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Abstract

Decision confidence offers a window on introspection and onto the
evaluation mechanisms associated with decision-making. Nonetheless
we do not have yet a thorough understanding of its neurophysiologi-
cal and computational substrate. There are mainly two experimental
paradigms to measure decision confidence in animals: post-decision
wagering and uncertain option. In this thesis we explore and try to
shed light on the computational mechanisms underlying confidence
based decision-making in both experimental paradigms. We propose
that a double-layer attractor neural network can account for neural
recordings and behavior of rats in a post-decision wagering experiment.
In this model a decision-making layer takes the perceptual decision
and a separate confidence layer monitors the activity of the decision-
making layer and makes a judgment about the confidence in the de-
cision. Moreover we test the prediction of the model by analyizing
neuronal data from monkeys performing a decision-making task. We
show the existence of neurons in ventral Premotor cortex that encode
decision confidence. We also found that both a continuous and discrete
encoding of decision confidence are present in the primate brain. In
particular we show that different neurons encode confidence through
three different mechanisms: 1. Switch time coding, 2. rate coding
and 3. binary coding. Furthermore we propose a multiple-choice at-
tractor network model in order to account for uncertain option tasks.
In this model the confidence emerges from the stochastic dynamics of
decision neurons, thus making a separate monitoring network (like in
the model of the post-decision wagering task) unnecessary. The model
explains the behavioral and neural data recorded in monkeys lateral
intraparietal area as a result of the multistable dynamics of the attrac-
tor network, whereby it is possible to make several testable predictions.
The rich neurophysiological representation and computational mecha-
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x resumen

nisms of decision confidence evidence the basis of different functional
aspects of confidence in the making of a decision.

Resumen

El estudio de la confianza en la decisión ofrece una perspectiva venta-
josa sobre los procesos de introspección y sobre los procesos de evalu-
ación de la toma de decisiones. No obstante todav’ia no tenemos un
conocimiento exhaustivo del sustrato neurofisiológico y computacional
de la confianza en la decisión. Existen principalmente dos paradig-
mas experimentales para medir la confianza en la decisión en los su-
jetos no humanos: apuesta post-decisional (post-decision wagering) y
opción insegura (uncertain option). En esta tesis tratamos de aclarar
los mecańısmos computacionales que subyacen a los procesos de toma
de decisiones y juicios de confianza en ambos paradigmas experimen-
tales. El modelo que proponemos para explicar los experimentos de
apuesta post-decisional es una red neuronal de atractores de dos capas.
En este modelo la primera capa se encarga de la toma de decisiones,
mientras la segunda capa vigila la actividad de la primera capa y toma
un juicio sobre la confianza en la decisión. Sucesivamente testeamos
la predicción de este modelo analizando la actividad de neuronas reg-
istrada en el cerebro de dos monos, mientras estos desempeñaban una
tarea de toma de decisiones. Con este análisis mostramos la existencia
de neuronas en la corteza premotora ventral que codifican la confi-
anza en la decisión. Nuestros resultados muestran también que en el
cerebro de los primates existen tanto neuronas que codifican confianza
como neuronas que la codifican de forma continua. Más en espećıfico
mostramos que existen tres mecanismos de codificación: 1. codifi-
cación por tiempo de cambio, 2. codificación por tasa de disparo, 3.
codificación binaria. En relación a las tareas de opción insegura pro-
ponemos un modelo de red de atractores para opciones multiplas. En
este modelo la confianza emerge de la dinámica estocástica de las neu-
ronas de decisión, volviéndose aśı innecesaria la supervisión del proceso
de toma de decisiones por parte de otra red (como en el modelo de la
tarea de apuesta post-decisional). El modelo explica los datos de com-



resumen xi

portamiento de los monos y los registros de la actividad de neuronas
del área lateral intraparietal como efectos de la dinámica multiestable
de la red de atractores. Además el modelo produce interesantes y
novedosas predicciones que se podrán testear en experimentos futuros.
La compleja representación neurofisiológica y los distintos mecańısmos
computacionales que emergen de este trabajo sugieren distintos aspec-
tos funcionales de la confianza en la toma de decisiones.
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CHAPTER 1
Decision Confidence: An

Introduction

W.C. Trow:“what is the behaviourist position
on confidence?”
J.B. Watson:“I’m afraid you have come to the
wrong market. . . ”

1.1 Introduction

Decision confidence has always been considered an interesting topic
of investigation since the dawning of experimental psychology (Pierce
and Jastrow, 1884) and the neuroscientific community is living a re-
newal of interest about it in the last years due to some exciting novel
findings. Decision confidence, the sensation of correctness of a choice,
is an important aspect of subjective experience and a particular case of
introspection (Persaud and Mcleod, 2008; Koch and Preuschoff, 2007).
Moreover confidence provides an estimate of the outcome of a choice

1



2 decision confidence: an introduction

and then proves to be very useful for planning of future actions and re-
acting to a changing environment. Indeed confidence about choice and
uncertainty about value estimation are important factors that influence
learning and the course of action in unstable, changing environments
(Rushworth and Behrens, 2008). Lack of confidence in a decision can,
for example, promote a change of mind about a previous decision or
can promote an exploratory strategy (Sallet and Rushworth, 2009).
Therefore decision confidence is a fundamental feature of cognition
giving rise to complex adaptive behavior.

Nevertheless, despite the importance of confidence, very little is known
about the neural mechanisms giving rise to this feature of our cogni-
tion. This is probably due to the fact that confidence levels have
always been assessed in human psychophysical experiments by means
of verbal ratings that are unfeasible with animal models used in neu-
rophysiology. In the last five years the development of new experi-
mental procedures that measure confidence on the basis of subjects
behavior opened the doors of neurophysiology to the study of confi-
dence (Kepecs et al., 2008; Kiani and Shadlen, 2009). In parallel new
models of decision confidence were proposed based on both attractor
neural networks and diffusion processes (Insabato et al., 2010; Moreno-
bote, 2010; Pleskac and Busemeyer, 2010) and a better understanding
of the spatial and temporal construction of confidence was undertaken
with psychophysical methods (Graziano and Sigman, 2009; Zylberberg
et al., 2012). The main objective of this thesis is to explore and try to
elucidate the neurocomputational mechanisms of decision confidence.
We will work in the context of attractor neural networks composed
of integrate-and-fire neurons with detailed synaptical dynamics. This
framework has proved to be very fruitful in explaining many aspects
of decision-making (Wang, 2002b; Marti et al., 2006; Deco and Rolls,
2006; Pannunzi et al., 2012) and its biological plausibility allow to ac-
count for (and make prediction about) neural data. Moreover some
steps have been done to link these models to simpler phenomenologi-
cal diffusion-like models (Wong and Wang, 2006; Wong and Huk, 2008;
Roxin and Ledberg, 2008a). Therefore we think that this level of de-
scription can supply a connection between the different explanation
and description levels of decision confidence.

In order to give a general picture of the phenomenon that can serve to
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Figure 1.1: Pipeline of decision and confidence processing. Left part (in
gray) represents the simplified sensory-motor path of a perceptual decision-
making. On the right (in red): modules involved in confidence estimation
and confidence-related decisions. The “confidence” module receives input
from the “decision-making” stage, thereby implementing a sort of monitor-
ing of the decision process. This module represents the reliability of the de-
cision process. The “confidence-based decision” module makes a judgment
based on the confidence representation coming from “confidence” module
and value signals about the given options, coming from the “value” module,
and transmits this second decision to the “motor” stage.

guide the discussion we would like to sketch the essential pipeline of a
simple decision task involving confidence computations as in fig.1.1.

The left part of the graph represents a usual perceptual decision. In
this context sensory neurons encode the relevant information about
the stimulus and inform decision neurons. Hence, once the decision
has been computed, the motor plan can be elaborated by the “mo-
tor” module. When the decision confidence is going to have a role in
the behavioral output one needs to consider also the right part of the
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graph. A new module (“confidence”) can compute the confidence in
the decision by monitoring the activity of the decision area. Then the
confidence information can be compared with informations about the
value of different options and a new confidence-related decision can be
taken (e.g. the post-decision wagering experiments well summarized
by Kepecs and Mainen (2012)). In this outline it is reasonable that
the “confidence” module would encode continuously the decision con-
fidence. However, if the decision confidence is ever going to have an
influence on the behavior, at some point in the sensory-motor path
this information need to be discretized, in order to select one course
of action (e.g. in the “confidence-based decision” module for making
confidence-related decisions).

Of course this is an oversimplified schema. For example, we didn’t
included top down influences, that could be in place at any level
of the process. We also didn’t take into account the role of other
functional modules like the reward system or any attentional mod-
ule. While the study of a more complex schema is surely valueable we
wanted to propose here a very simple pipeline to first understand more
closely the relationship between “decision-making”, “confidence” and
“confidence-based decision” modules. Indeed in this dissertation we
will ask questions like: Are neurons in the brain coding the confidence
on a continuous scale? Is the confidence representation abstract and
task independent or is it influenced by the requirements of the environ-
ment? Are confidence neurons acting as a confidence-based decision
network? To what extent can we conceptualize decision confidence as
a monitoring of the decision-making process? Are the different func-
tional modules implemented in different neural structures?

We will try to answer to these questions, more or less explicitly, through-
out the next chapters.

Our discussion will be developed as follows. In this first chapter we
will briefly present the state of the studies in decision-making mainly
concentrating on neurophysiological findings and we will present the
two main competing1 theoretical frameworks: attractor neural net-

1We are not entering into this discussion but we want to remark that ANN
and DDM are probably considered as competing frameworks more for social and
historical reasons than for theoretical reasons.
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work (ANN) and drift diffusion models (DDM). We will then review
the main results in the study of decision confidence. We will separate
this review in three sections for psychophysics, neurophysiology and
theoretical models. In the next three chapters we will present the re-
sults of the investigation that brought to the writing of this thesis. In
chap.2 we will present a model of Orbitofrontal Cortex (OFC) neu-
rons that encode decision confidence (Kepecs et al., 2008). In chap.3
we will analyze the activity of neurons in the ventral Premotor Cor-
tex (PMv) of monkeys that confirms some predictions of the model
presented in chap.2 and produces new evidences about decision con-
fidence. In chap.4 we present a new model that accounts for data
recorded by Kiani and Shadlen (2009) and elucidates the mechanism
of uncertain option experiments (for a discussion about the experimen-
tal procedures for confidence measuring see section 1.2.3). Finally in
the last chapter a we will discuss the critical issues emerging from this
work.

1.2 State of the Art

1.2.1 Neuroscience of Decision-Making

Parts of this section are included in Insabato,A. et al., The influence
of spatio-temporal structure of noisy stimuli in decision-making. Sub-
mitted

Neurons encoding the various stages of a choice have been found in
several brain areas using different tasks and modalities. The vast ma-
jority of these tasks, beyond the deep differences in stimulation, tim-
ing, motor output, etc. are all based on the idea of an n-alternative
forced-choice (nAFC), where subjects are always required to commit
to a choice between n alternatives (n = 2, 3, ...), even when there is
no evidence at all for choosing one of the n. In this section we will
review some seminal works of 2AFC, although by no means we aim to
present a comprehensive review of the extant literature. In particular
we will focus on perceptual decisions, leaving aside the studies on pref-
erential choice, value based decisions, etc. In addition we will limit our
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discussion to experimental results obtained in visual and somatosen-
sory tasks, since there is a great amount of evidence about the neural
correlates of decision-making in these two modalities.

In visual perception, the great richness of features of our visual expe-
rience enabled the design of a variety of decision-making tasks, includ-
ing (but not limited to) the discrimination of motion (e.g. Shadlen
and Newsome (2001); Gold and Shadlen (2000)), heading Heuer and
Britten (2004), disparity Nienborg and Cumming (2009), and bar ori-
entation Vzquez et al. (2000); Pardo-Vazquez et al. (2008). One of the
prevalent tasks is the random dot motion (RDM) direction discrimi-
nation (e.g. Snowden et al. (1991b); Shadlen and Newsome (2001)).

Figure 1.2: The RDM task. Top row: the fixed duration version of the
task. The subject has to wait until the end of a delay interval after the
extinction of the stimulus for making the saccade. Middle row: the reaction
time version of the RDM task.In this task the subject can freely decide
when to make the saccade. Bottom row: multiple choice version of the
reaction time experiment (Churchland et al., 2008a). The subject has to
take a decision between four possible directions of motion.

In this task (sketched in fig.1.2) subjects view a display where some
dots have random direction of motion while others move coherently in
one direction. Subjects have to decide which is the direction of coher-
ent motion (even when there is none) and the typical response is made
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by an oculomotor movement towards a visual target. The percentage
of dots moving coherently determines the difficulty of the trial. This
task allows to study the different parts of a decision: evidence for-
mation, its integration into a decision signal, the holding in memory
of the decision, the speed of the decision process, and the commit-
ment to a choice. Neurons in middle temporal area (MT) are tuned
to motion and therefore provide the sensory evidence for the decision
Britten et al. (1992, 1993, 1996a); Shadlen et al. (1996), whereas lat-
eral intraparietal area (LIP) and frontal eye fields (FEF) were found to
integrate the evidence into a decision signal. After stimulus onset LIP
neurons present a dip in firing rate and subsequently the activity differ-
entiates according to the subject’s choice: for stimuli moving towards
the response field (RF) of the neuron, the firing rate ramps up, while
for movements in the opposite direction, the rate decreases (see fig.1.3
for a pictorial representation). The slope of the ramping correlates
with trial difficulty. Both in reaction time (RT)Roitman and Shadlen
(2002b) and fixed duration experiments Shadlen and Newsome (2001);
Gold and Shadlen (2000), the activity reaches an asymptotic value
about 70 ms before saccade initiation, thus suggesting the existence
of a decision criterion like the one postulated by diffusion-like models
(see next Section).

In the somatosensory domain, the vibrotactile frequency discrimina-
tion task has also provided, in the last decades, a huge amount of
evidence about decision processes.

In this task, the subject’s fingertip is stimulated with a vibrator in
two subsequent intervals separated by a delay (see fig.1.4). The sub-
ject must decide whether the second stimulation (f2) has a higher or
a lower frequency then the first one (f1) and communicate the deci-
sion by pressing one of two buttons Mountcastle et al. (1990); Salinas
et al. (2000). Neurons in primary somatosensory cortex (S1) have
been found to increase their firing rate as a function of the stimulus
frequency. Thus they encode the salient stimulus feature for the de-
cision. During the delay between the two stimulations, the frequency
of the first one must be kept in memory and neurons in second so-
matosensory cortex (S2), medial and ventral premotor cortices (MPC,
VPC) and dorsolateral prefrontal cortex (dlPFC) were identified to
encode stimulus frequency in this period Romo et al. (2002b); Brody
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Figure 1.3: Illustration of the activity of neurons in LIP. The firing rate
after the stimulus is predictive of the choice and correlates with the difficulty
(the percentage of coherently moving dots).

Figure 1.4: Vibrotactile frequency discrimination task. The subject holds
an immovable key while a fingertip of the other is in contact with the vi-
brator (KD phase; top row). The fingertip is stimulated with a vibration
with frequency f1 and after a delay a second stimulation with frequency
f2 is applied. The subject has to compare the two frequencies and decide
whether the second one was higher of lower that the first one. When the
second stimulus ends the subject can release the key (KU) and communicate
the decision by pressing one of two buttons (PB; second row).

et al. (2003b); Hernndez et al. (2002). When the second stimulation
is applied, the comparison between f1 and f2 must be evaluated and
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neurons in premotor and prefrontal cortices (and to a minor extent also
in S2) encode this comparison in their firing rate, while other neurons
encode either f1 or f2. By adding a delay between f2 and the response,
Lemus et al. Lemus et al. (2007) found that the firing of some MPC
neurons during this period reflects the comparison process, while other
neurons still encode either f1 or f2, thus suggesting a possible role for
this area in the post-decision processing of the choice, as already ob-
served in other areas Kepecs et al. (2008); Kiani and Shadlen (2009);
Pardo-Vazquez et al. (2008).

While the analysis of the functioning neural systems can provide a
great insight into the biological substrate of behaviour, as demon-
strated by the results with neuronal recordings in monkeys discussed
above, our understanding of these phenomena may also pass through
the possibility of directly influence the behaviour by acting on neural
systems. Following this approach, several studies have demonstrated
that electrical micro-stimulation of areas involved in decision-making,
both in the somatosensory [26] and in the visual [2729] domain, show
similar effects to those observed when the sensory organs receive the
stimulation.

Although the study of 2AFC has paved the way into the basic prin-
ciples underlying decision-making, these tasks neglect important as-
pects inherent to most decisions that can otherwise still be considered
in highly simplified experimental scenarios such as those used in typ-
ical psychophysical or neurophysiological experiments. Such aspects
include the consideration of multiple alternatives, the possibility of
changing one’s mind or the effect that different types of irrelevant in-
formation (e.g. noise) play on decision-making.

The study of decision-making between multiple alternatives was ad-
dressed from a psychophysical perspective already in the 50s (e.g. Hick
(1952)), but only in the last few years, and in the context of a RDM
task, have neurophysiological recordings become available (Churchland
et al., 2008b; Bollimunta and Ditterich, 2012; Louie et al., 2011) (see
Churchland and Ditterich (2012) for a review). It is worth noting that
theoretical attempts to account for multiple choice decision-making
had already been done over the past 40 years (Tversky and Simonson,
1993; Tversky, 1972; Roe et al., 2001; Usher and McClelland, 2001;
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Bogacz et al., 2007). Indeed, a family of models known as race models
(Vickers, 1970) where each target (or decision) is described by an ac-
cumulator, which is close in formulation although not mathematically
equivalent to DDM (Bogacz et al., 2006), can be easily extended to
multiple targets by simply adding more integrators.

Churchland et al. (2008b) also reported behavioral results and for the
first time recorded neurophysiological responses in monkeys (area LIP)
on a two- and four-choice direction-discrimination decision task (for a
representation of the task see fig.1.2 bottom row). These results have
been theoretically modelled in different studies (Beck et al., 2008; Fur-
man and Wang, 2009; Albantakis and Deco, 2009a). On one side,
Beck et al. (2008) followed a probabilistic approach with special em-
phasis on optimality whereas Furman and Wang (Furman and Wang,
2009) and Albantakis and Deco (Albantakis and Deco, 2009a) pursued
a neurodynamical approach with an emphasis on obtaining a detailed
biophysical description of the circuitry underlying decision-making.

Of special interest is the situation when multiple choices simultane-
ously receive evidence Niwa and Ditterich (2008a) tested human par-
ticipants on a 3AFC version of the RDM task. A key aspect about
their experimental setting was that a multicomponent RDM stimulus
was considered, i.e. the stimulus was comprised of up to three co-
herent motion components instead of just one direction of coherent
motion. Thus, the amount of sensory evidence for all three alterna-
tives could be controlled for. In a subsequent study, Bollimunta and
Ditterich (2012) used the same experimental paradigm with monkeys
while recording neurophysiological activity from LIP and suggested
that a unique variable, net motion strength (NMS), in the 3AFC task
is sufficient to predict monkeys accuracy and RTs. The NMS is defined
from: i) amount of information associated with the highest coherence,
cPRO = c1, and ii) average coherence of the second (c2) and third (c3)
components, cANTI = c2+c3

2
, as NMS = cPRO − cANTI, in an attempt

to encapsulate in a single signal all evidence against the dominant
component. Interestingly, their results seem to challenge the class of
ANN models previously described, which explain very well both be-
havior and neural activity in decision-making tasks. Specifically, the
authors suggest that competition cannot solely be mediated by lateral
inhibition and indicate that feedforward inhibition is a necessary com-
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ponent of the neural circuitry underlying their data. Such conclusions
are based on the fact that the firing rates of decision neurons seem to
show an earlier modulation due to the information providing evidence
against the target than to the information in its favour. It is worth
noting, however, that in a previous work (Ditterich, 2010), different
diffusion models (e.g. with/without leak, lateral/feedforward inhibi-
tion) were tested on these experimental data and it was seen that all
models explained equally well the behavioral data. In particular, one
of the DDMs used in this study resembled a commonly used biolog-
ically plausible ANN model with one common inhibitory pool, thus
suggesting that a spiking neural network could account as well for the
behavioral data. Furthermore, in contrast to the conclusions derived
from the reported experimental results, the NMS is unable to predict
behavioral measurements in unbalanced cases, i.e. those cases in which
the inputs to all pools are allowed to vary independently and the differ-
ence between the inputs to the pools with less coherently moving dots
are large (this can be easily understood when considering a largely
asymmetric stimulus, e.g. 50% coherence for the strongest motion
components, 49% for the second, and 1% for the weakest component).

It is also worth noting that in most studies it is considered that a
decision in both the DDM and the ANN framework is made once an
established threshold is reached. This leads one to ask how such a
mechanism could accommodate a change of mind. Resulaj et al. (2009)
addressed this question experimentally by means of a psychophysical
RDM task, where human subjects had to indicate the selected choice
by moving a handle towards a left or right target (fig.1.5). By using
continuous hand movements, as opposed to ballistic saccades, changes
of mind could (occasionally) be observed in the handle traces.

Although these findings seem to pose a challenge to ANN (given the
previously established stability of the decision-attractors), Albantakis
and Deco (2012) showed that the attractor picture is entirely consis-
tent with the reported experimental data. This is the case when the
system operates close to bifurcation, thus separating a state of cate-
gorical decision-making from a multi-stable region. In this region, the
existence of an attractor encoding the scenario where all possible al-
ternatives fire at a high rate, makes it difficult to reach a decision, thus
facilitating changes of mind. It is remarkable that a similar dynamical
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Figure 1.5: Representation of the task used by Resulaj et al. (2009) to
study the change of mind in decision-making. Subjects decide about the
motion direction and commit to a choice using a relatively slow hand move-
ment. This procedure allows to record the initial preference of the subject
while the ongoing integration of the evidence can still bring to a change of
the initial commitment. Top row: a trial where no change occurs. Bottom
row: a trial where the subject changes her mind.

regime is used here in chap.4 to account for confidence measurements
in an “unsure option” task.

1.2.2 Two Theoretical Frameworks: Drift
Diffusion Models and Attractor Neural
Networks

As has been previously stated, 2AFC have been commonly used to
investigate decision-making processes. Although several theoretical
models with different flavors have been proposed, all of them share the
fundamental assumption that an integration of noisy evidence over
time takes place, thus accumulating such evidence until a decision is
made (Bogacz et al., 2006). It is beyond our scope to describe the
details of each of them, and consequently, we will only focus on the two
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main competing theoretical frameworks, namely the diffusion models
and the attractor neural networks.

Diffusion models

One dimensional diffusion Historically, the DDM (Stone, 1960;
Laming, 1968; Ratcliff, 1978) was developed first and has been broadly
used since then. The equation implementing the DDM in a 2AFC task
is based on a continuous variable, x(t), representing the accumulated
difference between the two alternatives. In its simplest implementa-
tion, x(t) is integrated over time according to:

dx(t) = µ + σ2 dW (1.1)

where dt is the accumulated time interval, µ is the evidence to be
accumulated (inversely proportional to task difficulty and named drift
rate), and σ2 dW , the so-called noise-diffusion term. The value of dW
is a number extracted from a normal distribution with zero mean and
standard deviation equal to the square root of dt. The decision-making
process is accomplished when x(t) reaches one of the two boundaries:
-a/2 or a/2.

The overall RT can be thought of as the sum of the time that x(t)
takes to reach the boundary, i.e., the decision time, and non-decision
time components that account for sensory and motor processing. It is
worth noting that standard implementations of the DDM may include:
1) across-trial variability in starting point (x(0) = z), thereby imple-
menting the possibility of fluctuations in the starting point value from
trial to trial; 2) across-trial variability in the non-decision component
of processing, accounting for the possibility of fluctuations in non-
decision times from trial to trial; and 3) across-trial variability in drift
rate, which considers fluctuations in the drift rate from trial to trial.
DDM accounts notably well for RT and performance distributions for
different task procedures and speed-accuracy trade-offs (e.g. with or
without time pressure; see Ratcliff and McKoon (2008) for a review).
Moreover, it has been shown that DDM can reproduce the shape of
the RT distributions both when it is Gaussian (Ditterich, 006a,b) and
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when it has the usual positive skewness (Ratcliff and Smith, 2004; Rat-
cliff and McKoon, 2008). One of the main strengths of the DDM stems
from the simplicity to fit its output to behavioral data (Vandekerck-
hove and Tuerlinckx, 2007). In this respect, DDM has been used to
test a broad range of psychophysical hypotheses (e.g. Ratcliff et al.
(2012)).

Race model When the task requires a decision among multiple al-
ternatives the so called “race model” (Vickers, 1970) seems to be a
more natural option. Indeed the race model represents the decision
process as a race between two or more accumulators. Each accumula-
tor is associated with a choice and the one that hits first the boundary
determines the decision. The dynamics of each accumulator is gov-
erned by a diffusion process like in the one dimensional DDM. There-
fore this model can naturally account for multiple choices decisions
just by adding more accumulators. One dimensional DDM and race
model are similar but they are not equivalent. Moreno-bote (2010)
used a very clear formalism that allows to understand one dimensional
diffusion model and race model as the two extremes of a continuum.
Indeed we can write the equation for two integrators as:

dx1(t) = µ1 + σ2[
√

1− ρ dW1 +
√
ρ dWc] (1.2)

dx2(t) = µ2 + σ2[
√

1− ρ dW2 +
√
ρ ν dWc] (1.3)

where ρ is a correlation coefficient that controls the degree of correla-
tion between the input of the two integrators and ν ∈ −1, 1 determines
the sign of the correlation . When the ρ = 0 the two accumulators are
independent and the system implements a race mechanism. On the
contrary when ρ = 1 and ν = −1 the two integrators are perfectly
anticorrelated (each one is the antineurons of the other) and they im-
plement a classical DDM. Fig.1.6 shows this schema.

This schema however does not take into account interactions between
the accumulators (for a discussion see Bogacz et al. (2007).

As previously noted, a number of features (e.g. the average and in-
stantaneous drift, or a change in boundaries (Ditterich, 006a,b), among
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Figure 1.6: The degree of correlation of the input to the integrators control
the behavior of the system. At the extremes of the spectrum there are the
classical diffusion model (perfectly anticorrelated) and the race model (in-
dependent). Between the two lies the entire spectrum of half-anticorrelated
models (modified from Moreno-bote (2010).

others) can be easily added to the simple versions of DDMs, thereby
leading to improvements in their capability to reproduce behavioral
data. However, it is still not clear which fundamental insights can be
extracted from such accurate behavioral accounts. In a way, although
adding and tuning new parameters may lead to substantial fitting im-
provements, it is not always the case that this goes hand to hand with
an enhanced understanding of the fundamental underlying processes.
Furthermore, one should be specially cautious when interpreting the
results associated with the exploitation of the DDM fitting capabilities.
Indeed a nave interpretation of Occam’s razor together with an over-
fitting analysis could lead to mistaken interpretations. As pointed out
by Sober (1994) neither the simplicity nor the goodness of fit should be
sharp criteria for choosing among different models of a phenomenon.
Rather models should be selected according to their ability to survive
in the experimental arena. A model should challenge new experiments
with clear predictions and should be considered invalid when these
predictions don’t meet the experimental results.

Attractor neural networks

The DDM is a phenomenological model, and therefore, it does not
attempt to provide a detailed description of the neural mechanisms
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underlying decision-making. In contrast, nonlinear ANN models of
spiking neurons crucially seek a biophysically inspired description of
the processes underlying decision-making. These type of ANN had
been initially used to explain the neurophysiological basis of other
cognitive functions such as working memory (Amit, 1989; Amit et al.,
1994; Brunel and Wang, 2001a). Indeed, the observation that besides
decision-related activity LIP neurons also exhibited persistent activity
during delay periods (Shadlen and Newsome, 2001) inspired Wang to
explore the possibility that ANN of working memory could also explain
the integration of stimuli and the formation of perceptual choices Wang
(2002a).

The basic computational units of these ANN models are neurons rep-
resented usually with the integrate-and-fire model. Here we briefly
describe the system while all the mathematical details are given in
the appendix A. The integrate-and-fire model describes the membrane
voltage of a neuron through a differential equation until a voltage
threshold is reached. The crossing of the threshold triggers a spike
which is taken to be a stereotyped event - i.e. when the threshold is
crossed the spike count is incremented by one, the membrane poten-
tial is reset to a predetermined value and a refractory period follows
in which the neuron doesn’t integrate the input. Usually the incom-
ing input spikes to a neuron are processed through dynamic synapses
that represent different ionic channels: α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) and N-Methyl-D-aspartic (NMDA)
for excitatory connections and γ-Aminobutyrric acid (GABA) for in-
hibitory connections. Nonetheless sometimes instantaneous synapses
are used in conjunction with synaptic delays (see e.g. ?, p.125-153 and
?).

Typical configuration of ANNs used to account for decision-making
processes will be organized into n + 2 populations (pools) of leaky
integrate-and-fire neurons with common inputs and connectivities, where
n corresponds to the number of choices in nAFC tasks. The n inte-
grators are implemented by pools of excitatory neurons that respond
selectively to evidence in favor of one of the possible decision tar-
gets. Moreover, a homogeneous pool of inhibitory neurons, globally
connected to all neurons in the network, and a pool of excitatory neu-
rons, which is not selective to any of the directions of motion, are
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also considered (see fig.1.7). The models have an all-to-all connectiv-
ity with recurrent connections between cells from the same selective
pool increased by a factor ω+ > 1 with respect to the baseline connec-
tivity level, and weakened connectivities by a factor ω− < 1 between
cells from different selective pools, following the hypothesis of Hebbian
plasticity (i.e. synaptic efficacies are strengthen when pre- and post-
synaptic neurons activities are correlated). This structure of synaptic
weights is a key aspect in the formalism of attractor dynamics, which
endows the system with the capability to implement a biased compe-
tition of the different populations of excitatory neurons that is medi-
ated by inhibition, and establishes the competition and cooperation
processes as the basic elements of the underlying neural computations.
Therefore ANNs model the decision process as a competition between
neural pools biased by the evidence for the decision. This system dif-
fers from a race model in that the race does not implement interactions
between the “competitors” (however we will see later that a diffusion
process is a valid reduction of ANN in a particular condition).

In ANN models, the long-term behavior of the nonlinear dynamical
system defined by neural networks of interconnected neurons, is de-
scribed by the so-called fixed points that partition the configuration
space into basins of attractions. Such basins arise from the initial con-
figurations of the system, which lead to the same attractor. Fig. 1.8
illustrates an example landscape of attraction basins. In this theoreti-
cal framework, 2AFC decision-making can be modeled by an attractor
network with a minimum of two stable fixed points, which represent
the two alternatives. Such a system would display bistability and the
transition from an initial configuration towards one of the two stable
attractors (i.e. stable unless a sufficiently large amount of noise takes
the network out of the attractor) would correspond to the decision
process. In these models, the usual way to account for RTs, a decision
is considered to be made whenever the activity of one of the pools
reaches a threshold (but see the last paragraph of sec.1.2.1 for a brief
discussion).

The parameters of the ANN can shape the attractors landscape in dif-
ferent ways. The bifurcation diagram is a useful representation that
shows the changes in attractors landscape due to the modification of
a parameter. Fig.1.9 (modified from Deco et al. (2013)) shows an
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Figure 1.7: Architecture of an example ANN network for 2AFC decision-
making. The connectivity in the network is all-to-all and strength of con-
nections is assigned according to a Hebbian rule. The selective pools R and
L inhibit each other indirectly through connections to the inhibitory pool
and diminished mutual excitatory connections (ω−). The increased recur-
rent connectivity of selective pools (ω+) and the mutual inhibition produce
a competition between selective pools. The external input can bias the
competition in favor of one or the other pool.

example bifurcation diagram obtained varying the input strength (fre-
quency of the incoming external spike train) to the selective pools.
This parameter is important in ANN since it can manipulate the speed-
accuracy trade-off of the system. Indeed we can see that for very low
values of the input only the spontaneous attractor is stable and hence
no decision can be taken. After the first bifurcation two decision at-
tractors appear. Depending on the stability of the spontaneous sym-
metric state the system will work in a multistable or bistable regime
exhibiting different behaviors (an example of this difference is evident
in the results of chap.4). Finally for very high intensity of the input
the decision attractors disappear and again no decision is possible.

Especially in the last decade, as experimental evidence grows, both
competing theoretical frameworks succeed to account for the reported
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Figure 1.8: The landscape of an example ANN. The dynamical system
defined by the neural network can be understood with the analogy of a ball
falling on a surface. The ball will fall along the direction of local maximal
gradient. The wells represent the fixed points of the system since at the
bottom of the well the potential energy of the ball is at a minimum and it
want escape from that state. In the first configuration (left) the spontaneous
state (with both pools having low firing rate) is stable and the system
remains there until noise fluctuations bring it into the basin of attraction
of another fixed point. In the second configuration (right) the spontaneous
state is no longer stable and the system dynamics evolve towards one of the
two decision attractors (note that this is only an illustration and not the
only possible configuration of a decision mechanism).
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Figure 1.9: Bifurcation diagram of an example ANN. The input strength
modifies the attractors landscape producing in turn different trade-offs be-
tween speed and accuracy of the decision. Solid lines indicate the firing
rate of selective pools for stable solutions of the dynamical system (in the
spontaneous and symmetric states both pools have the same firing rate).
Dotted lines shows unstable solutions. The illustration on the top shows
the hypothetical 2D potential profiles associated with the different dynam-
ical regimes. Modified from Deco et al. (2013).

findings. One such example can be illustrated by the observation that
motion pulses influence both behavior and LIP neural activity, with the
later pulses being less relevant than earlier ones (Kiani and Shadlen,
2005; Kiani et al., 2008). A DDM with a leakage term could reproduce
this experimental finding, while the time-varying dynamics of the at-
tractor model explained both behavioral and neural data (Wong et al.,
2007; Wong and Huk, 2008) as much as the simplest DDM (Kiani et al.,
2008).

At the expense of a poorer biological plausibility, one of the great
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advantages of DDM over the ANN is the fact that the DDM is de-
scribed by a single equation. In contrast, ANN are endowed with
richer dynamics, thus allowing to model neurophysiological data (i.e.
neuronal spiking activity) that can be subsequently used to derive be-
havior. Moreover, the mean-field approach (Brunel and Wang, 2001a)
can also reduce the amount of equations of the ANN, thus leading to
a formal framework that allows to treat the dynamical system analyt-
ically. With this approach, the number of equations is proportional
to the number of different populations of neurons. Notably, a fur-
ther step has been done with an approach that combines numerical
and analytical methods (i.e. mean-field) to reduce the system to two
rate equations in Wong and Wang (2006). Later, Roxin and Ledberg
(2008b) derived a formal relationship between the mean-field reduction
of the ANN and a one-dimensional nonlinear diffusion in the proximity
of the bifurcation to bistability, where the spontaneous state destabi-
lizes. This is a valid reduction for all winner-take-all models, and allows
to relate the variables of the nonlinear diffusion process to those of the
full spiking-neuron model, and thus, to neurobiologically meaningful
quantities.

Regarding the biological plausibility of the DDM another approach,
different from the one of Roxin and Ledberg (2008a), has been taken
by Smith (2010). He first shows that a Wiener process is equivalent
in the long time to an integrated OU process. As already well known
from the Stein model Stein (1965), an integrated OU process can be
approximated to a pair of opponent shot noise processes (when their
intensity is very high). Thus, the link with neurophysiology can be es-
tablished in that shot noise processes have been used to model neural
responses to action potentials. This approach is interesting and inde-
pendent of the ANN formulation bu nonetheless, we note that most
biologically plausible models of decision-making are not based on sin-
gle neuron responses but rather on population dynamics in structured
networks. In a subsequent study, Smith and McKenzie (2011) provide
an alternative analysis that demonstrates how a time inhomogeneous
OU velocity process emerges even in the context of a simple recurrent
architecture. These works are not conclusive and further analyses are
needed to shed light on the relations between ANN and DDM and on
the other possible neural implementations of DDM.
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Mechanism for the commitment to a choice

An issue, which is less considered and that is common to Both the
diffusion and the ANN framework is that of the choice mechanism. By
choice mechanism we mean here the way a commitment to a choice is
determined in decision-making models.

DDMs decision variable keeps diffusing until it reaches the absorbing
boundary (if this parameter is not set to infinity). Although the sta-
tionary condition induced by the boundary is produced externally, this
state could be regarded as a decision state. In order to read out this de-
cision state, historically, DDMs used a fixed threshold (Ratcliff, 1978).
This mechanism is compatible with neurophysiological findings in LIP,
as was already explained above. And yet, when facing fixed-time ex-
periments, some investigators disregard the threshold and determine
the choice based on the sign of the decision variable alone (e.g., Kiani
and Shadlen (2009); Brunton et al. (2013)).

In ANN models the decision is given by the position of the system
in the attractors landscape. Even in the condition of no evidence for
the decision an ANN will reach a decision attractor and stay there
(although change of mind are possible as shown by Albantakis and
Deco (2012)). Therefore we could say that the ANN reaches a decision
state whenever it enters into the attractor. However this condition is
intrinsic to the decision network and it has to be read out by another
network in order to produce a motor plan. The mechanism to read
out the decision state is what we refer to as choice mechanism. In
2AFC tasks, since the two decision attractors are separated in the
2D space defined by the firing rates of the decision pools, different
possible choice mechanisms can be used. The most frequently used is a
threshold on the activity of the decision pools (resembling the classical
DDM choice mechanism), but a mechanism based on the difference
of activity between pools is also sometimes used (Marti et al., 2006;
Pannunzi et al., 2012). When considering multiple alternatives, several
functions of the state of the integrators could be used (e.g., difference
between the two larger accumulators, between extremes, between the
largest and the mean of the others, etc.). However more research is
necessary to further constrain the models. The experimental paradigm
proposed by Niwa and Ditterich (2008b) whereby different amounts of
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evidence can be provided to each of the components seems an ideal
candidate to shed some light on this issue.

1.2.3 Neuroscience of Decision Confidence

In this section the main neuroscientific findings about decision confi-
dence will be presented. The first part is devoted to important psy-
chophysical results. The second part explains the recent neurophysi-
ological evidence for the neural basis of confidence and the last part
gives a brief overview of theoretical accounts of decision confidence.

The problem of measuring confidence

Different experimental paradigms have been used to measure the con-
fidence in a decision. Since the dawning of experimental psychology
(Pierce and Jastrow, 1884) verbal ratings were largely used with hu-
mans subjects. In particular confidence ratings were used to recon-
struct the experimental receiver operating characteristic (ROC) curve
in the framework of signal detection theory (SDT) (Green et al., 1966),
but there is no homogeneity in the scale adopted for the rating: Garret
(1922) used a percentage scale, Foley (1959) employed the words “sup-
pose”, “think”, “sure”, “certain”, “positive”, Green et al. (1966) used
a six point numerical scale, Henmon (1911) used letters from “a” (con-
fident) to “d” (doubtful), Watson et al. (1964) and recently Graziano
and Sigman (2009) used a continuous scale and a sliding pointer. It
seems anyway that no difference was found between discrete and con-
tinuous scales (Rockette et al., 1992). Indeed Rockette et al. (1992)
compared the confidence judgments on a five category and a continu-
ous scale by radiologists about the presence of a mass in an abdominal
computer tomography. They report no significant differences in the
accuracy of confidence judgments as detected by an ROC analysis.

Animals are not able to give verbal report about their confidence,
therefore other methods have been developed to measure it. This
methods can be roughly classified in two types: uncertain option tasks
and post-decision wagering tasks (for a good review see (Kepecs and
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Mainen, 2012); fig.1.10 summarizes the different ways of measuring
confidence).
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Figure 1.10: Schema of the principal three confidence measures (adapted
from Kepecs and Mainen (2012). The confidence rating is the usual measure
emploied with human subjects. It allows to record both the decision and
the confidence judgment (where the scale of confidence can be discrete or
continuous). The post-decision wagering can be used also with non human
animals and also allows to record decision and confindence. However the
number of confidence category is usually binary and, although it would be
possible to design a continuous bet paradigm, to our knowledge, it has been
not done yet. The uncertain option task is also feasible with animals and
allows the recording of either the choice or the confidence level on each
trial: If the subject choose the target associated with the sure reward a low
confidence in the decision is implied but the chosen option (between A and
B) can not be known.

Experimental paradigm using an uncertain option are actually not new
in experimental psychology (Angell, 1907; Watson et al., 1973) but in
the last twenty years they came into the focus of attention as a way
for rigorously study confidence in animals and humans (Shields et al.,
1997; Smith et al., 1995, 1997, 2003). In this task a stimulus is pre-
sented that drives a binary decision or classification (e.g. a pattern of
random dots moving in one of two directions, or a tone that needs to
be classified according to a given reference threshold). Subjects have
not two but three possible choices, e.g. left option, right option and
an “uncertain” option. The idea is that subjects would choose the
uncertain option when they lack confidence in the perceptual judg-
ment (as confirmed by post-experimental questionnaires (Smith et al.,
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1995)). Smith and colleagues compared the results of humans and
animals (dolphins, monkeys, rats) in this task and found that the dol-
phins, monkeys and humans had similar response distributions. This
task however is only a weak prove of metacognitive ability and it could
be not appropriate to measure confidence since the uncertain option
could be simply associated with features of the stimulus intermediate
respect to the two extreme categories, reducing to a mere multiple
choice decision-making task. A partial solution to this problem was
given by a similar task employed by Hampton (2001b). In this ex-
periment monkeys could decide whether they wanted to answer to a
memory test and get a preferred food or to decline it and receive a
non-preferred food. The structure of the task is similar to that of
Smith’s experiments and indeed, since the difficulty of the task was
simply manipulated by varying the delay between stimulus and re-
sponse, the subjects needed only to associate the decline option with
longer delays. However the probability of correct in forced choice trials
(when the decline option was not available) was lower than that in free
choice trials. This means that subjects can access information about
the expected outcome of the judgment and hence opting for the decline
option denotes low confidence in the decision. Nonetheless an alter-
native explanation of the increased performances is possible, which
weaken the link of this behavior with confidence. Indeed fluctuations
in the general vigilance state of the subject could also produce a higher
probability of correct in free choice trials (since subjects would accept
the perceptual task only when they have high vigilance). Although
this would still imply a metacognitive process it would be different
from a confidence judgment. We are going to address this problem
from a computational perspective in chap.4.

Another weakness of the uncertain option task is that it allows to
record either the response only or only the confidence in each trial.
On the other hand post-decision wagering paradigms (Persaud and
Mcleod, 2008) allow to obtain both informations. In a post-decision
wagering task, after deciding, the subject has to bet about the correct-
ness of her choice. It is expected that subjects bet higher in confident
respect to uncertain trials. Kepecs et al. (2008) adapted the post-
decision wagering task in order to use rats as subjects. They delayed
the feedback after the choice allowing the animals to initiate a new
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trial instead of waiting for the reward. Using this task they found,
in contrast to Smith et al. (1995), that rats behavior shows the hall-
mark of confidence. However a limitation of their paradigm was that
the confidence bet was only binary and therefore only a single bit of
confidence information could be gained on each trial. Shields et al.
(2005) tried to use a form of post-decision wagering with monkeys
in order to mimic confidence reports in humans. Unfortunately they
found that monkeys responses were similar to that of human subjects
only for two category wagering (high versus low confidence). When
using three options to bet about the perceptual choice monkeys be-
haviour was different from that of humans. In order to improve the
post-decision wagering task and obtain a graded measure of confidence
on each trial Kepecs and Mainen (2012) present a variation of the task,
where the delay between choice and feedback is quite long and sampled
from an exponential distribution. The time that the subjects are will-
ing to wait for the reward is an indicator of the confidence that they
have in the decision. Indeed the authors report that the waiting time
present the characteristic pattern of confidence (described below).

Psychophysics of decision confidence

In this section we will highlight the main relations between confidence
and several variables that emerged in many different psychophysics
experiments (however we only review, in general, studies based on
perceptual decision tasks). The variable that we take into account
in the following are: discriminability, reaction time, accuracy, speed-
accuracy trade-off (SAT), expectation.

Discriminability

The first studies about confidence put this variable in relation with
the discriminability of the stimuli used in the experiment. In a task
of lifted weights, where the subject has to distinguish the greater of to
weights, Garret (1922) found confidence to be a monotonically increas-
ing function of the difference between the two weights. These results
were confirmed by Johnson (1939) and Festinger (1943). Both studies
used a two-category discrimination task, in which the subjects were re-
quired to indicate the longer of two lines. They found that confidence
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ratings plotted against the difference between the stimuli resembled a
sigmoid like the classical psychometric functions for accuracy. These
early results were confirmed by the subsequent research also using an-
imals both with the uncertain option task (Kiani and Shadlen, 2009)
and with the post-decision wagering task (Shields et al., 2005; Kepecs
et al., 2008). These studies can be represented through signal detec-
tion theory as the comparison of two random variables. For example,
in the experiment of lifted weights we can immagine that on each trial
the perceived weight of the first object is a sample of a distribution of
values whose variability is given by the noise in the sensory system;
similarly the perceived weight of the second object will be another
random variable. The decision about which weight is bigger involve a
comparison between the two random variables. Usually (e.g. in the
experiments mentioned above) the discriminability is manipulated by
varying the distance between the means of the distributions. Anyway
other possible manipulations would imply a change in the variability
while holding the mean constant and a change in both the mean and
the variability. However, to our knowledge, no results have been pub-
lish exploring these conditions. It is worth noting that also in the
motion discrimination task the confidence in the decision has been
found to decrease as a function of both stimulus duration and percent-
age of coherently moving dots (the two variables that manipulate the
discriminability of the motion direction) (Kiani and Shadlen, 2009).

Up until now we only considered correct trials but if one looks at error
trials the relation between confidence and difficulty is mirrored. First
Pierrel and Murray (1963) founded that confidence was lower for error
trials rather than for correct trials. Later it has been found that the
confidence in a decision decreases monotonically in error judgments as
a function of the ease of the trial (Vickers et al., 1985; Kepecs et al.,
2008; Kepecs and Mainen, 2012). The confidence measure, when plot-
ted as a function of the difference between the stimuli to be compared,
produces a characteristic X pattern if correct and error trials are con-
sidered separately (see e.g. fig.1.11).

We also note that a recent paper addressed the problem of the construc-
tion of confidence using a partial report task (Graziano and Sigman,
2009). In this study the main parameter that manipulate the diffi-
culty is the duration of the interval between the stimulus and the cue.
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In this study the authors report that the confidence in the judgment
decreases as a function of the duration of the interval and the same
modulation was found for correct and error trials. However the task
employed is quite complex and has a strong memory component and
therefore conclusions based on these results should be generalized with
caution.

Reaction time

Confidence was also found very early to be an inverse linear function of
reaction time (Henmon, 1911; Volkmann, 1934). These early proposals
were motivated also by the fact that confidence seemed to always un-
derestimate the probability of correct responses, saturating very early
(see further for a more complete description of the relation between
confidence and accuracy), and therefore it should be based on some
other feature of the decision process, like the time taken to commit to
a choice. Later Reed (1951) stated that confidence can be modeled as
c = a/t + b, where c is confidence, a is constant and b is the reaction
time for an infinitely large stimulus difference (i.e. in a case where
subject achieve 100% correct responses). Audley (1964) in an exper-
iment where subject had to compare the relative frequency of green
and red light flashes also reported an inverse relation between confi-
dence and reaction time for any level of discriminability. Pierrel and
Murray (1963) reported that in a lifted weights experiment confidence
increases with stimulus difference and was lower for error trials than
for correct trials. They found also that reaction times were inversely
related to confidence ratings and higher on error trials than on correct
trials.

Irwin et al. (1956) presented an experiment that seems in contrast with
evidence presented so far. They asked subjects to inspect cards from a
500 pack with positive and negative numbers printed on them and to
decide after each card if the mean of the pack was greater or less than
zero. They also recorded confidence ratings and found that confidence
increased with the number of observations made by the subject before
making a decision. While this result seems puzzling at first there is
a fundamental difference between the task of Irwin et al. (1956) and
the tasks presented so far. In lifted weights or line length experiments
all the evidence supporting one or the other alternative is given to the
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subject in a very short time window and then the subject can take
her time to evaluate that evidence. In the card experiment evidence is
accumulated discretely at a very low rate, therefore evidence increases
as a function of time and confidence could just be following the process
of evidence formation. Moreover, to increase the complexity of these
results, Audley (1964) reported an inverse relation between confidence
and response time, analogously to other simple perceptual judgment
experiments. In their task each flash concurred to the evidence in
favor of one or the other alternative so their result seems to contradict
the one of Irwin et al. (1956). However we note that if the arrival
rate of evidence packets is quite high the decision problem start to
resemble the line comparison task. Therefore in an experiment varying
the arrival rate of information for the decision one should observe a
transition from a phase where confidence increases with response time
and another phase where an inverse relationship can be observed. To
our knowledge such an experiment has not been done.

Accuracy

Since confidence is thought to be an estimate of the outcome of the
decision it is not surprising that its relation to accuracy was studied
very early. The first attempt was done already by Pierce and Jastrow
(1884). They founded that confidence was a direct function of the
accuracy and could be described as c = h · log(p/(1 − p)), where p is
the probability of a correct response and h is a constant. It was rec-
ognized very soon that the confidence judgement is a complicated and
non-linear function of the objective accuracy function. Garret (1922)
reports that confidence was not a reliable prediction of objective accu-
racy, an observation confirmed also by other studies (Johnson, 1939;
Festinger, 1943; Baranski and Petrusic, 1994). In particular Baranski
and Petrusic (1994) report that subjects are overconfident in difficult
decisions and underconfident in easy decisions and that both calibra-
tion and resolution of confidence decreased when the difficulty of the
decision increased. Using rats Kepecs et al. (2008) found that the firing
rate of neurons encoding uncertainty is a decreasing linear function of
the probability of correct responses in an odour categorization task. In
a similar task Kepecs and Mainen (2012) also showed that the waiting
time, that they propose as a valid measure of confidence (see above
section 1.2.3), is an increasing function of the accuracy. Nonetheless,
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going back to human subjective reports, Green et al. (1966, p. 106)
show some heterogeneity in the calibration of different subjects (with
some subjects obtaining fair calibrations). Moreover, recently, Bart-
tfeld et al. (2013) have shown that the reliability of confidence judg-
ments present a high variability over subjects. They found that the
ROC curve of type II performance (i.e. how much the confidence report
predicts the objective accuracy) corresponding to 25 subjects vary a
lot. The ROC curve of type II performance stays close to the diagonal
(bad prediction) for some subjects but has a very bowed profile (and
large area under the curve, i.e. good prediction) for other subjects.

Speed-accuracy trade-off

In the experiment of Johnson (1939), authors used different instruc-
tions (“speed”, “usual” and “accuracy”) to tell subjects, respectively,
to be rapid, to do just as usual the task or to be as accurate as possible.
They found that the different instructions elicited different behaviour
and characterized by both different reaction times and probabilities of
correct responses. Nonetheless the three conditions had almost no ef-
fect on confidence judgements. Some decades after Vickers and Packer
(1982) report that in a similar experiment in “accuracy” trials, the
probability of correct responses was higher, the RT was longer and the
confidence was higher compared to “speed” trials. Further investiga-
tion in this area could bring new results that can be used to constrain
the available model of confidence processing (e.g. the race model, de-
scribed in sec.1.2.3, can easy account for the results of Vickers and
Packer (1982) but not for that of Johnson (1939)).

Neurophysiology of decision confidence

Neurophysiological evidence about decision confidence has become avail-
able only in the last 5 years mainly thanks to two studies that used re-
spectively rats and monkeys as animal models. A work by Kepecs and
colleagues described neurons in the rat Orbio-Frontal Cortex (OFC)
that encode decision confidence estimates (Kepecs et al., 2008). The
behavioural paradigm consists in a binary odour categorization task.
The rats had to perform the binary categorization task with a mixture
of two pure odorants (A, caproic acid; B, 1-hexanol), by entering in
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one of two ports to indicate that the mixture was more like odour A or
more like odour B (see Fig.1.11a). Correct choices were rewarded after
a variable delay of 0.3-2 s. Varying the relative concentration of the
odorants allows to alter the difficulty of the trial. Neural activity re-
lated to decision confidence should occur just after the decision is taken
and before the trial outcome. Kepecs et al. (2008) therefore analyzed
recordings of neuronal activity during this delay period. The neurons
were then divided into two groups based on whether they fired with
a higher frequency on correct or on error trials. Kepecs et al. (2008)
found that the group of neurons with an increased firing rate on error
trials had higher firing rates with easier stimuli. The same neurons
fired at a substantially lower rate on correct trials, and on these trials
the firing rates were lower when the decision was made easier. This
produced the typical X pattern associated with confidence (showed in
Fig.1.11c,d). Hence the neural activity in OFC seems to jointly re-
flect the decision difficulty and the trial outcome, and thus represents
decision confidence. However in this experiment there was no behav-
ioral response about confidence, i.e. the rats took only a perceptual
choice but the confidence in that decision was not recorded. Therefore
one could reasonably doubt that the neural activity of OFC neuron, as
recorded by Kepecs et al. (2008), is actually correlated to decision con-
fidence. This criticism is even more relevant, given that the existence
of metacognitive functions in rodents has not been proven.

In order to assess this possible criticism, authors performed a second
experiment to investigate if rats were able to make use of the informa-
tion encoded by OFC neurons. To this aim they used a post-decision
wagering experiment. The delay period between the response and the
reward was prolonged up to 8 s in order to allow the rat to reiniti-
ate the trial. The subject could decide to leave the choice port and
restart the trial, or could wait for the reward. The decision to stay
or to return to odour port should be related to the level of confidence
of the rat about the previous choice. Indeed if the subject is sure of
its decision it should wait for the reward, but if its decision was made
with low confidence, e.g. if the odour percentage is around 50%, the
subject would probably reinitiate the trial hoping that the next stim-
ulus will be easier. It was found that when the likelihood of a reward
was low, due to the decision difficulty and the choice just made, the rat
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Figure 1.11: a. Odour mixture categorization task: when the rat enters
the odour port, an odour mixture is delivered. The stimulus is defined by
the percentage of the two pure odorants A and B in the mixture as shown
in (b). Then the subject categorizes the mixture as A or B by moving left
or right, according to the dominant odour. c. Mean normalized firing rate
of the positive outcome selective neuronal population. These neurons fire
faster on correct trials then on error trials, and increase their firing rate
as the task becomes easier on correct trials, while they decrease the firing
rate on error trials. d. Mean normalized firing rate of the negative outcome
selective neuronal population in the orbitofrontal cortex as recorded by
Kepecs et al (2008). These neurons have sustained activity on error trials,
increasing their firing rate further when the decision is made easier. On
correct trials they fire slower, and decrease their firing rates as the decision
becomes easier. (modified from Kepecs et al., 2008).

returned to the odour port. The probability that the rat would restart
a trial as function of stimulus difficulty and accuracy show the typi-
cal X pattern and reflects the responses of OFC neurons (see Kepecs
et al., 2008, Fig.5). In chap.2 we will discuss further these results and
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present a model that accounts for these data.

Another recent paper from Kiani and Shadlen addresses the issue of
decision confidence in a different manner. Kiani and Shadlen (2009)
used a modified version of the 2 alternative forced choice task (2AFC)
introducing an uncertain option in order to distinguish trials in which
the monkey had low confidence associated with the perceptual decision.
They also recorded single neurons activity from the Lateral Intrapari-
etal sulcus (LIP). In the usual 2AFC paradigm a random dots motion
(RDM) stimulus is shown to the monkey, who has to decide to make
a saccade towards one of two targets, located at the opposite sides
of the visual field (Tin: The target in the response field (RF) of the
recorded neurons; Topp: The target at the opposite side), according
to the prevailing motion direction. In this implementation of RDM a
subset of dots is just randomly relocated at each new frame producing
the illusion of random movement while another subset moves coher-
ently in one direction. The percentage of coherently moving dots can
be modified allowing control over the evidence for the decision. The
unsure option was implemented as a third target, called “sure target”
(Ts), shown orthogonally to the axis between the motion targets. Ts
was associated with a lower but sure reward. As explained above, if
the monkey is not confident about the perceptual decision, then he
can choose Ts and get a reward. The probability of choosing Ts re-
flects the animal’s average confidence in a set of trials, while on single
trials either the outcome of the decision or a binary value of decision
confidence can be extracted.

Psychophysical results show that confidence decreases when the frac-
tion of coherently moving dots decreases and also when the duration
of the RDM display decreases. Although the two parameter may exert
different effects on the decision process it could be said that confidence
decreases when the task is made more difficult (see Fig. 1.12).

Neural recordings show the well-known choice related activity of LIP
neurons (Fig. 1.13c) in standard trials (see Gold and Shadlen, 2007).
During trials in which Ts option was given but waived neural record-
ings seem unaffected by the third possible choice. On the other hand,
when the subject chose the sure target the firing rate during the stim-
ulus period remains lower than in standard trials, staying in a middle
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Figure 1.12: a. Experimental paradigm in trials in which Ts was shown
(upper branch) and in standard trials (lower branch). b. Probability of
choosing Ts as a function of stimulus duration grouped by stimulus coher-
ence. c. Accuracy as a function of stimulus duration and grouped by stim-
ulus coherence. Open circles represent accuracy on standard trials, while
filled circles represent accuracy on trials in which Ts was shown but waived.
A general improvement of performance is notable when monkey waived the
sure target. (modified from Kiani and Shadlen, 2009).

level, both for trials in which prevailing motion was toward Tin and
trials in which it was toward Topp, during the stimulus period. After
the stimulus period firing rates attenuate until the end of the trial
(Fig. 1.13d).

Authors conclude that the activity in LIP neurons is really informative
about animal’s decision confidence, because when firing rates don’t
achieve a sufficient level (above a given threshold) confidence in the
decision is too low and the sure option is chosen. We will discuss
further these results in chap.4, where we present a model to account
for these data.

Theoretical models of decision confidence

The psychophysical results summarized in Sec. 1.2.3 and 1.2.3 were ex-
plained using the framework of diffusion models (e.g. (Vickers, 1979a;
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Figure 1.13: c. Average neural activity of LIP neurons over time when Ts
was not presented. Black and gray traces represent respectively choice for
Tin and Topp. d. Average neural activity when Ts was shown. Solid lines
and dashed lines represent trials in which the sure option was waived and
chose, respectively. (modified from Kiani and Shadlen, 2009).

Kiani and Shadlen, 2009)).

Vickers (1979a) used a race model to account for several features of
decision-making processes and suggested that confidence can be en-
coded in such a model in the difference between the two decision vari-
able at the time of the choice, what he called the “balance of evidence”
(BE). Indeed when stimulus discriminability increases, making the de-
cision easier, the two accumulators will diverge quite rapidly and at the
moment of the choice they will be far away form each other. Moreover
when reaction time increases, the fluctuations of the input can push
the wrong accumulator towards the threshold and therefore the two
accumulators are more likely to be closer to each other. Thereby the
model can account also for the inverse relationship between reaction
time and confidence.

The model can work in two different decision scenarios: the optional-
stopping task and the time-limited sampling task. Optional-stopping
refers to the case in which subjects make the decision when they want,
while in time-limited sampling the decision time is fixed by the experi-
menter. Using these two decision rules the DDM of Vickers (1979a) can
account also for the contrasting results of Irwin et al. (1956) discussed
above in sec. 1.2.3. Indeed, when the accumulation process stops be-
fore the variable has reached the bound (the time-limited case), the BE
increases as a function of the stopping time because the two variables
start the accumulation in the same point and theirs paths diverge



36 decision confidence: an introduction

slowly. However if we consider the BE when one racer reaches the
bound (the optional-stopping case) and compare trials with different
first passage times, we would find that the longer the time the smaller
the BE.

The one dimensional DDM cannot encode the confidence in the BE
since “all that is known at decision time is that the particle has reached
the bound” (as recently pointed out by Drugowitsch and Pouget (2012)).
However the DDM can encode the confidence in the time taken to reach
the decision, as outlined by Moreno-bote (2010). Moreno-bote (2010)
demonstrate that the confidence in the race model, as the probability
of reaching the correct bound, can be calculated from the state of the
integrator that doesn’t reach the bound and the elapsed time. This
result is also valid when correlation between integrators is taken into
account. Therefore, for the extreme case of perfect anti-correlation
(the one-dimensional diffusion process), it can be demonstrated that
the decision confidence depends only on decision time. More precisely
Moreno-bote (2010) predicts that the relation between confidence level
and RTs is not linear in time, as suggested by the usual fit (a/t + b)
found by many experiments (Henmon, 1911; Volkmann, 1934; Reed,
1951; Audley, 1964), but depend on the square root of time as a/

√
t+b.

This prediction needs a carefully designed experiment to be tested since
the difference between the two types of relationships is only visible with
quite long RTs.

Another solution was adopted by Kiani and Shadlen (2009) in order
to account for their data of the unsure option experiment described
in previous section. They propose a DDM, where the choice is de-
termined only by the position of decision variable (i.e. the boundary
has the only function of absorbing the accumulation but won’t deter-
mine the reaction time). The accumulation process starts as always at
zero and the duration of a trial is defined externally since they model
a time-limited task. During a trial the particle diffuses, pushed to-
wards the correct side by the drift (sensory input). A time dependent
uncertainty threshold marks a region around the central point of the
diffusion space. At the end of the trial if the particle is found inside of
this uncertain region a “sure” target response will be triggered (mean-
ing that the confidence in the decision is too low to commit to a choice),
otherwise the sign of the decision variable will decide the target of the
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saccade. This model can reliably reproduce both psychophysical and
neurophysiological data but authors don’t provide any novel prediction
in order to test the model with new experiments, a fundamental step
for the development of models.

Despite the ability of reproducing data and their simplicity DDMs lack
of biological plausibility and their explanational power is sometime re-
duced. Therefore in the following chapters we will try to produce a
reliable account of decision confidence processing based on the frame-
work of biophysically realistic ANN.





CHAPTER 2
Confidence-Based Decisions

The results presented in this chapter have been published in Insabato
et al. (2010).

2.1 Introduction

In this chapter we present a model that is able to account for confidence-
related decisions. Indeed as shown in fig.1.1 after a decision has been
taken, the confidence associated with this decision can be encoded in
some area of the brain and this information can be used in order to
take subsequent decisions. This model is based on the experiemental
results of Kepecs et al. (2008). They described neurons in the rat or-
bitofrontal cortex (OFC) as encoding decision confidence Kepecs et al.
(2008) in an olfactory classification task. In the task, a mixture of
odors A and B was categorized as A or B, depending on which odor
was predominant. The difficulty of the task could be controlled by
varying the proportion of the two odors. A second experiment was
undertaken in order to examine the ability of the rats to behave in
accordance with the confidence-related information. In this second ex-
periment the rat had the possibility to abort the current trial without
waiting for the reward outcome and thus to start a new trial. The re-
sults showed that a second decision (about whether to abort the trial)
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could be made based on confidence in the first decision, in that the rats
were more likely to abort a trial if they had made an error in the odor
classification. Two different decisions should then be distinguished: a
first-stage decision (about the stimulus) and a second stage decision
based on the level of confidence in the first decision.

Here we propose an integrate-and-fire attractor network model, shown
in Fig. 2.1, to account for decision confidence mechanisms (and de-
scribed in detail in tabs.4.1,2.2 and appendix A). This is a “mecha-
nistic” biologically realistic approach, and not a “phenomenological”
approach such as an accumulator or race model that accumulates noisy
evidence with a linear integrator until some threshold is reached (Vick-
ers and Packer, 1982; Ratcliff and Rouder, 1998; Ratcliff et al., 1999;
Usher and McClelland, 2001; Gold and Shadlen, 2007). We show that
decision confidence is an emergent property of decision-making neu-
ral networks (for well-known implementations see Wang (2002b) and
Deco and Rolls (2006)) encoded in the firing rates of the neurons (the
first module in Fig. 2.1). However, this does not account for subsequent
confidence-based decisions as in the second experiment of Kepecs et al.
(2008). For this we propose that a second decision-making network
is needed (the second module in Fig. 2.1). Thus our main proposal
is for a two-layer model of confidence-related decision-making, which
can account for the two decision-making processes and elucidates how
confidence-related decision-making mechanisms could operate in the
brain.We analyze how such a system would work, analyze its prop-
erties, and show that it accounts for the neurophysiological results
described by Kepecs et al. (2008). Moreover, the model leads to pre-
dictions about new properties of these neurons that can be tested.

2.2 Results

2.2.1 The Model: Network Architecture

Our model is composed of two modules (fig.2.1). Each one is an attrac-
tor neural network implementing a decision-making process. The first
module is designed to make a perceptual decision (odor classification).
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We will refer to it as the decision-making (first) network. The sec-
ond module, which receives inputs from the decision-making network,
‘decides’ whether to abort the task, estimating the level of confidence
in the first perceptual decision. We will refer to it as the confidence
decision-making (second) network (see Fig. 2.1).

The simple scheme of a neural network implementing a decision-making
process, developed by Wang (2002b), is composed of two selective pools
of excitatory neurons, one non-selective pool of excitatory neurons,
and one pool of inhibitory neurons. The non-selective pool represents
the background activity of the neurons not responding to the stimulus.
The two selective pools represent the choices. The neurons within each
excitatory selective population have strong recurrent connections, and
there are weak connections between the pools. When an external input
is delivered to one or both of the selective pools the activity increases,
causing an enhancement of the inhibition. Since the two pools are
mutually connected they cooperate increasing the activity. When the
the inhibitory current is sufficiently strong a competition takes place
between the selective pools. One of the two pools wins the competi-
tion and ends up with a high firing rate, while the other pool ends up
with a low firing rate, indicating that a decision state is reached. The
balance between competition and cooperation depends principally on
the parameters of the mutual connections between the pools and the
recurrent connections within a pool. The evidence for each decision is
applied as an external excitatory input to each population of neurons,
and biases the competition in favor of one of the two pools. The ar-
riving random spike trains (with a Poissonian spike time distribution)
together with finite-size effects produce the stochastic dynamics of the
network and the probabilistic decision-making, as described in more
detail elsewhere (Deco et al., 2009; Deco and Marti, 2007; Mart́ı et al.,
2008; Rolls and Deco, 2010).

The two selective pools of the decision-making network are DA and
DB, which become active for decision A and B respectively. During
the stimulation, pool DA (DB) receives sensory information about odor
A (or B) via external input λA, B. When stimulus A (or B) is applied,
pool DA (or DB) will usually win the competition and end up with
high firing indicating that decision A (or B) has been reached. When a
mixture is applied, the decision-making network will probabilistically
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Figure 2.1: Network architecture for decisions about confidence estimates.
The first network is a decision-making network, and its outputs are sent to a
second network that makes decisions based on the firing rates from the first
network, which reflect the decision confidence. In the first network, high
firing of neuronal population (or pool) DA represents decision A, and high
firing of population DB represents decision B. Pools DA and DB receive a
stimulus-related input (respectively λA and λB), the evidence for each of
the decisions, and these bias the attractor networks, which have internal
positive feedback produced by the recurrent excitatory connections. Pools
DA and DB compete through inhibitory interneurons. The second network
is a confidence decision attractor network, and receives inputs from the
first network. The confidence network has two selective pools of neurons,
one of which (C) responds to represent confidence in the decision, and the
other of which responds when there is little or a lack of confidence in the
decision (LC). The C neurons receive the outputs from the selective pools of
the (first) decision-making network, and the LC neurons receive λReference

which saturates at 40 spikes/s, a rate that is close to the rates averaged
across correct and error trials of the sum of the firing in the selective pools
in the (first) decision-making network. In each network the excitatory pool
is divided into three subpopulations: a nonspecific one, and two stimulus-
selective populations. Each selective pool has strong recurrent connections
(w+), while the connections between the two selective pools are weak (w−).
All other connections are set to the default value 1.
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choose DA or DB, influenced by the proportion of A and B in the
mixture.

The parameters of the decision-making (first) network were chosen as
follows. The inputs to the network from the sensory stimuli A and B
and the synaptic weights between the neurons within a pool were set
so that the network operated in a bistable regime, by which we mean
that the spontaneous state is no longer stable when the decision cues
are being applied. Then noise and sensory inputs bias the landscape
and provoke a transition to a decision state. Thus the attractor basins
are influenced by the stimulus. Whether the network can present per-
sistent activity in the absence of stimulation, is not important for our
purpose. The inputs were in addition set so that with only one stimulus
in the mixture, the decision was approximately 100% correct.

The confidence network has two selective pools of neurons, one of which
(C) responds to indicate confidence in the first decision and to stay
with the first decision based on a level of firing from the first network
which indicates high confidence, and the other of which (LC) responds
when there is little or a lack of confidence in the first-stage decision.
In the experiment of Kepecs et al. (2008), C corresponds to a decision
to stay and wait for a reward, i.e. what they call the positive outcome
population, though it really represents confidence or a prediction that
the decision just made will have a positive outcome. LC corresponds
to a second decision to abort a trial and not wait for a possible reward,
i.e. what they call the negative outcome population, though it really
represents lack of confidence that the perceptual decision just made will
have a positive outcome, equivalent to confidence that the decision just
made will have a negative outcome.

The two networks are connected by AMPA synapses that link the
selective pools DA and DB of the (first) decision-making network to
confidence network selective pool C. (The synaptic conductances of
these connections are set to the value gAMPA,ext=2.08 nS, but this
value is not crucial for the mechanism.) The selective pool LC in
the confidence network receives an external input that saturates at 40
spikes/s, in order to set the competition with pool C. This input could
come from the same source at that to the C network, or could come
from other brain areas, carrying for example information about the
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value of different behaviors and could reflect the subject’s bias in his
or her confidence.

The total number of neurons in the model is N = 2000. For simplic-
ity we chose to have the same number of neurons in each of the two
networks Nmod = N/2. Therefore each network has NE = 0.8 · Nmod

excitatory pyramidal neurons and NI = 0.2 ·Nmod inhibitory interneu-
rons, the proportions observed in the cerebral cortex (Abeles, 1991).
The number of neurons in each selective pool is NA = NB = NC =
NLC = NE · f , where f is the fraction of excitatory neurons in each
selective pool. In this study we set f = 0.15. Each nonspecific pool in
each network contains the remaining NE − NA − NB excitatory neu-
rons. We modeled an equal number of neurons in each selective pool
to keep the model as simple as possible, and note that equal numbers
of neurons for the different attractors need not be present in this class
of attractor network. Each network is fully connected, i.e. all neurons
are connected to each other. We note that sparse connectivity does
not change the overall dynamics of the network (i.e. the mechanism is
reproducible also with a sparsely connected network), bringing about
merely an increase of the noise in the network due to the finite-size
effect (Mattia and Del Giudice, 2002, 2004). We make the plausible
hypothesis that the connection strengths have been modified from their
default value of 1 by a previous learning process, hence we set them
following a Hebb-like rule, i.e. the synaptic efficacy between two cells
is high if the cells had correlated activity in the past, whereas uncor-
related activity results in a weak synapse. Cells in one selective pool
have strong recurrent connections w+, while synaptic efficacy between
the two selective pools is decreased, given by w− = (1− fw+)/(1− f).
We set these parameters (w+, w−) to slightly different values for the
two modules. In order to achieve a better correspondence with the
results of (Kepecs et al., 2008) we used a weaker w+ in the confidence
network than in the decision-making network as shown in table 4.3.
During the simulation all the synaptic weights are kept fixed. All neu-
rons receive an external input λext, modeled as Poisson spike trains,
from 800 external neurons each firing at a rate of 3 Hz, consistent with
observed values in the cortex. During the stimulation the external
input changes for the selective pools as described before.

Our model has a two-stage structure and assumes some type of connec-
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A Model Summary

Populations eight
Topology Two modules partially connected
Connectivity full, no synaptic delay
Neuron model Leaky Integrate-and-Fire, fixed threshold, fixed refractory

time
Synapse model Instantaneous jump and exponential decay for AMPA and

GABA and exponential jump and decay for NMDA recep-
tors

Plasticity -
Input Independent fixed-rate poisson spike trains to all neurons

B Populations

Total number of neurons N = 2000 In each module Nmod =
N/2

Excitatory neurons in each module NE = 0.8 ·Nmod
Inhibitory neurons in each module NI = 0.2 ·Nmod
Name Size Name Size
DA (decision A) NA = f ·

NE

Nonspecific (1st module) NE−NA−
NB

DB (decision B) NB = f ·
NE

Inhibitory (1st module) 0.2 ·Nmod

C (confidence) NC = f ·
NE

Nonspecific (2nd module) NE −
NC−NLC

LC (lack of confidence) NLC = f ·
NE

Inhibitory (2nd module) 0.2 ·Nmod

Table 2.1: Model summary. Network and pools details. Parameters values
are given in Tab. 4.3

tivity between the two modules or stages, the decision-making network
and confidence network. These modules could both be within the OFC,
or they could be in different brain regions.

In the appendix B we describe the details of the mean field approxi-
mation used to determine the parameters of the synaptic strengths in
the model to obtain stable operation. Other details of the architecture
that was implemented are reported in Table 4.1 and shown in fig. 2.1.
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C Neuron and Synapse Model

Type Leaky integrate-and-fire, conductance-based
synapses

Subthreshold dynamics CmV̇ (t) = −gL(V (t) − VL) − IAMPA,ext(t) −
IAMPA,rec(t)− INMDA(t)− IGABA(t)

Synaptic currents IAMPA,ext(t) = gAMPA,ext(V (t) −
VE)

∑Next

j=1 sAMPA,ext
j (t)

IAMPA,rec(t) = gAMPA,rec(V (t) −
VE)

∑NE

j=1 wjs
AMPA,rec
j (t)

INMDA(t) = gNMDA(V (t)−VE)
1+[Mg2+]exp(−0.062V (t))/3.57 ×∑NE

j=1 wjs
NMDA
j (t)

IGABA(t) = gGABA(V (t) −
VI)

∑NI

j=1 wjs
GABA
j (t)

Fraction of open channels
dsAMPA,ext

j (t)

dt = − s
AMPA,ext
j (t)

τAMPA
+
∑
k δ(t− tkj )

dsAMPA,rec
j (t)

dt = − s
AMPA,rec
j (t)

τAMPA
+
∑
k δ(t− tkj )

dsNMDA
j (t)

dt = − sNMDA
j (t)

τNMDA,decay
+ αxj(t)(1 −

sNMDA
j (t))
dxNMDA

j (t)

dt = − xNMDA
j (t)

τNMDA,rise
+
∑
k δ(t− tkj )

dsGABA
j (t)

dt = − s
GABA
j (t)

τGABA
+
∑
k δ(t− tkj )

Spiking if V (t) ≥ Vθ ∧ t > t? + τrp
1. t? = t
2. emit spike at time t?

3. V (t) = Vreset

D Input

Type Description
Poisson generator Fixed rate, Next poisson generators per neuron, each one

projects to one neuron

Table 2.2: Model summary. Neuron model and input layer description.
Parameters values are given in Tab. 4.3
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2.2.2 Simulation Results

Once the parameter values had been determined using the mean-field
analysis (see below sec.2.4), we ran simulation trials with these values,
increasing the bias value, which corresponds to altering the stimulus
identity, which in this case corresponds to altering the proportion of
the two odors in the mixture. On each trial the network received for the
first 500 ms the external spontaneous firing level input λext. With this
input the only stable state of the network is the spontaneous activity.
After that, each selective pool DA and DB received in addition to λext

the stimulus input λA,B = λ±∆λ, which provides the stimulus-specific
information for the decision and drives the network dynamics. We ran
different sets of simulations with ∆λ values of 0, 10, 20, 30 Hz. We
considered that a decision was reached when the selectivity index S =
| ln νA/νB| took a value above 1.7 and did not decrease for at least 100
ms, where νA and νB are the firing-rates of pool A and B (see sec.1.2.2
for a discussion about choice mechanisms). The same criterion was
used to determine the decision in the second network using the firing
rates of the C and LC pool. Pool C received the external input and
the output of pools DA and DB. Pool LC received just external input
for 700 ms and after that an additional input, modeled as a Poisson
process of mean rate 40 Hz. We maintained the stimulation throughout
the trial. This does not correspond to the experimental paradigm of
Kepecs et al. (2008), but we hypothesized a working memory process
upstream like the one described by Brody et al. (2003a) and Machens
et al. (2005).

First we show how the firing rates of the (first) decision-making net-
work reflect decision confidence.

Fig. 2.2c shows the proportion of correct perceptual decisions as a func-
tion of the proportion of stimulus A and stimulus B in the mixture.
The decision-making is probabilistic because of the spiking-related ran-
domness in the network (Wang, 2002b; Deco and Rolls, 2006; Rolls and
Deco, 2010). Fig. 2.2a shows that on trials when the DA neuronal pop-
ulation which represents decision A correctly wins and has a high firing
rate, the firing rate increases further with the discriminability of the
stimuli ∆λ, and thus encodes increasing confidence. The reason for
the increase of firing rate with ∆λ on correct trials is that the exter-
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Figure 2.2: Performance of the decision-making (first) network. a) When
pool DA correctly wins the competition, its firing rates are high and increase
as a function of ∆λ. When pool DB incorrectly wins making an error
due to the noise and has a high firing rate, its firing rate decreases as
a function of ∆λ. This modulation of the firing rates by ∆λ was also
observed experimentally (personal communication from Z. Mainen). The
low firing rates when DB loses the competition on correct trials, and when
DA loses the competition on error trials, are also shown. The error bars
represent the s.e.m. (The numbers of correct trials were between 524 and
990, and the numbers of error trials from 52 to 472.) Confidence is thus
encoded in the firing rates of the winning attractor, and is an emergent
property of the decision-making network. The firing rates were calculated
averaging over trials the activity of neurons in the last second of each trial,
from time t = 2000 ms to t = 3000 ms. b) Sum of the firing rates from
the DA and DB populations as a function of ∆λ. This provides the input
to the confidence (second) network selective pool C. The error bars show
the s.e.m. c) The percentage correct performance of the decision-making
network as a function of ∆λ. (The error bars were estimated from the
binomial distribution, and were small. The points are fitted by a Weibull
function.)



2.2. results 49

nal inputs from the stimuli A or B then support the (noise-influenced)
winning attractor (pool DA) and add to the firing rates being pro-
duced by the recurrent collateral connections in the winning attractor.
On the other hand, on error trials the firing rates of the winning pool
(now DB, which represents decision B and wins despite the evidence
because of noisy firing in the network) become lower as ∆λ increases,
because then the external sensory inputs are inconsistent with the
perceptual decision that has been made, and do not support and in-
crease the firing rate of the winning pool (Rolls and Deco, 2010; Rolls
et al., 2010). (This modulation by stimulus difficulty of the firing rates
of the decision-making populations was also observed experimentally
by Felsen and Mainen (2009) in the superior colliculus). Confidence,
which increases with ∆λ on correct trials and decreases with ∆λ on
error trials (Vickers, 1979a; Vickers and Packer, 1982; Jonsson et al.,
2005; Kepecs et al., 2008; Rolls et al., 2010), is thus encoded in the
firing rates of the winning attractor, and is an emergent property of
the decision-making network, because it was not directly implemented
in the model, but arises from the simple decision process (Rolls and
Deco, 2010).

Moreover, the sum of the activity of the winning and losing populations
also represents decision confidence on correct and error trials, as shown
in Fig. 2.2b. It is this total firing from pools DA and DB of the first,
decision-making, network, which reflects decision confidence, that is
provided as the input to the confidence (second) network.

We now consider the operation of the confidence decision (second) net-
work. If the firing-rate of the winning attractor of the first, decision-
making, network is high, then the confidence decision network acting
as a second level network makes the second-stage decision, probabilis-
tically as before, to have confidence in the first-stage decision, and
the C population probabilistically wins the competition. If the output
firing of DA and DB (reflected in their sum) is low because the per-
ceptual decision just made has sensory inputs that are not consonant
with the decision, then with weaker driving inputs to the C network,
it loses the competition with LC. The confidence network in this case
makes the second decision, probabilistically as before, to have a lack
of confidence in the first decision, in that the LC population wins the
competition. The confidence decision network thus acts as a decision-
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Figure 2.3: Performance of the confidence decision (second) network. The
proportion of trials on which in the second network the Confidence (C)
population won the competition as a function of ∆λ for trials on which
the decision-making (first) network (DMnet) was correct or incorrect. The
performance of the LC population was the complement of this. (The param-
eters were set so that with ∆λ close to 0, approximately 60% of the trials
were C trials, to be qualitatively in the same direction as in the experimental
findings of Kepecs et al 2008).

making network to make confident decisions if the firing rates from the
first, decision-making, network are high, and to make lack of confidence
decisions if the firing rates from the first, decision-making, network are
low.

On trials when the (first) decision network is correct, the input to
the C population coming from the DA and DB neurons increases as
a function of ∆λ, and the C pool tends to win the competition more
frequently (see Fig. 2.3).

Thus a decision to act confidently about one’s first decision is more
likely to be made as ∆λ increases on correct trials. On the other
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hand, when the first network makes an error, the C population tends
to win the competition less frequently as ∆λ increases, as shown in
Fig. 2.3, and correspondingly on error trials the proportion of trials
on which the LC population wins increases with ∆λ. (The percentage
correct of the LC population is the complement of that shown in Fig.
2.3.) Thus a decision to lack confidence about one’s first decision is
more likely to be made as ∆λ increases on error trials, and this might
make one abort such a trial, as in the experiment of Kepecs et al.
(2008).

The general time structure of the neuronal activity in the model is
in qualitative accordance with the experimental results (Kepecs et al.,
2008). As shown in Fig. 2.4, the confidence decision takes place after
the first decision, and separation of the firing rates of the two selective
populations C and LC occurs after the decision-making network has
reached a decision state, as in Fig. 3a-d of Kepecs et al. (2008).

It is important to examine the firing rates in the C and the LC attrac-
tor neuronal populations as a function of ∆λ on correct and incorrect
trials, for they provide an account for neuronal responses recorded dur-
ing decision-making (Kepecs et al., 2008), and those neurophysiological
results in turn validate the model. We find for the confidence decision-
making network that on correct trials with high ∆λ=30 (easy percep-
tual decisions), C has a high firing rate, whereas it has a lower rate for
∆λ=10, that is difficult decisions, as shown in Fig. 2.5. Conversely,
on error trials when the firing rates in the first level, decision-making,
network are lower, the confidence neurons C lose the competition and
have relatively low firing rates, which decrease even further as the
magnitude of ∆λ increases.

The firing rates (mean) in the confidence decision-making network
of the C (confident, “positive outcome”) and LC (lack of confidence,
“negative outcome”) populations of neurons for trials when the first
decision-making network is correct or incorrect as a function of ∆λ are
shown in Fig. 2.6.

The thick lines show the mean firing rates for the C and LC pools for
all trials on which the first network was correct or in error. We identify
the LC population of neurons with the negative outcome population
of neurons described by Kepecs et al. (2008), which have similar prop-
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Figure 2.4: Examples of the time courses of the neuronal activity in the
selective pools of the decision-making (first) network and of the confidence
decision (second) network for a decision at chance (∆λ = 0). Panels a
and b show the activity in time of selective pools in the decision-making
network and in the confidence network. Rasterplots show the activity of 20
sample neurons for each selective population in one trial (dashed vertical
lines mark stimulus onset). Superimposed lines show the average firing rates
for that trial. On 60% of trials the confidence network selective pool C won
the competition (panel a). On 40% of trials pool LC won the competition
(panel b). Panels c and d show the average firing rates over all correct trials
for the same conditions respectively as panels a and b. The separation of
the firing rates begins after the decision is made and the general temporal
structure of the network is in qualitative accordance with the experimental
results of Kepecs et al (2008).
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Figure 2.5: Firing rates in the confidence decision-making network of the
C (confident) and LC (lack of confidence) populations of neurons for trials
when the first decision-making network is correct or incorrect for easy de-
cisions (∆λ=30) and difficult (∆λ=10) decisions. The firing rates shown
are averaged merging together confident and lack of confidence trials. The
same mixture is shown in thick lines in Fig. 2.6, in order to show the corre-
spondence with the experimental results. (The shaded areas represent the
s.e.m. The numbers of trials are in the range from 72 to 990). The decision
cues were turned on at t=500 ms.

erties. Further, we identify the C population of neurons with the posi-
tive outcome population of neurons described by Kepecs et al. (2008),
which have similar properties.

However, as shown in Fig. 2.3, the confidence decision-making network
was itself increasingly incorrect (i.e. took a confidence decision that
was inconsistent with the decision made by the (first) decision-making
network) as ∆λ approached 0, and the firing rates in the thick lines
of Fig. 2.6 reflect the fact that on some trials the C pool won the
competition, and on some trials it lost. This is effectively how Kepecs
et al. (2008) presented their data (for they knew only whether the first-
stage decision itself was correct, and did not measure while recording
whether the rat took a confidence-related decision to stay with or abort
a trial), and there is good correspondence, as can be seen by comparing
data from Kepecs et al. (2008) with Fig. 2.3. If instead of taking
the mean firing rate of the C neurons based only on whether the first
decision was correct, we take just the trials on which the C (confidence)



54 confidence-based decisions

0 10 20 30

10

30

 

 

Pool LC

∆λ [Hz]
0 10 20 30

10

30

∆λ [Hz]

F
iri

ng
 r

at
e 

[H
z]

Pool C

 

 

correct trials

error trials

Lack of confidence
trials

Lack of confidence
trials

Confident
trials

Average (all
trials)

Confident
trials

Average (all
trials)

Figure 2.6: Firing rates (mean ± s.e.m.) in the confidence decision-making
network of the C (confident, ‘positive outcome’) and LC (lack of confidence,
‘negative outcome’) populations of neurons. Labels ‘Confident trials’ and
‘Lack of confidence trials’ mark respectively trials on which the C (confi-
dence) population and LC (lack of confidence) population won the competi-
tion. The activities of the C and LC populations of neurons, averaged over
all trials, confident and lack of confidence, are shown with label ‘Average
(all trials)’. As shown in Fig. 2.3, the confidence decision-making network
was itself increasingly incorrect as ∆λ approached 0, and the firing rates
in the thick lines reflect the fact that on some trials the C population won
the competition, and on some trials it lost. (There is no correct/error dis-
tinction for trials with ∆λ = 0. For illustration purpose, trials in which
the final choice was A were labeled as correct trials and trials in the choice
was B were labeled as error trials.) The firing rates shown were calculated
averaging the activity of neurons in the last second of each trial, from time
t = 2000 ms to t = 3000 ms. (The error bars for the thin lines (confidence
and lack of confidence decision trials) represent the s.e.m., and the number
of trials was in the range 28 to 760, with few error trials occurring with high
values of ∆λ.)
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pool won the competition, the thin lines of Fig. 2.6 show for the C pool
an average rate of close to 28 spikes/s that tends to increase with ∆λ
when the first network is correct, and tends to decrease with ∆λ when
the first network is in error. (This is supported by the data shown
in Fig. 2.5.) If we take just the trials on which the C population lost
the competition, the thin lines show for the C pool an average rate
of close to 2 spikes/s. Conversely, for the LC pool of neurons, if we
take just the trials on which the LC population won the competition,
the thin lines show for the LC pool an average rate of close to 26
spikes/s. If we take just the trials on which the LC population lost the
competition, the thin lines show for this LC pool an average rate of
close to 2 spikes/s. These firing rates shown in the thin lines in Fig.
2.6 are generally as expected, and the differences with ∆λ are due to
whether the output of the decision-making (first) network shown in
Fig. 2.2b are consistent or inconsistent with the decision made by the
confidence decision (second) network, which is of course influenced by
the spiking noise in the confidence decision network, which can make
the wrong decision given the evidence it receives from the decision-
making network shown in Fig. 2.2b.

2.3 Discussion

In this chapter we have shown how decision confidence is an emergent
property of a neurophysiologically based decision-making process, and
is encoded in a graded way by the continuously graded firing rates of
the neurons in an integrate-and-fire attractor decision-making network.
(This is shown by the results for the first decision-making network.)
We have also shown how within this neurobiologically based framework
for decision-making, two separate networks are essential for the ability
to make a decision involving a choice about one’s confidence in a prior
decision. We have also shown how the model is confirmed by and
provides a computational account for the neurophysiological findings
of Kepecs et al. (2008), and also provides a new interpretation of the
data recorded by Kepecs et al. (2008), as described in more detail next.
We also make new predictions about the types of neuronal response
that will be found when a confidence-based decision must be made, as
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described next.

The fact that the changes of firing rates found in the rat by Kepecs
et al. (2008) as a function of ∆λ are comparable with those shown
in the thick lines in Fig. 2.6 provides good support for the present
model. However, Kepecs et al. (2008) did not distinguish trials in
which a second-layer confidence decision network was in error or not
as they did not record neuronal activity when they could examine
whether the rat aborted a trial, and we suggest that it would now be
interesting to do this. Further, it is notable that the change of firing
rate with ∆λ found in the rat matches only that of the thick lines in
Fig. 2.6 which includes all trials irrespective of the decision made by
the confidence decision (second) network, and not by the thin lines in
Fig. 2.6 which reflect the decision made by the confidence network.
This leads to the novel prediction that different results will be found
to those presented by Kepecs et al. (2008) if in a future experiment the
responses of similar neurons are separated according to whether each
trial is aborted or not. We predict in particular that the neurons will
have activity like that shown in the thin lines in Fig. 2.6, and will be
of two types. One type will be similar to that of the C (confident in
the prior decision) neurons shown in Fig. 2.6 in which the firing rate is
high on trials on which the confidence decision is to stay with the first
decision, and low if the confidence (second) decision is to abort the
trial. The prediction further is that the firing rates of these confidence
neurons will change with ∆λ as shown by the thin lines in Fig. 2.6a,
that is these high firing rates will tend to increase as a function of ∆λ
if the first decision (made by the decision-making, first, network) is
consistent with the evidence (i.e. correct), as shown at the top of Fig.
2.6a, and to decrease as a function of ∆λ if the first decision (made by
the decision-making, first, network) is inconsistent with the evidence
(i.e. is an error), as also shown at the top of Fig. 2.3a. The second
type of neuron will be similar to that of the LC (lack of confidence
in the prior decision) neurons shown in Fig. 2.6b in which the firing
rate is high on individual trials on which the confidence decision is to
abort the trial, and low if the confidence (second) decision is to stay
with the first decision. (The firing rates of the LC population do not
change much with ∆λ as shown by the thin lines in Fig. 2.6b because
the input from the saturating neurons has a fixed firing rate.) It is only
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when we categorise the neurons according to whether the first decision
was correct or not that curves similar to those shown by thick lines
in Fig. 2.6 and as reported by Kepecs et al. (2008) will be found, and
such curves and analyses do not capture fully the properties of the
confidence decision-related neurons, which are as shown in the thin
lines in Fig. 2.6.

We used the model to account for neural data recorded in the OFC
by Kepecs et al. (2008). However, different brain areas are involved in
different types of decision-making (Kim and Shadlen, 1999; Hernandez
et al., 2002; Romo et al., 2002a; Rolls and Deco, 2010), and it is accord-
ingly plausible that other brain areas can process confidence-related in-
formation. Therefore we tried to keep the model as simple as possible
to propose a generic mechanism for confidence-related representation
and decision-making, that is not only consistent with and provides
an interpretation of experimental data from Kepecs et al. (2008), but
also provides a generic account of confidence-related decision-making
in other brain areas.

Our model is designed based on a binary decision-making task, but it
could be slightly modified to encompass also multiple choice decision-
making. In some recent work the theoretical framework of biased com-
petition that we adopted has been developed to account for multi-
ple choice decision-making (Furman and Wang, 2008; Albantakis and
Deco, 2009b). A possible extension of our model would be a com-
bination of an architecture like the one proposed by Albantakis and
Deco (2009b), but with a second confidence network strongly connected
with the decision neurons. We propose that such an extended model
based on our idea can also account for decisions based on confidence
in multiple-choice decision-making processes.

The architecture of our model is based on two layers, one for the per-
ceptual decision, and one to monitor the confidence level of the first
decision. However there is no restriction to two layers, and deeper ar-
chitectures could be built to perform more complex functions. In fact,
the second layer also undertakes a decision process, and hence a third
layer could monitor the activity of the second layer. The proposed
mechanism could thus be extended to account for nested monitoring
functions (cf. Hofstadter (2007)). Although no natural restriction is
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imposed on the mechanism, and learning could shape a nested network
hierarchy, a second-order confidence-related decision (and eventually
a third-order) may be of less use than a judgement about a first-level
(e.g. perceptual) decision.

The confidence decision (second) network is in effect monitoring the
decisions made by the first network, and can cause a change of be-
havior, choosing to abort the trial, if the second network’s assessment
of the decision made by the first network is that the first decision is
not a confident decision. Now this is the type of description, and lan-
guage used, to describe ‘monitoring’ functions, taken to be high level
cognitive processes, possibly related to consciousness Lycan (1997);
Block (1995). For example, in an experiment performed by Hampton
(2001a) (experiment 3), a monkey performing a short-term memory
task could choose an ‘escape flag’ to start another trial. With longer
delays, when memory strength might be lower partly due to noise in
the system, and confidence therefore might be lower, the monkey was
more likely to choose the escape flag. The experiment is described as
showing that the monkey is thinking about his own memory, that is, is
a case of meta-memory, which may be related to consciousness (Heyes,
2008). However, the decision about whether to escape from a trial can
be made just by adding a second decision network to the first decision
network. Thus we can account for what seem like complex cognitive
phenomena with a simple system of two attractor decision-making net-
works (Fig. 2.1). The design of Kepecs et al. (2008) was analogous,
in that the rat could choose to abort a trial if decision confidence was
low, and again this functionality can be implemented by two attractor
decision-making networks, as described here.

There are other more complex types of ‘self-monitoring’, such as is
described as occurring in a commentary that might be based on re-
flection on previous events, and appears to be more closely related to
consciousness (Weiskrantz, 1997; Rolls, 2007). Our aim was not to
account for such complex monitoring functions. Rather we claim that
some types of ‘self-monitoring’ are computationally simple, and the
model we propose can be a building-block for a better understanding
of such a high level cognitive function.

As a last remark we want to stress our belief that models and theories
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have to be judged and selected on the basis of their capability to predict
new results. These predictions can then be tested in new experiments
and thereby the models can be validated or falsified. It is with this
spirit that we undertake in the next chapter an analysis of neural data
recorded in behaviong monkeys during a decision-making task. In the
next chapter indeed we will present novel neurophysiological results
that, on one hand, confirm the model proposed in this chapter and,
on the other, adds new evidences on top of our understanding of the
neural substrate of decision confidence.

2.4 Methods

2.4.1 Model Details and Mean-Field Reduction

Detailed description of the neuron and synapse model is given in the
appendix A and in tabs. 4.1 and 2.2.

We use a mean-field reduction (Brunel and Wang, 2001b) in order to
study the space of the principal parameters of each network.

The mean-field approximation allows reduction of the number of dy-
namical variables, by describing the average firing rate of each neuronal
pool in the limit of an infinitely large number of neurons. The net-
work dynamics could converge to one of four attractors: a spontaneous
state, where the selective pools have low activity; two selective states
with one selective pool firing at a high level and the other inhibited;
and a mixed state with both pools highly active. With some parameter
values the network could sustain just one stable state, or could show
bistable, behaviour, or could show multistable behaviour in which the
spontaneous state and each of the two decision states are all possible
stable states when the inputs to the network are being applied (Brunel
and Wang, 2001b). Details of the mean-field analysis are given in the
appendix B.

We extensively explored the parameter space for λ and ∆λ, using few
different values of w+. All other parameters were set accordingly to
the results of ?. Our goal was to find the parameters that provide
regions of bistability (in which each of the decision states is stable) or
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Figure 2.7: Mean field bifurcation diagram. The different areas represent
different region of operation of the decision-making network. The letters
indicate network stable states: A, population DA wins the competition; B,
population DB wins the competition; M, population DA and DB end up
with high firing rates indicating that no decision has been reached (these
trials were not included in the analysis). We were interested in the multi-
stability region and, in particular, in the bistable region (the shaded yellow
area). The model is robust to a wide parameter space (indicated in yellow),
and other parameters in the multistable region indicated by labels A, B,
and M can be used. The crosses indicate the chosen working points where
full spiking activity was investigated.

multistability (in which each of the decision states and the spontaneous
state is stable) for the decision-making network. As shown in fig. 2.7
there is a wide region of parameter space where the network operates in
a bistability regime. This shows a good robustness of our results with
respect to these parameter variations. We chose our working point
at λ=45 Hz. Once the parameters of the two separate modules had
been set, we chose the values of the intermodule connections to be the
same as those of the standard connections from the external inputs.
All parameter values are reported in Table 4.3.
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Parameter Value Parameter Value
Cm (excitatory) 0.5 nF VE 0 mV
Cm (inhibitory) 0.2 nF VI −70 mV
f 0.15 VL −70 mV
gAMPA,ext (excitatory) 2.08 nS Vreset −55 mV
gAMPA,ext (inhibitory) 1.62 nS Vθ −50 mV
gAMPA,rec (excitatory) 0.104 nS w+(DM net.) 1.8
gAMPA,rec (inhibitory) 0.081 nS w+(Conf. net.) 1.7
gGABA (excitatory) 1.287 nS α 0.5 ms−1

gGABA (inhibitory) 1.002 nS λReference 40 Hz
gNMDA (excitatory) 0.327 nS λext 2.4 kHz
λ 45 Hz ∆λ [0 30] Hz
gNMDA (inhibitory) 0.258 nS τAMPA 2 ms
NE 800 τGABA 10 ms
NI 200 τNMDA,decay 100 ms
Next 800 τNMDA,rise 2 ms

Table 2.3: Default parameters used in the simulations.

2.4.2 Implementation

Once the parameters were fixed using the mean-field analysis we ran
spiking simulations. Both the mean-field reduction and spiking simula-
tions were implemented in custom C++ programs. For the mean-field
numerical integration we used an Euler routine with a step size of
0.1. For the spiking simulations we used a second-order Runge-Kutta
routine with a time step of 0.02 ms to perform numerical integration
of the coupled differential equations that describe the dynamics of all
cells and synapses. The population firing rates were calculated by per-
forming a spike count over a 50 ms window moved with a time step
of 5 ms. This sum was then divided by the number of neurons in the
population and by the window size.





CHAPTER 3
Confidence neurons in the

primate brain

The results of this chapter are included in Martinez-Garcia et al., Neu-
ral correlates of decision confidence in monkey prefrontal cortex. Sub-
mitted.

3.1 Introduction

In this chapter we present neurophysiological data underlying decision
confidence processes. In chap.1 we reviewed the existing neurophys-
iological results about decision confidence. However all these results
leave still as an open question how the neural signal of confidence is
encoded in single trials.

In particular, it remains unclear whether neurons encode confidence in
a continuous manner, or in a discrete manner. The results of Kepecs
et al. (2008) seem to suggest that OFC encodes confidence in a contin-
uous way, which has also been suggested by theoretical studies based
on diffusion-like models (DDM) (Vickers, 1979b; Moreno-bote, 2010;
Drugowitsch et al., 2012). These theoretical studies seem to indicate

63



64 confidence neurons in the primate brain

that confidence is encoded by the position of accumulators at the mo-
ment of choice (race models), or otherwise by the time it takes the
system to reach a decision (diffusion models). A binary coding of
decision confidence, on the other hand, is suggested by the activity
of LIP; Here neurons present a very different firing-rate in confident
trials, as compared to uncertain trials (Kiani and Shadlen, 2009). Fur-
thermore, it is interesting to note that Graziano and Sigman (2009)
have shown that human subjects’ confidence ratings presented a highly
bimodal distribution. A recent biologically realistic attractor model
(Insabato et al., 2010) combines continuous and discrete encoding into
a two-stage model. The authors suggest that continuous confidence
signals encoded in the decision-making neurons are translated into a
binary response of confidence neurons, which discriminates high from
low confidence. A similar mechanism has also been proposed within
the DDM-framework of (Pleskac and Busemeyer, 2010).

In the present chapter we have looked at how confidence is represented
in single neurons recorded from ventral premotor cortex (PMv) while
monkeys perform a visual discrimination task (Pardo-Vázquez et al.,
2008). Our aim is to shed light on the encoding mechanisms of deci-
sion confidence in the primate brain. PMv neurons seem well suited
to evaluate decision confidence, since previous studies have shown a
central role of premotor cortex in the conversion of a decision into an
action (de Lafuente and Romo, 2006; Hernández et al., 2010). More
precisely, it has been found that PMv neurons encode higher cognitive
processes, such as decision-making (Romo et al., 2004; Pardo-Vázquez
et al., 2008), and performance-monitoring (Pardo-Vázquez et al., 2008,
2009). We have analyzed neuronal activity both across trials using
Linear regression (e.g. Hernández et al. (2010)), and in single trials,
using the Hidden Markov model (HMM). As shown in Pardo-Vázquez
et al. (2008), in PMv decision-making neurons exist that, besides the
response, also encode the difficulty of the decision. The pattern dis-
played by these neurons is similar to that of decision-making neurons in
the model of Insabato et al. (2010). Therefore, the dataset as recorded
by Pardo-Vázquez et al. (2008) is particularly well-suited to look for
confidence encoding neurons. Indeed our results show for the first
time in the primate brain a pool of neurons whose mean firing rate
over trials continuously encode confidence; a result similar to what
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presented by Kepecs et al. (2008) in rats OFC. Interestingly we also
found neurons showing two distinct levels of activity over trials. Thus
our results suggest that both continuous and discrete coding schemes
for confidence are active in the brain.

3.2 Results

3.2.1 PMv Neurons Encode Decision Confidence

We studied the decision-process in the primate brain during a simple
binary decision task. Two male monkeys (Macaca mulatta) performed
a two-interval two-alternative discrimination task. They had to com-
pare the orientation of a reference bar, presented during the first in-
terval, with that of a test bar, presented during the second interval.
They then had to decide whether the test bar was tilted right or left
as compared to the reference bar (see Fig. 3.1 and Methods for de-
tails). The level of difficulty of the task was controlled by varying the
difference between the orientation of the first and the second bar, i.e
the test bar’s relative orientation (TRO). The TRO was varied from
one up to four degrees and in both directions.

Single cells from PMv were recorded while monkeys performed the
task. For a more detailed description of the task, behavioral results
and neural recordings see Methods and Pardo-Vázquez et al. (2008).

While Pardo-Vázquez et al. (2008) describe neurons in PMv that en-
code subjects choice, our principal objective was to find neural signa-
tures of decision confidence computations in this area of the primate
brain. It is plausible that confidence-related computations take place
in the same area as where the decision is encoded, given the depen-
dence of decision confidence processes on decision-making processes.
In addition, Pardo-Vázquez et al. (2008) also found decision-making
neurons that encode the difficulty of the decision, a computation that is
fundamental to confidence processing. And Kiani and Shadlen (2009)
found a correlate of decision confidence in the same neurons that en-
code the choice in monkeys’ LIP. We therefore analyzed the activity of
PMv activity recorded during the decision task above described.
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Figure 3.1: Experimental paradigm. A: The trial starts when the monkey
acquire fixation to the central target (FT). A brief pre-stimulus delay follows
(PSD). The reference bar is presented for 500 ms with one of three possible
orientations (Reference). During the subsequent delay the subject has to
mantain fixation (delay). The test bar is shown tilted to the left or to the
right respect to the reference bar. The orientation of the test bar relative
to the reference manipulates the difficulty of the trial. When the test bar
disappear the subject can decide whether the test was right or left tilted
respect to the reference by making a saccade towards the rigth or left choice
targets respectively. B: Distribution of the possible orientations of the test
bar. For more details see Pardo-Vázquez et al. (2008).

Our analysis was restricted to a subset of the recorded neurons (336
neurons, see Pardo-Vázquez et al. (2008)), comprising the cells that
were relevant to the decision task. Unless specified otherwise, in the
following we will only describe correct trials, since error trials were
enough only for few neurons. We identified a population of neurons
(49 cells) whose firing-rate was high for both right and left decisions (as
can be seen in the raster plot of a single neuron in Fig. 3.2A). Even if
not predictive of the choice, the firing-rate of these neurons encoded the
difficulty of the task, independently of the subjects choice, as revealed
by the linear model (LM) we used (see Methods).

Fig. 3.2B shows the evolution in time of the coefficient of the LM for
a single neuron. The shaded area marks the time-window where the
coefficient of the LM was significant, giving an estimate of the encoding
time-window of the neuron. For the neuron in Fig. 3.2 the encoding
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Figure 3.2: Single neuron from PMv cortex enconding confidence in a con-
tinuous way. Each different test relative orientation (TRO) is assigned to a
different color: colors form dark blue (red) to ligth blue (yellow) correspond
to right (left) responses with increasing difficulty, i.e. relative orientation
from 4o (−4o) to 1o (−1o). Trials are aligned to the saccade; around -510 ms
the second bar was shown. A: Raster plot. The trials are sorted by the TRO
and according to the timing of state switch (as indicated by the HMM). B:
Time course of state switchings according to HMM for the same neuron.
Every row represents a trial. State one is represented by color white, while
black represents state two. Trials start in state one and later change to state
two (indicating that they increased their firing rate). The vertical red line
indicates when the 90% of the trials changed state. C: Time averaged firing
rate of the singles trials taken in the window from the red line of panel B to
the saccade; red lines represent the mean firing rate over trials for “down”
state (solid) and “up” state (dahsed). D: The time evolution of the LM
coefficient. Shaded area corresponds to the period in which the coefficient
was significative (p < 0.05, tstatics). E: Average firing rate as a function
of TRO. The time average is taken during the time window marked by the
shaded area D. Errorbars respresent SEM. F: Mean switch time (according
to HMM analysis) as a function of TRO. G: Histograms of the firing rates
in the “down” (dashed) and “up” state (solid).
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Figure 3.3: Average population activity. Normalized firing rate as a func-
tion of TRO of the confidence neurons that present a positive relation be-
tween firing rate and difficulty. Black lines: correc trials; grey lines error
trials. Each neuron firing rate was normalized to its own maximum firing
rate. Bars represent SEM.

window spanned approximately 300 ms. As shown in Fig. 3.2C, during
this period the firing-rate of the neuron, as a function of TRO, increases
for both positive and negative values of TRO, producing a v-shaped
pattern. This pattern can also be seen in the population activity (Fig.
3.3, black line).

Moreover, by pooling data from all the neurons we were able to ana-
lyze firing-rates during error trials. When the behavioral response was
incorrect the firing-rate of this population showed an inverse pattern
compared to correct trials. Overall, the normalized firing-rate sepa-
rated in correct and error trials formed an x-shaped pattern, which
had already been described by Kepecs et al. (2008) in rats’ OFCs as
a correlate of decision confidence. As has already been remarked, con-
sistent neural recordings during error trials were rare, but in order to
confirm the pattern of the pooled responses at the level of single neu-
ron we analyzed fifteen of the 49 neurons for which we had enough
error trials recordinged (see Methods for details). To check whether
the x-pattern was present in the single-cell activity we looked for neu-
rons having the LM coefficients significant, but with a different sign in
error trials compared to correct ones. According to this analysis the
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coefficient was statistically significant for five of the fifteen neurons.

The x-pattern associated with confidence is poorly understood in terms
of the computations from which it could be said to arise. In the fol-
lowing, we will try to shed light on this matter.However, we only an-
alyze correct trials because of the small number of errors in most of
the recordings. The increased firing-rate as a function of the absolute
value of TRO, i.e., the v-shaped pattern associated with correct trials,
can arise from at least three distinct mechanisms (for a pictorial rep-
resentation see Fig. 3.4). 1) Rate coding (panel A): neurons increase
the firing-rate respect to the baseline in proportion to the confidence
in the decision (something which highly correlates with the difficulty
of the trial (Vickers, 1979b). 2) Switch time coding (panel B): neurons
increase the firing-rate, switching from a low to a high activity state,
with a different timing according to the confidence, and with the av-
erage rate reflecting this timing. 3) Binary coding (panel C): neurons
have a binary response, i.e., they increase the firing-rate only in high
confidence trials (whilst when confidence is low they remain in a down
state). In this last scenario the proportion of confident trials depends
on its level of difficulty, and mixing trials of high and low activity
produces the v-shaped pattern of average firing-rates (Insabato et al.,
2010).

In order to identify neurons implementing each of these mechanisms we
used different statistical techniques. Although we present them here
as separated mechanisms, we do not rule out the possibility that they
could all appear at the same time.

We started by verifying whether the switch timing had any relevant
effect in our data. To do so we used a Hidden Markov Model (HMM)
(for its application with single neuron recordings see Ponce Alvarez
et al. (2008)) which is able to detect when a system switches from one
state of activity to another (see Methods for details). In Fig. 3.2B
we show a summary of the two-state HMM analysis for one confidence
neuron (each row represents a trial). The color of the row changes
from white to black when the neuron goes from a low to a high-activity
state. This neuron exhibits a lot of variability in the switch timing,
changing state from just a few milliseconds up to 300 ms after stimulus
onset. The timing of the change was correlated with the difficulty of
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Figure 3.4: Pictorial representation of possible mechanisms underlying the
confidence “X” shaped pattern. The figure only illustrate a linear relation
between firing rate and test relative orientation (TRO) since it is the basis
of the “X” pattern. A: switch timing code; in the upper panel the time
evolution of firing rate is shown for three trials (one for each TRO; the
color code is the same of the bottom panel). Each trial present a switch
from a low activity state to a high activity state. The three horizontal
marks show the time averaged firing rates taken in the window enclosed
in the vertical dashed lines. In the bottom panel this average firing rates
are shown as a function of TRO. The different switching time of the trials
produces different firing rates. B: rate code; each trial reaches a different
level of firing rate in the high activity state (upper panel) and this is reflected
in the mean firing rate (bottom panel). C: binary code; only some trials
switch to the high activity state while others remain in the “down” state.
The number of trials that switch state depends on TRO. When many trials
are in a “up” state (red trials) the mean over trials of the time averaged
firing rate is higher respect to the case of many trials in the “down” state
(yellow trials).
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the trial (Kendalls correlation coefficient τ = 0.18, p < 0.05). Fig.
3.2F represents the mean switch time as a function of TRO. Once we
had determined when a neuron changes its state we were then able to
assess the relevance of the rate coding mechanism. The firing-rate after
the state switch is represented in Fig. 3.2C for the same confidence
neuron. Each dot represents the time-averaged firing-rate of one trial,
color-coded according to the state assigned by HMM (for comparison
the dashed and solid red lines represent the firing-rate of the high and
low states founded by HMM respectively).

To estimate whether the increase in firing-rates was proportional to
the difficulty (i.e., the rate coding mechanism of Fig. 3.4B), we first
calculated the average firing-rate from when 90% of the trials switched
states (red vertical line in Fig. 3.2B), until the coefficient of LM had
a significant value (shaded region in Fig. 3.2D). Then we effectuated
a correlation analysis between the level of difficulty and the average
firing-rate. We obtained a significant correlation coefficient for the
neuron in Fig. 3.2 (τ = 0.24, Kendalls correlation, p < 0.05), which
suggests that it could be the firing-rate of the neuron in the up state
that encodes the trial’s level of difficulty.

To summarize, we found that twelve neurons presented a significant
impact on the timing in the formation of the pattern, while nine neu-
rons increased the firing-rate proportionally to the difficulty of the
trial, thereby implementing the rate coding mechanism. There were
also five neurons that presented both switch timing code and rate code
(see Fig. 3.6 for a graphical representation of all classes of neurons).
We note that we could apply this method only to 28 out of 49 confi-
dence neurons, as we considered the HMM analysis was only reliable
under some constraints (see Methods).

3.2.2 Discrete Confidence Encoding

The binary mechanism postulated above corresponds to a discrete con-
fidence encoding like the one hypothesized in Insabato et al. (2010).
Although a continuous representation of confidence is probable at some
stage of the sensory-motor integration, a discretization stage is needed
to account for the behavioral effect of the confidence computation
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(Pleskac and Busemeyer, 2010). Indeed, both the usual confidence
ratings and confidence-related decisions (Kepecs et al., 2008) require
the selection of different alternatives. In order to identify neurons with
a binary response we hypothesized that the distribution over trials of
the mean firing-rate as calculated during the test-bar presentation, has
to consist of two different distributions. The resulting distribution is
not necessarily bimodal but it should differ substantially from the ex-
pected Poisson distribution (Softky and Koch, 1993; Bair et al., 1994;
Shadlen and Newsome, 1994). For each trial, therefore, we took the
average firing-rate over a 200 ms time-window, ending at the time of
subject’s response. Then we fitted these mean firing-rates to the aver-
age of two gamma distributions, parametrically varying the shape and
the mean of the distributions:

B = (FΓ(x; k1, µ1) + FΓ(x; k2, µ2))/2,

where k1,2 is the shape parameter and µ1,2 the mean. We used a gamma
distribution because of its broad generality. We used a chi-squared
test (χ2) to evaluate the goodness of fit for each set of parameters (see
Methods for details). Fig. 3.5F shows the histogram of the firing-rate
of one single neuron (blue line) and the best fit model (black line),
composed of the two gamma distributions (red line).

In our analysis we took all the possible combinations of the parame-
ters of the two distributions into consideration. Therefore, it is pos-
sible that, if the actual empirical firing-rate distribution is unimodal
(e.g. Poisson, normal, etc.), it could be well fitted by the mean of two
gamma distributions with similar parameters. In order to eliminate
this possibility we tested whether a model with four parameters (two
for each distribution) was more adequate than a model with only two
parameters (only one gamma distribution). To this aim we used the
Bayesian Information Criterion (BIC) that, while comparing the like-
lihood function of the two models, corrects the result by penalizing
for the number of parameters. Therefore, even if the likelihood of the
single distribution model were equal to that of the double distribution
model, the BIC would always prefer the simpler model (or, conversely,
a double distribution model would be preferable only if it was able to
explain much more than the single distribution model).
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Figure 3.5: Single neuron from PMv, implementing a binary confidence
encoding. Color and line convention is the same as figure 3.2. A: Raster
plot. The trials are sorted as in 3.2. B: Time course of states switching,
according to HMM. Same conventions as in fig.3.2B. In contrast to neuron
depicted in figure 3.2 not every trial of this neuron change from state one to
state two. This clearly indicates that the neuron has two distinct behaviors:
in some trials it increases the firing rate while in others it remains at a lower
level of activity. C: Average firing rates of single trials. D: LM coefficient
value. Shaded area corresponds to the period in which the coefficient was
significative (p < 0.05tstatics). E: Average firing rate versus TRO. The
time average was calculated during the period marked by shaded area in D.
F: Histogram of firing rate during the 200 ms previous to the saccade (in
blue). In black the distribution that best fits the data. This distribution is
the average of two gamma distributions shown in red. The fitting has been
computed separately for positive and negative TRO, the picture corresponds
to negative TRO values. G: χ2 goodness-of-fit. The fitting was done in the
four dimensions of model parameters but here we show the results in the
plane of µ1, µ2. Each point in the plane correspond to a couple of µ1, µ2

values. The color of the point represents difference between the highest
acceptable p-value (0.05) of the χ2 and the p-value obtained with that set
of parameters values. See methods for details. The white area indicates
regions of the parameters values that give non significant results. The red
point represents the best fit.
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Figure 3.6: Graphical representation of the different classes of neurons.
The label and number in each rectangle indicate the class and the number
of neurons in that set. Out of the 49 confidence neurons only 28 could be
alayzed with HMM, as explained in the text.

In conclusion, we consider a neuron to have given a binary response
if the chi-squared test gives a significant result and the model with a
double distribution is better than the one with only a single distribu-
tion according to the BIC. Fig. 3.5G represents the goodness of fit (for
significant values only) in the space of the means of the two gamma
distributions (µ1, µ2). In this space the color of each point represents
the difference between the highest acceptable value of the probabil-
ity of the chi-square statistics (p < 0.05) and the actual value of this
probability obtained for the combination of µ1 and µ2 of that point.
It is interesting to note that the points where we get significant values
do not lay on the diagonal (where the two means are identical). We
ran this analysis on the entire confidence related population (49 neu-
rons) and we found that eighteen neurons displayed a binary encoding
of decision confidence in the case of at least one behavioral response
(e.g., left) (see Fig. 3.6 for a graphical representation of all classes of
neurons).

In these neurons the v-shaped pattern of the firing-rate is the result
of the fact that the proportion of trials with high firing-rate correlates
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with the difficulty of the trial. We also reasoned that the neurons
showing a binary behavior should also lead to a characteristic pattern
showing up in the HMM analysis: they should present a state switch
only on a subset of trials. And indeed this pattern can be seen in Fig.
3.5B. In Fig. 3.5C the mean firing-rate of the neurons is shown for each
trial, separated in high firing-rate trials (filled dots) and low firing-rate
trials (open dots). The separation of firing-rates can be clearly seen
when compared to the continuous confidence encoding neurons (see
Fig. 3.2C).

3.3 Discussion

In this chapter and we address the question of how neurons in the
primate brain encode decision confidence in single trials. While evi-
dence found in rat OFCs seems to suggest that confidence is encoded
by the continuously varying firing-rate of neurons, recordings made in
monkey LIPs show that confident trials and uncertain trials do not
display the same pattern. Continuous encoding schemes and discrete
encoding schemes involve different computations and probably serve
different functions; it is therefore important to know which of the two
(or both) is implemented in the brain.

We have demonstrated that during correct trials neurons in primate
PMv increase their firing-rate as a function of stimulus discriminability
(in our experiments: the relative orientation of a bar), whereas in error
trials the firing-rate decreased. This peculiar pattern has already been
described by Kepecs et al. (2008) as a correlate of confidence in the rat
OFCs. Here, for the first time, a similar result in monkey PMv cortex
is presented.

It is worth noting that the pattern emerges when the firing-rates of
neurons over several trials, and with the same discriminability, are
averaged together. Nonetheless, different computations performed by
neurons in single trials can produce the same pattern of average firing-
rates. We suggested three hypothesis: 1) The switch time coding:
when the activity of the neuron changes, the difficulty of the decision,
is encoded in the timing of the change, 2) The rate coding: the dif-
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ficulty is encoded in the firing-rate, after the change has taken place;
or 3) The binary coding: the neuron only changes activity in high
(or low) confidence trials and the proportion of high confidence trials
changes according to the discriminability of the stimulus. The first
two alternatives correspond to a continuous encoding of confidence,
whereas the last one is a form of discrete encoding. We found that, in
fact, all three mechanisms are at work in monkey PMv neurons. For
certain neurons the timing and firing-rate mechanisms work together,
i.e., a neuron that changed state earlier on less difficult trials will also
have a higher firing-rate after the change. Other neurons present a bi-
nary response (increasing activity only in some trials), which suggests
a possible role in confidence judgments.

An important question is: why should neurons use different schemes to
encode confidence? Our hypothesis is that confidence neurons carry-
out more than one function in the sensory-motor path. It is logical that
a “confidence” module would encode decision confidence on a continu-
ous scale, since confidence is a graded sensation. However, if decision
confidence is to have behavioral relevance, the information about con-
fidence needs to be discretized (see Fig. 1.1). Our hypothesis is that,
while certain neurons encode confidence in a continuous manner, other
neurons read-out this scale and transform it into a discrete quantity
in order to produce consistent behavior.

This idea has been partially implemented in the biologically realistic
attractor neural network of Insabato et al. (2010) and in the DDM
framework of Pleskac and Busemeyer (2010). Indeed, Insabato et al.
(2010) have shown that the sum of the firing-rate of the decision neu-
rons is a good representation of the confidence on a continuous scale.
This representation is given as input to another decision-making net-
work that then makes a choice based on the confidence estimation.
Therefore, our results of binary confidence neurons confirm the predic-
tions of the model about a confidence-related decision-making module.
However, we must note that the model does not explicitly consider the
continuous confidence representation as found in PMv neurons. In
the model, confidence is represented implicitly by the sum of decision-
neurons’ firing-rates, as no neuron seems to encode it directly.

Despite the results as presented in this article, it could be objected
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that, like in Kepecs et al. (2008), the task has no behavioral correlate
of confidence, and that reasonable doubts could thus be cast on the
interpretation of the results. Although we think that a set-up where
both choice and confidence are recorded would better serve the scope,
we would like to note that, rather more intriguingly, we found confi-
dence encoding neurons in a context where confidence estimation was
not relevant. Indeed, it stands to reason that a mechanism that esti-
mates confidence and that makes decisions based on this would stay
in place even when not in use. We therefore expect that a more suited
task will lead to the recording of even stronger signals of confidence.

In that respect, we note that we always applied conservative methods
in order to filter-out spurious results, probably paying the penalty
of type II errors. For instance, when using the linear model on our
firing-rate time series, we excluded the possibility of getting significant
results in consecutive bins, by chance alone. In order to do so we used
a minimum of four consecutive bins (see Methods for details). Also,
when we looked for binary confidence neurons (fitted by a model with
two distributions) we wanted to rule out the possibility of a simpler
model (with a unique distribution) explaining the data. To this end
we used the BIC to select the best model and to ensure that it was not
possible to fit the data with a single distribution.

Most of our results depend on a linear model of the firing-rate. But
does this relation have to be linear (and not, for example, logarithmic
or sigmoidal)? Firstly we note that linear functions have been exten-
sively used to model the relation between the firing-rates of neurons
and certain task features (e.g. ??Pardo-Vázquez et al. (2008)). Yet
it is possible for the relation not to be linear. Indeed, we consider
the linear function as a first probable approximation. Hence, we also
analyzed firing-rates with the mutual information technique that also
decodes non-linear relationships. The results, however, were not much
different than the linear model (data not shown). We finally decided
on a linear approximation as this provides for a more intuitive inter-
pretation.

The three mechanisms underlying the confidence x-shaped pattern that
we have suggested, raise the question of whether PMv neurons change
their firing-rate gradually, or whether they jump from a low to a high
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activity state. This question, that has often raised concerning the
decision neurons of the lateral intraparietal sulcus (LIP), has been
bothering the scientific community for some time now (Horwitz and
Newsome, 2001; Roitman and Shadlen, 2002a; Churchland et al., 2011;
Ponce-Alvarez et al., 2012). Recently, Bollimunta et al. (2012) have
provided reliable evidence for the hypothesis that LIP neurons display
a gradual ramp. Although our analysis was aimed at differentiating
single trial mechanisms, we did not address this issue. We do note that
all three proposed mechanisms are compatible with both a gradual and
an abrupt transition of states.

In these last two chapter we provided a computational framework with
the support of neurophysiological evidence for decision confidence pro-
cesses involved in post-decision wagering tasks. As outlined in sec.1.2.3
another widely used experimental procedure to measure confidence is
the “uncertain option” task. In the next chapter we provide a biologi-
cally plausible model that can account for confidence-related decisions
in the contex of the uncertain option task.

3.4 Methods

3.4.1 The Discrimination Task

Experiments were made using two male monkeys (Macaca mulatta).
Animals (BM5, 8 kg; and BM6, 6 kg) were handled according to the
standards of the European Union (86/609/EU), Spain (RD 1201/2005),
and the Society for Neuroscience Policies and Use of Animals and Hu-
mans in Neuroscience Research. The experimental procedures were
approved by the Bioethics Commission of the University of Santiago
de Compostela (Spain).

The monkeys’ heads were immobilized during the task and looked
binocularly at a monitor screen placed 114 cm away from their eyes
(1 cm subtended 0.5 to the eye). The room was isolated and sound-
proofed. Two circles (1◦ in diameter) were horizontally displayed 6◦ at
the right and 6◦ at the left of the fixation point (a vertical line; 0.5◦

length, 0.02◦ wide) displayed in the screen center. The monkeys used
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right and left circles to signal with an eye movement the orientation
of visual stimuli to the right and to the left, respectively. Orienta-
tion Discriminations Task: the monkeys were trained to discriminate
up to their psychophysical thresholds in the visual discrimination task
sketched in Figure 3.1A (training lasted for approx. 11 months). The
stimuli were presented in the center of the monitor screen and eye
movements larger than 2.5◦ aborted the task. The orientation discrim-
ination task was a two-interval, two-alternative forced-choice task. A
masking white noise signaled the beginning of the trial and then the
fixation target (FT) appeared in the center of the screen (Fig. 3.1A).
The monkey was required to fixate the FT. If fixation was maintained
for 100 ms, the FT disappeared, and, after a variable pre-stimulus de-
lay (100 300 ms), two stimuli (S1 and S2), each of 500 ms duration,
were presented in sequence, with a fixed inter-stimulus interval (1 s).
At the end of the second stimulus, the subject made a saccadic eye
movement, in a 1200 ms time window, to one of the two circles, indi-
cating whether the orientation of the second stimulus was clockwise or
counterclockwise to the first. Trials lasted approx. 3.5 s separated by a
variable intertrial interval (1.53 s). Fifty milliseconds after the correct
response, a drop of liquid was delivered as a reward. A modulation of
the masking noise signaled the errors; the modulation started 50 ms
after the incorrect response and lasted for 75 ms.

Monkeys weights were measured daily to control hydration, and once a
week the animals had access to water ad libitum. The level of training
was assessed by the psychometric functions. Once trained, the mon-
keys performed around 1000 trials per day. The lines were stationary,
subtending 8◦ length and 0.15◦ wide. Three different S1 orientations
were used for each monkey during the recordings: 87◦, 90◦, and 93◦

(BM5) and 84◦, 90◦ and 96◦ (BM6); all angles referred to the horizon-
tal axis. Different S2, eight per S1, were presented, four clockwise and
four counterclockwise to S1 in steps of 1◦ (BM5) and 2◦ (BM6). More
details can be found in Pardo-Vázquez et al. (2008).
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3.4.2 Recordings

Neuronal population: extracellular single-unit activity was recorded
with tungsten micro-electrodes (epoxylite insulation, 1.5-3.5M, catalog
# UEWMGCLMDNNF; FHC) in the posterior bank of the ventral
arm of the sulcus arcuatus and adjacent surface in the ventral premotor
cortex in the four hemispheres of the two monkeys (see Pardo-Vázquez
et al. (2008), for a detailed description of the recording sites). In
this work, we studied the responses of a subset (336) of the recorded
neurons. This subset was selected with a ROC analysis of firing-rate
respect to the choice (see Pardo-Vázquez et al. (2008) for details).

3.4.3 Data Analysis

All analyses were performed using custom-made programs in Matlab.
Unless noted otherwise, all statistical analyses were applied to the
firing-rates of single neurons during the 500 ms preceding the saccade.
In fact, the second stimulus was presented during this period, and
therefore the decision-making process was expected to take place dur-
ing this time window. Our aim was to found any existing neurons
whose activity relates to:

1. Difficulty of the task: Neurons whose mean firing-rate for the
correct trials increases linearly with the difficulty. When plot-
ted against the TRO the activity of these neurons shows the
v-pattern.

2. Confidence: Confidence measures present a characteristic x-shaped
pattern when plotted against the signed difficulty of the task
(Vickers, 1979b; Kepecs and Mainen, 2012; Kepecs et al., 2008).
Therefore, when a difficulty neuron had enough error trials to be
analyzed and when its firing-rate in error trials showed a mirror
modulation of the difficulty respect to correct trials we consid-
ered it a confidence neuron (i.e., neurons that are a subset of the
difficulty neurons)

In order to accomplish this we used a linear regression analysis (LM)(Draper
and Smith, 1966). Of course, linearity is only one of numerous possible
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encoding mechanisms, even when we take only those concerning firing-
rates into consideration. We decided on this for the sake of simplicity.

3.4.4 Error Trials

In order to identify confidence neurons we independently applied the
LM to correct and error trials. Unfortunately, the number of error
trials was not enough to analyze all the neurons. As experiments
were done using animals that were awake it was very difficult to record
single neurons over a long period. We recorded approximately 10 trials
per monkey and stimulus conditions (i.e., orientation of S1, S2). Hence
only few error trials were recorded under easier conditions (|S1−S2| =
3, 4). In the end only 124 neurons had at least one error for difficult
categories (|S1− S2| = 1, 2). Therefore, we were only able to run the
LM methods (described below) on this subset.

3.4.5 Linear Analysis

The firing-rate (FR) of the last 500 ms before the saccade was com-
puted by averaging the spike count in a sliding window of 100 ms slided
with a step of 20 ms. In this way we got for each trial and each neuron
a time series r(t) of the firing-rate, where t is time discretized in 25
time bins.

3.4.6 Difficulty Neurons

To individuate the difficulty neurons (v-shaped modulation) the fol-
lowing LM analysis was used, r(t) = d1 |S1−S2|+ d2(t) , where d1, d2

are the parameters to be fitted. Activity was considered linearly de-
pendent on the difficulty, |S1− S2| , if the coefficient d1 was different
from 0 (p < 0.05, t-statistics) and no sign switch occurred during a
time interval (T ) with a length of at least four consecutive bins (140
ms). Details as to how T was chosen are given below.
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3.4.7 Confidence Neurons

To select the confidence neurons we applied the above LM analysis to
both correct and error trials, but we kept the two analyses separate.
Therefore, the pairs of parameters d1, d2 are different for error (de1,de2)
and correct (dc1,dc2) trials. We looked for neurons whose firing-rate
presented a mirror modulation of difficulty in error trials compared to
correct trials, hence we considered a neuron as encoding confidence if
the sign of dc1 was the opposite of that of de1. Due to the low number of
error trials, it was only possible to analyze fifteen of the 49 difficulty
neurons; only five satisfied all of the constraints described above. In
order to produce fig.3.3 the firing-rate of each neuron was normalized to
its maximum value and then the activity of all neurons was aaveraged
together.

3.4.8 Minimal Time Window (T)

In order to find the minimum length of T we proceeded as follows.
Given that linear regression has a p-value cutoff at 0.05 in each bin
there is a probability of 0.05 to get a false positive. We wanted to know
what the probability Pn is of getting n consecutive false positives. We
then selected n such that Pn < 0.05.

In order to calculate Pn we proceeded as follows. A statistical test
with p < α = 0.05 applied to a time series produced a time series
of significant and non-significant bins. The vector X representing the
time series is generated by:

X = {x1, . . . , x25 |xi ∈ [0, 1] , P (xi = 1) = α, P (xi = 0) = 1− α}

where xi takes value 1 when the ith bin is significant by chance and
0 otherwise. X has length 25 since our time series (r(t)) has 25 bins.
We generated 106 vectors with this procedure and then evaluated the
probability Pn of having n consecutive ones. Pn is thus the probability
that an i exists such that xi + . . . + xi+(n−1) = n. Since we ran the
test on a large number of neurons we corrected Pn for the family wise
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error-rate: PN
n = (1 − (1− Pn)N), where N is the number of neurons

(336). Then we found n such that Pn < 0.05. We found that the
minimum number of consecutive bins needed to get a significant result
was n = 4. The applied method gave the same results of the more
common Bonferroni correction.

3.4.9 Mechanism for the Difficulty Neurons

We individuated three possible neural mechanisms responsible for the
above mentioned modulation of the difficulty neurons. A simplified
representation of these mechanisms is presented in Fig. 3.4. In order
to understand which difficulty neuron belongs to each of the three
categories, we applied two methods:

1. In order to find neurons that switch states with a timing depen-
dent on the difficulty (i.e., signaled the decision with a change
in activity), we used the Hidden Markov Model (HMM) analy-
sis (Rabiner, 1989). Indeed, the HMM was able to cluster the
spiking activity of individual neurons into periods of ’stationary’
activity (the states) within a single trial. Hence the switch time
between states could be estimated.

2. In order to find neurons whose activity after the change encoded
the difficulty we calculated the correlation between the mean
activity and the difficulty of the task. The mean activity was
calculated in the time window starting at the time bin where
the 90% of the trials had passed from one state to the other and
ending at the last significant time bin marked by the LM.

3. In order to find the neurons whose activity could be explained
as a compound of high and low firing-rate states we fitted (χ2

goodness-of-fit test) the firing-rate distribution to the average of
two gamma distribution functions.
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3.4.10 Hidden Markov Model

To analyze the single-trial activity of the recorded neurons we used the
HMM that clusters the spiking activity of individual neurons into pe-
riods of stationary activity within a single trial. The HMM technique
has been successfully applied to characterize the single-trial activity of
cortical neuronal ensembles during movement with holding and prepa-
ration (Seidemann et al., 1996; Kemere et al., 2008), taste processing
(Jones et al., 2007), and perceptual decision making (Ponce-Alvarez
et al., 2012). Here, we briefly review some aspects of the HMM analy-
sis; more details about the algorithms can be found in previous works
(Seidemann et al., 1996; Jones et al., 2007; Ponce-Alvarez et al., 2012).

Within the HMM, the activity of a recorded neuron at time t is as-
sumed to be in one of a (predetermined) number (Q) of hidden firing-
rate states. In each state q, the discharge of a neuron is assumed to
be a Poisson process of intensity λq, which defines the instantaneous
firing probability Eq, i.e., the probability of firing a spike within one
time bin, equal to 2ms throughout this study. States are said to be
hidden because they are not directly measured; instead, we observe
the stochastic realizations of the state-dependent Poisson process (ob-
servation sequences). The state variable changes from state i to state
j with fixed probabilities that defined a transition matrix A, given
by Aij = P (qt+1 = j|qt = i), where qt is the state at time t and
i, j ∈ {1, . . . , Q}. The entire process is a Markov chain: the transition
probabilities Aij are independent of time, i.e., they depend only on
the identities of states i and j, which means that the state sequence at
time t only depends on the state at time t−1. In summary, for a single
neuron the HMM is fully characterized by the spike-emission probabil-
ities (E) and the transition matrix (A). These model parameters are
estimated from the data, using a likelihood expectation-maximization
algorithm (Seidemann et al., 1996; Jones et al., 2007; Ponce-Alvarez
et al., 2012).

Briefly explained, the procedure starts with random values for E and
A and re-estimates the parameters to maximize the probability of ob-
serving the data given the model. After optimization of the model
parameters, the Viterbi algorithm is used to find the most likely se-
quence of hidden states given, for each single trial, the model and the
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observation sequence (Ponce-Alvarez et al., 2012). In the present study
we used the HMM to detect the transitions between a state of low and
a state of high activity. For this reason, the number of states was set
to Q = 2. For each neuron, the data was divided into two subsets,
composed of trials corresponding to each behavioral response (left or
right). For each subset, a HMM was estimated using the activity of
80% of the trials (randomly selected) during the period within the last
500 ms before the saccade. After optimization the most likely state
sequence was stored for all trials.

Unfortunately, a HMM analysis was not reliable for all the neurons.
We only considered the HMM reliable if a) The duration of both states
was at least 25 ms. (i.e., we do not take into account states with very
brief duration) b) The number of state-switches per trial was three or
less; or (i.e., we do not take into account bursting neurons) c) At least
five of both the left and right oriented trials had a state-switch (i.e., we
want neurons with 2 different states). We found 45 confidence neurons
(out of 49) whose HMM was interpretable. For this subset, we wanted
to distinguish between the three v-shaped mechanisms, to do so we
analyzed the state-switch time. For each trial the HMM gave the time
in which it changed from a low to a high state (or vice versa).

3.4.11 Bimodality vs Unimodality

Our aim was to investigate whether the firing-rate distribution of neu-
rons during correct trials was better described using a bimodal than
a unimodal function distribution. The procedure we applied was the
following:

1. Trials were divided into two sets, depending on their behav-
ioral responses (left or right). We calculated the average firing-
rate for each trial in a 200 ms time window that ended at the
time of subject’s behavioral response. We called the empiri-
cal distribution functions of the average firing-rate F (νL) and
F (νR) respectively. The distributions were fitted with a func-
tion B, which was the average of two gamma distributions: B =



86 confidence neurons in the primate brain

(FΓ(x;κ1, µ1) + FΓ(x;κ2, µ2))/2. Gamma distribution was cho-
sen because is one of the most general function distributions with
positive support. The gamma distribution is given by:

FΓ(x;κ, µ) =
1

(µ/κ)κ
1

Γ(κ)
xκ−1e(−xκ

µ
)

for x, κ, µ > 0; Γ is the gamma function; κ is the shape parameter
and µ is the mean.

2. We looked for best fit (in terms of χ2 goodness-of-fit, p < 0.05)
using the following parameter space: µd ∈ [min(F (νd)),max(F (νd))], κd ∈
[0.1, 10], for d ∈ (1, 2).

In order to apply the goodness-of-fit test, we discretized the
firing-rate distribution in bins of 5 Hz. The χ2 goodness-of-fit
probability test is valid under the assumption that the number
of events in each bin is greater than five. Whenever this condi-
tion was not satisfied we enlarged the bin on the right until the
event count was at least five.

3. Finally, in order to verify whether a bimodal model explains
the data better than a model with just one mean, we fitted
the data to a single Gamma distribution and then we compared
the two models using the Bayesian Information Criterion (BIC)
(Schwarz, 1978; Akaike, 1974), which is given by:

BIC = −2 · lnL+ p ln(T )

where L is the maximized value of the likelihood function for the es-
timated model; p the number of free parameters of the model (2 or
4); and T the length of the observation data (the number of bins).
This means that the BIC method penalized the model likelihood by a
measure of its complexity (i.e., the number of free parameters). The
single mode model has two free parameters, while the bimodal model
has four free parameters. Therefore, in order to have a better score in
the BIC, the higher complexity due to the second mode should really
be well balanced by a better ability to explain the data. Hence we
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considered that a neuron has a binary response if the BIC favored the
model with two modes.





CHAPTER 4
The Uncertain Model

The results of this chapter are included in Insabato, A. et al., Flexibility
in decision making: neural mechanism for confidence-driven multiple
choices. Submitted.

4.1 Introduction

In the preavious two chapters we prepared the building blocks for devel-
oping a computational framework to understand confidence processes
in post-decision wagering experiments and provided experimental evi-
dence for the model proposed in chap.2. In this chapter we are going to
propose a new model to account for behavioral and neurophysiological
data in an uncertain-option task. We will then discuss the differences
between the two models and the implication of this dichotomy for our
general understanding of the phenomenon of decision confidence.

We recall here very briefly the two experimental setups used to record
confidence with non human subjects: post-decision wagering and uncertain-
option. In the first type of experiment, after decision, subjects bet on
the outcome of their choice according to their confidence. In the lat-
ter subjects are given the choice in each trial between performing a
decision-making task, which could lead to a reward if the answer is

89
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correct, and selecting a sure but less valuable reward (for an exended
discussion see sec.1.2.3 and Kepecs and Mainen (2012)).

Recently a notable evidence has been made available by the study
of Kiani and Shadlen (2009). They recorded neural activity in LIP
using a combination of the random dot motion (RDM) task with the
uncertain-option task, allowing the subject to opt for a small but sure
reward instead of deciding about the direction of motion. LIP neurons
are known to receive input from MT neurons, that encode the motion
energy (Britten et al., 1996b; Snowden et al., 1991a; Simoncelli and
Heeger, 1998), and to fire according to subject decisions in motion
dicrimination tasks both in binary (Roitman and Shadlen, 2002a) and
multiple choices task (Churchland et al., 2008a). LIP neural activty
underlying the decision process has been successfully accounted for by
attractor neural networks (ANN) both for the binary (Wang, 2002b)
and the multiple choices task (Albantakis and Deco, 2009b).

The task introduced by Kiani and Shadlen (2009) poses new theoretical
questions since it requires, beside the usual decision, a dynamic online
enconding of confidence, very rapid evaluation of the uncertainty in
the decision and the late integration of a third alternative into the
decision process.

In this chapter we want to produce a very simple model capable of
solving the uncertain-option task by dynamically encoding decision
confidence. In contrast to chap.2 we propose that in this case there
is no need for a separated monitoring network and that confidence
computations can occure solely into the decision making circuit. This
provides a more minimalistic account of some confidence processes and
enrich the actual discussion about confidence by separating confidence
and monitoring. Moreover in this task the final decision depends on
inputs arriving at different timing therefore our work sheds also some
light on the dynamics of decision-making attractor networks in a sce-
nario with asyncronous inputs.

We propose that confidence, measured in an uncertain-option task,
is encoded in the state of the decision variables of a multiple choice
decision making neural network model working in the multistable re-
gion of the attractors landscape. Our model is indeed able to repro-
duce both psychophysical and neurophysiological data of Kiani and
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Shadlen (2009). This means that confidence can be an emerging phe-
nomenon of decision-making networks and that a monitoring network
is not strictly necessary. We describe an “undecided” region, in the
state space, related to lack of confidence. The more time the system
wonders in this region the higher the probability that the decision will
be aborted. Furthermore we make several predictions analyzing deci-
sion times and the decision state before the overt commitment at the
end of the task. We predict that a reaction time version of the task
would report a bimodal distribution of reaction times (RT). More-
over we refute the classical criticisms to uncertain-option task (Shields
et al., 1997; Smith et al., 2006) by predicting that the probability of
choosing a safer option changes dramatically in early correct vs error
trials, showing the signature of a confidence measurement. Last but
not least our model shows that the subjects adopt a flexibile strategy
and prefer to abort the decision in favor of a safer option at the ex-
penses of performance. Our results show that this aversity to risk is
maximal in the multistable regime of the model. This in turn predicts
different results when a risk-seeking behavior is promoted.

4.2 Results

4.2.1 Confidence through Multiple Choice
Mechanism

The main idea of our study is that simple confidence mechanisms (e.g.,
the one involved in uncertain-option tasks) can be accounted for in a
multiple-choice decision-making network by encoding the confidence
in the state of the decision variables. As evidence for such confidence
processes, we referred to the findings of Kiani and Shadlen[2009], who,
in seeking to distinguish high versus low confidence trials, modified the
classical RDM task by introducing a sure option.

The study of Kiani and Shadlen (2009) was already described in chap.1
but we summarize it here fot the comfort of the reader. The typical
sequence of events in a trial is represented in fig.1a.
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Figure 4.1: Task description, network structure, stimulation protocol and
psychophysics. (A) Experimental task procedure of Kiani and Shadlen
(2009). (B) Stimulation protocol for populations due to direction targets
presentation, motion stimulus and “sure” target. Both direction selective
pools receive the same targets input while the motion input can be differ-
ent across pools in order to represent different values of motion coherence.
Pool S only receives input due to the presentation of “sure” target. (C)
Network scheme representing the connection structure between pools and
inputs. (D) Psychohysics results of the model (bottom row) are compared
to experimental data (top row). The model reproduces qualitatively the
effect of both stimulus duration and coherence on both probability of cor-
rect responces and probability of choosing the “sure” option. Moreover
the model reproduces the increased P (correct) when the “sure” option was
waived (filled circles).

The subject is required to maintain fixation in the center of the screen
in order to start a trial, then the targets appear on two opposite posi-
tions corresponding to the two possible decisions about the direction
of motion. The motion stimulus is then showed for a variable dura-
tion followed by a variable delay period during which the monkey must
hold the decision in memory. The end of the delay period is marked
by a go signal that triggers the saccade of the subject toward the de-
cided motion direction. In a random half of the trials, during the
delay period, the monkey was presented a third “sure” target. The
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election of this target corresponds to waiving the decision but was
always rewarded with a smaller amount of liquid than the direction
targets. The proportion of trials on which the decision was waived can
be considered a measure of average decision confidence in a block of
trials. Indeed Kiani and Shadlen (2009) found that the probability of
choosing the “sure” target (P (S)) decreases both for longer stimulus
durations (which should correspond to more certain conditions) and
for higher motion coherences (i.e., easier stimuli) (Fig. 1D). They also
found that the probability of a correct choice, when the “sure” target
was shown but waived was higher than in trials without “sure” tar-
get presentation, which is an important finding to argument that the
subjects are actually monitoring their cognitive processes and not only
learning an appropriate stimulus response association. In the context
of this task the probability of a high confidence report and the prob-
ability of choosing either “left” or “right”, which is equal to 1P (S),
are the same. The probability of a high confidence report can in turn
be considered as reflecting a continuous value of confidence. How the
P(S) can reflect the confidence, or the lack of it, in a decision is an
undoubtedly interesting (and complicated) question but we aren’t go-
ing to address it here and will therefore use the terms confidence and
probability of “sure” response without any distinction.

The neural recordings of single neurons in LIP showed, beside the well
known accumulation of evidence and the differential activity due to de-
cision [Roitman and Shadlen,2002;Gold and Shadlen,2007;Bollimunta
and Ditterich,2011], an intermediate level of activity associated with
choice of the “sure” target (Fig. 2). One of the aims of this ar-
ticle is to demonstrate that a network designed for multiple-choices
perceptual decision-making is able to show a behavior attributable to
confidence processing. Indeed, when fed with an input that encodes
the value of the “sure option” this network can take charge of the
evaluation and use of the confidence information about the percep-
tual decision. To this aim and in order to account for data of Kiani
and Shadlen[2009], we build a network with integrate-and-fire neu-
rons using different synaptic dynamics for AMPA, NMDA and GABA
receptors. Figure 1 graphically summarizes network details. The net-
work has one population of neurons for each decision to be taken.
Population R and L, for right and left targets, and population S for



94 the uncertain model

the “sure” target. The response of MT neurons is almost linearly re-
lated to the coherence level of random dots motion (Wang, 2002b).
Consequently we increased the difference between inputs to popula-
tion R and population L, according to the prevalent direction of dots
motion. Each pool receives also an input due to targets. Recently
Rorie etal.[2010] found that the firing rate of LIP neurons during tar-
get presentation is proportional to the reward associated with the tar-
get, therefore we set the target related input to a higher value for
high stakes pools (R,L) respect to the “sure” pool (S). Connections
strength was designed in order to implement a competition mechanism
between pools [Wang,2002;Albantakis and Deco,2009]. Differential in-
put (∆λ = λLλR > 0) to the pools can bias the decision-making, but
given the intrinsic stochasticity of the dynamics, an incorrect decision
may be taken even when input currents are very different.

Our model implements a simple multiple-choices decision-making mech-
anism [Albantakis and Deco,2009]: if three synchronous inputs (reflect-
ing three possible directions of dots motion) are given to the network
it would just take a decision about which of the three inputs is the
largest. However we used an asynchronous stimulation protocol like
the one used by Kiani and Shadlen[2009], which has not yet been
studied with attractors networks, that segregates the decision process
in two stages: a first decision between two alternatives and a second
decision between the chosen one and a third alternative. In this con-
text the decisions don’t produce a behavioral response but are stored
in memory for a later use. As shown in Fig. 2, the model receives
input from the RDM stimulus once the targets are presented. This
input triggers a competition between the two pools, L and R, soon one
of them prevails, increasing the firing rate. During the delay period
its firing rate remains high, keeping trace of the decision [Brunel and
Wang,2001]. When the input to pool S is turned on, the high activity
of the winning pool is inhibiting, through inhibitory neurons (see fig.1),
the other pools preventing population S neurons from increasing their
firing rates. On some trials the integration of evidence takes longer
and eventually the stimulus ends while R and L have still similar ac-
tivity and no decision has been taken. On these trials typically pool
S receives less inhibition and therefore can increase the firing rate and
win the competition against R and L.
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We highlight the fact the model was not designed for decision confi-
dence representation. The underlying mechanism is a simple decision-
making process and the input was constructed to mimic MT response
to visual stimuli. The key ingredient in order to convert the network to
a confidence evaluation process is the input. Indeed the input to pool S
does not contain information about the correct response but rather in-
formation about the value of the “sure” alternative (as experimentally
shown by [Rorie etal.,2010]). In this scenario the confidence-related be-
havior arises naturally given the interaction between network intrinsic
properties and input structure.

4.2.2 Psychophysics and Neurophysiology of
Decision Confidence

Our model can explain both the psychophysical and the neurophys-
iological data (fig. 4.1D and 4.2) as activity of the multiple choices
decision-making network decribed in the preavious paragraph. In ad-
dition to the details explaind above, a key ingredient of the model for
reproducing the data of Kiani and Shadlen (2009) is an attractors land-
scape where three attractors are stable at same time (also known as
multistable regime). In general decision-making ANNs can have several
attractors and the parameters (e.g. connectivity, inputs, etc.) can ma-
nipulate the attractors landscape. Usually decision-making tasks only
require one attractor for each alternative (Wang, 2002b; Albantakis
and Deco, 2009b; Marti et al., 2006). Conversely we hypothesized that
a third non-decision attractor, where both decision pools have compa-
rable firing rate, could be a good representation for a low confidence
state.

We show in fig. 4.3E the bifurcation diagram of the system (a mean-
field equivalent of the spiking network). This diagram shows the firing
rate of the decision pools when the system converged to an attractor
for each attractor and as a function of the parameter λ, the common
input to the decision pools (see sec.4.4).

As can be observed the variation of λ induces different dynamical
regimes of the model. At λ = 0 Hz there is a “spontaneous attrac-
tor”, where both pools are in a resting state around 2 Hz, and two
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Figure 4.2: Model dynamics. Red/blue/green lines represent R/L/S pool
firing rates. Continuous lines are average firing rates for trial when one of the
two direction option was chosen. Dashed lines are average rates of “unsure”
trials (i.e. pool S won). The network shows different dynamics depending
on the winning pool. When the final decision was to opt out for the sure
bet target the firing rates of the decision pools remain similar during input
presentation, meaning that a decision has not been reached. This behavior
closely resambles the one observed in LIP by ? as can be observed in the
insets of the top row showing a magnification of the stimulus period and a
comparison with experimental data (showing normalized firing rate). Kiani
and Shadlen (2009) don’t show error trials firing rates, so we are not able to
compare them. The x axis in the insets represents time from stimulation.

decision attractors. This decision attractors in absence of input are
key for keeping in memory the decision during the delay period. For
values grater than 0 the spontaneous attractor destabilizes and only
the decision attractors remain stable. At λ = 20 Hz another saddle-
node bifurcation occurs and a stable “mixed” state appears, where
both pools fire at high rate. This multistable region extends until
λ = 55 Hz, where due to a subcritical pitchfork bifurcation the deci-
sion attractors disappear and only the “mixed” state remains stable.
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Figure 4.3: Bifurcation diagram and psychophysics measures in different
regions. Proximity with second bifurcation increases flexibility and opti-
mizes reward amount.

Panels A-D show the P (correct) for 4 sample points in different re-
gions of the bifurcation diagram (marked by stars). For each point
we adjusted the parameter ∆λ in order to get a good match with ex-
perimentally measured P (correct). Panels F-I show the P (S) for the
same points. As can be seen the model is able to reproduce qualita-
tively the performance of monkeys in the entire region considered (we
didn’t take into account the region to the right of the pitchfork since
it is clear that decision-making is impossible with just one attractor).
Interestingly the P (S) changes qualitatively when moving through the
different regimes of the network. In the bistable region (light blue,
panel F) the P (S) is less sensitive to changes in stimulus coherence
(i.e. ∆λ) and rapidly decreases as a function of stimulus duration for
low evidence trials (red curve), while experimental data show a very
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flat curve. When moving towards the third bifurcation this effect is
gradually reduced and a good qualitative fit of experimental data can
be observed in the light red region, just before the third bifurcation.
Changes in the input to the S pool have the main effect of shifting
the curves up or down but don’t imply a qualitative change (data not
shown).

The model also reproduces the increased performance in trials when the
“sure” target was shown but not chosen (filled circles in fig. 4.1D and
4.3A-D). While the P (correct) and P (S) depend on network parame-
ters and required some tuning in order to be adjusted to experimental
data (see text below and fig. 4.3), this last feature was not obtained by
tuning the parameters and is therefore a genuine feature of the model
that is confirmed by the experimental evidence.

Simulation results also reproduce main neurophysiological effects ob-
served in LIP. In fig. 4.2 we show the average population firing rates
for the decision pools (L,R,and S) for easy and difficult trials and for
correct and error responses. Firing rates show the typical abrupt re-
sponse to target presentation and the rapid decay just before stimulus
presentation; then, in trials when the sure target is not chosen (solid
lines), after the stimulus is presented, neurons show the ramping activ-
ity commonly described in LIP (Mazurek et al., 2003). During the de-
lay period the firing rate drops down but mantain a sustained activity
for holding in memory the decision. Finally the saccadic eye movemen
is signaled by the increase in firing rate at the end of the trial. In
unsure trials, when S pool wins (dashed lines), due to presence of the
stable “mixed” attractor, pools R and L show an intermediate level of
activity during stimulus presentation. The level of activity associated
with unsure trials stays right in the middle of solid traces for difficult
trials while in easy trials the firing rates of R and L are more separated,
albeit remaining less separated than solid traces. This same feature
appears in the data recorded by Kiani and Shadlen (2009) (shown in
the inset for comparison).
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4.2.3 Confidence is Related to the State of
Decision Neurons

Detailed models are useful since they make possible to explain cognitive
high level phenomena in terms of the underlying neural dynamics.
We want to exploit this possibility and link the confidence level in a
decision with the state of the neural system implementing the decision
mechanism. Therefore here we want to track the confidence during the
triansient period before reaching a decided state. To this end we can
observe the decision process in the phase plane of firing rates νR and
νL, as depicted in fig. 4.4A.

In contrast to diffution-like models (Kiani and Shadlen, 2009; Ratcliff
and Rouder, 1998), that use an accumulation to threshold mechanism
to determine the decision, in ANN models whenever the system enters
into the basin of attraction of one of the decision attractors it will
remain there and hence that decision will be taken1 (Wang, 2012; Lo
and Wang, 2006). In fig. 4.4 we plot the attractors and their basins in
the phase plane of the system (the mean-field reduction of the spiking
network) in the best fitting region of the bifurcation diagram (λ = 50
Hz). Dashed curves mark the basins of decision attractors when the
stimulus is on. The region of the plane laying between these two zones
is the basin of the “mixed” attractor (black dot on the diagonal) and
represents an “undecided” state. During the delay period the stimulus
is off and the attractors landscape is modified as shown by gray dots
(dotted lines mark the basins under this condition). The trace in the
plane, shows an example trial of the spiking network: when the motion

1We want to make clear the distinction between the decision mechanism intrin-
sic to the model and the mechanism used to read out that decision. If we imagine
the condition of a decision when the stimulus doesn’t provide any evidence it is
particularly clear that a diffusion process won’t reach a stable state and will change
drift continuously upwords or downwards. On the contrary an ANN will reach a
decision attractor and stay there (although change of mind are possible as shown
by Albantakis and Deco (2012)). Therefore we could say that the ANN reaches a
decision state, whenever it enters into the attractor. This state can then be read
out by checking whether the firing rate of a population excedeed a given threshold
(a commonly used method also with diffusion models) or by other mechanisms,
as mentioned in sec.1.2.2. Diffusion models instead don’t have a decision state,
therefore their decision can only be determined when reading out their activity.
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Figure 4.4: Basins of attraction and example dynamics. The figure repre-
sents an example trial (color represent three different moments of the trial:
red, stimulus; orange, delay period until “sure” target onset; yellow, delay
period until saccade) in the state space of firing rates of the two decision
populations νR and νL. Dots represent the attractors position during motion
stimulus (black) and in the delay period (gray). Dashed/dotted lines mark
the boundaries of basins of attraction during the stimulus/delay period.

stimulus is turned on both populations present relatively high and
comparable firing rate due to the preavious response to the direction
targets. Then the system starts to move around the diagonal (red part
of the trace), i.e. firing rates remain similar, due to the presence of
the undecided attractor. Once the stimulus is over (orange part of the
trace) the attractors landscape changes and therefore the trace moves
towards one of the two sides getting into a decision region, i.e. one of
the two pools increases the firing rate while the other decreases it. Our
hypothesis is that the distance of the system from the decision region
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determines the confidence and in turn the “sure” choices. In order to
represent the overall state of the system under certain conditions we
show the distribution of states of the full spiking network at the time
of “sure” target onset, a snapshot of the decision process (fig. 4.5).

Figure 4.5: Distributions of firing rates. Each panels shows the distribu-
tion of firing rates at “sure” target onset for a given combination of stimulus
evidence (∆λ) and stimulus duration. The dashed polygon is the convex
hull of points P (S|νL, νR) > 0.6 as explained next and in Methods section.

The panels of fig. 4.5 represent different conditions: rows from top to
bottom are distributions for increasing values of stimulus coherence,
while columns from left to rigth represent increasing durations of the
stimulus. When there is very low evidence (or no evidence at all, like
in the first row) the distribution of νA, νB is quite symmetric about the
diagonal and the duration of the stimulus has very low or no effect.
In the second row we can observe that a moderate level of coherence
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already skews the distribution towards one decision area and that the
increasing duration of the stimulus makes the skewness even stronger.
On the bottom row (very high stimulus coherence), for a short dura-
tion, the distribution appears markedly skewed towards the decision
area and we can observe that for longer stimulus durations the dis-
tribution of system states moves even further into the decision region
concentrating towards the decision attractor.

It is plausible to hypothesize that a prolonged stay in an undecided
region is associated with lack of confidence. Indeed we found that
the probability of choosing the sure option is very high when the firing
rate of “left” and “right” neurons are similar and that it decreases very
rapidly when those firing rates start to diverge, entering in a decision
zone (see fig. 4.6).

Fig.4.6 shows the conditional probability of the “sure” response respect
to the value of the firing rate of decision pools (νL/νR). It’s evident
that moving away from the diagonal the confidence increases (i.e. P (S)
decreases). In addition, the lower the activity of the two pools the lower
the confidence. As a consequence, if we define the undecided region
to be that portion of the plane where the P (S|νL, νR) ≥ 0.6, then the
time that the system spend in the undecided region depends on the
duration of the stimulus and on the coherence, the two variables that
manipulate the P (S) (fig. 4.7). When the evidence for the decision is
low (e.g. stimulus duration is 100 ms and ∆λ = 0 the system spends
more time in the undecided region and the decides more frequently to
opt for the “sure” option compared to easier trials.

It is interesting that P (S|νl, νR) does not change when the stimulus
parameters (average intensity λ, duration and coherence or ∆λ) are
changed (see sec.4.A) What is changed manipulating the average in-
tensity of the input (λ) or the amount of evidence (∆λ and stimulus
duration) is the distribution of firing rates in the νA, νB plane (as sum-
marized in figs. 4.4 and 4.8) but not the P (S|νL, νR).

Indeed, observing figures 4.4 and 4.8 we can see stimulus features dram-
matically change the probability of the system of being in a given po-
sition in the plane. For reference we plotted a dashed polygon in fig.
4.4 and 4.8 showing the convex hull of points with P (S|νL, νR) = 0.6.

Following this reasoning we can also explain why the network present
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Figure 4.6: Conditional probability of choosing the “sure” option given the
state of decision neurons. Each point of the plane represents a possible state
of the system as characterized by the firing rate of decision pools (νL/νR).
The color represents the probability that “sure” target is chosen, when the
system in a given point of the space at the moment when the “sure” target
is presented (see sec.4.4 for details). Contour lines pass through points with
the same probability. It’s evident that the P (S|νl, νR) decreases rapidly
when the system approaches the decision attractors.

a different behavior in the bistable regime compared to the multistable
regime (see fig. 4.3F). If we look at the distribution of firing rates when
λ is set to 15 Hz, i.e. in the bistable regime (fig.4.8), the most evident
difference respect to network’s behavior in the multistable regime is
that the P (S) decreases very rapidly when the duration of the stimulus
increases. In particular for long durations the state of the network is
concentrated in the decision regions where the P (S) is very low (see
fig. 4.6).
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Figure 4.7: Time spent in the undecided region between stimulus onset
and “sure” target onset for correct and error responces.

This explains why the probability of choosing the “sure” target de-
creases so rapidly as a function of stimulus duration in the bistable
regime (see fig.4.3F).

Regarding the question of decision confidence encoding the model pre-
sented in this chapter makes a different proposal respect to other avail-
able models (see sec. 1.2.3 and chap.2). Indeed we can observe that
the contour lines in fig. 4.6 form approximately square surfaces that
strech slightly near the diagonal. This means that in general the net-
work only takes into account the firing-rate of the winning pool for
the confidence judgment. However when the firing-rates of the two
decision pools are similar the network takes into account both pools.
The confidence judgment seems therefore to be controlled by a dis-
tance function between the firing-rates of decision pools of the form
Dn = n

√
|νnL − νnR|, for a large value of n. For n = ∞ the distance

Dn becomes dn = max{νl, νr} and the contour lines would be per-
fect squares. The classical “balance of evidence” suggested by Vickers
(1979b) as the confidence code of race models is actually the simple
distance between the two accumulators. Here we propose that the in-
ternal processing of the network apply a transformation to the simple
difference between the two decision variables and produces a confi-
dence, or actually a distrust encoding based on a non linear distance
between the activity of decision pools.
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Figure 4.8: Distributions of firing rates in all trials for λ = 15 Hz. Panels
A-I show the distribution of firing rates at Tsure onset for some combina-
tions of stimulus evidence (∆λ) and stimulus duration. It can be observed
that the high density in the zone with high P (S) at very short durations
rapidly vanishes for longer durations indicating that the uncertainty or lack
of confidence in this system is mainly due to the dynamic effect of stimu-
lus duration (not according to experimental results of Kiani and Shadlen
(2009)).

4.2.4 Error Trials

Our trials last long (more than 2 s from stimulus on) due to the delay
period but the decision process is typically quite rapid (about 1 s in
our model for difficult conditions) and the decision is then stored in
memory. If we could have access to the decision taken in the early
stage of the trial we would expect a higher frequency of “sure” choices
in error compared to correct trials, according to existing literature (see
sec.1.2.3 and reference cited there). Unfortunately in the experiment
this information in unavailable since on each trial only one responce is
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given (“left”, “right” or “sure”). Conversely in the model we are able
to access at any time during a trial the state of the decision process (in
the discussions we provide a possible paradigm to test our predictions).
We call here the hypothetical outcome of the decison taken in the early
stage of the trial “early correct” or “early error”. The distribution of
firing rates presents interesting differences when analysed separately
for early correct (fig. 4.9) and early error (fig. 4.10) responces.
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Figure 4.9: Distributions of firing rates in early correct trials. Panels A-I
show the distribution of firing rates at Tsure onset for some combinations of
stimulus evidence (∆λ) and stimulus duration.

While correct responces are distributed mainly in the decision region,
error responces are more spread and occupy a larger area of the unde-
cided region. At the same time on error trials the dynamics is slower
and the system need more time to leave the undecided region, as shown
by fig. 4.7. Indeed if we plot the proportion of “sure” choices separately
for early correct and error trials a very interesing prediction arises. In
fig. 4.11 we can see that while in correct trials the proportion of “sure”
choices decreases when the task gets easier, in error trials it increases.
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Figure 4.10: Ristributions of firing rates in early error trials. Panels A-I
show the distribution of firing rates at Tsure onset for some combinations of
stimulus evidence (∆λ) and stimulus duration.

This is exactely the pattern that one would expect from a confidence
measure (Vickers, 1979b; Kepecs et al., 2008; Kepecs and Mainen,
2012). Moreover the increased P (S) in early error trials explains the
higher P (correct) in trials when the sure option is shown but waived
as a genuine confidence phenomenon invalidating the criticism against
the unsure option task (Shields et al., 1997; Smith et al., 2006).

4.2.5 Confidence and Its Relationship to RTs

Exploiting the possibility to retrive information about the reaction
time in the model we describe next the reaction times distributions
and their relationship to confidence. What we refer to as reaction time
is the time (from stimulus onset) that the model takes to integrate
the stimulus signal and commit to a decision plus a non-decision time.
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Figure 4.11: Probability of choosing the “sure target” as a function of
stimulus duration shown separately for early correct and error trials. Dif-
ferent lines correspond to different values of ∆λ (i.e. stimulus coherence).
This preditcion of the model shows that the probability of waiving the per-
ceptual choice in this task really behaves like a lack of confidence measure,
being higher in error trials and showing opposed modulation as a function
of difficulty in correct versus error trials.

This is a standard way of accounting for reaction times in models of
behavior since the non-decision time represent the sensory processing
time and the time needed for motor exectution. Since our results show
a qualitative effect of confidence on RTs and do not pretend to fit any
behavioral data, the parameter of non-decision time in our analysis has
been set to the arbitrary value of 80 ms but the results don’t depend on
this value. We consider here that a decision has been taken when the
firing rate of one decision selective pool crosses a threshold fixed at 30
Hz (see sec.1.2.2 for a discussion about the decision criterion). Anyway
we note that similar results are obtained in our model with a difference
based mechanism. Indipendently on the decision rule another problem
remains still open when facing with delayed response tasks. Indeed
if after accomplishing the decision rule but before the “go” signal the
accumulation process keeps on, a change of mind (Resulaj et al., 2009)
is possible. Therefore it is not clear whether the decision is taken
based on the winning accumulator when the decision criterion is met
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(involving a separate working memory process) or based on the winning
accumulator when the “go” signal is presented. We have considered
that what matters is the winner when the threshold is crossed. In this
scenario we report that in a 10 ± 2% of trials a change of mind, as
described in Albantakis and Deco (2012), could occurs. This amount
of changes does not affect our results.

We observe that in trials when “sure” target is not presented the re-
action times have a bimodal distribution when the evidence for the
decision is not very high. Fig.4.12 shows the histograms for a short
and a long duration of the stimulus and for three increasing values of
the coherence (i.e. ∆λ). The distributions can be easily separated in a
fast and a slow part, except for the bottom right panel. When the stim-
ulus evidence increases (i.e. the coherence or the duration increases)
the fast part of the distribution gets bigger while the slow part gets
smaller. At some point, when evidence for the decision is very high,
the two parts collapse into a unimodal left skewed distribution, as can
be seen in the bottom right panel.

We note that the two parts of the distributions correspond to two
different types of trials. On some trials the network reaches the de-
cision criterion during the stimulus period and these trials result in
fast responses. On the contrary when the a decision is not met dur-
ing the stimulus period, once the stimulus is estiguished, the decision
process can only be based on the memory trace of the stimulus (i.e.
the self-sustained activity of the network). These type of decisions
are of course slower. We can observe indeed that the fast part of the
distribution comprises RT values that depend on the duration of the
stimulus: in the upper row of fig.4.12 the fast part includes RTs of up
to about 0.2 s, while in the bottom row the fast group includes RTs
of up to about 0.6 s. In the bottom right panel the input due to the
stimulus is always enough strong to drive the system to a decision in
less than 0.5 s of stimulation. This phenomenon can be explained by
the presence of the third “mixed” attractor. This stable point attracts
the dynamics of the network even in the stimulus driven regime when
the stimulus input is not too strong. When the system enters into
the basin of attraction of the “mixed” state it will remain there until
the stimulus estinguishes destabilizing the attractive point; in this case
only after stimulus offset the network is eventually going to enter into
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Figure 4.12: Reaction times histograms for three different values of ∆λ
and two different durations. In these trials the sure target was not presented.

the basin of attraction of one decision. As a confirmation we observe
that the RTs distributions are not bimodal if we set the parameter in
order to work in a bistable regime (e.g. λ = 15Hz, figs. 4.20 and 4.20).

We now show what happens when the “sure” target is presented. As
can be seen in fig. 4.13, the slow part of the distribution has always
a smaller mass compared to fig.4.12 (when the “sure” target was not
presented).

This difference arises because the trials in which the network doesn’t
reach a decision during the stimulus period and would thereby con-
tribute to the slow part of the distribution, have a higher probability
to end up in a “sure” decision.
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Figure 4.13: Reaction times histograms for three different values of ∆λ
and two different durations. In these trials the sure target was presented.

4.2.6 Model Predicts Less Risky Behavior
Approaching Third Bifurcation

Here we show the behavior of the model for different values of param-
eter λ, the common input to the decision pools. This parameter can
embrace many complex phenomena (e.g. stimulus contrast, attention,
urgency, etc.), that we didn’t modeled explicitly since they seems to
take place outside of the decision-making network. One of the well
known effects of manipulating this parameter is the change in perfor-
mance and speed of the network (Roxin and Ledberg, 2008a; Deco and
Rolls, 2006). Then it is belived that the subjects have the ability to
change, to some extent, their λ in order, for example, to satisfy differ-
ent sets of experimental instructions (“fast” versus “accurate” trials)
or for their own convenience.

Our psychophysical measurements of network activity (shown above
in fig. 4.3) seem to indicate that the subjects in the “sure target”
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experiment by Kiani and Shadlen (2009) set their working point in the
multistable region near the third bifurcation, since we found the best fit
of the model to experimental data in this region. Given that decision-
making models usually work in the bistable regime (Wang, 2002b; Al-
bantakis and Deco, 2009b; Marti et al., 2006) and the “mixed” attrac-
tor is not an useful representation for decision states, one could ask
why the subjects should work in the multistable region. In order to
address this issue we analyze in fig. 4.14 the overall P (correct), the
P (S) and the consequent reward amount for each point the space of
the input (λ).

Figure 4.14: Fraction of correct responses, “sure” responces and reward
rate.

In contrast to preavious analysis summarized in fig. 4.3, here we keep
the values of ∆λ fixed when varying the value of λ, since we want
to simulate the scenario of a subject moving its working point (due
to experimental manipulation, like time pressure, stress on accuracy,
stimulus visibility, etc. or its own will). We reasoned that in this
scenario the ∆λ shouldn’t be adjusted for each value of λ since, once
the subject has learned the task, ∆λ should only depend on stimulus
coherence.

For ∆λ = 0 no significant difference appear as a function of λ. The
same is true for the highest value of ∆λ. This is comprehensible since
no improvement in P (correct) is possible when there is no evidence for
the decision or when P (correct) already plateaued. For intermediate
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values of ∆λ the probability of correct choices decreases as a function
of λ (see fig. 4.14A). Therefore it doesn’t seem convenient for the
subject to choose a working point near the third bifurcation.

But in the context of the present task the P (correct) is not the only
ingredient for an optimal behaviour.Indeed, in this task other valuable
options are presented during the decision process. In this task, flex-
ible decision-making is important in order to benefit from the “sure”
option. As can be seen in fig. 4.14B the P (S) increases as a function
of the common input to decision pools and reaches a maximum at 50
Hz, in the proximity of the third bifurcation point. Near this point
the stable mixed attractor holds the network longer in the undecided
region, hence the decision is not yet well formed and the “sure” option
can be taken into account.

Fig. 4.14C shows the resulting amount of reward from P (correct) and
P (S). The amount of reward received is higher in the multistable
regime and presents a maximum at 50 Hz.

Clearly the reward amount depends on the actual value assigned by the
subject to each option. The more risk averse they are, the more they
will prefere to choose a sure option at the expenses of performance.
At this point we can infer that subjects in this experiment choose
a working point near the pitchfork bifurcation because they were not
willing to risk: they prefer to be flexible and make the most of the sure
option. This result turns into the testable prediction that by changing
the relative value of sure and high stakes options (e.g. promoting a
risk seeking behaviour) the optimal working point would lay near the
second bifurcation and the P (S) would change consistently.

4.3 Discussion

4.3.1 Multiple Choice or Confidence Judgment?

We presented a biologically detailed network model that can account
for behavioral and neurophysiological measurements related to decision
confidence. Decision confidence is usually understood as a monitoring
process (?) estimating the probability that the outcome of the decision
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is correct (Kepecs and Mainen, 2012). This estimate can then be used
to produce a subsequent decision (Kepecs et al., 2008; Insabato et al.,
2010; Pleskac and Busemeyer, 2010) about the fist one (e.g. abort the
action, change strategy, etc.). Different experimental paradigms have
been used to measure the confidence in a decision. Besides the classical
direct confidence rating, already used in the dawning of experimental
psychology (Pierce and Jastrow, 1884) and possible only with humans,
all other tasks can be classified in two types: uncertain-option tasks
and post-decision wagering tasks (for a good review see (Kepecs and
Mainen, 2012)). While post-decision wagering paradigms require an
overt decision and a subsequent wagering of some form about this de-
cision, in the uncertain-option paradigm on each trial either the percep-
tual decision or the confidence based decision are made explicit. The
task used for our model (derived from Kiani and Shadlen (2009)), falls
in the category of “uncertain-option”. When the stimulus is presented
the perceptual decision about the direction of dots motion needs to be
computed but the response is delayed and the decision must be held in
memory; then, before making an overt response, the subjectively esti-
mated outcome of the decision has to be compared with the value of a
“sure” option. Given the peculiar structure of this task and the associ-
ated neural recordings shown by Kiani and Shadlen (2009) a two stage
model like the one proposed by Insabato et al. (2010) wouldn’t be well
suited. We therefore interpret the task as a delayed form of a triple
choice decision making where the “evidence” for the third choice is
not perceptual but rather based on the value of the third option. This
interpratation is actually a common criticism moved against uncertain-
option paradigm (Shields et al., 1997; Smith et al., 2006), which states
that this task can be solved just by learning the appropriate stimu-
lus responce association. Nonetheless we think that this task really
reflects the confidence associated with the perceptual decision. Our
opinion is supported by the fact that, when they are free to choose be-
tween the more valuable (but more risky) perceptual decision and the
“sure” option, both monkeys and the model reach higher P (correct)
respect to forced-choice perceptual judgment trials. This means that
they can access information about the expected outcome of the judg-
ment and hence opting for the “sure” target denote low confidence
in the decision (as already noted by Hampton (2001c)). Nonetheless
an alternative explanation of the increased performances is possible,
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which weaken the link of this behavior with confidence. Indeed fluctu-
ations in the general vigilance state of the subject could also produce
higher P (correct) in free choice trials (since subjects would accept the
perceptual task only when they have high vigilance). Although this
would still imply a metacognitive process it would be different from
a confidence judgment. In this regard our model produces an inter-
esting prediction that can disantangle the question. The probability
of choosing the “sure” target presents a mirror modulation when sep-
arated in early correct and error trials (fig. 4.11). This pattern is a
hallmark of confidence (Kepecs et al., 2008) and can not be explained
by fluctuations of vigilance, since vigilance is not expected to vary
depending on the outcome of the decision. This prediction could be
nicely tested (both in human and animal behavioural experiments) in
variations of this task, where the response should be given with slow
reaching motion towards the target. In a similar setup it could be
possible, with the use of a traking device (eg. a vBOT manipulandum
for primates (Howard et al., 2009; Resulaj et al., 2009) or a choice ball
for rats (Sanders and Kepecs, 2012)), to track the initial decision of
the subject before she choose the “sure” option.

4.3.2 The Timing of the Third Input

Given the nature of the mechanism implemented in our model it is
worth asking if the timing of the third target has some impact on the
decision. In the experiment Kiani and Shadlen (2009) varies the timing
of presentation of the “sure” target from 500 ms to 750 ms after the
extinction of the stimulus. This variation is introduced to avoid the
predictability of the target but authors don’t comment about any effect
of this timing. For this reason we used a fixed delay between stimulus
extinction and “sure” target presentation. Nevertheless we note that
the mechanism we are proposing relies essentially on a dynamic effect
and therefore the timing of presentation of the third target could in-
fluence the results. We reason that, for example, when the memory
of the decision (during the delay period) is weak, it is going to be
weaker and weaker as time elapses; in this condition a longer delay
would produce more “sure” choices than a shorter one. The memory
of the system is represented by the decision attractor that are stable
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without stimulus input to the system. In this condition however the
spontaneous state is also stable and, if the network didn’t fall into the
basin of attraction of one decision, it could wander around the diago-
nal and eventually be attracted by the spontaneous resting state. In
this case it is more probable that a “sure” decision is going to be made
as shown in fig.4.6. Anyway if Kiani and Shadlen (2009) didn’t find
an effect of the delay duration on the probability of “sure” responses,
this could be due to the fact that the range of delay durations was too
small. Nontheless very long delays could imply different neural struc-
tures and mechanisms respect to the ones proposed here and could
supply distinct results. This and other issues related with the timing
of the third target could be addressed in a future work.

4.3.3 Differences between Confidence Models

Although the race model could seem a more natural option to account
for confidence processing (since it was already used to this aim (Vick-
ers, 1979b)), Kiani and Shadlen (2009) used a one-dimensional diffu-
tion model to explain their data. They modified the decision rule of
the standard DDM assigning “sure” choices if the accumulator was in
a region near the mid-point of the diffusion space and one or the other
perceptual choices otherwise (depending on the sign of the decision
variable). This choice mechanism could be used because the system
had to wait until the end of the trial and no self stopping mechanism
was required. The model reproduces quite well the psychophysics ex-
perimental data. Nonetheless this model couldn’t account for confi-
dence processing in a RT task. Indeed in a RT task the model needs
a threshold for stopping the accumulation but this would imply the
same confidence judgment in all trials (unless a time-varying bound-
ary is introduced (Drugowitsch et al., 2012)). Moreover this model is
only able to reproduce neurophysiological findings during the stimulus
period (since the DDM has no working memory). We also note that
the DDM of Kiani and Shadlen (2009) does not provide novel testable
predictions, which are foundamental to confirm or falsify a model.

On one hand diffution models have the appealing of being simple and
producing neat explanation of observables; on the other they are only
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phenomenological models and have the drawback of incorporating too
few details about the biology of the systems modelled. Therefore chas-
ing the goal of a mechanistic explanation of confidence processing in
an uncertain-option task we propose the biophysically detailed net-
work model presented above. Our model produces novel predictions
that can be tested in new experiments: 1) an opposite modulation of
the probability of the “sure” option in correct and error trials, when
plotted against the easiness of the trial; 2) a bimodal distribution of
RTs (that could be tested in a variation of the task as explained above);
3) a different modulation of the probability of the “sure” choices (and
overall a smaller amount) when the input to the network is smaller;
this can correspond to the condition of a more risk-seeking behaviour
or less time pressure in a RT version of the task.

We also want to distinguish the present model from the one proposed
in the second chapter (Insabato et al., 2010). Both are ANN models
of confidence processes but they differe in the structure of the network
and the underlying computations. The network proposed in chap.
2 has a two layer structure. The perceptual decision is effected in
a module that implement a biased competition mechanism (Wang,
2002b) between two decision selective neuronal pools. When the dis-
criminability of the stimulus is increased the decision attractor of the
correct choice moves towards higher firing-rate of the winning pool. On
the contrary the decision attractor associated with error choices moves
towards lower firing-rates of the winning pool. Therefore the sum of
firing-rates of decision pools in this module produces the characteris-
tic x-shaped pattern observed in confidence studies. The confidence
judgment in this network is effected in another module, which also im-
plement a biased competition mechanism. But this module does not
receive the stimulus input, rather the “high confidence” pool gets as
input the activity of decision pools in the percetual module, while the
“low confidence” pool gets a reference signal with a fixed mean.

The model presented in this chapter instead has just one layer because
it absorbes confidence judgment process into the same perceptual de-
cision module (this reflects the structure of the behavioral task, where
there is only one final overt binary response, i.e. either “high confi-
dence - left/right” or “low confidence”). In this network first the pools
associated with the perceptual choice compete in order to reach a de-
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cision about the motion direction of RDM stimulus and then, when
the “sure” target is turned on, a new competition is triggered between
the pool associated with the “sure” target and the other two decision
pools.

Surely there are certain similarities between the models. 1) The per-
ceptual decision is taken using a biased competition mechanism. 2)
The pool representing a decision of low confidence (the S pool in the
model of this chapter) only receives a mostly value encoding signal
with a fixed mean. 3) The high confidence decision is driven by the
activity of decision pools. Nonetheless the two models are different un-
der other aspects. 1) The confidence judgment is made in a separate
network with its own dynamics for the model in chap. 2. 2) The low
confidence pool competes only indirectly with the perceptual decision
pools in the model of chap. 2. 3) In the model of this chapter the con-
fidence is encoded in an non linear distance between the firing-rates of
decision pools, while we claim in chap. 2 that the sum of firing-rates
is the vehicle of confidence.

We note that this discrepacy of the confidence encoding in the two
models could be possibily reconciliated by using an n-norm for the
two-layer model. Indeed, while the second network is receiving the
sum of the activity of perceptual decision pools (a 1-norm) the pro-
cessing in the confidence network could produce a confidence encod-
ing compatible with a higher order norm. The maximum norm (for
n =∞) is equal to max{νL, νR} and is therefore equivalent to the dis-
tance function used in this chapeter. Therefore in the case of a high
value of n the sum and the difference of the activity of decision pools
are approximately the same.

As a last remark, although the model of chap. 2 could in principle
account for the data of Kiani and Shadlen (2009), it seems a more
natural decision to use a multiple choices decision-making network
for the present task. Indeed the structure of the task is very similar
to that of a three alternative choice task and what really changes is
the timing of apparence of the targets and the associated value and
probability of reward. Following Occam’s razor, we used here a more
minimalistic approach and proposed that the confidence in a decision
can be extracted and used in the same simple multiple choices decision
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making network exploiting a multistable regime.

4.4 Methods

4.4.1 Model details and mean-field reduction

We run simulations of 1000 trials for each stimulus condition (duration
and coherence or ∆λ). The stimulation protocol of the selective pools
R and L is the following. First during 500 ms the pools only receives the
background activity to assure that the network is in resting state. Then
the target input is delivered similarly to other studies (e.g. Albantakis
and Deco (2009b); Furman and Wang (2008)). The target input is
modeled as the concatenation of two exponential: in the first 400 ms
it was set to 200 + 100exp(−t/100) Hz, after that during 100 ms it is
supposed to decay according to 200exp(−t/15) Hz. Then the stimulus
input is turned on: pool L receives λ + ∆λ while pool R receives
λ − ∆λ. After the stimulus estiguishes (according to ist duration,
which was either 100, 200, 300 or 500 ms) λ is set to 0 until the end
of the trial. At the end of the trial a saccade related signal of 80 Hz is
delivered for 100 ms. The pool S receives only the background activity
until the “sure” target is turned on (500 ms after the end of the RDM
stimulus). The input due to the “sure” target is modeled as the target
input to pools R and L (40 + 200exp(−t/100) Hz) but it reached a
higher steady value of λsure = 40 Hz that encodes the value of the
“sure” option. The stimulation protocol is show in fig.4.1.

Detailed description of the neuron and synapse model is given in the
appendix A and in tabs. 4.1 and 4.2.

We use a mean-field reduction (Brunel and Wang, 2001b) in order to
study the space of the principal parameters of the network.

The mean-field approximation allows reduction of the number of dy-
namical variables, by describing the average firing rate of each neuronal
pool in the limit of an infinitely large number of neurons. The network
dynamics Although our network has three decision pools, the stimula-
tion protocol is asynchronous: in the first phase of the stimulation the
pool S receives only the background activity and its firing rate remains
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A Model Summary

Populations five
Connectivity full, no synaptic delay
Neuron model Leaky Integrate-and-Fire, fixed threshold, fixed refractory

time
Synapse model Instantaneous jump and exponential decay for AMPA and

GABA and exponential jump and decay for NMDA recep-
tors

Plasticity -
Input Independent fixed-rate poisson spike trains to all neurons
Measurements Spike activity

B Populations

Total number of neurons N = 1000
Excitatory neurons in each module NE = 0.8 ·N
Inhibitory neurons in each module NI = 0.2 ·N

Name Size Name Size
L (decision “left”) NL = f ·NE Nonspecific NE − 3NA
R (decision “right”) NR = f ·NE Inhibitory 0.2 ·N
S (decision “sure target”) NS = f ·NE

Table 4.1: Model summary. Characteristics of the model and populations
details. Parameters values are given in Tab. 4.3

below 2 Hz. Therefore in this phase the system behaves like a binary
decision-making network. The network activity could converge to one
of four attractors: a spontaneous state, where the selective pools have
low activity; two selective states with one selective pool firing at a
high level and the other inhibited; and a mixed state with both pools
highly active. With some parameter values the network could sustain
just one stable state, or could show bistable, behaviour, or could show
multistable behaviour in which the spontaneous state or the mixed
state and each of the two decision states are all possible stable states
when the inputs to the network are being applied (Brunel and Wang,
2001b). Details of the mean-field analysis are given in the appendix
B.

We also calculate the boundary of the attraction basins of fixed points
(shown in fig.4.4). In order to find the boundaries we set the initial
values of the firing rate of pools L and R to different points in the plane
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C Neuron and Synapse Model

Type Leaky integrate-and-fire, conductance-based
synapses

Subthreshold dynamics CmV̇ (t) = −gL(V (t) − VL) − IAMPA,ext(t) −
IAMPA,rec(t)− INMDA(t)− IGABA(t)

Synaptic currents IAMPA,ext(t) = gAMPA,ext(V (t) −
VE)

∑Next

j=1 sAMPA,ext
j (t)

IAMPA,rec(t) = gAMPA,rec(V (t) −
VE)

∑NE

j=1 wjs
AMPA,rec
j (t)

INMDA(t) = gNMDA(V (t)−VE)
1+[Mg2+]exp(−0.062V (t))/3.57 ×∑NE

j=1 wjs
NMDA
j (t)

IGABA(t) = gGABA(V (t) −
VI)

∑NI

j=1 wjs
GABA
j (t)

Fraction of open channels
dsAMPA,ext

j (t)

dt = − s
AMPA,ext
j (t)

τAMPA
+
∑
k δ(t− tkj )

dsAMPA,rec
j (t)

dt = − s
AMPA,rec
j (t)

τAMPA
+
∑
k δ(t− tkj )

dsNMDA
j (t)

dt = − sNMDA
j (t)

τNMDA,decay
+ αxj(t)(1 −

sNMDA
j (t))
dxNMDA

j (t)

dt = − xNMDA
j (t)

τNMDA,rise
+
∑
k δ(t− tkj )

dsGABA
j (t)

dt = − s
GABA
j (t)

τGABA
+
∑
k δ(t− tkj )

Spiking if V (t) ≥ Vθ ∧ t > t? + τrp
1. t? = t
2. emit spike at time t?

3. V (t) = Vreset

D Input

Type Description
Poisson generator Fixed rate, Next poisson generators per neuron, each one

projects to one neuron

Table 4.2: Model summary. Neuron model and input layer description.
Parameters values are given in Tab. 4.3



122 the uncertain model

Parameter Value Parameter Value
Cm (excitatory) 0.5 nF VE 0 mV
Cm (inhibitory) 0.2 nF VI −70 mV
f 0.20 VL −70 mV
gAMPA,ext (excitatory) 2.08 nS Vreset −55 mV
gAMPA,ext (inhibitory) 1.62 nS Vθ −50 mV
gAMPA,rec (excitatory) 0.104 nS w+ 1.8
gAMPA,rec (inhibitory) 0.081 nS w− 0.878
gGABA (excitatory) 1.287 nS α 0.5 ms−1

gGABA (inhibitory) 1.002 nS λsure 40 Hz
gNMDA (excitatory) 0.327 nS λext 2.4 kHz
λ {15,30,50,55} Hz ∆λ [0, 28] Hz
gNMDA (inhibitory) 0.258 nS τAMPA 2 ms
NE 800 τGABA 10 ms
NI 200 τNMDA,decay 100 ms
Next 800 τNMDA,rise 2 ms

Table 4.3: Parameters used in the simulations.

νL, νR and record which attractor the network falls in; we change the
initial values with a bisection algorithm until finding the boundary
with a precision of 0.1 Hz.

4.4.2 Probability of “sure” target selection:
P (S|νL, νR)

We calculate the probability of choosing the “sure” option conditioned
on the value of firing rate of decision populations R and L. In order to
calculate this probability we devided the plane νL, νR in square bins
of side 1 Hz. We calculated for each trial the time averaged firing
rate of decision pools in the 50 ms time window preceding the “sure”
target onset. Then each bin in the plane is associated with those trials
presenting the average firing rate before “sure” target onset determined
by the position of the bin. Finally we counted for each bin how many
trials ended up in a “sure” decision and divided by the total number
of trials associated with that bin. We did this analysis separately for
each stimulus duration collapsing together all coherences (∆λ) and
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also for each coherence collapsing together all durations. The results
were very similar across different conditions therefore we decided to
pool together all trials from all stimulus conditions in order to show
cleaner results.

4.4.3 Undecided time

We show that the system spends more time in the undecided region
when stimulus conditions (duration and coherence) determine less con-
fidence on average. We defined the undecided region to be the region
of the plane νL, νR enclosed in the convex hull of points corresponding
to P (s|νL, νR) > 0.6. Of course the value chosen (0.6) is arbitrary and
other values give similar results, provided that they are not too high
or too low. We then calculate the time that the system spends in the
undecided region from stimulus on until the “sure” target is turned on.

4.4.4 Reaction time

We calculate the decision time of the network as the time when the
firing rate of a decision pool crosses a threshold set at 25 Hz. In addi-
tion the firing rate need to be above the threshold in the subsequent 50
ms. Of course this values are not meaningful and other similar values
give the same qualitative results. The reaction time is the sum of the
decision time and a non-decision time that is usually used to account
for sensory processing and motor planning. We set the non-decision
time to 80 ms but our results do not depend on this value.

4.4.5 Reward amount

We calculate the reward amount received by the subjects as a function
of the probability of correct response and the probability of “sure”
target selection. We arbitrarily consider the value of a correct response
to be 1 and that of an error to be 0. The value of the “sure” target has
been set to 0.8, since in the experimental setup the subjects received for
a “sure” response approximately 80% of the reward associated to the
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high stakes targets. However we note that this value neither is crucial
for our results nor need to be fixed based solely on the experimental
setup. Indeeed, while the value attributed by the subject to the “sure”
option will reflect the objective amount of reward associated, it won’t
probably be the same since it will include subjective preferences like
risk aversion or risk attraction. We calculated the total reward in a
block of trials as the sum of the reward received in each trial according
the choice made (error: 0; correct: 1; sure: 0.8). Reward functions
can be complicated and include many variables like reaction times,
penalty time associated to errors, etc. (Drugowitsch et al., 2012). We
decided to use a very simple function since each of these variables need
to be weighted based on the subjective value assigned to it, as for the
value of the “sure” option, and we don’t have information about these
subjective values.

4.A Supplementary figures
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Figure 4.15: Conditional probability of choosing the “sure” option given
the state of decision neurons for λ = 15. The color convention is the same
of fig.4.6.
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Figure 4.16: Conditional probability of choosing the “sure” option given
the state of decision neurons for λ = 30. The color convention is the same
of fig.4.6.
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Figure 4.17: Conditional probability of choosing the “sure” option given
the state of decision neurons for λ = 50. The color convention is the same
of fig.4.6.
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Figure 4.18: Conditional probability of choosing the “sure” option given
the state of decision neurons for λ = 55. The color convention is the same
of fig.4.6.



4.a. supplementary figures 127

0 1 2
0

100

200

300

400

d
u
ra

ti
o
n
 1

0
0
 m

s

∆λ=0

0 1 2
0

100

200

300

400

∆λ=7

0 1 2
0

200

400

600

∆λ=28

0 1 2
0

100

200

300

400

d
u
ra

ti
o
n
 5

0
0
 m

s

0 1 2
0

200

400

600

RT [s]
0 1 2

0

200

400

600

Figure 4.19: Reaction times histograms for three different values of ∆λ
and two different durations. The average common stimulus intensity was
λ = 15 Hz. In these trials the sure target was not presented.
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Figure 4.20: Reaction times histograms for three different values of ∆λ
and two different durations. The average common stimulus intensity was
λ = 15 Hz. In these trials the sure target was presented.



CHAPTER 5
Coda

. . . wine is good, and confidence is good; but
can wine or confidence percolate down
through all the stony strata of hard
considerations, and drop warmly and ruddily
into the cold cave of truth?

H. Melville, The confidence-man

In this chapter we will briefly resume the results presented in previous
chapters. We will then highlight several aspects that are relevant for
the study of decision confidence and need to be discussed.

5.1 A Neurocomputational Framework

for Decision Confidence Studies

Kepecs and Mainen (2012) already argued that we need a computa-
tional framework for understanding decision confidence. Surely we do
not pretend to have built this framework but at least we hope to have
given in the previous chapters some building blocks for constructing
it.

129



130 coda

In chap. 2 we proposed a model that accounts for neural processing of
decision confidence in post-decision wagering experiments. We based
our model on the findings of Kepecs et al. (2008). They showed that
neurons in rat OFC present the characteristic X shaped modulation
of confidence measures. They also demonstrate that rats are able to
make confidence judgments in a post-decision wagering experiment.
We modeled the neural system involved in this task as a two layers
network. The network is composed of a decision-making module and a
confidence module. The decision-making module receives the stimulus
related input and makes the perceptual choice. The confidence module
receives the activity of decision-making neurons and an external signal,
related to the value of options, and takes a second decision: to stay
and wait for reward or to leave and start a new trial. Our model is
able to reproduce both the neural activity and the behavior of rats.
Moreover the model makes the prediction that the OFC modulation is
the result of averaging together trials with high confidence and trials
with low confidence.

Building on these ideas in chap. 3 we analyzed neurons from mon-
keys PMv recorded during a perceptual decision-making task. Our
aim was to study the activity of real neurons in order to support or
falsify the model of chap. 2 and to shed light on decision confidence
encoding. Specifically we wanted to understand whether neurons en-
code confidence in a continuous or discrete way. Indeed, while the X
shaped pattern is well established and has been found in rats OFC
activity (Kepecs et al., 2008), it is a modulation of average confidence
signals in block of trials distinguished by outcome and difficulty. We
wanted to ask what happens in single trials. To this aim we first iden-
tified neurons presenting the X shaped modulation by means of linear
regression analysis. We reasoned that the modulation of average ac-
tivity as a function of the difficulty of the task could arise from at
least three different mechanisms, each of them corresponding to a dif-
ferent confidence encoding in single trials: a switch timing encoding,
a firing-rate encoding and a binary encoding. The switch timing code
hypothesis states that when neurons switch from a resting state to an
active state that produces the confidence signal, the modulation of ac-
tivity does not depend on the firing-rate of the active state but on the
timing of the switch. On the contrary the firing-rate code imply that
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there is a correlation between the single trial firing-rate after the switch
and the difficulty. The binary code corresponds to the mechanism pre-
dicted by the model of chap. 2. On single trials neurons encode either
high or low confidence and the proportion of high (or low) confidence
trials correlates with the difficulty. These three mechanisms are not
exclusive. Indeed we found different neurons implementing each of
the three mechanisms. This rich representation of decision confidence
in the brain can be useful since continuous codes (switch timing and
firing-rate) can well represent confidence but a discretization stage is
needed when a categorization of confidence is required (e.g. a stay or
leave choice). We note therefore that the binary neurons we found in
monkey PMv support the model of chap. 2. On the other hand the
neurons using continuous codes, firing-rate and switch timing code,
are not predicted by the model. Nonetheless we think that a simple
modification of the network could account for that neurons. Indeed in
the model the decision confidence is implicitly encoded in the sum of
the activity of decision-making neurons. An additional stage explicitly
encoding confidence could be obtained by creating synaptic projections
of decision-making neurons to a new pool of neurons that would then
project to the confidence module.

While in chap. 2 and in chap. 3 we dealt with the post-decision wa-
gering task in chap. 4 we considered the unsure option task. In this
chapter we used the findings of Kiani and Shadlen (2009) as constrains
for the model. Kiani and Shadlen (2009), using the unsure task and
the random dot motion stimulus, showed that LIP neurons in primate
brain present an intermediate level of firing-rate associated with un-
sure trials compared with sure trials. We built a model with a multiple
choice decision-making architecture that can account for their findings.
In our model two decision selective pools encode the decision about the
direction of motion while a third pool encode the “sure” choice. When
the “sure” target is not presented the third pool remains silently in
resting state and do not affect the decision process. When the “sure”
target is presented a competition is triggered between the “sure” pool
and the decision-making pools. We found that the confidence measure,
i.e. the probability of choosing the “sure” target, has a non-linear rela-
tionship with the activity of decision pools. Indeed this probability is
related to a non-linear measure of the distance between the activity of
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decision pools. This differs from the classical account of confidence in
race models (Vickers, 1979b) where the 1-norm distance (absolute dif-
ference) between accumulators is used. We also found that the model
is able to reproduce the experimental findings in a multistable regime
in the proximity to a pitchfork bifurcation, where there is a stable fixed
point corresponding to an undecided state with both decision pools fir-
ing at a high rate. This model produces interesting predictions that
can be tested in new experiments. 1) A mirror modulation of the con-
fidence measure is predicted in early correct compared to early error
trials. This prediction, if confirmed, would remove the doubts raised
about this task not reflecting confidence but other metacognitive pro-
cesses. 2) Reaction times have a bimodal distribution since in “unsure”
trials the system is kept next to the undecided fixed point and can reach
a decision attractor only when the undecided attractor looses stabil-
ity. 3) Some manipulations of the task, e.g. induction of risk-seeking
behavior, should push the subject to move away from pitchfork bifur-
cation (and possibly from the multistable region) and produce different
behavior and neural activity as predicted by the model.

5.2 Ad Ventura

In this section we want to summarize the possible future development
of the research about decision confidence.

The first natural follow-up study would be the development of an ex-
perimental setup to support or falsify the model of chap. 4. The
model predicts a different behavior if the system is pushed to work in
a bistable regime. This could be done by diminishing the desirability
of the “sure” option. Indeed in this case the subject should try to
work in a regime where the probability of correct responses is higher
(see fig. 4.14). In general any manipulation that fuel a risk-seeking
behavior should bring the system to the bistable regime.

The other two predictions of the model are probably more compli-
cated to reproduce in an experimental setup since they involve the
measurement of early direction of the decision process and reaction
time. However we think it would be feasible if the subjects are re-
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quired to use slow reaching movements to select the targets. This type
of movements has been already used in decision-making both with rats
(Sanders and Kepecs, 2012) and primates (Howard et al., 2009; Resulaj
et al., 2009). If the “sure” target appears when the selection movement
has already been started but not completed (at least in most trials)
the initial decision and the reaction time could be recorded.

Another interesting extension of the research presented here would
be a computational account of confidence judgments beyond binary
classification. Both the model of chap. 2 and that of chap. 4 only
give binary judgments of decision confidence, because they are meant
to account for tasks where only two categories of confidence were used.
However with human subjects it is usual to adopt confidence scales
with more than two options (refer to sec. 1.2.3 for examples). Although
multiple choices mechanisms have been studied in the context of ANN
(Albantakis and Deco, 2009b), it is not trivial to extend our models to
multiple options. Moreover the extreme case of a confidence judgment
on a continuous scale (Graziano and Sigman, 2009; Barttfeld et al.,
2013) places an even more complex challenge.

In addition an intriguing idea comes from the study of Zylberberg et al.
(2012). They studied the temporal evolution of decision confidence in
simple perceptual decision tasks by constructing the confidence ker-
nels (similarly to the well known decision kernels (Kiani et al., 2008)).
Their results can be used as constrain for the models. Indeed they fit-
ted three different phenomenological models to the decision kernels of
subjects: a race model, a one-dimensional diffusion model, a partially
correlated race model and the “Vicker’s model” (inspired by Vickers
(1979b)). Only the partially correlated model could reproduce at least
qualitatively the confidence kernels. The study of our model of chap.
2 in the light of these findings could be a good starting point, since it
could highlight what the meaningful parameters are that produce this
type of temporal evolution of decision confidence.
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5.3 One Model?

In the field of decision-making studies in neuroscience there is a never
ending dispute between the fans of the two major theoretical frame-
work, the DDM and ANN. Several models have been used to account
for decision confidence processing both in the ANN and DDM frame-
work. We want to reflect here about this dichotomy between ANN and
DDM taking advantage of their results about decision confidence.

A first question that we want to ask is: are all these models different?
It could seem silly to ask such a question but actually even the two
frameworks are not so distinct. Indeed Roxin and Ledberg (2008a)
demonstrated that a decision-making ANN model can be reduced to
a one-dimensional non-linear diffusion equation for a specific set of
parameters (near a bifurcation). This result indicate that at least for
a given dynamical regime the ANN is reducible to a diffusion process
(although with a non-linear term).

Given this result it seems not so trivial to answer the question.

Probably the very fundamental difference between the two frameworks
is the level of description of the phenomena. While the DDM describes
the decision as the diffusion of a particle the ANN describes it as the
result of the interaction of thousands of neurons in the brain. Although
this difference is only semantical it is important to reflect on what it
means to use one model instead of another. When we use an ANN
to account for decision-making, we are implicitly implying that exist a
network of neurons in the brain equal (or very similar) to that of the
model and that the activity of that network is the cause of the behavior.
When we use a DDM, are we suggesting that a particle diffusing in
the brain of the subject is the cause of the choice? Or do we believe
that the DDM is a useful formalism for describing the process and
that some neural machinery in the brain implements it? The second
interpretation seems more sound to us. In this case the ANN could be
seen as a useful formalism to understand how a neural mechanism can
implement a process similar to the diffusion of a particle.

The answer to the question is therefore not a simple one. We don’t
want to claim that DDM and ANN are the same but we want to focus
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the attention on the fact that they should not be always considered as
opposite.

The most meaningful way of comparing models is, in our opinion, the
Popperian falsification protocol (as also advocated in a more general
context by Sober (1994)), in which the predictions of each model are
tested by means of new experiments.

5.3.1 Predictions

A good model should then formulate clear predictions that can be
tested. The two layers model for confidence decisions of chap. 2 pre-
dicts a bimodal distribution of firing-rates in confidence neurons and
we showed in chap. 3 that monkey PMv neurons confirm this predic-
tion. Nonetheless we note that this confirmation should not reassure
us that our model is correct for at least two reasons: 1. It needs fur-
ther confirmation by other experimental studies; 2. We should try to
produce more predictions to falsificate the model and push forward our
understanding of decision confidence.

In the previous chapter we proposed an ANN model for confidence
computations in LIP, as evidenced by the experimental data of Kiani
and Shadlen (2009), that gives some testable predictions. It is inter-
esting when two different models that account for the same set of data
produce contrasting predictions. Kiani and Shadlen (2009) explain
their data with a DDM as described in sec.1.2.3. Unfortunately they
don’t provide any novel testable prediction.

However interesting predictions about decision confidence comes also
from the framework of DDM. For example Moreno-bote (2010) pre-
dicts that the relation between confidence level and RTs is not linear
in time, like suggested by the usual fit (a/t+ b) found by many exper-
iments (Henmon, 1911; Volkmann, 1934; Reed, 1951; Audley, 1964),
but depend on the square root of time as a/

√
t + b. This prediction

needs a carefully designed experiment to be tested since the difference
between the two types of relationships is only visible with quite long
RTs.
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Another inspiring work is that of Zylberberg et al. (2012), where
predictions are provided for four different versions of DDM (a one-
dimensional diffusion model, a race model, a partially correlated model
and the race model of Vickers (1979b)). They calculated the confi-
dence kernel, by means of inverse psychophysical correlation analysis,
for each model. This measure is similar to the more usual decision
kernel (Kiani et al., 2008) and provides an estimate of the temporal
relevance of the input/stimulus fluctuations on the confidence judg-
ment. They then calculated the confidence kernels of subjects in a
perceptual experiment and compared the predicted kernels with that
obtained from experimental data.

None of the models was able to reproduce well the confidence kernels
although the partially correlated model could adjust at least qualita-
tively to the experimental data. These results are particularly inter-
esting since they allow to distinguish the different models on the basis
of their predictions. Therefore it would be important to further under-
stand the failure of the models in reproducing the confidence kernels
and to test also the ANN models within this framework.

The available confidence models are also different regarding the pro-
posed encoding of decision confidence. Vickers (1979b) proposed that
the confidence could be encoded in the “balance of evidence”, the dif-
ference between the accumulated totals of the two integrators of a race
model. Moreno-bote (2010) showed that the confidence not only de-
pends on the balance of evidence but also on the square root of the
decision time. This encoding reduces to the sole time dependence in
the case of the one-dimensional diffusion process since in this model
the state of the second integrator is fully determined by the state of
the first and in turn by the decision boundary. In chap. 2 we proposed
that the decision confidence is encoded in the sum of the firing-rates of
decision populations. This encoding arises from the architecture of the
network, where the decision pools project to a population of neurons
that encode the confidence in the decision. Therefore the confidence is
encoded in the sum and not the difference between decision pools. In
this model actually, when the decision has been taken, the firing-rate
of the winning pool is the most informative since the loosing pool has
very low activity due to the indirect inhibition of the other pool. An-
alyzing the model of chap. 4 we found indeed that the confidence is
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encoded in that model in a distance measure between the activity of
the decision pools. However this distance is not the simple balance of
evidence and but a non-linear function of it: n

√
|νnL − νnR|, when n is

large enough. This function is equal to max{νL, νnR}, for n→∞. This
means that what really counts in this model for decision confidence
evaluation is the activity of the winning pool. Only in a multistable
regime, when the activity of the two decision pools are similar, their
difference affects the confidence in the decision.

These distinct encoding of decision confidence don’t provide testable
predictions by themselves but can be used anyway to further under-
stand the nature of confidence processing. Indeed when the confidence
information encoded in a decision-making mechanism need to be used
to produce a given behavior (e.g. a bet on the outcome of the deci-
sion), another mechanism has to read out that information. It would
be interesting, for example, to study the possible mechanisms that can
read out the decision time of a DDM.

5.4 The concept of decision confidence

In this dissertation we abstained from giving a direct definition of deci-
sion confidence. Surely we agree with Kepecs and Mainen (2012) that
a formal computational foundation of the phenomenon of confidence is
far more valuable than a semantic definition. Indeed especially the se-
mantics surrounding those concepts that involve subjective experience
(like consciousness or confidence) could be not adequate or sufficient
to define the underlying phenomena (Metzinger, 2000). On the con-
trary a computational account aims at characterizing the system in
terms of functions and computational units (Marr, 1982). From the
account of decision confidence sketched in this work it seems that our
concept of “confidence” in a decision should be probably revised or
better detailed. We want to recall here the simplified schema of confi-
dence processing outlined in fig.1.1. In that schema we separated the
more abstract representation of the reliability of a decision, that we
called “confidence” module, from the classification of this representa-
tion in discrete categories, that we called “confidence-based decision”
module. This discretization stage is useful for translating the confi-
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dence representation into a congruent action. The neurophysiological
evidence provided in chap.3 about neurons continuously encoding con-
fidence supports the idea of a module that represents the reliability of
the decision process. On the other hand we provided both a computa-
tional account (in chap.2) and neurophysiological evidence (in chap.3)
for a classification stage, where a second decision is taken based on
confidence level in a first decision. Therefore, in the light of our re-
sults, it seems suitable to us to split the concept of decision confidence
in at least two parts: The representation of the reliability of a deci-
sion and the classification of this sensation, be it a verbal rating or
a post-decision wagering, we could also call it the confidence “judg-
ment”. This two entities correspond to the two stages of fig.1.1, the
“confidence” module and the “confidence-based decision” module re-
spectively. The decision confidence depends on the sensory input and
the decision process and is connected to the subjective, phenomenal
experience of deciding. Whereas the confidence judgment is of a dis-
crete nature and is a function of the decision confidence, useful to
communicate the confidence sensation to others.

Another aspect to be considered is the set of constraints imposed by
the environment on the confidence judgment. For example it is plau-
sible to assume different neural mechanisms if the possible confidence
categories are only two versus five or, even more extremely, when the
judgment has to be expressed on a continuous scale. As we use to talk
about performance independently from task contingencies but we don’t
expect them to be produced by the same neural networks, the same
could be true for confidence. Indeed we presented two different models
in order to account for two types of confidence judgments: The post-
decision wagering (chap.2) and the uncertain-option task (chap.4).
The different tasks can therefore modify the simple scheme depicted
in fig.1.1. In the first model there are two layers, one for taking the
sensory decision, that corresponds to the “decision-making” module of
fig.1.1, and another for taking a decision based on the confidence in the
sensory decision. This last layer corresponds to the “confidence-based
decision” module of fig.1.1. In this model the “confidence” module is
not implemented explicitly but is integrated into the decision-making
stage. Even more interesting in the model of chap.4 there is no separa-
tion between the decision-making, the representation of the reliability
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of this decision and the confidence judgment. All three functions are
integrated into the same neural machinery.

To conclude the idea, yet to be proved, that emerges from our study
is that the concept of decision confidence should be separated in two
concepts: the representation of the reliability of a decision, that is an
internal feeling of confidence and the overt confidence judgment, that
is manipulated by the way we express it.





APPENDIX A
Neuron and synapse model

At the neuronal level we used single compartment leaky integrate-
and-fire (IF) neurons that incorporate biophysically realistic parame-
ters Abeles (1991) without being computationally intractable Dayan
and Abbott (2001); Brunel and Wang (2001b); ?); ?. The integrate-
and-fire formulation is very important, for the spiking of the neurons in
the network is close to random in its timing for a given mean firing rate
(Poisson-like), and this introduces noise into the network which enables
it to account for probabilistic decision-making, because the choices are
influenced by the spiking-related coherent statistical fluctuations that
are produced in a finite-size network.

The dynamics of the membrane potential in the subthreshold regime is
determined by the membrane capacitance and a leakage term, following
the equation:

CmV̇ (t) = −gL(V (t)− VL)− Isyn(t), (A.1)

where Cm is the membrane capacitance, gL is the membrane conduc-
tance that provides the leakage current, VL is the resting potential,
and Isyn is the total input synaptic current. When the depolariza-
tion of the membrane reaches a threshold value Vθ, the neuron fires a
spike, its voltage is reset to a given value Vreset, and a refractory pe-
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riod τrp follows during which the neuron is unable to fire another spike.

The total synaptic current is the sum of the external excitatory cur-
rents mediated by AMPA receptors (IAMPA,ext), recurrent excitatory
currents mediated by AMPA receptors (IAMPA,rec) and NMDA recep-
tors (INMDA), and inhibitory currents mediated by GABA receptors
(IGABA):

Isyn(t) = IAMPA,ext(t) + IAMPA,rec(t) + INMDA(t) + IGABA(t). (A.2)

Each current is defined by:

IAMPA,ext(t) = gAMPA,ext(V (t)− VE)
Next∑
j=1

sAMPA,ext
j (t) (A.3)

IAMPA,rec(t) = gAMPA,rec(V (t)− VE)

NE∑
j=1

wjs
AMPA,rec
j (t) (A.4)

INMDA(t) =
gNMDA(V (t)− VE)

1 + [Mg2+]exp(−0.062V (t))/3.57
×

NE∑
j=1

wjs
NMDA
j (t)

(A.5)

IGABA(t) = gGABA(V (t)− VI)
NI∑
j=1

wjs
GABA
j (t), (A.6)

where gAMPA,ext, gAMPA,rec, gNMDA and gGABA are the receptor specific
synaptic conductances. VE and VI are the reversal potentials respec-
tively for the excitatory and inhibitory neurons. Next, NE and NI are
respectively the number of external neurons residing in other cortical
areas, of excitatory neurons and of inhibitory neurons. sAMPA,ext

j , sAMPA,rec
j , sNMDA

j

and sGABAj are the receptor-specific fractions of open channels. wj
are the synaptic weights, defining the pools. The NMDA receptor-
activated synaptic currents are dependent on the membrane voltage
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and are controlled by the extracellular concentration of magnesium
[Mg2+]. The fraction of open channels is given by:

dsAMPA,ext
j (t)

dt
= −

sAMPA,ext
j (t)

τAMPA

+
∑
k

δ(t− tkj ) (A.7)

dsAMPA,rec
j (t)

dt
= −

sAMPA,rec
j (t)

τAMPA

+
∑
k

δ(t− tkj ) (A.8)

dsNMDA
j (t)

dt
= −

sNMDA
j (t)

τNMDA,decay

+ αxj(t)(1− sNMDA
j (t)) (A.9)

dxNMDA
j (t)

dt
= −

xNMDA
j (t)

τNMDA,rise

+
∑
k

δ(t− tkj ) (A.10)

dsGABAj (t)

dt
= −

sGABAj (t)

τGABA
+
∑
k

δ(t− tkj ), (A.11)

where τAMPA,ext, τAMPA,rec, τNMDA,decay and τGABA are the decay time
constants, and τNMDA,rise is the rise time constant for NMDA synapses.
The rise times for AMPA and GABA synapses are neglected as they
are smaller than 1 ms. The sums over k represent the sums over spikes
formulated as δ-peaks (δ(t)) emitted by presynaptic neuron j at time
k.

The values for the neuronal and synaptic dynamics are provided in
Table 4.3. We implemented synaptic dynamics, and, although not es-
sential for the model, included in them the slow synaptic dynamics
produced by the long time constant of the NMDA receptors, for as
shown by Wang (1999), in order to stabilize the network the recur-
rent excitation should be dominated by slow synaptic dynamics, such
as those produced by the NMDA receptors. Moreover we used these
synaptic dynamics in order to avoid synchrony and oscillations, follow-
ing Brunel and Wang (2003). We did not implement synaptic delays
for simplicity. Transmission delays help to prevent synchrony in the
network ?, producing similar effects in this respect to slow synaptic dy-
namics (implemented in the NMDA receptors). Since we used NMDA
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receptors, we expect our results to be remain valid without explicitly
implementing synaptic delays.



APPENDIX B
Mean-field approximation

The essence of the mean-field approximation is to simplify the integrate-
and-fire dynamics by replacing after the diffusion approximation ?, the
sums of the synaptic components by the average DC component and a
fluctuation term. The stationary dynamics of each population can be
described by the population transfer function, which provides the av-
erage population rate as a function of the average input current. The
set of stationary, self-reproducing rates for the different populations in
the network can be found by solving a set of coupled self-consistency
equations.

The mean-field approximation assumes that the network of integrate-
and-fire neurons is in a stationary state. In this formulation the po-
tential of a neuron is calculated as:

τx
dV (t)

dt
= −V (t) + µx + σx

√
τxη(t) (B.1)

where V (t) is the membrane potential, x labels the populations, τx is
the effective membrane time constant, µx is the mean value the mem-
brane potential would have in the absence of spiking and fluctuations,
σx measures the magnitude of the fluctuations and η is a Gaussian
process with absolute exponentially decaying correlation function with
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time constant τAMPA. The quantities µx and σ2
x are given by:

µx =
(Textνext + TAMPAn

AMPA
x + ρ1n

NMDA
x )VE + ρ2n

NMDA
x 〈V 〉

Sx
+

(B.2)

+
TIn

GABA
x VI + VL

Sx

σ2
x =

g2
AMPA,ext(〈V 〉 − VE)2Nextνextτ

2
AMPAτx

g2
mτ

2
m

, (B.3)

where νext Hz is the external incoming spiking rate, νI is the spik-
ing rate of the inhibitory population, τm = Cm/gm with the values
for the excitatory or inhibitory neurons depending on the population
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considered and the other quantities are given by:

Sx = 1 + Textνext + TAMPAn
AMPA
x + (ρ1 + ρ2)nNMDA

x + TIn
GABA
x

(B.4)

τx =
Cm
gmSx

(B.5)

nAMPA
x =

p∑
j=1

rjw
AMPA
jx νj (B.6)

nNMDA
x =

p∑
j=1

rjw
NMDA
jx ψ(νj) (B.7)

nGABAx =

p∑
j=1

rjw
GABA
jx νj (B.8)

ψ(ν) =
ντNMDA

1 + ντNMDA

(
1 +

1

1 + ντNMDA

∞∑
n=1

(−ατNMDA,rise)
nTn(ν)

(n+ 1)!

)
(B.9)

Tn(ν) =
n∑
k=0

(−1)k
(
n

k

)
τNMDA,rise(1 + ντNMDA)

τNMDA,rise(1 + ντNMDA) + kτNMDA,decay

(B.10)

τNMDA = ατNMDA,riseτNMDA,decay (B.11)

Text =
gAMPA,extτAMPA

gm
(B.12)

TAMPA =
gAMPA,recNEτAMPA

gm
(B.13)

ρ1 =
gNMDANE

gmJ
(B.14)

ρ2 = β
gNMDANE(〈Vx〉 − VE)(J − 1)

gmJ2
(B.15)

J = 1 + γ exp(−β〈Vx〉) (B.16)

TI =
gGABANIτGABA

gm
(B.17)

〈Vx〉 = µx − (Vthr − Vreset)νxτx, (B.18)
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where p is the number of excitatory populations, rx is the fraction of
neurons in the excitatory x population, ωj,x the weight of the connec-
tions from population x to population j, νx is the spiking rate of the
x excitatory population, γ = [Mg++]/3.57, β = 0.062 and the average
membrane potential 〈Vx〉 has a value between −55 mV and −50 mV.

The spiking rate of a population as a function of the defined quantities
is then given by:

νx = φ(µx, σx), (B.19)

where φ is the transduction function of population x, which gives the
output rate of a population x in terms of the inputs, which in turn
depend on the rates of all of the populations.

φ(µx, σx) =

(
τrp + τx

∫ α(µx,σx)

β(µx,σx)

du
√
π exp(u2)[1 + erf(u)]

)−1

(B.20)

α(µx, σx) =
(Vthr − µx)

σx

(
1 + 0.5

τAMPA

τx

)
+ 1.03

√
τAMPA

τx
− 0.5

τAMPA

τx
(B.21)

β(µx, σx) =
(Vreset − µx)

σx
(B.22)

with erf(u) the error function and τrp the refractory period which is
considered to be 2 ms for excitatory neurons and 1 ms for inhibitory
neurons. To solve the equations defined by (B.19) for all xs we integrate
numerically (B.18) and the differential equation below, which has fixed
point solutions corresponding to equations B.19:

τx
dνx
dt

= −νx + φ(µx, σx). (B.23)

For the numerical integration we used an Euler routine with a step size
of 0.1.



Bibliography

Each reference indicates the pages where it appears.

Abeles, A. (1991). Corticonics. Cambridge University Press, New
York. 44, 141

Akaike, H. (1974). A new look at the statistical model identification.
IEEE Transactions on Automatic Control, 19(6):716723. 86

Albantakis, L. and Deco, G. (2009a). The encoding of alternatives in
multiple-choice decision making. P Natl Acad Sci USA, 25:10308–
10313. 10

Albantakis, L. and Deco, G. (2009b). The encoding of alternatives
in multiple-choice decision making. Proceedings of the National
Academy of Sciences, 106(25):10308–10313. 57, 90, 95, 112, 119,
133

Albantakis, L. and Deco, G. (2012). Changes of mind in an attractor
network of decision-making. PLoS Comput Biol, 7(6). 11, 22, 99,
109

Amit, D. J. (1989). Modeling Brain Function. The World of Attractor
Neural Networks. Cambridge University Press, Cambridge. 16

Amit, D. J., Brunel, N., and Tsodyks, M. V. (1994). Correlations of
cortical hebbian reverberations: theory versus experiment. Journal
of Neuroscience, 14(11 Pt 1):6435–6445. 16

Angell, F. (1907). On judgments of” like” in discrimination experi-
ments. The American Journal of Psychology, pages 253–260. 24

Audley, R. (1964). Decision-making. British Medical Bulletin,
20(1):27–31. 28, 29, 36, 135

149



150 bibliography

Bair, W., Koch, C., Newsome, W., and Britten, K. (1994). Power spec-
trum analysis of bursting cells in area mt in the behaving monkey.
The Journal of neuroscience, 14(5):2870–2892. 72

Baranski, J. V. and Petrusic, W. M. (1994). The calibration and res-
olution of confidence in perceptual judgments. Perception & Psy-
chophysics, 55(4):412–428. 29

Barttfeld, P., Wicker, B., McAleer, P., Belin, P., Cojan, Y., Graziano,
M., Leiguarda, R., and Sigman, M. (2013). Distinct patterns of func-
tional brain connectivity correlate with objective performance and
subjective beliefs. Proceedings of the National Academy of Sciences,
110(28):11577–11582. 30, 133

Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K.,
Roitman, J., Shadlen, M. N., Latham, P. E., and Pouget, A. (2008).
Probabilistic population codes for bayesian decision making. Neuron,
60:1142–1152. 10

Block, N. (1995). On a confusion about a function of consciousness.
Behavioral and Brain Sciences, 18:22–47. 58

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J. (2006).
The physics of optimal decision making: A formal analysis of models
of performance in two-alternative forced-choice tasks. Psychol Rev,
113:700–765. 10, 12

Bogacz, R., Usher, M., Zhang, J., and McClelland, J. L. (2007). Ex-
tending a biologically inspired model of choice: multi-alternatives,
nonlinearity and value-based multidimensional choice. Philos Trans
R Soc Lond B Biol Sci, 362:16551670. 10, 14

Bollimunta, A. and Ditterich, J. (2012). Local computation of decision-
relevant net sensory evidence in parietal cortex. Cereb Cortex,
22(4):903–917. 9, 10

Bollimunta, A., Totten, D., and Ditterich, J. (2012). Neural dynamics
of choice: Single-trial analysis of decision-related activity in parietal
cortex. J Neurosci, 32(37):12684–12701. 78

Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., and
Movshon, J. A. (1996a). A relationship between behavioral choice
and the visual responses of neurons in macaque mt. Vis Neurosci,
13:87–100. 7

Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., and



bibliography 151

Movshon, J. A. (1996b). A relationship between behavioral choice
and the visual responses of neurons in macaque mt. Visual Neuro-
science, (13):1486–1510. 90

Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A.
(1992). The analysis of visual motion: a comparison of neuronal and
psychophysical performance. Journal of Neuroscience, 12(12):4745–
4765. 7

Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A.
(1993). Responses of neurons in macaque mt to stochastic motion
signals. Vis Neurosci, 10:1157–1169. 7

Brody, C., Hernandez, A., Zainos, A., and Romo, R. (2003a). Timing
and neural encoding of somatosensory parametric working memory
in macaque prefrontal cortex. Cerebral Cortex, 13:1196–1207. 47

Brody, C. D., Hernndez, A., Zainos, A., and Romo, R. (2003b). Timing
and neural encoding of somatosensory parametric working memory
in macaque prefrontal cortex. Cerebral Cortex, 13(11):1196–1207. 7

Brunel, N. and Wang, X.-J. (2001a). Effects of neuromodulation in
a cortical network model of object working memory dominated by
recurrent inhibition. J Comput Neurosci, 11:63–85. 16, 21

Brunel, N. and Wang, X. J. (2001b). Effects of neuromodulation in
a cortical network model of object working memory dominated by
recurrent inhibition. Journal of Computational Neuroscience, 11:63–
85. 59, 119, 120, 141

Brunel, N. and Wang, X.-J. (2003). What determines the frequency of
fast network oscillations with irregular neural discharges? I. Synap-
tic dynamics and excitation-inhibition balance. Journal of Neuro-
physiology, 90:415–430. 143

Brunton, B., Botvinick, M., and Brody, C. (2013). Rats and humans
can optimally accumulate evidence for decision-making. science,
340(6128):95–98. 22

Churchland, A. and Ditterich, J. (2012). New advances in under-
standing decisions among multiple alternatives. Current Opinion in
Neurobiology, 22:920926. 9

Churchland, A. K., Kiani, R., Chaudhuri, R., Wang, X.-J., Pouget,
A., and Shadlen, M. N. (2011). Variance as a signature of neural
computations during decision making. Neuron, 69(4):818–831. 78



152 bibliography

Churchland, A. K., Kiani, R., and Shadlen, M. N. (2008a). Decision-
making with multiple alternatives. Nature Neuroscience, (11):693–
702. 6, 90

Churchland, A. K., Kiani, R., and Shadlen, M. N. (2008b). Decision-
making with multiple alternatives. Nat Neurosci, 11:693–702. 9,
10

Dayan, P. and Abbott, L. F. (2001). Theoretical Neuroscience. MIT
Press, Cambridge, MA. 141

de Lafuente, V. and Romo, R. (2006). Neural correlate of subjective
sensory experience gradually builds up across cortical areas. Proc
Natl Acad Sci, USA, 103:14266–14271. 64

Deco, G. and Marti, D. (2007). Deterministic analysis of stochastic
bifurcations in multi-stable neurodynamical systems. Biological Cy-
bernetics, 96:487–496. 41

Deco, G. and Rolls, E. T. (2006). A neurophysiological model of
decision-making and Weber’s law. Europeanjournalof Neuroscience,
24:901–916. 2, 40, 47, 111

Deco, G., Rolls, E. T., Albantakis, L., and Romo, R. (2013). Brain
mechanisms for perceptual and reward-related decision-making.
Progress in Neurobiology, 103:194 – 213. 17, 20

Deco, G., Rolls, E. T., and Romo, R. (2009). Stochastic dynamics as
a principle of brain function. Progress in Neurobiology, 88:1–16. 41

Ditterich, J. (2006a). Evidence for time-variant decision making. Eur
J Neurosci, 24:3628–3641. 13, 14

Ditterich, J. (2006b). Stochastic models of decisions about motion
direction:behavior and physiology. Neural Networks, 19:981–1012.
13, 14

Ditterich, J. (2010). A comparison between mechanisms of multi-
alternative perceptual decision making: Ability to explain human
behavior, predictions for neurophysiology, and relationship with de-
cision theory. Front Neurosci, 4:184. 11

Draper, N. R. and Smith, H. (1966). Applied Regression Analysis. John
Wiley and Sons, New York. 80

Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M. N.,
and Pouget, A. (2012). The cost of accumulating evidence in per-
ceptual decision making. The Journal of Neuroscience, 32(11):3612–



bibliography 153

3628. 63, 116, 124

Drugowitsch, J. and Pouget, A. (2012). Probabilistic vs. non-
probabilistic approaches to the neurobiology of perceptual decision-
making. Current Opinion in Neurobiology, 22(6):963 – 969. 36

Felsen, G. and Mainen, Z. (2009). Motor planning in the rat supe-
rior colliculus. In Conference Abstract: Computational and systems
neuroscience. Frontiers in Systems Neuroscience. 49

Festinger, L. (1943). Studies in decision: I. decision-time, relative
frequency of judgment and subjective confidence. Journal of Exper-
imental Psychology, 32:291–306. 26, 29

Foley, P. (1959). The expression of certainty. The American Journal
of Psychology. 23

Furman, M. and Wang, X.-J. (2008). Similarity effect and optimal
control of multiple-choice decision making. Neuron, 60:1153–1168.
57, 119

Furman, M. and Wang, X.-J. (2009). Similarity effect and optimal
control of multiple-choice decision making. Neuron, 60:11531168. 10

Garret, H. E. (1922). A study of the relation of accuracy to speed.
Archs Psychol., 56:1–105. 23, 26, 29

Gold, J. and Shadlen, M. (2000). Representation of a perceptual deci-
sion in developing oculomotor commands. Nature, 404:390–394. 6,
7

Gold, J. I. and Shadlen, M. N. (2007). The neural basis of decision
making. Annual Review of Neuroscience, 30:535–574. 33, 40

Graziano, M. and Sigman, M. (2009). The spatial and temporal con-
struction of confidence in the visual scene. PLoS ONE, 4(3):e4909.
2, 23, 27, 64, 133

Green, D. M., Swets, J. A., et al. (1966). Signal detection theory and
psychophysics, volume 1. Wiley New York. 23, 30

Hampton, R. R. (2001a). Rhesus monkeys know when they can re-
member. Proceedings of the National Academy of Sciences of the
USA, 98:5539–5362. 58

Hampton, R. R. (2001b). Rhesus monkeys know when they remember.
Proceedings of the National Academy of Sciences, 98(9):5359–5362.
25



154 bibliography

Hampton, R. R. (2001c). Rhesus monkeys know when they remember.
Proceedings of the National Academy of Sciences, 98(9):5359–5362.
114

Henmon, V. A. C. (1911). The relation of the time of a judgment to
its accuracy. Psychological Review, 18(3):186. 23, 28, 36, 135
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