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Abstract

The present thesis deals with primitives related to the field of distributed cryptog-

raphy. First, we study signcryption schemes, which provide at the same time the

functionalities of encryption and signature, where the unsigncryption operation is

distributed. We consider this primitive from a theoretical point of view and set a

security framework for it. Then, we present two signcryption schemes with thresh-

old unsigncryption, with different properties. Furthermore, we use their authenticity

property to apply them in the development of a different primitive: digital signa-

tures with distributed verification. The second block of the thesis deals with the

primitive of multi-secret sharing schemes. After stating some efficiency limitations of

multi-secret sharing schemes in an information-theoretic scenario, we present several

multi-secret sharing schemes with provable computational security. Finally, we use

the results in multi-secret sharing schemes to generalize the traditional framework of

distributed cryptography (with a single policy of authorized subsets) into a multi-

policy setting, and we present both a multi-policy distributed decryption scheme and

a multi-policy distributed signature scheme. Additionally, we give a short outlook

on how to apply the presented multi-secret sharing schemes in the design of other

multi-policy cryptosystems, like the signcryption schemes considered in this thesis.

For all the schemes proposed throughout the thesis, we follow the same formal

structure. After defining the protocols of the primitive and the corresponding security

model, we propose the new scheme and formally prove its security, by showing a

reduction to some computationally hard mathematical problem.
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Criptografia de la Universitat Politècnica de Catalunya. Igualment agrair als membres

del tribunal per acceptar examinar-me d’aquesta tesi.
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1

Introduction

Nowadays people are involved in different digital activities in their professional life as
well as in their private time. Many paper items, such as money and tickets, are more
and more being replaced with digital objects. Cryptography plays a crucial role in
this transformation, because it provides security in the communication between the
different players using a digital channel. Depending on the specific situation, some
security requirements in the communication can include privacy (or confidenciality),
authentication, integrity or non-repudation.

Classic cryptography focused only on sending messages secretly. A user Alice en-
crypted a message and sent this ciphertext to another user Bob. At this time, the
applications were mainly in diplomatic or war missions and consequently the confi-
denciality of these messages was extremly important. Encryption schemes [77, 73]
have been used in different ways for a long time to achieve this goal. With the
widespread development of computer communications in the last century, crypto-
graphic community starts working in new primitives and consequently other security
requirements start being more important. The appearance of public key cryptography
in the seventies by Diffie and Hellman [30] introduced digital signatures [77], which
provide authenticity, message integrity and non-repudation at the same time. Prim-
itives which provide confidenciality and authentication at the same time are called
signcryption schemes and were introduced by Zheng [93] at the end of the nineties.

Distributed cryptography spreads the operation of a cryptosystem among a group
of parties involved in this process in a fault-tolerant way. Distributed cryptosystems
consider the threshold failure model with n servers, of which up to t are faulty. They
are called threshold cryptosystems [29]. Secret sharing schemes [82, 8] are used to
share the secret among different parties in a way that the cooperation of some autho-
rized subset of users is needed to recover this secret. In fact, distributed cryptosys-
tems are based on secret sharing schemes. Opposite to traditional non-distributed
cryptosystems, where the secret information is centralized in one single party, dis-
tributed cryptosystems are more secure and reliable because the secret information
is distributed among a set of parties.

Our main goal in this thesis is to study distributed cryptosystems, where the
distributed part relies on the “receiver” operation. Surprisingly, they have received
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very few attention from the cryptographic literature up to now. In this thesis we
present distributed cryptosystems, prove their security and also obtain secret sharing
results to make them more efficient from a computational perspective.

Summary of the Contributions

This thesis combines techniques of unconditional and computational security. First,
we study signcryption schemes, where the distributed operation relies on the unsign-
cryption protocol, from a theoretical point of view and set a security framework for
them. Then, we present two signcryption schemes with threshold unsigncryption in
different security models and apply them to build digital signatures with distributed
verification.

The second contribution of this thesis is an information-theoretical result in se-
cret sharing and several computational secure secret sharing schemes (one publicly
verifiable secret sharing scheme and three multi-secret sharing schemes).

Finally, we take one of the proposed multi-secret sharing schemes and included
it in the distributed part of cryptosystems to build efficiently an encryption scheme
with distributed decryption and a distributed signature scheme in a multi-user setting.
Additionally, we give a short outlook how to apply the presented multi-secret sharing
schemes to the signcryption schemes proposed throughout this thesis.

Structure of this Thesis

In this paragraph we outline the topics related to our research and show how they
are organized in the different chapters and sections of this thesis.

The aim of Chapter 1 is to give a brief overview of cryptography and more specif-
ically to introduce in a self-contained way the basic notions related to our research.
The primitives and concepts described here will be used throughout this thesis to
present our results. In this way, we discuss the concepts of unconditional and com-
putational security as well as the different security levels. We also describe some
complexity assumptions on which the security of the proposed schemes will be based,
present some paradigms such as the random oracle model and introduce public key
cryptography. Finally, we define in a formal way some cryptographic primitives such
as public key (or symmetric) encryption schemes and digital signatures, and explain
the meaning of distributed cryptography together with the framework for secret shar-
ing schemes.

Chapter 2 is about signcryption schemes. Here we present signcryption schemes
with distributed unsigncryption, where the family of authorized subsets is threshold,
for a sender A and a set of users B which perform the unsigncryption phase. After
describing a security model against insider attackers in a multi-user setting for these
kind of schemes, we proof in Section 2.2 that generic constructions like threshold
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versions of Sign then Encrypt or Encrypt then Sign are not secure in this model. In
Sections 2.3 and 2.4 we outline two different signcryption schemes with threshold
unsigncryption, which are secure in this model, and compare their efficiency in next
section. Moreover, we can see that a special property in the unsigncryption protocol
is suitable to apply the proposed schemes to auction systems. The results related to
this topic are published in [41] and [44].

If the confidenciality part of the proposed signcryption schemes with threshold
unsigncryption is not taken into account and the only requirement is related to their
authenticity property, then we should talk, as explained in Section 2.6, about sig-
nature schemes with distributed verification. Parallel to signcryption schemes with
threshold unsigncryption, in digital signatures with distributed verification all players
of some authorized subset can verify the validity of the signature, whereas a subset
which is not in the corresponding access structure does not obtain any information
about its validity. The results on digital signatures were presented in [42] and [43].

In Chapter 3, we move to the world of secret sharing. The distributed parts of
the schemes proposed in the second chapter for both signcryptions and signatures
use secret sharing schemes to share a secret over a set of participants. These tasks
are done by a trusted entity, called Dealer, and the question is what happens if the
participants do not trust him. One possibility could be that these participants take
over the dealer role running some protocols (with slight modifications) by themselves.
The other one would be to use verifiable secret sharing schemes, where the participants
can verify the validity of the shares distributed by the dealer. An example of publicly
verifiable secret sharing schemes, which could be applied in these cases, is presented
in Section 3.1. This scheme has a verification procedure much simpler than other
proposals because it uses some homomorphic properties instead of classical additional
zero knowledge proofs. The publication of such a scheme can be found in [78].

Multi-secret sharing schemes, MSSSs in short, are an extension of secret sharing
schemes, where multiple secrets are distributed among different parties, each one
according to a (possibly different) access structure. One of the main results in the
third chapter is a proof in Section 3.2 consisting in a lower bound for the length of each
secret share in a MSSS. There we prove that multi-threshold secret sharing schemes
enjoying information-theoretic security, in the weaker sense proposed by Masucci,
must have shares which are at least as long as the secret. Since the final goal of the
proposed MSSSs is the design in the next chapter of multi-policy distributed schemes
with shorter secret shares of information than those provided by the trivial solution
(whose length grows linearly with the number of secrets), this result is quite negative,
and forces us to propose MSSSs in a computational scenario. We stress here that
computationally secure MSSSs will be enough for our purposes in this thesis, because
the security of multi-policy distributed cryptosystems can be at most computational
anyway.
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We propose in Sections 3.3 and 3.4 two different computational secure multi-
threshold secret sharing schemes in the standard model and compare both schemes to
each other in terms of efficiency and security in Section 3.5. A third multi-threshold
secret sharing scheme together with its security proof is presented in Section 3.6.
This new proposal is very similar to the second one but more efficient because the
underlying cryptographic primitive is replaced by an idealized version. Although all
these schemes were proposed within a threshold framework, we show in Section 3.7
how to extend them to more general access structures and make them secure against
active adversaries. The results of the third chapter related to MSSSs are published
in [45] and [46].

Chapter 4 is dedicated to multi-policy distributed cryptosystems. Here we gener-
alize the standard scenario of distributed (public key) cryptography, where a single
access structure of authorized subsets of users is used for all the executions of the
secret task. In a multi-policy distributed cryptosystem there exists a list of possible
acces structures (or policies), such that a specific acces structure is chosen for every
execution of the cryptographic operation.

In Section 4.1 we propose a secure multi-policy distributed decryption scheme,
where a single user chooses a decryption policy to encrypt a message and the users
of an authorized subset for this specific policy cooperate to decrypt the encrypted
message. Section 4.2 deals with a secure multi-policy distributed signature scheme,
where the signers of an authorized subset choose ad-hoc a signing policy and cooperate
to sign a message, whereas the validity of the signature can be checked by anyone
using the index of this policy. Both schemes are defined for threshold policies and use
the MSSS proposed in Section 3.6 as building block to generate the secret and public
keys. These two multi-policy schemes have been published in [45].

After some discussions about the relationship between multi-policy distributed
cryptosystems and attribute-based cryptography, we explain in Section 4.4 how to
use the same type of solutions we applied in this chapter to the schemes proposed
in the second chapter in order to build multi-policy distributed unsigncryptions and
multi-policy signatures with distributed verification. We finally list other distributed
cryptographic primitives, which are working with only one access structure and could
be subject of the same application.



Chapter 1

Preliminaries

1.1 History

The general purpose of cryptography is to enable secure communication between two
or more people over an insecure channel where third parties, called adversaries, could
be present. The first known use of cryptography dates back to Egypt’s Old Kingdom
2500 BC when non-standard hieroglyphs are found in monuments. Cryptography has
a long tradition in different cultures, which were using classical cipher types. Ancient
greeks used transposition chipers, i.e. reordering the letters in a message, whereas
roman emperors used shift ciphers, in which each letter of the message was replaced by
a letter some fixed number of positions further down the alphabet, to communicate
with their generals. For example we could shift the letters three letters down the
alphabet producing the ciphetext “QRW WRGDB” from the original message “NOT
TODAY”. This particular case is known as Caesar chiper because it was purportedly
used by Julius Caesar.

Classical cryptosystems used during this period of time were in fact symmetric key
encryption schemes where the same (necessarily secret) key was used to both encrypt
messages and decrypt ciphertexts. At this time the cryptosystems were heuristic and
consequently it was easy to gain access to the contents of hidden information using
statistical techniques. Cryptanalysis led to the invention of frequency analysis for
breaking cryptosystems where the same letter in the ciphertext replaces each of the
corresponding ones in the message, e.g. where an “a” is always replaced by a “t”.

The era of modern cryptography really begins with Shannon [83] in 1948, who
defined an information-theoretic scenario, where an adversary, who knows the ci-
phertext, does not obtain any information (without knowledge of the key) about the
message even assuming he has unlimited computing power. This leads to the defini-
tion of perfect secrecy [84], the property that the distribution of the ciphertext (over
the choice of the key) is exactly the same, no matter what message was encrypted.

5
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Information-theoretic security is often used interchangeably with unconditional secu-
rity . Shannon proved that this level of security is achieved by a scheme if and only
if (1) the length of the key is equal or bigger than the length of its plaintext and
(2) a new key is chosen for every message to be encrypted. This is a quite negative
and inefficient result. The only information-theoretically secure cryptosystem is the
symmetric encryption scheme called one-time pad, whose random key (with length at
least as long as the plaintext) is used only one time. In his work he uses the concept
of entropy H(X) of a random variable X, which is a measure of the uncertainty of
the random variable.

One of the main drawbacks of symmetric encryption is the requirement that both
parties have access to the same secret key, because they must agree on a secret key
before they wish to communicate. To solve this old problem of key exchange over
an insecure channel, Whitfield Diffie and Martin Hellman [30] introduced public key
cryptography in 1976. The central idea there is the use of one-way functions (easy to
compute on every input, but hard to invert given the image of a random input) which
allows to publish the encryption key. In this case we talk about public key encryption
(or asymmetric key encryption). More in detail, this means that anyone has access
to the encryption key, and can encrypt messages. However only the receiving party
has access to the decryption secret key and thus is the only one capable of reading
the encrypted messages. One of the first public key encryption schemes was the RSA
introduced by Ron Rivest, Adi Shamir and Leonard Addleman [77] in 1978, which
implements the idea from Diffie and Hellman.

The arrival of public key cryptography opened new research directions and at
this time the study of security moved faster from a information-theoretic scenario
to a computational one. In the eighties the notions of computational security were
formalised.

1.2 Computational Security

In a computational scenario, an adversary has access to limited computational re-
sources, opposite to the information-theoretic scenario where unlimited resources are
assumed. Let us first define the concepts of polynomial and negligible functions,
before starting to explain how security is defined against computationally bounded
adversaries.

Definition 1.2.1 A function p : N → R is polynomial in n if, for every n0 ∈ N,
there exists a value c > 0 such that |p(n)| < nc, for all n ≥ n0.

Definition 1.2.2 A function ε : N → R is negligible in n if, for every value c > 0,
there exists a n0 ∈ N such that |ε(n)| < 1

nc
, for all n ≥ n0.



1.2. COMPUTATIONAL SECURITY 7

Modern cryptography is heavily based on mathematical theory and computer sci-
ence practice. First, a security model is considered for the cryptographic primitive
(encryption, signature, signcryption, ...). To prove that the scheme is computational
secure in this model, a proof by reduction is carried out: if an adversary breaks the
security model for this scheme, then another (hard) mathematical problem is broken.
Consequently, computational security is achieved by crytosystems by reducing them
to the hardness of some mathematical problems, as e.g., the discrete logarithm prob-
lem, the problem of factoring a number produced by the product of two large prime
numbers or in the recent years different number theoretic problems involving elliptic
curves. In other words, computational security is based on complexity assumptions,
which state that some problems cannot be solved in polynomial time. It is important
to understand that this approach only provides a security proof relative to some other
problem, not an absolute proof of security.

1.2.1 Hardness Assumptions

Next we describe both the mathematical problems and computational assumptions re-
lated to the hardness of these mathematical problems, which will be used throughout
this thesis.

Let G = 〈g〉 be a cyclic group of prime order p, such that p is λ bits long for a
security parameter λ ∈ N. The Computational Diffie-Hellman (CDH) problem, con-
sists of computing the value gab on input the values (g, ga, gb), for random elements
a, b ∈ Z∗p. The Computational Diffie-Hellman Assumption states that the CDH prob-
lem is hard to solve. A bit more formally, for any polynomial-time algorithm ACDH
that receives as input G, g, ga, gb, for random elements a, b ∈ Z∗p, we can define as
AdvACDH (λ) the probability that ACDH outputs the value gab. The Computational
Diffie-Hellman Assumption states that AdvACDH (λ) is negligible in λ. Sometimes the
Computational Diffie-Hellman problem is simply called Diffie-Hellman (DH).

Many variants of the Computational Diffie-Hellman problem have been considered.
The most significant variant is the Decisional Diffie-Hellman (DDH) problem, which
is to decide whether the four group elements (g, ga, gb, h) are all random or they are
a valid Diffie-Hellman tuple, that is h = gab. Groups where the CDH problem is hard
to solve but the DDH problem is easy are called Gap Diffie-Hellman (GDH) groups .
See [51, 13, 72] for more details on GDH groups. Up to now, the only known GDH
groups are related to bilinear pairings on elliptic curves.

The Computational Diffie-Hellman problem is easier to solve than the Discrete
Logarithm (DL) problem: the input is (G, g, y), where y ∈ G, and the goal for a
solver ADL is to find the integer x ∈ Z∗q such that y = gx. We can define AdvADL(λ)
and the Discrete Logarithm Assumption analogously to the Diffie-Hellman case.

A group G = 〈g〉 as defined above is said to be bilinear if there exist another
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group GT with the same order p and a map e : G × G → GT , known as bilinear
pairing , satisfying the following properties:

1. Computability: e(·, ·) can be efficiently computed (in time polynomial in λ),

2. Non-Degeneracy: e(g, g) is a generator of GT ,

3. Bilinearity: for any two elements a, b ∈ Zp, we have e(ga, gb) = e(g, g)ab.

The Decisional Bilinear Diffie-Hellman (DBDH) problem consists of distinguish-
ing tuples of the form (g, ga, gb, gc, e(g, g)abc) from tuples of the form (g, ga, gb, gc, T ),
for random a, b, c ∈ Z∗p and random T ∈ GT . For any polynomial-time solver ADBDH
of this problem, we can define its advantage as AdvADBDH (λ) =∣∣Pr[ADBDH(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[ADBDH(g, ga, gb, gc, T ) = 0]

∣∣
The Decisional Bilinear Diffie-Hellman Assumption states that AdvADBDH (λ) is neg-
ligible in λ.

1.3 Public Key Encryption Schemes

In an encryption scheme, the message or plaintext is encrypted using an encryption
algorithm, which outputs a ciphertext. An authorized party, is able to decode the
ciphertext using a decryption algorithm. This kind of schemes usually needs a key
generation algorithm, to randomly produce the encryption and decryption keys used
in the respective algorithms. When these keys are the same, then we talk about
symmetric encryption (or private key encryption) schemes. On the contrary, public
key encryption schemes use different keys, one public in the encryption algorithm and
the secret one in the decryption algorithm.

Let’s define a public key encryption scheme, in short PKE, in a formal way: a
public key encryption scheme Π = (Π.KG,Π.Enc,Π.Dec) consists of a (randomized)
key-generation protocol (sk, pk) ← Π.KG(1λ) which takes as input a security param-
eter λ ∈ N and outputs both a secret key sk ∈ K1 and a public key pk ∈ K2 in the
respective sets K1 and K2 of possible keys, then a (randomized) encryption protocol
c ← Π.Enc(m, pk) which encrypts the plaintext or message m ∈ M and finally a
decryption protocol m̃ ← Π.Dec(c, sk) used to recover the message for a given ci-
phertext c ∈ C. For correctness, Π.Dec(Π.Enc(m, pk), sk) = m must hold, for any
(sk, pk)← Π.KG(1λ).
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1.3.1 Security Model

The security of public key encryption schemes is defined in a computational scenario,
where different security levels can be achieved by the cryptosystems. For example, a
public encryption scheme can be proved to be secure against an adversay who tries
to recover the original message given the ciphertext, although there exists an attack
which finds a valid ciphertext for some message. These levels can be separated into
two different directions depending on the resources of the adversary and their goals.

Let’s define the computational security of a public key encryption scheme Π under
chosen-ciphertext attacks [5, 52] using the following IND-CCA game G between a
challenger and an adversary AΠ.

1. The challenger chooses a bit β ∈ {0, 1} at random.

2. The challenger runs (sk, pk)← Π.KG(1λ) and sends the value pk to AΠ.

3. [Decryption queries] The adversaryAΠ can make adaptive decryption queries
for ciphertexts c ∈ C of his choice. As an answer, AΠ receives the plaintext
m← Π.Dec(c, sk).

Note that encryption queries make no sense because AΠ can reply such queries
by himself.

4. [Challenge] Let M be the set of the messages, AΠ broadcasts two different
messages m0 6= m1 with the same length such that m0,m1 ∈M. The challenger
runs c? ← Π.Enc(mβ, pk) and sends the result c? back to AΠ.

5. AΠ can make more decryption queries, with the restriction that the ciphertext
c? cannot be queried.

6. Finally, AΠ outputs a bit β′.

The advantage of AΠ in breaking the security of the scheme Π is defined as

AdvAΠ
(λ) =

∣∣∣∣Pr[β′ = β]− 1

2

∣∣∣∣
We say that the public encryption scheme Π enjoys IND-CCA security if the

advantage AdvAΠ
(λ) is a negligible function in λ, for any polynomial-time adversary

AΠ.
If decryption queries are not allowed in the above game then we are reducing the

security to a weaker level, IND-CPA, where the adversary has only the capability to
choose arbitrary plaintexts to be encrypted, obtaining the corresponding ciphertexts
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in this process. Moreover, an extension of the game G is possible in a multi-user
scenario using the ideas from [3].

To avoid security problems within this model, one could modify the encryption
scheme embedding some form of structured, randomized padding into the message
before encrypting it. This padding can be done by hash functions, which map the
messages to their hash values.

Definition 1.3.1 A cryptographic hash function H : {0, 1}∗ → Y is a function that
compresses an input of arbitrary length to a result with a fixed length, and verifies the
one-wayness and (strong) collision-resistance properties:

1. For any given data x ∈ {0, 1}∗ it is easy to calculate the hash value H(x).

2. For a given hash value y ∈ Y it is computationally difficult to find a data
x ∈ {0, 1}∗ such that H(x) = y.

3. It is computationally unlikely to find two different inputs x, x′ ∈ {0, 1}∗ with the
same hash value H(x) = H(x′).

A cryptographic hash function should behave as much as possible like a random
function while still being deterministic and efficiently computable. Hash functions
play an important role in cryptography not only due to the padding but also because
they allow to define an idealized scenario, where security is much easier to prove.

1.3.2 The Random Oracle Model

As explained above the usual way to prove the security in modern cryptographic
systems is to reduce the security problem of the system to a related computational
problem. In this case schemes are proven secure using only complexity assumptions
and are said to be secure in the standard model. In order to make the issue of re-
ducing the security property of some schemes (as confidentiality for cryptosystems or
unforgeability for signature schemes) to the hardness of well known computational
problems easier, Bellare and Rogaway introduced in [6] a new paradigm, where cryp-
tographic primitives are replaced by idealized versions. The random oracle model , in
short ROM, replaces a cryptographic hash function with a genuinely random func-
tion. In this model, hash functions are seen as oracles (a theoretical black box) that
respond to every new query with a (truly) random response chosen uniformly from
its output domain, except that if the same query is asked twice then the output must
be identical.

This paradigm has been criticized in several works [20, 71, 4] because hash func-
tions are deterministic and hence not probabilistic as in the random oracle model.
Moreover, this assumption is useful but not achievable in real systems. Therefore,
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proofs in the random oracle model are only heuristic arguments, and thus security
proofs in the standard model are preferable, when analyzing the security of crypto-
graphic protocols. However, it has been accepted by the cryptographic community
because it allows to derive security proofs of many cryptosystems more easily and
gives very strong evidence of their security.

1.3.3 Paillier’s Public Key Cryptosystem

A known public key cryptosystem was presented in 1999 by Pascal Paillier [73]. This
scheme has an additively homomorphic encryption, which allows specific types of
computations to be carried out on ciphertext and obtain an encrypted result which
is the ciphertext of the result of operations performed on the plaintext. Let’s show
this scheme more in detail.

Key Generation: Π.KG(1λ).
Given a security parameter λ, two different large primes p, q with length of λ bits are
chosen. The values N = p · q and η = lcm(p − 1, q − 1), where η is the result of the
Carmichael’s function η(N), are computed. Finally, an element g ∈ Z∗N2 with order
a multiple of N is chosen. The public output of this protocol is pk = (N, g), and the
secret output privately stored is sk = η. The secret key can also be seen as the tuple
(p, q).

Encryption: Π.Enc(m,N, g)
For a random element r ∈ Z∗N , the encryption of a message m is defined by the
bijective function

εg : ZN × Z∗N −→ Z∗N2

(m, r) 7−→ gm · rN mod N2

This protocol returns the ciphertext c := εg(m, r) = gm · rN mod N2.

Decryption: Π.Dec(c, η)
Let SN = {u ∈ Z∗N2 | u = 1 mod N} be a multiplicative subgroup of Z∗N2 , the
logarithmic function L is defined as L(u) = u−1

N
, for u ∈ SN . This protocol returns

the message m =
L(cη mod N2)

L(gη mod N2)
mod N .

Note that Paillier’s encryption protocol is additively homomorphic over the plain-
texts because of the property εg(m1, r1) · εg(m2, r2) = εg(m1 + m2, r1 · r2). In other
words, Π.Enc(m1 + m2, pk) = Π.Enc(m1, pk) · Π.Enc(m2, pk) and Π.Dec(c1 · c2, sk) =
Π.Dec(c1, sk) + Π.Dec(c2, sk). In relation to the efficiency, a value g ∈ Z∗N2 of order
N (e.g., g = 1 + N) can be taken without affecting the security of the encryption
scheme.
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Security of Paillier’s cryptosystem is based on the intractable Decisional Compos-
ite Residuosity Assumption (DCRA): Let p, q be two different l-bit primes such that
N = p · q and g ∈ Z∗N2 with order N . The following two probability distributions are
polynomially indistinguishable{

Dresidue = (N, g, ρN), ρ← Z∗N
Drandom = (N, g, y), y ← Z∗N2

i.e., there does not exist any probabilistic polynomial time distinguisher for N th

residues 1 2 modulo N2.

Because of the mentioned homomorphic properties, the Paillier’s cryptosystem
does not achieve IND-CCA security. In general, in homomorphic encryption schemes
it is possible for the adversary to modify the challenge ciphertext and submit it to
the decryption oracle in order to break the IND-CCA game. Despite this intrinsic
feature, it is possible to transform the original cryptosystem using the techniques of
Fujisaki-Okamoto [34] to achieve IND-CCA security in the random oracle model. In
this case, obviously the homomorphic property of the scheme disappears to achieve
this level of security.

1.4 Other Primitives with Computational Security

We explain here another cryptographic primitive, which will be used as key ingredient
in the designs of the schemes proposed throughout this thesis, together with their
security models in a computational scenario.

1.4.1 Symmetric Encryption with Semantic Security

A symmetric encryption scheme Π = (Π.KG,Π.Enc,Π.Dec) consists of a key-generation
protocol K ← Π.KG(1λ) which takes as input a security parameter λ ∈ N and outputs
a secret key K ∈ K, then an encryption protocol c← Π.Enc(m,K) and a decryption
protocol m̃← Π.Dec(c,K). For correctness, Π.Dec(Π.Enc(m,K), K) = m must hold,
for any K ← Π.KG(1λ).

Security of symmetric encryption schemes was used only in an information-theoretic
scenario in the past but the come out of formal definitions for the security models, as

1An element x ∈ Z∗
N2 is said to be an N th residue if there exists another element y ∈ Z∗

N2 such
that y = xN mod N2.

2Since N divides the order of Z∗
N2 (|Z∗

N2 | = φ(N2) = N · φ(N)) it follows that the set of N th

residues is a subgroup of Z∗
N2 with cardinality φ(N), where φ(N) = (p − 1) · (q − 1) is the Euler’s

totient function.
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explained in Subsection 1.3.1, made it possible to define also its security in compu-
tational sense. Semantic security of a symmetric encryption scheme Π under chosen-
ciphertext attacks [5, 52], in the multi-user setting [3], is defined by the following
IND-CCA game G between a challenger and an adversary AΠ.

1. The challenger chooses at random β ∈ {0, 1}.

2. AΠ chooses the number k of keys in the game.

3. The challenger runs k times the protocol Ki ← Π.KG(1λ), to produce k secret
keys K1, . . . , Kk.

4. [Encryption queries] The adversary AΠ can make, at any time, encryption
queries (i,m) of its choice, where i ∈ {1, . . . , k}. As the answer, AΠ receives
the ciphertext c← Π.Enc(m,Ki).

5. [Decryption queries] The adversary AΠ can make, at any time, decryption
queries (i, c) of its choice, where i ∈ {1, . . . , k}. As the answer, AΠ receives the
plaintext m← Π.Dec(c,Ki).

6. [Challenges] In an adaptive way, AΠ chooses tuples (ij,m
(0)
j ,m

(1)
j ), where ij ∈

{1, . . . , k} and m
(0)
j 6= m

(1)
j have the same length, for all j = 1, . . . , qc, and qc is

the number of challenges. The challenger runs c∗j ← Π.Enc(m
(β)
j , Kij) and sends

c∗j back to AΠ, for j = 1, . . . , qc.

7. AΠ can make more encryption and decryption queries, provided the challenge
pairs (ij, c

∗
j) are not asked as a decryption query.

8. Finally, AΠ outputs a bit β′.

For such an adversary AΠ playing this game and making at most qe encryption
queries, qd decryption queries and qc challenge queries, we say AΠ is a (k, qe, qd, qc)-
adversary against Π. The advantage of AΠ in breaking the IND-CCA security of the
scheme Π is defined as

AdvAΠ
(λ) =

∣∣∣∣Pr[β′ = β]− 1

2

∣∣∣∣
The symmetric encryption scheme Π is said to enjoy IND-CCA security in the

multi-user setting if AdvAΠ
(λ) is a negligible function in λ, for any (k, qe, qd, qc)-

adversary AΠ that runs in polynomial-time (in particular, all values k, qe, qd, qc must
be polynomial in λ).
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1.4.2 Digital Signature Schemes

The appearance of the paradigm of public key cryptography introduced in 1976 by
Diffie and Hellman [30] involved a new mechanism to provide authentication and
non-repudation. These two properties together with message integrity for the signed
message are achieved in digital signature schemes .

A signature scheme Θ = (Θ.KG,Θ.Sign,Θ.Vfy) consists of three probabilistic poly-
nomial time protocols. Θ.KG(1λ) → (sk, vk) is the key generation protocol, which
takes as input a security parameter λ ∈ N and outputs a secret signing key sk and
a public verification key vk. The signing protocol Θ.Sign(sk,m) → θ takes as input
the signing key and a message m, and outputs a signature θ. Finally, the verification
protocol Θ.Vfy(vk,m, θ) → 1 or 0 takes as input the verification key, a message and
a signature, and outputs 1 if the signature is valid, or 0 otherwise.

The correctness property is held in a signature scheme when a signature generated
with the signing protocol is always accepted by the verifier. That is, if Θ.KG(1λ) =
(sk, pk) and Θ.Sign(sk,m) = θ then Θ.Vfy(vk,m, θ) = 1. In this case, it is said that
(m, θ) is a valid message/signature pair.

In parallel to encryption schemes, digital signatures can also have different levels
of security. These levels are achieved according to the capabilities of the adversary
and its final goals. In fact, the intuitive idea behind it was formalized by Goldwasser,
Micali and Rivest in [37] and explains that only the owner of a secret key should be
able to compute valide signatures with respect to the matching public key.

An adversary can have different capabilities to break a signature scheme. For
example, the adversay knows only the public key of the user, the adversary has
access to valid signatures of a list of messages which were not chosen by him or the
adversary has access to valid signatures for messages that he can adaptively choose.

Regardings to his final goal, different levels of success for an adversary can be
taken into account. That is, find a valid signature for some message, find a valid
signature for a fixed message, find an efficient algorithm which emulates the signing
algorithm of a user or compute the secret key of a user.

Note that the maximum level of security for such a scheme consists of resisting
attacks from an adversary with the most powerful capabilities (adaptive chosen mes-
sage attack) but with the less ambitious goal (existential forgery, for some message).
A signature scheme is unforgeable when any attacker has negligible probability of suc-
cess in forging a valid signature for some message, even if he knows valid signatures
for messages different from the pair message/signature which is tried to be forged,
that he can adaptively choose.

More in detail, we consider an adversary FΘ who first receives a verification key vk
obtained from Θ.KG(1λ)→ (sk, vk). He can make at most qS signature queries for mes-
sages mi of his choice, obtaining as answer valid signatures Θ.Sign(sk,mi)→ θi, and fi-
nally outputs a pair (m′, θ′). We say that the adversary succeeds if Θ.Vfy(vk,m′, θ′)→
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1 and (m′, θ′) 6= (mi, θi) for all i = 1, . . . , qS.

We denote FΘ’s success probability as AdvFΘ
(λ). The signature scheme Θ is

strongly unforgeable if AdvFΘ
(λ) is a negligible function of the security parameter

λ ∈ N, for any polynomial-time attacker FΘ against Θ. Here negligible means that
AdvFΘ

(λ) decreases (when λ increases, asymptotically) faster than the inverse of any
polynomial. If a signature scheme is strongly unforgeable only against adversaries
who can make at most qS = 1 signature query, then the scheme is a secure one-time
signature scheme.

An example of strongly unforgeable signature scheme can be found in [15]. The
scheme therein is proved secure, in the standard model, under the Computational
Diffie-Hellman Assumption (defined in Subsection 1.2.1). Further examples of secure
one-time signature schemes can be found in [68].

1.5 Distributed Cryptography

Distributed cryptography spreads the operation of the schemes among a group of
servers (or parties) in a fault-tolerant way. First proposals of distributed cryptography
can be found in [16, 29]

Situations where the secret information is distributed among a set of users are very
common in real-life applications, where giving too much power to a centralized single
user may be delicate for security (because corruption of this user can compromise the
whole system) and for reliability (because a technical problem at this user can lead
to important delays in the life of the system) reasons. In fact, the secret key of an
individual user in the standard scheme is distributed in shares by means of a secret
sharing scheme. A typical example is key escrow: a trusted entity stores encrypted
versions of the secret key material of all the users in a system or community. If a user
loses his secret key, he can ask for it to the entity. Also if a judge decides that the
secret communications involving a malicious user must be revealed, he can ask the
secret key of that user to the key escrow entity. A good solution is to distribute the
power of this trusted entity among a set of entities, through a distributed process.

Threshold cryptography deals with situations where the power to do a secret cryp-
tographic task is shared among a group of n users and where the cooperation of at
least t of them is necessary to successfully finish the task. A clear example of this
situation could be in a bank where there is a vault which must be opened every day.
If the bank has n employees, but they do not trust the combination to any individual
employee, then it is more secure to share this vault among these employees. Hence,
a threshold cryptosystem could be applied where any t ≤ n of them can gain access
to the vault, but t− 1 employees or less can not do so.
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1.5.1 Secret Sharing Schemes

These kind of schemes were created in paralel by Blakley [8] and Shamir [82] in the
late seventies and are an important building block in distributed cryptography. Such
schemes allow to distribute shares of the secret to each of the participants, where a
structure over the set of participants is fixed from the beginning to establish which
participants are able to determine the secret.

Let P = {P1, . . . , Pn} be a finite set of n participants and Γ a set of subsets of P ,
that is Γ ⊂ 2P ; the subsets in Γ are those subsets of participants that should be able
to compute the secret. In this case, Γ is called access structure and the subsets in
Γ are known as authorized subsets . This access structure must satisfy the monotone
increasing property; that is, if A ∈ Γ and A ⊆ B ⊆ P , then B ∈ Γ. Moreover, a
subset A ∈ Γ is said a minimal authorized subset if B /∈ Γ, for all B ⊂ A. The set
of minimal authorized subsets of Γ is denoted Γ0 and is called the basis of Γ. In this
case we have Γ = {B ⊆ P : ∃A ∈ Γ0 verifying A ⊆ B} and we say that Γ is the
closure of Γ0; that is, Γ = cl(Γ0).

The value of a secret is chosen in a space of possible secrets by a special participant
called the dealer and denoted by D. When D wants to share the secret in the
distribution phase among the participants in P , he uses the access structure Γ to give
each participant some partial information called a share. These shares should be sent
to the participants secretly, so no participant knows the share given to another one. At
a later time, a subset of participants A ⊆ P will pool their shares in the reconstruction
phase in an attempt to compute the secret (alternatively, they could give their shares
to a trusted authority which will perform the computation for them). If A ∈ Γ,
then the participants of the authorized subset A are able to compute efficiently the
value of the secret as a function of the shares they collectively hold; on the contrary,
if A /∈ Γ (A is a corruptible or unauthorized subset) then they can determine no
information about the value of the secret although they pool their shares. In the
above situation we speak about a secret sharing scheme, SSS in short, which realizes
the access structure Γ.

The above two requirements, correctness and secrecy (or privacy), can be formal-
ized either in an information-theoretic sense or in a computational sense, depending
on the resources available to the possible attackers. Unconditional security is the
standard way to define security in those schemes because they are usually used in a
theoretical level to build another protocols in theoretical cryptography, as e.g. multi-
party computation or oblivious transfer, where it is important to execute concurrently
several instances of the inherent secret sharing scheme. In this case, the security of the
new protocols is assured if the underlying secret sharing scheme is unconditional se-
cure. In this thesis we will see that computational security for secret sharing schemes
is enough because we will use them as building block to build another primitives
whose security can be at most computational.
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A tool used in the information-theoretic scenario is the entropy of a random vari-
able. Namely, if we use notation S for the random variable associated to the secret,
SHi for the random variable associated to the share of player Pi ∈ P , and more
generally SHA for the (vector) random variable associated to the shares of players in
A ⊆ P , the two required properties defined above for a perfect secret sharing scheme
become: (1) H(S|SHA) = 0 for any subset A ∈ Γ, and (2) H(S|SHA) = H(S)
for any subset A /∈ Γ. It is well known that any secret sharing scheme enjoy-
ing security in the information-theoretic scenario (where attackers have unlimited
computational resources) must produce shares that are, at least, as long as the se-
cret: |H(SHi)| ≥ |H(S)|, for all Pi ∈ P . In the case that the bound is achieved,
|H(SHi)| = |H(S)|, we talk about ideal secret sharing schemes. In secret sharing
schemes with security in the computational scenario (where attackers are modeled as
polynomial-time algorithms), shares can be shorter than the secret [55]. We define the
information rate as the quotient between the length of the secret and the maximum
length of the shares. Note that ideal secret sharing schemes have an information rate
of 1.

A well known threshold secret sharing scheme was proposed by Shamir in [82],
where subsets that can recover the secret are those with at least t members (t is
the threshold); in other words, the (t, n)-threshold access structure is realized by
Γ = {A ⊆ P : |A| ≥ t}. The set of possible secrets is a finite field K. To share a
secret s ∈ K the dealer D chooses at random a polynomial f(x) ∈ K[X] of degree
t − 1 with evaluation point f(0) = s and sends to every participant Pi ∈ P the
share si = f(i) via a secure channel. When t or more participants of A ∈ Γ want
to recover the secret, they compute s = f(0) =

∑
Pi∈A λ

A
i · f(i) using the Lagrange

interpolation coefficients λAi =
∏

1≤h≤t,h6=i
h
h−i , whereas any set of less than t shares

gives no information at all about the secret s.

The role of the dealer in (Shamir) threshold secret sharing schemes can be re-
placed by all the participants in P . They can distribute a secret working jointly as
follows: the secret s to be distributed is not an input of the distribution protocol,
because it will be generated by players in P “on the fly”. Every Pi ∈ P chooses a
random polynomial fi(x) ∈ K[X] of degree t − 1. The secret s is implicitly defined
as s =

∑
Pi∈P fi(0). Every Pi ∈ P sends the value fi(k) to the other participants

Pk ∈ P . At this point, the participant Pk ∈ P is able to compute his own secret value
sk =

∑
Pi∈P fi(k), which is a polynomial share of the secret s. In the reconstruction

protocol the players of an authorized subset A ∈ Γj use the values {si}Pi∈A to inter-
polate the polynomial F (x) =

∑
Pi∈P fi(x) in x = 0, recovering in this way the secret

s = F (0).

An important class of access structures are the vector space access structures
introduced by Brickell [17]. A vector space secret sharing scheme realizes such a
structure Γ, defined in a finite field K, if there exists a map ψ : P ∪ {D} → Kt with
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t ∈ N, such that A ∈ Γ if and only if ψ(D) ∈ 〈ψ(i)〉Pi∈A. If the dealer wants to
distribute the secret value s ∈ K, he chooses randomly a vector v ∈ Kt, such that
s = v · ψ(D) and distributes the shares si = v · ψ(i) amount the participants Pi ∈ P .
When the participants of an authorized subset A ∈ Γ want to recover the secret, then
they check the values {λAi }Pi∈A ∈ Kt, obtained by definition in ψ(D) =

∑
Pi∈A λ

A
i ·ψ(i)

and compute the secret value using their distributed shares {si}Pi∈A as follows.∑
Pi∈A

λAi · si =
∑
Pi∈A

λAi · vψ(i) = v ·
∑
Pi∈A

λAi ψ(i) = v · ψ(D) = s.

Note that the Shamir’s threshold SSS, with threshold t, can be seen as a particular
case of vector space SSS, by defining ψ(D) = (1, 0, . . . , 0) and ψ(i) = (1, i, i2, . . . , it−1)
for every player Pi ∈ P .

In the case of vector space access structures the members of P can do the tasks
of a trusted dealer by themselves, as proposed in [47], without any interaction with
him: firstly, every participant Pi ∈ P chooses a random vi ∈ Kt and sends the
values sij = vi · ψ(j) to the other participants Pj ∈ P . Secondly, every participant
Pj ∈ P sums the n values {sij}Pi∈P he has received giving as a result

∑
Pi∈P sij =∑

Pi∈P vi · ψ(j) = v · ψ(j), where v =
∑

Pi∈P vi. In this way every participant Pj ∈ P
has the share v · ψ(j) for a random vector v.

Multi-secret sharing scheme, MSSS for short, has been studied in different works
[9, 67] and is an extension of secret sharing scheme. They are very useful for situations
where different runnings of a secret task (like signature or decryption) may have
different levels of importance or secrecy. Now, ` different secrets are distributed among
the players in set P , each one according to a (possibly different) access structure. The
trivial solution to this problem is to run ` independent instances of a standard secret
sharing scheme, one for each secret and access structure. In this solution, the length
of the secret share to be stored by each player is linear in `. More about MSSS will
be said in Section 3.2.



Chapter 2

Signcryption Schemes with
Threshold Unsigncryption

Signcryption is a paradigm in public key cryptography that simultaneously fulfils
the function of digital signature, providing authenticity, and public key encryption,
providing confidentiality, in a logically single step and with a cost significantly lower
(between 50%-90% more efficient) than with the trivial solution of signing and en-
crypting each message separately.

In many applications, confidentiality and authenticity are needed together. Such
applications include secure email (S/MIME), secure shell (SSH), and secure web
browsing (HTTPS). By confidentiality , we mean that only the intended recipient
of a signcrypted message should be able to read its contents. That is, upon seeing
a signcrypted message, an attacker should learn nothing about the original message,
other than perhaps its length. By authenticity , we mean that the recipient of a sign-
crypted message can verify the sender’s identity, i.e., an attacker should not be able
to send a message, claiming to be someone else. Note also that signature schemes
always provide non-repudiation, since anyone can verify a signature using only the
sender’s public key. This is not the case for signcryption, since the confidentiality
property implies that only the recipient should be able to read the content of a sign-
crypted message sent to him. However, it is possible to achieve non-repudiation by
other means.

In 1997, Yuliang Zheng launched the study of signcryption (also known as au-
thenticated encryption) by giving a pair of signcryption schemes in [93]. Since the
introduction of this cryptographic primitive several generic constructions [1], com-
bining signature and encryption schemes, and specific proposals have appeared. A
survey about this topic can be found in [28].

Signcryption schemes consist of a key generation protocol, a signcryption protocol
run by the sender of the message (which uses his secret key and the public key of the

19
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receiver to hide and authenticate the message) and an unsigncryption protocol run
by the receiver (which uses his secret key and the public key of the sender to recover
the message and verify its authenticity).

Most of the papers dealing with signcryption consider individual entities to per-
form the secret tasks of signcryption and unsigncryption. In many real-life situations,
centralizing a secret task is not desirable due to both security and reliability reasons
(a security / technical problem at a single entity can cause important threats / de-
lays to the system). In these cases, a common approach is to decentralize the secret
task(s) by considering a group of n entities, in such a way that the cooperation of at
least t of them is necessary to successfully finish the task. This approach is known
as (t, n)-threshold cryptography . In the scenario of signcryption, there are two secret
tasks, so threshold cryptography could be applied to the signcryption protocol [64], to
the unsigncryption protocol [54], or to both of them. For the first concept, designing a
threshold signcryption variant of an ordinary signcryption scheme may be reasonably
easy, for example if the signcryption scheme works in the Discrete Logarithm frame-
work. This is similar to what happens with the transition from a standard signature
scheme to a threshold signature scheme.

Among the above three possibilities, here we focus on the situation where the
unsigncryption task is distributed among a set of entities through a (t, n)-threshold
process. Such schemes are known as threshold unsigncryption schemes. For simplicity
we consider that the signcryption protocol is run by an individual entity (see how-
ever [44] for a discussion on fully threshold signcryption). We want to stress that
the primitive of threshold unsigncryption is not just of theoretical interest; it has
applications in real-life scenarios. For example, in a digital auction system, bidders
may send their authenticated private bids, encrypted with the public key of a set of
servers. In this way, even if some dishonest servers (less than t) collude, they will not
be able to obtain information about the bids and influence the result of the auction.
At the end of the auction, a large enough number of servers will cooperate to decrypt
the bids and determine the winner of the auction and the price to pay.

The first works that focused on threshold unsigncryption [54, 92, 59, 60, 90] failed
to achieve the desired security properties for this kind of schemes: existential un-
forgeability under chosen message attacks, and plaintext indistinguishability under
chosen-ciphertext attacks (CCA), in a multi-user setting where the adversary can be
insider and can corrupt up to t − 1 members of the target receiver entity. These
security properties, along with the syntactic definition of threshold unsigncryption
schemes, are detailed in Section 2.1. The security weaknesses of the above-mentioned
threshold unsigncryption schemes were pointed out in [41, 85]. We showed in [41] (and
we include this in Section 2.2 of this chapter, for completeness) that even generic con-
structions of threshold unsigncryption schemes, obtained by combining a fully secure
standard signature scheme and a fully secure threshold decryption scheme, do not
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achieve the maximum level of security. This is in contrast to what happens in the
traditional scenario of signcryption, with a single receiver entity.

For this reason, one of the main goals in this area of threshold unsigncryption
is to design new threshold unsigncryption schemes which are provably secure in the
desired security model. The first two such schemes are very recent: one scheme was
proposed in [85] in an identity-based scenario. We propose and analyze in Section 2.3
of this chapter a scheme which works in the traditional PKI setting. This scheme is
a slightly modified version of the one, we published in [41]. Both our scheme [41] and
the scheme in [85] are proved secure in the random oracle model.

To overcome the drawback with the random oracle model, we propose and analyze
in Section 2.4 a new threshold unsigncryption scheme. It was published in [44] and
is the first one in the literature to achieve, in the standard model, the required
security properties. The design of this second scheme is quite modular: it employs
two signature schemes and the ideas by Canetti-Halevi-Katz to achieve CCA security
from identity-based selectively secure encryption [21].

The two schemes that we present in this chapter, in Sections 2.3 and 2.4, have
an additional property which may be of independent interest: the unsigncryption
protocol of the schemes can be split into two parts. The first part, verifying the
validity and the authorship of the ciphertext, can be done by anyone, because the
required inputs are the ciphertext and the public key of the sender. The second part,
decrypting the (valid) ciphertext, can be done without using the public key of the
sender. To the best of our knowledge, these are the first fully secure signcryption
schemes in the literature that enjoy this property, considering both individual and
threshold (un)signcryption. This ‘splitting’ property seems to be very promising
for applications requiring authentication and confidentiality, but also some level of
anonymity or privacy in some of their phases. As an illustrative example, we explain
in Section 2.5.2 the case of an electronic auction system.

Finally, two different signature schemes with distributed verification are described
in Section 2.6 for threshold access structures. These schemes are motivated on the
signcryption schemes defined in Sections 2.3 and 2.4. Both signature schemes are
IND-CCA secure, one in the random oracle model and the other in the standard
model.

2.1 Modeling Threshold Unsigncryption Schemes

In a signcryption scheme, a user A sends a message to an intended receiver B, in
a confidential and authenticated way: only B can obtain the original message, and
B is convinced that the message comes from A. In a scenario where the role of B
is distributed among a set of users, the cooperation of some authorized subset of
users will be necessary to perform the unsigncryption phase. Each user in the set
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B will have a share of the secret information of B, and will use it to perform his
part of the unsigncryption process. In this chapter we will focus on threshold families
of authorized subsets: the cooperation of at least t users in B will be necessary to
successfully run the unsigncryption protocol. Both our formal definitions and our
schemes can be extended to more general families of authorized subsets, by replacing
threshold secret sharing techniques (i.e. Shamir’s scheme [82]) with more general
linear secret sharing schemes.

2.1.1 Syntactic Definition

A signcryption scheme with threshold unsigncryption Σ = (Σ.St,Σ.KG,Σ.Sign,Σ.Uns)
consists of four probabilistic polynomial-time algorithms:

• The randomized setup algorithm Σ.St takes a security parameter λ ∈ N and
outputs some public parameters params that will be common to all the users
in the system: the mathematical groups, generators, hash functions, etc. We
write params← Σ.St(1λ) to denote an execution of this algorithm.

• The key generation algorithm Σ.KG is different for an individual sender A than
for a collective B of receivers. A single user A will get a pair (skA, pkA) of
secret and public keys. In contrast, for a collective B = {B1, . . . , Bn} of n
users, the output will be a single public key pkB for the group, and then a
threshold secret share skB,j for each user Bj, for j = 1, . . . , n, and for some
threshold t such that 1 ≤ t ≤ n. The key generation process for the collective
B can be either run by a trusted third party, or by the users in B themselves.
We will write (skA, pkA)← Σ.KG(params, A, ‘single’) and ({skB,j}1≤j≤n, pkB)←
Σ.KG(params, B, n, t, ‘collective’) to refer to these two key generation protocols.

• The signcryption algorithm Σ.Sign takes as input params, a message M , the
public key pkB of the intended receiver group B, and the secret key skA of the
sender. The output is a ciphertext C. We denote an execution of this algorithm
as C ← Σ.Sign(params,M, pkB, skA).

• The threshold unsigncryption algorithm Σ.Uns is an interactive protocol run by
some subset of users B′ ⊂ B. The common inputs are params, a ciphertext C
and the public key pkA of the sender, whereas each user Bj ∈ B′ has as secret

input his secret share skB,j. The output is a message M̃ , which can eventually
be the special symbol ⊥, meaning that the ciphertext C is invalid. We write
M̃ ← Σ.Uns(params, C, pkA, B

′, {skB,j}Bj∈B′) to refer to an execution of this
protocol.
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For correctness, the condition Σ.Uns(params,Σ.Sign(params,M, pkB, skA), pkA, B
′,

{skB,j}Bj∈B′) = M is required, whenever B′ contains at least t honest users and the
values params, skA, pkA, {skB,j}1≤j≤n, pkB have been obtained by properly executing
the protocols Σ.St and Σ.KG.

A different property that can be required is that of robustness , which informally
means that dishonest receivers in B who do not follow the threshold unsigncryp-
tion protocol correctly can be detected and discarded, without affecting the correct
completion of the protocol.

2.1.2 Security Model

A correct signcryption scheme must satisfy the security properties that are required
for encryption and signatures: confidentiality and unforgeability. In the threshold
setting for unsigncryption, confidentiality must hold even if an attacker corrupts t−
1 members of a collective of receivers. We consider a multi-user setting where an
adversary is allowed to corrupt the maximum possible number of users (all except the
target one), and where he can make both signcryption and unsigncryption queries
for different users, messages and ciphertexts. In particular, unforgeability must hold
even if the adversary knows the secret keys of all the possible collectives of receivers,
and confidentiality must hold even if the adversary knows the secret keys of all the
possible senders. In other words, we require insider security.

Note that we are considering only static adversaries, who choose the corrupted
users at the beginning of the attack, in order to simplify the notation and thus allow
a better understanding of the proposed schemes. In order to resist more powerful
adaptive attacks, where the users may be corrupted at different stages of the system,
our schemes should be combined with well-known techniques, as those in [19, 50, 63].

Unforgeability.

Unforgeability under chosen message attacks is the standard security notion for signa-
ture schemes and in general for any cryptographic primitive which pretends to provide
some kind of authentication or non-repudiation. The idea is that an attacker who
does not know the secret key of a user A and who can ask A for some valid signatures
(or, in our case, signcryptions) for messages of his choice must not be able to produce
a different valid signature (signcryption) on behalf of A. For a security parameter
λ ∈ N, this notion is formalized by describing the following game that an attacker
AUNF plays against a challenger:

1. The challenger runs params← Σ.St(1λ) and gives params to AUNF.

2. AUNF chooses a target userA?. The challenger runs (skA? , pkA?)← Σ.KG(params,
A?, ‘single’), keeps skA? private and gives pkA? to AUNF.
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3. [Queries] The attackerAUNF can make adaptive queries to a signcryption oracle
for sender A?: AUNF sends a tuple (M, pkB) for some collective B of his choice,
and obtains as answer C ← Σ.Sign(params,M, pkB, skA?).

Note that other kinds of queries (such as unsigncryption queries or signcryption
queries for senders different from A?) make no sense because AUNF can reply
such queries by himself.

4. [Forgery] Eventually, AUNF outputs a tuple (pkA? , B
?, pkB? , {skB?,j}Bj∈B? , C?).

We say that AUNF wins the game if:

• the output of the protocol Σ.Uns(params, C?, pkA? , B
?, {skB?,j}Bj∈B?) is a mes-

sage M? 6=⊥,

• the tuple (pkA? , pkB? , C
?) has not been obtained byAUNF through a signcryption

query.

The advantage of such an adversary AUNF in breaking the unforgeability of the
signcryption scheme is defined as

AdvAUNF
(λ) = Pr[AUNF wins].

A signcryption scheme Σ with threshold unsigncryption is unforgeable if, for any
polynomial time adversary AUNF, the value AdvAUNF

(λ) is negligible with respect to
the security parameter λ.

Indistinguishability.

The confidentiality requirement for a signcryption scheme Σ with (t, n)-threshold
unsigncryption (i.e. the fact that a signcryption on the message m addressed to B
leaks no information on m to an attacker who only knows t − 1 secret shares of
skB) is ensured if the scheme enjoys the property of indistinguishability under chosen
ciphertext attacks (IND-CCA security, for short). For a security parameter λ ∈ N, this
property is defined by considering the following game that an attacker AIND-CCA plays
against a challenger:

1. The challenger runs params← Σ.St(1λ) and gives params to AIND-CCA.

2. AIND-CCA chooses a target set B? of n users and a subset B̃ ⊂ B? of t−1 users, to
be corrupted. The challenger runs ({skB?,j}1≤j≤n, pkB?)← Σ.KG(params, B?, n,
t, ‘collective’) and gives to AIND-CCA the values pkB? and {skB?,j}Bj∈B̃. Without

loss of generality, we can assume B? = {B1, . . . , Bn} and B̃ = {B1, . . . , Bt−1}.
Note that we are considering only static adversaries who choose the subset B̃
of corrupted users at the beginning of the attack.
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3. [Queries] AIND-CCA can make adaptive queries to a threshold unsigncryption
oracle for the target set B?: AIND-CCA sends a tuple (pkA, C) for some public

key pkA of his choice. The challenger runs M̃ ← Σ.Uns(params, C, pkA, B
?,

{skB?,j}Bj∈B?). The attacker AIND-CCA must be given all the information that is

broadcast during the execution of this protocol Σ.Uns, including M̃ .

Other kinds of queries (such as unsigncryption queries for other collectives B 6=
B? or signcryption queries) make no sense because AUNF can reply such queries
by himself.

4. AIND-CCA chooses two messages M0,M1 of the same length, and a sender A?

along with (skA? , pkA?).

5. [Challenge] The challenger picks a random bit d ∈ {0, 1}, runs C? ← Σ.Sign(
params,Md, pkB? , skA?) and gives C? to AIND-CCA.

6. Step 3 is repeated, with the restriction that the tuple (pkA? , C
?, B?) cannot be

queried to the threshold unsigncryption oracle.

7. Finally, AIND-CCA outputs a bit d′ as his guess of the bit d.

The advantage of such a (static) adversary AIND-CCA in breaking the IND-CCA
security of the signcryption scheme is defined as

AdvAIND-CCA
(λ) =

∣∣∣∣Pr[d′ = d]− 1

2

∣∣∣∣ .
A signcryption scheme Σ with (t, n)-threshold unsigncryption is IND-CCA secure if

AdvAIND-CCA
(λ) is negligible with respect to the security parameter λ, for any polynomial

time (static) adversary AIND-CCA.

2.2 Existing Threshold Unsigncryption Schemes

Are Not Secure

There are very few papers proposing explicit signcryption schemes with threshold
unsigncryption. We are only aware of two proposals [54, 92] in the traditional PKI
setting, and three proposals [59, 60, 90] in the identity-based setting.

It turns out that none of these schemes achieves the full level of security described
in the previous section. The security weakness is always related to the indistin-
guishability property. For the two schemes in the PKI setting (which do not contain
any formal security definitions or analysis), simple IND-CCA attacks can be mounted
without assuming multiple users or insider attackers. The schemes proposed for the
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identity-based scenario are analyzed more formally, but IND-CCA attacks against
them exist anyway. Specifically, the scheme described in [90] has the same security
problems than the two schemes in the PKI setting: the verification step is performed
at the end of the protocol, once all the receivers have broadcasted their partial de-
cryption shares. This means that an attacker can take the challenge ciphertext C?

and modify only the “signature” part of it, obtaining an invalid ciphertext C 6= C?

that will be queried to the threshold unsigncryption oracle. As answer, the attacker
will obtain the final value ⊥, but also the partial decryption values broadcast by all
the receivers, which will allow the attacker to decrypt the (valid) challenge ciphertext.

The scheme in [59] does not resist insider attacks: knowing the secret key of the
sender A?, one can immediately obtain the plaintext from the challenge ciphertext.
Finally, the scheme presented in [60] is also insecure against insider attacks. This
scheme together with such an attack can be found in Appendix of [41] as an illustrative
example.

2.2.1 What about Generic Constructions?

Since the existing threshold unsigncryption schemes are not fully secure, one could
wonder if such fully secure schemes actually exist. The first attempt could / should
be to think of possible generic constructions like the threshold versions of the well-
known approaches Sign then Encrypt and Encrypt then Sign, that have been deeply
analyzed in [1] for the case of ordinary signcryption. There, it is proved that both
generic constructions achieve full security (against insider attackers in a multi-user
setting) if the underlying signature and encryption schemes have full security. Thus,
one could expect that the same happens in the scenario with threshold unsigncryption.
But unfortunately this is not the case, as we argue below.

Let Ω = (Ω.KG,Ω.Sign,Ω.Vfy) be a signature scheme, and Π = (Π.KG,Π.Enc,
Π.ThrDec) be a public encryption scheme with threshold decryption. For the keys of
the generic signcryption schemes with threshold unsigncryption, an ndividual sender
will run (skA, pkA)← Ω.KG and a collective of receivers B will run ({skB,j}1≤j≤n, pkB)
← Π.KG.

Let us consider for example the ThresholdEncrypt then Sign approach. To sign-
crypt a message m for the collective B, a sender A first computes c ← Π.Enc(pkB,
m||pkA) and then signs c||pkB to obtain ω ← Ω.Sign(skA, c||pkB). The final cipher-
text is C = (c, ω). To unsigncrypt such a ciphertext, members of B first verify the
correctness of signature ω by running Ω.Vfy(pkA, c||pkB, ω). If the signature is not
correct, the symbol ⊥ is output. Otherwise, a subset B̃ ⊂ B of at least t members of
B run Π.ThrDec({skB,j}Bj∈B̃, c) to recover the message m||pkA. If the public key pkA
corresponds with that of the sender A, then m is the output of the protocol. If not,
the output is ⊥.
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The IND-CCA security of this generic construction can be broken by an insider
attacker AIND-CCA in a multi-user scenario. AIND-CCA receives a challenge ciphertext
C? = (c?, ω?) for a challenge sender A? and a challenge collective B? of receivers. After
that, AIND-CCA can generate keys (skA, pkA) for another user A 6= A?, compute a valid
signature ω for c?||pkB? using skA, and send C = (c?, ω) as a threshold unsigncryption
query for sender A and collective B? of receivers. As answer to this query, since the
signature ω is valid, AIND-CCA must receive all the information that the members of B?

would broadcast in the execution of the threshold decryption of c?. Even if the final
output of this query is ⊥, because the public key pkA does not match the public key
pkA? which is encrypted in c?, the attacker AIND-CCA has obtained enough information
to recover the whole plaintext encrypted in c?, and therefore succeeds in breaking the
indistinguishability of the scheme. We stress that this same attack is valid against
relaxed IND-CCA (see [22]), because the decryption of C (which is ⊥) is different from
the decryption of C?.

Regarding the Sign then ThresholdEncrypt approach, the attack is even simpler.
Once AIND-CCA gets a challenge ciphertext C? = c? for A? and B?, where c? is an
encryption under Π of (m,ω?, pkA?) and ω? is a signature on m||pkB? , all thatAIND-CCA

has to do is to make an unsigncryption query for the tuple (C?, pkA, pkB?), where
A 6= A?. Even if the output of the protocol is again ⊥, the attacker AIND-CCA gets
all the partial information broadcast by the members of B? in the execution of the
threshold decryption of c?, which allows AIND-CCA to directly obtain the plaintext m.

Note that we are affirming that generic constructions do not achieve strong se-
curity. That means, against IND-CCA adversaries who can ask adaptive threshold
unsigncryption queries. If we remove this point in the indistinguishability game of
page 24 then we should talk about weak security, which is verified by the generic
constructions.

2.3 A First Threshold Unsigncryption Scheme

This section is dedicated to the description and analysis of our first new signcryption
scheme with (t, n)-threshold unsigncryption, achieving full security in the random
oracle model. Our approach has been to take a secure public key encryption scheme
with threshold decryption and modify it in order to accommodate also the authen-
tication process. In particular, we have considered the scheme TDH1 of Shoup and
Gennaro [88]. The idea of that scheme, to encrypt a message m for a collective B
with public key pkB, is to first compute a hashed ElGamal encryption (R, c) of m.
That is, assuming that we have fixed a cyclic group G = 〈g〉 of prime order q, along
with a hash function H0, the sender computes R = gr and c = m⊕H0((pkB)r). After
that, he adds to the ciphertext another element ḡ ∈ G and the value R̄ = ḡr, and
finally a zero-knowledge proof that DiscLogg(R) = DiscLogḡ(R̄). Members of B will
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start the real decryption process only if the proof of knowledge is valid.
Our signcryption scheme follows the same principle, but the sender A will com-

pute now a zero-knowledge proof that both DiscLogg(R) = DiscLogḡ(R̄) hold and he
knows skA such that pkA = gskA . We will prove that the resulting signcryption scheme
(with threshold unsigncryption) enjoys the strong notions of unforgeability and indis-
tinguishability. We consider for simplicity a scenario where the receivers follow the
threshold unsigncryption protocol correctly. A simple modification of our scheme,
by including appropriate non-interactive zero-knowledge proofs of the equality of two
discrete logarithms, allows to provide robustness to the scheme against the action of
malicious receivers. The protocols of the scheme are described below.

Setup: Σ.St(1λ).
Given a security parameter λ, a cyclic group G = 〈g〉 of prime order q, such that q
is λ bits long, is chosen. A length `, which must be polynomial in λ, is defined for
the maximum number of bits of the messages to be sent by the system. Three hash
functions H0 : {0, 1}∗ → {0, 1}`, H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Zq are chosen.
The output of the protocol is params = (q,G, g,H0, `,H1, H2).

Key Generation: Σ.KG(params, A, ‘single’) and Σ.KG(params, B, n, t, ‘collective’).
For an individual user A, the secret key skA is a random element in Z∗q, whereas the
corresponding public key is pkA = gskA . The public output of this protocol is pkA,
and the secret output that is privately stored by A is skA.

For a collective B = {B1, . . . , Bn} of n users, the common public key is computed
as pkB = gskB for some random value skB ∈ Z∗q that will remain unknown to the
members of B. Each user Bj ∈ B will receive a (t, n)-threshold share skB,j of skB,
computed by using Shamir’s secret sharing scheme [82]. This means that, for every
subset B′ ⊂ B containing exactly t users, there exist values λB

′
j ∈ Z∗q such that

skB =
∑

Bj∈B′
λB
′

j skB,j. The public output of this protocol is pkB, whereas each user

Bj ∈ B receives a secret output skB,j.
The key generation process for a collective B can be performed by a trusted dealer,

or by the members of B themselves, by using some well-known techniques [36].
Both solutions permit that the values DB,j = gskB,j are made public, for j =

1, . . . , n. These values would be necessary to provide robustness to the threshold
unsigncryption process.

We assume that both pkA and pkB include descriptions of the identities of A and
members of B.

Signcryption: Σ.Sign(params,m, pkB, skA).

1. Choose at random r ∈ Z∗q and compute R = gr.

2. Compute k = H0(R, pkB, (pkB)r) and c = m⊕ k.
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3. Choose at random α1, α2 ∈ Z∗q and compute Y1 = gα1 and Y2 = gα2 .

4. Compute ḡ = H1(c, R, Y1, Y2, pkA, pkB) ∈ G, and then R̄ = ḡr and Ȳ1 = ḡα1 .

5. Compute h = H2(c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB).

6. Compute s1 = α1 − h · r mod q.

7. Compute s2 = α2 − h · skA mod q.

8. Return the signcryption C = (c, R, R̄, h, s1, s2).

Threshold Unsigncryption: Σ.Uns(params, C, pkA, B
′, {skB,j}Bj∈B′).

Let B′ ⊂ B be a subset of users in B that want to cooperate to unsigncrypt a
signcryption C = (c, R, R̄, h, s1, s2). They proceed as follows.

1. Each Bj ∈ B′ computes ḡ = H1(c, R, gs1 ·Rh, gs2 · (pkA)h, pkA, pkB).

2. Each Bj ∈ B′ checks if the following equality holds:

h = H2(c, R, ḡ, R̄, gs1 ·Rh, gs2 · (pkA)h, ḡs1 · R̄h, pkA, pkB)

3. If the equality does not hold, Bj broadcasts (j,⊥).

4. Otherwise, Bj ∈ B′ broadcasts the value Tj = RskB,j .

If robustness was required, then Bj should also provide a non-interactive zero-
knowledge proof that DiscLogg(DB,j) = DiscLogR(Tj).

5. If there are not t valid shares, then stop and output ⊥. From t valid values Tj,
different from (j,⊥), recover the value RskB by interpolation in the exponent:

RskB =
∏

Bj∈B′
T
λB
′

j

j , where λB
′

j ∈ Zq are the Lagrange interpolation coefficients.

6. Compute k = H0(R, pkB, R
skB).

7. Return the value m = c⊕ k.

2.3.1 Security Analysis

The unforgeability of our signcryption scheme will be reduced to the hardness of the
Discrete Logarithm (DL) problem, whereas its indistinguishability will be reduced to
the hardness of the Computational Diffie-Hellman (CDH) problem. See Subsection
1.2.1 for a description of these problems.
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Unforgeability.

We are going to prove that our scheme enjoys unforgeability as long as the Discrete
Logarithm problem is hard to solve. The proof is in the random oracle model for the
hash function H2.

Theorem 2.3.1 Let λ be an integer. For any polynomial-time attacker AUNF against
the unforgeability of the new signcryption scheme, in the random oracle model, there
exists a solver ADL of the Discrete Logarithm problem such that

AdvADL(λ) ≥ O
(
AdvAUNF

(λ)2
)
.

Proof. Assuming the existence of an adversaryAUNF that has advantage AdvAUNF
(λ)

in breaking the unforgeability of our scheme, and assuming that the hash function
H2 behaves as a random oracle, we are going to construct an algorithm ADL that
solves the Discrete Logarithm problem in G. Below figure shows how ADL executes
the adversary AUNF as a subroutine to solve an instance of this problem.
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Figure 2.1: ADL simulates the environment of AUNF.

Let (G, y) be the instance of the Discrete Logarithm problem in G = 〈g〉 that
ADL receives. The goal of ADL is to find the integer x ∈ Zq such that y = gx. The
algorithm ADL initializes the attacker AUNF by giving params = (q,G, g,H0, `,H1, H2)
to him. Here the hash functions H0 : {0, 1}∗ → {0, 1}` and H1 : {0, 1}∗ → G are
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arbitrarily chosen by ADL. However, H2 is modeled as a random oracle and so ADL
will maintain a table TAB2 to answer the hash queries from AUNF.

Key generation. AUNF chooses a target sender A? and requests the execution of
the key generation protocol for this user. ADL defines the public key of A? as pkA? = y
and sends it to AUNF. Note that the corresponding secret key skA? , which is unknown
to ADL, is precisely the solution to the given instance of the Discrete Logarithm
problem.

Hash queries. Since H2 is assumed to behave as a random function, AUNF can
make queries (c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB) to the random oracle model for H2. ADL
maintains a table TAB2 to reply to these queries. TAB2 contains two columns, one
for the inputs and one for the corresponding outputs h of H2. To reply the query
(c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB), the algorithm ADL checks if this input is already in
TAB2. If so, the matching output h is answered. If not, a random value h ∈ Zq is
chosen and answered to AUNF, and the entry H2(c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB) = h is
added to TAB2.

Signcryption queries. AUNF can make signcryption queries for the sender A?, for
pairs (m, pkB) of his choice, where m is a message and B is a collective of receivers
with public key pkB. To reply to such queries, ADL chooses at random a value r ∈ Z∗q
and computes R = gr, k = H0(R, pkB, (pkB)r) and c = m ⊕ k. Then, ADL must
simulate a valid proof of knowledge to complete the rest of the ciphertext. To do this,
ADL acts as follows:

1. Choose at random h, s1, s2 ∈ Zq and compute the values Y1 = gs1 · Rh and
Y2 = gs2 · (pkA?)h.

2. Compute ḡ = H1(c, R, Y1, Y2, pkA? , pkB), and then the values R̄ = ḡr and Ȳ1 =
ḡs1 · R̄h.

3. If the input (c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA? , pkB) is already in TAB2 (which happens
with negligible probability), go back to Step 1.

4. Otherwise, ‘falsely’ add the relation h = H2(c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA? , pkB) to
TAB2.

The final signcryption that ADL sends to AUNF is C = (c, R, R̄, h, s1, s2).
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Forgery. At some point, AUNF outputs a successful forgery; that is, a public key
pkB? and a signcryption C? = (c?, R?, R̄?, h?, s?1, s

?
2) such that:

• the protocol Σ.Uns(params, C?, pkA? , B
?, {skB?,j}Bj∈B?) outputs m? 6=⊥,

• (pkA? ,m
?, pkB? , C

?) has not been obtained by AUNF during a signcryption query.

Since the forgery is valid, we must have h? = H2(c?, R?, ḡ?, R̄?, Y ?
1 , Y

?
2 , Ȳ

?
1 , pkA? ,

pkB?), where Y ?
1 = gs

?
1 · (R?)h

?
, Y ?

2 = gs
?
2 · (pkA?)h

?
and Ȳ ?

1 = (ḡ?)s
?
1 · (R̄?)h

?
.

Furthermore, since the forgery is different from the ciphertexts obtained during
the signcryption queries, we can be sure that the input query? = (c?, R?, ḡ?, R̄?, Y ?

1 ,
Y ?

2 , Ȳ
?

1 , pkA? , pkB?) for H2 has not been ‘falsely’ added by ADL to TAB2.

Replying the attack. Now the idea is to use the reply techniques introduced by
Pointcheval and Stern in [76]. Without going into the details, ADL will repeat the
execution of the attacker AUNF, with the same randomness but changing the values
output by the random oracle H2 from the query query? on.

With non-negligible probability (quadratic on the probability AdvAUNF
(λ) of the

first successful forgery), the whole process run by ADL would lead to two differ-
ent successful forgeries C? and C ′?, for the same values of c?, R?, ḡ?, R̄?, Y ?

1 , Y
?

2 , Ȳ
?

1 ,
pkA? , pkB? (the input values for H2), but with different H2 outputs h? 6= h′?, and
therefore (possibly different) values s?1, s

?
2, s
′?
1 , s

′?
2 .

We thus have
gs

?
2 · (pkA?)h

?

= Y ?
2 = gs

′?
2 · (pkA?)h

′?
,

which leads to the relation y = pkA? =
(
gs

?
2−s′?2

)1/(h′?−h?)
.

Summing up, ADL can output the value x =
s?2−s′?2
h′?−h? mod q as the solution to the

given instance of the Discrete Logarithm problem. �

Indistinguishability.

We reduce the IND-CCA security of the scheme to the hardness of solving the CDH
problem. The proof is in the random oracle model for the three hash functions
H0, H1, H2. The conclusion is that, under the Computational Diffie Hellman As-
sumption for our group G = 〈g〉, the new signcryption scheme has IND-CCA security.

Theorem 2.3.2 Let λ be an integer. For any polynomial-time attacker AIND-CCA

against the IND-CCA security of the new signcryption scheme, in the random oracle
model, there exists a solver ACDH of the Computational Diffie-Hellman problem such
that

AdvACDH (λ) ≥ AdvAIND-CCA
(λ)/2.
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Proof. Assuming the existence of an adversary AIND-CCA that has advantage
AdvAIND-CCA

(λ) in breaking the IND-CCA security of our scheme, and assuming that
hash functions H0, H1, H2 behave as random oracles, we are going to construct an
algorithm ACDH that solves the Computational Diffie-Hellman problem.
ACDH receives as input G, ga, gb, where G = 〈g〉 is a cyclic group of prime order

q. The goal of ACDH is to compute gab. ACDH initializes the attacker AIND-CCA by
giving params = (q,G, g,H0, `,H1, H2) to him. Here the hash functions H0, H1 and
H2 will be modeled as random oracles; therefore, ACDH will maintain three tables
TAB0, TAB1 and TAB2 to answer the hash queries from AIND-CCA.

Let B? = {B1, . . . , Bn} be the target collective, and B̃ = {B1, . . . , Bt−1} ⊂ B? be
the subset of corrupted members of B?. The algorithm ACDH defines the public key
of B? as pkB? = gb. This means that skB? is implicitly defined as b. For the corrupted
members of B?, the shares {skB?,j}Bj∈B̃ are chosen randomly and independently in Zq.
Using interpolation in the exponent, all the values DB?,j = gskB?,j can be computed,
for all the members Bj ∈ B?, corrupted or not.

Hash queries. ACDH creates and maintains three tables TAB0, TAB1 and TAB2 to
reply the hash queries from AIND-CCA. All the hash queries are processed by ACDH in
the same way: given the input for a hash query, the algorithm ACDH checks if there
already exists an entry in the corresponding table for that input. If this is the case,
the existing output is answered. If this is not the case, a new output is chosen at
random and answered to AIND-CCA, and the new relation between input and output is
added to the corresponding table.

For the particular case of H1 queries, the corresponding outputs ḡ are chosen as
random powers of gb. That is, ACDH chooses at random a fresh value β ∈ Z∗q and
computes the new output of H1 as ḡ = (gb)β. The value β is stored as an additional
value of the new entry in table TAB1.

Whenever ACDH receives a H0 query whose two first elements are ga and gb, the
third element of the query is added to a different output table TAB?, which will be
the final output of ACDH .

Unsigncryption queries. For an unsigncryption query (pkA, C) sent for the target
collective B?, where C = (c, R, R̄, h, s1, s2), the first thing to do is to check the validity
of the zero-knowledge proof (h, s1, s2); that is, to check if h = H2(c, R, ḡ, R̄, gs1 ·Rh, gs2 ·
(pkA)h, ḡs1 · R̄h, pkA, pkB?), where ḡ = H1(c, R, gs1 ·Rh, gs2 · (pkA)h, pkA, pkB?) = (gb)β,
for some value β known by ACDH . If this equation does not hold, then the answer to
the query is ⊥.

Otherwise, ACDH has to give to AIND-CCA the values RskB?,j , for all Bj ∈ B?. For
the corrupted members Bj, j = 1, . . . , t − 1, such values can be easily computed by
ACDH , because it knows skB?,j. Note now that the value RskB? can be computed by
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ACDH as R̄1/β. In effect, since the zero-knowledge proof is valid, this means that
DiscLogg(R) = DiscLogḡ(R̄), where ḡ = gbβ, and so Rbβ = R̄. Now, knowing RskB?

and RskB?,j for j = 1, . . . , t − 1, the algorithm ACDH can compute the rest of values
RskB?,j , for j = t, t+1, . . . , n, by interpolation in the exponent. Once this is done, the
rest of the unsigncryption process can be easily completed by ACDH , who obtains a
message m and sends all this information to AIND-CCA.

Challenge. At some point, AIND-CCA outputs two messages m0,m1 of the same
length, along with a key pair (skA? , pkA?) for a sender A?. To produce the challenge
ciphertext C?, the algorithm ACDH defines R? = ga and then chooses at random the
values c? ∈ {0, 1}`, h?, s?1, s?2 ∈ Zq and β? ∈ Z∗q. After that, ACDH defines ḡ? = gβ

?
,

R̄? = (ga)β
?
, Y ?

1 = gs
?
1 · (R?)h

?
, Y ?

2 = gs
?
2 · (pkA?)h

?
and Ȳ ?

1 = ḡs
?
1 · (R̄?)h

?
.

If either the input (c?, R?, Y ?
1 , Y

?
2 , pkA? , pkB?) already exists in TAB1, or the input

(c?, R?, ḡ?, R̄?, Y ?
1 , Y

?
2 , Ȳ

?
1 , pkA? , pkB?) already exists in TAB2, the algorithm ACDH

goes back to choose at random other values for c?, h?, etc. Finally, the relation
ḡ? = H1(c?, R?, Y ?

1 , Y
?

2 , pkA? , pkB?) is added to TAB1 and the relation h? = H2(c?, R?,
ḡ?, R̄?, Y ?

1 , Y
?

2 , Ȳ
?

1 , pkA? , pkB?) is added to TAB2. The challenge ciphertext that ACDH
sends to AIND-CCA is C? = (c?, R?, R̄?, h?, s?1, s

?
2).

More unsigncryption queries. AIND-CCA can make more hash and unsigncryp-
tion queries, which are answered exactly in the same way as described before the
challenge phase. The only delicate point is that ACDH could not answer to a valid
unsigncryption query C = (c, R, R̄, h, s1, s2) for which the value of ḡ = H1(c, R, gs1 ·
Rh, gs2 · (pkA)h, pkA, pkB?) = ḡ?, because this value does not have the necessary form
(gb)β. But this happens only if the two inputs of H1, in both the challenge ciphertext
and in this queried ciphertext, are the same. Since both zero-knowledge proofs are
valid, we would also have that the value of R̄ is equal in both cases, and therefore the
values of h, s1, s2, pkA would also be equal. The conclusion is that the unsigncryption
query C would be exactly the challenge ciphertext, and this query is prohibited to
AIND-CCA.

Final analysis. Finally, AIND-CCA outputs a guess bit b′. We are assuming that
AIND-CCA succeeds with probability significantly greater than 1/2 (random guess).
Since H0 is assumed to behave as a random function, this can happen only if AIND-CCA

has asked to the random oracle H0 the input corresponding to the challenge C?. This
input is (ga, gb, gab). Therefore, with non-negligible probability AdvAIND-CCA

(λ)/2, the
value gab is in the table TAB? constructed by ACDH , and therefore the output of
ACDH contains the correct answer for the given instance of the CDH problem. As
the authors of [88] indicate, we could use the Diffie-Hellman self-corrector described
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in [86] to transform this algorithm ACDH into an algorithm that only outputs the
single and correct solution to the CDH problem. �

2.4 A Scheme in the Standard Model

The security of the scheme in the previous section has been proved in the random
oracle model, which is an heuristic model, not a realistic one. Therefore, schemes
enjoying security in the standard model are much preferable. We design and analyze in
this section the first signcryption scheme with (t, n)-threshold unsigncryption enjoying
full security in the standard model.

The rationale for the design of this second scheme is the following one. Boneh,
Boyen and Halevi showed in [12] how to design threshold decryption schemes with
CCA security in the standard model, by adapting the strategy proposed by Canetti,
Halevi and Katz in [21]. They propose to generate a key-pair (s̃k, ṽk) for some strongly
secure one-time signature scheme to encrypt a message M . Then ṽk is used to derive
an identity id, and the message M is encrypted for identity id, by using a selectively-
secure identity-based encryption scheme such as the one presented in [11]. The result-
ing ciphertext C̃ is signed with s̃k, leading to a signature θ̃. Both ṽk and θ̃ are added
to C̃. The set of receivers share the master secret key of the identity-based encryption
scheme. To decrypt, they first verify that the signature θ̃ on C̃ is correct under key
ṽk; if this is the case, they can cooperate to derive the secret key for identity id and
then decrypt C̃ to recover the plaintext M .

To implement the primitive of signcryption with threshold unsigncryption, the
idea is that the sender A signs the message C̃||pkA||pkB||ṽk with a strongly secure
signature scheme, obtaining θ, and then the (one-time) signature θ̃ is computed on
C̃||pkA||pkB||θ. The final signcryption is C = (C̃, ṽk, θ, θ̃). With this technique, the
receivers will be convinced of the authorship of sender A because even insider attacks
can be prevented.

Although a more generic construction could have been described by using in a
black-box way the primitives of (one-time) signature schemes and identity-based en-
cryption with threshold key generation, it turns out that the only realization of the
later primitive in the standard model is the specific scheme in [12], using bilinear
pairings. For this reason, and for the sake of clarity in the presentation, it has
been decided to describe the new signcryption scheme directly instantiated with the
pairing-based scheme in [12]. The protocols of the scheme are detailed below.

Setup: Σ.St(1λ).

Given λ ∈ N, a cyclic bilinear group G = 〈g〉 of prime order p, such that p is λ bits
long, is chosen. This means that there exists a bilinear map e : G×G→ GT for some
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group GT . Let H : {0, 1}∗ → Z∗p be a collision-resistant hash function. Two more
generators h, g2 ∈ G are randomly selected.

Let Θ = (Θ.KG,Θ.Sign,Θ.Vfy) be a strongly unforgeable signature scheme, and
let Θ̃ = (Θ̃.KG, Θ̃.Sign, Θ̃.Vfy) be a strongly secure one-time signature scheme. Note
that we could take Θ̃ = Θ.

The output of the protocol is params = (p,G, g,GT , e,H, h, g2,Θ, Θ̃).

Key Generation: Σ.KG(params, A, ‘single’) and Σ.KG(params, B, n, t, ‘collective’).
For an individual user A, the key generation protocol of the signature scheme Θ is
executed, and the resulting signing and verification keys are defined as the secret and
public keys for user A. That is, (skA, pkA)← Θ.KG(1λ).

For a collective B = {B1, . . . , Bn} of n users, the common public key is computed
as pkB = gαB for some random value αB ∈ Z∗p that will remain unknown to the
members of B. This value αB is distributed in shares {αB,j}Bj∈B through Shamir’s
(t, n)-threshold secret sharing scheme [82]. In particular, for every subset B′ ⊂ B
containing at least t users, there exist values λB

′
j ∈ Z∗q such that αB =

∑
Bj∈B′

λB
′

j αB,j.

The public output of this protocol is pkB, whereas each user Bj ∈ B privately receives
and stores his share skB,j = g

αB,j
2 of the secret key skB = gαB2 . Again, the key

generation process for a collective B can be performed by a trusted dealer, or by the
members of B themselves, by using the techniques in [36].

Both solutions allow the publication of the values DB,j = gαB,j , for j = 1, . . . , n.
These values would be necessary if robustness of the threshold unsigncryption process
was required.

Signcryption: Σ.Sign(params,M, pkB, skA), where M ∈ GT .

1. Run (s̃k, ṽk)← Θ̃.KG(1λ) to obtain an ephemeral pair of signing and verification
keys for the one-time signature scheme Θ̃.

2. Derive id = H(ṽk), which is an element in Z∗p.

3. Choose at random s ∈ Z∗p.

4. Compute C1 = gs, C2 = M · e(pkB, g2)s and C3 =
(
pkidB · h

)s
.

5. Use skA to compute a signature θ on the message C1||C2||C3||pkA||pkB||ṽk for
the scheme Θ. That is, θ ← Θ.Sign(skA, C1||C2||C3||pkA||pkB||ṽk).

6. Use the ephemeral secret key s̃k to compute a signature θ̃ on the message
C1||C2||C3||pkA||pkB||θ for the scheme Θ̃. That is, θ̃ ← Θ̃.Sign(s̃k, C1||C2||
C3||pkA||pkB||θ).

7. Return the signcryption C = (C1, C2, C3, ṽk, θ, θ̃).
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Threshold Unsigncryption: Σ.Uns(params, C, pkA, B
′, {skB,j}Bj∈B′).

Let B′ ⊂ B be a subset of users in B that want to cooperate to unsigncrypt a
signcryption C = (C1, C2, C3, ṽk, θ, θ̃) sent by user A. They proceed as follows.

1. Each Bj ∈ B′ runs Θ̃.Vfy(ṽk, C1||C2||C3||pkA||pkB||θ , θ̃). If the output is 0, he
broadcasts (j,⊥).

2. Each Bj ∈ B′ runs Θ.Vfy(pkA, C1||C2||C3||pkA||pkB||ṽk , θ). If the output is 0,
he broadcasts (j,⊥).

3. Each Bj ∈ B′ derives id = H(ṽk) and checks if e(C3, g) = e(pkidB · h,C1). If
this equality does not hold, Bj broadcasts (j,⊥).

4. Each Bj ∈ B′ chooses rj ∈ Zp at random and broadcasts the tuple (j, ω0,j, ω1,j),
where

ω0,j = skB,j · (pkidB · h)rj and ω1,j = grj

If robustness was required, the correctness of this tuple could be publicly verified
by checking if e(ω0,j, g) = e(DB,j, g2) · e(pkidB · h, ω1,j).

5. If there are not t valid shares, then stop and output ⊥. From t valid tuples
{(j, ω0,j, ω1,j)}Bj∈B′ , one can consider the Lagrange interpolation coefficients

λB
′

j ∈ Zq such that skB =
∏

Bj∈B′
sk
λB
′

j

B,j .

6. Compute ω0 =
∏

Bj∈B′
ω
λB
′

j

0,j and ω1 =
∏

Bj∈B′
ω
λB
′

j

1,j .

[Note that ω0 = skB · (pkidB · h)r̃ and ω1 = gr̃, being r̃ =
∑

Bj∈B′
λB
′

j rj.]

7. Return the message M = C2 · e(C3,ω1)
e(C1,ω0)

.

It is important to point out that the threshold unsigncryption protocol is non-
interactive, in the sense that each receiver Bj can do his secret part of the unsign-
cryption task independently of the other receivers.

2.4.1 Security Analysis

The unforgeability of this signcryption scheme will be reduced to the strongly unforge-
ability of the underlying signature schemes used in the scheme, whereas its indistin-
guishability will be reduced to the hardness of the Decisional Bilinear Diffie-Hellman
(DBDH) problem. See Subsections 1.4.2 and 1.2.1 for a description of these problems.
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Unforgeability.

We are going to prove in the following that the scheme Σ enjoys unforgeability as
long as the signature schemes Θ and Θ̃ are strongly unforgeable.

Theorem 2.4.1 Let λ be an integer. For any polynomial-time attacker AUNF against
the unforgeability of the new signcryption scheme, making Q signcryption queries,
there exists an attacker FΘ against Θ or an attacker FΘ̃ against Θ̃, such that

AdvFΘ
(λ) +Q · AdvFΘ̃

(λ) ≥ AdvAUNF
(λ).

Proof. Assuming the existence of an adversary AUNF against the unforgeability of
the scheme, we are going to construct a forger FΘ against the signature scheme Θ.
FΘ receives as input a verification key vk obtained from an execution (sk, vk) ←

Θ.KG(1λ), and has access to a signing oracle Θ.Sign(sk, ·) for messages of its choice.
The algorithm FΘ runs the setup protocol params ← Σ.St(1λ) and initializes the
attacker AUNF by giving params to it.

Key generation. AUNF chooses a target sender A? and requests the execution of
the key generation protocol for this user. FΘ defines the public key of A? as pkA? = vk
and sends it to AUNF.

Signcryption queries. AUNF can make signcryption queries for the sender A?,
for pairs (Mi, pkBi) of its choice, where Mi is a message and Bi is a collective
of receivers with public key pkBi . To reply such queries, FΘ runs steps 1-4 of
the signcryption protocol Σ.Sign(params,Mi, pkBi , skA?), obtaining consistent values

s̃ki, ṽki, C1,i, C2,i, C3,i. After that, FΘ queries its signing oracle with message mi =
C1,i||C2,i||C3,i||pkA?||pkBi ||ṽki, and obtains as answer a valid signature θi for the sig-
nature scheme Θ and public key pkA? .

Then, FΘ can run step 6 of the signcryption protocol: θ̃i ← Θ̃.Sign(s̃ki, C1,i||
C2,i||C3,i||pkA? ||pkBi ||θi). The final signcryption that FΘ sends to AUNF is Ci =

(C1,i, C2,i, C3,i, ṽki, θi, θ̃i).

Forgery. At some point, and with probability ε = AdvAUNF
(λ), the attacker AUNF

outputs a successful forgery; that is, a public key pkB? and a signcryption C? =

(C?
1 , C

?
2 , C

?
3 , ṽk

?
, θ?, θ̃?) such that:

• the protocol Σ.Uns(params, C?, pkA? , B
?, {skB?,j}Bj∈B?) outputs M? 6=⊥,

• (pkA? , pkB? , C
?) has not been obtained by AUNF during a signcryption query.
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Let us define m? = C?
1 ||C?

2 ||C?
3 ||pkA?||pkB?||ṽk

?
. We can distinguish two cases.

First, with probability ε1 we can have (m?, θ?) 6= (mi, θi), for all messages mi that
FΘ has queried to its signing oracle. Then FΘ has obtained a valid and new signature
(m?, θ?) for the scheme Θ and public key pkA? . Therefore, ε1 ≤ AdvFΘ

(λ).
Otherwise, with probability ε2 = ε− ε1, we can have (m?, θ?) = (mi, θi) for some

of the Q messages mi that FΘ has queried to its signing oracle. In this case, since
the forgery by AUNF is valid, the only possibility is θ̃? 6= θ̃i. In this case, it is easy
to construct a forger FΘ̃ against the strong one-time unforgeability of Θ̃: this forger

receives as input a target verification key ṽk
′
, then guesses the correct signcryption

query i, uses its only access to a signing oracle to obtain the corresponding signature
θ̃i for this query, and uses other ephemeral key pairs (s̃k, ṽk) to reply the rest of
signcryption queries. If the guess of i is correct (which happens with probability
1/Q), then this second kind of forgery by AUNF leads to a valid forgery by FΘ̃ against
scheme Θ̃. Therefore, we have AdvFΘ̃

(λ) ≥ ε2/Q.
Summing up, we have AdvAUNF

(λ) = ε = ε1 + ε2 ≤ AdvFΘ
(λ) + Q · AdvFΘ̃

(λ), as
desired. �

Indistinguishability.

We reduce the IND-CCA security of the scheme to the hardness of solving the DBDH
problem in groups G,GT and to the security of the underlying signature scheme Θ̃,
which we assume to be one-time strongly secure. The proof is in the standard model.

Theorem 2.4.2 Let λ be an integer. For any polynomial-time attacker AIND-CCA

against the IND-CCA security of the new signcryption scheme, there exists a solver
ADBDH of the Decisional Bilinear Diffie-Hellman problem or an attacker FΘ̃ against
Θ̃ such that AdvADBDH (λ) + AdvFΘ̃

(λ) ≥ AdvAIND-CCA
(λ).

Proof. Assuming the existence of an adversary AIND-CCA that has advantage
AdvAIND-CCA

(λ) in breaking the IND-CCA security of our scheme, we construct an algo-
rithm ADBDH that solves the Decisional Bilinear Diffie-Hellman problem in groups
G,GT .
ADBDH receives as input ga, gb, gc, R, where R is either e(g, g)abc or a random

element in GT . The goal of ADBDH is to distinguish between these two cases.
ADBDH runs the key generation protocol for the signature scheme Θ̃, obtaining

(s̃k
?
, ṽk

?
) ← Θ̃.KG(1λ). Then ADBDH chooses at random a suitable hash function

H : {0, 1}∗ → Z∗p and a suitable signature scheme Θ. The value id? = H(ṽk
?
)

is computed. ADBDH defines g2 = ga, chooses at random γ ∈ Z∗p and defines

h = (gb)−id
? · gγ. Then ADBDH initializes the attacker AIND-CCA by giving params =

(p,G, g,GT , e,H, h, g2,Θ, Θ̃) to it.
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Key generation. Let B? = {B1, . . . , Bn} be the target collective and B̃ = {B1,
. . . , Bt−1} ⊂ B? be the subset of corrupted members of B?, chosen by AIND-CCA. The
algorithm ADBDH defines the public key of B? as pkB? = gb. This means that the
secret value αB? is implicitly defined as b. For the corrupted members of B?, the
shares {skB?,j}Bj∈B̃ are computed by first choosing random and independent values

αB?,j ∈ Zp and then computing skB?,j = g
αB?,j
2 . Let f ∈ Zp[X] be the implicit

polynomial, with degree t − 1, that satisfies f(0) = b = αB? and f(j) = αB?,j for
j = 1, . . . , t− 1.

Using interpolation in the exponent and the values pkB? = gαB? = gb and
{αB?,j}Bj∈B̃, all the values DB?,j = gαB?,j could be obtained (if robustness was re-

quired) for all the members Bj ∈ B?.

Unsigncryption queries. Let (pkA, C) be an unsigncryption query sent for the

target collective B?, where C = (C1, C2, C3, ṽk, θ, θ̃). If ṽk = ṽk
?

and 1 ← Θ̃.Vfy(ṽk,
C1||C2||C3||pkA||pkB||θ , θ̃), thenADBDH aborts and outputs a random bit. Otherwise,
ADBDH runs steps 1-3 (which are public verifications) of the unsigncryption protocol.

If (pkA, C) is a valid signcryption and ADBDH has not aborted, we have ṽk 6= ṽk
?

and id = H(ṽk). Since the hash function is assumed to be collision-resistant, we
have id 6= id? as well. Now ADBDH is required to simulate the values that would be
broadcast in an execution of the rest of the protocol. This means simulating consistent
tuples (j, ω0,j, ω1,j) for any Bj ∈ B?, where

ω0,j = skB?,j · (pkidB? · h)rj and ω1,j = grj

for some (randomly uniform) value rj ∈ Zp. For the corrupted members Bj, j =
1, . . . , t− 1, such values can be easily computed by ADBDH , because it knows skB?,j.

For any non-corrupted member Bi, i = t, . . . , n, let λ0, λ1, . . . , λt−1 ∈ Zp be the
Lagrange interpolation coefficients corresponding to the set {0, 1, . . . , t − 1} and in-
terpolation point i. These coefficients can be publicly computed because they are
independent of the (unknown) polynomial f . We have f(i) = λ0f(0) +

∑t−1
j=1 λjf(j).

Now ADBDH can choose a random r̃i ∈ Zp and define

ω0,i = g
−γλ0
id−id?

2 · (pkidB? · h)r̃i ·
t−1∏
j=1

sk
λj
B?,j and ω1,i = g

−λ0
id−id?

2 · gr̃i

It is not difficult to see that these two values (ω0,i, ω1,i) have the form

ω0,i = g
f(i)
2 · (pkidB? · h)ri = skB?,i · (pkidB? · h)ri and ω1,i = gri ,

being ri = r̃i − aλ0

id−id? an implicit but randomly uniform value in Zp.
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Summing up, ADBDH can simulate valid tuples (j, ω0,j, ω1,j) for any Bj ∈ B?.
Once this is done, the rest of the unsigncryption process can be easily completed by
ADBDH , who obtains a message M and sends all this information to AIND-CCA.

Challenge. At some point, AIND-CCA outputs two messages M0,M1 of the same
length, along with a key pair (skA? , pkA?) for a sender A?. To produce the challenge
ciphertext C?, the algorithm ADBDH chooses at random a bit d ∈ {0, 1}, and proceeds
as follows.

1. Define C?
1 = gc, C?

2 = Md ·R and C?
3 = (gc)γ = . . . = (pkid

?

B? · h)c.

Note that (C?
1 , C

?
2 , C

?
3) is a consistent encryption of Mb for identity id? when

R = e(g, g)abc. On the other hand, when R ∈ GT is random, the distribution of
(C?

1 , C
?
2 , C

?
3) is independent of the bit d.

2. Run θ? ← Θ.Sign(skA? , C
?
1 ||C?

2 ||C?
3 ||pkA? ||pkB?||ṽk

?
).

3. Run θ̃? ← Θ̃.Sign(s̃k
?
, C?

1 ||C?
2 ||C?

3 ||pkA?||pkB?||θ?).

4. Send to AIND-CCA the challenge signcryption C? = (C?
1 , C

?
2 , C

?
3 , ṽk

?
, θ?, θ̃?).

More unsigncryption queries. AIND-CCA can make more unsigncryption queries
(pkA, C) 6= (pkA? , C

?) for the target collective B?, where C = (C1, C2, C3, ṽk, θ, θ̃), as

long as the challenge signcryption is not queried. If ṽk 6= ṽk
?
, then these queries are

handled in the same way as explained above.
Otherwise, if ṽk = ṽk

?
and 1 ← Θ̃.Vfy(ṽk, C1||C2||C3||pkA||pkB||θ , θ̃), then

ADBDH aborts and outputs a random bit.

Final analysis. Finally, AIND-CCA outputs a guess bit d′. If d′ = d, then ADBDH
outputs 0 as its answer to the given instance of the DBDH problem. If d′ 6= d, then
ADBDH outputs 1.

Let us denote as δ the probability that AIND-CCA makes an unsigncryption query
for a valid signcryption C = (C1, C2, C3, ṽk, θ, θ̃) such that ṽk = ṽk

?
. In other words, δ

is the probability that ADBDH aborts before AIND-CCA outputs its guess bit d′. Using a
similar argument as in the unforgeability proof, it is easy to see that, in this case, one
can construct a forger FΘ̃ against the one-time signature scheme Θ̃: the input of FΘ̃ is

ṽk
?
, the only access to the signing oracle is used to compute the challenge signcryption,

and any valid unsigncryption query coming from AIND-CCA which involves ṽk
?

leads to
a valid strong forgery of the signature scheme Θ̃. Therefore, we have δ ≤ AdvFΘ̃

(λ).
Let us now compute the probabilities that the output of the constructed solver

ADBDH of the DBDH problem is 0 in the two possible cases. When R = e(g, g)abc,
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then the challenge signcryption is consistent, and consequently we have probability
Pr[ADBDH(g, ga, gb, gc, e(g, g)abc) = 0] = δ · 1

2
+ (1− δ) · (AdvAIND-CCA

(λ) + 1
2
).

Otherwise, when R = T is a random element in GT , the challenge signcryption
is independent of the bit d, so the probability that d′ = d is 1/2, and we have
Pr[ADBDH(g, ga, gb, gc, T ) = 0] = δ · 1

2
+ (1− δ) · 1

2
.

Now we have AdvADBDH (λ) =∣∣Pr[ADBDH(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[ADBDH(g, ga, gb, gc, T ) = 0]
∣∣ =

= (1− δ)AdvAIND-CCA
(λ) = AdvAIND-CCA

(λ)− δ · AdvAIND-CCA
(λ).

Putting all together, we have, as desired:

AdvAIND-CCA
(λ) = AdvADBDH (λ) + δ · AdvAIND-CCA

(λ) ≤

≤ AdvADBDH (λ) + δ = AdvADBDH (λ) + AdvFΘ̃
(λ).

�

2.5 Efficiency of the Schemes and Properties

In this section we discuss some topics related to both threshold unsigncryption schemes
that we have just proposed.

2.5.1 Computational Complexity and Overhead

The two schemes proposed in Sections 2.3 and 2.4 are the first PKI-based threshold
unsigncryption schemes which achieve a high enough level of security. In particular,
generic constructions obtained by composing a fully secure signature scheme and a
fully secure threshold decryption scheme do not achieve this level of security, as we
have shown in Section 2.2.

Therefore, our first goal was to show that the maximum level of security for
threshold unsigncryption schemes can indeed be achieved. This is what we have
done with our two proposals. Regarding efficiency, there are no previous schemes
with the same level of security to compare with, so it is not possible to say if the
two new schemes are efficient or not. Table 2.1 summarizes the computational and
communication costs of our schemes (without considering robustness). The costs of
these two schemes should be considered as a benchmark for any future proposal of
threshold unsigncryption scheme.

To measure the efficiency of the second scheme, in Section 2.4, we have taken as
the signature scheme Θ the scheme in [15], and as the one-time signature scheme Θ̃
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cost of cost of Security
Scheme Signcryption |C| Unsigncryption model

(per receiver)

Section 2.3 6 Exp 6λ 8 Exp ROM

Section 2.4 12 Exp + 1 Pa 12λ 11 Exp + 6 Pa Standard

Table 2.1: Efficiency of our two threshold unsigncryption schemes.

the scheme in Appendix B of [68]. In the table, λ denotes the security parameter of
the scheme; i.e., an element in the group G can be represented by λ bits. In the case
of our first scheme, we have considered that the length of the plaintexts is ` = λ, for
simplicity.

We denote the size in bits of a ciphertext C as |C|. For the computational costs,
we just consider exponentiations (denoted as Exp) and bilinear pairing computations
(denoted as Pa, only for the second scheme). The rest of operations (xor, modular
addition and multiplication, hash computations) are not considered because they are
very cheap; they do not affect the real efficiency of the schemes. Roughly speaking,
we can say that the scheme in Section 2.4, whose security is proven in the standard
model, is twice less efficient than the scheme in Section 2.3, whose security is proved
in the random oracle model (ROM).

2.5.2 Splitting the Unsigncryption Protocol for Auctions
Systems

If we go back to the description of the Threshold Unsigncryption protocol of the
two new schemes, in Sections 2.3 and 2.4, we can easily distinguish two parts in
those protocols. Steps 1-3 correspond to the (public) verification procedure; these
authentication steps can be run by any (individual) party, not necessarily inside the
set B of intended receivers. In other words, no secret information is needed as input
to run these three steps; the only inputs are the ciphertext and the public key of the
sender. Then, Steps 4-7 correspond to the (secret) decryption procedure, which in
this case requires the participation of at least t members of the set B of intended
receivers. The important point here is that the identity or public key pkA of the
sender is not used at all for the execution of Steps 4-7. In some sense, the public key
pkA of the sender could be removed from the process once the ciphertext has been
accepted as valid, in Step 3. After that, the identity of the sender would be unknown
during the rest of the unsigncryption process.

In this way, the unsigncryption part of our two new schemes could be split into
two parts. The first one could be run by an entity T /∈ B, who would discard invalid
ciphertexts and remove (or store privately) the identities of the senders. In the second
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part, only valid (and anonymized) ciphertexts would reach the set B of receivers, who
would jointly decrypt the ciphertext to recover the original plaintexts, maybe without
knowing at any moment who are the senders of the messages.

As far as we know, these are the first signcryption schemes (with either individual
or threshold unsigncryption) enjoying this property, which may be of interest in some
applications requiring some level of anonymity or privacy, such as electronic auctions.

In an electronic auction system, participants send their confidential and authen-
ticated bids for a product. At the end of the process, some (distributed) entity B
detects the highest bid and identifies the author of that bid, who wins the right to
buy the product for that price. Identities of the authors of the remaining bids should
remain hidden. To increase the confidentiality of the process, entity B can consist of
a set of n entities, working in a (t, n)-threshold fashion.

Let us assume that such an auction system is implemented by using a signcryp-
tion scheme where the unsigncryption protocol can be split into two phases, in such
a way that the decryption part is anonymized. An external authority (or machine)
T , different from B, can be in charge of the first part of the unsigncryption pro-
cess: T receives the ciphertexts from the participants in the auction, verifies that
the participants are in the list of admitted participants, and runs the verification
part of the unsigncryption. Invalid ciphertexts are discarded, and valid ciphertexts
are anonymized and forwarded to the auction decryption entity B. Entity T must
privately store a table (pkA, C), relating the public keys of the participants with their
ciphertexts. Optionally, the anonymized ciphertexts that are forwarded to B (or a
hashed version of them) can be published so that all the participants in the auction
can verify that their bids have been taken into account.

The decryption process is then run by entity B, in an individual or threshold
fashion, and the highest bid among the resulting (anonymous) bids is selected. The
winning bid and its corresponding ciphertext C are announce by B, and then T can
search in its table and recover the identity of the author of the winning bid. Assuming
the honesty of entity T , the anonymity of the participants that do not win the auction
is clearly preserved, even in front of the decryption authority B. Since the role of T
can be easily implemented by a secure piece of hardware, trusting entity T is not a
very strong assumption.

This splitting property could also be applied in electronic voting systems, where
signcryptions contain now the ballots of the persons who have obtained legal autho-
risation to take part in the electronic vote. These systems could work in a similar
way as explained above to ensure the anonymity of the voters.
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2.6 Applications to Digital Signatures with

Distributed Verification

The usual implementations of digital signature schemes allow universal verification;
that means that everybody can verify the validity of the signature using the verifi-
cation protocol, which requires as inputs the message, the signature and the public
key of the signer. In fact, in some applications the universal verification property
can be too strong if the signer wants some level of anonymity and privacy. Maybe
the signer does not want that everybody can check the authenticity of his signature
because of the possible consequences of the signed document. For example, when
supporting a public declaration to go on strike, a company worker might wish that
the other employees of his level are able to verify his signature, but that the boss
of his company is not. Or when infiltrating a rumour to the yellow press, the per-
son who spreads this rumour might ask for the collaboration of a certain subset of
journalists so that the verification is successful and that the rumour converts into a
headline. The person who spreads the rumour might even wish to stay anonymous,
by only passing the information to those who belong to a certain trustworthy set of
people, but without revealing his identity. Examples can be found in signatures on
medical records, in statements of witness in a judgement, economic information and
most personal/business transactions which contains information personally sensitive
to the signers.

With the intention of giving the signer a certain degree of anonymity, in this sec-
tion we propose a different approach to restrict the verification in a digital signature
scheme. Taking into account the liability of the signed document, the signer prefers
to restrict the signature capacity in two different ways. First, a set of verifiers is
established; second, a family (access structure) of a subset of verifiers who are au-
thorized to verify is defined. In this way, two properties must be satisfied after the
signer has obtained and published the signature. On the one hand, if the verifiers
of an authorized subset collaborate, they can verify the validity of the signature and
be convinced that it comes from the real signer, since the scheme is unforgeable and
nobody except the signer could have produced a valid signature. On the other hand,
a group outside the verifiers of an authorized subset (an unauthorized subset) can
not obtain any information about the validity of a signature for a certain message,
although they collaborate with each other. We refer to these schemes as signatures
with distributed verification.

Let us define now this kind of signature schemes for a single signer A and a set B
of verifiers, where a linear secret sharing scheme on the access structure ΓB is used to
share the secret. A signature scheme with distributed verification Θ = (Θ.St,Θ.KG,
Θ.Sign,Θ.Vfy) consists of four probabilistic polynomial-time algorithms:
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• The randomized setup algorithm Θ.St takes a security parameter λ ∈ N and
outputs some public parameters params that will be common to all the users
in the system. We write params ← Θ.St(1λ) to denote an execution of this
algorithm.

• The key generation algorithm Θ.KG is different for an individual signer A than
for a collective B of verifiers. A single user A will get a pair (skA, pkA) of secret
and public keys. In contrast, for a set B = {B1, . . . , Bn} of n verifiers, the out-
put will be a single public key pkB for the group, and then a secret share skB,j for
each user Bj, for j = 1, . . . , n, and for the access structure ΓB. The key genera-
tion process for the collective B can be either run by a trusted third party, or by
the users in B themselves. We will write (skA, pkA)← Θ.KG(params, A, ‘single’)
and ({skB,j}1≤j≤n, pkB)← Θ.KG(params, B,ΓB, ‘collective’) to refer to these two
key generation protocols.

• The signing algorithm Θ.Sign takes as input params, a message M , the public
key pkB of the intended verifier group B, and the secret key skA of the signer.
The output is a signature θ. We denote an execution of this algorithm as
θ ← Θ.Sign(params,M, pkB, skA).

• The distributed verification algorithm Θ.Vfy is an interactive protocol run by
some subset of users B′ ⊂ B. The common inputs are params, a message M , a
signature θ and the public key pkA of the signer, whereas each user Bj ∈ B′ has
as secret input his secret share skB,j. The output will be 1 if θ(M) is a valid
signature of M and 0 otherwise. We write 1/0 ← Θ.Vfy(params,M, θ, pkA, B

′,
{skB,j}Bj∈B′) to refer to an execution of this protocol.

This kind of signatures must verify Correctness : whenever the signature with
distributed verification is generated by following the protocols correctly, the result
of the verification is always 1 if the subset of verifiers is authorized to perform a
verification.

Both Unforgeability and Privacy properties are held by this kind of signatures.
Among all the proposed definitions of unforgeability we consider the strongest one,
i.e. existential unforgeability against chosen message attacks (See Subsection 1.4.2).
Related to the privacy (sometimes called Invisibility or Indistinguishability), the idea
behind it is that a subset which is not in the corresponding access structure does
not obtain any information about if the signature is valid or not. Or in other words,
this property satisfies that if a signature θ is sent from A to B, an adversary can not
distinguish if θ is a signature of the message M , even in the case that this message
M has been chosen by the adversary, or a signature of any other message.
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2.6.1 Relation with Threshold Unsigncryption

This kind of signatures are a cryptographic primitive very similar, but weaker, to
signcryption schemes with threshold unsigncryption because now it is not necessary
that the message remains secret. The key point here is to replace the step where the
message is hidden using a key one time, in the encryption part of the signcryption
scheme, by a message authentication code 1 (MAC) of the message using the same
key one time, in the signature scheme.

We use the signcryption schemes with threshold unsigncryption presented in sec-
tions 2.3 and 2.4 to build two new signature schemes with threshold verification,
whose security is based on the same computational problems and achieve the same
level of security (either in the random oracle model or in the standard model).

More in detail, in the scheme defined in 2.3 the value c = m⊕ k is now obtained
using a hash funcion H ′ : {0, 1}∗ → {0, 1}κ as c = H ′(k,m). In this case, the two
first elements (c, R) of the signature θ(m) = (c, R, R̄, h, s1, s2) for the message m
is the MAC. For the other scheme defined in 2.4, the value C2 = M · e(pkB, g2)s

is obtained using a hash function H ′′ : {0, 1}∗ × GT → {0, 1}∗ for a group GT as
C2 = H ′′(M, e(pkB, g2)s). Now the MAC is the tuple (C1, C2, C3) with the three
first elements of the signature σ(m) = (C1, C2, C3, ṽk, θ, θ̃) for the message m. These
results are published in [42] and [43]. A detailed description of these schemes and
their security proofs can be found there.

2.6.2 Related Work

Different kind of signatures which restrict the (universal) verification in some way
already exist. Some of the signatures which give certain degree of anonymity to the
signer are the following.

Designated Verifier Signatures, denoted by DVS, were introduced in [49] and are
intended to a specific verifier, who is the only one able to check their validity. An
extension is the case of Multi-Designated Verifier Signatures [57], MDVS in short,
where a set of different verifiers exists. A generalization of these signatures to Strong
Designated Verifier Signatures, denoted by SDVS, where the indistinguishability (or
invisibility) property is taken into account, is also available. In an Undeniable Sig-
nature [24], denoted by US, the signature can not be verified without the signer’s
cooperation. Designated Confirmer Signatures, DCS in short, appeared in [23] and
use a confirmation/disavowal protocol with the assistance of a semitrusted third party
to overcome the concept that signers might be unavailable or unwilling to cooperate
and hence signatures would no longer be verifiable, as e.g. in undeniable signatures.

1A MAC algorithm accepts as input a symmetric secret key and an arbitrary-length message to
be authenticated, and outputs a tag value used to authenticate.
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Comparing some of the above signatures with our primitive, threshold (t, n)-
signatures with distributed verification, we can see that if we use our primitive but
now setting n = 1 and t = 1, then we have only one verifier which can generate himself
his keys without any problem. In this particular case we obtain a strong designated
verifier signature, SDVS. In the case of (1, n)-signatures with distributed verification,
for n > 1, every receiver of the signature can verify it by himself. That is, we obtain
the same functionality that a MDVS but with the following differences: In the sig-
natures with distributed verification there is a key generation protocol, where every
verifier from a group receives a share of the secret key related to the unique public
key for this group, but in the MDVS every verifier generates his pair of secret/public
key individually. Furthermore, the group of verifiers and the access structures are
fixed from the begining in the signatures with distributed verification, whereas in the
MDVS, the signer chooses (ad-hoc) the participants who can verify the signature.
This point allows that in the signatures with distributed verification the length of
the signature and the computational cost of the signature protocol are independent
of the number of verifiers.



Chapter 3

New Results for Secret Sharing

In the design of distributed public key cryptosystems, a key ingredient are secret shar-
ing schemes. Most of the secret sharing schemes proposed and analyzed so far enjoy
unconditional (or information-theoretic) security, which means that the value of the
shared secret is perfectly hidden to an (even computationally unbounded) adversary
who controls any non-authorized subset of users. The reason for that is because se-
cret sharing schemes are usually used to build other cryptographic primitives whose
security is proved only when the underlying secret sharing scheme is unconditional
secure. Since the main application of secret sharing schemes in this thesis is their use
in the design of distributed cryptosystems (that can enjoy computational security, at
most), it seems that requiring unconditional security for the underlying secret sharing
schemes might be innecessarily restrictive for us.

This chapter presents how one or more secrets can be shared over a set of partic-
ipants. More specifically, verifiable secret sharing schemes and multi-secret sharing
schemes are studied and different proposals, whose security is proved in a computa-
tional framework, are presented for them.

A publicly verifiable secret sharing scheme is a sharing scheme, where not only
the participants but anybody can verify the validity of the shares. The first section
proposes a simple publicly verifiable secret sharing scheme based on the homomorphic
properties of the Paillier’s encryption scheme, whose security is based on the decisional
composite residuosity assumption. The process of verification in this scheme is much
simpler than in the other known schemes. Furthermore, this process is made non-
interactive without using any additional zero-knowledge proof (show a statement to
be true without revealing anything other than the veracity of the statement to be
proven).

In the following sections we work with multi-secret sharing schemes, MSSS in
short, which are protocols that share multiple secrets (instead of one as in traditional
schemes) among a set of participants. These kind of schemes have been studied by the

49
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cryptographic community mostly from a theoretical perspective: different models and
definitions have been proposed, for both unconditional (information-theoretic) and
computational scenario. Works focusing on MSSS in the computational scenario are
mostly practical [18, 39, 62] and they lack a formal security analysis of the proposed
schemes. In the information-theoretic scenario, there are some results [9, 67] that
are analogous to what happens in the case of standard secret sharing. That is,
multi-secret sharing schemes with unconditional security produce very long shares for
some important access structures. We will show in Section 3.2, that this situation
also happens for multi-threshold secret sharing schemes when we relax the notion
of unconditional security and then we will move to the scenario of computational
security to perform this issue.

We propose in Sections 3.3, 3.4 and 3.6 three different multi-secret sharing schemes
in the computational scenario, denoted by Ω1, Ω2 and Ω3 respectively, which are
inspired by previous work in this area. Namely, on the one hand, Ω1 is obtained by
running ` parallel instances of (a simple modification of) the secret sharing scheme of
Krawczyk [55]; on the other hand, Ω2 and Ω3 can be thought of as a generalization
of some previous MSSSs in the computational scenario [39, 62]. We provide a formal
security analysis for all three schemes. As far as we know, this is the first rigorous
security analysis for multi-secret sharing schemes in the computational setting. We
show that they have provable security: the first two schemes Ω1 and Ω2 use an
underlying symmetric encryption scheme Π, and we prove the exact relation between
the security of Π and the security of each of these MSSSs. This fact allows us to
properly compare in Section 3.5 the two schemes Ω1 and Ω2 in terms of efficiency
and security, and to recommend the use of one MSSS or the other depending on
the specific situation in which such a scheme must be used. Last proposed scheme
Ω3 is a slight modification of Ω2 and [62]. The scheme Ω3 uses hash functions to
make the protocols more efficient and is presented in Section 3.6 with a formal proof
of computational security in the random oracle model. Although we describe and
analyze all these MSSSs for the case of threshold access structures, it can be easily
extended to more general access structures (see Section 3.7).

3.1 Publicly Verifiable Secret Sharing from

Paillier’s Cryptosystem

In a secret sharing (SS) scheme there are several participants and a dealer D who
shares them a secret. Verifiable secret sharing (VSS) was proposed in [25] to solve
the problem of dishonest dealers and dishonest participants who try to deceive other
participants. In a publicly verifiable secret sharing (PVSS) not only the participants
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can verify the validity of their shares but also anyone can do it from the public infor-
mation. Note that in a PVSS no private channels between the D and the participants
are assumed.

The originality of the scheme that we propose lies in the holder of the secret
key. When we compare with other PVSS like [33], [81] or [89] we can see that every
participant has a secret key and when the dealer wants to send the shares or other
information, he uses their respective public keys. On the contrary, in our scheme the
dealer has a secret key and when he wants to broadcast the shares, he uses some
information from the participants which they have send him previously.

As long as we are using only one secret/public key, verification procedure is much
simpler than in the other PVSS proposals. This is the main advantage compared to
other similar schemes that were known before this scheme was presented. However,
every participant should hold a public/secret key pair for a signature scheme in order
to allow D to prove that each participant received his share. Potential applications
of this scheme are the same that for any PVSS, like e.g. multi-party computation,
key-escrow cryptosystems and threshold cryptography.

The building blocks of our scheme are the Shamir (t, n)-threshold scheme and the
homomorphic Paillier’s encryption scheme [73]. However, the proposed scheme can
be adapted for more general access structures (vector space access structures) and
other homomorphic encryption schemes.

3.1.1 A Non-Interactive PVSS Scheme

We now proceed to describe a secure (t, n)-threshold PVSS scheme Ω = (Ω.Stp,
Ω.Dist,Ω.Ver,Ω.Rec). We work with a dealer D who shares the secret, the set P =
{P1, . . . , Pn} of n participants and a verifier V who verifies the honestity of D. We
can suppose that V is any person. Taking into account the ideas from [81], we have
four importants steps in a PVSS:

1. The setup algorithm Ω.Stp takes as input a security parameter λ ∈ N, the set
of players P and the threshold access structure Γ and returns the system public
parameters params. We write params← Ω.Stp

(
1λ,P ,Γ

)
to denote an execution

of this algortihm.

2. The distribution of the shares Ω.Dist takes as input params and the secret s to
be distributed. The output of this algorithm is the set of messages {mi}Pi∈P ,
that remains secret to every participant, and the following public informa-
tion: D shares the secret s among the participants in P by publishing the
set of encrypted shares {di}Pi∈P . Moreover, this algorithm also outputs ad-
ditionally public information outpub to be used in the next steps. We write
(outpub, {di}Pi∈P , {mi}Pi∈P)← Ω.Dist (params, s).
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3. The verification of the shares Ω.Ver takes as input params, the public infor-
mation outpub and all the encrypted shares, and outputs 1 if the verification is
successful and 0 when it fails. In this last case the whole protocol is aborted.
Here V verifies non-interactively that the published information is consistent
and that every authorized subset of (honest) participants will recover the same
secret. We write 1/0← Ω.Ver (params, outpub, {di}Pi∈P).

4. The reconstruction of a secret Ω.Rec takes as input params, outpub and also the
messages {mi}Pi∈A and encrypted shares {di}Pi∈A of the participants in some
subset A ⊂ P . The output of this algorithm is a possible value s̃ for the secret.
In this step every participant Pi ∈ A opens his commitment to the others, so that
the other participants in A can compute the share of Pi and verify its validity
(participants whose validity fails are excluded). If enough honest participants
remain in A, every participant in A can recover the secret by himself. We write
s̃← Ω.Rec (params, outpub, {di}Pi∈A, {mi}Pi∈A).

We have two main protocols in this PVSS. The distribution protocol, which is
specified in both steps 2 and 3, and the reconstruction protocol, which is specified in
step 4.

Basic secret sharing schemes require the notions of correctness and secrecy, de-
fined in Subsection 1.5.1, but PVSS schemes require an additional property. This new
property is called verifiability and checks the following two points: First, all qualified
subsets of honest participants will reconstruct the same secret if D passes the verifi-
cation step. Second, only correct shares will be accepted by other participants in the
reconstruction protocol.

Let N = p · q be the same that in the public key of Paillier’s Cryptosystem for
primes p and q, we share with the Shamir (t, n)-threshold scheme in the ring ZN , where
the secret a0 ∈ ZN is hidden in a random polynomial a(x) = a0 +a1x+ · · ·+at−1x

t−1

with coefficients in ZN . Then D gives the value (xi, si) ∈ {1, 2, . . . , n} × ZN to Pi,
where si = a(xi) mod N . For simplicity, we assume in the following calculations that
xi = i. When a subset of t participants Pi1 , . . . , Pit want to reconstruct the secret a0,
then they must solve the system of t linear equations in the t unknowns a0, . . . , at−1

as follows: 
1 xi1 x2

i1
· · · xt−1

i1

1 xi2 x2
i2
· · · xt−1

i2
...

...
...

. . .
...

1 xit x2
it · · · xt−1

it

 .


a0

a1

...

at−1

 =


si1

si2
...

sit


with Vandermonde determinant det(A) =

∏
1≤k<j≤t(xij − xik).
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In order to be able to recover the secret we want that det(A) ∈ Z∗N . In order
to guarantee that det(A) ∈ Z∗N holds, it is sufficient that D chooses p, q such that
n << p, q. And we can force that D chooses these suitable p, q by proving that i - N ,
for all i such that 1 ≤ i ≤ n.

From now on we suppose that i ∈ {1, . . . , n} and j ∈ {0, . . . , t− 1}. We describe
below the algorithms of the PVSS scheme Ω, which uses the underlying Paillier’s
probabilistic encryption scheme Π = (Π.KG,Π.Enc,Π.Dec) 1 (see Subsection 1.3.3).

1. Setup: Ω.Stp
(
1λ,P , t

)
.

Let P = {P1, . . . , Pn} be the set of n participants and let t be the threshold
value. Given a security parameter λ, D runs Π.KG(1λ) obtaining as result the
public key pk = (N, g) and the secret key sk = η. The output of this step is
params = (N, g).

2. Distribution of the shares: Ω.Dist (params, s).
Let s ∈ ZN be the secret to be shared.

(a) Every Pi selects a random pair (mi, ri) ∈ ZN ×Z∗N which remains private,
then publishes the encrypted value ci = Enc(mi, ri).

(b) D selects a random polynomial a(x) = a0 + a1x+ · · ·+ at−1x
t−1 ∈ ZN [X]

which must verify a0 = s and sets si = a(xi) mod N , where every Pi has
the value xi.

(c) D recovers the message mi = Dec(ci) and the randomness ri=

(
ci
gmi

)N−1

mod N . Then he broadcasts di = si + mi mod N , which allows every
participant Pi to compute its own share si.

(d) Finally, D selects random values r′j ∈ Z∗N , which remain private, and

broadcasts Aj = Enc(aj, r
′
j) and ti = r′0 · r′1

i · · · r′t−1
it−1

· ri mod N . Note
that, outpub = ({ci}1≤i≤n, {Aj}0≤j≤t−1, {ti}1≤i≤n).

3. Verification of the shares: Ω.Ver (params, outpub, {di}Pi∈P).

(a) For every participant i, V uses the homomorphic property of Π to check
Enc(di, ti) = ci · A0 · A1

i · · ·Ait−1

t−1 .

(b) V returns 1 if all the above equations hold and 0 otherwise.

1To simplify the notation we use in the following Enc(m, r) to denote the encryption process
Π.Enc(m, pk) = εg(m, r), for a pair (m, r) ∈ ZN × Z∗

N of message m and random variable r, and
Dec(c) to denote the decryption process Π.Dec(c, sk) run by D over the ciphertext c.
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4. Reconstruction of a secret. Ω.Rec (params, outpub, {di}Pi∈A, {mi}Pi∈A).
Let A ⊂ P be a subset of participants in P that want to recover the secret s.
They proceed as follows.

(a) Decryption of the shares: every Pj ∈ A sends (mj, rj) ∈ ZN × Z∗N to the
other participants in A. Every Pj ∈ A checks ck = Enc(mk, rk) for all
Pk ∈ A and defines Bj ⊆ A as the subset of participants that pass the test.
Finally, every Pj computes sk = dk −mk for all Pk ∈ Bj.

(b) Pooling the shares: every Pj ∈ A checks if |Bj| > t. In this case, Pj use the
secret values {sk}Pk∈Bj to recover s = a0 =

∑t
k=1 λ

A
k · sk mod N , where

λAk are the Lagrange interpolation coefficients.

Usually in a PVSS scheme the dealer uses a public encryption scheme to encrypt the
shares, which are decrypted by every participant with its own secret key. This is
not the case in the proposed scheme Ω. Note that the dealer uses here implicitly a
symmetric encryption scheme (one-time pad) to encrypt the shares si. The symmetric
keys mi are generated at the beginning of Ω.Dist by every participant Pi, who encrypts
it using the public Paillier’s encryption scheme Π and sends after that to the dealer.

We assume the existence of a broadcast authentication protocol for our scheme.
We can use e.g. the BiBa broadcast authentication protocol, which allows all receivers
to verify the origin of the data. See [75] for more information. But it is sufficient
to take a broadcast channel without authentication and a digital signature scheme
for the participants to sign their ci in step 2(a) in order to assure that the honest
participants receive their shares.

Correctness of the scheme means that a honest D always passes the verification
procedure, and honest participants are always able to recover the unique secret shared
by an honest D. These requirements can be easily checked for the above scheme.

3.1.2 Unconditional Verifiability

We see in the next two points that if D passes the verification step then all the players
must be honest in this PVSS, i.e, on the one hand, the dealer must be honest in the
distribution protocol and, on the other hand, the participants must be honest in the
reconstruction protocol.

Distribution protocol.

In the following we are going to prove that when D is dishonest he can convince
nobody. In other words, when V checks the third point in the protocol and he is
convinced from his result, then all sets in Γ reconstruct the same secret.
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Rec(A, SA) denotes the result of the reconstruction protocol executed by an au-
thorized subset A ⊆ P such that |A| = t, where SA = (si)i∈A are the shares hold by
participants in A.

Definition 3.1.1 We say that D decives if there exists different A1, A2 ∈ Γ such that
Rec(A1, SA1) 6= Rec(A2, SA2). In the case that D can not deceive, we say that D is
honest.

Theorem 3.1.2 If V verifies the step 3 in the scheme, then D must be honest.

Proof. In order to prove that all the authorized subsets in Γ reconstruct the same
secret, it is sufficient to prove that the secret that users of any minimal authorized
subset reconstruct with their shares is the same secret that D has given V through
Paillier’s encryption.

If every participant of any minimal authorized subset A = {P1, . . . , Pt} ∈ Γ
of t participants (if A have more than t participants then we work only with t of
them because we need only t participants to recover the secret) has his share si =
a0 + a1i + · · · + at−1i

t−1 mod N and V has the elements Aj = Enc(a′j, r
′
j) then we

only need to prove that a′j = aj,∀j where 0 ≤ j ≤ t− 1.

Since V has verified ci·A0·A1
i · · ·Ait−1

t−1 = Enc(di, ti) and Dec(ci·A0·A1
i · · ·Ait−1

t−1 ) =
Dec(ci)+Dec(A0)+ i ·Dec(A1)+ · · ·+ it−1 ·Dec(At−1) = mi+a′0 +a′1i+ · · ·+a′t−1i

t−1

mod N , then a′0 + a′1i+ · · ·+ a′t−1i
t−1 = di −mi = si mod N . Since

s1 = a′0 + a′1 + · · ·+ a′t−1

...

st = a′0 + a′1t+ · · ·+ a′t−1t
t−1

has a unique solution then a′j = aj,∀j. �

So the dealer is always commited to give the real secret s and it is guaranteed
that any authorized set of participants obtain the same secret s in the reconstruction
protocol. Therefore we do not need any additional proof other than the information
broadcast by D at steps 2 and 3.

From now on we can suppose that the dealer is always honest with the other
players.

Reconstruction protocol.

When t participants meet each other in order to reconstruct the original secret s = a0,
every participant must open his own commitment cj, for every 0 ≤ j ≤ t − 1, that
means that all of these t participants know the elements (mj, rj) of the other ones,
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and then these participants together can compute the shares and recover the secret
using Lagrange interpolation.

In the following we are going to remark that none of the participants among these
t can trick the other participants in this protocol, i.e, if some participant gives a
different information then the other participants, without interaction, know that he
is trying to cheat them.

Definition 3.1.3 Let A ∈ Γ and P1, P2 ∈ A. We say that P1, who has the pair
(m1, r1) ∈ ZN ×Z∗N , cheats P2 when P1 gives other pair (m′1, r

′
1) to P2 and P2 is con-

vinced that m1 = m′1 mod N and r1 = r′1 mod N when he verifies c1 = Enc(m1, r1).

Remark. Let A ∈ Γ and P1, P2 ∈ A. P1 can not cheat P2 because for every c1

there is only one m1 ∈ ZN and r1 ∈ Z∗N such that c1 = Enc(m1, r1) and, therefore,
P1 must open c1 with (m1, r1). Furthermore, for given m1 and d1, s1 is uniquely
determined.

When the participants open their commitments cj it is very easy to show that
their respective shares are correct and consequently to exclude the participants who
try to deceive. So, we do not need here any additional proof. We only need that the
participants open their commitments and if somebody does not want to open then
he is excluded from P .

3.1.3 Computational Secrecy

Our goal now is to see that any not authorized subset not only cannot reconstruct
the secret but also does not obtain any information about the secret. The proposed
scheme achieves correctness and verifiability in an information-theoretic scenario. On
the contrary, secrecy is only achieved under some computational assumption because
we are using an underlying computationally secure cryptosystem, Paillier’s proba-
bilistic encryption scheme Π. For this reason, we must lower the security level of
our proposed scheme and go to a computational scenario. We prove then that our
PVSS scheme is semantically secure against passive adversaries using the Decisional
Composite Residuosity Assumption (DCRA), defined in Subsection 1.3.3.

In the standard IND-CPA game an adversary AΠ, who knows the public key pk
of the encryption scheme Π and encrypts messages of its choice, selects two different
messages m0,m1 ∈ M. Then, on input zb = Enc(mb, r), where r ∈ R is a random
element and b ∈ {0, 1} is a random bit, the adversary tries to guess b by outputting
a bit b′. The advantage of adversary AΠ is defined as AdvAΠ

(λ) =
∣∣Pr[b′ = b]− 1

2

∣∣,
where λ is the security parameter. We say that the encryption scheme Π is IND-CPA
secure if this advantage is a negligible function in λ, for any polynomial-time adversary
AΠ.
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The computational security of a PVSS scheme is defined by the following game G
between a challenger and an adversary AΩ.

1. The adversary AΩ publishes the set of n players P and the threshold access
structure Γ = (t, n).

2. The challenger runs params← Ω.Stp
(
1λ,P ,Γ

)
and sends params to AΩ.

3. The adversary AΩ manipulates a subset B ⊂ P of corrupted players and broad-
casts it. In the worst case, |B| = t− 1.

4. Let S be the set of the secrets, AΩ broadcasts two different secrets s̄0 6= s̄1 such
that s̄0, s̄1 ∈ S.

5. [Challenge] The challenger chooses a bit b ∈ {0, 1} at random and runs
(outpub, {di}Pi∈P , {mi}Pi∈P)← Ω.Dist (params, s̄b), playing the roles of both the
dealer and the players. The challenger sends toAΩ the public values and also the
secret information of the corrupted players Pi ∈ B on running this algorithm.

6. Finally, AΩ outputs a bit b′.

The advantage of AΩ in breaking the security of the PVSS scheme Ω is defined
as AdvAΩ

(λ) =
∣∣Pr[b′ = b]− 1

2

∣∣. Similarly to the encryption scheme, we say that the
scheme Ω enjoys semantic security if the advantage AdvAΩ

(λ) is a negligible function
in λ, for any polynomial-time adversary AΩ.

We are going to reduce now the computational security of the proposed PVSS
scheme Ω to the IND-CPA security of the underlying homomorphic Paillier’s encryp-
tion scheme Π.

Theorem 3.1.4 For any adversary AΩ against the proposed PVSS scheme Ω, there
exists an adversary AΠ against the encryption scheme Π with the same advantage.

Proof. Let AΩ be an adversary against the semantic security (game G) of the
proposed PVSS scheme Ω. We are going to construct an adversary AΠ against the
IND-CPA security of the Paillier’s encryption scheme Π, which will use AΩ as sub-
routine. The input of adversary AΠ is the tuple (N, g) and its goal to win some
advantage AdvAΠ

(λ) from two different encrypted messages.
Note that the secret information of the corrupted participants Pi ∈ B corresponds

to the tuple (mi, ri, si) for every of them. Whereas public information is params =
(N, g), outpub = ({ci}1≤i≤n, {Aj}0≤j≤t−1, {ti}1≤i≤n) and {di}Pi∈P . In our case the set
of secrets S = ZN is the same as the set of messages M = ZN .

For the participants P and the threshold access structure Γ = (t, n) chosen by
AΩ, the adversary AΠ simulates the algorithm params← Ω.Stp

(
1λ,P , t

)
just sending
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the same values N and g from its own input to AΩ. For the two different secrets
s̄0, s̄1 ∈ ZN chosen by AΩ, the adversary AΠ takes them and gives the messages
m̄0 = s̄0 ∈ ZN and m̄1 = s̄1 ∈ ZN to its own challenger. The challenger of AΠ chooses
a random bit b ∈ {0, 1}, a random value ρ ← Z∗N and sends back the encryption
zb = Enc(m̄b, ρ) of m̄b to AΠ.

The goal from adversary AΠ is to guess the bit b. AΠ chooses random di ← ZN ,
ti ← Z∗N , for all i ∈ {1, .., n} and also ri ← Z∗N , si ← ZN , for all the corrupted
participants Pi ∈ B. In the worst case, we can assume that B = {1, . . . , t − 1}
without loss of generality. After that, AΠ constructs the other elements mi, Aj, ci in
input of AΩ as following:

• mi = di − si such that 1 ≤ i ≤ t− 1.

• To construct the value A0 the adversary AΠ defines A0 = zb. Now, we are going
to construct the remaining Aj, where 1 ≤ j ≤ t − 1 using A0 and (ri, si), for
every Pi ∈ B: there exists a unique interpolating polynomial f(x) = a0 + a1x+
a2x

2+· · ·+at−1x
t−1 ∈ ZN [x] such that f(i) = si and f(0) = s̄b (unknown). Thus

all the coefficients can be uniquely determined for some efficiently computable
constants νij (that only depend on B) as aj = ν0j · s̄b +

∑t−1
i=1 νij · si. Therefore,

gaj = (gs̄b)ν0j ·
∏t−1

i=1(gsi)νij which enables us to compute Aj = (gs · ρN)ν0j ·∏t−1
i=1(gsi · rNi )νij = A

ν0j

0 ·
∏t−1

i=1 Enc(si, ri)
νij , for all j such that 1 ≤ j ≤ t− 1.

• ci =
Enc(di, ti)

A0 · A1
i · · ·Ait−1

t−1

, for all i ∈ {1, . . . , n}. For i ∈ {1, . . . , t− 1}, these ci can

be alternatively computed using ci = Enc(mi, ri).

So adversary AΠ gives ({ci}1≤i≤n, {Aj}0≤j≤t−1, {ti}1≤i≤n, {di}1≤i≤n) to AΩ simu-
lating its view for the distribution of secret sb ∈ ZN . At this point AΩ guesses the
bit b′ that is also used as the output of AΠ. It is straightforward to prove that the
probability that AΩ wins the game G is exactly the same as that AΠ guesses the bit
b′ = b. Then AΠ has exactly the same advantage as AΩ, and runs in the same time
as AΩ plus the running time of the distribution protocol. �

The above result proves that the proposed PVSS scheme is semantically secure
because the underlying Paillier’s encryption scheme is IND-CPA secure under DCRA
assumption.

3.1.4 Achieving Robustness

Up to now we have explained how to detect dishonest users and how to complete the
protocols in case of sufficient honest users. The PVSS scheme with slight modifications



3.1. PUBLICLY VERIFIABLE SECRET SHARING SCHEMES 59

can be extended to ensure that the protocols are always completed in case of dishonest
users. This property is called robustness .

Let P be the set of n participants. We need t of them to recover the secret and
we have, in the worst case, t− 1 corrupt participants. Therefore, we need to impose
n ≥ 2t − 1 to achieve robustness, whereas before it was necessary only that n ≥ t.
We describe now the additional steps based on the original protocols to detect and
reject the dishonest users.

In the step 2(a) every participant must broadcast ci. If these ci are not suitable,
e.g. are not in Z∗N2 or the participants broacast nothing, then these participants
are sent off from the protocol. Hence we have some P1 ⊆ P , which contains the
participants who were not sent off in the step 2(a).

In steps 2(c) and 2(d) D must broadcast di and Aj, ti respectively. In step 3(a)
every participant checks if ci · A0 · A1

i · · ·Ait−1

t−1 = Enc(di, ti). If one of these three
steps has not satisfactorily occurred then the honest participants accuse D using the
broadcast channel and they drop out of the protocol.

From now on we can suppose that D is honest. In the step 4(a) every participant
of P1 broadcasts his own (mj, rj) and checks if cj = Enc(mj, rj) from the other
participants of P1. This leads to define P2 = {Pj | Pj ∈ P1, Pj broadcast his own
(mj, rj), cj = Enc(mj, rj)}. Then the participants of P1 who are not in P2 are
sent off and the participants of P2 can recover the secret using t shares, which they
have computed, and interpolation. With regard to the steps which have not been
mentioned, they remain the same.

In order to prove that the participants of P2 can recover the secret, we prove the
following theorem using the same notation as above.

Theorem 3.1.5 Let A be an authorized subset such that A ⊆ P1 and |A| ≥ n1−(n−
2t+1), where |P1| = n1 and n ≥ 2t−1. If there is an active adversary who controls at
most t− 1 participants then during the execution protocols one of the following holds:

1. All honest participants realize that D is corrupt and nobody can recover the
secret.

2. All honest participants recover the secret.

Proof. Following the protocol above we note that n1 ≥ n − (t − 1) ≥ t and that
we have at most (t− 1)− (n−n1) corrupt participants to uncover when the step 2(a)
is executed.

If D is corrupt then all the honest participants accuse D and drop out of the
protocol. That means that at most t − 1 participants (the corrupts) remain in the
protocol and can not recover any secret.

If D is not corrupt then we follow with step 4. As there are at most (t−1)−(n−n1)
corrupt participants in A and, by hypothesis, |A| ≥ n1 − (n − 2t + 1) then there is
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at least t honest participants in A. Hence, since all honest participants of A are in
P2 we get that |P2| ≥ t and all honest participants can recover the secret with any t
different shares. �

3.2 Multi-Secret Sharing Schemes

In a multi-secret sharing scheme (MSSS), ` different secrets are distributed among
the players in some set P = {P1, . . . , Pn}, each one according to a (possibly different)
access structure. The trivial solution to design a MSSS is to run ` independent
standard secret sharing schemes, one for each secret and access structure. In this
case, the length of the secret share to be stored by each player grows linearly with `.

Multi-secret sharing schemes have been studied, per se, in different works. As
far as we know, no specific application of a MSSS into a more general scenario or
cryptographic protocol has been explicitly proposed. Most of the works on MSSSs
have focused on unconditionally secure MSSSs. Blundo et al. [9] introduced a strong
definition for the unconditional security of a MSSS, and gave some lower bounds on
the length of the secret shares to be stored in a MSSS enjoying that level of security.
Masucci proposed in [67] a weaker (althoug still information-theoretic) notion of se-
curity for MSSSs, and also gave some lower bounds on the length of secret shares for
schemes enjoying the two notions. For some particular families of access structures,
which include the threshold case where each access structure is defined by a threshold
value, the results in [9, 67] imply that the length of each secret share in a MSSS with
the strong level of unconditional security must be linear in `. Therefore, the optimal
solution in this strong scenario is equivalent to running ` independent instances of a
standard secret sharing scheme, one for each secret and access structure.

The first result in this section is a proof that this is also the case for MSSSs
enjoying security in the weaker (but still information-theoretic) sense proposed by
Masucci. That is, we show that for some lists of access structures (in particular,
when all of them are threshold ones), the length of each secret share in a MSSS for
these access structures will be linear in `, if the MSSS enjoys weaker unconditional
security. In other words, we prove that multi-threshold secret sharing schemes enjoy-
ing information-theoretic security must have shares which are as long as the secret.
This result is quite negative because cryptographic primitives using these MSSSs in
their key generation protocols have then secret shares of information at least as long
as those provided by the trivial solution, whose length grows linearly in `. For this
reason, we will move to the weaker setting of MSSSs with computational security.
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3.2.1 A New Result in the Information-Theoretic Scenario

Blundo et al. introduced in [9] the notion of multi-secret sharing schemes: ` secrets
s1, . . . , s` ∈ K are distributed at the same time between a set P of n players, according
to ` access structures Γ1, . . . ,Γ` ⊂ 2P . Again, shi denotes the share of secret informa-
tion received by each player Pi in the distribution phase. The reconstruction phase
takes as input a subset of shares and an index j ∈ {1, 2, . . . , `}, and the expected
output is the secret sj. In [9], two requirements are defined for multi-secret sharing
schemes, one related to correctness and one related to information-theoretic privacy.

1. Correctness. If the reconstruction phase takes as input a subset of shares
{shi}Pi∈A and an index j, and A ∈ Γj, then the recovered secret is actually
sj. In other words, H(Sj|SHA) = 0 for any subset A ∈ Γj.

2. Strong information-theoretic security. From the knowledge of a non-authorized
subset of shares {shi}Pi∈B, with B /∈ Γj, and of some secrets, different from sj,
the information obtained on the secret sj is the same as if the shares {shi}Pi∈B
were not known. In the entropy language: for any subset B /∈ Γj and any subset
T ⊂ {S1, . . . , S`}\{Sj}, it holds H(Sj|SHB, T ) = H(Sj|T ).

This strong security requirement has an impact on the efficiency of multi-secret
sharing schemes. Blundo et al. give in [9] lower bounds for the size of the shares
shi in such a strongly secure multi-secret sharing scheme. In particular, for the case
of multi-threshold secret sharing schemes2, where Γj = {A ⊂ P : |A| ≥ tj} and
1 ≤ t1 < t2 < . . . < t` ≤ n, Blundo et al. proved that the entropy H(SHi) of
each individual share shi must be greater than or equal to the entropy H(S) of the
global secret S = (S1, . . . , S`), in any multi-threshold secret sharing scheme satisfying
this strong security condition. This means that running ` independent instances
of Shamir’s threshold secret sharing scheme gives an optimal multi-threshold secret
sharing scheme.

Other works [48, 67] consider a weaker (but maybe more realistic in actual ap-
plications of secret sharing) security notion for multi-secret sharing schemes, which
does not consider the possibility that the adversary obtains some other subset T of
secrets.

• Weak information-theoretic security. No information at all on the secret sj can
be obtained from a non-authorized subset of shares {shi}Pi∈B, with B /∈ Γj. In
the entropy language: for any subset B /∈ Γj, it holds H(Sj|SHB) = H(Sj).

2We stress that the name of multi-threshold secret sharing has been previously used in other
works [48, 67] for a different kind of access structures.
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Masucci gives in [67] lower bounds for the size of the shares shi in weakly information-
theoretically secure multi-secret sharing schemes. However, these bounds do not lead
to any result for the family of multi-threshold access structures that we consider
in this thesis. Therefore, according to the results that we have up to now, it may
still be possible to design a multi-threshold secret sharing scheme which enjoys weak
information-theoretic security, and where the share of some participant is shorter than
the secret. However, we prove below in Corollary 3.2.6 that this cannot be the case.

Before proving it, we define here the notion of entropy (introduced in Subsection
1.5.1) and some results, which will be used in Theorem 3.2.5. Let X be a random
variable that takes values in a finite set X. For any x ∈ X, let p(x) = Pr[X = x] be
the probability that X takes the value x. The entropy H(X) of X is defined as

H(X) = −
∑
x∈X

p(x) · log(p(x)),

where 0 · log 0 should be treated as being equal to zero. The entropy H(X) measures
the uncertainty on the value taken by the random variable X. It always satisfies
0 ≤ H(X) ≤ log |X|. The minimum value H(X) = 0 is achieved if and only if there
exists x0 ∈ X such that p(x0) = 1, and the maximum value H(X) = log |X| is achieved
if and only if the probability is distributed uniformly (that is, p(x) = 1/|X| for all
x ∈ X).

Given two random variables X, Y , their joint entropy is defined as

H(X, Y ) = −
∑

(x,y)∈X×Y

p(x, y) · log(p(x, y)),

where p(x, y) = Pr[X = x and Y = y].
If we denote p(x|y) = Pr[X = x | Y = y], then the conditional entropy H(X|Y )

is defined as
H(X|Y ) = −

∑
x∈X

∑
y∈Y

p(y)p(x|y) · log(p(x|y)),

and it satisfies H(X|Y ) = H(X, Y )−H(Y ).
Similarly, we can define H(X| Y, Z) or H(X, Y |Z), for random variables X, Y, Z.

We put now the following well-known results about the entropy of random variables.
They are more or less easy to deduce from the previous definitions, so we only include
one of the proofs, as an illustrative example.

Lemma 3.2.1 For all random variables X, Y , it holds:

(i) H(X) ≥ H(X|Y ) ≥ 0, and

(ii) H(X) +H(Y ) ≥ H(X, Y ).
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Lemma 3.2.2 For all random variables X, Y, Z, if H(X|Y ) = 0, then H(Z|X) ≥
H(Z|Y ).

Proof. First of all, it is easy to see that H(Z|X) ≥ H(Z| X, Y ) and H(Z,X |Y ) ≥
H(Z|Y ), for any random variables X, Y, Z. Now we have

H(Z|X) ≥ H(Z|X, Y ) = H(Z,X, Y )−H(X, Y ) = H(Z,X, Y )−
(
H(Y )+H(X|Y )

) (∗)
=

= H(Z,X, Y )−H(Y ) = H(Z,X |Y ) ≥ H(Z|Y ),

where we have used in (∗) the fact that H(X|Y ) = 0. �

Lemma 3.2.3 For all random variables X, Y , if H(X|Y ) = H(X), then H(X, Y ) =
H(X) +H(Y ).

Lemma 3.2.4 For all random variables X, Y , if H(X|Y ) = 0, then:

(i) H(X, Y ) = H(Y ), and

(ii) H(Z| X, Y ) = H(Z|Y ), for all random variable Z.

Theorem 3.2.5 Let Γ1, . . . ,Γ` ⊂ 2P be ` access structures, and let Pi ∈ P. Assume
there exist subsets of players B1 ⊂ B2 ⊂ . . . ⊂ B` ⊂ P − {Pi} satisfying, for all
j = 1, . . . , `, the following three conditions:

(i) Bj ∈ Γj−1. (Here, for index j = 1, we assume Γ0 = 2P .)

(ii) Bj /∈ Γj,

(iii) Bj ∪ {Pi} ∈ Γj,

Then, for any multi-secret sharing scheme for Γ1, . . . ,Γ` with weak unconditional

security, it holds H(SHi) ≥
∑̀
j=1

H(Sj).

Proof. We proceed iteratively to deduce a sequence of equalities and inequalities:

H(SHi) +
∑̀
j=1

H(SHBj) = H(SHi) +H(SHB1) +
∑̀
j=2

H(SHBj)
(1)

≥

H(SHi, SHB1) +
∑̀
j=2

H(SHBj)
(2)

= H(SHi, SHB1 , S1) +
∑̀
j=2

H(SHBj) =
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H(SHB1 , S1) +H(SHi|SHB1 , S1) +
∑̀
j=2

H(SHBj)
(3)

=

H(S1) +H(SHB1) +H(SHi|SHB1 , S1) +
∑̀
j=2

H(SHBj)
(4)

≥

H(S1) +H(SHB1) +H(SHi|SHB2 , S1) +
∑̀
j=2

H(SHBj)
(5)

=

H(S1) +H(SHB1) +H(SHi|SHB2) +H(SHB2) +
∑̀
j=3

H(SHBj) =

H(S1) +H(SHB1) +H(SHi, SHB2) +
∑̀
j=3

H(SHBj)
(2)

=

H(S1) +H(SHB1) +H(SHi, SHB2 , S2) +
∑̀
j=3

H(SHBj) =

H(S1) +H(SHB1) +H(SHB2 , S2) +H(SHi|SHB2 , S2) +
∑̀
j=3

H(SHBj)
(3)

=

H(S1) +H(SHB1) +H(S2) +H(SHB2) +H(SHi|SHB2 , S2) +
∑̀
j=3

H(SHBj) ≥

. . . ≥
`−1∑
j=1

(
H(Sj) +H(SHBj)

)
+H(SHi|SHB`−1

, S`−1) +H(SHB`)
(4)

≥

`−1∑
j=1

(
H(Sj) +H(SHBj)

)
+H(SHi|SHB` , S`−1) +H(SHB`)

(5)

=

`−1∑
j=1

(
H(Sj) +H(SHBj)

)
+H(SHi|SHB`) +H(SHB`) =

`−1∑
j=1

(
H(Sj) +H(SHBj)

)
+H(SHi, SHB`)

(2)

=

`−1∑
j=1

(
H(Sj) +H(SHBj)

)
+H(SHi, SHB` , S`) =

`−1∑
j=1

(
H(Sj) +H(SHBj)

)
+H(SHB` , S`) +H(SHi|SHB` , S`)

(3)

=
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`−1∑
j=1

(
H(Sj) +H(SHBj)

)
+H(SHB`) +H(S`) +H(SHi|SHB` , S`)

(6)

≥

`−1∑
j=1

(
H(Sj) +H(SHBj)

)
+H(SHB`) +H(S`) =

∑̀
j=1

(
H(Sj) +H(SHBj)

)
.

From the first and last terms of this sequence of equalities and inequalities, we

deduce the desired result H(SHi) ≥
∑̀
j=1

H(Sj). In the sequence, we have used the

previous lemmas from entropy theory, in the following way:

• inequality
(1)

≥ is deduced from Lemma 3.2.1 (ii),

• equalities
(2)

= are deduced from Lemma 3.2.4 (i), because Bj ∪ {Pi} ∈ Γj, for all
j = 1, . . . , `,

• equalities
(3)

= are deduced from Lemma 3.2.3, because Bj /∈ Γj, for all j =
1, . . . , `,

• inequalities
(4)

≥ are deduced from Lemma 3.2.2, applied to SHBj and SHBj+1
,

because Bj ⊂ Bj+1,

• equalities
(5)

= are deduced from Lemma 3.2.4 (ii), because Bj ∈ Γj−1, for all
j = 2, . . . , `,

• finally, inequality
(6)

≥ is deduced from Lemma 3.2.1 (i).

�

Corollary 3.2.6 For any multi-threshold secret sharing scheme for thresholds 1 ≤
t1 < t2 < . . . < t` ≤ n that enjoys weak information-theoretic security, it holds

H(SHi) ≥
∑̀
j=1

H(Sj), for any player Pi ∈ P.

Proof. Just apply the previous theorem to a sequence of subsets B1 ⊂ B2 ⊂ . . . B` ⊂
P − {Pi} such that |Bj| = tj − 1, for all j = 1, 2, . . . , `. �

This means that the optimal multi-threshold secret sharing scheme with weak
unconditional security, in terms of the ratio between the length of shares and the
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length of the global secret, is equivalent to running ` independent instances of Shamir’s
secret sharing scheme.

We stress that the three conditions in the statement of Theorem 3.2.5 imply that
all the access structures must be different. If there was some repeated access structure,
but the non-repeated ones did still satisfy these three conditions, then some variations
of the theorem could be easily proved. For instance, if Γ1 = Γ2 but the rest of access

structures satisfy the conditions, then we can ensure that H(SHi) ≥
∑̀
j=2

H(Sj) for all

player Pi ∈ P .
As an explicit example where Theorem 3.2.5 cannot be applied, and where H(SHi)

<
∑̀
j=1

H(Sj), let us consider the case of ` threshold access structures with the same

threshold: Γj = T (t, n) for all j ∈ {1, . . . , `}. We can share the global secret ~s =
(s1, . . . , s`) ∈ (Zp)` by following the ideas proposed in [27], provided ` ≤ t(n− t). For
some big prime number p, there are ` values xj,0 ∈ Zp, for j ∈ {1, . . . , `}, assigned to
the secrets, and there are n− t values xi,k assigned to player Pi, for k ∈ {1, . . . , n− t}.
All these values must be pairwise different and public. To distribute the secret ~s, a
random polynomial f(x) ∈ Zp[x] of degree t(n−t)−1 is chosen, such that f(xj,0) = sj
for all j ∈ {1, . . . , `}. Player Pi receives the share shi = (f(xi,1), . . . , f(xi,n−t)) ∈
(Zp)n−t. If t players work together, they can interpolate the polynomial f(x) at any
point and recover any of the secrets, because they hold t(n − t) evaluations of the
polynomial, which has degree t(n−t)−1. If less than t players cooperate, they obtain
no information on any secret sj, for j ∈ {1, . . . , `}, and so the scheme enjoys weak
unconditional security. If n− t < `, then the length of each shi is strictly smaller than
the length of the global secret ~s.

Anyway, for the applications of multi-secret sharing that we have in mind, we
are looking for efficient ways of sharing ` secrets for ` different access structures, in
particular for the threshold case. The result in Theorem 3.2.5, although very inter-
esting from a theoretical point of view, is quite negative for our interests, and we thus
move to the scenario of computationally secure multi-secret sharing. This is not a big
problem, taking into account that our final goal is to use multi-secret sharing schemes
as an ingredient to implement cryptographic primitives (multi-policy distributed de-
cryption and signatures) whose security is going to be at most computational, in any
case.

3.2.2 Computational Security for Multi-Secret Sharing
Schemes

A multi-secret sharing scheme Ω = (Ω.Stp,Ω.Dist,Ω.Rec) consists of three proto-
cols. The setup protocol takes as input a security parameter λ ∈ N, the set of
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players P and the ` different access structures Γ1, . . . ,Γ`, and outputs some pub-
lic and common parameters params for the scheme (such as mathematical groups,
hash functions, etc.). We implicitly assume that params also contains the descrip-
tions of P and the access structures. We denote an execution of this protocol as
params← Ω.Stp

(
1λ,P , {Γj}1≤j≤`

)
.

The distribution protocol takes as input the parameters params and the global
secret ~s = (s1, . . . , s`) to be distributed, and produces the set of shares {shi}Pi∈P and
possibly some public output outpub. We write (outpub, {shi}Pi∈P)← Ω.Dist (params, ~s).

The reconstruction protocol takes as input params, outpub, an index j ∈ {1, . . . , `},
and the shares {shi}Pi∈A of the players in some subset A ⊂ P , and outputs a possible
value s̃j for the j-th secret. We write s̃j ← Ω.Rec (params, outpub, j, {shi}Pi∈A).

For correctness, we require that, for any index j ∈ {1, . . . , `} and any subset
A ∈ Γj, it holds

Ω.Rec (params, outpub, j, {shi}Pi∈A) = sj,

if the setup protocol has produced the values params ← Ω.Stp
(
1λ,P , {Γj}1≤j≤`

)
and (outpub, {shi}Pi∈P) ← Ω.Dist (params, ~s) is a distribution of the global secret
~s = (s1, . . . , sj, . . . , s`).

The computational security of a multi-secret sharing scheme is defined by the
following game G between a challenger and an adversary AΩ.

1. The adversary AΩ publishes the set of players P and the ` access structures
Γ1, . . . ,Γ` ⊂ 2P .

2. The challenger runs params← Ω.Stp
(
1λ,P , {Γj}1≤j≤`

)
and sends params to AΩ.

3. The adversary AΩ broadcasts a subset B̃ ⊂ P of corrupted players.

4. AΩ broadcasts two different global secrets ~s(0) 6= ~s(1) with the following restric-
tion:

s
(0)
j = s

(1)
j , ∀j ∈ {1, . . . , `} s.t. B̃ ∈ Γj.

5. [Challenge] The challenger chooses at random b ∈ {0, 1}, runs the protocol
(outpub, {shi}Pi∈P)← Ω.Dist

(
params, ~s(b)

)
, and sends

(
outpub, {shi}Pi∈B̃

)
to AΩ.

6. Finally, AΩ outputs a bit b′.

The advantage of AΩ in breaking the security of the multi-secret sharing scheme
Ω is defined as

AdvAΩ
(λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
The scheme Ω is said to enjoy computational security if AdvAΩ

(λ) is a negligible
function in λ, for any polynomial-time adversary AΩ.
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3.3 A First Computationally Secure Multi-Secret

Sharing Scheme

We propose and analyze in this section a computationally secure multi-secret sharing
scheme, Ω1, which essentially consists in repeating ` times, in parallel, (a modification
of) the secret sharing scheme of Krawczyk [55]. We consider, for simplicity, the case
where all the access structures are threshold ones: Γj = T (tj, n), for all j ∈ {1, . . . , `}.
The protocols of the scheme are detailed below.

Setup: Ω1.Stp(1λ,P , t1, . . . , t`).
Let P = {P1, . . . , Pn} be the set of n users and let 1 ≤ t1 ≤ t2 ≤ . . . ≤ t` ≤ n
be the ` thresholds that define the access structures {Γj}1≤j≤`. A secure symmetric
encryption scheme Π = (Π.KG,Π.Enc,Π.Dec) with key space K, plaintext space M
and ciphertext space C is chosen, such that M contains the space of secrets to be
shared. Let q be a prime number, q > n, such that K ⊂ Zq. Each player Pi is assigned
the value i. The public parameters are params = (q,Π).

Distribution of the Shares: Ω1.Dist(params, ~s).
Let ~s = (s1, . . . , s`) ∈ M` be the global secret to be distributed. For simplicity, we
assume the distribution is done by an external dealer.

1. For j = 1, . . . , `, run Kj ← Π.KG(1λ).

2. For j = 1, . . . , `, compute cj ← Π.Enc(sj , Kj).

3. For j = 1, . . . , `, use Shamir’s secret sharing scheme to distribute the secret
key Kj ∈ K ⊂ Zq according to Γj. That is, choose a random polynomial
fj(x) ∈ Zq[x] of degree tj − 1 such that fj(0) = Kj, and compute the shares

K
(i)
j = fj(i), for i = 1, 2, . . . , n.

4. Each player Pi receives, through a secure channel, his secret share shi = (K
(i)
1 ,

. . . , K
(i)
` ) ∈ (Zq)`.

5. The public output of the protocol is outpub = {cj}j∈{1,...,`}.

Reconstruction of a Secret: Ω1.Rec(params, outpub, j, {shi}Pi∈A).
When the players of an authorized subset A ∈ Γj (i.e. |A| ≥ tj) want to recover the
secret sj, they run the following steps.

1. They use their secret values {K(i)
j }Pi∈A to interpolate the polynomial fj(x) and

recover the value fj(0) = Kj.
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2. They take cj from outpub and run sj ← Π.Dec(cj, Kj) to recover the desired
secret sj.

The correctness of the scheme Ω1 holds trivially.

3.3.1 Security Analysis

In this section we are going to reduce the computational security of the MSSS Ω1

to the security of the underlying symmetric encryption scheme Π in the multi-user
setting. The security of a symmetric encryption scheme Π is described by the game
G1 defined in Subsection 1.4.1, whereas the security of the MSSS Ω1 is described by
the game G2 defined in Subsection 3.2.2.

Theorem 3.3.1 For any adversary AΩ1 against the threshold MSS scheme Ω1 that
chooses ` threshold access structures, corrupts t? players in a set P and chooses global
secrets ~s(0) 6= ~s(1), there exists a (k, qe, qd, qc)-adversary AΠ against the encryption
scheme Π, with advantage AdvAΠ

(λ) = AdvAΩ1
(λ) and parameters k = `− |J?|, qe =

qd = 0 and qc = `− |J?|, where J? = {j ∈ {1, . . . , `} s.t. ~s
(0)
j = ~s

(1)
j }.

Proof. Let AΩ1 be an adversary against the computational security of the multi-
secret sharing scheme Ω1. We are going to construct an adversary AΠ against the
CCA security (game G1) of the symmetric encryption scheme Π, which will use AΩ1 as
a sub-routine. When the game G1 starts, the challenger of this game chooses a secret
bit β ∈ {0, 1} at random. The goal of adversary AΠ will be to output a bit β′ ∈ {0, 1}
such that β′ = β with probability significantly greater than 1/2. To achieve it, AΠ

initializes the adversary AΩ1 in a running of game G2.
AΩ1 starts the game G2 by choosing the set of users P = {Pi}1≤i≤n and ` access

structures {Γj}1≤j≤` with Γj = T (tj, n). Then, AΠ has to simulate a running of the
protocol params ← Ω1.Stp(1λ,P , t1, . . . , t`). To do this, AΠ simply chooses a prime
number q > n, such that the key space K of the target symmetric encryption scheme
Π satisfies K ⊂ Zq, and sends params = (q,Π) to AΩ1 .

At some point, AΩ1 chooses a subset B̃ ⊂ P of corrupted players, with |B̃| = t?,

and also chooses two different multi-secrets ~s(0) 6= ~s(1), such that s
(0)
j = s

(1)
j for all j

satisfying t? ≥ tj. Let us define the subset of indices J? = {j ∈ {1, . . . , `} s.t. ~s
(0)
j =

~s
(1)
j }. By definition, since ~s(0) 6= ~s(1), we have that J? ( {1, . . . , `} and, furthermore,

if t? ≥ tj, then j ∈ J?.
AΠ runs K̃j ← Π.KG(1λ) for all j ∈ J?. For these indices j ∈ J?, AΠ chooses

random polynomials fj(x) ∈ Zq[x] of degree tj−1 such that fj(0) = K̃j and uses these

polynomials to compute the shares K̃
(i)
j = fj(i), for all the corrupted participants

Pi ∈ B̃. Then AΠ defines k = `− |J?| (step 2 of game G1) and the challenger of this
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game G1 runs k times the protocol Kj ← Π.KG(1λ), for all j /∈ J?. For each corrupted

participant Pi ∈ B̃ and each index j /∈ J?, AΠ chooses at random K̃
(i)
j ∈ Zq. The

secret key of each corrupted player Pi ∈ B̃ is defined as shi = (K̃
(i)
1 , . . . , K̃

(i)
` ) ∈ (Zq)`.

Since B̃ /∈ Γj for all index j /∈ J?, the values {K̃(i)
j }Pi∈B̃ are perfectly possible shares

of the (unknown) secret Kj, and the shares {shi}Pi∈B̃ of the corrupted players are
consistent.

For the indices j ∈ J?, AΠ computes the values cj = Π.Enc(s
(0)
j , K̃j). For

the rest of indices j ∈ {1, . . . , `}, j /∈ J?, the adversary AΠ sends the challenge

queries (j, s
(0)
j , s

(1)
j ) to its challenger (game G1). As the answers, AΠ receives cj =

Π.Enc(s
(β)
j , Kj) for all j /∈ J?. The number of challenge queries made by AΠ is

qc = `− |J?|.
The public output is defined as outpub = {cj}j∈{1,...,`}. In this way, the adversary

AΠ is perfectly simulating an execution of the distribution protocol (outpub, {shi}Pi∈P)

← Ω1.Dist
(
params, ~s(b)

)
, where ~s(b) = (s

(b)
1 , . . . , s

(b)
` ) and b = β. Now AΠ sends outpub

and the shares {shi}Pi∈B̃ of the corrupted players to AΩ1 .

As expected, the adversary AΩ1 broadcasts a bit b′ ∈ {0, 1} as his final output.
AΠ outputs the same bit β′ = b′ to conclude the game G1. Note that AΠ has not
made neither encryption queries nor decryption queries. That is, qe = 0 and qd = 0.

The probability that AΩ1 wins game G2 (that is, the probability that b′ = b) is
1/2 + AdvAΩ1

(λ), by hypothesis. The probability that AΠ wins the game G1 (that is,
the probability that β′ = β) is exactly the same, since β′ = b′ and β = b. Summing
up, we have 1/2 + AdvAΩ1

(λ) = 1/2 + AdvAΠ
(λ), which leads to the desired result

AdvAΠ
(λ) = AdvAΩ1

(λ). �

3.4 A Second Computationally Secure Multi-Secret

Sharing Scheme

The MSSS described in the previous section is provably secure in the standard model
and has the property that the shares of the players (roughly, in K`) are shorter than
the global secret (roughly, in M`), because the key-space K is usually much smaller
than the plaintext-spaceM, in a symmetric encryption scheme. However, the length
of each share shi still depends linearly on the number ` of secrets.

We propose and analyze in this section an alternative multi-secret sharing scheme,
Ω2, also for threshold access structures (for simplicity) and also with provable security
in the standard model. This new scheme generalizes in some way some previous
schemes [39, 62], which however did not have a formal security analysis / proof. In
this second MSS scheme, the length of each share shi will be constant, independent
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of `. The protocols of the scheme are the following.

Setup: Ω2.Stp(1λ,P , t1, . . . , t`).
Let P = {P1, . . . , Pn} be the set of n users and let 1 ≤ t1 ≤ t2 ≤ . . . ≤ t` ≤ n
be the ` thresholds that define the access structures {Γj}1≤j≤`. A prime number
p > n is chosen, such that p is λ bits long. A secure symmetric encryption scheme
Π = (Π.KG,Π.Enc,Π.Dec), whose plaintext space M contains Zp, is chosen. Each
player Pi is assigned the value i. The public parameters are params = (p,Π).

Distribution of the Shares: Ω2.Dist(params, ~s).
Let ~s = (s1, . . . , s`) ∈ (Zp)` be the global secret to be distributed. For simplicity, we
assume that the distribution is done by an external dealer.

1. For i = 1, 2, . . . , n, run Ki ← Π.KG(1λ) and define the secret key of Pi to be
shi = Ki.

2. Choose random polynomials fj(x) ∈ Zp[x] of degree tj−1, for j = 1, . . . , `, such
that fj(0) = sj.

3. For i = 1, 2, . . . , n and j = 1, 2, . . . , `, compute the values cij = Π.Enc(fj(i) , Ki).

4. The secret share shi is sent to player Pi via a secure channel, whereas the public
output of the protocol is outpub = {cij}Pi∈P,j∈{1,...,`}.

Reconstruction of a Secret: Ω2.Rec(params, outpub, j, {shi}Pi∈A).
If the players of an authorized subset A ∈ Γj (i.e. |A| ≥ tj) want to recover the secret
sj, they act as follows.

1. Each player Pi ∈ A computes fj(i) = Π.Dec(cij, shi), by decrypting the cipher-
text cij, in outpub, with secret key shi = Ki.

2. Use the values {fj(i)}Pi∈A to interpolate the polynomial fj(x) and recover the
secret sj = fj(0).

Note that the correctness of the proposed scheme Ω2 holds directly via interpola-
tion.

3.4.1 Security Analysis

In this section we are going to reduce the computational security of the MSS scheme
Ω2 to the security of the symmetric encryption scheme Π in the multi-user setting.
Following the same notation as in the previous proposal, we will use G1 for the game
(defined in Subsection 1.4.1) that describes the security of the symmetric encryption
scheme Π and G2 for the game (defined in Subsection 3.2.2) that describes the security
of the MSSS Ω2.
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Theorem 3.4.1 For any adversary AΩ2 against the threshold MSS scheme Ω2 that
chooses ` access structures and corrupts t? players in a set P of n players, there exists
a (k, qe, qd, qc)-adversary AΠ against the encryption scheme Π, with k = n−t?, qd = 0
and qe + qc = `(n− t?), such that AdvAΠ

(λ) = AdvAΩ2
(λ).

Proof. Let AΩ2 be an adversary against the computational security of the multi-
secret sharing scheme Ω2. As shown in below figure, we are going to construct an
adversaryAΠ against the CCA security (game G1) of the symmetric encryption scheme
Π, which will execute adversary AΩ2 as a sub-routine. When the game G1 starts, the
challenger of this game chooses a secret bit β ∈ {0, 1} at random. The adversary AΠ,
at this point, initializes the adversary AΩ2 in a running of game G2.
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Figure 3.1: AΠ simulates the environment of AΩ2 .

AΩ2 starts the game G2 by choosing the set of users P = {Pi}1≤i≤n and ` access
structures {Γj}1≤j≤` with Γj = T (tj, n). Then, AΠ has to simulate a running of
the protocol params ← Ω.Stp(1λ,P , t1, . . . , t`). To do this, AΠ simply chooses a big
prime number p > n with λ bits, and sends params = (p,Π) to AΩ2 , where Π is the
symmetric encryption scheme that AΠ is trying to break, and whose plaintext space
contains Zp.
AΩ2 chooses a subset B̃ ⊂ P of corrupted players, with |B̃| = t?. For clarity of

presentation and without loss of generality, we assume B̃ = {P1, . . . , Pt?}. Also, AΩ2
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outputs two different multi-secrets ~s(0) 6= ~s(1), such that s
(0)
j = s

(1)
j for all index j such

that t? ≥ tj. Let us define the subset of indices J? = {j ∈ {1, . . . , `} s.t. ~s
(0)
j = ~s

(1)
j }.

Note that J? ( {1, . . . , `} and, furthermore, if t? ≥ tj, then j ∈ J?.

AΠ runs K̃i ← Π.KG(1λ) for the corrupted players Pi ∈ B̃ = {P1, . . . , Pt?}. Then
AΠ defines k = n− t? (step 2 of game G1) and the challenger of this game G1 runs k

times the protocol Ki ← Π.KG(1λ), for the non-corrupted players Pi /∈ B̃, that is for
players Pt?+1, . . . , Pn.

For all index j ∈ J?, AΠ chooses random polynomials fj(x) ∈ Zp[x] of degree

tj − 1 and such that fj(0) = s
(0)
j = s

(1)
j . For those values of j ∈ J?, AΠ computes the

values cij = Π.Enc(fj(i), Ki) in two different ways: for the corrupted players Pi ∈ B̃,
by using the encryption protocol and knowledge of K̃i; for the remaining and non-
corrupted players Pi /∈ B̃, by sending the encryption query (i, fj(i)) to its encryption
oracle. This means that AΠ has made qe = |J?| · (n− t?) encryption queries.

For the rest of indices j ∈ {1, . . . , `}, j /∈ J?, the adversary AΠ chooses random

pairs of polynomials f
(0)
j (x), f

(1)
j (x) ∈ Zp[x] of degree tj − 1, such that f

(0)
j (0) = s

(0)
j ,

f
(1)
j (0) = s

(1)
j , and f

(0)
j (i) = f

(1)
j (i) for all corrupted players Pi ∈ B̃. This can be done

because |B̃| = t? ≤ tj−1, for all these indices j /∈ J?. Now, for the t? corrupted players

Pi ∈ B̃, AΠ computes the ciphertexts cij = Π.Enc(f
(0)
j (i), K̃i) by himself. For the

n− t? non-corrupted players Pi /∈ B̃, AΠ sends the challenge queries (i, f
(0)
j (i), f

(1)
j (i))

to its challenger (game G1). As the answers, AΠ receives cij = Π.Enc(f
(β)
j (i), Ki)

for all j /∈ J? and all Pi /∈ B̃. The number of challenge queries made by AΠ is
qc = (`− |J?|) · (n− t?).

This completes the public output outpub = {cij}Pi∈P,j∈{1,...,`}. In this way, AΠ is
perfectly simulating an execution of the distribution protocol (outpub, {shi}Pi∈P) ←
Ω.Dist

(
params, ~s(b)

)
, where ~s(b) = (s

(b)
1 , . . . , s

(b)
` ) and b = β. Now AΠ sends outpub

to AΩ2 , along with the secret shares {shi}Pi∈B̃ of the corrupted players, defined as

shi = K̃i.

As expected, the adversary AΩ2 broadcasts a bit b′ ∈ {0, 1} as his final output.
AΠ outputs the same bit β′ = b′ to conclude the game G1. Note that AΠ has not
made any decryption query, and so qd = 0.

The probability that AΩ2 wins game G2 (that is, the probability that b′ = b) is
1/2 + AdvAΩ2

(λ), by hypothesis. The probability that AΠ wins the game G1 (that is,
the probability that β′ = β) is exactly the same, since β′ = b′ and β = b. Summing
up, we have 1/2 + AdvAΩ2

(λ) = 1/2 + AdvAΠ
(λ), which leads to the desired result

AdvAΠ
(λ) = AdvAΩ2

(λ). �
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3.5 Comparing both Schemes in the Standard

Model

In this section we are going to compare the schemes presented in Sections 3.3 and 3.4.
We start with Table 3.1, where we compare the lengths of shares and public outputs
in three different MSS schemes (Ω1, Ω2 and running parallel instances of Shamir’s
standard secret sharing scheme), assuming we share ` different secrets, each one in
the plaintext space M of a symmetric encryption scheme Π, according to ` different
threshold access structures. We do not consider other MSS schemes in the literature,
either because they can be thought of as particular cases of Ω1 or Ω2, or because
they are quite inefficient for the threshold case. For instance, in the MSS scheme
by Cachin [18], the length of outpub depends on the number of minimally authorized
subsets in each access structure; when the access structure is a threshold T (t, n)
one, this number corresponds to the very big value

(
n
t

)
, which makes Cachin’s MSS

scheme clearly worse than Ω2 in this case. Cachin’s MSS could be a good alternative
for situations where all the access structures have few minimally authorized subsets.

space of secrets ~s length of outpub length of shi
` parallel instances of Shamir M` - ` · |M|

Scheme Ω1 (Section 3.3) M` ` · |C| ` · |K|
Scheme Ω2 (Section 3.4) M` n · ` · |C| |K|

Table 3.1: Basic comparison between some MSSS.

Length of shi and outpub.

Usually, the ratio betwen the length of a share shi and the length of the secret ~s is
considered as the most important aspect for the efficiency of a (multi-)secret sharing
scheme. For the case of multi-secret sharing schemes for different threshold access
structures, it is well known that |shi| ≥ |~s|must hold in any scheme with unconditional
security [67]. This is reflected in the fist row of Table 3.1, where we have included an
unconditionally secure MSS scheme as a benchmark.

Regarding the two computationally secure MSS schemes, we first note that the
length of each shi can be smaller than the length of ~s, because K can be (much) smaller

than M in a symmetric encryption scheme. Ω2 achieves a better ratio |shi|
|~s| = |K|

`|M| .
The price to pay is that the information outpub that must be published is quite big,

|outpub| = n · ` · |C|. On the other hand, scheme Ω1 has a worse ratio |shi||~s| = |K|
|M| , but

it needs a shorter public output, |outpub| = ` · |C|.
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This trade-off between the lengths of shi and outpub in Ω1 and Ω2 is due to the fact
that the two solutions are in some way dual of each other. In Ω1 we encrypt the `
secrets s1, . . . , s`, each one with a different symmetric key, we publish the ` resulting
ciphertexts and we use standard secret sharing to distribute the ` symmetric keys
among the players, each one according to the corresponding access structure. In Ω2,
on the contrary, there are n symmetric keys Ki, one for each player, and standard
secret sharing is used to distribute the ` secrets s1, . . . , s`, each one according to the
corresponding Γj. This produces ` shares for each player Pi, which are encrypted
with Ki. The n · ` resulting ciphertexts are published in outpub.

Depending on the specific situation in which the multi-secret sharing scheme has
to be used, Ω1 or Ω2 may be preferable. If the players have very limited space for
secret storage (due to either physical or security reasons), and the number of ac-
cess structures ` is moderately big, then Ω2 is clearly preferable. In some situations,
however, a public bulletin board where outpub is available makes no sense in the appli-
cation, and in practice all this information outpub must be locally (but not privately)
stored by each player Pi, as well. For instance, we can imagine mobile applications
where players are smart-phones or smart-cards that run a part of a secret operation
(with their secret shares shi) in a restricted environment where there is no connection
to the Internet. In such a case, the total information that each player / device Pi has
to store (privately or not) would have length |shi|+ |outpub|, and therefore Ω1 may be
preferable in these situations.

Exact security, and its consequences.

Leaving aside the unconditionally secure MSS scheme (` parallel instances of Shamir),
which suffers from very long secret shares, we have that both Ω1 and Ω2 enjoy compu-
tational security; they are, roughly speaking, as secure as the underlying symmetric
encryption scheme Π. However, the security analysis that we have provided in The-
orems 3.3.1 and 3.4.1 shows some differences for the values k, qe, qc in the two cases.
These differences are very important when one designs and implements cryptographic
schemes with a desired level of exact security. In the upcoming Subsection 3.5.1 we
illustrate this fact with a detailed example.

The conclusion is that the security reduction seems to be better for Ω1 than for
Ω2: for a same desired level of security for the multi-secret sharing scheme, we can
use a more efficient symmetric encryption scheme Π when implementing Ω1 than
when implementing Ω2. This may have some (important) consequences in the final
efficiency properties of the resulting instantiations of Ω1 and Ω2.
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Removing the trusted dealer.

We have described the two new MSS schemes Ω1 and Ω2 assuming the existence of
a trusted entity, a dealer. In particular, in the protocols for the Distribution of the
Shares, the trusted dealer takes as input the secret ~s to be shared, computes the
shares and sends them privately to the players. This dealer knows all the secrets,
and so the security of all the system strongly depends on its resistance to be at-
tacked or corrupted. It may be desirable to have a fully distributed version of this
protocol, that can be run by the players P = {P1, . . . , Pn} themselves, without the
participation of any trusted dealer. In fact, slight modifications would be necessary
in the distribution and reconstruction protocols but not in the setup protocol, which
would remain without any change. For simplicity, we assume that the adversary is
honest-but-curious, and so data is not corrupted.

Regarding the second MSS scheme, Ω2, this can be easily done. In this case, the
global secret ~s = (s1, . . . , s`) ∈ (Zp)` to be distributed is not an input for Ω2.Dist.
Instead, the ` secrets s1, . . . , s` are implicitly defined by the random choices of the
players, during the execution of this distributed protocol. The idea is that each player
Pk ∈ P will generate his secret share shk = Kk ← Π.KG(1λ) and then, for each index

j ∈ {1, . . . , `}, will choose a random polynomial f
(k)
j (x) ∈ Zp[x] with degree tj − 1.

Pk will privately send the value f
(k)
j (i) to player Pi. Implicitly, the j-th secret will

be defined as sj =
∑
Pk∈P

f
(k)
j (0). Each player Pi can compute his own secret value

sij =
∑
Pk∈P

f
(k)
j (i), which is a a polynomial (Shamir) share of the secret sj, and then

encrypt it to obtain the ciphertexts cij = Π.Enc(sij , Ki), that are all included in
outpub. In the reconstruction protocol Ω2.Rec the players of an authorized subset

A ∈ Γj use the values {sij}Pi∈A to interpolate the polynomial Fj(x) =
∑

Pi∈P f
(i)
j (x)

in x = 0, recovering in this way the j-th secret sj = Fj(0). In the Appendix of [45]
can be found a similar scheme which uses the above steps to create a multi-threshold
secret sharing scheme without dealer.

Regarding the first MSS scheme, Ω1, we could try to apply the idea in the previous
paragraph so that ` secrets K1, . . . , K` are implicitly and jointly generated by the
own players, at the same time that each player Pi obtains a Shamir share K

(i)
j of

each secret Kj ∈ Zq. Once this is done, and for each index j, the players must run a
distributed version of the protocol Π.Enc for some (maybe random) plaintext sj and
secret encryption key Kj, that is shared among the players. The resulting ciphertext
cj will be added to outpub. Such a distributed (or multi-party) version of a symmetric
encryption protocol is not easy at all (see [66, 91] for some constructions).

Summing up, if some of our new MSS schemes needs to be implemented without
any trusted dealer, then Ω2 is possibly better, because it admits a much simpler fully
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distributed version.

3.5.1 A Specific Example

We want to share ` = 25 = 32 different secret keys of RSA (with 2048 = 211 bits),
each one according to a different threshold access structure, defined on a set of n = 210

players, and with a security level of 100 bits (that is, we want a MSS scheme Ω such
that AdvAΩ

(λ) ≤ 2−100, for any adversary AΩ). Each secret sj will thus belong to
{0, 1}211

, and we look for a symmetric encryption scheme Π with plaintext space
M = {0, 1}211

.
We take Π as the result of applying some mode of operation (such as CTR or CBC,

with d blocks) to a pseudorandom permutation F : {0, 1}κ × {0, 1}r → {0, 1}r. For
simplicity, we will assume κ = r. The properties of the resulting encryption scheme
Π are as follows: the key space is K = {0, 1}r (the same as in F ), the ciphertext
space is C = {0, 1}r (the same as in F ), and the plaintext space is M = {0, 1}r·d
(that is, d times bigger than that of F ). We are interested in parameters r, d such
that r · d = 211, so we will use d = 211/r.

Combining Theorem 4.7.2 in [7], for the particular case of the CTR mode of
operation, with the generic results on security of encryption in the k-user setting [3],
we have

AdvAΠ
(λ) ≤ k ·

(
AdvAF (q′)(λ) +

(q′)2

2r+1

)
, (3.1)

where AdvAF (q′)(λ) is an upper bound for the advantage of any algorithm trying to
break, through q′ queries, the pseudorandomness of F , and AΠ is a (k, qe, qd, qc)-
adversary against Π. The theorem is only valid when qd = 0 (which is the case for
both Ω1 and Ω2) and for q′ = d(qe + qc). Let us assume, for simplicity, that the best
known attack against the pseudorandomness of F is the birthday attack; this means

AdvAF (q′)(λ) ≤ (q′)2

2r
.

If we choose to use Ω1, we can apply our Theorem 3.3.1, with k = `−|J?| ≤ ` = 25,
qe = qd = 0 and qc = ` − |J?| ≤ ` = 25. Combining the result in that theorem with
Equation (3.1), with q′ = d · qc ≤ d · 25, we have

AdvAΩ1
(λ) ≤ 25 ·

(
d2 · 210

2r
+
d2 · 210

2r+1

)
≤ 215d2

2r−1
.

Using d = 211/r and the fact that we want AdvAΩ1
(λ) ≤ 2−100, we reach the restriction

r2 · 2r−1 ≥ 2137, which is achieved by the value r = 126. Therefore, we can securely
implement Ω1 by using an underlying symmetric encryption scheme where plaintexts
are 211 bits long, but where keys and ciphertexts are 126 bits long.

On the other hand, if we choose to use Ω2, we can apply our Theorem 3.4.1, with
k = n− t? ≤ n = 210, qe + qc = `(n− t?) ≤ ` · n = 215. Combining the result in that
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theorem with Equation (3.1), as we have done in the previous paragraph, we have

AdvAΩ2
(λ) ≤ 210 ·

(
d2 · 230

2r
+
d2 · 230

2r+1

)
≤ 240d2

2r−1
.

Using d = 211/r and the desired inequality AdvAΩ2
(λ) ≤ 2−100, we conclude that

r2 · 2r−1 ≥ 2162 is enough, which is achieved by the value r = 149. We can thus
implement Ω2 and obtain a security level of 100 bits, by using an underlying symmetric
encryption scheme where plaintexts are again 211 bits long, and where keys and
ciphertexts are 149 bits long.

Now if we adapt Table 3.1 to this specific example with ` = 32 and n = 1024, we
obtain

space of secrets ~s length of outpub length of shi
` parallel instances of Shamir {0, 1}2048·32 - 65.536 bits

Scheme Ω1 (Section 3.3) {0, 1}2048·32 4.032 bits 4.032 bits

Scheme Ω2 (Section 3.4) {0, 1}2048·32 4.882.432 bits 149 bits

Table 3.2: Comparison between some MSSS for a specific example.

The price to pay, if one chooses Ω2 because of their shorter secret shares, is a huge
public output. Again, as discussed at the beginning of this section, one MSS scheme
or another can be preferable depending on the specific application.

3.6 A Multi-Secret Sharing Scheme in the

Random Oracle Model

Opposite to both previous proposals, whose security was in the standard model, we
introduce here a computationally secure multi-threshold secret sharing scheme with
provable security in the random oracle model.

The new MSSS, denoted by Ω3, is a variant of the previous scheme Ω2 defined
in Section 3.4, but replacing the underlying symmetric encryption scheme Π =
(Π.KG,Π.Enc,Π.Dec) of Ω2 by a secure one-way hash function H. Consequently,
Ω3 is slightly more efficient than Ω2 because hash functions are more efficient than
encrypt and decrypt, but with security in the random oracle model. The protocols of
Ω3 are the following:

Setup: Ω3.Stp(1λ,P , t1, . . . , t`).
Let P = {P1, . . . , Pn} be the set of n users and let 1 ≤ t1 < t2 < . . . < t` ≤ n
be the ` different thresholds that define the access structures {Γj}1≤j≤`. A prime
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number p > n is chosen, such that p is λ bits long. A secure one-way hash function
H : N × Z?p → Zp is also chosen. Each player Pi is assigned the value i. The public
parameters are params = (p,H).

Distribution of the Shares: Ω3.Dist(params, ~s).
Assumed that the secret to be distributed is ~s = (s1, . . . , s`) ∈ (Zp)`. For simplic-
ity, we assume the distribution is done by an external dealer; see Section 3.5 for a
discussion on how the own members of P could run this protocol.

1. Choose random values shi ∈ Z?p, pairwisse different for i = 1, 2, . . . , n, as the
secret shares.

2. Choose random polynomials fj(x) ∈ Zp[x] of degree tj−1, for j = 1, . . . , `, such
that fj(0) = sj.

3. For i = 1, 2, . . . , n and j = 1, 2, . . . , `, compute the values hij = H(j, shi) and
rij = fj(i)− hij mod p.

4. The secret share shi is sent to player Pi via a secure channel, whereas the public
output of the protocol is outpub = {rij}Pi∈P,j∈{1,...,`}.

Reconstruction of the Secrets: Ω3.Rec(params, outpub, j, {shi}Pi∈A).
When the players of an authorized subset A ∈ Γj (i.e. |A| ≥ tj) want to recover the
secret sj, they must cooperate performing the following steps.

1. Each player Pi ∈ A computes his pseudo secret share as hij = H(j, shi).

2. Take the values {rij}Pi∈A from outpub and compute fj(i) = rij + hij mod p, for
every Pi ∈ A.

3. Use the values {fj(i)}Pi∈A to interpolate the polynomial fj(x) and recover the
j-secret sj = fj(0).

Note that the correctness of the proposed scheme Ω3 holds directly via interpola-
tion.

3.6.1 Security Analysis

The proposed scheme is computational secure, assuming that the hash function H
behaves as a random oracle [6].

Theorem 3.6.1 For any adversary AMSS against the described threshold MSSS that
makes at most qH queries to the random oracle for H, we have AdvAMSS

(λ) ≤
qH(qH+n)

2λ+1 + o

((
qH(qH+n)

2λ+1

)2
)

.
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Proof. Let AMSS be an adversary against the computational security of the multi-
threshold secret sharing scheme. We act as the challeger of the security game de-
scribed in Subsection 3.2.2. AMSS starts the game by choosing the set of users
P = {Pi}1≤i≤n and the access structures {Γj}1≤j≤` with Γj = T (tj, n). We then run
params ← Ω.Stp(1λ,P , t1, . . . , t`) and send params = (p,H) to AMSS, who chooses a

subset B̃ ⊂ P of corrupted players with |B̃| = t?. Let J? = {j ∈ {1, . . . , `} s.t. tj ≤
t?}.

We choose random pairwise different elements shi ∈ Zp, for Pi ∈ P . If AMSS

makes a hash query (j, x) to the random oracle such that j ∈ {1, . . . , `}, j /∈ J?
and x ∈ {shi}Pi∈B̃, then we abort the game. Otherwise, the query is answered by
choosing a random element h ∈ Zp, storing the relation H(j, x) = h in a hash table,
and sending back the output h to AMSS. If a hash query (j, x) by AMSS is already
in the hash table, the stored value h is sent back to AMSS.

Challenge. At some point, AMSS outputs two different multi-secrets ~s(0) 6= ~s(1),
such that s

(0)
j = s

(1)
j for all j ∈ J?. We choose random polynomials fj(x) ∈ Zp[x]

of degree tj − 1 and such that fj(0) = s
(0)
j , for all j ∈ J?. For those values of

j ∈ J?, we compute (via the hash-table procedure) the values hij = H(j, shi) and
rij = fj(i)− hij mod p, for all Pi ∈ P .

For the rest of values j ∈ {1, . . . , `}, j /∈ J?, we choose random pairs of polynomials

f
(0)
j (x), f

(1)
j (x) ∈ Zp[x] of degree tj − 1, such that f

(0)
j (0) = s

(0)
j , f

(1)
j (0) = s

(1)
j , and

f
(0)
j (i) = f

(1)
j (i) for all corrupted players Pi ∈ B̃. For indices i such that Pi ∈ B̃,

we compute (via the hash-table procedure) the values hij = H(j, shi) and rij =

f
(0)
j (i)− hij mod p. For indices i such that Pi /∈ B̃, we choose at random rij ∈ Zp.

We give to AMSS the shares {shi}Pi∈B̃ of the corrupted players, as well as the
public output of the protocol outpub = {rij}Pi∈P,j∈{1,...,`}.

For indices j ∈ {1, . . . , `}, j /∈ J? and indices i such that Pi /∈ B̃, let us define

h
(0)
ij = rij − f (0)

j (i) mod p and h
(1)
ij = rij − f (1)

j (i) mod p. We can choose at random

a bit β ∈ {0, 1} and include in the hash-table the values H(j, shi) = h
(β)
ij , for all i, j

such that j ∈ {1, . . . , `}, j /∈ J? and Pi /∈ B̃. In this way, we are perfectly simulating

an execution of the distribution of shares for the secret ~s(β) = (s
(β)
1 , . . . , s

(β)
` ). The

key point here is that, as long as AMSS does not make any hash query H(j, shi) for

indices i, j such that j ∈ {1, . . . , `}, j /∈ J? and Pi /∈ B̃, the information that AMSS

gets is the same as if the shared secret was ~s(1−β).

Final analysis. Therefore, to compute the probability that AMSS guesses the cor-
rect shared secret, we distinguish between two cases, depending on whether AMSS

makes a hash query H(j, shi) for indices i, j such that j ∈ {1, . . . , `}, j /∈ J? and
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Pi /∈ B̃. If this is the case, which happens with probability δ, then we assume the
best case for AMSS: he always guesses the correct secret in that case. On the other
hand, if AMSS does not make such a hash query, which happens with probability
1− δ, then the probability that AMSS guesses is exactly 1/2. Summing up, the prob-
ability that AMSS guesses the correct secret is at most δ+ 1/2(1− δ). Therefore, the
advantage of AMSS is

AdvAMSS
(λ) =

∣∣∣∣Pr[AMSS guesses]− 1

2

∣∣∣∣ ≤ 1

2
δ(λ).

The probability δ(λ) that some of qH randomly chosen elements falls in a perfectly
hidden subset {shi}Pi /∈B̃ of n− t? random elements of Zp can be bounded as

δ(λ) < 1−
(
p− (n+ qH − t? − 1)

p

)qH
=
qH(qh + n)

p
+ o

((
qH(qh + n)

p

)2
)
.

Using that p > 2λ, we obtain the desired result AdvAMSS
(λ) ≤ qH(qH+n)

2λ+1 +

o

((
qH(qH+n)

2λ+1

)2
)

. �

In cryptography, the number of hash queries is usually estimated as qH ≤ 260. The
number n of players will be much smaller than that, in real situations. Therefore, the
multi-threshold secret sharing scheme described here achieves a 80-bit security level
as long as λ ≥ 200. In this case, the prime number p used in the scheme, which is λ
bits long, verifies p ≥ 2200.

3.7 Some Extensions

All proposed MSSSs presented in this chapter can be generalized from different points
of view to be used in specific situations. In Section 3.5 we explained how the role
of the trusted dealer could be done by the participants themselves for both schemes
Ω1 and Ω2. This property is also satisfied by the scheme Ω3 following the same ideas
presented for the scheme Ω2. Next we show the following two extensions.

Active Adversaries.

The idea to make the MSSSs secure against active adversaries (who can send in-
correct values during the protocol) is to consider verifiable secret sharing techniques
([31, 74]) as described for instance in [36]. Slight modifications of the scheme above
are necessary to achieve this goal. For instance, in scheme Ω2 of Subsection 3.4 every
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participant Pi ∈ P must publish, in Step 2 of the distribution protocol, the com-

mitments A
(u)
ij = ga

(u)
ij to the coefficients of his polynomials, with j ∈ {1, . . . , `} and

u ∈ {1, . . . , tj − 1}. Later, these commitments are used to detect incorrect values
that are sent in Step 3 of the distribution protocol or broadcast in Step 2 of the
reconstruction protocol.

More General Access Structures.

We have described and analyzed different MSSSs throughout this chapter. The first
two proposals were proven in the standard model (Sections 3.3 and 3.4) and the
third one in the random oracle model (Section 3.6), for the particular case where
the access structures Γ1, . . . ,Γ` are all threshold ones. However, all these protocols
can be easily extended to the case of more general access structures Γj, as long as
they admit a linear and ideal secret sharing scheme (also known as vector space secret
sharing scheme [17], which were introduced in Section 1.5). To achieve this goal, the
proposed MSSSs can be easily modified just replacing polynomials with vectors, and
polynomial evaluations with scalar products.

Advancing some results of Chapter 4, the same will happen with the multi-policy
distributed cryptosystems which are using these sharing schemes as building block. If
the access structures admit a vector space secret sharing scheme, then the key gener-
ation protocol can be modified as explained above; later, the encryption / decryption
or signature / verification operations can be (slightly) modified to work with these
more general access structures and linear secret sharing schemes, because they will
involve only linear operations (additions and multiplications with a constant value).
Even the version of our protocols that works without any trusted dealer, described
above, can be extended using the ideas and techniques from [47].



Chapter 4

Multi-Policy Distributed
Cryptosystems

In public key cryptography, some operations (like encrypting a message or verify-
ing a signature) can be done by any user in the system, with access to the public
information of the other users. However, the associated secret operations (like de-
crypting a ciphertext or signing a message) can be done only by the user who knows
the corresponding secret information.

In some situations, such secret tasks are too important and sensitive to rely on a
single user or machine; a good solution then is to use distributed (in particular, thresh-
old) public key cryptography: the secret information is distributed among a set of
users, and the cooperation of several authorized subset (in a fixed access structure) of
them is required in order to correctly perform the corresponding secret task. Depend-
ing on the considered secret task, this approach leads to different distributed cryp-
tosystems as e.g. distributed decryption schemes or distributed signature schemes.

In this chapter we consider an extension of the standard scenario of distributed
(public key) cryptography. In some cases, setting a single access structure of autho-
rized subsets of users for all the executions of the secret task may be unrealistic. For
instance, some messages encrypted for a receiver entity P may be more sensitive or
confidential than others, and thus require the cooperation of more or less members
of P in order to be decrypted. With this motivation in mind, we will consider multi-
policy distributed cryptosystems: in the setup of the system, a list of ` possible (and
different) acces structures is chosen; later, for each execution of the cryptographic
operation, a specific access structure in this list is chosen “on the fly”, depending on
the desired security level. Only those subsets of players authorized with respect to
this specific access structure will be able to perform the secret task, by using their
secret shares of information. A trivial way of implementing multi-policy distributed

83
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cryptosystems is by running ` independent instances of a standard distributed cryp-
tosystem, one for each of the access structures in the list. This solution has the
drawback that the length of the secret information to be stored by each user is linear
in `; we look for more efficient solutions.

As it happens with standard distributed cryptosystems, where standard secret
sharing schemes are a key ingredient in their design, it is natural that multi-secret
sharing schemes (MSSSs) are a key tool when designing multi-policy distributed
cryptosystems.

In the following two sections we will use the MSSS proposed in Section 3.6 as a
key tool to design a new multi-policy distributed decryption scheme and a new multi-
policy distributed signature scheme. We prove the security of these two schemes,
in the random oracle model, by taking into account formal security models that we
introduce in the corresponding sections. Again, and for simplicity, we describe the
schemes for the threshold case, but extensions to the case of more general policies
are easy to do, as we discuss in Section 3.7. The efficiency of the new multi-policy
distributed cryptosystems is essentially the same as the efficiency of the standard
distributed cryptosystems (Shoup-Gennaro [88] for decryption and Boldyreva [10]
for signatures) by which they are inspired. Namely, the length of secret shares,
ciphertexts and signatures, and the cost of encryption, decryption, signature and
verification are the same; the only changes are in the size of the public parameters
and public key of the set P , which are increased by a factor of n · `.

In Section 4.3 we discuss the relations between the new primitives of multi-policy
distributed cryptosystems and attribute-based cryptosystems. Even if any attribute-
based cryptosystem leads to a multi-policy distributed cryptosystem, the obtained
scheme has some drawbacks that are not present in the solutions that we propose
in previous Sections. For instance, our new MSSS and our multi-policy distributed
schemes can be modified so that no external and trusted entity is needed in the life of
the system; this is not possible in attribute-based solutions, where a trusted master
entity generates and distributes the secret material to the members of the set P .

In the last section a slight overview on different cryptographic primitives, where
the proposed multi-threshold secret sharing schemes of this thesis can be applied, is
given. One of these applications could be in the signcryption process of signcryp-
tions with threshold unsigncryption or in the verification process of signatures with
distributed verification proposed in Chapter 2.

4.1 Multi-Policy Distributed Decryption

In this section, we will have a set of users P = {P1, . . . ,Pn} as the receivers of
confidential messages. There will be ` different access structures Γj ⊂ 2P defined on P ,
for j = 1, . . . , `. When encrypting, the sender will choose the desired decryption access
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structure Γj. A ciphertext encrypted for the access structure (or decryption policy)
Γj will be correctly decrypted only if the users in some subset A ∈ Γj cooperate to run
the protocol Decrypt. Each user Pi ∈ P will have a share shi of secret information,
and will use it to perform his part of the decryption process.

After defining in a formal way the syntactic definition and the security model
for this primitive, that we call multi-policy distributed decryption, we will present a
scheme for this functionality in the case of threshold decryption policies, that uses as
a building block the multi-threshold secret sharing scheme of Section 3.6, and we will
prove that it satisfies the required security properties. We consider threshold access
structures only for simplicity of the presentation; the scheme can be extended to work
with more general access structures as explained in Section 3.7.

4.1.1 Syntactic Definition

A multi-policy distributed decryption scheme Σ = (Σ.St,Σ.KG,Σ.Enc,Σ.Decrypt)
consists of four probabilistic polynomial-time algorithms:

• The randomized setup algorithm Σ.St takes a security parameter λ ∈ N and
outputs some public parameters params that will be common to all the users
in the system: the mathematical groups, generators, hash functions, etc. We
write params← Σ.St(1λ) to denote an execution of this algorithm.

• The key generation algorithm Σ.KG for a collective P = {P1, . . . ,Pn} of n users
and ` different access structures Γj ⊂ 2P for j = 1, . . . , ` has as public output
a public key PK. We implicitly assume that PK contains the description of
P and the ` access structures. Each user Pi ∈ P receives a secret share shi.
This key generation process for the collective P can be run either by a trusted
third party, or by the users in P themselves. We will write ({shi}1≤i≤n, PK)←
Σ.KG(params,P ,Γ1, . . . ,Γ`) to refer to this key generation protocol.

• The encryption algorithm Σ.Enc takes as input params, a message m, the public
key PK of the intended receiver group P , and the index xj for the desired
decryption policy Γj, where j ∈ {1, . . . , `}. The outputs are a ciphertext C and
the index j of the chosen decryption policy. We denote an execution of this
algorithm as (C, j)← Σ.Enc(params,m, PK, j).

• The joint decryption algorithm Σ.Decrypt is a distributed protocol run by some
subset of users A ⊂ P . The common inputs are params, PK, a ciphertext C
and an index j, whereas each user Pi ∈ A has as secret input his secret share
shi. The output is a message m̃, which can eventually be the special symbol ⊥,
meaning that the pair (C, j) is invalid. To refer to an execution of this protocol,
we write m̃← Σ.Decrypt(params, C, j, PK,A, {shi}Pi∈A).
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For correctness, Σ.Decrypt(params,Σ.Enc(params,m, PK, j), PK,A, {shi}Pi∈A) =
m is required, whenever A ∈ Γj and the values params, {shi}1≤i≤n, PK have been
obtained by properly executing the protocols Σ.St and Σ.KG.

4.1.2 Security Model

A correct encryption scheme must satisfy the proper confidentiality property. In
the distributed setting that we are considering, confidentiality must hold even if an
attacker corrupts many members of the collective of receivers, provided the corrupted
members are not authorized to decrypt the challenge ciphertext.

The confidentiality requirement for a multi-policy distributed decryption scheme
Σ (i.e. the fact that a ciphertext on the message m addressed to P for access struc-
ture Γj leaks no information on m to an attacker who has corrupted a subset of users

B̃ ⊂ P such that B̃ /∈ Γj) is ensured if the scheme enjoys the property of indis-
tinguishability under chosen ciphertext attacks (IND-CCA security, for short). For a
security parameter λ ∈ N, this property is defined by considering the following game
that an attacker AIND-CCA plays against a challenger:

1. The challenger runs params← Σ.St(1λ) and gives params to AIND-CCA.

2. AIND-CCA chooses a target set P = {P1, . . . ,Pn} of users, ` different decryption

policies Γj ⊂ 2P , for j = 1, . . . , `, and a subset B̃ ⊂ P of users, to be corrupted.
The challenger runs ({shi}1≤i≤n, PK)← Σ.KG(params,P ,Γ1, . . . ,Γ`) and gives
to AIND-CCA the values PK and {shi}Pi∈B̃.

Note that we are considering only static adversaries who choose the subset B̃
of corrupted users at the beginning of the attack. Considering security against
adaptive adversaries is an interesting problem for future research.

3. [Queries] AIND-CCA can make adaptive queries to a distributed decryption or-
acle for the target set P : AIND-CCA sends a tuple (C, j). The challenger runs
m̃← Σ.Decrypt(params, C, j, PK,P , {shi}Pi∈P). The attacker AIND-CCA must be
given all the information that is broadcast during the execution of this protocol
Σ.Decrypt, including m̃.

4. AIND-CCA chooses two messages m0,m1 of the same length, and a decryption
policy Γj, where j ∈ {1, . . . , `} and B̃ /∈ Γj.

5. [Challenge] The challenger picks a random bit d ∈ {0, 1}, runs the protocol
(C?, j)← Σ.Enc(params,md, PK, j) and gives (C?, j) to AIND-CCA.

6. Step 3 is repeated, with the restriction that the tuple (C?, j) cannot be queried
to the distributed decryption oracle.
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7. Finally, AIND-CCA outputs a bit d′ as his guess of the bit d.

The advantage of such a (static) adversary AIND-CCA in breaking the IND-CCA
security of the multi-policy distributed decryption scheme is defined as

AdvAIND-CCA
(λ) =

∣∣∣∣Pr[d′ = d]− 1

2

∣∣∣∣ .
A multi-policy distributed decryption scheme Σ is IND-CCA secure if AdvAIND-CCA

(λ)
is negligible with respect to the security parameter λ, for any polynomial time (static)
adversary AIND-CCA.

4.1.3 A New Multi-Threshold Decryption Scheme

We propose here a new multi-policy distributed decryption scheme. For simplicity
we describe the scheme when all the decryption policies are threshold ones; that
is, Γj = T (tj, n) for j = 1, . . . , `, where 1 ≤ t1 < t2 < . . . < t` ≤ n. The scheme is
inspired by the (single) threshold decryption scheme proposed by Shoup and Gennaro
in [88]. A key ingredient in the design of the new scheme will be the multi-threshold
secret sharing scheme proposed in Section 3.6. The protocols of the multi-threshold
decryption scheme Σ work as follows.

Setup: Σ.St(1λ).
Given a security parameter λ ∈ N, a group G = 〈g〉 of prime order p, such that
p is λ bits long, is chosen. A positive integer l ∈ N, which must be polynomial
in λ, is chosen for the maximum number of bits of the messages to be encrypted.
Five hash functions are chosen: H0 : {0, 1}∗ × Z∗p → Zp, H1 : {0, 1}∗ → {0, 1}l,
H2 : {0, 1}∗ → G, H3 : {0, 1}∗ → Zp, H4 : {0, 1}∗ → Zp. The output of this protocol
is params = (p,G, g, l, H0, H1, H2, H3, H4).

Key Generation: Σ.KG(params,P , t1, . . . , t`, n).
Let P = {P1, . . . ,Pn} be a set of n users and Γj = T (tj, n) for j = 1, . . . , ` the
threshold decryption policies defined on P , where 1 ≤ t1 < t2 < . . . < t` ≤ n. For j =
1, . . . , `, the value PKj = gsj is computed, for a random value sj ∈ Z∗p that will remain
unknown to the members of P . These ` secret values will correspond to a secret vector
~s = (s1, . . . , s`) of the multi-threshold secret sharing scheme described in Section 3.6,
that will be shared by running the distribution protocol Ω.Dist(P , t1, . . . , t`, ~s), with
hash function H0:

1. Choose random values shi ∈ Z?p, pairwisse different for i = 1, 2, . . . , n, as the
secret shares.

2. Choose random polynomials fj(x) ∈ Zp[x] of degree tj−1, for j = 1, . . . , `, such
that fj(0) = sj.
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3. For i = 1, 2, . . . , n and j = 1, 2, . . . , `, compute the values hij = H0(j, shi) and
rij = fj(i)− hij mod p.

4. The secret share shi is sent to player Pi via a secure channel, whereas the public
output of the protocol is outpub = {rij}Pi∈P,j∈{1,...,`}.

The secret share for each player Pi is shi, whereas the global public key is PK =
(PK1, . . . , PK`, outpub). In case one wants to provide robustness to the threshold
decryption process, the values Dij = ghij+rij must be included in PK, for i = 1, . . . , n
and j = 1, . . . , `.

Encryption: Σ.Enc(params,m, PK, j).

1. Choose at random the values ru, rw ∈ Z∗p.

2. Compute c = H1(PKru
j , j)⊕m.

3. Use the element g to compute u = gru and w = grw .

4. Use the value ḡ = H2(c, u, w, j) to compute ū = ḡru and w̄ = ḡrw .

5. Compute e = H3(ḡ, ū, w̄, j) and σ = rw + ru · e mod p.

6. Return (C, j) with the ciphertext C = (c, u, ū, e, σ).

Joint Decryption: Σ.Decrypt(params, C, j, PK,A, {shi}Pi∈A)
Let A ⊂ P be a subset of users in P that want to cooperate to decrypt a ciphertext
C = (c, u, ū, e, σ) according to the threshold decryption policy T (tj, n). We assume,
thus, |A| ≥ tj. Players in A proceed as follows.

1. Each Pi ∈ A checks if e = H3(ḡ, ū, w̄, j), where w = gf/ue, ḡ = H2(c, u, w, j), w̄ =
ḡf/ūe.
If this equality does not hold, Pi broadcasts (i,⊥).

2. Otherwise, Pi ∈ A chooses vij ∈ Zp at random, recovers rij from outpub, com-
putes hij = H0(j, shi) and broadcasts the tuple (i, uij, eij, σij), where

uij = uhij+rij , ûij = uvij , ĥij = gvij , eij = H4(uij, ûij, ĥij)

and σij = vij + (hij + rij) · eij mod p

[If robustness is required, the correctness of this tuple can be publicly verified

by checking if eij = H4(uij, ûij, ĥij), where ûij = uσij/u
eij
ij , ĥij = gσij/D

eij
ij . Note

that this check ensures that (u,Dij, uij) is a valid Diffie-Hellman triple.]
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3. If there are not tj valid shares, stop and output ⊥. Otherwise, from tj valid
tuples {(i, uij, eij, σij)}Pi∈A, different from (i,⊥), one can consider the Lagrange
interpolation coefficients λAij ∈ Zp such that sj = fj(0) =

∑
Pi∈A

λAij · fj(i).

4. Return the message m = c⊕H1(
∏
Pi∈A

u
λAij
ij , j).

4.1.4 Security Analysis

A first attempt to prove the security of the new multi-threshold decryption scheme
would be to reduce its security to the security of the inherent multi-threshold secret
sharing scheme, which is described in Section 3.6. However, such a reduction does
not work, because in the new decryption scheme, the values PKj = gsj are public,
for j = 1, . . . , `. In this scenario it is trivial to distinguish between two potentially
shared secrets s

(0)
j 6= s

(1)
j , chosen by the adversary. Therefore, in order to prove the

security of the multi-threshold decryption scheme, we have to construct a whole proof,
simulating all the values that an adversary AIND-CCA would see in the execution of the
different protocols of Σ. We would use the hypothetical existence of such a successful
adversary AIND-CCA to solve a computationally hard problem.

We next reduce the IND-CCA security of the new multi-policy distributed decryp-
tion scheme to the hardness of solving the CDH problem (See a detailed description in
Subsection 1.2.1). The proof is in the random oracle model for the five hash functions
H0, H1, H2, H3, H4. The conclusion is that, under the Computational Diffie-Hellman
Assumption for our group G = 〈g〉, the new multi-policy distributed decryption
scheme enjoys IND-CCA security.

Theorem 4.1.1 In the random oracle model, the scheme Σ is IND-CCA secure, as-
suming the Computational Diffie-Hellman problem is hard to solve in G.

Proof. The proof is by reduction, assuming that hash functions H0, H1, H2, H3, H4

are modeled as random oracles. An adversary AIND-CCA that can guess the bit d in
the game described on Page 86 is used to construct an algorithm ACDH that solves
the CDH problem.

In this simulation ACDH receives as input (g, ga, gb), where G = 〈g〉 is a cyclic
group of prime order p. The goal of ACDH is to compute gab. The algorithm ACDH
initializes the attacker AIND-CCA by giving params = (p,G, g, l, H0, H1, H2, H3, H4) to
him. Since the hash functions H0, H1, H2, H3, H4 are supposed to behave as random
oracles, ACDH will create and maintain tables TABk, for k = 0, 1, . . . , 4, to answer the
hash queries from AIND-CCA. These answers are produced by ACDH by first checking
if there already exists an entry in the corresponding table for the input of the hash
query; if so, ACDH responds with the existing output; otherwise, ACDH chooses a new
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random value in the corresponding set of valid outputs for that hash function, adds
the new relation input-output to the corresponding table, and responds to AIND-CCA

with this output value.

Key distribution. AIND-CCA chooses the target collective P? = {P1, . . . ,Pn}, the
decryption policies Γj = T (tj, n) ⊂ 2B for j = 1, . . . , ` where t1 < t2 < · · · < t`, and

also the subset of corrupted members B̃ ⊂ P?. For simplicity, and without loss of
generality, we assume B̃ = {P1, . . . , Pt?}, where 1 ≤ t? ≤ n. This implies that the
challenge must be for an index j /∈ J? = {j ∈ {1, . . . , `} s.t. tj ≤ t?}, so that the
corrupted members cannot trivially decrypt the challenge ciphertext from their secret
shares.

For the corrupted members, the algorithm ACDH chooses randomly and indepen-
dently the shares shi ∈ Zp producing the set {shi}Pi∈B̃.

For every index j ∈ J?, the algorithm ACDH chooses at random a secret sj ∈ Z∗p
and a polynomial fj(x) ∈ Zp[x] of degree tj − 1 such that fj(0) = sj. It computes
(via the hash-table procedure) the values hij = H0(j, shi), rij = fj(i) − hij mod p,

for all Pi ∈ B̃. For the non-corrupted players, Pi /∈ B̃, the algorithm ACDH chooses
random and independent values rij ∈ Zp, then computes the values fj(i) by using the
chosen polynomial. Finally, ACDH computes the values PKj = gsj and (if necessary)
Dij = gfj(i), for all Pi ∈ P?.

For the rest of indices j ∈ {1, . . . , `}, j /∈ J?, the algorithm ACDH chooses at
random αj ∈ Zp and defines PKj = (gb)αj (which implicitly defines sj = b · αj). For
each j /∈ J?, ACDH chooses at random the values rij, for all Pi ∈ P . In particular,

this means that, for the corrupted members Pi ∈ B̃, we have that the values rij +
H0(j, shi) mod p are already determined. Let fj(x) ∈ Zp[x] be an implicit polynomial
of degree tj − 1 such that fj(0) = b · αj and fj(i) = rij + H0(j, shi) mod p, for every

corrupted player Pi ∈ B̃. Since |B̃| = t? < tj, the algorithmACDH could (if necessary)

compute the values Dij = grij+H0(j,shi), for Pi ∈ B̃, and then combine these values
with PKj = (gb)αj in order to obtain, by interpolation in the exponent, the rest of

values Dij, for non-corrupted players Pi /∈ B̃.
Finally ACDH sends to the adversary AIND-CCA the secret keys {shi}Pi∈B̃ of the

corrupted players, along with the public information PK = (PK1, . . . , PK`, outpub),
where outpub = {rij}Pi∈P?,j∈{1,...,`}. If robustness is considered, the values Dij are also
sent.

Special hash queries. For the particular case of H2 queries, the outputs ḡ are
chosen as random powers of gb. That is, ACDH chooses at random a fresh value
β ∈ Z∗p and computes the new output of H2 as ḡ = (gb)β. The value β is stored as an
additional value of the new entry in table TAB2.
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Regarding the simulation of the hash function H0, the analysis is the same as the
one in the proof of Theorem 3.6.1: the simulation is sound as long as the hash queries
from AIND-CCA do not cause a collision. If the number of hash queries for H0 is q0,

such a collision happens with probability at most
q2
0

2p
+ o

((
q2
0

2p

)2
)

, which is negligible

if p > 2200.

Decryption queries. Let (C, j) be a decryption query sent by AIND-CCA, for users
P? and decryption policy Γj = T (tj, n), where C = (c, u, ū, e, σ). We assume AIND-CCA

is not able to decrypt the ciphertext by itself, and so t? < tj.
The first thing ACDH does is to check the validity of the ciphertext; that is, to

check if e = H3(ḡ, ū, w̄, j), where w = gσ/ue, ḡ = H2(c, u, w, j) = (gb)β for some value
β known by ACDH and w̄ = ḡσ/ūe. If this equation does not hold, then the answer
to the query is ⊥. Otherwise, ACDH has to simulate the output of the users Pi ∈ P?
and recover the message m̃. This is done as follows.
ACDH obtains {uij}Pi∈B̃ trivially, because uij = uH0(j,shi)+rij , these corrupted

shares shi are known to ACDH and values rij are included in outpub. Analogously,

the values eij, σij can be consistently computed, for the corrupted players Pi ∈ B̃.
The difficulties appear when simulating the tuples (i, uij, eij, σij) for non-corrupted

players Pi /∈ B̃. Again, the technique for doing this will be interpolation in the
exponent.

Indeed, since the ciphertext has passed the first validity check, we know that
DiscLogg(u) = DiscLogḡ(ū), where ḡ = gb·β is a value produced by ACDH in some

(previous) hash query for H2. This means that ub = ū1/β, and so ACDH can compute
the value ub·αj . Again, let fj(x) be the implicit polynomial of degree tj − 1 such that

fj(0) = b · αj and fj(i) = rij + H0(j, shi) mod p, for every corrupted player Pi ∈ B̃.
The values {uij}Pi /∈B̃, which are implicitly defined as uij = ufj(i), can be computed

by interpolation in the exponent, from ufj(0) = ub·αj and {uij}Pi∈B̃.

Regarding the remaining values eij, σij, for non-corrupted players Pi /∈ B̃, they are
computed as follows. ACDH takes random, uniform and independent values eij, σij ∈
Zp, computes the values ûij = uσij/u

eij
ij and ĥij = gσij/D

eij
ij , defines the relation

H4(uij, ûij, ĥij) = eij and adds this relation to TAB4. The probability that this
simulation produces some collision with some other H4 hash query by AIND-CCA is
negligible.

The rest of the decryption process can be easily completed by ACDH , who obtains
a message m̃ and sends all the obtained information to AIND-CCA.

Challenge. At some point, AIND-CCA outputs two messages m0,m1 of the same
length, along with a policy Γj? , where j? ∈ {1, . . . , `} and B̃ /∈ Γj? . Note that the
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part of the public key associated to the policy Γj? was defined as PKj? = (gb)αj? . To
produce the challenge ciphertext (C?, j?), the algorithm ACDH chooses c? ∈ {0, 1}l
and β?, e?, σ? ∈ Z∗p at random and defines

u? = ga, ḡ? = gβ
?

, ū? = (u?)β
?

, w? = gσ
?

/(u?)e
?

, w̄? = (ḡ?)σ
?

/(ū?)e
?

If either the input (c?, u?, w?, j?) already exists in TAB2, or the input (ḡ?, ū?, w̄?, j?)
already exists in TAB3, the algorithm ACDH goes back to choose other random values.
Finally, the relation ḡ? = H2(c?, u?, w?, j?) is added to TAB2 and the relation e? =
H3(ḡ?, ū?, w̄?, j?) is added to TAB3. The challenge ciphertext that ACDH sends to
AIND-CCA is (C?, j?) with C? = (c?, u?, ū?, e?, σ?).

More decryption queries. AIND-CCA can make more hash and decryption queries
(C, j), which are answered exactly in the same way as described before the challenge
phase. The only delicate point is that ACDH could not answer a valid decryption
query (C, j), with C = (c, u, ū, e, σ), for which the value of ḡ = H2(c, u, gσ/ue, j) =
ḡ?, because this value does not have the necessary form (gb)β. But this happens
only if the two inputs of H2, in both the challenge ciphertext and in this queried
ciphertext, are the same. Since the zero-knowledge proofs DiscLogg(u) = DiscLogḡ(ū)
and DiscLogg(w) = DiscLogḡ(w̄) are valid, for both the queried ciphertext and the
challenge ciphertext, we would have in this case ū = ū? and w̄ = w̄?. Therefore, it
would hold e = H3(ḡ, ū, w̄, j) = e? and consequently σ = σ?, since the inputs for H2

are the same. The conclusion is that the problematic decryption query (C, j) would
be exactly equal to the challenge ciphertext (C?, j?), and this query is not allowed to
AIND-CCA.

Final analysis. Finally, AIND-CCA outputs a guess bit d′. If the probability that
d′ = d is significantly greater than 1/2 (random guess), since md is perfectly hidden
by H1(·) and H1 behaves as a random function, the only possibility is that AIND-CCA

queried the hash function H1 on the input which corresponds to the challenge cipher-
text (C?, j?), which is (gab)αj? . Then ACDH outputs the list TAB1 of all inputs on
which H1 was queried by AIND-CCA, which with overwhelming probability will contain
(gab)αj? . Since ACDH knows the value αj? , it can raise all the elements of that list to
(αj?)

−1. One of the elements of the resulting list will be the solution gab to the given
instance of the CDH problem. As the authors of [88] indicate, the Diffie-Hellman
self-corrector in [86] can be used to transform this algorithm ACDH into an algorithm
that outputs the single and correct solution to the CDH problem. �
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4.2 Multi-Policy Distributed Signatures

In this section, we deal with the secret task of signing instead of decrypting. Threshold
(or distributed) signatures have also received a lot of attention from the cryptographic
community [35, 87, 10]; they have applications in scenerios where the cooperation of
more than one single entity is necessary to authenticate a message. In our multi-
policy setting, we will have a set of users P = {P1, . . . ,Pn} as the possible signers
of messages. Depending on the content and the importancy of the message, more
or less members of P can be required to participate in the signing process. In other
words, the subset of real signers A ⊂ P will choose ad-hoc a signing policy Γj among
a set of pre-defined different signing policies Γ1, . . . ,Γ`, such that A ∈ Γj, and will
cooperate to sign the message on behalf of that policy Γj. The final verification step
will take as inputs the index j, the message, the signature, and the global public key
of the set P , in order to check the validity of the signature. Note that the knowledge
of identities of the real signers (in subset B) is not necessary to verify a signature,
which provides some kind of anonymity (if desired) to the process.

After defining the syntactic definition and the security model for this primitive
of multi-policy distributed signatures, we present a scheme for the case of threshold
signing policies (that uses as a building block, again, the multi-threshold secret shar-
ing scheme proposed in Section 3.6) and we prove its security. The scheme can be
extended to work with more general access structures, as we discussed in Section 3.7.

4.2.1 Syntactic Definition

A multi-policy distributed signature scheme Θ = (Θ.St,Θ.KG,Θ.Sign,Θ.Ver) consists
of four probabilistic polynomial-time algorithms:

• The randomized setup algorithm Θ.St takes a security parameter λ ∈ N and
outputs some public parameters params that will be common to all the users
in the system: the mathematical groups, generators, hash functions, etc. We
write params← Θ.St(1λ) to denote an execution of this algorithm.

• The key generation algorithm Θ.KG for a collective P = {P1, . . . ,Pn} of n users
and ` different signature policies Γj ⊂ 2B for j = 1, . . . , ` has as public output a
public key PK that will be used in both the signing and verification steps. We
implicitly assume that PK contains the description of P ,Γ1, . . . ,Γ`. Each user
Pi ∈ P receives a secret share shi. This key generation process for the collective
P can be run either by a trusted third party, or by the users in P themselves.
We will write ({shi}1≤i≤n, PK) ← Θ.KG(params,P ,Γ1, . . . ,Γ`) to refer to this
key generation protocol.
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• The joint signature algorithm Θ.Sign is a distributed protocol run by some
subset of users A ⊂ P . The common inputs are params, PK, a message
m, the secret shares shi of the users Pi ∈ A, and the index j of the de-
sired signature policy Γj, where j ∈ {1, . . . , `}. The outputs are a signa-
ture σ and the index j of the chosen signature policy. We write (σ, j) ←
Θ.Sign(params, PK,m,A, {shi}Pi∈A, j) to refer to an execution of this protocol.

• The verification algorithm Θ.Ver takes as input params, a messagem, a signature
(σ, j), and the public key PK of the intended receiver group P . The output will
be 1 if (σ, j) is a valid signature of m and 0 otherwise. We denote an execution
of this algorithm as {1, 0} ← Θ.Ver(params,m, σ, j, PK).

For correctness, Θ.Ver(params,m,Θ.Sign(params, PK,m,A, {shi}Pi∈A, j), PK) =
1 is required, whenever A ∈ Γj and the values params, {shi}1≤i≤n, PK have been
obtained by properly executing the protocols Θ.St and Θ.KG.

4.2.2 Security Model

A multi-policy distributed signature scheme must be robust. The robustness property
holds when the protocols Θ.KG and Θ.Sign always complete successfully, even under
the action of a polynomial-time adversary that is allowed to corrupt an unauthorized
set of users.

As any other primitive related to signatures, a multi-policy distributed signature
scheme Θ must also be unforgeable. That is, any polynomial-time adversary that is
allowed to corrupt a subset of users B̃ ⊂ P such that B̃ /∈ Γj must have negligible
probability of success in producing a new valid signature for some message with
respect to signing policy Γj, even if this adversary has access to a signing oracle for
messages and signing policies of his choice. This property is known as unforgeability
against chosen message attacks (UNF security, for short) and is defined, for a security
parameter λ ∈ N, by considering the following game that an attacker AUNF plays
against a challenger:

1. The challenger runs params← Θ.St(1λ) and gives params to AUNF.

2. AUNF chooses a target set P = {P1, . . . ,Pn} of users, ` different signature

policies Γj ⊂ 2P , for j = 1, . . . , `, and a subset B̃ ⊂ P of users, to be corrupted.
The challenger runs ({shi}1≤i≤n, PK)← Θ.KG(params,P ,Γ1, . . . ,Γ`) and gives
to AUNF the values PK and {shi}Pi∈B̃.

We consider only static adversaries who choose the subset B̃ of corrupted users
at the beginning of the attack.
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3. [Queries] AUNF can make adaptive queries to a distributed signing oracle for
the target set P : AUNF sends a tuple (m, j) for the signature policy Γj. The
challenger runs the distributed signature algorithm (σ, j)← Θ.Sign(params,m,
A, {shi}Pi∈A, j) for an authorized subset A ∈ Γj. The attacker AUNF must be

given all the information that corrupted players (in B̃) would obtain during
the execution of this protocol Θ.Sign, including the final signature and all the
broadcast information.

4. At some point, AUNF outputs a forgery (j?,m?, σ?). We say thatAUNF is success-

ful if: (1) B̃ /∈ Γj, (2) Θ.Ver(params,m?, σ?, j?, PK) = 1, and (3) (j?,m?, σ?)
has not been obtained by AUNF in a signature query (step 3).

The advantage of such a (static) adversary AUNF in breaking the UNF security of
the multi-policy distributed signature scheme is defined as the probability that AUNF

is successful in the game above.
A multi-policy distributed signature scheme Θ is UNF secure if the advantage

of any such polynomial-time (static) adversary AUNF is a negligible function of the
security parameter λ.

4.2.3 A New Multi-Threshold Signature Scheme

We propose here a new multi-policy distributed signature scheme, that we describe
(for simplicity) for the case where all the signing policies are threshold ones: Γj =
T (tj, n) for j = 1, . . . , `, where 1 ≤ t1 < t2 < . . . < t` ≤ n. See Section 3.7 for an
extension of this scheme to the case of more general access structures. The scheme
is inspired by the (single) threshold signature scheme proposed by Boldyreva in [10]
(which is itself inspired by the individual signature scheme of Boneh-Lynn-Shacham
[14]). A key ingredient in the design of the new scheme will be, again, the multi-
threshold secret sharing scheme proposed in Section 3.6. We also use the notion of
Gap Diffie-Hellman groups (See Page 7 for a detailed description on this).

The protocols of the new multi-threshold signature scheme Θ work as follows.

Setup: Θ.St(1λ).
Given a security parameter λ ∈ N, a GDH group G = 〈g〉 of prime order p, such that p
is λ bits long, is chosen. Two hash functions H0 : {0, 1}∗ → Zp and H1 : {0, 1}∗ → G
are chosen. The output of this protocol is params = (p,G, g,H0, H1).

Key Generation: Θ.KG(params,P , t1, . . . , t`, n).
This protocol is exactly the same as the Key Generation protocol of the multi-
threshold decryption scheme Σ, in Section 4.1. Let P = {P1, . . . ,Pn} be a set of
n users and let Γj = T (tj, n) for j = 1, . . . , ` be the threshold signing policies defined
on P , where 1 ≤ t1 < t2 < . . . < t` ≤ n.
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For j = 1, . . . , `, the value PKj = gsj is computed, for a random value sj ∈ Z∗p
that will remain unknown to the members of P . These ` secret values will corre-
spond to a secret vector ~s = (s1, . . . , s`) of the multi-threshold secret sharing scheme
described in Section 3.6, that will be shared by running the distribution protocol
Ω.Dist(P , t1, . . . , t`, ~s), with hash function H0:

1. Choose random values shi ∈ Z?p, pairwisse different for i = 1, 2, . . . , n, as the
secret shares.

2. Choose random polynomials fj(x) ∈ Zp[x] of degree tj−1, for j = 1, . . . , `, such
that fj(0) = sj.

3. For i = 1, 2, . . . , n and j = 1, 2, . . . , `, compute the values hij = H0(j, shi) and
rij = fj(i)− hij mod p. Compute the public verification values Dij = ghij+rij .

4. The secret share shi is sent to player Pi via a secure channel, whereas the public
output of the protocol is outpub = {rij}Pi∈P,j∈{1,...,`}.

The global public key is PK = (PK1, . . . , PK`, outpub, {Dij}Pi∈P,1≤j≤`), whereas
the secret share for each player Pi is shi.

Joint Signature: Θ.Sign(params, PK,m,A, {shi}Pi∈A, j).
Let A ⊂ P be a subset of users in P that want to cooperate to sign a message m with
respect to a signing policy Γj = T (tj, n) for which they form an authorized subset,
A ∈ Γj. Members of A proceed as follows:

1. Each Pi ∈ A computes hij = H0(j, shi), recovers rij from outpub and broadcasts
his signature share σij = H1(m, j)hij+rij ∈ G.

2. The rest of members of A verify if (g,Di, H1(m, j), σij) is a valid Diffie-Hellman
tuple. If this is not the case, then (i,⊥) is broadcast.

3. If there are not tj valid signature shares (i, σij), then stop and output ⊥. Oth-
erwise, from tj valid signature shares {σij}Pi∈A, one can consider the Lagrange
interpolation coefficients λAij ∈ Zp such that sj = fj(0) =

∑
Pi∈A

λAij · fj(i).

4. Return the resulting signature and index (σ, j), where σ =
∏
Pi∈A

σ
λAij
ij .

Verification: Θ.Ver(params,m, σ, j, PK)
In the verification step it is enough to check if (g, PKj, H1(m, j), σ) is a valid Diffie-
Hellman tuple. Return 1 if this is the case, or 0 otherwise.
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4.2.4 Security Analysis

The multi-policy threshold signature scheme described above, with a trusted dealer
in charge of the key generation phase, is trivially robust: during the joint signature
generation phase, cheating players are detected in step 2 and rejected from the proto-
col. Assuming the remaining players are enough (i.e. they are at least tj), the signing
protocol finishes correctly. One way to ensure this is by requiring that an adversary
can corrupt at most n− t` players.

Regarding unforgeability, we now prove that the proposed scheme is UNF secure
provided the Computational Diffie-Hellman (CDH) problem is hard in the GDH group
G. The proof is in the random oracle model for hash functions H0, H1.

Theorem 4.2.1 In the random oracle model, the scheme Θ is UNF secure, assuming
the Computational Diffie-Hellman problem is hard to solve in the GDH group G.

Proof. The proof is by reduction, assuming that hash functionsH0, H1 are modeled
as random oracles. An adversary AUNF that has non-negligible success in forging a
new valid signature is used to construct an algorithm ACDH that solves the CDH
problem in G.
ACDH receives as input (g, ga, gb), where G = 〈g〉 is a GDH group of prime order

p. The goal of ACDH is to compute gab. The algorithm ACDH initializes the attacker
AIND-CCA by giving params = (p,G, g,H0, H1) to him. Since the hash functions H0, H1

are supposed to behave as random oracles, ACDH will create and maintain tables
TAB0 and TAB1 to answer the hash queries from AUNF. These answers are produced
by ACDH by first checking if there already exists an entry in the corresponding table
for the input of the hash query; if so, ACDH responds with the existing output;
otherwise, ACDH chooses a new random output, adds the new relation input-output
to the corresponding table, and responds to AUNF with this output value. Hash
queries (m, j) to H1 are answered in the following way. Let q1 be the maximum
number of such H1 queries. ACDH chooses at random an index k? ∈ {1, . . . , q1} for a
special query (m̃, j̃). For this special query, ACDH chooses a random value β̃ ∈ Zp and

defines the relation H1(m̃, j̃) = (ga)β̃. For the rest of H1 queries (m, j), ACDH chooses
a random value β ∈ Zp and defines the relation H1(m, j) = gβ. These relations are
stored in TAB1.

Key distribution. AUNF chooses the target collective P? = {P1, . . . ,Pn}, the de-
cryption policies Γj = T (tj, n) ⊂ 2B for j = 1, . . . , ` where t1 < t2 < · · · < t`,

and also the subset of corrupted members B̃ ⊂ P?. For simplicity, we assume
B̃ = {P1, . . . , Pt?}, where 1 ≤ t? ≤ n. Let us define the set of indices J? = {j ∈
{1, . . . , `} s.t. tj ≤ t?}, so that the corrupted players can trivially sign messages for
signing policies Γj, if j ∈ J?.
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For the corrupted members of P?, the algorithm ACDH chooses randomly and
independently the shares shi ∈ Zp producing the set {shi}Pi∈B̃.

For every index j ∈ J?, the algorithm ACDH chooses at random a secret sj ∈ Z∗p
and a polynomial fj(x) ∈ Zp[x] of degree tj−1 such that fj(0) = sj. It computes (via
the hash-table procedure) the values hij = H0(j, shi), rij = fj(i) − hij mod p, for all

Pi ∈ B̃. For the non-corrupted players, Pi /∈ B̃, the algorithm ACDH chooses random
and independent values rij ∈ Zp, then computes the values fj(i) by using the chosen
polynomial. Finally, ACDH computes the values PKj = gsj and Dij = gfj(i), for all
Pi ∈ P?.

For the rest of indices j ∈ {1, . . . , `}, j /∈ J?, the algorithm ACDH chooses at
random αj ∈ Zp and defines PKj = (gb)αj (which implicitly defines sj = b · αj). For
each j /∈ J?, ACDH chooses at random the values rij, for all Pi ∈ P . In particular,

this means that, for the corrupted members Pi ∈ B̃, we have that the values rij +
H0(j, shi) mod p are already determined. Let fj(x) ∈ Zp[x] be an implicit polynomial
of degree tj − 1 such that fj(0) = b · αj mod p and fj(i) = rij + H0(j, shi) mod p,

for every corrupted player Pi ∈ B̃. Since |B̃| = t? < tj, the algorithm ACDH can

compute the values Dij = grij+H0(j,shi), for Pi ∈ B̃, and then combine these values
with PKj = (gb)αj in order to obtain, by interpolation in the exponent, the rest of

values Dij = gfj(i), for non-corrupted players Pi /∈ B̃.
Finally ACDH sends to the adversary AUNF the secret keys {shi}Pi∈B̃ of the cor-

rupted players, along with the public information PK = (PK1, . . . , PK`, outpub,
{Dij}Pi∈P?,1≤j≤`), where outpub = {rij}Pi∈P?,j∈{1,...,`}.

Simulating H0. Once again, the simulation of the hash function H0 is consistent
as long as the H0 hash queries from AUNF do not cause a collision with the implicitly
determined values {shi}Pi /∈B̃. If the number of hash queries for H0 is q0, such a collision

happens with probability at most
q2
0

2p
+ o

((
q2
0

2p

)2
)

, which is negligible if p > 2200.

Signing queries. Let (m, j) be a signing query asked by AUNF. If (m, j) = (m̃, j̃),
then ACDH aborts and outputs ⊥. Otherwise, ACDH knows a value β such that
H1(m, j) = gβ. Then, ACDH can easily compute correct signature shares σij =

H1(m, j)hij+rij =
(
ghij+rij

)β
= Dβ

ij, for every player Pi ∈ P?.

Forgery. At some point, and with non-negligible probability, AUNF outputs a valid
signature (σ?, j?) for some index j /∈ J? and some message m?, different from the
valid signatures obtained through signing queries. Since the signature is valid and
H1 behaves as a random function, AUNF must have queried the pair (m?, j?) to the
hash oracle for H1. With probability at least 1/q1, we have (m?, j?) = (m̃, j̃), and
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in this case we have H1(m?, j?) = (ga)β̃, for some value β known by ACDH , whereas
the associated part of the public key is PKj = (gb)αj , for some value αj also known

by ACDH . Since σ? is a valid signature, we have that
(
g, (gb)αj , (ga)β̃, σ?

)
is a valid

Diffie-Hellman tuple, which means that σ? = gabαj β̃. In this case, ACDH can easily
obtain the desired solution gab of the given instance of the CDH problem. �

For simplicity, we have described a security reduction with a loss factor of q1. It
is possible to improve this reduction by using the techniques of Coron [26], and then
the loss factor becomes linear in qS, the number of signing queries, which is usually
considered to be smaller than the number q1 of hash queries.

4.3 Relations with Attribute-Based Cryptography

In an attribute-based cryptosystem, each user has a subset of attributes A ⊂ P from
a universe P = {at1, . . . , atn} of attributes, and receives from a trusted master entity
a secret key according to those attributes. Later, the specific access policy Γ ⊂ 2P

defining the subsets of attributes that must be held by someone so that he is able to
perform the secret task (either decrypting or signing) is chosen “on the fly”, among
all the possible (monotone increasing) access policies in P .

Attribute-based cryptosystems have received a lot of attention from the crypto-
graphic community in the last years, and different schemes have been proposed both
for encryption (see for instance [38, 58]) and for signatures (in [65, 40]).

It is easy to see that attribute-based cryptosystems are a more general primitive
than the primitives of multi-policy distributed cryptosystems that we have introduced
in this chapter. Let us consider the case of encryption/decryption (the case of signa-
tures work in an analogous way). Let us take an attribute-based encryption scheme,
and let us associate each attribute ati ∈ P with one player Pi ∈ P . Each player re-
ceives from the master entity the secret key (or secret share) shi corresponding to the
fact of holding only attribute ati (all these secret keys sh1, . . . , shn are computed by
the master entity in a single execution of the key generation protocol, with a common
randomness). Later, the sender of a message m addressed to P chooses the desired
decryption policy Γ ⊂ 2P and encrypts m by using the attribute-based encryption
protocol. Only if an authorized subset of players A ⊂ P , A ∈ Γ put together their
secret shares, they will be able to run the attribute-based decryption protocol and
recover the message m.

Therefore, it seems that the primitives of multi-policy distributed decryption
and signature can already be implemented by using existing attribute-based cryp-
tosystems, and actually the resulting schemes are more general, because the al-
lowed decryption / signing policies must not necessarily be inside a pre-defined list
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{Γ1, . . . ,Γ`}, as it happens in our multi-policy distributed cryptosystems; they can
be whatever access policy defined on the set P . However, we will explain below a
list of drawbacks suffered by this attribute-based approach, as opposed to the direct
approach that we have followed to design multi-policy distributed cryptosystems.

Restricted access policies. Even if, in theory, an attribute-based cryptosystem
could allow encryptions or signatures for any access policy Γ ⊂ 2P , in specific pro-
posals this is not always the case. For instance, the most efficient attribute-based
cryptosystems proposed up to date (in terms of the length of ciphertexts or sig-
natures, the computational cost of the protocols, etc.) admit only threshold policies
[2, 40]. The resulting functionality can be achieved by our multi-threshold decryption
and signature schemes, by taking ` = n and tj = j, for all j = 1, . . . , n.

Necessity of a trusted master entity. In any attribute-based cryptosystem, a
master entity must generate and distribute the secret keys between users. This means
that this entity has to be trusted, because otherwise it could impersonate any user in
the system. Although we have described our multi-threshold schemes with a trusted
dealer who generates and distributes the secret shares, this is not an intrinsic property
of this kind of schemes, and actually we show in Section 3.5 how the own players in
P can generate the public parameters and the secret shares by themselves, without
the participation of any external (and trusted) dealer.

Length of ciphertexts, public parameters, signatures and secret shares. In
most of the attribute-based cryptosystems proposed so far, the length of the cipher-
texts or signatures is at least linear in the number of attributes involved in the access
policy (which, for simplicity, we assume to be n). In our multi-threhold cryptosys-
tems, the length of ciphertexts and signatures is constant. The only attribute-based
cryptosystems with constant-length ciphertexts or signatures [2, 40], on the other
hand, have secret keys whose length is at least linear in n. In our multi-threshold
schemes, each secret key (or share) contains a single element in Zp. The length of
the public parameters in our schemes, which is linear in n · `, is comparable to the
length of the public parameters in all existing attribute-based cryptosystems, which
is at least linear in n, and sometimes linear in n2.

Computational assumptions. Up to now, all the existing (and moderately effi-
cient) attribute-based cryptosystems with a formal proof of security make use of bi-
linear pairings, and base their security on (sometimes, quite artificial) computational
assumptions related to bilinear groups. For multi-policy distributed cryptosystems,
we have seen that they can be constructed by combining, essentially, a multi-secret
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sharing scheme with a standard distributed cryptosystem. The particular instanti-
ation of a multi-policy distributed decryption scheme that we have described and
analyzed in Section 4.1, for instance, is provably secure under the well-established
assumption that the Computational Diffie-Hellman problem is hard.

4.4 Other Multi-Policy Cryptosystems

Up to now we have applied the multi-secret sharing scheme defined in Section 3.6 to
both multi-policy distributed decryption schemes and multi-policy distributed signa-
tures, where the distributed part is in the decryption and signature protocols respec-
tively.

The multi-secret sharing schemes proposed in Chapter 3 can also be applied in
the construction of multi-policy signcryption schemes with threshold unsigncryption
and multi-policy digital signatures with distributed verification using the schemes
described in Chapter 2. To achieve this goal, it is necessary to replace the under-
lying secret sharing scheme of the original schemes by one of the computational se-
cure multi-secret sharing schemes proposed in Chapter 3. Moreover, multi-policy
distributed signcryption schemes can result, when the distributed part relies on the
signcryption protocol [64] instead of the unsigncryption protocol.

# Distributed Cryptosystems Studied in this Thesis

1 Distributed decryption Section 4.1

2 Distributed signatures Section 4.2

3 Distributed signcryption -

4 Distributed unsigncryption Sections 2.3 and 2.4

5 Signatures with distributed verification Section 2.6

6 Distributed key distribution -

7 Metering schemes -

8 Fuzzy identity-based encryption -

Table 4.1: Distributed cryptographic protocols.

Another distributed cryptographic protocols which are working with only one
access structure, as summarized in Table 4.1, can be generalized to multi-policy with
the same techniques used in this chapter: in distributed key distribution [70] and pre-
distribution schemes a set of servers send to several users some information that allow
the latest to compute common secret keys. In metering schemes [32] audit agencies
are able to measure the interaction between clients and servers in the network during
a certain number of time frames. Naor and Pinkas proposed in [69] a metering scheme
in which any server is able to compute a proof to be sent to the audit agency if and
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only if it has been visited by at least t clients, where t is a fixed threshold. In fuzzy
identity-based encryption schemes, introduced by Sahai and Waters in [79], a user
with the secret key for the identity ID can decrypt a ciphertext encrypted with the
public key of identity ID′ if and only if both identities differ in at most t positions,
for a fixed threshold t. For example, in a social network each user dictates their own
policy in order to restrict access to their personal information.
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Conclusions

In this section we recapitulate the main results of this thesis and give an overview
of open tasks which can lead to possible future work. Opposite to the traditional
approach in the conclusion section, where the central points of the thesis are simply
summed up, we explain here the results as a story. In the following we show how
we came to the results from a time point of view (not exactly the same order as
explained in this thesis) and how some of them motivated the research in other fields
of cryptography.

In the beginning, motivated by distributed signatures we started to research how
to produce signature schemes with the distributed part in the verification protocol
instead of the signing protocol. A first proposal, based on Schnorr signature [80], was
proved unforgeable but its indistinguishability property became true only assuming
that an adversary is not allowed to ask signature queries to a verification oracle. As
the security of this first proposal was not strong enough, it forced us to start studying
other cryptographic primitives to achieve this goal. At this moment the question was:
how can we find such schemes and proof their security in an acceptable level, similarly
to IND-CCA for encryption schemes?

Moving the Research to Signcryption Schemes

The above primitive is very similar to signcryption schemes [93] but with the difference
that the message is public in digital signatures. This key point motivated us to
start studying signcryption schemes with distributed unsigncryption, an area not
sufficiently investigated up to then.

The research in Chapter 2 on signcryption schemes is one of the main contributions
in this thesis. We have considered in Section 2.1 the strong security properties that
one could (or should) require for a signcryption scheme with threshold unsigncryption:
existential unforgeability under insider chosen message attacks and indistinguishabil-
ity under insider chosen ciphertext attacks, in a multi-user setting. Most of the (few)
threshold unsigncryption schemes proposed in the literature, either in the traditional
PKI or in the identity-based scenario, do not achieve this level of security. This in-
cludes generic constructions obtained by composing a secure signature scheme and a
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secure threshold decryption scheme.

Moreover, we have constructed in Sections 2.3 and 2.4 two threshold unsigncryp-
tion schemes which achieve those strong security properties. We prove the security of
the first one in the random oracle model [6]. On the other hand, we are able to prove
the security of the second proposed scheme in the standard model, which employs
two signature schemes and the ideas by Canetti-Halevi-Katz to achieve CCA secu-
rity from identity-based selectively secure encryption [21]. The two schemes enjoy a
“splitting” property which can be very useful for applications requiring some level of
privacy for the sender of the digital information.

In parallel to this research, we were thinking that the dealer role could be replaced
in the distributed parts of the schemes. As usual, we could modify some protocols
in a way that the users take over this role or on the other hand use some verifiable
secret sharing schemes to verify the validity of the shares distributed by the dealer.
We presented in Section 3.1 a simple publicly verifiable secret sharing scheme based
on the homomorphic Paillier’s encryption scheme [73], which could be used to achieve
this goal. The verification process in this proposal is made non-interactive without
using the Fiat-Shamir technique or any additional Zero Knowledge proof. Moreover,
this scheme also have homomorphic properties which could be used together with
other cryptographic tools as e.g. multi-party computation.

With the original motivation in mind, we applied the proposed signcryption
schemes to build digital signatures with distributed verification in Section 2.6, where
the signer is able to restrict the verification capability. To achieve this goal, both the
set of verifiers and also the access structures, which define the authorized subsets of
verifiers, are fixed from the begining. For a given signature, its validity can be verified
only if the verifiers of an authorized subset cooperate. Otherwise, no information can
be obtained about the validity of a signature for a certain message. Two different ex-
amples have been proposed for this primitive in a threshold framework. The security
of both signature schemes follow the security of those signcryption schemes, where
they are based on. That is, both achieve IND-CCA security, one in the random oracle
model and the other one in the standard model.

In our threshold unsigncryption approach, we considered a single user A, which
creates the signcryption, and a collective B of receivers, where the cooperation of
some authorized subset of users is necessary to perform the unsigncryption process.
When working on that, we discussed the possibility that users could play both roles,
sender and receiver at the same time. In this case, we can run the protocols for a
set of participants P = {P1, . . . , Pn}, where to each sender Pi ∈ P a different access
structure Γi ⊂ 2P−{Pi} would correspond, for i ∈ {1, . . . , n}, for the role of authorized
receivers.

Several solutions were discussed to achieve this goal, where the same secret infor-
mation (or share) could be used to signcrypt and cooperatively unsigncrypt. The idea
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to minimize the total number of secret information to be kept by the users, when only
one secret is shared, does not work because security can not be ensured in general for
some families of authorized subsets.

So, it seems that ` secrets have to be shared to avoid this problem and not only one
secret, as thought at the beginning. The most simple (inefficient) solution is to run `
parallel instances of Shamir. The drawback with this solution is that every user keeps
secret a vector of ` shares, one for every secret. That is, the secret information of
every participant grows linearly with the number of secrets, which is very inefficient.
The question at this point is how to share multiple secrets in an efficient way. That
is, reducing (more than with the trivial solution) the quantity of secret information
to be kept secretly by every user.

The Key Point are Computational Multi-Secret Sharing Schemes

Sharing multiple secrets led us to think about multi-policy versions of traditional
distributed protocols; not only unsigncryption, but also more popular protocols like
decryption or signature independently. We immediately realized that a key ingredi-
ent in the design of efficient multi-policy distributed cryptosystems would be efficient
multi-secret sharing schemes, presented in Chapter 3, where ` different secrets could
be distributed among the participants according to ` (possibly different) access stru-
tures or policies.

We started to work on multi-secret sharing schemes (MSSSs) from an information-
theoretical point of view, which led the results in Section 3.2. We proved then that,
even for the more relaxed notion of unconditional security, and for some kinds of
access structures (in particular, threshold ones), we have the same efficiency problem
as with the strongest level of unconditional security: the length of each secret share
must be linear in `. Since we are looking for more efficient solutions, we moved to
the scenario of MSSSs with computational security.

When working on this, we constructed a MSSS, denoted in Section 3.6 by Ω3,
where each vector of secret shares contains just only one element, reducing the amount
of secret information considerably for every user. Moreover, we prove its computa-
tional security in the random oracle model, where a hash value is used to compute
some values in the different protocols. As far as we know, this is the first formal
security analysis for a computational multi-secret sharing scheme in the literature.

Coming back to multi-policy distributed cryptosystems, as presented in Chapter
4 we showed the utility of this sharing scheme Ω3 by using it as a key ingredient
in the design of two schemes which have two different functionalities: multi-policy
decryption presented in Section 4.1 and multi-policy signatures presented in Section
4.2. The schemes proposed here are based on Shoup-Gennaro [88] and Boldyreva
[10] for decryption and signature respectively. We prove the security of these two
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new multi-policy cryptosystems in a formal security model. Obviously, the length
of secret information kept by the users in the proposed distributed cryptosystems
depends directly on the length of the shares produced by the underlying MSSS. The
two new primitives provide similar functionalities as attribute-based cryptosystems,
with some advantages and some drawbacks that are discussed in Section 4.3.

As a result of the multi-policy research, which outputs the sharing scheme Ω3,
we started working more in depth in MSSS. All that produces two new MSSSs that
allowed us (as before) to distribute ` different secrets among a set of n players, each
one according to an access structure. The first one, denoted in Section 3.3 by Ω1,
is inspired on the secret sharing scheme of Krawczyk [55] and the second scheme,
denoted in Section 3.4 by Ω2, is a generalization of some previous schemes [39, 62].
Both schemes are proved to enjoy computational security, by reduction to the semantic
security of the underlying symmetric encryption scheme. Both security proofs are in
the standard model and provide the exact relation between the security of the involved
primitives. In fact, the sharing scheme Ω2 is like the previous scheme Ω3 defined in
Section 3.6 but replacing the secure one-way hash function H of Ω3 by an underlying
symmetric encryption scheme Π. Consequently, Ω3 is slightly more efficient than Ω2

because hash functions are more efficient than encrypt and decrypt, but the price to
pay is the security in the random oracle model.

Finally, we presented in Section 3.5 some results related to the efficiency of the
schemes Ω1 and Ω2. In this part of the thesis we compare both sharing schemes,
taking into account their efficiency properties, their security analysis and possible
extensions. One of the schemes has very short secret shares (independently of the
number ` of secrets) and can be easily extended to work without any trusted dealer.
The other scheme has longer secret shares and the extension to work without a trusted
dealer is much more complicated, but on the other hand it produces shorter public
outputs and the security relation with the underlying symmetric encryption scheme
is better, which may have consequences on the final efficiency of the scheme.

Future Work

As future work, one could investigate if other more efficient threshold unsigncryption
schemes than the ones proposed in Chapter 2 can be designed. One possibility could
be to look for a signcryption scheme with IND-CCA security in the standard model,
where the bilinear maps are not used.

The multi-policy distributed cryptosystems presented in this thesis were possible
using the multi-secret sharing scheme Ω3. As both inherent distributed cryptosystems
(single policy of Shoup-Gennaro [88] for decryption and Boldyreva [10] for signatures)
are secure in the random oracle model, it was decided to use the sharing scheme Ω3,
which is the most efficient MSSS among all the proposed sharing schemes and with
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security in the random oracle model. An open problem is to look for other distributed
cryptosystems secure in the standard model to create multi-policy distributed cryp-
tosystems secure in this model. In this case, the sharing schemes Ω1 and Ω2 would
come into play due to their security in the standard model.
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Appendix A

Published Papers

In this section we briefly present several papers which this thesis is based on. These
papers have been published in different journals, conferences and workshops and cover
the main results of this thesis.

Journals

• J. Herranz, A. Ruiz and G. Sáez. New Results and Applications for Multi-Secret
Sharing Schemes. Designs, Codes and Cryptography, to appear, available at
http://link.springer.com/article/10.1007/s10623-013-9831-6 (2013).

• J. Herranz, A. Ruiz and G. Sáez. Sharing Many Secrets with Computational
Provable Security. Information Processing Letters, vol. 113, pp. 572–579
(2013).

• J. Herranz, A. Ruiz and G. Sáez. Signcryption Schemes with Threshold Unsign-
cryption, and Applications. Designs, Codes and Cryptography, to appear, avail-
able at http://link.springer.com/article/10.1007/s10623-012-9688-0
(2013).

International Conferences

• J. Herranz, A. Ruiz and G. Sáez. Fully Secure Threshold Unsigncryption. Pro-
ceedings of ProvSec’10, LNCS 6402, Springer-Verlag, pp. 261–278 (2010).

• A. Ruiz and J.L. Villar. Publicly Verifiable Secret Sharing from Paillier’s Cryp-
tosystem. Proceedings of WEWoRC’05, LNI 74, Editorial GI, pp. 98–108
(2005).
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National Workshops

• J. Herranz, A. Ruiz, G. Sáez. Firmas Digitales con Verificación Distribuida
en el Modelo de Seguridad Estándar. Actas de la XII Reunión Española de
Criptoloǵıa y Seguridad de la Información, available at http://recsi2012.

mondragon.edu/es/programa/recsi2012_submission_07.pdf (2012).

• J. Herranz, A. Ruiz, G. Sáez. Máxima Seguridad para Firmas Digitales con
Verificación Distribuida. Actas de la XI Reunión Española de Criptoloǵıa y
Seguridad de la Información, pp. 97–103 (2010).

http://recsi2012.
mondragon.edu/es/programa/recsi2012_submission_07.pdf
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