines diferents. Una de les eines, Biblio-

MetReS, extreu informació sobre co-ocurrència de proteïnes i/o processos 

biològics dels documents científics, basant-se en la idea que si els gens o 

proteïnes co-ocorren en el mateix document(s) és probable que estiguin 

funcionalment relacionats. La detecció d'aquestes co-ocurrències  es pot utilitzar 

per a la reconstrucció de la xarxa d'interacció proteïna-proteïna i per la 

identificació dels processos en què intervenen aquestes xarxes. L'altra eina de 

mineria de text, CheNER, identifica els diferents tipus de noms dels compostos 

químics en documents científics. La identificació d'aquests noms és el primer 

pas per començar a posar en pràctica les eines subsegüents que identifiquen els 

compostos químics regulen les proteïnes i els processos biològics, tant en la 

salut com en la malaltia  

L'eina final desenvolupada es centra en la integració de mètodes per a l'anàlisi 

estructural i modelització de proteïnes amb mètodes d'acoblament per a la 

predicció de complexos físics de proteïna-proteïna. Aquesta integració en el 

futur podria facilitar l'ús d'aquests mètodes per ajudar en la reconstrucció de la 

xarxa biològica. 
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1.3 Castellano 

El objetivo de esta tesis es desarrollar e implementar un conjunto de 

herramientas de minería de datos para ayudar en la reconstrucción de circuitos 

biológicos a través del análisis y la integración de grandes conjuntos de datos 

biológicos. Estos circuitos son importantes porque regulan todos los procesos 

que controlan la vida y la salud de los organismos. 

El trabajo principal de la tesis se centra en el análisis de los datos bibliómicos, 

desarrollándose con este fin dos herramientas diferentes. Una de las 

herramientas, Biblio-MetReS, extrae información sobre co-ocurrencia de 

proteínas y/o procesos biológicos de los documentos científicos, basándose en 

la idea de que si los genes o proteínas co-ocurren en el mismo documento (s) es 

probable que estén funcionalmente relacionados. La detección de estas co-

ocurrencias se puede utilizar para la reconstrucción de la red de interacción 

proteína-proteína y para identificar los procesos en los que intervienen estas 

redes. La otra herramienta de minería de texto, CheNER, identifica los 

diferentes tipos de nombres de compuestos químicos en documentos científicos. 

La identificación de estos nombres es el primer paso para empezar a poner en 

práctica las herramientas subsiguientes que identifican los compuestos 

químicos que regulan las proteínas y los procesos biológicos, tanto en la salud 

como en la enfermedad. 

La herramienta final que he desarrollado se centra en la integración de 

métodos para el análisis estructural y modelado de proteínas con métodos de 

acoplamiento para la predicción de complejos físicos de proteína-proteína. Esta 

integración en el futuro podría facilitar el uso de estos métodos para ayudar en 

la reconstrucción de la red biológica. 
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Chapter 1. Introduction 

 



  



This chapter begins by introducing the research areas and concepts that are 

relevant for the work presented in the current thesis. Relevant research from the 

areas of Systems Biology and Bioinformatics is introduced and discussed to 

motivate the work I did. Next, I list the main goals of my work and briefly 

describe the contributions that allowed me to achieve these goals, as well as 

some collaborations that are relevant to these goals. Finally, I present the 

organization of the remaining chapters of this thesis.  

1.1 Overview  

Molecular systems biology is an approach to biomedical and biological 

scientific research where computational methods play an important role. This 

approach aims at analyzing the molecular components of the cells and their 

behavior in an integrated manner in order to understand how they function 

when they are assembled and discover emerging properties of cells, tissues and 

organisms.  

Systems biology also aims at analyzing the emerging properties of the 

interacting molecular components of cells to discover design principles in 

molecular and cellular circuits. These principles are extracted from different 

studies that identify the topologies [1–4], the range of parameters [5–7]  and the 

dynamic behavior [2,8] of a particular biological circuit. Such studies correlate 

the action of natural selection on the alternative designs for the circuits to the 

effect of the design variations on the "fitness" of an organism [9,10], explaining 

selection of alternative designs for the same function in different organisms.  

However, the identification of design principles in biological circuits requires 

knowing what alternatives are available for natural selection to work with. In 

many cases this information is unknown, even at the level of the circuit 

composition and topology. For example, on average, 20% of the genes 

annotated in a fully sequenced genome for a new organism are hypothetical or 

have unknown function. This implies that there are molecular circuits that we 

have yet to discover.  
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Before aiming at a systematic identification of design principles in molecular 

circuits we first need to reconstruct those circuits. This implies identifying the 

individual function of genes with unknown function, understanding their 

contribution to the functioning of the circuits of interest, and cataloging the 

variations that are observed in those circuits over the set of organisms in the 

tree of life. It is only after getting to this stage that we can study the design 

principles of molecular circuits. The research presented in this thesis contributes 

to these steps that are preliminary to, and yet fundamental for, the study of 

design principles.  

Currently, the preliminary reconstruction of circuits can rely on an increasing 

number of techniques, methods and tools that enable us to collect 

comprehensive data sets, such as whole genome gene expression changes, gene 

or protein sequences, structures, and interactions, etc. These techniques are 

leading to the accumulation of large datasets at a rate that makes it impossible 

for any one person to analyze, organize, and integrate all the available 

information.  

In this thesis I focus on the development and implementation of a set of data 

mining techniques and tools that facilitate the analysis and integration of 

biological information derived from these large datasets with the aim of 

assisting in circuit reconstruction. Developing such tools is one of the main 

aims of Bioinformatics [11–13]. Bioinformaticians develop methods to mine, 

integrate, and represent the information out of the various biological datasets, 

and build software applications that do so in a user-friendly way. The 

integration of these data is hard, due to the difficulty of defining and 

implementing identification standards and functional classifications of proteins 

that are universally valid and accepted. Because of this there is a significant 

amount of redundant and sometimes contradictory information between 

different databases that is difficult to curate automatically. This highlights the 

importance of creating universally accepted classifications, examples of which 

are Gene Ontology (GO) [14] and the Protein Naming Utility [15].  
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The creation of such classifications facilitated the development of different 

applications that integrate data from different sources in order to reconstruct 

biological circuits [16–21]. The public distribution of these software applications 

to the research community potentiates appropriate processing, analysis, and 

display of the information available in large datasets in a simple, informative, 

and organized way. Thus, the appropriate integration of that information 

facilitates in silico reconstruction of the biological circuits, pathways, and 

networks [22]. Furthermore, different types of datasets are available for such in 

silico reconstruction. I briefly describe each of those types (summarized in Table 

1) and discuss different methods and tools that are most commonly used to 

extract information that aids in the reconstruction of molecular networks.  

Table 1. Types of data sets available for in silico reconstruction. 

Types of datasets Description of the type of data Main Repositories 

Bibliomic data Literature published in scientific journals and 
textbook 

Medline 1 , Pubmed1, 
Biomed Central 2  and 
PLoS3 

Sequence data Genome sequences, gene/protein sequences 
and functional annotations 

NCBI1, KEGG4 

Structural data Protein structures and structure classifications PDB5, CATH 6, SCOP7 
Proteomic data Protein information about activity, 

concentrations, participation, localization and 
posttranslational modifications. 

UniProt 8 , InterPro 9 , 
Expasy10 

Metabolomic data Information regarding changes of metabolic 
fluxes and concentrations over time or under 
different conditions. 

Biological Magnetic 
Resonance Data Bank11 

Gene Expression 
data 

Information about how gene expression 
changes over time under different conditions 

SAGE12, GEO1 

 

1 http://www.ncbi.nlm.nih.gov/ 
2 http://www.biomedcentral.com/ 
3 http://www.plosone.org/ 
4 http://www.genome.jp/kegg/ 
5 http://www.rcsb.org/  
6 http://www.cathdb.info/ 
7 http://scop.bic.nus.edu.sg/ 
8 http://www.uniprot.org/ 
9 http://www.ebi.ac.uk/interpro/ 
10 http://www.expasy.org/ 
11 http://www.bmrb.wisc.edu/metabolomics/external_metab_links.html 
12 http://www.sagenet.org/ 
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1.2 Types of data sets for in silico reconstruction 

1.2.1 Bibliomic data 

An increasingly large body of scientific literature has accumulated for the last 

century. Databases such as Medline [23] collect data from these published 

documents in an organized way, facilitating researchers’ access to the literature. 

Thanks to text-mining applications and Natural Language Processing (NLP) 

techniques, these documents can be automatically mined in order to extract 

information about genes, proteins, biological processes, chemicals or drugs. 

This information can then be used to reconstruct the network of interactions 

and regulation that mediates biological processes of interest. 

The recent development of tools like iHOP [16] or STRING [18] permitted 

using those techniques in a user friendly way for automated reconstruction of 

networks of co-occurrence for genes and proteins in the scientific literature. The 

assumption underlying the application of these tools is that if genes or proteins 

co-occur in the same document(s) they are likely to be functionally related 

among them. This automatic detection of networks from text-mining has been 

used as an starting point to reconstruct biological pathways [1,2], although it 

needs to be curated and complemented with other types of information. 

There are several limitations to the text-mining approaches used for network 

reconstruction. One of these limitations is the type of documents that are 

analyzed. For example, many applications mine Medline abstracts. This is the 

case of iHOP and STRING. If one mines only Medline, a large fraction of the 

information contained in a paper is not analyzed. Hence there is room for 

improvement by analyzing full documents extracting much more information 

than in abstracts. Initiatives such as Pubmed, Biomed Central or PLoS are 

crucial in making available the full text of scientific papers, trying to reduce the 

problem of the copyrighted nature of full paper which prevents their used [24–

27]. Another limitation is the strategy for database analysis. Both iHOP and 

STRING rely on having the documents analyzed previously, and storing the 
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Protein-Protein Interactions (PPIs) found in each document in a database 

(precompiled information). This reduces user execution time because is not 

necessary to parse the documents at the time of execution. However, the results 

are not up-to-date, as updates to their databases are not as frequent as those in 

Medline or Pubmed.  

Mining information about the names of chemical compounds and their 

possible biological interactions is another area of intense text mining research. 

This interest has arisen with the emergence of freely available chemical 

databases such as PubChem [28] or DrugBank [29]. These databases permitted 

the implementation of novel tools that use text-mining and NLP techniques to 

identify chemical compound names in text. Some of these tools are publicly 

available, like OSCAR [30] and ChemSpot [31]. The automatic identification of 

such names is the base for the creation of new tools to extract information 

related to the pharmaceutical treatment of diseases and identify relationships 

between chemical compounds and genes/proteins that can help to understand 

how those compounds modulate gene/protein activities.  

The detection of chemical compounds is challenging because they are 

mentioned in the literature using different nomenclatures, each with specific 

morphological features. The same compound can have widely varying names, 

depending on the nomenclature one uses. Aspirin provides an elucidating 

example : (1) trivial or brand name is "Aspirin"; (2) systematic or IUPAC name 

is "2-(acetyloxy)benzoic acid"; (3)  SMILES identifier is (CC(=O)Oc1ccccc1C(O)=O), 

InChi identifier is (InChI=1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-

5H,1H3,(H,11,12)), CAS numbers are (50-78-2), etc.; (4) family name is 

"Salicylates"; (5) molecular formula is "C9H8O4"; and (6) abbreviations is "ASA".  

While OSCAR and ChemSpot are developed to identify all types of chemicals 

names with no indication of what type they are, there is no tool publicly 

available that explicitly distinguishes between the different types of 

nomenclature. In particular, specifically identifying systematic or IUPAC 

chemical names is an important feature that these two applications lack. This is 

a limitation, as such names are the most commonly used in important scientific 
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documents such as patents. The chemical structure of a compound can be easily 

derived from the IUPAC name, which facilitates understanding the reactivity of 

the compound and its possible interactions in disease treatments.  

Due to the increasing interest in the detection of chemical compounds names 

in text and the lack of corpora annotated, the recent BioCreAtIvE (Critical 

Assessment of Information Extraction systems in Biology) IV Challenge [32] 

had one of its tracks focused on the identification of chemical compound names 

in text, providing annotated corpora that, after the challenge, will be publicly 

available for all the community. 

1.2.2 Sequence data 

Due to the decreasing of costs, genome sequencing projects are now come place. 

Because of this, the DNA sequence of thousands of organisms and individuals 

have been decoded and stored in a few central repositories that contain most of 

that sequence information. Many of these, such as the Sanger center [33], KEGG 

[34–38] and the NCBI repositories [39–45], are freely accessible via their web 

pages. They contain genome sequences and complete gene/protein sequences 

and annotations.  

The association of sequence to function facilitates the annotation of 

subsequently sequenced genomes [46–49]. This relies on the assumption that 

proteins with similar sequences often carry out similar functions [50]. In other 

words, the more similar two sequences are, the more likely it is that they have a 

similar function. Thus, by comparing sequences with associated annotation to 

those of the newly discovered genes from freshly sequenced genomes 

functional information is transferred from the already annotated sequence to 

the new one. Today, tools such as BLAST [51] or HMMER [52] are widely used 

to aid in the search for homologues of a sequence. 

1.2.3 Structural data 

As stated above, on average 20% of genes annotated in new genomes are either 

predicted proteins or have homologues with unknown function. If this is so and 
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structural information is available for the proteins that they code, that 

information can aid attributing general or specific functions to that gene.  

Owing to the abundance of structural genomics projects, the amount of 

available structural data is increasing continuously. However, the number of 

available protein structures is still far behind the number of protein sequence 

due to the difficulties with the experimental structure determination. It is 

known that strong correlations exist between structure conservation and 

functional conservation, and between sequence conservation and structure 

conservation [50,53,54]. Thus, sequence implies structure which implies 

function. This knowledge can be used to reduce the huge gap between the 

number of sequence and structures leading to implement computational 

methods that aid in the prediction of protein tertiary (3D) structures, also 

known as structural protein modeling.  

Available structural data is collected in central repositories such as Protein 

Data Bank (PDB) [55], SCOP [56], CATH [57] and FireDB [58]. The PDB contains 

information about the 3D structures of large biological molecules, including 

proteins and nucleic acids, SCOP and CATH contain structure classifications 

and FireDB contains PDB structures and their associated ligands. 

The way that two proteins interact physically (the formation of the complex) 

has functional consequences. Because of this it is important to predict how two 

proteins forms a complex in order to study, for instance, if any mutation in one 

of the protein sequences can changes the native conformation of the complex 

and affect biological function. There are also computational docking methods 

that can be used to predict protein interactions in silico.  

Structural analysis 

There are three main computational methods for structural analysis: the 

template-based homology modeling, the fold-recognition and the so-called ab 

initio prediction. The best strategy for protein 3D structure prediction first 

involves homology modeling followed by fold recognition, and if not 

successful, ab initio prediction (see Figure 1). 
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Figure 1. A typical strategy for modeling protein structure. This strategy works as follows: 
Search templates via sequence homology of the target sequence. If a template is found use 
homology modeling. Otherwise, search for templates via fold recognition. If a template is found 
use fold-recognition modeling. Otherwise, use ab initio modeling.  

Homology modeling exploits the strong correlation that exists between 

sequence and structure to predict the structure of a protein. This prediction 

relies on a preexisting template structure of a protein that is homologous to the 

protein whose structure one wants to predict. There are a set of tools that 

implements the homology modeling approach such as MODELLER and SWISS-

MODEL [59–64]. BLAST and other similar tools assist in this approach by 

facilitating the identification of homologous sequences. 

Fold recognition modeling methods assist in the recognition and assignation 

of the correct fold when the sequence comparison methods are not sensitive 

enough to recognize a sufficiently similar sequence homologue. Tools that use 

fold-recognition methods, such as Phyre2 [65],  have two main functions in 

common: (1) a function to align the target sequence with the fold of the 

structures contained in a library of representative or unique structures and (2) 

an energy function. Depending of which algorithms are used the fold-

recognition can be divided into four classes. More details about each of these 

classes can be found in the literature [66].  

Ab initio modeling methods provide candidate conformations for the protein 

structure one wants to predict. These conformations are built using methods 

that fragment the query sequence into short sequence of amino acids (typically 

nine residues) [67]. Then, candidate structures for these fragments are 

generated using template based techniques similar to the ones used in 
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homology modeling, and are stochastically sampled and assembled to construct 

a low energy protein conformation. Once these conformations are built, the 

method chooses one among them by comparing thermodynamic stabilities and 

energy states. Most of the tools that implement this approach, such as 

ROSETTA [68], have the three following factors in common: (1) an energy 

function that compares all possible conformations and identifies the most 

thermodynamically stable state as the native protein structure; (2) a search 

method to identify the low-energy states through conformational search; (3) a 

selection method of native-like models from a collection of conformations.  

In brief, homology modeling builds a protein 3D structure from a template 

and it is the most accurate and successful structural modeling approach, 

especially when the template used to create the protein 3D structure has a high 

sequence identity to the target protein. On the other end of the structural 

modeling spectrum ab initio methods are, potentially, the least accurate 

approach to predict protein structure. In addition, they are limited by the high 

computational cost and by the bottlenecks in the energy functions. However, 

when no suitable template is available, ab initio methods can play an important 

role identifying new folds. 

Protein docking 

Docking is the process by which one predicts how two proteins might form a 

physical complex (see Figure 2). It can be conceptually simplified as a problem 

of "lock-and-key", where one is interested in find the right orientation of the key 

that will open the lock.  

The aim of docking is to simulate the molecular recognition process that leads 

to specific interaction between two or more molecules. There are two main 

docking approaches. The first approach analyzes the structure of the proteins 

and presents the most likely docking configuration that maximizes shape 

complementary in the interface between two proteins [69–71]. The second 

approach simulates the physical process of docking, for example by using 

molecular dynamics calculations to predict how the two proteins to be docked 
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might approach in space and what the final complex between the two might 

look like [72]. Both types of approach follow the same three step-process: (1) 

representation of the system, (2) conformational space search and (3) ranking of 

potential solutions. The docking problem also requires an efficient search 

procedure and a good scoring function (See [73] for more details). There are 

several tools that permit protein docking of either experimentally determined 

or computationally predicted protein structures, with the latter type of docking 

being much more error-prone and less accurate. Some of the most accurate tools 

are HEX [74–76], GRAMM-X [77,78] and RosettaDocking [79,80]. 

 
Figure 2. Scheme of protein docking prediction. A and B are two different proteins. C is the 
complex predicted by the docking approach of how the two proteins physically interact. Docking 
simulate how two proteins interact physically looking for different configurations evaluating them 
using appropriate scoring functions. 

1.2.4 Proteomics data 

Proteomics is the study of proteins, their activity, concentrations, participation 

in protein complexes, their localization, their interactions and posttranslational 

modifications. The experimental evolution in proteomics has led to the 

development, integration, and automation of various high throughput 

proteomics techniques and equipments, such as mass spectrometry and protein 

microarrays. Those techniques and methods permit to divide, identify, quantify 

and characterize proteins, collecting and organizing the resulting information in 

different databases such as UniProt [81,82], InterPro [83–86], and ExPASy 

[87,88], where various tools are available to mine the data.  
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Proteomics data is fundamental to assess the in vivo functionality of proteins. 

These data can assist in pathway reconstruction, providing quantitative 

information about proteins and their regulation and facilitating the 

reconstruction of gene circuits and PPI networks [89–93]. 

1.2.5 Metabolomics data 

The term metabolomics was coined at 1997  and defined as "the comprehensive, 

qualitative, and quantitative study of all the small molecules in an organism" [94]. 

Since then, metabolomics studies generate large amounts of data with a 

complex structure. These data required developing a variety of processing 

techniques for its analysis [95,96]. Depending on the purpose of one's 

experiment, the most adequate technique will differ. There are three main 

approaches for the analysis of the metabolome: metabolite profiling which aims 

to identify and quantify metabolites [96,97], metabolic fingerprinting which is 

used in tissue comparisons, and metabolomics which focuses on the metabolic 

response of organisms to pathophysiological stimuli or genetic modification 

[98,99]. Examples of metabolomics studies are plenty. For example, metabolite 

profiling of blood plasma samples of individuals subjected to toxicological 

stimuli is used to measure or detect any physiological changes caused by any 

chemical or drug. Additionally, observed metabolic changes can sometimes be 

related to specific syndromes, and that fact is particularly relevant for the 

pharmaceutical companies which are waiting to test the potential and toxicity 

of new drugs. Findings from this type of study may have large social and 

economic implications. This is clearly seen if one considers that detecting 

adverse toxic effects of a drug [100] before clinical trials may save lives and save 

development costs.  

The data obtained from metabolomic approaches allow, in principle, to 

reconstruct a metabolic network, including the regulatory influences of the 

metabolites on the different reactions of that network. Any change in the 

concentrations and/or fluxes going through that network and related to an 

external factor can be associated to the physiology of the cell. 
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1.2.6 Gene Expression data 

The concept of gene expression describes a complex process in which the 

information contained within the genome is translated into the phenotype of 

the organism. DNA microarrays and NGS (Next Generation Sequencing) 

technologies can be used to obtain high throughput gene expression profiles 

that give information about how the expression of genes changes over time 

under different conditions and elucidate the correlation between gene 

expression and biochemical pathways. The datasets from these measurements 

are often deposited at SAGE [101,102], GEO [40,41], or other repositories, and 

made freely available to the community. From these data one can infer which 

genes are significantly related with specific cellular responses, because genes 

that belong to a common pathway are usually regulated in a similar way. 

Similarities in expression patterns can thus be used to assign general function to 

unknown genes and to assist in pathway network reconstruction [103].  

Introduction

14



1.3 Goals 

Identifying the biological design principles of a molecular circuit requires that 

one knows how the circuit is wired and works. Thus, before analyzing design 

principles one must have a large set of reconstructed molecular circuits. The 

systematic and automated reconstruction of those circuits requires integrating 

various types of data with different origins. This reconstruction is one of the 

main goals/problems of Systems Biology today. It is the general objective of 

this thesis to contribute for the development of tools implementing in silico 

methods that facilitate that reconstruction.  

To achieve this, the thesis has the following specific goals: 

1. Develop a tool for analyzing scientific documents from different sources, 

such as Biomed Central, Pubmed, among others. This tool will identify 

co-occurrence between genes/proteins to reconstruct networks of those 

involved in the same biological process. The tool also will identify 

biological processes and pathways to calculate co-occurrences between 

those and genes/proteins. These relations will give clues that will assist 

the researcher in identifying which genes or proteins are related to a set 

of biological processes or pathways. 

2. Develop a tool for the identification of chemical compounds and drugs in 

documents to infer regulation that might occur in the regulatory circuits. 

As a first step to this I built a tool for identifying those chemicals and 

drugs that can affect or change the regulation of the biological function 

of genes and proteins. Specifically, I focus on the identification of the 

systematic chemical names due to their prevalence in pharmaceutical 

patents which studied the toxicity of this compound and the functional 

changes that it can make. However, this tool also permits the 

identification of other types of chemical names. 
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3. Implement an application that integrates structural information and 

predictions to infer causal interactions in molecular circuits. This tool will 

use structural information extracted from different resources (PDB, 

SWISS-MODEL, Phyre2, and MODELLER), to perform in silico docking 

using alternative protocols (RosettaDocking, Gramm-x, and Hex), and 

infer causal interactions in the molecular circuits. 

1.3.1 Achieving the specific goals 

To achieve the first specific goal I created a tool, Biblio-MetReS, that addresses 

the two issues described in the bibliomic data section: (1) a large fraction of 

information contained in a full-text document is not analyzed if one mines only 

Medline, and (2) a strategy of document analysis that is purely based on 

precompiled documents leads to results that are not as up to date as they 

should be. I sort out both issues by implementing a tool that mines the full-text 

of publications from different information sources on the fly (see Figure 3). This 

tool combines a strategy of pre-compilation for documents it has found in the 

past with an on-the-fly analysis of newly found documents. 

To achieve the second specific goal, I implement a tool, CheNER, to identify 

chemical names in scientific texts. In one of its configurations this tool 

specifically identifies systematic or IUPAC chemical names (see Figure 4). 

CheNER was used to participate in the BioCreAtIvE IV challenge, focused in 

the identification of all type of chemical names.  
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Figure 3. Biblio-MetReS algorithm. Workflow of the proposed strategy combining the on-the-fly 
and the precompiled strategy in one tool. 

 

 

Figure 4. CheNER configuration options. The system allows to identify just IUPAC chemical 
compound names or all types of chemicals. Each color is used to show different types of 
chemical nomenclature. 
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To achieve the third and final specific goal of this thesis, I created a meta-tool, 

Protein-MetReS that improves the integration of several available servers that 

perform structural analysis and docking of proteins (see Figure 5). 

 

Figure 5. Protein-MetReS modules. The top half of the figure represents the program’s 
structural analysis function that work as follows: if the structure/model for the sequence target 
already exist within either the PDB or the SWISS-MODEL Repository, load the structure/model,; 
otherwise, build the model using at least one of the modeling servers integrated in the 
application (MODELLER, SWISS-MODEL or Phyre2). The bottom half of the figure represents 
the program’s docking functionality that works as follows: at least two protein structures/models 
must be loaded in order to start execution. If there is more than two structure proteins, then the 
different combinations of protein pairs are set up. Each pair of structures for which docking 
predictions are required are submitted to the docking tools (HEX, Gramm-X).  

1.3.2 Additional contributions 

During this thesis I have contributed in a parallel project of the lab that shared 

its general goal with this thesis. That parallel project is described in the doctoral 

thesis of Hiren Karathia [104]. The tool Homol-MetReS was developed in that 

project. This tool uses comparative functional genomics to facilitate network 

reconstruction of proteins involved in specific biological processes. Homol-

MetReS is a user-friendly web application that facilitates: (1) Management of 

molecular information for each organism, including protein/gene sequences 

and function/processes information assigned to the sequence. (2) 

(Re)assignment and integration of functional information to proteins or genes 

as per standard terms defined in GO, EC Numbers, KEGG pathways databases 
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or used defined terms. (3) Creation of organisms - centric clusters of orthologs, 

homologues and absent genes. (4) Visual comparison between organisms of sets 

of proteins involved in different specific processes and appropriate choice of 

model [104]. My contribution to this work focused on the design of both, the 

database that underlies Homol-MetReS and Biblio-MetReS, and the user 

interface for Homol-MetReS. 
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1.4 Organitzation 

I now describe the organization of the remaining chapters of this thesis.  

Chapter 2 introduces the implementation of Biblio-MetReS, a user-friendly 

tool developed in order to find interactions between genes/proteins in scientific 

documents using text-mining techniques. One of the most important aspects is 

that the identifications of genes is done on-the fly which ensures that the 

documents found are always up-to-date. Biblio-MetReS provides a paper-

centric view and display the interactions found between genes/proteins in an 

interaction network. Also, in this chapter is discussed the limitations and the 

possible improvements that can be made. 

Chapter 3 describes improvements made to the original version of Biblio-

MetReS. In brief, the improvements are related to the reduction of the execution 

time and the identification of biological processes in order to add more 

biological information to the interaction network displayed. 

Chapter 4 details the methodology used to develop a tool to identify chemical 

compounds and drugs that is called CheNER. This tool arises from a short stay 

at CNIO (Centro Nacional de Investigaciones Oncológicas) and it was 

developed in collaboration with the group of Alfonso Valencia. The 

configuration of CheNER described in this chapter focuses mostly on the 

identification of IUPAC or systematic chemicals names. 

Chapter 5 introduces the more general configuration of CheNER and 

describes the participation in the IV BioCreAtIvE Challenge. This configuration 

implements a software solution to the problem described in Track 2, 

CHEMDNER, which is focused on the identification of different types of 

chemical compounds such as commercial numbers, abbreviations, trade names, 

families, etc.  
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Chapter 6 details the beta implementation of Protein-MetReS, the tool that 

integrates different standalone and web server applications for the prediction of 

protein structures and for protein docking. 

Chapter 7 discusses the possible future directions that this work opens.

Introduction

21

Finally, the last chapter presents the conclusions of my work .
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Abstract 
Background: Reconstruction of genes and/or protein networks from 

automated analysis of the literature is one of the current targets of text 

mining in biomedical research. Some user-friendly tools already perform this 

analysis on precompiled databases of abstracts of scientific papers. Other 

tools allow expert users to elaborate and analyze the full content of a corpus 

of scientific documents. However, to our knowledge, no user friendly tool 

that simultaneously analyzes the latest set of scientific documents available 

on line and reconstructs the set of genes referenced in those documents is 

available. 

Results: This article presents such a tool, Biblio-MetReS, and compares its 

functioning and results to those of other user-friendly applications (iHOP, 

STRING) that are widely used. Under similar conditions, Biblio-MetReS 

creates networks that are comparable to those of other user friendly tools. 

Furthermore, analysis of full text documents provides more complete 

reconstructions than those that result from using only the abstract of the 

document. 

Conclusions: Literature-based automated network reconstruction is still far 

from providing complete reconstructions of molecular networks. However, 

its value as an auxiliary tool is high and it will increase as standards for 

reporting biological entities and relationships become more widely accepted 

and enforced. Biblio-MetReS is an application that can be downloaded from 

http://metres.udl.cat/. It provides an easy to use environment for 

researchers to reconstruct their networks of interest from an always up to 

date set of scientific documents. 

  

http://metres.udl.cat/


 

  



2.1 Background  

Reconstructing molecular networks that are responsible for regulating 

biological processes is a fundamental task in molecular biology, if one is to 

understand how the different components of those networks contribute to each 

process. In recent years many alternative types of methods have been proposed 

to achieve such a reconstruction [1,2]. One type of method relies on the 

automated analysis of published literature to identify genes and proteins that 

co-occur in the same document(s) [3–11]. It has been assumed that if two genes 

or proteins are cited in the same document, there is the likelihood that they 

functionally interact. In fact, many algorithms, methods and tools have been 

proposed and implemented in order to reconstruct the network of genes 

associated with a given gene of interest, by automated mining of the published 

literature [3–31]. 

Only a small number of these tools are more widely cited (and likely used) by 

molecular biologists (Table 1). Out of these, iHOP [3] and STRING [5] have a 

usage that is at least one order of magnitude higher than that of other 

applications, as estimated by the number of times that the different applications 

are cited (Table 1). These two web servers preprocess documents that are 

published in Medline and PubMed, looking for words that match the names of 

genes from the different organisms in the web server’s database. Once they 

have identified the genes that co-occur in those documents, they provide 

different functionality to the user. While iHOP allows the user to choose exactly 

which genes s/he wants to add to the interaction network, STRING 

automatically establishes a threshold score above which all genes are included 

in the model for the network.  

A shortcoming of both these tools is that, in terms of literature, they only 

analyze the information contained in Medline or PubMed abstracts and their 

databases require constant update. Given that policies for publication and 

access to scientific papers are changing and, as a consequence, an increasing 

number of scientific publications are becoming freely available over the 
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internet, iHOP and STRING ignore a growing source of information about 

possible interactions between genes [20,32,33]. 

Table 1. Number of citations for text mining programs in the Web of Science database as of 
June 2011 

Program Total Number of Citations 
STRING 949 

iHOP 274 
Whatizit 41 
Alibaba 37 
Reflect 16 

iProLink 11 
SciMiner 4 

BioLMiner 1 
Linguamatics I2E 1 

Akane RE 0 
Laitor 0 

PahtText 0 

Currently, other tools that analyze full documents without pre-processing in 

order to reconstruct molecular gene networks are either still experimental, 

applicable only to a document or documents supplied by the user or present in 

PubMed [6,9,11,34,35] and/or require a high level of computational expertise 

for their use [6,34,35].  

Thus, there is a need for a tool that a) analyzes full documents as they are 

made available on the world wide web and before they are included in 

databases such as PubMed, b) analyzes documents and literature corpora that 

have not been manually annotated, and c) is user-friendly. We developed 

Biblio-MetReS http://metres.udl.cat/ to meet these demands, allowing for an 

on-the-run full text analysis for automated reconstruction of literature 

gene/protein networks in an intuitive way. Biblio-MetReS relies on a database 

that contains lists of all annotated genes of organisms with fully sequenced 

genomes from the KEGG database. The tool allows users to select different 

sources of information from where to compile data for the reconstruction of the 

molecular networks responsible for regulating and executing biological 

processes.  
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Here we present the tool and benchmark it against STRING and iHOP, using 

genes that participate in well characterized metabolic processes of organisms 

with fully sequenced genomes. The three tools have comparable results when 

Biblio-MetReS searches are limited to Medline. When this limitation is removed, 

Biblio-MetReS finds networks that are more complete than those found by 

iHOP and STRING. 

2.2 Implementation 

2.2.1 Underlying database & Biblio-MetReS implementation  

Biblio-MetReS relies on an in-house database of organisms and genes that was 

built using the list of organisms with fully sequenced genomes available in 

KEGG [36]. The database of gene names and their synonyms is built and 

regularly updated by matching the KEGG gene names and synonyms to their 

NCBI [37] names and synonyms, followed by removing of redundant terms. 

The databases are implemented using Zope technology, which is based on 

MySQL and Python.  

The application itself was implemented in JAVA, using the NetBeans IDE. 

Swing was used to implement the Graphical User Interface (GUI). Swing was 

also used to create the parsers for the different documents to be analyzed, with 

the exception of PDF files. These files are parsed using the PDFBox library. We 

implemented parsers for HTML documents, PDF and ASCII. HTML documents 

are transformed into plain text as follows: paragraphs are detected in the HTML 

code, using a parsing library to navigate through the tags, followed by 

extraction of the text within those tags. PDF documents are transformed into 

plain text using the Pdfbox library, which extracts the text within the document 

while ignoring the images. Once the text is extracted, we parse for paragraphs 

by looking for punctuation signs that signal the end of a sentence followed by 

the new line escape character. These punctuation signs are used to split 

sentences, controlling to make sure that we are not splitting decimal figures, e-

mail addresses, web pages, and others. 
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The results are stored in a file with XML format that is generated at the end of 

each search. The processing of the XML files is done using the JDOM API. The 

JGraph API is used for the graphical representation of the network results in 2D 

2.2.2 Document search analysis 

Biblio-MetReS implements a meta-search engine that compiles results from the 

search engines selected by the user (see Figure 1, panel 3 for a list of document 

sources). The search that is launched to each search engine includes all genes 

selected by the user, as well as the name of the organism of interest. As the 

search is completed by the relevant search motor (or motors if the user selected 

more than one data source), Biblio-MetReS collects the URLs of all documents 

found by each of the search engines. The treatment of these URLs goes as 

follows. First, the application eliminates redundant URLs. Then, for results 

from scientific databases and journals, it analyzes the doi number for each 

document, eliminating further duplicates. When the non-redundant list of 

documents is ready, Biblio-MetReS identifies if the full text of the document is 

freely available (either because the text is free to all users or because the 

institution providing the web connection has access agreements with the 

content provider) or if it is protected. In the latter case, the application discards 

this document and analyzes only the freely available abstract. Once all this 

pruning procedure is done, the application analyzes each document in search of 

co-occurrence of any genes or proteins in sentences, paragraphs and entire 

documents. Exact name matching is used and all synonyms for a gene are 

searched for. The dictionary of synonyms we use is a merge from those of NCBI 

and KEGG.  

The analysis of co-occurrence in sentences and paragraphs is done because, 

when analyzing the full text of scientific documents, one must consider some 

form of proximity measurement. Otherwise, the co-occurrence of genes in 

different sections of the same document will introduce a significant amount of 

noise in the network of possible interactions [20]. 
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2.2.3 Metrics 

We need to define appropriate metrics in order to provide some degree of 

biological significance to the fact that if two genes or proteins co-occur in a 

document they do not do so by pure chance. To do this we consider different 

aspects of co-occurrence.  

First, we measure how frequently the different proteins or gene pairs co-occur 

in sentences, paragraphs and/or documents. We then take the odds ratio of the 

frequency of occurrences in the first two categories with respect to that of the 

third. The closer to one these odds ratios are, the more frequent it is that both 

genes are mentioned only in the same sentences or paragraphs of a document, 

rather than appearing haphazardly in different sections of the text. 

Second, we calculate how much information we gain by having the two genes 

co-occur, when compared to the individual occurrences of the two genes. To 

estimate this we use information theory. The individual probability of 

occurrence of a gene is denoted as ( )p Gi  and it is formally defined as ( ) ap Gi
n

= , 

where a  is the number of documents where gene i  appears, and n  is the total 

number of documents. 

The joint probability of co-occurrence of two genes, ( , )p Gi Gj , is defined as 

( , ) = bp Gi Gj
n

, where b  is the number of documents where genes i  and j  

simultaneously appear, and n  is the total number of documents. 

Having defined how to calculate the various probabilities, the mutual 

information, ( , )MI Gi Gj is calculated as follows: 

( , )( , ) ( , ) log
( ) ( )

 
=  

 

p Gi GjMI Gi Gj p Gi Gj
p Gi p Gj

 

where the applied logarithm is in natural base. 

Finally, and in order to attribute some form of statistical significance to the co-

occurrence of a pair of genes, we analyze contingency tables for those co-
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occurrences. The analysis is as follows. Consider a set of n sentences 

(paragraphs, documents) [1 ..., n]. For a given gene k define 

gene occurs in sentences
1

(paragraph,document)
0 otherwise                       

ik

k
y i


⇐


 ⇐

 

Now, for genes k1 and k2 define 

1, 2 , 1 , 2k k i k i ky yφ =  

which has value 1 when both genes co-occur and 0 otherwise. 

Both these variables have a Bernoulli distribution. If the occurrence of genes 

k1 and k2 is independent, then 1, 2 1 2( ) ( )( )k k k kp p y yϕ =  would be expected, where 

·( )kp y  is the relative frequency of occurrence of gene ·ky  and 1, 2( )k kp ϕ  is the 

relative frequency of co-occurrence of genes k1 and k2 in the total number n  of 

sentences (paragraphs, documents). Then, a Pearson statistic can be used to test 

for independence of occurrence between k1 and k2 by comparing the observed 

frequencies 1 1, 2( )ϕ= k kn p n , and 2 1, 2(1 ( ))ϕ= − k kn p n  with the expected frequencies 

under the null hypothesis of independence, which would be 1 1 2( ) ( )= k km p y p y n  

and 2 1 2(1 ( ) ( ))= − k km p y p y n . The Pearson statistic is computed as follows: 
2

22
1

( )i i
i

i

n m
X

m=

−
= ∑  

This statistics follows a chi-square distribution with one degree of freedom, 

i.e. 2 2
1χ χ ; hence, the p-value can be calculated as 2 2

1Pr( )p χ χ= >  to assess 

whether the observed co-occurrence is higher than the one expected by pure 

chance. 

2.3 Results 

2.3.1 The workflow 

Figure 1 summarizes the workings of Biblio-MetReS. For security reasons users 

need to register before their first use, in order for the application to be able to 

access the central database. Once they have registered and logged in, an 
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organism is chosen to work with. The application loads all genes from this 

organism that are present in the central database. Once the loading is finished, 

the user is presented with a window where s/he has to select the data sources 

for the analysis as well as the genes that will start the analysis. There are three 

types of data sources to choose from: General Engines (Yahoo, ...), Literature 

Database (Medline, ...) and Journals (Nature, ...). Once the choices are made and 

the search is started, the tool identifies the documents that contain the gene 

names provided by the user and their synonyms. Then, it extracts the full text 

from each document, and analyses for the co-occurrence of any pair of genes 

from the organism. All this processing is done on the fly.  

The results of the analysis are presented to the user in several forms (Figure 

1). First, Biblio-MetReS provides identifying information about each document 

that it analyzed, together with a list of links to those documents. If the user 

clicks on any of these links, the documents will open in their default browser. 

The user is also provided with a list of all genes and gene pairs that were found 

in each document. 

Second, Biblio-MetReS presents the results of co-occurrence as tables. In these 

tables, the program provides information about absolute and relative 

frequencies of gene co-occurrence, linked to mutual information and p-values. 

The tables also provide links to gene and pathway information from other 

databases. 

Third, the results are also presented as two graphs. These graphs provide 

alternative representations of co-occurrence. One graph presents the co-

occurrence of genes in sentences, while the other presents the co-occurrence of 

genes in paragraphs and documents. In these graphs, each node or vertex is a 

gene/protein and each edge refers to the interaction between genes/proteins. 

The thickness of the edge is proportional to the mutual information between 

two genes and the colour of the edge is proportional to the p-value for the co-

occurrence between the two genes or proteins. The colour scale changes in a 

continuous manner between red (non-significant) and green (significant). 
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Figure 1. Workflow of Biblio-MetReS. The user registers, logs in (Panel 1) and selects an 
organism (Panel 2). Once selected, the program either loads the full list of genes from which the 
user will select the genes to analyze (Panel 3) or allows the user to directly insert the genes 
s/he wants to analyze (Panel 2.1). Then, the user must select the databases and web searchers 
s/he wants to use (Panel 3). The program then starts the search and when finished, it generates 
a series of outputs for the results. First, the list of documents that was analyzed is shown, 
together with links to the document and to the list of genes fount in each document (Panel 4A). 
Second, a list of all genes that were found is given (Panel 4B). Each gene is linked to its KEGG 
webpage, where the gene is associated with other databases and biological pathways. Third, a 
tabular analysis of gene co-occurrence is shown 
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2.3.2 Comparing Biblio-MetReS to iHOP and STRING 

Given that Biblio-MetReS is intended for an audience similar to that of iHOP 

and STRING, we need to compare how the results of the three tools differ 

amongst each other. To do this, we selected three pathways described in KEGG 

for four different organisms (Supplementary Table 1). In each organism, and 

starting from a set of three or four genes per pathway, we performed a network 

reconstruction for each of the three pathways under different conditions 

(Supplementary Table 1). 

iHOP and STRING only search Medline or PubMed abstracts that are pre-

processed and stored internally by each program. Because of this, a comparison 

between the results of these applications and those from Biblio-MetReS require 

that the set of documents analyzed by Biblio-MetReS is restricted to those 

contained in Medline. Furthermore, because Biblio-MetReS always analyzes the 

most recent update of Medline at NCBI, it was run to analyze only the 20 most 

relevant abstracts from Medline, to avoid an unfair advantage. Our analysis led 

to the following observations.  

First, Biblio-MetReS, iHOP and STRING generate different results, even 

though the literature corpus that they analyze is, in principle, the same (Figure 

2, Supplementary Figure 1). This is likely to be the result of a) different 

processing of PubMed abstracts (either because the two tools update their 

databases at different times or because they process abstract content 

differently), and b) dictionaries that provide synonyms to the standard gene 

names that do not fully overlap in each of the three tools. In particular STRING 

uses internal precompiled synonym dictionaries, iHOP uses Entrez Genes, 

FlyBase, UniProt and the classification from the HUGO nomenclature 

Committee, and Biblio-MetReS uses KEGG, UniProt and NCBI nomenclature. 

We cannot control or further investigate a), as this would require access to the 

inner workings of each program. However, we controlled for b) by checking by 

hand if all genes we found in one dataset had synonyms in the other two or not, 

but many of the differences remained (Figure 2). 
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Figure 2. Comparison of results between Biblio-MetReS, iHOP and STRING. Representation of 
the number of common genes found for the different pathways in Homo sapiens using Biblio-
MetReS, iHOP and STRING. This figure shows all genes found for each test. Additional File 3 
shows the results for the other organisms, as well as for the genes that are not considered to be 
in the canonical pathways. A.- Glycolysis, all genes. B.- Lysine metabolism, all genes. C.- RNA 
degradation, all genes. D.-.Glycolysis, only genes known to belong to the canonical pathway. 
E.- Lysine metabolism, only genes known to belong to the canonical pathway. F.- RNA 
degradation, only genes known to belong to the canonical pathway. 
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Second, even with the self-imposed limitation of using only the 20 more 

relevant abstracts, Biblio-MetReS always found a number of genes that is 

comparable to that found by either iHOP or STRING (Figure 2, Supplementary 

Figure 1). 

Third, and as a way to control for the quality of the result from each program, 

we analyzed how many of the genes that are found by each application are 

known to be a part of the pathways, as defined in KEGG. No applications find 

all genes that are associated with the different pathways. In fact, only between 

5% and 30% of all genes that were found by the three applications are annotated 

in KEGG as being a part of the relevant canonical pathway. The application that 

finds the largest number of genes associated with a canonical pathway varies 

and is case-dependent (compare Supplementary Figure 1 and Supplementary 

Figure 2). No single application performs best neither in all pathways of a given 

organism nor in all organisms for a single pathway. In addition, all application 

finds several genes that are not associated with the canonical KEGG pathways 

but co-occur with pathway genes in the literature. In fact between 70% and 95% 

of all genes identified by iHOP, STRING, or Biblio-MetReS belong to this 

category. This reveals one of the benefits of these applications, that of finding 

associations that are not commonly considered. However, this benefit is also 

associated with the risk of misidentification of functionally interacting genes 

(see below). 

2.3.3 Contribution of different data sources 

Given that one of the added values of Biblio-MetReS is its capacity to search 

and analyze full text documents, we tested how different sources of information 

added to the number of genes that were found. In these tests, we use the 

different types of source information ("Literature Databases”, “Journals” and 

“General Engines”) in order to find out how much information the different 

sources add to the reconstruction process. Supplementary Table 1 contains a 

summary of the tests performed for this analysis. 
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First, our results suggest that using general search engines for this type of 

network reconstruction should be done sparingly, if at all. In every test case 

these engines found files with the entire fully annotated set of genes from the 

relevant organism. This means that the sensitivity of these search engines for 

the job of finding co-occurring genes in documents is very high. However, their 

selectivity is null. Therefore, we do not recommend using these engines when 

reconstructing a gene network. Because of this we performed the remainder of 

the benchmark tests using only the search engines from the Literature 

Databases and Journals panes of Biblio-MetReS (see Figure 1 panel 3). 

 
Figure 3. Homo sapiens: Representation of the number of additional genes found by Biblio-
MetReS that are known to belong to the canonical pathways under analysis, as we add more 
data sources to Medline. Each panel shows three numbers in each square. The first number 
represents the number of genes found for glycolysis. The second number shows the number of 
genes found for lysine metabolism. The third number shows the number of genes found for 
RNA degradation. M: Medline, B:Biomed Central, P: PLoS, S: Scopus, H: Highwire, PM: 
PubMed, L: All literature databases, J: All journals and ALL: all information sources. 
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Second, we compared the sensitivity of Biblio-MetReS using different databases 

for scientific documents (Figure 3, Supplementary Figure 3 and Supplementary 

Figure 4). In general, Medline is the database in which a smaller number of 

genes is found. When Medline analysis is compared to analysis of databases 

containing the full text of scientific papers from individual journals or 

publishing houses, more genes that belong to the relevant pathways are almost 

always found in the latter case. This suggests that, many times, the information 

gain provided by analyzing the full text of scientific papers of a given publisher 

more than offsets the loss of information caused by only having access to a 

fraction of the scientific literature. 

Nevertheless, as is the case when comparing iHOP, STRING and Biblio-

MetReS (using Medline), each literature database generates a set of genes that, 

in many cases, is only partially overlapping. Therefore, we analyzed how much 

is gained by combining the different literature sources.  Supplementary Figure 3 

and Supplementary Figure 4 summarize the results of this analysis. 

We find that, in general, searching the set of individual journals that we 

include in Biblio-MetReS discovers a smaller number of gene interactions than 

using Medline. We also find that, as we combine larger databases, the number 

of genes that belong to the network of interest increases. However, so does the 

number of genes that are not recognized by KEGG as being associated with the 

pathway. In general, a search in literature databases identifies all the genes that 

are also identified when searching the set of individual journals. However, in 

some cases, the sets of genes found in the two types of databases are absolutely 

complementary. This is the case of the genes for glycolysis in Drosophila 

melanogaster. 

Another aspect of interest that needs to be analyzed is that of discrimination 

between genes that are known to belong to the different canonical pathways 

under analysis and genes whose association to those of the pathway is indirect. 

Supplementary Figure 3 shows how many of the genes found by Biblio-MetReS 

are annotated as belonging to the relevant pathways in KEGG. For example, 

compare the squares marked M (Medline) in each panel of Supplementary 
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Figure 4 to the subsequent squares in the same panel. You can see that Biblio-

MetReS now finds between 1.5 and 6-7 times more genes associated with the 

canonical pathway than any of the applications in benchmark 1. In contrast, 

Supplementary Figure 4 shows the total number of genes found during the 

analysis. We find that most of the genes that are found by the program in the 

different combinations of databases are not directly associated with the 

canonical pathway being tested. This was also the case in the first benchmark 

tests for the three applications being compared (Biblio-MetReS, iHOP, and 

STRING). The percentage of the total genes that are outside the canonical 

pathway increases with the number of documents being analyzed. 

One way to filter many of the interactions with additional genes that may be 

irrelevant is by analyzing the graph of genes that co-occur in sentences. The 

sentence co-occurrence network has a much smaller number of interactions 

between genes (compare panels 4A and 4B in Figure 1). These interactions are 

enriched in interactions between genes that belong to the canonical pathway. 

Furthermore, it is easier for the user to identify if a gene association in this 

network is important for the work at hand, because Biblio-MetReS shows the 

relevant sentences.  

2.4 Discussion 

Automated text mining efforts with the goal of extracting biological information 

is a booming field. Many issues still need to be solved in order for this 

extraction to be as good as it can be. On one hand, reporting of biological 

entities and concepts still needs to be standardized and standards need to be 

fully accepted and implemented by both journals and researchers. On the other, 

more efficient methods also need to be developed. The BioCreAtIvE challenge 

has been established to evaluate how well the different methods perform in 

both identifying biological entities and relationships between these entities [38]. 

The BioCreAtIvE challenge, as any control experiment should do, performs an 

evaluation of different tools in well curated datasets. However, while more 

developed methods are being further developed, biological researchers can still 
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benefit from prototypical applications that assist them in many the large 

majority of the scientific literature, which is not curated at all. Efforts to mine 

this body of literature in order to reconstruct networks of interacting genes 

started as early as in the end of the nineties [39]. In the first decade of the 

twenty first century, a few tools have been developed to enable this 

reconstruction. Most of these require a non-trivial amount of computational 

knowledge if they are to be used. Some, such as iHOP and STRING, are widely 

used and user-friendly. Each of these applications searches a database of 

scientific documents that was previously analyzed and processed. This pre-

processing strategy makes the identification of co-occurring genes a faster 

process at the cost of disregarding documents present in PubMed and/or 

Medline but not yet processed by the pipeline underlying the applications. 

Biblio-MetReS, which is developed to fit in this user friendly category, provides 

the following added value with respect to iHOP and STRING: 

1. Our reconstruction is done live and with the latest available documents 

on the internet. In contrast, iHOP and STRING use a precompiled 

database of documents for their search. This means that our results will 

be more up to date than those of the other two applications. 

2. While iHOP, STRING, and Biblio-MetReS search for gene interactions 

in abstracts of Medline and PubMed documents, Biblio-MetReS can 

additionally search full documents from other scientific and general 

data sources. This increases the number of gene associations that can be 

found. Nevertheless, it has been reported that the analysis of complete 

scientific documents may increase the noise in gene associations that 

are found [20,32]. 

3. A third additional functionality provided by Biblio-MetReS with 

respect to iHOP and STRING permits filtering out some of the noise 

that may arise from the analysis of complete documents. Our tool 

distinguishes between co-occurrence of genes and proteins in 

sentences, paragraphs and whole documents. The analysis of sentences 
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decreases the probability of detecting spurious associations between 

genes that are found in different parts of the documents and may have 

little to do with one another. 

Both pre-processing of documents strategies, as done by iHOP and STRING, 

and on-the fly analysis strategies, as done by Biblio-MetReS or Reflect, have 

disadvantages. This first strategy has the cost of using information that is 

almost never quite up to date, while the latter has the cost of becoming 

potentially very slow. One way to sidestep these disadvantages is by combining 

both strategies in the same tool. We are working on an implementation of 

Biblio-MetReS that will do this. In fact, the next version of Biblio-MetReS is 

being implemented in such a way that the results of each search will be stored 

and compiled. Thus, if a new search finds a document that has been analyzed 

before, it will retrieve the processed data from our local database. Only new 

documents will be processed on the fly. This approach will combine the 

advantages of on-the-fly processing and pre-processing strategies, enabling the 

application to speed up searches, analyses, and reconstruction of networks. It 

will also facilitate implementing methods to better predict the confidence in the 

different interactions that are found, based for example on Bayesian networks 

[40]. 

Our tool, together with iHOP and STRING, is limited by the non-standardized 

nomenclature that exists in biology. Each application finds a different set of 

genes for each benchmarked network, with only partial overlap between the 

genes that are identified. Furthermore, no application finds all genes that 

belong to the canonical pathway defined in the KEGG server. This fact is a 

consequence not only of non-standard nomenclature but also of the limitations 

of the various datasets, where not all possible experiments and associations 

have been reported. Furthermore, many of these associations are reported in 

older papers that have yet to be made available over the web. Nevertheless, the 

results also emphasize the usefulness of those tools, as they tag a number of 

genes that interact with the benchmarked pathways but do not belong to it. The 

usefulness of this kind of network reconstruction will increase over time, as the 
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nomenclature of genes and biological concepts becomes more standardized and 

widely used and the number of scientific documents that associate genes to 

biological function increases. 

2.5 Conclusions 

Biblio-MetReS is a new user-friendly tool for text-based network reconstruction 

that is comparable in function to iHOP and STRING. Biblio-MetReS is more 

flexible than both, iHOP and STRING, in at least two aspects, while being 

equally user-friendly. First, it includes all sources of information used by iHOP 

and STRING, always analyzing the most up to date version of these sources. 

Second, the user can choose different sources of information to search from 

simply by checking boxes. Neither iHOP nor STRING allow for this. 

Furthermore, it permits analyzing the full text of scientific documents, rather 

than only mining the information contained in abstracts. 
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2.6 Supplementary Materials 

These materials contain the following information: 

• Supplementary Figure 1. 

• Supplementary Figure 2. 

• Supplementary Figure 3. 

• Supplementary Figure 4 

• Supplementary Table 1 

Supplementary Figures 

 
Supplementary Figure 1. Representation of the number of common genes found for the 
different pathways in Saccharomyces cerevisiae(1), Escherichia coli(2), and Drosophila 
melanogaster(3) using Biblio-MetReS, iHOP and STRING. A - Glycolysis, B - Lysine 
metabolism, C - RNA degradation. 
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Supplementary Figure 2. Representation of the number of common genes found for the 
different pathways in Saccharomyces cerevisiae(1), Escherichia coli(2), and Drosophila 
melanogaster(3) using Biblio-MetReS, iHOP and STRING.A - Glycolysis, genes known to be in 
the pathway, B - Lysine metabolism, genes known to be in the pathway, C - RNA degradation, 
genes known to be in the pathway. 
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Supplementary Figure 3. Representation of the number of additional genes that are found by 
Biblio-MetReS as we add more data sources to Medline. Each panel shows three numbers in 
each square. The first number represents the number of genes found for glycolysis. The second 
number shows the number of genes found for lysine metabolism. The third number shows the 
number of genes found for RNA degradation. A - Homo sapiens. B - Escherichia coli. C - 
Saccharomyces cerevisiae. D - Drosophila melanogaster. In this figure we represent only the 
genes that are known to belong to the canonical pathways as defined in KEGG. M: Medline, 
B:Biomed Central, P: PLoS, S: Scopus, H: Highwire, PM: PubMed, L: All literature databases, J: 
All journals and ALL: all information sources. 
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Supplementary Figure 4. Representation of the number of additional genes found by Biblio-
MetReS that are known to belong to the canonical pathways under analysis as we add more 
data sources to Medline. Each panel shows three numbers in each square. The first number 
represents the number of genes found for glycolysis. The second number shows the number of 
genes found for lysine metabolism. The third number shows the number of genes found for 
RNA degradation. A - Homo sapiens. B - Escherichia coli. C - Saccharomyces cerevisiae. D - 
Drosophila melanogaster. In this figure we represent all genes found during the automated 
analysis. M: Medline, B:Biomed Central, P: PLoS, S: Scopus, H: Highwire, PM: PubMed, L: All 
literature databases, J: All journals and ALL: all information sources. 
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Abstract 
One way to facilitate the reconstruction of molecular circuits is by using 

automated text-mining techniques. Developing more efficient methods for 

such reconstruction is a topic of active research, and those methods are 

typically included by bioinformaticians in pipelines used to mine and curate 

large literature datasets. Nevertheless, experimental biologists have a limited 

number of available user-friendly tools that use text-mining for network 

reconstruction and require no programming skills to use. One of these tools 

is Biblio-MetReS.  

Originally, this tool permitted an on-the-fly analysis of documents contained 

in a number of web-based literature databases to identify co-occurrence of 

proteins/genes. This approach ensured results that were always up-to-date 

with the latest live version of the databases. However, this “up-to-dateness” 

came at the cost of large execution times.  

In this paper we report the current version of Biblio-MetReS, including new 

functionality that identifies co-occurrence of biological processes, pathways, 

and proteins. In addition, the program now combines on-the-fly document 

analysis with preprocessing of previously analyzed documents. This strategy 

simultaneously maximizes “up-to-dateness” of the results and minimizes 

run time of the analysis. 

 



 

 



3.1 Introduction 

The reconstruction of molecular circuits and their behavior is an important 

research goal in the biological sciences. One of the ways to achieve that circuit 

reconstruction is by using automated text-mining techniques, due to the 

increased number of scientific documents that are collected in biological 

databases [1,2].  

A gold standard of these databases, MEDLINE, contains more than 19 106 

records, with 2000-4000 new entries being added each day [3]. Extracting 

biological information from such large databases requires text-mining methods 

and tools that are able to automatically integrate and summarize useful 

biological information across the database records. 

The development of text-mining methods that enable circuit reconstruction 

from scientific documents is an area of active development [4–11] The 

performance of those methods for automated identification of the circuits [7], of 

their components (genes/proteins), and of the inter-component relationships, 

has been systematically evaluated over the last few years, for example through 

the BioNLP [8,9] and BioCreAtIvE initiatives [10,11].  

To briefly summarize, there are three large classes of methods that have been 

employed for circuit reconstruction: dictionary-based methods, morphology-

based methods, and context-based methods [12]. Dictionary-based methods rely 

on compiled list of the terms that are to be recognized, and implementing a 

matching method to find those terms in the text of the documents [13]. 

Morphology-based methods rely on the morphological structure of specific 

classes of words to single them out in documents [14,15]. Finally, context-based 

methods can be divided into Machine Learning or Natural Language 

Processing techniques: The former identify patterns in the structure of the text 

that help to recognize the presence of the relevant entities in documents; the 

later draw from our knowledge of language grammar and how natural 

language is formed to recognize those entities. These three general approaches 

can be combined in order to improve NER (for example see [16]). 
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In general, methods participating in evaluations such as BioCreAtIvE or 

BioNLP are implemented in tools that can be included in web-services and 

assist curators in the maintenance of large databases of biological knowledge. 

Examples of this are given in [17]. In most cases, using these methods and tools 

requires that one becomes an expert computer user and learns how to program. 

Experimental scientists that are interested in being users of, without becoming 

experts in, text-mining methods to directly reconstruct molecular circuits for 

their genes of interest from scientific documents have a much smaller set of 

available user-friendly tools. The first that became available was iHOP [4], 

which was later joined by STRING [5]. These web applications allow anyone to 

reconstruct the network of co-occurrences contained in Medline abstracts for 

their proteins/genes of interest in a user friendly and intuitive way. There are 

two caveats of using these applications. First, they rely on preprocessed 

versions of the Medline database, which means that they are always out of date. 

Second, they disregard the analysis of full text documents.  

Recognizing these limitations, Biblio-MetReS (Bibliometric Metabolic 

network Reconstruction Server [6]) was implemented for the same target 

audience as STRING or iHOP, but relying on two differential features. The first 

was that it would search databases and analyze documents on the run, thus 

providing the users with the most up-to-date results available on the web. The 

second was that full text documents were also analyzed, as were other 

databases besides Medline. These two features made Biblio-MetReS 

significantly slower than STRING and iHOP.  

Here, we report Biblio-MetReS v2.0. This new version combines on-the-fly 

analysis of new documents with preprocessed information from documents 

that were encountered in previous analysis. This combination simultaneously 

optimizes program run time and “up-to-dateness” of the analysis. In addition, 

this new version allows users to also identify GO terms and KEGG or Panther 

pathways that might be associated to their genes/proteins of interest in the 

documents that they analyze. This further facilitates the identification of 

functional relationships between proteins and aids in identifying the biological 
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processes and circuits in which those proteins may be involved. To our 

knowledge, no other user-friendly tool is available to simultaneously analyzes 

genes/proteins and GO terms/pathways document co-occurrences.  

3.2 Methods 

3.2.1 Pre-processing of documents  

Biblio-MetReS uses exact matching to an internal dictionary of synonyms 

approach to identify co-mentions of genes/proteins from more than 1200 

organisms in the text of scientific records, as described in section 1 of 

supplementary materials (see also [6]). The database containing the organisms 

and their gene names is updated every three months using information 

compiled automatically from NCBI. In addition, Biblio-MetReS v2.0 implements 

a precompilation approach that works in the following way. Any search done 

will identify a given number of documents in the database(s) selected by the 

user(s) for an organism of interest. If a given document has not been found in 

any previous search by any user, with the same organism, Biblio-MetReS will 

analyze it as described in section 1 of supplementary materials (see also [6]) and 

all information contained in that document and relevant for the analysis will be 

stored in a central database (see section 3 of supplementary materials for 

detailed information). If a given document has been previously found by any 

user, its information will be directly accessed from our central database, and the 

document will not be reanalyzed. This means that newly found documents are 

mined on the fly by the program to find and count mentions of relevant entities, 

while mentions in documents that have been previously found are simply 

looked up in our central database.  

3.2.2 GO and Pathway entities 

In addition to identifying genes/proteins, as we mentioned in the introduction, 

v2.0 of Biblio-MetReS also searches for all entities from the GO ontology 

biological process categories [18] and from the complete joint sets of KEGG [19] 
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and Panther pathways [20]. This allows it to identify co-occurrence among 

GO/Pathway entities and between GO/Pathway entities and gene/protein 

entities in sentences, paragraphs or documents. Identification of the 

GO/Pathway entities is done using a dictionary approach with exact matching. 

3.3 Results 

3.3.1 Biblio-MetReS and Biblio-MetReS Player 

Biblio-MetReS v2.0 can be used to identify genes/proteins from more than 1200 

different organisms in records stored in a variety of databases. Users download 

the application and run it locally. An internet connection and JAVA software is 

required. Upon starting the program, users login to the central Biblio-MetReS 

database and choose which organism they are interested in and whether they 

want to search only for co-occurrence of genes/proteins or if they also want to 

include biological pathways and/or GO biological processes in the analysis. 

Once this choice is made, the program loads the necessary information from the 

central database. Taking this approach, instead of including all the data locally 

in the program installation, permits making an application that is much smaller 

in size and needs less RAM to function properly. Subsequently, users select the 

source of documents that they want to analyze, as well as the genes/proteins 

and/or pathways/GO biological processes that they want to search for. They 

can also include their own handpicked list of documents to be searched. Once 

the search is launched, Biblio-MetReS will identify documents in the relevant 

databases that contain mentions to the relevant search items. After identifying 

these documents, the application fully analyzes them to identify mentions for 

any additional gene or Pathway/GO biological process via a dictionary 

matching approach. The co-occurrence of the different entities is analyzed at the 

level of the whole document, of individual paragraphs and of individual 

sentences, and the significance of this co-occurrence is calculated as described 

in [6]. The information that is relevant for the co-occurrence calculations is 

stored in the central Biblio-MetReS database. Any subsequent searches that 
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identify the same document will not reanalyze it; instead, these numbers are 

directly retrieved from that database. Once the analysis is complete, the users 

can visualize it in graphical and textual form. Links to the documents and 

sentences where co-occurrences are found are provided. Graphical visualization 

of the results can be done in different ways. Users can create graphs for the 

global co-occurrences network and for gene- or pathway/process-centric co-

occurrences at the document/paragraph and sentence levels. Significance and 

Mutual Information of each co-occurrence is also provided in tabular form. The 

graphical representation of the networks is automatically stored in local xml 

files. These files can be opened using a small app, Biblio-MetReS Player, which 

can be downloaded from the Biblio-MetReS website. This permits reviewing 

previously obtained networks without having to redo the search. All this 

process is summarized in Figure 1. 

 
Figure 1. Workflow for Biblio-MetReS. 
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3.3.2 Improvements with respect to previous versions 

One of the improvements in the current version of Biblio-MetReS is the 

possibility of identifying pathways and biological processes. This brings the 

application one step closer to helping the user in the reconstruction of the 

molecular circuits in which the genes of interest are involved. However, the 

main improvement has to do with the implementation of precompilation in the 

searches, as described in methods.  

To test the effect of this change on the run time we performed the same 

benchmarks as described in [6] (also, see Figure 2 details and section 2 of 

supplementary materials). In brief, we used the name of three or four genes 

involved in glycolysis, lysine biosynthesis, or RNA metabolism and performed 

co-occurrence analyses ensuring that the database did not include any of the 

documents included in the searches. Subsequently we repeated the searches, 

with the database now containing the information from previously found 

documents. In all cases, the time decreased by around two orders of magnitude 

(Figure 1 and Supplementary Table 1 and Supplementary Figure 2 in 

supplementary materials). 

3.4. Discussion 

Here we present the new version of Biblio-MetReS, a user friendly tool for the 

identification of gene/protein co-occurrence networks in scientific documents. 

The major changes with respect to version 1.0 have to do with the search and 

analysis process of the documents, which can now be up to 95% faster than in 

the previous version. In addition, the tool now also searches for co-occurrences 

of biological processes and pathways, to help users to more easily establish the 

biological circuits in which their genes of interest may be involved in. 

The methods used by the application to identify genes and proteins in the 

documents are dictionary-based. These methods perform on par with iHOP and 

STRING for gene and protein identification [6]. 
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Figure 2. Effect of preprocessing documents on Biblio-MetReS’ run time. In brief, genes from 
three KEGG-defined pathways are used for this test. Panels A.x show experimental results for 
glycolysis genes. Panels B.x show experimental results for Lysine biosynthesis genes. Panels 
C.X show experimental results for RNA degradation genes. Three organisms are used in this 
benchmark. Panels Y.1 show results for Homo sapiens, panels Y.2 show results for Drosophila 
melanogaster, panels Y.3 show results for Escherichia coli, and panels Y.4 show results for 
Saccharomyces cerevisiae. These pathways and organisms were chosen to remain consistent 
with the tests performed in [6]. Searches were done selecting all the databases in the 
application. Graphs can be interpreted as follows. Light gray bars indicate the run time for 
Biblio-MetReS when the corresponding gene is searched for the first time. In this case the 
program has to do a full document analysis on the fly and no information has been pre-
processed. Darker gray bars indicate the run time for Biblio-MetReS when the search for the 
corresponding gene is repeated, and pre-processed information is already present in Biblio-
MetReS’ central database. The column “All” indicates the run-time for searching all genes in the 
graph simultaneously, after individual searches for each gene had already been done and 
results pre-processed and stored. 
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Taking into account the results from the BiocreAtIvE initiative, dictionary 

matching methods applied to GO term identification have a high precision (that 

is, the terms that are identified are mostly correct) and low recall (many terms 

that should also be identified are not) [7]. However, other classes of methods 

proposed in the same initiative have average recalls between 10% and 20% for 

the same type of entities and lower precision [7]. Because we choose to have 

higher precision in our identification of GO and Pathway terms, we choose to 

also identify these terms using a dictionary approach. However, a quantitative 

evaluation of the performance for this approach was not done in this work. This 

is so because such an evaluation was done in BioCreAtIvE, as stated above. Re-

evaluating the same approach using the same corpora used in those initiatives 

would be inefficient and add little, if anything to the work presented here. 

As is demonstrated by the BioCreAtIvE challenge [21], the problem of 

identifying entities in scientific texts is far from solved. Although Biblio-MetReS 

aims at giving non-expert users the possibility of performing such identification 

and use that identification to extract biological knowledge, there is much room 

for improvement. We are implementing an offline system to automatically 

search, analyze, and store information about gene/protein and 

pathway/biological processes co-occurrences in the documents. This will 

contribute to decrease the dependence of Biblio-MetReS on the users and their 

searches to preprocess information and make searches faster.  
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3.5 Supplementary Materials 

These materials contain the following information: 

• 1: Document Search and analysis. 

• 2: Benchmarking. 

•  3: Storage of Information. 

• Supplementary Figure 1. 

• Supplementary Figure 2. 

• Supplementary Table 1. 

• Supplementary Table 2. 

3.5.1. Document search and analysis 

The different information sources accessed by Biblio-MetReS to create a meta-

search engine are divided into two groups: Literature Databases (Medline, 

Pubmed, Plos One, etc) and General Engines (Yahoo, Ask, etc.) [6]. The 

organism of interest and the gene(s) and/or biological processes selected by the 

user are assembled into a query that is launched to each selected information 

source.  

Once the search is completed, Biblio-MetReS eliminates duplicate documents 

by comparing URLs and doi numbers. Once a non-redundant list of documents 

is assembled, Biblio-MetReS selects the full text of the document to analyze, 

unless only the abstract is available. It discards all the documents for which the 

user IP address has no access. Then the tool checks if any of the flagged 

documents has been previously analyzed and stored in the database, retrieving 

preprocessed data from that database, if available. At the end of this process, 

the application analyzes on the fly the documents that were not found in the 

database, looking for co-occurrence of any gene or protein, and/or for any 

biological process (if the user included them in the analysis) in sentences, 

paragraphs, and entire documents. It then stores the relevant analysis of new 

documents. We note that even though PubMed frequently updates the content 

of its documents, we assume that these updates will not significantly affect the 
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entities that are found in any given document. Therefore, once analyzed and 

stored, a document will not be reanalyzed again live unless it is removed first 

from our database of preprocessed documents.   

The method used to find both types of entities (genes/proteins and biological 

processes/pathways) is exact matching, including all the synonyms for a gene. 

The dictionary of genes and their synonyms we use is a merge from those of 

NCBI and KEGG. The dictionary of biological processes we use is a merge of 

GO, KEGG and Panther. See the workflow in Supplementary Figure 1 for a 

summary of the process. 

The decision to analyze the co-occurrence in sentences and paragraph relies 

on the consideration that, when analyzing full text documents, proximity 

between the entities implies a more direct relationship between them. If this is 

not taken into account, a significant amount of noise can be included in the 

network of possible interactions [22]. 

3.5.2. Benchmarking  

The benchmarking of the program and its improvements with respect to 

version 1.0 was carried out using four organisms of interest: Saccharomyces 

cerevisiae, Homo sapiens, Escherichia coli and Drosophila melanogaster. For each 

organism we used as a search seed the following genes belonging to Glycolysis, 

Lysine biosynthesis and RNA Degradation pathways. Details are shown in 

Supplementary Table 1.  

The benchmark is divided into two different tests. The first test is done using 

only the Pubmed database. The second test is done using all the Literature 

databases. In both tests we used all the seed genes from Supplementary Table 1. 

Each seed is used by Biblio-MetReS as a query search. This query search is 

launched twice. The first search is done with a database that contains no 

preprocessed document. The information in documents is analyzed on-the-fly 

and stored. The second time, the search is repeated with the documents now 

stored in the database. This allows us to estimate the percentage of run-time 
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saved by preprocessing the documents. The results are shown in 

Supplementary Table 2. 

3.5.3. Precompiled information in the database 

To save the information related to each document we created a set of seven 

tables in the database. These tables allow Biblio-MetReS to reduce the execution 

time and reproduce the same result given by the on-the-fly analysis. The tables 

are: 

1. DocumentsTable 

2. SearchTable 

3. GenesTable 

4. ProcessesTable 

5. GenePairsTable 

6. ProcessPairsTable 

7. GeneProcessPairsTable 

Supplementary Figure 2 details the relationship between the tables and their 

variables. There are some aspects about the variables in each table that have to 

be clarified. First, a variable in plural refers to a list of elements. In SearchTable, 

the variable typeProcessSearch can assume the following values: 0 - the search is 

done mapping genes and biological processes from GO, Pathways and Panther; 

1 - the search is done mapping genes and biological processes from GO; 2- the 

search is done mapping genes and biological processes from Pathways and 

Panther; 3- the search is done only mapping genes. In ProcessesTable and 

GeneProcessPairTable, the variable typeProcess can assume the following values: 

0- the biological process is from GO; 1.- the biological process is from Pathway 

or Panther. Finally, in ProcessPairsTable the variable typeProcessPair can assume 

the following values: 0- both biological processes in the pair are from GO; 1- 

both biological processes in the pair are from Pathway or Panther; 2- one 

biological process in the pair is from GO and the other is from Pathway or 

Panther. 
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Supplementary Figures 

.  

Supplementary Figure 1. Algorithmic workflow for the process of network reconstruction in 
Biblio-MetReS 

 

Biblio-MetReS II

74



 

 
 
 
 
 
 
 
 

 
Supplementary Figure 2. Database used to store preprocessed information by Biblio-MetReS. 
Tables and their relationships. See section 3 of these supplementary materials for details. 
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Supplementary Tables 

Supplementary Table 1. Orgaisms and genes used for benchmarking the application. 

Organisms Pathway Genes to start reconstruction  

 

Saccharomyces cerevisiae 

Glycolysis PGM1; FBA1; CDC19; ALL  

Lysine biosynthesis LYS21; ARO8; LYS9; ALL  

RNA degradation MTR3; MPP6; CAF16; RRP41 ALL  

 

Homo sapiens 

Glycolysis PGM1; ALDOA; PKLR; ALL  

Lysine biosynthesis AADAT; AASDH; AASS; ALL  

RNA degradation MTR3; MPP6; CNOT4; RRP41; ALL  

 

Escherichia coli 

Glycolysis Pgm; fbaB; pykF; ALL  

Lysine biosynthesis thrA; dapB; dapF; ALL  

RNA degradation rppH; rhlE; rnr; ALL  

 

Drosophila melanogaster 

Glycolysis Pgm; Ald; PyK; ALL  

Lysine degradation Lkr; CG9547; Gpp; ALL  

RNA degradation Rrp42; Mpp6; Cnot4; Rrp41; ALL  
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CheNER: Chemical Named Entity Recognizer 
Anabel Usié, Rui Alves, Francesc Solsona, Miguel Vázquez and Alfonso Valencia 

Abstract 
Motivation: Chemical named entity recognition is used to automatically 

identify mentions to chemical compounds in text, and is the basis for more 

elaborate information extraction. However, only a small number of 

applications are freely available to identify such mentions. Particularly 

challenging and useful is the identification of IUPAC chemical compounds, 

which due to the complex morphology of IUPAC names requires more 

advanced techniques than that of brand names. 

Results: We present CheNER, a tool for automated identification of 

systematic IUPAC chemical mentions. We evaluated different systems using 

an established literature corpus to show that CheNER has a superior 

performance in identifying IUPAC names specifically, and that it makes 

better use of computational resources. 

Availability: http://metres.udl.cat/index.php/9-download/4-chener, 

http://chener.bioinfo.cnio.es/ 

Supplementary information: Both web sites above include the user manual 

for the software. Supplementary materials accompany this publication. 

http://metres.udl.cat/index.php/9-download/4-chener
http://chener.bioinfo.cnio.es/


 

 



4.1 Introduction 

Automated NER (Named Entity Recognition) of chemical compounds is 

receiving increased attention from researchers because it can facilitate the 

application of Information Extraction to the pharmaceutical treatment of 

diseases and to understanding how those compounds modulate gene/protein 

activities. Chemical NER draws from the experience in performing gene and 

protein NER [1], but differs from it in three ways.  

First, catalogs of names and compositions of chemical compounds have been 

traditionally less accessible. Fortunately, freely available chemical databases 

such as PubChem [2] or DrugBank [3] are helping to correct this issue. This 

makes it possible to do NER of common drug names such as “Aspirin” or 

“Acetone” by using a dictionary-based approach. 

Second, the complexities and the variability in the morphological structure of 

systematic IUPAC (Union of Pure and Applied Chemistry) chemical names [4] 

makes it impossible to create a finite dictionary of such names. This poses the 

main challenge for NER of chemical names [5]. IUPAC names can be simple 

words, or contain different punctuation marks, sequences of numbers separated 

by commas, etc. They can also be combined in different forms (for example “18-

bromo-12-butyl-11-chloro-4,8-diethyl-5-hydroxy-15-methoxy”), making it impossible 

to enumerate them all. This means that NER of such names cannot be done 

using a dictionary matching, requiring alternative approaches.  

Third, systematic nomenclatures of chemicals, like IUPAC, can be used 

directly to unambiguously derive their chemical structure. 

The number of applications that are freely available to do NER of common 

and systematic names of chemical compounds is still incipient, and their 

usability, efficiency, and accuracy are far from perfect. To help alleviate these 

problems, in this work we present and benchmark CheNER, a machine learning 

application based on CRFs that performs NER of IUPAC chemical entities with 

improved performance over comparable tools. 
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4.2 Methods 

CheNER uses linear Conditional Random Fields (CRFs) to predict the locations 

of IUPAC entity mentions in text. CRFs are a probabilistic framework for the 

labeling or segmentation of sequential data [6].  

The training and benchmarking of the application was done using the corpora 

provided by Kolářik and Klinger [7,8]. The corpora are divided into a training 

corpus (TrainC, 463 abstracts, 5072 annotated entities), a Medline test corpus 

with a small number of entities (MedlineC, 1000 abstracts, 165 annotated 

entities), and an evaluation corpus with a large number of entities (EvalC, 100 

abstracts, 1310 annotated entities). All corpora contain annotated chemical 

entities written using the IUPAC nomenclature as well as other types of 

chemical names. CheNER’s CRF was trained on TrainC. Its performance was 

subsequently evaluated independently on both, MedlineC and EvalC. 

In training our CRF we defined a set of features and tested different 

combinations of them, together with two types of tokenization (A: by spaces, B: 

by punctuation marks), different orders of CRF (1 or 2), and different sizes of 

offsets conjunction or sliding windows (0 or 1), which creates a new additional 

feature of a token by conjoining its features with those of the n (n=0, n=1) 

surrounding tokens. We then selected the best combination, indicated by the 

highest F-score value obtained in cross-validation over the training set, as a 

model to use in the evaluation. The selected model performs with an F-score 

value of 80.20% (Precision: 82,84%; Recall: 77.74%), uses a 2nd order CRF, an 

offset conjunction of 1, tokenization type A, and a particular set of features 

described in the supplementary materials. To mark chemical mentions and 

establish borders between tokens during training we used the IOB labeling 

scheme [5]. Details about the tested sets of features, training and evaluation 

corpora, training process, modeling assumption, performance, and selection, 

are described in sections 1 to 3 of the supplementary materials. 
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4.3 Results 

4.3.1 Comparative performance for NER of chemical names 

The predictive capability of CheNER for IUPAC names, was evaluated using 

the EvalC and the MedlineC corpora, performing the evaluation by comparing 

the system output to a gold standard in terms of the precision (p), recall (r) and 

F-score (F). 

 

Figure 1. Predictive capability of the different tools identifying IUPAC entities over: (A) the 
EvalC corpus and (B) MedlineC corpus. We measure the ability of the three tools to specifically 
identify IUPAC chemical entities in the two corpora. 

There are, to our knowledge only two other freely available tools for chemical 

NER. These are ChemSpot [9] and OSCAR4 [10,11]. To compare CheNER’s 

performance to that of those tools, we use the three applications to 

independently annotate MedlineC and EvalC and compare the results. Our 

analysis shows that CheNER outperforms the other two applications in the 

experiments regarding IUPAC names alone (see Figure 1), due to the fact that it 

was trained specifically for them. Note that OSCAR and ChemSpot do not 

differentiate between IUPAC and other types of chemical entities and will 

detect entities that, albeit chemical, will not be IUPAC and will register as false 

positives. To make the three methods comparable we ignore non-IUPAC 

entities that are annotated in the corpora when evaluating performance. 

Unfortunately the MedlineC corpus does not annotate non-IUPAC entities, so 

this corpus can only be compared in terms of recall. We find that CheNER's 
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performs better than OSCAR4 and ChemSpot identifying IUPAC names. 

Details are given in section 4 of supplementary materials.  

Given that CheNER has been trained in the specialized task of recognizing 

IUPAC names, it is not surprising that when applied to non-IUPAC names it 

does not perform at the levels of other systems (see section 4 of supplementary 

materials).  

4.3.2 Comparative use of hardware resources 

We also evaluated how efficiently ChemSpot, OSCAR4 and CheNER use 

computing resources. We found that CheNER requires less physical memory, 

running in computers that have less than 3 GB of RAM, compared with 

minimum of 3 and 12 GB of RAM required by OSCAR4 and ChemSpot 

respectively (see Supplementary Figure 3, Supplementary Figure 4 and section 

4 of the supplementary materials for details). 

4.4 Discussion 

Because IUPAC names are the standard in important types of documents, such 

as patents, and the chemical structure is often derivable from the mention itself, 

it is important to have an application specifically devised for their 

identification. Given the potentially infinite number of IUPAC entities it is not 

feasible to develop a dictionary based approach to identify them, and NLP 

methods are more suitable to identify those entities. Thus, we developed 

CheNER, a named entity recognition approach for finding IUPAC names in 

text, using CRFs.We demonstrate that CheNER annotates IUPAC names in 

documents with a better F-score than ChemSpot and OSCAR4. CheNER is the 

only tool that is specifically developed to identify only such names while 

ChemSpot and OSCAR4 do not differentiate between entity types. 

We also show that CheNER needs less memory and CPU than the others to 

perform the same tasks. In addition, CheNER is self-contained, requiring only 

that Java is installed to run, which makes it easier to integrate in other systems.  
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4.5 Supplementary Materials 
This supplementary material contains the following: 

• 1: Features used 

• 2: Detailed information about the corpora used 

• 3: The training process 

• 4: Comparison of CheNER to other chemicals tools 

• 5: Feature removal 

• Supplementary Figure 1 

• Supplementary Figure 2 

• Supplementary Figure 3 

• Supplementary Figure 4 

• Supplementary Figure 5 

• Supplementary Figure 6 

• Supplementary Figure 7 

• Supplementary Figure 8 

• Supplementary Figure 9 

• Supplementary Figure 10 

• Supplementary Figure 11 

• Supplementary Figure 12 

• Supplementary Figure 13 

• Supplementary Table 1 

• Supplementary Table 2 

• Supplementary Table 3 

• Supplementary Table 4 

• Supplementary Table 5 

 

4.5.1 Features set used 

The set of features used to train the CRF model is shown in Supplementary 

Table 1. Some of these features were identified by previous studies as being the 

most discriminative in the identification of gene and protein names [7].  
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4.5.2 Detailed information about the corpora used 

These corpora include chemical entities of different types: IUPAC and 

PARTIUPAC employ multi-word systematic names and partial chemical names 

[4], MODIFIER  names classify chemical modifiers [12], FAMILY type includes 

generic chemical entities such as “purine”, or “sugar”, [8], ABB type includes 

those chemicals that are abbreviations of names [13], SUM type includes the 

chemical and/or atomic formulas for the different compounds [4], and 

TRIVIAL are common names composed by single word terms. Supplementary 

Table 2 summarizes the entity composition of the three corpora.  

While being an invaluable resource for this kind of work, and the best dataset 

to date for this task, close examination of these corpora reveals a caveat: while 

TrainC and MedlineC only have 3 entities in common, 46.16% of the entities in 

EvalC are also found in TrainC. To our knowledge this fact had not been 

highlighted before. 

4.5.3 The training process 

First, we look for the combination of parameters and features sets (modeling 

assumptions) that create the model with the best F-Score performance. The 

performance of each modeling assumption was assessed using 5-fold cross-

validation over the TrainC corpus. In cross validation, the dataset is randomly 

divided into several equally sized chunks or folds (5 in our case), and each fold 

is in turn used to validate a model trained using the other folds. Second, once 

we have determined the best model assumption as the one with the highest 

averaged F-Score performance over all 5 folds, it is used for the final training 

over the complete TrainC corpus.  

The different modeling assumptions are detailed in Supplementary Table 3. 

Each modeling assumption explores combinations of 3 different characteristics. 

First, two tokenization types were used. In type A only blank spaces were used 

to delimit tokens, while in type B several other characters were also considered 

as possible token delimiters (see Supplementary Table 3 for details). Second, 
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CRFs of order 1 and 2 were used for the training. Third, two values of OC were 

considered (0: no context considered, and 1: features from tokens that 

immediately precede and follow the token of interest are considered in 

predicting that token’s label). We obtained a top F-Score performance of 80.20% 

(Precision: 82.84%; Recall: 77.74%), using a 2nd order of CRF, an offset 

conjunction of 1, tokenization type A (by spaces), and the following set of 

features: MF, Toc, PS, W, WB, L, BNS and SW.  

For each modeling assumption all the features set were used (see 

Supplementary Table 1). A: Uses blank spaces as delimiters of tokens. B: Uses 

blank space, punctuation marks (dots, dashes, etc) and parenthesis as delimiters 

if tokens. 

4.5.4 Comparison of CheNER to other chemicals tools 

A set of four experiments was conducted to benchmark the performance of 

different tools performing chemical NER: (1) IUPAC entities in EvalC, (2) 

IUPAC entities in MedlineC, (3) all entity types in EvalC, and (4) all entity types 

in MedlineC. The tools that were comparatively evaluated with respect to 

CheNER were OSCAR4 [10,11] and ChemSpot [9].  

The results obtained in experiment 1 and 2, the identification of IUPAC 

names, are shown in Figure 1, respectively (see main document), and in 

Supplementary Table 4. CheNER has the best global performance in 

experiments 1 and 2, as measured by the F-score. To make the comparisons 

reliable, we eliminate all non-IUPAC entities annotated in each corpora by 

OSCAR4 and ChemSpot. This must be done to account for the fact that 

ChemSpot and OSCAR4 do not differentiate between the types of chemical 

entities they annotate, which would lead to an artificially low precision for 

these two applications. In addition we manually check the FP results of each 

tool. We find that most of these FP are real chemical entities that failed to be 

originally annotated in the corpora. When these are eliminated and only real FP 

entities are considered, both ChemSpot and OSCAR4 always reported a higher 

number of FP entities than CheNER. Thus, CheNER has more precision than 
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either OSCAR4 or ChemSpot, and a comparable recall to either of the other 

tools. Overall, CheNER has the highest F-score in identifying IUPAC chemical 

entities. 

The results obtained in experiment 3 and 4, are shown in Supplementary 

Figure 1 and Supplementary Figure 2, respectively. As expected, CheNER has 

the worst F-score performance in experiment 3, as it mostly recognizes IUPAC 

names. 

The low performance of ChemSpot and OSCAR4 in MedlineC is a 

consequence of the way that this corpus is annotated. While only IUPAC and 

MODIFIER chemical names are annotated, other types of chemicals are also 

present. A partial manual analysis of the results reveals that many of the false 

positive entities identified by OSCAR4 and ChemSpot are non IUPAC chemical 

entities. Therefore, the only real comparison of predictive capability that we can 

do between the three tools while tagging entities of MedlineC in this experiment 

is in term of recall. We show that CheNER has the worst recall in this 

experiment, mostly due to a failure in identifying MODIFIER entities.  

Summarizing the results, CheNER is the application that more accurately 

identifies IUPAC chemicals names. It is also the only available tool that was 

specifically developed to identify this nomenclature. In this context, the three 

tools have a similar recall and CheNER’s outperforms the other tools based on 

higher precision.  

We also evaluated how efficiently ChemSpot, OSCAR4 and CheNER use 

available computing resources. To do so, we ran each application on the same 

machine (i7 processor, with four CPUs and 20GB of RAM) and monitored the 

consumption of main memory and CPU of the system during the annotation of 

the two evaluation corpora. Supplementary Figure 3 shows that CheNER uses 

less memory than the others (<1GB-3.5% of available RAM). In contrast 

ChemSpot uses the most amount of memory (>7GB-35.7%) and OSCAR4 

needed an intermediate amount of memory (<2GB-5.5%). To estimate total 

memory requirements we must consider also the memory required to run the 

JVM (Java Virtual Machine). Supplementary Figure 3 shows that CheNER also 
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requires less CPU than the other applications. In addition, CPU usage is more 

constant over time than that of ChemSpot and OSCAR4. 

4.5.5 Feature Removal 

The feature set used to train our CRF is shown in Supplementary Table 1. 

Previous work identified some of these features as being  the most 

discriminative in the identification of chemical names [7]. However not 

systematic study was done to understand how the different features interacted 

in the prediction of chemical names in text.  

Here we performed such a study in the form of feature removal experiments. 

These feature removal experiments allowed us to establish the effect of the 

different features on the performance of the CRF. Each set of experiments is 

identified as leave- n -out, with n ranging from 0 to 8 and representing the 

number of features that are simultaneously removed from the feature set 

described in Supplementary Table 1 before retraining the CRF. In each set of 

experiments we remove all possible combinations of n features, retrain and then 

evaluate the performance of our CRF. Note that even with all the features 

removed, the actual token is also used by the CRF as a feature in the training; 

thus, even in the leave-8- out removal experiment the labels are still conditioned 

by the tokens themselves, by the two previous labels (2nd order linear-chain 

CRF) and by the preceded and followed token (OC parameter set to 1). This fact 

will be fundamental to understand the results of the feature removal 

experiments.  

Our experiments indicate that the F-score performance of the system 

increased as more features where considered. This is summarized in 

Supplementary Figures 5 and 6, where one can see that the average F-score 

performance of the CRF increases as the number of features used to train the 

algorithm also increases. The detailed results of the experiments are presented 

in Supplementary Figure 7, on performance of progressively removing features, 

starting with the complete feature set, and ending with a ‘naked’ model, with 
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no features others than the tokens themselves for EvalC and MedlineC, 

respectively. 

Our results show that the feature whose removal decreased performances the 

most is PS, which is consistent with previous findings [7]. This was also the 

feature that generates the best performance in absence of all others. The feature 

ToC and W contribute the least to performance. In fact, their simultaneous 

removal seems to improve results, even if this improvement is not statistically 

significant. Supplementary Table 5 shows the best and worst combinations of 

features for each removal set of experiments. 

One of the most striking results of the feature removal experiments was the 

difference in performance between the two evaluation corpora. Although the 

performance over both corpora improved as more features where used to train 

the CRF, the degree of improvement was very different. The F-score 

performance in the MedlineC corpus ranged from 0% on the CRF trained  with 

no features to 23% on the CRFs trained using just one feature. That performance 

further improved to 63% on the CRF trained using all 8 features. Note that all 

these CRFs include the “token literal” feature. 

The EvalC, however, presented a different behavior. The trained CRF had an 

F-score performance of around 70%, even in the leave-8-out experiment set. 

Further analysis revealed that almost half of the compounds mentioned in the 

evaluation set of the corpus appeared verbatim in the training set. This led us to 

hypothesize that the “token literal” features used to train the CRFs in all n-out 

experiments was sufficient to identify most chemical in this specific evaluation 

set. To test this hypothesis we performed an additional experiment and 

intentionally excluded this feature, retraining the leave-8-out CRF and 

reevaluating its performance on EvalC. As predicted, this CRF is unable to 

correctly identify any chemical names (F-score=0). Notably, when the “token 

literal” feature is intentionally excluded, and the CRF is retrained in the leave-0-

out experiment set, it retains the same F-score performance level observed in 

the leave-0-out experiment that included the “token literal” feature (F-

score=77). This emphasizes that the CRF learns by combining two modes of 
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learning. One mode is by using the derived features to identify new chemical 

terms and the other is by memorizing the exact terms it finds on the training 

corpus.  

Supplementary Figures 

 

 

Supplementary Figure 1. Predictive capability of the different tools identifying all type of 
entities over the EvalC corpus in terms of precision, recall and F-score. In this experiment we 
measured the F-score of the three tools in identifying all types of chemical entities. 

 
 

Supplementary Figure 2. Predictive capability of the different tools identifying all type of 
entities over the MedlineC corpus in terms of precision, recall and F-score. In this experiment 
we measured the F-score of the three tools in identifying all types of chemical entities. 
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Supplementary Figure 3. Memory consumption for each application during the annotation of 
both corpora, EvalC and MedlineC. Time was normalized in each run. Absolute time for the 
same run is similar for the three programs. 

 
 

 

Supplementary Figure 4. CPU consumption for each application during the annotation of the 
EvalC and MedlineC corpora. Time was normalized in each run. Absolute time for the same run 
is similar for the three programs. 
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Supplementary Figure 5. Best CRF performers in the leave-n-out sets of experiments (1≤n≤7) 
over EvalC. The FA0 column corresponds to the performance of the CRF trained without 
considering any additional feature. The FA1-FA7 columns correspond to the CRF performance 
in the leave-one-out to leave-seven-out sets of experiments. The FA8 column corresponds to 
the CRF performance when considering all features. Each column presents the maximum F-
score for each of the eight features. The width of the circle for each feature is proportional to the 
F-score. The color can go from white (low F-score) to black (high F-score). The upper three 
lower panels indicate maximum (upper gray line), median (black line), and minimum (lower gray 
line) values for the F-score, precision, and recall in each set of experiments. The last lower 
panels indicate the maximum (upper black line) and minimum (lower black line) with OC, and 
the maximum (upper gray dash-line) and minimum (lower grey dash-line) without OC. 
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Supplementary Figure 6. Best CRF performers in the leave-n-out sets of experiments (1≤n≤7) 
over MedlineC. The FA0 column corresponds to the performance of the CRF trained without 
considering any additional feature. The FA1-FA7 columns correspond to the CRF performance 
in the leave-one-out to leave-seven-out sets of experiments. The FA8 column corresponds to 
the CRF performance when considering all features. Each column presents the maximum F-
score for each of the eight features. The width of the circle for each feature is proportional to the 
F-score. The color can go from white (low F-score) to black (high F-score). The upper three 
lower panels indicate maximum (upper gray line), median (black line), and minimum (lower gray 
line) values for the F-score, precision, and recall in each set of experiments. The last lower 
panels indicate the maximum (upper black line) and minimum (lower black line) with OC, and 
the maximum (upper gray dash-line) and minimum (lower grey dash-line) without OC. 
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Supplementary Figure 7. Performance in the leave-one-out experiment set. Bars represents 
the F-scores obtained for both corpora, EvalC (light-gray bar) and MedlineC (dark-gray bar). 
Lines indicate the best and worst performance in each corpus. The upper black line and lower 
black line indicate the maximum and minimum, respectively, in EvalC. The upper gray dash-line 
and lower gray dash-line indicate the maximum and minimum, respectively, in MedlineC. 
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Supplementary Figure 8. Performance in the leave-two-out experiment set. Bars represents 
the F-scores obtained for both corpora, EvalC (light-gray bar) and MedlineC (dark-gray bar). 
Lines indicate the best and worst performance in each corpus. The upper black line and lower 
black line indicate the maximum and minimum, respectively, in EvalC. The upper gray dash-line 
and lower gray dash-line indicate the maximum and minimum, respectively, in MedlineC. 
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Supplementary Figure 12. Performance in the leave-six-out experiment set. Bars represents 
the F-scores obtained for both corpora, EvalC (light-gray bar) and MedlineC (dark-gray bar). 
Lines indicate the best and worst performance in each corpus. The upper black line and lower 
black line indicate the maximum and minimum, respectively, in EvalC. The upper gray dash-line 
and lower gray dash-line indicate the maximum and minimum, respectively, in MedlineC. 
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Supplementary Figure 13. Performance in the leave-seven-out experiment set. Bars 
represents the F-scores obtained for both corpora, EvalC (light-gray bar) and MedlineC (dark-
gray bar). Lines indicate the best and worst performance in each corpus. The upper black line 
and lower black line indicate the maximum and minimum, respectively, in EvalC. The upper 
gray dash-line and lower gray dash-line indicate the maximum and minimum, respectively, in 
MedlineC. 
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Supplementary Tables 

Supplementary Table 1. Types of features used 

Feature Description 

Morphological Features(MF) Identifies specific features of words. For 
example: is the word all caps? does it contain a 
number? dashes, slashes or other punctuation 
marks? 

Prefixes/Suffixes (PS) Identifies specific prefixes or suffixes of a given 
length (2, 3, 4 characters) that are common in 
chemical names. 

Types of Characters(ToC) Identifies specific types of characters that are 
more common in chemical names, such as Greek 
letters, roman numbers, etc. 

Length (L) Classifies tokens by length. If the length is less 
than 5, the token is Short. If length is between 5 
and 15, the token is Medium, otherwise, the 
token is Large. 

Word class (W) Analyzes the structure of chemical names in 
terms of frequency of upper and lower case 
characters, digits and other types of characters. 

Brief Word class (WB) Same as W, collapsing consecutive identical 
types of character into one Examples of these 
two features: i.e. 1-methyl: 0.aaaaaa and.1-methyl:  
0.a. 

List (BNS/SW) Matches token to basic name segments and to the 
stop words list. 

 
Supplementary Table 2. Chemical entity types 

Chemical types TrainC EvalC MedlineC 

IUPAC & PARTIUPAC 4033 483 151 
MODIFIER 1039 104 14 
FAMILY 0 99 0 
ABB 0 161 0 
SUM 0 49 0 
TRIVIAL 0 414 0 
Total 5072 1310 165 
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Supplementary Table 3. Modeling assumptions for the CRF model. 

Training configurations Tokenization type Order CRF OC 

1 A 1 0 
2 A 1 1 
3 A 2 0 
4 A 2 1 
5 B 1 0 
6 B 1 1 
7 B 2 0 
8 B 2 1 

 

Supplementary Table 4. Summary of F-score values for each tool in each experiment 

 Exp. 1 Exp. 2 Exp. 3 Exp. 4 
CheNER 86.98 70.06 50.03 69.94 
OSCAR4 40.24 4.53 59.68 4.52 
ChemSpot 73.35 10.51 74.24 10.47 

Exp1: identify IUPAC entities in EvalC; Exp2: identify IUPAC entities in MedlineC; Exp.3 identify 
all type of entities in EvalC (complete corpus); Exp.4: identify all type of entities in MedlineC 
(complete corpus). 

 

Supplementary Table 5. Feature sets leading to best and worst performance in the leave- n -
out set of experiments (1 ≤ n ≤ 7). Bold and italicized features correspond to both corpora 
simultaneously. Bold features correspond to the EvalC corpus alone. Italicized features 
correspond to the MedlineC corpus alone. 

FR Minimum F-score FS Maximum F-score FS 

Leave-1-out MF, ToC, W, WB, L, BNS, SW MF, PS, WB, L, BNS, SW,W, ToC 
Leave-2-out MF, ToC, W, L, SW, WB, BNS MF, PS, W, WB, BNS, SW 
Leave-3-out ToC, L, BNS, SW, WB, W MF, PS, BNS, W, SW, ToC, WB 
Leave-4-out ToC, SW, W, WB, L, BNS MF, PS, BNS, W, WB 
Leave-5-out ToC, BSN, SW MF, PS, L, SW 
Leave-6-out ToC, SW MF, PS 
Leave-7-out ToC PS 

FR: Feature Removal 
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Abstract 
The CHEMDNER task is a Named Entity Recognition (NER) challenge 

proposed by the most recent BioCreAtIvE (IV) challenge. This task aims at 

automatically identifying and labeling different types of chemical names in 

biomedical text. There are two subtask to so: (1) CDI subtask which is base 

on listing the chemical entities found in each document, and (2) CEM subtask 

which is based on give the precise location of each entity found related to 

each document, differentiating between title or abstract. 

We approach this challenge by proposing a hybrid approach that combines 

linear Conditional Random Fields (CRF) together with regular expression 

taggers and dictionary usage, followed by a post-processing step to tag those 

chemical names in a corpus of Medline abstracts.  

Our system performs with an F-score of 72.34% and 73.54% on the 

development and sample sets, respectively, for the CDI subtask. For the CEM 

subtask the performance increases to 73.07% and 73.76% on the development 

and sample sets, respectively. 

 



  

 



5.1 Introduction 

The BioCreAtIvE (Critical Assessment of Information Extraction systems in 

Biology) challenge consists of a community-wide effort for the evaluation of 

how accurate and effective text mining (TM), information retrieval (IR) and 

information extraction (IE) systems are when they are applied to the biological 

domain. 

BioCreAtIvE challenges became relevant owing to the growing importance of, 

and interest in, TM, IR and IE of biological texts. This importance results from 

the fact that biomedical literature accumulates at an ever increasing rate, as do 

other types of biological datasets, such as those derived from omics 

experiments. That accumulation makes the existent of reliable methods to 

automatically annotate and extract information from those datasets 

fundamental for researchers that want to extract as much usable information as 

they can from them [1].  

Early interest in the area lead to the use of TM and IE techniques to implement 

systems that automatically identify genes, proteins, their interactions (PPIs), 

and functions within a text. However, there were no common standards or 

shared evaluation criteria to comparatively evaluate the various proposed 

approaches for doing that identification. Thus, developing common evaluation 

criteria and golden standard test data sets was crucial to evaluate the 

performance of those approaches [2,3].  

The development of such criteria and data sets was informed by the methods 

used by the natural language processing (NLP) community in their Message 

Understanding Conferences (MUCs) [4] and Text Retrieval Conferences (TREC) 

[5]. While the development of evaluation criteria is fairly straightforward 

through the use of a variety of statistical approaches, the creation of golden 

standard test data sets is more difficult. This is due to the fact that such data 

sets have to be sufficiently large for their analysis to have statistical significance. 

Given that those data sets need to be assembled, examined, annotated, and 

curated by individual experts, a lot of time is required to create a truly useful 

golden standard data set.  
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The BioCreAtIvE challenge was set out to provide both evaluation methods and 

golden standard test sets that permitted the development of new applications, 

and the improvement of preexisting ones, for biological text mining. 

The latest BioCreAtIvE challenge, BioCreAtIvE IV, addressed two main issues. 

The first regards the Named Entity Recognition (NER) of biological entities and 

concepts. NER uses different methods to identify biological significant entities 

in the literature and associate them to existing database entries, in a process also 

known as Named Entity Normalization (NEN). The second regards the 

identification of entity-fact associations. Examples of this are the automated 

annotation of protein-protein interactions or association of biological function 

to protein/gene mentions. This is done using different methods for the 

extraction of semantic concepts used by NLP in other areas. 

BioCreAtIvE IV was built on the success of the previous BioCreAtIvE 

challenges [6–10]. It defined the following five tracks as priority areas of 

biological text mining, where progress should be fomented and evaluated: 

1. Interoperability (BioC): Development of an interoperable BioNLP 

module that can be seamlessly coupled to all BioC compliant modules. 

2. Chemical and Drug Named Entity Recognition (CHEMDNER): 

Detection of mentions of chemical compounds and drugs, in particular 

those chemical entity mentions that can subsequently be linked to a 

chemical structure. 

3. Comparative Toxicogenomics Database (CTD) Curation: Provision of 

Web Services to identify gene, chemical, disease, and action term 

mentions supporting CTD curation in PubMed abstracts. 

4. Gene Ontology (GO) curation: Development of automatic methods to 

aid GO curators in identifying articles with curatable GO information 

(triage) and extracting gene function terms and the associated evidence 

sentences in full-length articles. 

5. Interactive Curation (IAT): Demonstration and evaluation of web-based 

systems addressing user-defined tasks, evaluated by curators on 

performance and usability. 
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Given that we had developed CheNER to identify IUPAC chemical names 

mentioned in biomedical documents, it was considered that track 2 of 

BioCreAtIvE IV presented a good opportunity to compare the performance of 

our software with that of other available tools. This led us to modify and 

improve CheNER in order to make it more general and participate in the 

CHEMDNER track. Hereafter, we refer to the version of CheNER that 

participated in BioCreAtIvE IV as CheNER-BioC. 

5.2 Description of the CHEMDNER Track 

The CHEMDNER track promotes the development and implementation of 

systems that identify mentions of chemical names and drugs. This identification 

is crucial to aid in subsequence text-processing strategies such as the 

identification of drug-protein interactions, the extraction of metabolic and 

pathways reaction relations, among others. 

The CHEMDNER track is divided into two tasks: 

1. Chemical Document Indexing (CDI) Task: In this task, given a set of 

documents, the evaluated software must identify the list of chemical 

entities mentioned in each document.  

2. Chemical Entity Mention recognition (CEM) Task: In this task, given a 

set of documents, the evaluated software must identify the precise 

location (also differentiating between title and abstract) of chemical 

entities within each of the documents. 

Several corpora were provided by the organizers as golden standard test sets 

to evaluate the performance of the tools in each subtask: a sample corpus (25 

annotated Pubmed abstracts), a training corpus and a development corpus 

(3500 annotated Pubmed abstracts each), and a test corpus (20000 non 

annotated Pubmed abstracts).  

The format of the three annotated corpora is described in Figure 1. The 

different types of chemical entities annotated in the corpora included 
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SYSTEMATIC names (IUPAC and IUPAC-like), common or TRIVIAL names, 

trade names, chemical IDENTIFIERS (from databases and companies), 

acronyms and ABBREVIATIONS, reference numbers, chemical structures 

(SMILES, InChI), FAMILY names, and FORMULAS. Names that are equal in 

various nomenclatures are also tagged as MULTIPLE, and names that are 

chemicals from unidentified nomenclatures are tagged as NO CLASS. 

Supplementary Materials section provides more information about the 

annotation of the corpora and about which entities are included in each 

classification. 

 
Figure 1. Example output predictions for the CEM (A) and CDI (B) sub-task. Te first column 
corresponds to the article identifier (PMID). The second column corresponds .to the predictions, 
i.e., the mention offset set in case of the CEM subtask and the unique mention string in case of 
the CDI subtask. The third column corresponds to the actual rank for each prediction given an 
article and the last column to the corresponding confidence score 

5.3 Challenges in the automatic identification of chemical 

names 

The development of systems that automatically identify chemical entities in 

biomedical texts is challenging due to both, the diverse morphology of chemical 

entities and the various types of nomenclature that are used to describe them in 

those texts [11]. These factors make it difficult to develop a single approach that 

can successfully identify all types of chemical mentions with high accuracy. 

For example, standard IUPAC nomenclature and the nomenclature based on 

brand or trivial names have significant morphology differences. Thus, the 

former nomenclature has a complex morphology and a set of rules that makes 

the number of possible chemical names virtually infinite, making it impractical 

to use a dictionary and requiring the use of more sophisticated techniques to 

identify those names. In contrast, the later nomenclature is very much finite and 

its mentions can be identified using a dictionary approach. 

CheNER II

116



5.4 Proposed method to address the challenges in the 

automatic identification of chemical names 

Here we present and test a set of hybrid approaches that combine dictionary 

matching, linear CRFs (conditional random fields) and regular expressions to 

tag chemical entities in the biomedical literature. The first approach uses 

CheNER [12], a tool which implements Conditional Random Fields [13] based 

on Mallet [14]. CheNER achieves good results in identifying IUAPC names on 

our previous work with the SCAI corpora [15,16]. However, the goal here is to 

identify all types of chemical names. Because of that we implemented a slightly 

different approach to that used in the original CheNER. First, new specific 

features were added to the CRF before training it to identify specific types of 

chemical names. Second, dictionary matching and a varied set of regular 

expression rules were also combined with the CRF and used to identify 

chemical names. 

5.5 System Description 

The systems we present are inspired by our previous work in developing 

CheNER a tool for the identification of IUPAC chemical names.  

Linear 2nd order CRFs, with offset conjunction value of 1 and tokenization by 

spaces, are individually or collectively trained to identify chemical names of 

types SYSTEMATIC, TRIVIAL, FAMILY, FORMULA, ABBREVIATIONS and 

IDENTIFIERS. The training corpus used was the CHEMDNER training set. The 

features used in the training are shown in Table 1. In addition, a dictionary is 

used to assist in identifying TRIVIAL, FAMILY and ABBREVIATIONS name 

types. Finally, regular expressions are employed for the recognition of 

FORMULA and IDENTIFIERS name types.  
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Table 1. Some of the features used. 

Name of feature Description 
Morphological features Identifies specific features such as contains dashes?, is all cap?, 

has a greek letter? 
Word class Automatic generation of features in terms of frequency of 

upper and lower case characters, digits and other types of 
characters. 

Autom. Prefixes/Suffixes Automatic generation of suffix and prefix (length 2, 3 and 4) 
List Automatic generation for every token that match an element 

within the list. This list can be a list of basic names segments, a 
list of stop words, etc. 

The output of the various methods is based on the IOB labeling scheme, which 

is then reformatted to the required specifications of the CDI and/or CEM 

output format.  

Integrating the output of the various recognition approaches (CRF, dictionary 

matching, and regular expressions), requires a post-processing step to be 

implemented in CheNER-BioC. In this step we perform several clean up 

actions, such as correcting unequal numbers of closing or opening brackets or 

detagging “action words” that are often appended at the end of chemical 

mentions such as “-based”, “-regulated”, etc.  

5.6 Results & Discussion 

The initial performance of the proposed approaches was tested using the 

CHEMDNER sample and test sets. This allowed us to test the performance of 

the various combinations of CRFs/regular expression/dictionary matching. 

The various tests are described in Table 2. The performance of our systems on 

the sample and development sets for the CDI subtask are displayed in Table 3, 

while the results for the CEM subtask are shown in Table 4. The performances 

of the various systems are similar in the sample and in the test datasets, 

suggesting that those performances are likely to be close to the limits of the 

method. 
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Table 2. Runs description. 

Run Description 
1 Combines a CRF for SYSTEMATIC with an individual Regular Expression tagger for 

TRIVIAL, FAMILY, ABBREVIATION, FORMULA and IDENTIFIER. 
2 Combines an individual CRF for SYSTEMATIC and TRIVIAL with an individual Regular 

Expression tagger for FAMILY, ABBREVIATION, FORMULA and IDENTIFIER. 
3 Combines an individual CRF for SYSTEMATIC, TRIVIAL, FAMILY, ABBREVIATION, 

FORMULA and IDENTIFIER. 
4 Combines an individual CRF for SYSTEMATIC, TRIVIAL, FAMILY, ABBREVIATION, 

and FORMULA with an individual Regular Expression tagger for IDENTIFIER. 
5 Combines an individual CRF with specific labels for SYSTEMATIC, TRIVIAL, FAMILY, 

ABBREVIATION, FORMULA and IDENTIFIER. 

Table 3. CDI subtask results based on the Micro-average results. Also is shown the execution 
time. P:precision, R:recall, F:f-score, AP: average precision, Fs: FAP-s and E: execution time. 
 

CDI subtask 
 Sample set Development set 
 Run 1 Run 2 Run 3 Run 4 Run5 Run 1 Run 2 Run 3 Run 4 Run5 
P 79.26 79.86 83.94 84.27 77.19 76.31 78.48 82.39 82.62 75.94 
R 63.03 63.30 55.58 59.40 70.21 65.36 66.64 54.53 61.11 69.07 
F 70.22 70.62 66.88 69.98 73.54 70.41 72.08 65.62 70.26 72.34 
AP 50.29 51.09 46.44 49.75 50.23 50.27 54.43 45.51 50.75 51.97 
Fs 58.61 59.29 54.82 58.16 59.69 58.66 62.02 53.75 58.93 60.49 
E 149s 419s 939s 811s 2214s 15451s 46064s 118094s 88611s 188270s 

Table 4. CEM subtask results based on the Micro-average results. Also is shown the execution 
time. P:precision, R:recall, F:f-score, AP: average precision, Fs: FAP-s and E: execution time. 
 

CDI subtask 
 Sample set Development set 
 Run 1 Run 2 Run 3 Run 4 Run5 Run 1 Run 2 Run 3 Run 4 Run5 
P 81.12 81.68 85.35 85.29 81.29 77.58 80.49 85.17 85.15 81.49 
R 67.50 66.07 51.91 61.07 67.50 65.71 66.13 48.72 59.45 66.23 
F 73.68 73.05 61.46 71.12 73.76 71.15 72.61 61.98 70.02 73.07 
AP 54.37 52.49 43.72 51.09 51.12 49.79 50.35 40.13 49.23 51.82 
Fs 62.57 61.09 51.09 59.48 60.38 58.58 59.47 48.71 57.85 60.64 
E 149s 419s 939s 811s 2214s 15451s 46064s 118094s 88611s 188270s 

Specifically, and for both subtasks, the system with the best F-score 

performance uses a single CRF that simultaneously identifies each type of 

entity. In contrast, the second best system combines various identification 

methods. On the one hand it uses two different CRFs that independently 

identify SYSTEMATIC and TRIVIAL name types. On the other, it employs 

regular expression/dictionary matching for FORMULA, IDENTIFIER, 

ABBREVIATIONS and FAMILY name types.  
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It is worth noting that our best performing system is fourteen times slower than 

our fastest system and five times slower than our second best system. In 

contrast, its performance is only improved by a couple of percent point with 

respect to its slower alternatives. Taken together, these results could be used to 

argue that in some cases using a system that is not as accurate in tagging 

chemical names in biomedical texts might be worth it because of its speed.  
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5.7 Supplementary Materials 

These materials contain the transcription of the annotation guideline provided 

by the BioCreAtIvE organizers for the CHEMDNER Track. The organizers have 

authorize this transcription: 

• 1: Description of the CHEMDNER annotation guideline. 

• 2: CHEMDNER data selection. 

• 3: CHEMDNER chemical entities. 

• 4: CHEMDNER entity mentions type description. 

• 5: Ortograph/Grammar Rules. 

• 6: Multiwords: single entities vs multiple entities. 

5.7.1 Description of the CHEMDNER annotation guideline1 

This document describes the data selection criteria and annotation guidelines 

used for the construction of the CHEMDNER task corpora. The annotation 

guidelines will be refined after iterative cycles of annotations of sample 

documents based on direct suggestions made by the curators as well as through 

the observation of inconsistencies detected when comparing the results 

provided by different curators. Some participating teams provided feedback to 

improve the documentation after the release of the first sample set prepared for 

the CHEMDNER task. These informal rounds of curation served to improve the 

guidelines in the sense of making them more intuitive and easy to follow for the 

annotators. 

The manual annotation task basically consists in labeling or marking up 

manually the mention of chemical entities in text following a set of rules 

specified below. The text to be labeled consists mainly in PubMed abstracts 

(title and abstract text) in the first round of annotation followed by the 

annotation of a smaller set of full text scientific articles and patent abstracts.  

1 Overview of the chemical compound and drug name recognition (CHEMDNER) task. Krallinger et al. 
Proceedings of the Fourth BioCreative Challenge Evaluation Workshop vol. 2 ,2-33 
http://www.biocreative.org/tasks/biocreative-iv/chemdner/ 
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When possible, the selected chemical entity mentions were classified into one of 

seven chemical entity mention (CEM) classes defined in more detail below. The 

color code corresponds to the color tags provided by the MyMiner and 

AnnotateIt annotation interfaces for each of the CEM classes, to make the 

manual labeling and visualization easier. 
Supplementary Table 1. Chemical Entity Mention (CEM) classes defined for the CHEMDNER 
task. For each CEM a short description and illustrative example cases are provided. 

Type of chemical Description Examples 
SYSTEMATIC Description Systematic names of 

chemical mentions, e.g. IUPAC and 
IUPAC-like names 

2-Acetoxybenzoic acid 
2-Acetoxybenzenecarboxylic acid  
2-Acetoxybenzoic acid  
N-(4-hydroxyphenyl)acetamide  
3,5,4'-trihydroxy-trans-stilbene 

IDENTIFIERS 
 

Database identifiers of chemicals: 
CAS numbers, PubChem 
identifiers, registry numbers and 
ChEBI and CHEMBL ids 

CAS Registry Number: 501-36-0445154 
CID 445154  
CHEBI:28262  
CHEMBL504 

FORMULA 
 

Mentions of molecular formula, 
SMILES, InChI, InChIKey 

CC(=O)Oc1ccccc1C(=O)O 
InChI=1S/C9H8O4/c1-6(10)13-8-5-3-2-
47(8)9(11)12/h2-5H,1H3,(H,11,12)  
C9H8O4 
(CH3)2SO 
LUKBXSAWLPMMSZ-OWOJBTEDSA-N 

TRIVIAL 
 

Trivial, trade (brand), common or 
generic names of compounds. It 
includes International 
Nonproprietary Name (INN) as 
well as British Approved Name 
(BAN) and United States Adopted 
Name (USAN) 

Aspirin 
Acylpyrin 
Paracetamol 
Acetaminophen 
Tylenol 
Panadol 
resveratrol 

ABBREVIATION 
 

Mentions of abbreviations and 
acronyms of chemicals compounds 
and drugs 
 

DMSO GABA 
 

FAMILY 
 

Chemical families that can be 
associated to some chemical 
structure are also included. It 
involves: i-FAMILY- SYSTEMATIC: 
IUPAC (plurals) ii-FAMILY- 
FORMULA iii-FAMILY- TRIVIAL 
iv.-FAMILYABBREVIATION v- 
FAMILY - FAMILY (this fine 
grained subannotation will only be 
done initially for a subset of the 
data collection). 

Iodopyridazines (FAMILY- SYSTEMATIC) 
diphenols (FAMILY- SYSTEMATIC) 
quinolines (FAMILY- SYSTEMATIC) 
terpenoids (FAMILY- TRIVIAL) ROH 
(FAMILY- FORMULA) 
 

MULTIPLE 

 

Mentions that do correspond to 
chemicals that are not described in 
a continuous string of characters. 
This is often the case of mentions of 
multiple chemicals joined by 
coordinated clauses. 

thieno2,3-d and thieno3,2-d fused oxazin-4-
ones 
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5.7.2. CHEMDNER data selection 

One critical aspect when preparing annotated corpora is that the used 

documents should ideally be representative of the domain of interest. In order 

to select appropriate documents that mention different types of compounds, 

containing heterogeneous mention types, the organizers tried to detect in the 

first place what journals do actually often contain descriptions of chemical 

substances. Therefore existing substance annotations provided by the PubMed 

database were exploited. 

Step 1  Selection based on subject categories from the ISI Web of 

Knowledge (The top 100 journals for each category were selected based 

on the journals impact factor):  

• BIOCHEMISTRY & MOLECULAR BIOLOGY 

• CHEMISTRY, APPLIED  

• CHEMISTRY, MEDICINAL 

• CHEMISTRY, MULTIDISCIPLINARY  

• CHEMISTRY, ORGANIC 

• CHEMISTRY, PHYSICAL 

• ENDOCRINOLOGY & METABOLISM  

• ENGINEERING, CHEMICAL  

• POLYMER SCIENCE  

• PHARMACOLOGY & PHARMACY TOXICOLOGY  

Step 2 Then those journals were taken that had at least 100 articles  

Step 3 From these journals, articles were selected that have been 

published in 2013 in English, with abstracts and links to full text articles 

(based on PubMed query). 

Step 4  Sampling of the articles was carried out depending on the 

associated categories:  
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Supplementary Table 2. Number of articles used for each journal category. 

Category #Articles 
BIOCHEMISTRY 1000 
CHEMISTRY_APPLIED 1000 
CHEMISTRY_MEDICINAL 2000 
CHEMISTRY_MULTIDISCIPLINARY 1000 
CHEMISTRY_ORGANIC 2000 
CHEMISTRY_PHYSICAL 1000 
ENDOCRINOLOGY 1000 
ENGINEERING_CHEMICAL 4 
PHARMACOLOGY 1000 
POLYMER_SCIENCE 300 
TOXYCOLOGY 2000 

Step 5 A list of unique articles was generated, resulting in 10991 articles. 

Step 6 A random set of 10,000 abstracts from the joined collection was 

selected. 

Step 7 The following random subsets were generated:  

• TRAINING SET (3500 abstracts) + SCAI EVAL corpus  

• DEVELOPMENT SET (3500 abstracts)  

• TEST SET (3000 abstracts)  

• Also the SCAI EVAL corpus (Kolaric et al 2008) was added to the 

training set. 

Step 8 After the selection of articles the next step was to label each article 

exhaustively for CEMs. All the above CEM classes were tagged in the 

text according to the provided annotation rules. 

5.7.3 CHEMDNER chemical entities 

The focus for defining the chemical entities annotated for the CHEMDNER task 

was primarily to capture those types of mentions that are of practical relevance. 

Therefore the covered chemical entities had to represent those kinds of 

mentions that can be exploited for linking articles to chemical structure 

information. The annotation carried out for the CHEMDNER task was only 

exhaustive for the types of chemical mentions that are described in more detail 

below. This implies that other types of mentions of chemicals and substances 
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were not labeled. The common characteristic among all the chemical mention 

types used for the CHEMDNER task was that they could be associated to 

chemical structure information to at least a certain degree of reliability. This 

implied that very general chemical concepts (nonstructural or non-specific 

chemical nouns), adjectives, verbs and other terms (reactions, enzymes) that 

cannot be associated directly to a chemical structure are excluded from the 

annotation.  

The annotation process itself also relied heavily on the domain background 

knowledge of the annotators when labeling the chemical entity mentions. A 

requirement to carry out the manual annotation was that annotators should 

have a background in chemistry, chemoinformatics or biochemistry to make 

sure the annotations are correct. This also made it possible to provide a short 

and compact set of annotation rules rather than requiring very detailed 

guidelines for non-experts. In this sense we followed a similar strategy as done 

for the gene mention tasks of previous BioCreative efforts (Smith et al. 2008). 

The definition of the chemical entity mention types used for the CHEMDNER 

task were inspired by the annotation rules used by Kolaric et al. (2008) and by 

Corbett et al. (2007).  

Chemical Entity Mentions (CEMs) for this task had to refer to names of 

specific chemicals, specific classes of chemicals or fragments of specific 

chemicals. General chemical concepts, proteins, lipids and macromolecular 

biochemicals are excluded from the annotation. Therefore genes, proteins and 

protein-like molecules (> 15 amino acids) were excluded from the annotation. 

Chemical concepts were annotated only if they provided structural information 

(e.g. FAMILY type detailed below).  

In order to label chemical entity mentions a set of rules have been defined that 

are described below. Example cases are provided to aid in understanding the 

different rules. The correct CEM cases are marked in yellow.  

As first general annotation guidelines consider:  
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Rule 1: Use of external knowledge sources  

In case the curator is not sure if a mention corresponds to a compound or he 

does not know what kind of compound mention it is, he may consult external 

knowledge resources: Wikipedia, Chemspider, Chemical Suppliers Catalogues 

(Sigma Aldrich, Tocris...), Scifinder, http://global.britannica.com/ such as the 

web or chemical databases to resolve doubts. A list of useful external 

knowledge sources should be compiled. Ideally some aid here from the 

annotation system should be expected. 

Rule 2: Not unclear mentions  

Do not tag unclear cases. If the annotator is not sure about a given mention, 

even after consulting some external sources, the corresponding mention should 

remain unlabelled. 

 Alkaloid  stands for compounds with a basic nitrogen, but the boundary is not 

clear enough and the substructural pattern neither. However, chemists typically 

recognize them...  

Glucocorticoid  structurally similar, but without a strict group definition 

The following annotation rules define which chemicals are CEM  

Positive Rules - CEM are:  

P1. Chemical Nouns convertible to: 

• -A single chemical structure diagram: single atoms, ions, isotopes, pure 

elements and molecules:  

Fluorine, Iron, Deuterium, Benzene, Pyridine  

• A general Markush diagram with R groups. Typically, chemical 

functionalities, fragments and structural classes → assignable to the 

CEM = FAMILY class.  

Amides, Hydroxipyridines, ROH, Aminoacids, Methyl Group, O-

H group 
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P2. General class names where the definition of the class includes 

information on some structural information or elemental composition, 

independently of their origin (synthetic small compounds or natural products) 

→CEM = FAMILY class. 

 Hydrocarbons, organochlorines, carbohydrates, organometallics, Lewis 

Acids, Grignard Reactants, polyketides, steroids, macrolides, terpenoids, 

fatty acids, nucleotides, nucleobases, Bronsted-Lowry acid, transition 

metal, halogen, Schiff base, Wittig Salt, Wittig Reagent, monosaccharide, 

sugars, saturated fatty acids, trans fatty acids, triglyceride, ...  

P3. Small Biochemicals  

• -Sacharids: monosaccharides, disaccharides and trisaccharides should be 

tagged:  

Glucose (monosaccharide)  

Fructose (monosaccharide)  

Ribose (monosaccharide)  

Sucrose (disaccharide)  

Streptomycin (an aminoglycoside trisaccharide)  

Gentamicin (an aminoglycoside trisaccharide)  

cyclodextrin (cyclic oligosaccharides)  not tagged  

• -Peptides and proteins: peptides and peptidomimetics should be tagged. 

By convention, a threshold of 15 aminoacids was chosen as cut-off. Thus, 

peptides with less than 15 aminoacids should be tagged as CEM (both, 

cyclic and non-cyclic peptides).  

Glutathione   (trimer)  

Cyclosporin A  11 aminoacids  

Degarelix  

Gonadotropin-releasing hormone (GnRH)  with 10 aminoacids  

Luteinizing-hormone-releasing hormone (LHRH)     same as for 

GnRH 

 Azaline B   small peptide with < 15 aminoacids  
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Angiotensin   <10 aminoacids  

As well as chemical modifications on these peptides:  

[D-Ser-(But),6, des-Gly-NH210]LHRH ethylamide  

But, for example, luteinizing hormone is a protein (92 aminoacids), so it 

should not be tagged. In the same way, chemically modified proteins 

with > 15 aminoacids should not be tagged.  

Luteinizing hormone (LH)          untagged because it has 92 

aminoacids 

• Nucleotides: Mentions of monomers, dimmers, trimers should be tagged. 

NADH  

NAD+  

Nicotine adenine dinucleotide  

ATP  

Adenosine Triphosphate  

Adenosine 5'-Triphosphate  

SAM S-Adenosyl methionine  

cAMP  

• Lipids: Fatty acids and their derivatives (including tri-, di-, 

monoglycerides), sterol derivatives...excluding polymeric structures. 

Glycerol  

Prostaglandin A  

Leukotriene A4  

Cholesterol  

Lipopolysaccharides  

Eicosanoide 

 P4. Synthetic Polymers  

Nylon  

Polystyrene  

Polyvinyl chloride (PVC)  
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Polyamides  

P5. Special Cases 

• Minerals:  

Calcite  

Silica  

Alumina  

Titania  

• Laboratory Reagents: common synthetic chemistry laboratory reagents, 

but only if their chemical composition is well defined. 

Petroleum ether  

Silica gel  

Universal indicator  

Molecular Sieves  

Litmus  

• Dye and indicator names:  

methyl red  

Coomassie Brilliant blue  

DAPI  

Negative Rules - CEM are not:  

N1. Other terms different from chemical nouns: adjectives (if isolated/outside 

from chemical nouns - see M3 and M4 below), pronouns, verbs, other terms 

(reactions and enzymes), chemical prefixes (if isolated/outside from chemical 

nouns), anaphors, referring expressions, compound numbers... 

• Chemical Reactions:  

Deshidrogentation  

methylation  

hydrolysis  

• Pronouns, anaphors:  
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"DAPI is a dye...this compound..."�  do not tag "this"� 

• Compound numbers in anaphors: Even if the numbers are combined 

with other word (generating anaphors), they should never be annotated:  

...of 8-amino-2,6-methano-3-benzazocine (2)...  do not tag "2" 

(S)-4-AHCDP (6) and (R)-4-AHCP (7) do not tag "6" and "7"� 

cis-9, ortho-12   do not tag these entities 

• Chemical Prefixes (outside chemical names):  

1,4-derivatives  do not tag "1,4-" 

N2. Chemical nouns named for a role or similar, that is, nonstructural 

concepts: 

• Generalities: analogue, substituent, inhibitor, hit, agonist, antagonist, 

activator, effector, antioxidant, substrate, inactivator, pigment, agent, 

standard, pharmacophore, drug, promoter, exon, intron, gen, antifolate, 

food, compound,... 

• Biological Roles: hormone, antibiotics, antigen, herbicides, antifungals, 

toxin, metabolite, antineoplastic agents, antiestrogens,... 

• Reactivity Role: electrophile, nucleophile, michael acceptor, dienophile, 

chelator, alkylating reagent, oxidizer, cation, anion, lipophile,... 

• Laboratory Role: solvent, reagent, starting materials, building blocks, 

buffer, catalyst,... 

• Elementary Particles: neutron, proton, electron, helion,... 

• Plants (and APIs from plants without a defined chemical structure): 

estragon  

• Oils, essences and general formulations of several compounds: 

estragon  

N3. Very nonspecific structural concepts:  

• General structural concepts: atom, ion, molecule, polymer, 

stereoisomer, enantiomer, isomer, conformer, mesomer, conformation, 
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monomer, dimmer, trimer, tetramer, lipid, gen, protein, alkali, 

functional groups, carrier proteins, aglycone, oligosaccharide, glycoside, 

saturated fat,...  

The stereoisomer 6, but not 7, activated cloned  not tagged 

carminomycinone-aglycone (II) of carminomicin  

Refer to M2 for the special case of conflictive words: acid, salt, metal  

• Vague topological descriptors: macrocycle, catenane, rotaxane,...  

N4. Context Criteria: Words are not CEM if they are not CEM in context, even 

if they are co-incidentally the same set of characters (synonyms and 

metaphors):  

Lead compounds are often found in high-throughput screenings ("hits") or are 

secondary metabolites from natural sources → not tagged 

Mutations in ICE genes disrupting mating-body formation lead to 5-fold 

decreased ICE transfer rates. → not tagged 

Lead is a chemical element in the carbon group with symbol Pb. 

The man without self-reliance and an iron will is the plaything of chance → not 

tagged 

What the new gold standard will look like → not tagged 

N5. Biomolecules/Macromolecular biochemicals: not large oligomeric and 

polymeric or established DNA/RNA/protein sequences:  

Do not tag proteins, polypeptides (> 15aa), nucleic acid polymers, 

polysaccharides, oligosaccharides and other biochemicals. Exclude all large 

biopolymers regardless of how their structures are organized. Chemical: if it is 

best represented using a chemical structure. Biochemical: if it is more usually 

represented using a sequence or a block diagram.  

ubiquitin, insulin, DNA, mRNA, keratin, collagen, starch, cellulose, glycogen, 

agarose, chitin, murein, peptidoglycans, glycoproteins, lipopolysaccharide, 
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interferon, human fibroblast interferon, Kozak sequence (example of an 

established sequence of aminoacids), annexin, atrial natriuretic peptide (28 

aminoacids), peptide,  

N6. General vague compositions  

Pigments with a relatively varying mixture: melanin  

N7. Special words not to be labeled by convention  

Organic  

Inorganic  

Water and its physical states (Steam, Ice...) as well as adjectives 

(aqueous)  

Proton, helion (proton for either the fundamental particle or the H+)  

Lead → as it is a very common word in many chemical texts, meaning 

the "main"� candidate compound from a chemical series or the verb 

"guide". As the expected chance of meaning the chemical element "lead"� 

is much lower, we agreed in not including this word.  

Gold   Same as for lead  

Note: In opposition to "lead" → the word "iron" should be tagged as 

within chemical texts it is much more probable to find this word 

referring to the chemical element than to the "cleaning" activity. 

5.7.4. CHEMDNER entity mentions type description 

The following CEM types were annotated for the CHEMDNER corpus. The 

following general guidelines should be applied when annotating the different 

CEM types:  

Rule 3 → Each chemical mention can only be marked as a single CEM type  

Rule 4 → Priority rules of CEM of various types  

CheNER II

132



In case a CEM is comprised of a combination of different types or mentions, e.g. 

systematic, trivial, abbreviation, etc, the curator should label the mention 

according to the raking provided for the CEM, CEM1... CEM7. For example, if it 

contains at least a part that follows IUPAC rules, it should be tagged as 

SYSTEMATIC (even if the rest of the mentions correspond to trivial names, 

formula or identifiers and the IUPAC string is relatively short). 

Asp-Glu-NSP      FORMULA: where NSP is an abbreviation in the text 

Testosterone       TRIVIAL 

3H-Testosterone      SYSTEMATIC (as 3H is IUPAC) 

Sildenafil       TRIVIAL 

N-methyl sildenafil     SYSTEMATIC (as N-methyl is IUPAC) 

[N(gamma)-(IGly)Dab(8)]degarelix  N(gamma) is IUPAC so it is 

composed of IUPAC + formula + trivial → results in SYSTEMATIC 

[(2-pyridyl)-methyl)d-Dap(3)]degarelix        IUPAC + Formula + Trivial → 

results in SYSTEMATIC 

[IOrn(8)]degarelix    composed of Formula + Trivial → results in FORMULA  

[Pra(7)]degarelix   composed of Formula + Trivial → results in FORMULA  

CEM-1 (SYSTEMATIC): includes multi word systematic, CAS-style names and 

semi-systematic names such as mentions of chemical compounds following the 

IUPAC nomenclature guidelines 

(http://www.iupac.org/fileadmin/user_upload/publications/recommendatio

ns/Complet eDraft.pdf). Also IUPAC-like mentions are included, as often the 

authors do not follow strictly the guidelines and sometimes authors combine 

chemical mentions that have both systematic and non-systematic mention 

elements.  

1,2-dimethyl-3-hydroxypyridin-4-one  

acetone semicarbazone  

1-octanol  

chloroacetyl chloride 

iron  
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sodium  

iron(III)  

iron(3+)  

acetylsalicylic acid  

Polystyrene  

Here we also include the mention of unique substances (not general family 

compounds) that are IUPAC or IUPAC-like next to non-essential parts of the 

chemical entity or name modifiers (see M1, M4 and M7):  

2,3-Dihydrobenzofuran analogues  

CEM-2 (IDENTIFIERS): corresponds to the following database identifiers of 

chemicals (strictly these databases): CAS registry numbers, PubChem, ChEBI 

and CHEMBL database identifiers and also company codes. These identifiers 

should only be labeled if the context provides enough information that these 

mentions correspond to chemical identifiers.  

Its CAS Number is 28718-90-3... 

Company codes: PD-0332991, FE200486 

CEM-3 (FORMULA): this class corresponds to mentions of chemical formula, 

chemical line annotations, SMILES, InChI and 3-letter codes of nucleotides, 

amino acids and monossacharides:  

C6H12O6  

EtOAc  

Fe, Na, Fe(III), Li+, Fe2+   Atomic elements 

CC(=O)C     Chemical Line annotations 

D-Ala-D-Ala    3-letter codes of small peptides 

Glu-Cys-Gly     3-letter codes of small peptides 

GlcNAc   Oligosaccharides nomenclature: formula with abbreviation 

Asp-Glu-Fmoc    Formula (formula with abbreviation) 
InChI=1S/C22H15N/c1-3-8-16(9-4-1)21-19-13-7-12-18-14-15-20(23(18)19)22(21)17-10-5-2-6-11-17/h1-15H 

t-BuOK 
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CEM-4 (TRIVIAL): this class included trivial and common names of 

compounds. It also includes trademark and commercial names of chemicals and 

drugs. 

• Drug Names: aspirine, Viagra, Degarelix,... 

• Minerals: calcite, silica, alumina, titania, zeolite,... 

• Metals (alloys): bronze, steel,... 

• Allotropes: Diamond, Graphite, monoclinic sulfur, ozone, ...  

• General names: table salt, vinegar,... 

• Other common names (mainly for small biochemicals): adenine, 

testosterone, mezerein, azalin B, mannitol, rosiglitazone, pyruvate 

kinase, xanthine oxidase, deferiprone,... 

Note that the name of the amino acids (serine, asparagine,...) is IUPAC, 

so they should be labeled as SYSTEMATIC.  

CEM-5 (ABBREVIATION): this class covered the mentions of abbreviations and 

acronyms of chemical compounds and drugs. Only those abbreviations were 

annotated that could be clearly linked to chemical entities based on the 

annotators background knowledge or on descriptions provided in the article 

(ad-hoc abbreviations).  

Annotate acronym, abbreviation and other definitions occurring before/after 

the chemical name separately:  

H]-8-OH-DPAT [8-hydroxy-2-(N,N-di-n-propylamino)tetralin]  

2,4-dinitrophenyl)sulfenyl (DNPS)  

Gamma-aminobutyric acid (GABA)  

Where:  

[3H]-8-OH-DPAT    Formula (formula + abbreviation)  

8-hydroxy-2-(N,N-di-n-propylamino)tetralin   Systematic  

(2,4-dinitrophenyl)sulfenyl     Systematic  

DNPS        Abbreviation  
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Gamma-aminobutyric acid     Systematic  

GABA        Abbreviation  

Include acronym and abbreviation definitions that occur inside chemical names:  

H-Lys-Trp(NPS)-OMe   Formula (formula + abbreviation) 

CEM-6 (FAMILY): this mention type included well-defined chemical families 

that can be associated to some chemical structure. Pharmacological families 

were excluded from this class (refer to rule N2). This also included plural forms 

of systematic compound mentions that refer to a family of compounds. In this 

case name-internal cues can be a useful help. Initially the organizers planned to 

remove this class distributing the associated entities to other mention types. We 

finally decided to keep this as a separate CEM class because it involved 

chemical structural information and in some cases is of practical relevance. 

 

In this particular case the mentions of type FAMILY involve the following 

subcategories as follows: 

i. CEM 6.1 FAMILY-SYSTEMATIC CEM of type FAMILY that follows the 

systematic or semi-systematic nomenclature guidelines. Mainly plurals 

of IUPAC names  

Quinolines  

As well as the terms referring to general chemical groups (aldehyde, 

hydroxide, amino acid,...). In case of doubt, when the chemical entity may 

refer to either a single compound or a family of compounds (e.g. "urea"), the 

context should be considered to disambiguate.  

ii. CEM 6.2 FAMILY-FORMULA CEM of type FAMILY that corresponds 

to a chemical formula (described in more detail in class FORMULA) If 

the formula encompasses > 1 compound:  

C-S-C bonds   Information on bonds/bridges (structural classes)  

ROH  

CH stretching modes of DNP films  
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Note. Generic nomenclature is accepted within formulae only if the 

formula has more than 1 character:  

MCl2 where M is any metal  

ROH stands for alcohols  

M = Cu, Ag    M alone is not labeled  

R = amides, amines... R alone is not labeled  

X = any halogen   X alone is not labeled  

iii. CEM 6.3 FAMILY-TRIVIAL CEM of type FAMILY that corresponds to a 

trivial name (described in more detail in class TRIVIAL structural class 

names)  

Terpenoids  

Sugars  

Wittig Reagent  

Lewis Acid  

Synthetic polymers consisting of an undefined number of monomers 

(polyamide, polyvinylidene fluoride, PEG...) will be considered as 

FAMILY class members.  

iv. CEM 6.4 FAMILY-ABBREVIATION CEM of type FAMILY that 

corresponds to an acronym or abbreviation (described in more detail in 

class ABBREVIATION)  

v. CEM 6.5 FAMILY-FAMILY → other family names that do not match 

any of the other previous four classes. Are of the type family but one 

cannot clearly assign them to a more specific sub-class. For example, 

adjectives in M4: 

 Pyrazolic compounds  

vi. CEM-7 (MULTIPLE): this class addressed mentions that did correspond 

to chemicals that are not described in a continuous string of characters. 

This is often the case of mentions of multiple chemicals joined by 

coordinated clauses or enumerations of chemical names (often used to 

avoid redundancies). Also parts of names divided by long text passages 
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fall into this class. The dependencies of the partial chemical compound 

mentions are not captured in this version of the task. Such MULTIPLE 

mentions could be decomposed later defining the dependencies, 

chaining rules or alternative allowed mentions in a second step if 

needed. They are only annotated if the corresponding joined mention 

(integrated form) would be one of the other chemical entity mentions 

defined for this task. 

7-[3-(fluoromethyl)piperazinyl]- and -

(fluorohomopiperazinyl)quinolone antibacterials  

thieno2,3-d and thieno3,2-d fused oxazin-4-ones  

4-(3-chloro-4-hydroxyphenyl)- and 4-(4-chloro-3-hydroxyphenyl)-

1,2,3,4tetrahydroisoquinolines  

phenylsulfenyl or acyclic sulfenyl substituted dipeptides  

Hydroxy- and amino-substituted piperidinecarboxylic acids  

Note1: if there are terms inside the sentence that do not form part of the 

chemical name â†’ they should not be tagged. Therefore, the potentially 

multiple entity will be splitted:  

elaidic (t-C18:1 delta9) and palmitic acid  two different entities 

N-Substituted and unsubstituted 4-chlorobenzeneand- and 4-

nitrobenzenesulfonamides  unsubstituted adds no positive 

chemical information and it should not be tagged. Then, N-substituted is 

outside the MULTIPLE CEM.  

Note2: on how to deal with the context. In the case of specific, isolated 

CEMs that, when isolated correspond to a specific chemical entity but 

that in the context refer to a class of compounds â†’ this CEM should be 

assigned to its non-family general class. Example:  

In general the synthetic route involved the coupling of diethyl N-

[2-fluoro-4-(prop-2ynylamino)benzoyl]-L-glutamate with the 

appropriate 6-(bromomethyl)quinazoline followed by 

deprotection with mild alkali. 
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6-(bromomethyl)quinazoline   should be tagged as FAMILY 

5.7.5 Ortography/Grammar Rules 

O1 Other languages 

Names in other languages than English should be annotated regardless the 

language according to the general annotation rules and CEM classes.  

(9E)-9-Octadecensäure       German  

9 trans - ácido octadecanoico      Spanish  

9-octadecenoic acid, (9E)-Acide (9E)-9-octadécénoïque  French  

O2 Mis-spellings & conversion errors 

Mentions of chemicals (as long as they follow some of the other mention rules) 

that are misspelled should be tagged. This also includes mentions suffering 

from automatic conversion errors generated by text conversion programs.  

ch1oro     where 1 is "one"� not "l"� 

1. 1 equiv. Br2in dioxane, ...  where it should be "Br2 in dioxane"� 

O3 "A B" wrong space  

White space-separated words that should properly be a single word â†’ should 

be marked up as single entity.  

... the acetoxy ethyl group was ... 

O4 Chemicals named after people 

Mentions of chemicals named after people should be tagged if they do refer to 

very clear chemical structures. These mentions correspond generally to 

"trivial"� or "family"� names widely used. 

Tröger's base      Trivial 

Schiff base       Family-Trivial 

Grignard reagents      Family-Trivial 

But this only applies for chemical entities (not chemical reactions):  
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Gewald thiophene synthesis    only tag thiophene 

O5 Sentence boundary  

Chemical entity mentions cannot span multiple sentences.  

O6 Not short mentions 

Do not tag acronyms that are of 1 or 2 letters in length. 1-letter code of 

aminoacids/nucleotides or biochemical mutation mentions should be excluded. 

1letter code of chemical elements should be annotated (as FORMULA)  

A T R Arg176Met  

1154C>T (A385V) and 1193T>C (M398T) in the coding exons 

 untagged 

Pd/C     these are tagged because they are of CEM 

FORMULA  

N-terminal    N (nitrogen should be tagged as CEM 

FORMULA)  

O7 Not flanking white space characters 

Not tag white space characters flanking the CEM. Annotators should try to 

define the mentions precisely, and not include flanking whitespace or other 

spacing characters.  

O8 Not Commas, full stops, brackets 

Do not include as part of the CEM: off commas, full stops, brackets, and 

references to papers etc. that aren't a part of the name itself. Do include as part 

of CEM the square brackets around inorganic complexes and ionic liquids only 

if the bracket appears within the name.  

[Co(CN)53I] 

but:  

[Cu(H2O)6]2+ 

Acetate, bromine, the new compounds (aspirin and 

(carboxyalkyl)hydroxypyridinone) 
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Deferiprone (1,2-dimethyl-3-hydroxypyridin-4-one)  

O9 Include prefixes for stereochemistry 

Include in the CEM label prefixes that denote stereochemistry or regiochemistry 

of the compound.  

cis-methanoglutamate  

cis-platin  

(S)-Alanine  

(3RS,4SR)-4-acetamidopiperidine-3-carboxylic acid 

cis-isomer 22   nothing tagged (no anaphors o general terms) 

 O10 Not Trademarks  

Do not include trademark symbols as part of CEM  

Aspirin ® 

Mesupron ®  

O11 Not trailing hyphen/apostrophe  

Do not tag trailing hyphens or the apostrophe-s in possessives. Exception: keep 

them in CAS names, keep them in case of FAMILY mentions.  

Methyl-group  

Kainite-preferring subunits GluR6  (GluR6 is a protein receptor)  

Chloroform-induced ventricular tachycardia  

Benzoic acid, 4-[[6-[[3'-(aminomethyl)[1,1'-biphenyl]-3-yl]oxy]-3,5-

difluoro2-pyridinyl]oxy]- 

Benzene's activity  

Acyl-enzyme inhibitors  

O12 Do not break up words to get at the CEM inside  

Methylating    Not to be tagged (chemical reaction)  

Dienophile    Not to be tagged (reactivity role)  

Carbonium    To be tagged as ion (CEM), but not decomposed  
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Acetyltransferase   Not to be tagged (enzyme)  

exo-ATP-site-directed reagents      ATP Not to be tagged inside the word  

mGluR1alpha, mGluR2   Glu not to be tagged inside the receptors  

but:  

ATP-site-directed inactivations  

anti-dopamine beta-hydroxylase  

non-N-methyl-d-aspartate(non-NMDA) glutamate (Glu)  

O13 Numbers in formula and numbers as part of the name  

Include numbers on the front of formulae that indicate stoichiometry.  

C6H8O3.2H2O    FORMULA 

2H2 + O2 -> 2H2O    FORMULA 

Include numbers that specify positions of a molecule only if they are part of the 

name:  

C-2 carbon       only carbon is annotated  

C-2 and C-3 positions     nothing is annotated  

N-1 position "standard" substitution   nothing is annotated  

...possessing a [4-hydroxy-3-(hydroxymethyl)-1-butyl] substituent at N-1 

exhibited an activity...  

Ser473       only Ser is annotated 

Thr-384       only Thr is annotated 

If the positions identify general positions in compounds → these general 

positions should also be annotated  

4-bromo derivative      tag the 4- position 

5-vinyl substituent  

5-[2-(1-azirinyl)]uracil analogues  

5-vinyluracils  

5-vinyl substituent of the respective 5-vinyluracils  

2'-fluoro analogues  

N-methyl derivative  

CheNER II

142



5-[2-(1-azirinyl)]uracil analogues  

with 5 -- 19 spacer atoms between N6 or C-8 and iodine have been 

evaluated  do not tag the N6 and the C-8 positions  

This rule on general positions applies for both numeric and string-defined 

(ortho, meta, para, o-...) positions in the molecule: 

o-nitrophenyl-modified analogues  

O14 State/charge/surface symbols  

Include in the CEM oxidation state symbols, charge symbols, state symbols and 

surface symbols that occur on the end of names  

Cu2+  

Cu(II)   

CuSO4(aq)  

Au(111) surface  

(14)C     isotope 

5.7.6 Multiwords: single entities vs multiple entities  

M1 The longest CEM should always be tagged, but only including those 

words that are actually part of the chemical name. Non-essential parts of the 

chemical entity and name modifiers should NOT be tagged:  

sodium ion  

hydroxyl radical  

nitrogen gas  

gold nanoparticules  

methyl group 

phenyl ring  

caffeine analogue  

carbon atom  

cocaine addiction 

Krebs citric acid cycle  

Pyridine derivatives  
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Perovskite structure 

 but substituted modifier should be tagged if inside a chemical entity 

(meaning R): 

N-substituted-2-alkyl-3-hydroxy-4(1H)-pyridinones  

chloro-substituted phenyls  

6-fluoro-7-substituted-1,4-dihydro-4-oxoquinoline-3-carboxylic acids  

2,4-diamino-5-(2',5'-substituted benzyl)pyrimidines  

N-methyl-substituted sulfonamides  

but not if the word substituted (or similar words) do not provide specific 

information on the substitution (i.e., "isolated"� words): 

disubstituted naphtalenes  

substituted 1,4-dihydronapthoquinones, hydroindoloquinones  

amide alkyl substituents  

14-substituted derivatives of carminomycinone  

5-substituted acyclic pyrimidine nucleosides  

N-Substituted and unsubstituted 4-chlorobenze- and 4-

nitrobenzenesulfonamides  

M2 Conflictive words: CEM or Modifiers? "Acid"� "Base"� "Salt"� "Metal"� 

Do only mark these words if they are part of a longer specific chemical name or 

if they refer to explicit classes of compounds (e.g. transition metal). Alone, these 

words should not be tagged (except for the case of the word "salt"� meaning 

"sodium chloride").  

Strong acid  

Organic acid  

lysergic acid  

carboxylic acid  

table salt   incluso de esta se podría hacer una exception como water  

organic salt  

citric acid trisodium salt  
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transition metal  

metal oxide  

heavy metal  

the sodium salt  

in treatment with aqueous alkali or acid  do not tag alkali/acid  

M3 Adjectives with valid CEMs  

Adjectives are only to be annotated if i) precede/follow a valid chemical entity 

and ii) add more precise structural information to this chemical entity. The 

whole concept (adjective + chemical noun) should be tagged as a unique 

chemical entity assignable to the chemical class of the chemical entity alone. 

This is independent on the origin of the root name of the adjective (i.e. 

systematic names or common names: pyrazolic vs nicotinic) and on the 

adjective ending ("-ed"�, "-ing"�,"-olic"). 

polychlorinated biphenyl  

disubstituted naphtalenes  

acetylated phenoles  

dry ether  

ethanolic KOH  

allylic alcohol  

colloidal silver  

dry ice      which is CO2, not H2O  

fuming sulphuric acid   which is H2S2O7,not H2SO4  

warm HCl  

aqueous sodium carbonate  

molecular nitrogen  

primary alcohols   specifies the precise type of alcohols  

secondary hydroxy groups specifies the precise type of hydroxyl groups  

stainless steel  

tertiary 2-(3-hydroxyphenyl)-2-phenethylamine 

ionotropic glutamate receptors    do not tag "ionotropic" 
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M4 Adjectives with general classes  

Adjectives are only to be annotated if i) precede/follow a general compound 

class (compound(s), hit, analogue(s), derivative(s), series(s)...) and ii) add more 

precise structural information to this chemical entity (chemical class). Typically, 

these adjectives end as "oic", "-oid", "al", "-ois".  

In contrast to M3, here only the adjective is tagged as a chemical noun of type 

FAMILY-FAMILY: 

Pirazolic compounds    Family-Family 

Terpenoids analogues   Family-Family 

But not if they still result in very wide compound families (commonly, 

adjectives finished in -ed correspond add less specific (R-group related) 

information than the others (-oic adjectives): 

Methoxylated analogues    nothing tagged 

Fluorinated compounds    nothing tagged 

But not when found in different contexts:  

glycemic control    nothing tagged 

noradrenergic areas    nothing tagged 

M5 Negative adjectives  

"Negative"� concepts that discard specific chemical structures but that do not 

explicit define a chemical structure should not be tagged. 

 2-desamino, 2-desamino-2-hydroxymethyl, and 2-desamino-2-methoxy 

analogues  desamino meaning "replace the amino group by hydrogen"  

Similarly, the prefix non- should not be included:  

non-steroidal     tag only steroidal 

non-fluorinated parent compounds     do not tag fluorinated as stated in M4. 

But it the term is to be tagged → then tag the corresponding adjective:  

non fluorinated quinazolines    tag the adjective 
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non-fluorinated quinazolines    tag the adjective 

M6 Enumerations and list of compounds vs multiple entities: 

If full names are enumerated, tag separately each individual CEM:  

citric acid and acetic acid  

lithium carbonate, sodium carbonate  

hexane-ethyl acetate, pyrane, aspirin/ibuprofen  

aspirin, sugar, 4-methoxy phenol, and R-OH  

If chemicals or class names of compounds are not described in a continuous 

string of characters → tag the whole string (including words such as "and", 

"or"� and commas) as a single entity of class type multiple. Avoid the 

generation of "half truth". 

citric and acetic acid  

lithium,sodium and potassium carbonate  

pyrimidine derivatives and pyridine analogues   (as "pyridimide 

derivatives"� is not a CM)  

M7 CEM Overlapping with Enzymes 

Mentions of CEM that are part of mentions of enzymes should be tagged. 

i. Two independent words where we only analyze the CEM:  

K+ ATPase  

Pyruvate kinase  

phosphatidylinositol 3-kinase  

metabotropic Glu receptors  

ii. In the cases of hyphens we always split the words, and then they are 

independently analyzed:  

Pyruvate-kinase  

K+-ATPase  
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iii. Enzyme compound transformation "A B -ase", meaning "the -ase enzyme 

that catalyses the transformation of A to B", should be marked up as 

separate entities.  

Squalene hopene cyclase (SHC) catalyzes the complex  

Quinazoline antifolate thymidylate synthase inhibitors  

M8 CEM Overlapping with other non-chemical entities 

Tag the corresponding chemical entity. For example, chemical formulae that 

appear inside mathematical formulae or equations (gradient, concentration): 
1H NMR  

d[Na+]/dt = x  

[caffeine]=10 mM  

M9 CEM1 CEM2 → A single CEM or two CEMS? 

If there are two continuous words of type CEM: "CEM1"� and "CEM2", each of 

which would individually be of class CEM:  

• if they denote a single entity → label as a unique single CEM  

• if they denote different chemical entities → label as independent CEM's 

Use of adenine nucleotide derivatives â†’ conceptually are a single entity 

(tagged as trivial)  

NOTE!!! This criterion is not in agreement with rules defined by Corbett et 

al.2007, as we found that the strict classification of these rules (with 

interpretation) would be really time expensive and a potential source of 

discordance if no extra careful reading... 

• Generic terms that mirror IUPAC formation → a single entity  

Alkyl acetates  

Isopropyl halides  

• Complexes and host-guest compounds defined by two continuous 

words →a single entity  

Cu2+·2H20  

Hydroxypropil-beta-cyclodextrin-itraconazole  
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• Mixtures defined as "CEM1/CEM2"� or "CEM1-CEM2"�→ separate 

entities  

hexane-ethyl acetate  hexane =CEM1 and ethyl acetate = CEM2  

Pd/C preparation   Pd = CEM1 and C = CEM2  

isosteric benzene-thiophene replacement  

• "the CEM2 that is part of the CEM1"�→ a single entity  

carbonyl carbon  

acetoxy methyl signal  

acetoxy methyl group  

• "the CEM1 that is a CEM2"� or "the CEM2 that is an CEM1"�→ a 

single entity  

S-propionylthiolactyl-D-Glu-L-Lys thioester → Difficult to 

differentiate that "thioester"� is already implicitly mentioned in the 

previous CEM; by default, from practical perspective, we will annotate as 

unique CEM. 

terpenoid limonene → We will separate them; since in this case 

"terpenoid"� is an adjective and does NOT provide additional structural 

information to its corresponding name (as explained above). Therefore, in 

this case terpenoid will not be annotated  

pyrimidine nucleosides → tagged together as a single entity  

• "the CEM2 that contains an CEM1 group/moiety" → single entity  

Methyl ether  

Tripeptide thioester  

• Terms ending in "glycoside"�→ single entity  

Limonoid glycosides  

Nominilic acid glycoside  

Note: all these examples apply for the case of mentions next to each other. If 

the words are separated by other words, annotate them separately.  

A complex of hydroxypropyl-bet-cyclodextrin and itraconazole 
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Abstract 
Protein-MetReS is a tool developed to unify structural analysis of individual 

proteins and docking techniques to predict how those proteins form 

complexes.  

The structural analysis is achieved in two ways. First, the tool provides 

access to repositories of experimentally determined and computationally 

predicted protein structures. Second, in the absence of available structural 

information, the program permits using various types of modeling methods 

to predict that structure.  

Both theoretical models and experimental structures can be used by the 

various docking tools integrated in Protein-MetReS for protein-protein 

docking. 

Overall, Protein-MetReS provides a unique interface to analyze both 

theoretical models and experimental structures of individual proteins and 

protein-protein complexes.  

 
 



 

  

 
 



6.1 Introduction  

Knowing the three-dimensional (3D) structure of a protein is crucial to 

understand its biological function and investigate biologically relevant 

interactions in molecular detail. Experimentally determined structures of 

individual proteins and protein complexes are deposited in a centralized 

repository, the Protein Data Bank (PDB), where the information is freely 

available to the scientific community [1]. 

In this post genomics era, millions of new genes and proteins are identified 

and sequenced each year. In contrast, only hundreds to tens of thousands 

protein structures are experimentally determined in the same period. Only a 

very small fraction of these pertains to protein complexes. Because of this, 

predicting both protein structures and protein-protein interactions (PPIs) are 

important and challenging problems in bioinformatics and computational 

biology.  

Most of the computational methods for protein structure prediction from 

sequence emerged from the CASP1 (Critical Assessment of Structure Prediction) 

competition [2]. The primary goal of this competition, which is in its tenth 

round, is to help advance the methods for predicting protein 3D structure from 

its amino acid sequence. The next round of CASP will start in May 2014.  

Similar to this, most of the computational methods for PPI prediction are 

evaluated in the CAPRI2 (Critical Assessment of PRediction of Interactions) 

competition. The primary goal of this competition is to assess methods 

predicting PPIs, based on in silico protein-protein docking (PPD) of protein 

structures [3,4]. Since the beginning of the competition in 2001, there are 

typically between two and four prediction rounds per year. 

6.1.1 Protein structure prediction 

Currently, the most accurate method for structure prediction is homology 

modeling (HM), which is based on the use of an experimentally determined 

1 http://predictioncenter.org/ 
2 http://www.ebi.ac.uk/msd-srv/capri/ 
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structure from a sequence homologue as a template to build the model of the 

target sequence. The accuracy of HM is strongly conditioned by the sequence 

identity between the target sequence and the template and by the quality of the 

alignment between the two sequences. In general, good models can be obtained 

from templates with more than 75% sequence identity.  

When the sequence identity between target and template is below 30%, 

homology modeling may not provide reasonable models. In some cases this is 

due to the difficulty in identifying appropriate templates and creating a high 

quality alignment between the target sequence and the template. If this is the 

case, the use of fold-recognition modeling (FRM) methods may improve the 

accuracy of the modeling predictions. FRM combines sequence comparisons 

with prediction of the fold for the target sequence. By combining the two, FRM 

identifies the best templates on which to base the prediction and improves the 

alignment of the target sequence to that of the template(s).  

When no suitable template is identified through HM or FRM, ab initio 

modeling (AIM) approaches provide an alternative for predicting protein 

structures "from scratch". The most successful AIM approach splits the 

sequence whose structure one wants to predict into smaller subsequences of 

few amino acids. Then, for each subsequence, it finds homologues with 

experimentally determined structures, creating a set of alternative models for 

each of these subsequences. The models are then assembled from the N- to the 

C-terminal of the sequence, mimicking the protein synthesis and folding 

process. Physically impossible folding conformations are eliminated in this 

process. Fully assembled models are further optimized and ranked, based on 

energy calculations. This approach is slow, very intensive, and requires vast 

computational resources. 

The single largest publicly accessible repository of protein structural models is 

the SWISS-MODEL Repository (SMR) [5]. In this database one finds all 

theoretical models that were built using its own model building server, SWISS-

MODEL [6–8]. Unlike experimentally determined structures, structural models 

do not have a central repository where they are deposited. This is due to 
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various factors. One of these factors is the fact that there are tens of servers to 

create models of protein structures and unifying results coming from all of 

them is complicated. Another factor is the widely varying accuracy of structural 

models and modeling servers.  

Unifying access to protein modeling data is a difficult and important goal of 

this research community. The Protein Model Portal (PMP) [9] was developed 

to address this issue. To our knowledge, it is the available tool that integrates 

the largest set of concurrent tools for building structural models using HM of 

proteins. It also integrates some repositories with protein structures and protein 

homology models. 

6.1.2 Protein interaction prediction (Docking) 

Protein–protein docking (PPD) is defined as "the prediction of the structure of two 

proteins in a complex, given only the structure of the interacting proteins". The 

prediction of PPIs plays a central role in biological and medical sciences, 

because the physiological and pathological effect of proteins is often mediated 

by, and effected through, these interactions.  

There are two main PPD approaches: (1) methods based on maximizing the 

shape complementary between two proteins [10–12]and (2) methods based on 

simulating the actual docking process calculating the pairwise interaction 

energies and minimizing the energy of the complex formed in different ways 

[13]. There are also hybrid methods that combine both approaches in different 

ways.  

Three key steps are decisive for the accuracy and effectiveness of all major 

PPD approaches: (1) an adequate representation of the structural system, (2) an 

appropriate and efficient search of conformational space of the individual 

proteins and their possible complexes, and (3) an adequate scoring function that 

can be used for the ranking of potential solutions. On one hand, the speed and 

effectiveness are the two critical elements of the search procedure. On the other 

hand, the scoring function should differentiate between as many potential 

solutions as possible to allow for an effective discrimination between native and 
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non-native docked conformations (see [14] for more detailed information). Due 

to the difference between the number of determined protein structures and 

sequences, a potentially important application of PPD is to predict PPIs 

between models of proteins structures. In principle, there is no difference 

between the methods applied to dock experimentally determined or 

computationally predicted structures. However, most docking algorithms rely 

on atom-level representations of the structures. Therefore, the higher resolution 

of experimentally determined protein structures leads to more accurate PPD 

predictions. 

6.1.3 Objective 

It should by now be obvious that a better integration of HM, FRM and AIM 

methods is still forthcoming, as is integrating these methods with those for 

PPD. Taking this into account, it was our goal to develop a meta-tool, Protein-

MetReS, that integrates HM, FRM, AIM, and PPD approaches.  

6.2 Implementation 

Protein-MetReS is an application that allows users to perform structure 

analysis, prediction and docking of up to the full proteome of organisms with 

fully sequenced genomes. The motor and user interface of the application was 

implemented using JAVA-FX technology. The database containing the full 

proteomes of more than 1200 organism with completely sequenced genomes is 

described in more detail in Chapter 2. This database also contains information 

about previously determined protein structures. It was implemented using 

MySQL technology. The program is user-centric and organism centric. It 

requires a user authentication to start running. Such authentication allows the 

system to link the user's results to the appropriate organisms of interest and to 

the right user.  

Protein-MetReS implements three main functionalities: (1) Identification of 

previously preexisting protein structures, (2) sequence-based structural 

modeling of proteins, and (3) protein docking.  
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To identify preexisting protein structures, either experimentally determined or 

predicted, Protein-MetReS integrates searches to the PDB and SMR repositories 

(see Table 1). To build theoretical models for the sequences of interest, Protein-

MetReS allows the users to submit their sequences to various HM and FRM 

servers (Table 2). In parallel it also enables the users to submit their structures 

of interest to several PPD servers (Table 3), in order to predict possible modes of 

interaction between their proteins.  

Table 1. Protein Structure/Model Repositories. 

Repository Type of data 
PDB3 [1] Protein structure  
SWISS-MODEL Repository4  [5]  Protein model 

Table 2. Structural modeling prediction tools. 

Tool Method Execution 
MODELLER5 [15,16] HM Local 

SWISS-MODEL6 [6–8] HM Remote (via web) 
Phyre2 [17] 7 FRM Remote (via web) 

Table 3. Protein docking tools. 

Tool Method Execution 
Gramm-X8 [18,19] Simulation, also called Ab initio Local 

HEX9 [20–22] Ab initio Local 
RosettaDocking10 [23,24] Ab initio Remote (via web) 

A summary workflow chart of how the program works is shown in Figure 1.  

3 http://www.rcsb.org/pdb/home/home.do 
4 http://swissmodel.expasy.org/repository/ 
5 http://salilab.org/modeller/ 
6 http://swissmodel.expasy.org/workspace/index.php?func=modelling_simple1 
7 http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index 
8 http://vakser.bioinformatics.ku.edu/main/resources_gramm.php 
9 http://hex.loria.fr/ 
10 http://rosie.rosettacommons.org/docking/submit 
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Figure 1. Workflow chart for Protein-MetReS. After the user logs in, the program verifies the 
completion state of any previous calculations done by that user. If no previous calculations that 
have yet to be visualized are available, users must chose to start either structure 
analysis/prediction or PPD. If new structural results are available, the user must decide what to 
do afterwards. Possibilities are either finding/predicting structures for new sequences or perform 
docking of the structures that are available. Users can also directly perform PPD by providing 
the program with structures for that docking. Both, structural results and docking results can be 
downloaded and saved by the users to their local computers. 

6.3 Results  

Protein-MetReS can be used either to obtain protein structures from a set of 

repositories or to build protein models. It can also be used for PPD in order to 

predict the most likely modes of interaction between proteins. Users can 
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download the application from http://metres.udl.cat and run it locally. An 

internet connection and a standalone version of JAVA (version 7 or later) are 

required. Upon starting the program, users log into the central Protein-MetReS 

database and a checkup of pending results is made. If the user has no pending 

calculations, s/he can start working by choosing the organism of interest. Once 

this is done, all proteins from this organism are loaded to the user interface. At 

this stage a choice of proteins of interest needs to be made. After this, the 

program allows the user to identify preexisting structures or create new 

structural models for those proteins. It also allows PPD of structures that are 

available to the user. If the users have previous calculations whose results have 

not been completed yet, they must wait for an e-mail announcing that 

completion before proceeding with the analysis of those results. If the users 

have previous calculations that have finished and whose results have not been 

visualized yet, they are provided with options about what actions can be taken. 

If these results are structural models, users can analyze the structures and 

perform PPD with Protein-MetReS. If these results pertain to PPD calculations, 

the users can analyze and download them. The flow of this process is shown in 

Figure 1. 

6.3.1 Finding or predicting protein structures 

When the user chooses to focus on protein structure analysis of a set of proteins, 

the natural flow of the program is as follows. First, the system shows the list of 

repositories and modeling tools that Protein-MetReS integrates (see Table 1 and 

Table 2). By default, all repositories and modeling tools are selected. The target 

sequences of the proteins of interest are used to check if existing structures or 

models are found in the selected repositories, and also in the local database. 

This last checkup is done because the system stores the models built by the 

users, to avoid re-building the same model.  

The sequences of all proteins for which no preexisting structures or models 

are available are then submitted to the structural modeling servers selected by 

the users. The system will notify the user by e-mail upon conclusion of the 
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calculations. Note that modeling results are stored in the server’s database. 

Figure 2 provides a more detailed workflow chart for the protein structure 

identification/modeling part of the application. 

 

Figure 2. Workflow for the structural analysis in Protein-MetReS. In structural 
identification/prediction mode, the program uses homology modeling to check if the target 
sequence has an existing structure, if not checks if there is any model in the available 
repositories or in our database (where models created by Protein-MetReS are stored). If so, 
users can download the structures or models to their computers. If not, users can send their 
target sequences to the modeling servers. The subsequent modeling runs in the background, 
and the system will notice the user via email upon completion. Note that the user must select at 
least one repository and one server.  

6.3.2 Visualizing structural analysis results 

When models or experimental determinations of structures for the sequences 

that interest the users become available, the following information is displayed 

by default: the PDB accession number for the template or structure (including 
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the chain) and its resolution, the percentage of sequence identity, the e-value, 

the provider, the length of the amino acid sequence aligned, and the part of the 

sequence for which a structure is available.  

In addition, a "model details" view is available, where the template-target 

sequence alignment and model building date are displayed, and an image of 

the structure is shown and linked to the interactive Jmol 3D molecular viewer 

[25]. If the model has not been updated for more than 3 months, a warning 

message is displayed, providing the user with the option of re-submitting the 

target sequence and re-building the model.  

6.3.3 Predicting and analyzing protein- protein docking 

To perform protein docking, users must have structure files available, whether 

they result from experimental determinations or from structural modeling. 

There are two ways to provide such files to the program. First, users can upload 

structure files directly located in their computers. Second, they can use the 

relevant structures available in the Protein-MetReS database, as the software 

provides a list of proteins of the organism of interest with available models or 

structures.  

Once structures are provided or selected, the users can setup the pairs of 

proteins for which they are interested in performing PPD. By default, the 

system selects all possible pairs of proteins to dock. If more than one protein is 

selected, self-docking is not considered by default but can be selected by the 

user. Then, the system shows the list of docking tools that Protein-MetReS 

integrates (see Table 3). By default, all the tools are selected. Each tool is 

configured with default parameters. The users are allowed to change these 

parameters at will.  

At this stage, the system checks the database to identify any previous docking 

studies, to avoid repeating calculations. All pairs of proteins whose docking has 

not been done before are then performed by the system, which will notify the 

user by e-mail upon conclusion of the calculations. Note that docking results 
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are stored in the server’s database. Figure 3 provides a more detailed workflow 

chart for the PPD part of the application. 

 

Figure 3. Workflow chart for protein PPD. On the one hand, if Protein-MetReS has no previous 
structural results, it prompts the user to load structures or models for subsequent docking 
(Protein Docking I). On the other hand, if there are previous structural results for the user, s/he 
is led directly to the PPD functionality (Protein Docking II). At this stage, Protein-MetReS asks 
the user to decide which protein to dock and which docking servers to use. Once this is settled, 
the program runs the docking process in the background. Self docking is also allowed by the 
program.  

6.3.4 Visualizing protein docking results 

Protein-MetReS displays the following information for the docking of a pair of 

proteins in tabular format: docking method, model and/or structures that were 

used in the docking, as well as the ten best docking results from each tool. A 
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“complex details” view is also available for each complex, where the complex 

image linked to the interactive Jmol 3D molecular viewer is displayed.  

6.3.5 Protein-MetReS vs. Protein Model Portal  

Given that Protein-MetReS and PMP have partially overlapping audiences, we 

need to compare how the set of modeling tools used by both systems differs. 

This is done in Table 4. In addition, we also need to compare the repositories 

used by both. This is done in Table 5. 

Table 4. Modeling tools used by both, Protein-MetReS and Protein Model Portal. 

Protein-MetReS Protein Model Portal 
SWISS-MODEL11 SWISS-MODEL11 
MODELLER12 ModWeb13 
PHYRE14 M4T15 
 HHPred16 
 I-TASSER17 

In summary, PMP integrates more modeling tools than Protein-MetReS, but 

the coverage of methods and results are similar. ModWeb [26] is based on the 

MODELLER tool, and M4T [27] use similar techniques as MODELLER. By 

using the standalone version of MODELLER Protein-MetReS covers practically 

the same modeling space and characteristics than both, ModWeb and M4T. 

HHPred [28] is a modeling tool that identifies homology and predicts protein-

structure by using Hide Markov Models (HMM) via HHsearch [29]. Phyre2 

also uses HHsearch and incorporates a new ab initio method called Poing [30] to 

model regions of proteins with no detectable homology to known structures. I-

TASSER [31] is a service for protein structure prediction where the 3D models 

are built by using FRM and threading techniques. It also uses AIM to model 

regions of the target sequence that are not aligned to a template (mainly loops) 

11 http://swissmodel.expasy.org/workspace/index.php?func=modelling_simple1 
12 http://salilab.org/modeller/ 
13 https://modbase.compbio.ucsf.edu/scgi/modweb.cgi 
14 http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index 
15 http://manaslu.aecom.yu.edu/M4T/ 
16 http://toolkit.lmb.uni-muenchen.de/hhpred 
17 http://zhanglab.ccmb.med.umich.edu/I-TASSER/ 
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or when no appropriate template is identified. I-TASSER follows a similar 

procedure as Phyre2 to build the 3D structures, but uses a different 

methodology in doing so.  

Taking all these factors into account, we decided that the first prototype of 

Protein-MetReS would only include Phyre2. Future versions might include 

additional FRM servers, if this is deemed to improved the predictive 

capabilities of the application. In addition, ROSETTA will be locally installed to 

allow for AIM by the application.   

Table 5. Repositories used by both, Protein-MetReS and Protein Model Portal. 

Protein-MetReS Protein Model Portal 
SMR18 SMR16 
PDB19 PDB17 
 ModBase20 
 CSMP21, NESG22, NYSGRC23 
 GPCRDB24 

Regarding structural repositories, PMP uses the repositories shown in Table 5. 

Such repositories are the CSMP (Center for Structures of Membrane Proteins) 

[32,33], the NESG (NorthEast Structural Genomics consortium) [34], the 

NYSGRC (New York Structural Genomics Research Consortium) [35] and the 

GPCRDB (G Protein-Coupled-Receptor DataBase) [36]. This information is  

stored in the centralized PDB and that is why we chose to include only this 

repository in Protein-MetReS. Regarding model repositories, PMP uses the 

ModBase repository[26], which contains the models created by ModWeb, and 

the SMR, which contains models built by SWISS-MODEL. We, in turn, chose to 

use the SMR and use MODELLER to build our own database of MODELLER-

based models. 

 
18http://swissmodel.expasy.org/repository/ 
19 http://www.rcsb.org/pdb/home/home.do 
20 http://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi 
21 http://csmp.ucsf.edu/index.htm 
22 http://www.nesg.org/ 
23 http://www.nysgrc.org/psi3-cgi/index.cgi 
24 http://www.gpcr.org/7tm/ 
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6.4 Discussion  

Here we present Protein-MetReS, a user friendly tool to unify access to different 

modeling tools and to different docking tools. The modeling tools integrated by 

Protein-MetReS cover most of the result space covered by those integrated in 

the PMP. Protein-MetReS clearly differentiates itself from PMP by integrating 

various PPD tools.  

There are two aspects in which future development of the structure analysis 

and prediction functionality of Protein-MetReS will focus. First, future 

implementations of Protein-MetReS will invest in implementing an AIM to 

cover situations where HM and FRM are not sensitive enough to create 

modeling structure. This will be done by installing a local copy of ROSETTA, 

the most successful AIM to date. Second, future versions of Protein-MetReS will 

include more sophisticated methods to evaluate the quality of 3D models. At 

this stage, we either use straightforward evaluations implemented locally, 

when the structural model is created by MODELLER, or rely on the evaluations 

that SWISS-MODEL and PHYRE2 perform. Having high quality structural 

models is very important if one wants to increase the reliability of PPD analysis 

of these models.  

There are also aspects in which future development of the PPD functionality 

of Protein-MetReS will focus. Chief among these is the identification of the 

“real” complex from the list of those predicted by PPD methods. While this 

complex is typically among the top 10 solutions generated by PPD docking 

programs, it is not always easily identified. Future versions of Protein-MetReS 

will implement methods to identify correlated mutations in the sequence of 

proteins being docked. These correlated mutations can then be used to filter out 

spurious docking solutions, based on the assumption that the co-evolution of 

the sequence for the individual members of a protein-protein complex in 

different organisms keeps traces of the evolution of the complex [37].  
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Chapter 7. Discussion 

  



  



7.1 General Remarks 

This thesis describes the development of a set of tools that automatically 

analyze information contained in large datasets, with the ultimate goal of 

reconstructing biological molecular circuits. The work reported here focuses 

mostly on the identification of biologically relevant protein interactions. Protein 

interactions are basic for life processes and the study of such interactions helps 

in the study and interpretation of the information encoded in genomes and 

facilitates the understanding of the cell systems. A wide array of experimental 

techniques can be used to study protein interaction. These include  yeast two-

hybrid [1], tandem affinity purification [2], mass spectrometry [3], 

immunoprecipitation [4], pulldown assay [5], phage display [6], and protein 

chips [7], among others. Each of these methods is very resource intensive, 

requiring the use of many man-hours and/or expensive equipment and 

reactives.  

Because of this intensive use of resources and time, computational methods 

provide an indispensable alternative to the prediction of protein-protein 

interactions (PPIs) that can potentially speed up and lower the cost of PPI 

studies. The only computational approaches that directly model physical 

interactions between proteins are docking [8,9] and binding simulations [10]. 

For high-throughput structural analysis on a genome scale, docking approaches 

are potentially suitable. This is because such approaches are focused on the 

final configuration(s) of the complex rather than the modeling of real binding 

pathways as binding simulations approaches. Over the past few years, owing to 

the CASP and CAPRI competitions, there has been a gradual increase in the 

accuracy of predicting protein structures and complexes. However, this is still 

not enough and further developments are still required to increase the accuracy 

and extend the capabilities of in silico protein docking. Improvements in 

accuracy could focus, for example, and as discussed in Chapter 6, on the 

problem that the correct complex configuration is often not the top ranked 

solution in a docking experiment. So, better discriminating functions need to be 
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developed for the docking experiments to discriminate the correct complex 

among all solutions. These functions can be coupled to other methods, such as 

the identification of correlated mutation in complementary protein surfaces 

[11], or the usage of well-known false-positive solutions, denoted as decoys 

[12]. Extending the capabilities of docking methods could focus on the fact that, 

in the presence of two protein structures, these methods will always produce a 

set of possible complexes between those proteins. Incorporating methods that 

can filter out impossible docking pairs as a first step of the docking would thus 

extend the capabilities of docking experiments. Some possible alternatives for 

this filtering process are now described.  

One alternative is by using bibliomic analysis and automatically extracting 

relevant biological information from scientific documents [13–18]. Another 

alternative is by using bioinformatics methods to predict cellular localization of 

proteins [19,20]. A third example would be to analyze when proteins are 

expressed during cell cycle. Evolutionary information could also be used for 

this. For example, phylogenetic profiling can be used to identify pairs of 

proteins with a high probability of functional interaction. This method uses 

homology information to describe a gene's context in fully sequenced genomes 

relying on the following idea: if two or more genes or proteins are 

simultaneously present or absent in the same set of genomes, such genes have a 

high probability of being involved in a common function because their presence 

or absence may indicate simultaneous co evolution of proteins [21]. Homology 

transfer of experimentally determined interactions can also be used [22]. By 

comparing the proteins that are known to physically interact in an organism 

and transferring that information through homology and analogy to other 

organisms, one can also prioritize proteins pairs for docking. This information 

is available in databases such as DIP1 (Database of Interacting Proteins), IntAct2, 

MINT3 (Molecular INTeraction) and MIPS4 (Mammalian Protein-Protein 

Interaction). 

1 http://dip.doe-mbi.ucla.edu/dip/Main.cgi 
2 http://www.ebi.ac.uk/intact/ 
3 http://mint.bio.uniroma2.it/mint/Welcome.do 
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The use of these methods for filtering pairs of proteins to dock would be 

straight forward: Protein pairs that are localized in different cellular 

compartments, have failed to interact in experiments in other organisms, have 

incompatible phylogenetic conservation profiles, or are not present at the same 

time in the cell can be discarded. 

In general, identifying PPI networks enables the reconstruction of biological 

circuits and the identification of variations in the design of those circuits. The 

information extracted for any single dataset or derived by specific methods is, 

at best, partial. Thus, it is the integration of many parallel datasets and 

reconstruction methods that can hope to increase the accuracy of computational 

predictions of circuit variants. We hope to have contributed for this increase 

with the set of computational tools that use different data sets. Such tools are 

Biblio-MetReS, Protein-MetReS, CheNER and CheNER-BioC. Biblio- and 

Protein-MetReS have immediate applicability in circuit reconstruction. In 

contrast CheNER is an initial step that permits identifying chemical entities. 

This identification can, in the future, be used for the development of tools that 

identify chemical regulation of biological circuits. As was briefly discussed in 

the Introduction, this is fundamental to help discovering the design principles 

in molecular and cellular circuits.  

  

4 http://mips.helmholtz-muenchen.de/proj/ppi/ 
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7.2 Future directions 

The text-mining tools developed during the course of this thesis achieved a 

good performance in comparison with other available tools. To keep this 

performance it is important to regularly update these tools to include relevant 

improvements in text-mining techniques and enhance their performance. It is 

also important to incorporate new functionalities that facilitate the 

interpretation of the results. For instance, detection of interactions in PPI 

networks would be enhanced by including functionalities that detect the 

context of that interaction. For example, a study of action words associated to 

the interaction, such as regulate, activate, etc., would be very helpful for the 

causal reconstruction of protein structure. Immediate improvements to Protein-

MetReS should prioritize the inclusion of a new modeling server implementing 

an ab initio modeling method, as well as quality estimators for the protein 

predicted structures. Another priority should be the incorporation of 

functionalities to discriminate the correct complex generated by docking among 

all solutions, for example by using decoys. 

Tools that analyze other types of large scale data should also be included in 

the MetReS project. For example, a set of tools that enables the usage of 

phylogenetic and other evolutionary information to reconstruct protein-protein 

interactions would be very useful. Likewise, a tool integrating information from 

databases of experimentally determined physical protein-protein interactions 

that would allow for a transfer of this information among organisms homology 

should be developed. Moreover, tools that integrate and analyze metabolomic 

information and gene expression data to aid in the reconstruction of protein-

protein interactions would greatly enhance the scope of the project. 

Collecting all this information in a complementary and integrated set of tools 

would greatly contribute for the automated reconstruction of molecular circuits 

and facilitate the discovery and analysis of design principles in those circuits. 
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1. The development of Biblio-MetReS to reconstruct molecular networks 

through automated text-mining of scientific documents led to the following 

conclusions: 

• The software has a performance in identifying gene co-occurrences that 

is similar to that of other comparable tools (iHOP, STRING). 

• The software generates gene-gene co-occurrence networks that are more 

up to date with the scientific knowledge than those generated by 

comparable tools. This comes at the cost of being slower than iHOP or 

STRING. 

• The software generates two new co-occurrence networks: (1) proteins 

with biological process/pathways and (2) biological process/pathways 

with themselves, which is a functionality that is unique to this program. 

The program provides clear statistical estimators to evaluate the 

significance of each interaction via calculating mutual information and p-

value. 

2. The development of CheNER to identify different types of chemical 

compounds through automated text-mining of scientific documents led to 

the following conclusions: 

a. The program has the best performance in identifying standard 

IUPAC names alone. 

b. The BioCreAtIvE challenge showed that our program has the best 

performance of any single application in identifying chemical 

names in general. However, this performance is easily surpassed 

by methods that combine different tools and generate a unified 

output.  

3. The development of Protein-MetReS to integrate different resources for 

protein structure, analysis, modeling, and docking led to the following 

conclusions: 

a.  Protein-MetReS is the only tool of its kind that integrates 

structural analysis, prediction and docking functionalities. 
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b. In terms of structural analysis, Protein-MetReS is not yet  as 

complete as the Protein Model Portal in terms of integrating 

modeling tools and quality evaluation methods for structural 

models.   

4. I provided a set of tools to the community that can facilitate the initial steps 

of circuit reconstruction to aid in the discovery of biological design 

principles for those circuits. 

Conclusions

182


	inside cover
	Ackowledgements_N+H
	Publications_N+H
	Abbreviations_N+H
	Summaries_N+H
	Contents
	Chapter 1.- Introduction_N+H
	1.3.1 Achieving the specific goals
	1.3.2 Additional contributions

	Biblio-MetReS v.1 Chapter_N+H-table
	Biblio-MetReS v.2 Chapter_N+H-table
	Here we present the new version of Biblio-MetReS, a user friendly tool for the identification of gene/protein co-occurrence networks in scientific documents. The major changes with respect to version 1.0 have to do with the search and analysis process...
	The methods used by the application to identify genes and proteins in the documents are dictionary-based. These methods perform on par with iHOP and STRING for gene and protein identification [6].
	Taking into account the results from the BiocreAtIvE initiative, dictionary matching methods applied to GO term identification have a high precision (that is, the terms that are identified are mostly correct) and low recall (many terms that should als...
	3.5 Supplementary Materials

	Chapter CheNER-corrected images_N+H-table
	We also evaluated how efficiently ChemSpot, OSCAR4 and CheNER use available computing resources. To do so, we ran each application on the same machine (i7 processor, with four CPUs and 20GB of RAM) and monitored the consumption of main memory and CPU ...

	Chapter 5.- CheNER II_N+H
	Chapter 6.- Protein-MetReS_N+H
	Protein–protein docking (PPD) is defined as "the prediction of the structure of two proteins in a complex, given only the structure of the interacting proteins". The prediction of PPIs plays a central role in biological and medical sciences, because t...
	6.1.3 Objective

	Chapter 7.- Discussion-after revision_N+H
	Chapter 8.- Conclusions_N+H
	PortadaUSIE.pdf
	Nom/Logotip de la 
	Universitat on s’ha 
	llegit la tesi
	Ana Isabel Usié Chimenos
	Dipòsit Legal: L.1715-2013




