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Abstract

Decision confidence offers a window on introspection and onto the
evaluation mechanisms associated with decision-making. Nonetheless
we do not have yet a thorough understanding of its neurophysiologi-
cal and computational substrate. There are mainly two experimental
paradigms to measure decision confidence in animals: post-decision
wagering and uncertain option. In this thesis we explore and try to
shed light on the computational mechanisms underlying confidence
based decision-making in both experimental paradigms. We propose
that a double-layer attractor neural network can account for neural
recordings and behavior of rats in a post-decision wagering experiment.
In this model a decision-making layer takes the perceptual decision
and a separate confidence layer monitors the activity of the decision-
making layer and makes a judgment about the confidence in the de-
cision. Moreover we test the prediction of the model by analyizing
neuronal data from monkeys performing a decision-making task. We
show the existence of neurons in ventral Premotor cortex that encode
decision confidence. We also found that both a continuous and discrete
encoding of decision confidence are present in the primate brain. In
particular we show that different neurons encode confidence through
three different mechanisms: 1. Switch time coding, 2. rate coding
and 3. binary coding. Furthermore we propose a multiple-choice at-
tractor network model in order to account for uncertain option tasks.
In this model the confidence emerges from the stochastic dynamics of
decision neurons, thus making a separate monitoring network (like in
the model of the post-decision wagering task) unnecessary. The model
explains the behavioral and neural data recorded in monkeys lateral
intraparietal area as a result of the multistable dynamics of the attrac-
tor network, whereby it is possible to make several testable predictions.
The rich neurophysiological representation and computational mecha-
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X RESUMEN

nisms of decision confidence evidence the basis of different functional
aspects of confidence in the making of a decision.

Resumen

El estudio de la confianza en la decision ofrece una perspectiva venta-
josa sobre los procesos de introspeccion y sobre los procesos de evalu-
acion de la toma de decisiones. No obstante todav’ia no tenemos un
conocimiento exhaustivo del sustrato neurofisioldgico y computacional
de la confianza en la decision. Existen principalmente dos paradig-
mas experimentales para medir la confianza en la decisiéon en los su-
jetos no humanos: apuesta post-decisional (post-decision wagering) y
opcién insegura (uncertain option). En esta tesis tratamos de aclarar
los mecanismos computacionales que subyacen a los procesos de toma
de decisiones y juicios de confianza en ambos paradigmas experimen-
tales. El modelo que proponemos para explicar los experimentos de
apuesta post-decisional es una red neuronal de atractores de dos capas.
En este modelo la primera capa se encarga de la toma de decisiones,
mientras la segunda capa vigila la actividad de la primera capa y toma
un juicio sobre la confianza en la decision. Sucesivamente testeamos
la prediccion de este modelo analizando la actividad de neuronas reg-
istrada en el cerebro de dos monos, mientras estos desempenaban una
tarea de toma de decisiones. Con este analisis mostramos la existencia
de neuronas en la corteza premotora ventral que codifican la confi-
anza en la decision. Nuestros resultados muestran también que en el
cerebro de los primates existen tanto neuronas que codifican confianza
como neuronas que la codifican de forma continua. Mas en especifico
mostramos que existen tres mecanismos de codificacion: 1. codifi-
cacion por tiempo de cambio, 2. codificaciéon por tasa de disparo, 3.
codificacién binaria. En relacién a las tareas de opcion insegura pro-
ponemos un modelo de red de atractores para opciones multiplas. En
este modelo la confianza emerge de la dindamica estocéstica de las neu-
ronas de decision, volviéndose asi innecesaria la supervision del proceso
de toma de decisiones por parte de otra red (como en el modelo de la
tarea de apuesta post-decisional). El modelo explica los datos de com-
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portamiento de los monos y los registros de la actividad de neuronas
del area lateral intraparietal como efectos de la dindmica multiestable
de la red de atractores. Ademads el modelo produce interesantes y
novedosas predicciones que se podran testear en experimentos futuros.
La compleja representacion neurofisiologica y los distintos mecanismos
computacionales que emergen de este trabajo sugieren distintos aspec-
tos funcionales de la confianza en la toma de decisiones.
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CHAPTER

Decision Confidence: An
Introduction

W.C. Trow: “what is the behaviourist position
on confidence?”

J.B. Watson: “I'm afraid you have come to the
wrong market. ..”

1.1 Introduction

Decision confidence has always been considered an interesting topic
of investigation since the dawning of experimental psychology (Pierce
and Jastrow, 1884) and the neuroscientific community is living a re-
newal of interest about it in the last years due to some exciting novel
findings. Decision confidence, the sensation of correctness of a choice,
is an important aspect of subjective experience and a particular case of
introspection (Persaud and Mcleod, 2008; Koch and Preuschoff, 2007).
Moreover confidence provides an estimate of the outcome of a choice
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and then proves to be very useful for planning of future actions and re-
acting to a changing environment. Indeed confidence about choice and
uncertainty about value estimation are important factors that influence
learning and the course of action in unstable, changing environments
(Rushworth and Behrens, 2008). Lack of confidence in a decision can,
for example, promote a change of mind about a previous decision or
can promote an exploratory strategy (Sallet and Rushworth, 2009).
Therefore decision confidence is a fundamental feature of cognition
giving rise to complex adaptive behavior.

Nevertheless, despite the importance of confidence, very little is known
about the neural mechanisms giving rise to this feature of our cogni-
tion. This is probably due to the fact that confidence levels have
always been assessed in human psychophysical experiments by means
of verbal ratings that are unfeasible with animal models used in neu-
rophysiology. In the last five years the development of new experi-
mental procedures that measure confidence on the basis of subjects
behavior opened the doors of neurophysiology to the study of confi-
dence (Kepecs et al., 2008; Kiani and Shadlen, 2009). In parallel new
models of decision confidence were proposed based on both attractor
neural networks and diffusion processes (Insabato et al., 2010; Moreno-
bote, 2010; Pleskac and Busemeyer, 2010) and a better understanding
of the spatial and temporal construction of confidence was undertaken
with psychophysical methods (Graziano and Sigman, 2009; Zylberberg
et al., 2012). The main objective of this thesis is to explore and try to
elucidate the neurocomputational mechanisms of decision confidence.
We will work in the context of attractor neural networks composed
of integrate-and-fire neurons with detailed synaptical dynamics. This
framework has proved to be very fruitful in explaining many aspects
of decision-making (Wang, 2002b; Marti et al., 2006; Deco and Rolls,
2006; Pannunzi et al., 2012) and its biological plausibility allow to ac-
count for (and make prediction about) neural data. Moreover some
steps have been done to link these models to simpler phenomenologi-
cal diffusion-like models (Wong and Wang, 2006; Wong and Huk, 2008;
Roxin and Ledberg, 2008a). Therefore we think that this level of de-
scription can supply a connection between the different explanation
and description levels of decision confidence.

In order to give a general picture of the phenomenon that can serve to
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SenSOI’y Value
decision-makin4 »| confidence
motor < confidence-based
decision [

Figure 1.1: Pipeline of decision and confidence processing. Left part (in
gray) represents the simplified sensory-motor path of a perceptual decision-
making. On the right (in red): modules involved in confidence estimation
and confidence-related decisions. The “confidence” module receives input
from the “decision-making” stage, thereby implementing a sort of monitor-
ing of the decision process. This module represents the reliability of the de-
cision process. The “confidence-based decision” module makes a judgment
based on the confidence representation coming from “confidence” module
and value signals about the given options, coming from the “value” module,
and transmits this second decision to the “motor” stage.

guide the discussion we would like to sketch the essential pipeline of a
simple decision task involving confidence computations as in fig.1.1.

The left part of the graph represents a usual perceptual decision. In
this context sensory neurons encode the relevant information about
the stimulus and inform decision neurons. Hence, once the decision
has been computed, the motor plan can be elaborated by the “mo-
tor” module. When the decision confidence is going to have a role in
the behavioral output one needs to consider also the right part of the
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graph. A new module (“confidence”) can compute the confidence in
the decision by monitoring the activity of the decision area. Then the
confidence information can be compared with informations about the
value of different options and a new confidence-related decision can be
taken (e.g. the post-decision wagering experiments well summarized
by Kepecs and Mainen (2012)). In this outline it is reasonable that
the “confidence” module would encode continuously the decision con-
fidence. However, if the decision confidence is ever going to have an
influence on the behavior, at some point in the sensory-motor path
this information need to be discretized, in order to select one course
of action (e.g. in the “confidence-based decision” module for making
confidence-related decisions).

Of course this is an oversimplified schema. For example, we didn’t
included top down influences, that could be in place at any level
of the process. We also didn’'t take into account the role of other
functional modules like the reward system or any attentional mod-
ule. While the study of a more complex schema is surely valueable we
wanted to propose here a very simple pipeline to first understand more
closely the relationship between “decision-making”, “confidence” and
“confidence-based decision” modules. Indeed in this dissertation we
will ask questions like: Are neurons in the brain coding the confidence
on a continuous scale? Is the confidence representation abstract and
task independent or is it influenced by the requirements of the environ-
ment? Are confidence neurons acting as a confidence-based decision
network? To what extent can we conceptualize decision confidence as
a monitoring of the decision-making process? Are the different func-
tional modules implemented in different neural structures?

We will try to answer to these questions, more or less explicitly, through-
out the next chapters.

Our discussion will be developed as follows. In this first chapter we
will briefly present the state of the studies in decision-making mainly
concentrating on neurophysiological findings and we will present the
two main competing! theoretical frameworks: attractor neural net-

'We are not entering into this discussion but we want to remark that ANN
and DDM are probably considered as competing frameworks more for social and
historical reasons than for theoretical reasons.
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work (ANN) and drift diffusion models (DDM). We will then review
the main results in the study of decision confidence. We will separate
this review in three sections for psychophysics, neurophysiology and
theoretical models. In the next three chapters we will present the re-
sults of the investigation that brought to the writing of this thesis. In
chap.2 we will present a model of Orbitofrontal Cortex (OFC) neu-
rons that encode decision confidence (Kepecs et al., 2008). In chap.3
we will analyze the activity of neurons in the ventral Premotor Cor-
tex (PMv) of monkeys that confirms some predictions of the model
presented in chap.2 and produces new evidences about decision con-
fidence. In chap.4 we present a new model that accounts for data
recorded by Kiani and Shadlen (2009) and elucidates the mechanism
of uncertain option experiments (for a discussion about the experimen-
tal procedures for confidence measuring see section 1.2.3). Finally in
the last chapter a we will discuss the critical issues emerging from this
work.

1.2 State of the Art

1.2.1 Neuroscience of Decision-Making

Parts of this section are included in Insabato,A. et al., The influence
of spatio-temporal structure of noisy stimuli in decision-making. Sub-
mitted

Neurons encoding the various stages of a choice have been found in
several brain areas using different tasks and modalities. The vast ma-
jority of these tasks, beyond the deep differences in stimulation, tim-
ing, motor output, etc. are all based on the idea of an n-alternative
forced-choice (nAFC), where subjects are always required to commit
to a choice between n alternatives (n = 2,3,...), even when there is
no evidence at all for choosing one of the n. In this section we will
review some seminal works of 2AFC, although by no means we aim to
present a comprehensive review of the extant literature. In particular
we will focus on perceptual decisions, leaving aside the studies on pref-
erential choice, value based decisions, etc. In addition we will limit our
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discussion to experimental results obtained in visual and somatosen-
sory tasks, since there is a great amount of evidence about the neural
correlates of decision-making in these two modalities.

In visual perception, the great richness of features of our visual expe-
rience enabled the design of a variety of decision-making tasks, includ-
ing (but not limited to) the discrimination of motion (e.g. Shadlen
and Newsome (2001); Gold and Shadlen (2000)), heading Heuer and
Britten (2004), disparity Nienborg and Cumming (2009), and bar ori-
entation Vzquez et al. (2000); Pardo-Vazquez et al. (2008). One of the
prevalent tasks is the random dot motion (RDM) direction discrimi-
nation (e.g. Snowden et al. (1991b); Shadlen and Newsome (2001)).

Figure 1.2: The RDM task. Top row: the fixed duration version of the
task. The subject has to wait until the end of a delay interval after the
extinction of the stimulus for making the saccade. Middle row: the reaction
time version of the RDM task.In this task the subject can freely decide
when to make the saccade. Bottom row: multiple choice version of the
reaction time experiment (Churchland et al., 2008a). The subject has to
take a decision between four possible directions of motion.

In this task (sketched in fig.1.2) subjects view a display where some
dots have random direction of motion while others move coherently in
one direction. Subjects have to decide which is the direction of coher-
ent motion (even when there is none) and the typical response is made
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by an oculomotor movement towards a visual target. The percentage
of dots moving coherently determines the difficulty of the trial. This
task allows to study the different parts of a decision: evidence for-
mation, its integration into a decision signal, the holding in memory
of the decision, the speed of the decision process, and the commit-
ment to a choice. Neurons in middle temporal area (MT) are tuned
to motion and therefore provide the sensory evidence for the decision
Britten et al. (1992, 1993, 1996a); Shadlen et al. (1996), whereas lat-
eral intraparietal area (LIP) and frontal eye fields (FEF) were found to
integrate the evidence into a decision signal. After stimulus onset LIP
neurons present a dip in firing rate and subsequently the activity differ-
entiates according to the subject’s choice: for stimuli moving towards
the response field (RF) of the neuron, the firing rate ramps up, while
for movements in the opposite direction, the rate decreases (see fig.1.3
for a pictorial representation). The slope of the ramping correlates
with trial difficulty. Both in reaction time (RT)Roitman and Shadlen
(2002b) and fixed duration experiments Shadlen and Newsome (2001);
Gold and Shadlen (2000), the activity reaches an asymptotic value
about 70 ms before saccade initiation, thus suggesting the existence
of a decision criterion like the one postulated by diffusion-like models
(see next Section).

In the somatosensory domain, the vibrotactile frequency discrimina-
tion task has also provided, in the last decades, a huge amount of
evidence about decision processes.

In this task, the subject’s fingertip is stimulated with a vibrator in
two subsequent intervals separated by a delay (see fig.1.4). The sub-
ject must decide whether the second stimulation (f;) has a higher or
a lower frequency then the first one (f;) and communicate the deci-
sion by pressing one of two buttons Mountcastle et al. (1990); Salinas
et al. (2000). Neurons in primary somatosensory cortex (S1) have
been found to increase their firing rate as a function of the stimulus
frequency. Thus they encode the salient stimulus feature for the de-
cision. During the delay between the two stimulations, the frequency
of the first one must be kept in memory and neurons in second so-
matosensory cortex (S2), medial and ventral premotor cortices (MPC,
VPC) and dorsolateral prefrontal cortex (dIPFC) were identified to
encode stimulus frequency in this period Romo et al. (2002b); Brody
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Figure 1.3: Illustration of the activity of neurons in LIP. The firing rate
after the stimulus is predictive of the choice and correlates with the difficulty
(the percentage of coherently moving dots).
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Figure 1.4: Vibrotactile frequency discrimination task. The subject holds
an immovable key while a fingertip of the other is in contact with the vi-
brator (KD phase; top row). The fingertip is stimulated with a vibration
with frequency f1 and after a delay a second stimulation with frequency
f2 is applied. The subject has to compare the two frequencies and decide
whether the second one was higher of lower that the first one. When the
second stimulus ends the subject can release the key (KU) and communicate
the decision by pressing one of two buttons (PB; second row).

et al. (2003b); Hernndez et al. (2002). When the second stimulation
is applied, the comparison between f1 and f2 must be evaluated and
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neurons in premotor and prefrontal cortices (and to a minor extent also
in S2) encode this comparison in their firing rate, while other neurons
encode either f; or fo. By adding a delay between f; and the response,
Lemus et al. Lemus et al. (2007) found that the firing of some MPC
neurons during this period reflects the comparison process, while other
neurons still encode either f; or fs, thus suggesting a possible role for
this area in the post-decision processing of the choice, as already ob-
served in other areas Kepecs et al. (2008); Kiani and Shadlen (2009);
Pardo-Vazquez et al. (2008).

While the analysis of the functioning neural systems can provide a
great insight into the biological substrate of behaviour, as demon-
strated by the results with neuronal recordings in monkeys discussed
above, our understanding of these phenomena may also pass through
the possibility of directly influence the behaviour by acting on neural
systems. Following this approach, several studies have demonstrated
that electrical micro-stimulation of areas involved in decision-making,
both in the somatosensory [26] and in the visual [2729] domain, show
similar effects to those observed when the sensory organs receive the
stimulation.

Although the study of 2AFC has paved the way into the basic prin-
ciples underlying decision-making, these tasks neglect important as-
pects inherent to most decisions that can otherwise still be considered
in highly simplified experimental scenarios such as those used in typ-
ical psychophysical or neurophysiological experiments. Such aspects
include the consideration of multiple alternatives, the possibility of
changing one’s mind or the effect that different types of irrelevant in-
formation (e.g. noise) play on decision-making.

The study of decision-making between multiple alternatives was ad-
dressed from a psychophysical perspective already in the 50s (e.g. Hick
(1952)), but only in the last few years, and in the context of a RDM
task, have neurophysiological recordings become available (Churchland
et al., 2008b; Bollimunta and Ditterich, 2012; Louie et al., 2011) (see
Churchland and Ditterich (2012) for a review). It is worth noting that
theoretical attempts to account for multiple choice decision-making
had already been done over the past 40 years (Tversky and Simonson,
1993; Tversky, 1972; Roe et al., 2001; Usher and McClelland, 2001;



10 DECISION CONFIDENCE: AN INTRODUCTION

Bogacz et al., 2007). Indeed, a family of models known as race models
(Vickers, 1970) where each target (or decision) is described by an ac-
cumulator, which is close in formulation although not mathematically
equivalent to DDM (Bogacz et al., 2006), can be easily extended to
multiple targets by simply adding more integrators.

Churchland et al. (2008b) also reported behavioral results and for the
first time recorded neurophysiological responses in monkeys (area LIP)
on a two- and four-choice direction-discrimination decision task (for a
representation of the task see fig.1.2 bottom row). These results have
been theoretically modelled in different studies (Beck et al., 2008; Fur-
man and Wang, 2009; Albantakis and Deco, 2009a). On one side,
Beck et al. (2008) followed a probabilistic approach with special em-
phasis on optimality whereas Furman and Wang (Furman and Wang,
2009) and Albantakis and Deco (Albantakis and Deco, 2009a) pursued
a neurodynamical approach with an emphasis on obtaining a detailed
biophysical description of the circuitry underlying decision-making.

Of special interest is the situation when multiple choices simultane-
ously receive evidence Niwa and Ditterich (2008a) tested human par-
ticipants on a 3AFC version of the RDM task. A key aspect about
their experimental setting was that a multicomponent RDM stimulus
was considered, i.e. the stimulus was comprised of up to three co-
herent motion components instead of just one direction of coherent
motion. Thus, the amount of sensory evidence for all three alterna-
tives could be controlled for. In a subsequent study, Bollimunta and
Ditterich (2012) used the same experimental paradigm with monkeys
while recording neurophysiological activity from LIP and suggested
that a unique variable, net motion strength (NMS), in the 3AFC task
is sufficient to predict monkeys accuracy and RTs. The NMS is defined
from: 7) amount of information associated with the highest coherence,
cpro = 1, and 1) average coherence of the second (c2) and third (c3)
components, cAnTI = 02;03, as NMS = cpro — cantr, in an attempt
to encapsulate in a single signal all evidence against the dominant
component. Interestingly, their results seem to challenge the class of
ANN models previously described, which explain very well both be-
havior and neural activity in decision-making tasks. Specifically, the
authors suggest that competition cannot solely be mediated by lateral
inhibition and indicate that feedforward inhibition is a necessary com-
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ponent of the neural circuitry underlying their data. Such conclusions
are based on the fact that the firing rates of decision neurons seem to
show an earlier modulation due to the information providing evidence
against the target than to the information in its favour. It is worth
noting, however, that in a previous work (Ditterich, 2010), different
diffusion models (e.g. with/without leak, lateral/feedforward inhibi-
tion) were tested on these experimental data and it was seen that all
models explained equally well the behavioral data. In particular, one
of the DDMs used in this study resembled a commonly used biolog-
ically plausible ANN model with one common inhibitory pool, thus
suggesting that a spiking neural network could account as well for the
behavioral data. Furthermore, in contrast to the conclusions derived
from the reported experimental results, the NMS is unable to predict
behavioral measurements in unbalanced cases, i.e. those cases in which
the inputs to all pools are allowed to vary independently and the differ-
ence between the inputs to the pools with less coherently moving dots
are large (this can be easily understood when considering a largely
asymmetric stimulus, e.g. 50% coherence for the strongest motion
components, 49% for the second, and 1% for the weakest component).

It is also worth noting that in most studies it is considered that a
decision in both the DDM and the ANN framework is made once an
established threshold is reached. This leads one to ask how such a
mechanism could accommodate a change of mind. Resulaj et al. (2009)
addressed this question experimentally by means of a psychophysical
RDM task, where human subjects had to indicate the selected choice
by moving a handle towards a left or right target (fig.1.5). By using
continuous hand movements, as opposed to ballistic saccades, changes
of mind could (occasionally) be observed in the handle traces.

Although these findings seem to pose a challenge to ANN (given the
previously established stability of the decision-attractors), Albantakis
and Deco (2012) showed that the attractor picture is entirely consis-
tent with the reported experimental data. This is the case when the
system operates close to bifurcation, thus separating a state of cate-
gorical decision-making from a multi-stable region. In this region, the
existence of an attractor encoding the scenario where all possible al-
ternatives fire at a high rate, makes it difficult to reach a decision, thus
facilitating changes of mind. It is remarkable that a similar dynamical
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Figure 1.5: Representation of the task used by Resulaj et al. (2009) to
study the change of mind in decision-making. Subjects decide about the
motion direction and commit to a choice using a relatively slow hand move-
ment. This procedure allows to record the initial preference of the subject
while the ongoing integration of the evidence can still bring to a change of
the initial commitment. Top row: a trial where no change occurs. Bottom
row: a trial where the subject changes her mind.

regime is used here in chap.4 to account for confidence measurements
in an “unsure option” task.

1.2.2 Two Theoretical Frameworks: Drift
Diffusion Models and Attractor Neural
Networks

As has been previously stated, 2AFC have been commonly used to
investigate decision-making processes. Although several theoretical
models with different flavors have been proposed, all of them share the
fundamental assumption that an integration of noisy evidence over
time takes place, thus accumulating such evidence until a decision is
made (Bogacz et al., 2006). It is beyond our scope to describe the
details of each of them, and consequently, we will only focus on the two
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main competing theoretical frameworks, namely the diffusion models
and the attractor neural networks.

Diffusion models

One dimensional diffusion Historically, the DDM (Stone, 1960;
Laming, 1968; Ratcliff, 1978) was developed first and has been broadly
used since then. The equation implementing the DDM in a 2AFC task
is based on a continuous variable, (), representing the accumulated
difference between the two alternatives. In its simplest implementa-
tion, z(t) is integrated over time according to:

dr(t) = p + o* dW (1.1)

where dt is the accumulated time interval, p is the evidence to be
accumulated (inversely proportional to task difficulty and named drift
rate), and o2 dW, the so-called noise-diffusion term. The value of dW
is a number extracted from a normal distribution with zero mean and
standard deviation equal to the square root of dt. The decision-making

process is accomplished when z(t) reaches one of the two boundaries:
-a/2 or a/2.

The overall RT can be thought of as the sum of the time that x(¢)
takes to reach the boundary, i.e., the decision time, and non-decision
time components that account for sensory and motor processing. It is
worth noting that standard implementations of the DDM may include:
1) across-trial variability in starting point (x(0) = z), thereby imple-
menting the possibility of fluctuations in the starting point value from
trial to trial; 2) across-trial variability in the non-decision component
of processing, accounting for the possibility of fluctuations in non-
decision times from trial to trial; and 3) across-trial variability in drift
rate, which considers fluctuations in the drift rate from trial to trial.
DDM accounts notably well for RT and performance distributions for
different task procedures and speed-accuracy trade-offs (e.g. with or
without time pressure; see Ratcliff and McKoon (2008) for a review).
Moreover, it has been shown that DDM can reproduce the shape of
the RT distributions both when it is Gaussian (Ditterich, 006a,b) and
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when it has the usual positive skewness (Ratcliff and Smith, 2004; Rat-
cliff and McKoon, 2008). One of the main strengths of the DDM stems
from the simplicity to fit its output to behavioral data (Vandekerck-
hove and Tuerlinckx, 2007). In this respect, DDM has been used to
test a broad range of psychophysical hypotheses (e.g. Ratcliff et al.
(2012)).

Race model When the task requires a decision among multiple al-
ternatives the so called “race model” (Vickers, 1970) seems to be a
more natural option. Indeed the race model represents the decision
process as a race between two or more accumulators. Each accumula-
tor is associated with a choice and the one that hits first the boundary
determines the decision. The dynamics of each accumulator is gov-
erned by a diffusion process like in the one dimensional DDM. There-
fore this model can naturally account for multiple choices decisions
just by adding more accumulators. One dimensional DDM and race
model are similar but they are not equivalent. Moreno-bote (2010)
used a very clear formalism that allows to understand one dimensional
diffusion model and race model as the two extremes of a continuum.
Indeed we can write the equation for two integrators as:

dry(t) =y + o*[\/1 — pdWy + /pdW,] (1.2)
dro(t) = s + o*[\/1— pdWa + \/pvdW,] (1.3)

where p is a correlation coefficient that controls the degree of correla-
tion between the input of the two integrators and v € —1, 1 determines
the sign of the correlation . When the p = 0 the two accumulators are
independent and the system implements a race mechanism. On the
contrary when p = 1 and v = —1 the two integrators are perfectly
anticorrelated (each one is the antineurons of the other) and they im-
plement a classical DDM. Fig.1.6 shows this schema.

This schema however does not take into account interactions between
the accumulators (for a discussion see Bogacz et al. (2007).

As previously noted, a number of features (e.g. the average and in-
stantaneous drift, or a change in boundaries (Ditterich, 006a,b), among
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Figure 1.6: The degree of correlation of the input to the integrators control
the behavior of the system. At the extremes of the spectrum there are the
classical diffusion model (perfectly anticorrelated) and the race model (in-

dependent). Between the two lies the entire spectrum of half-anticorrelated
models (modified from Moreno-bote (2010).

others) can be easily added to the simple versions of DDMs, thereby
leading to improvements in their capability to reproduce behavioral
data. However, it is still not clear which fundamental insights can be
extracted from such accurate behavioral accounts. In a way, although
adding and tuning new parameters may lead to substantial fitting im-
provements, it is not always the case that this goes hand to hand with
an enhanced understanding of the fundamental underlying processes.
Furthermore, one should be specially cautious when interpreting the
results associated with the exploitation of the DDM fitting capabilities.
Indeed a nave interpretation of Occam’s razor together with an over-
fitting analysis could lead to mistaken interpretations. As pointed out
by Sober (1994) neither the simplicity nor the goodness of fit should be
sharp criteria for choosing among different models of a phenomenon.
Rather models should be selected according to their ability to survive
in the experimental arena. A model should challenge new experiments
with clear predictions and should be considered invalid when these
predictions don’t meet the experimental results.

Attractor neural networks

The DDM is a phenomenological model, and therefore, it does not
attempt to provide a detailed description of the neural mechanisms
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underlying decision-making. In contrast, nonlinear ANN models of
spiking neurons crucially seek a biophysically inspired description of
the processes underlying decision-making. These type of ANN had
been initially used to explain the neurophysiological basis of other
cognitive functions such as working memory (Amit, 1989; Amit et al.,
1994; Brunel and Wang, 2001a). Indeed, the observation that besides
decision-related activity LIP neurons also exhibited persistent activity
during delay periods (Shadlen and Newsome, 2001) inspired Wang to
explore the possibility that ANN of working memory could also explain
the integration of stimuli and the formation of perceptual choices Wang
(2002a).

The basic computational units of these ANN models are neurons rep-
resented usually with the integrate-and-fire model. Here we briefly
describe the system while all the mathematical details are given in
the appendix A. The integrate-and-fire model describes the membrane
voltage of a neuron through a differential equation until a voltage
threshold is reached. The crossing of the threshold triggers a spike
which is taken to be a stereotyped event - i.e. when the threshold is
crossed the spike count is incremented by one, the membrane poten-
tial is reset to a predetermined value and a refractory period follows
in which the neuron doesn’t integrate the input. Usually the incom-
ing input spikes to a neuron are processed through dynamic synapses
that represent different ionic channels: a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) and N-Methyl-D-aspartic (NMDA)
for excitatory connections and y-Aminobutyrric acid (GABA) for in-
hibitory connections. Nonetheless sometimes instantaneous synapses
are used in conjunction with synaptic delays (see e.g. 7, p.125-153 and

7).

Typical configuration of ANNs used to account for decision-making
processes will be organized into n + 2 populations (pools) of leaky
integrate-and-fire neurons with common inputs and connectivities, where
n corresponds to the number of choices in nAFC tasks. The n inte-
grators are implemented by pools of excitatory neurons that respond
selectively to evidence in favor of one of the possible decision tar-
gets. Moreover, a homogeneous pool of inhibitory neurons, globally
connected to all neurons in the network, and a pool of excitatory neu-
rons, which is not selective to any of the directions of motion, are
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also considered (see fig.1.7). The models have an all-to-all connectiv-
ity with recurrent connections between cells from the same selective
pool increased by a factor w, > 1 with respect to the baseline connec-
tivity level, and weakened connectivities by a factor w_ < 1 between
cells from different selective pools, following the hypothesis of Hebbian
plasticity (i.e. synaptic efficacies are strengthen when pre- and post-
synaptic neurons activities are correlated). This structure of synaptic
weights is a key aspect in the formalism of attractor dynamics, which
endows the system with the capability to implement a biased compe-
tition of the different populations of excitatory neurons that is medi-
ated by inhibition, and establishes the competition and cooperation
processes as the basic elements of the underlying neural computations.
Therefore ANNs model the decision process as a competition between
neural pools biased by the evidence for the decision. This system dif-
fers from a race model in that the race does not implement interactions
between the “competitors” (however we will see later that a diffusion
process is a valid reduction of ANN in a particular condition).

In ANN models, the long-term behavior of the nonlinear dynamical
system defined by neural networks of interconnected neurons, is de-
scribed by the so-called fized points that partition the configuration
space into basins of attractions. Such basins arise from the initial con-
figurations of the system, which lead to the same attractor. Fig. 1.8
illustrates an example landscape of attraction basins. In this theoreti-
cal framework, 2AFC decision-making can be modeled by an attractor
network with a minimum of two stable fixed points, which represent
the two alternatives. Such a system would display bistability and the
transition from an initial configuration towards one of the two stable
attractors (i.e. stable unless a sufficiently large amount of noise takes
the network out of the attractor) would correspond to the decision
process. In these models, the usual way to account for RT's, a decision
is considered to be made whenever the activity of one of the pools
reaches a threshold (but see the last paragraph of sec.1.2.1 for a brief
discussion).

The parameters of the ANN can shape the attractors landscape in dif-
ferent ways. The bifurcation diagram is a useful representation that
shows the changes in attractors landscape due to the modification of
a parameter. Fig.1.9 (modified from Deco et al. (2013)) shows an



18 DECISION CONFIDENCE: AN INTRODUCTION

Inhibitory

—o

|
c@al)c

non selective

<« ext

Figure 1.7: Architecture of an example ANN network for 2AFC decision-
making. The connectivity in the network is all-to-all and strength of con-
nections is assigned according to a Hebbian rule. The selective pools R and
L inhibit each other indirectly through connections to the inhibitory pool
and diminished mutual excitatory connections (w_). The increased recur-
rent connectivity of selective pools (w4 ) and the mutual inhibition produce
a competition between selective pools. The external input can bias the
competition in favor of one or the other pool.

example bifurcation diagram obtained varying the input strength (fre-
quency of the incoming external spike train) to the selective pools.
This parameter is important in ANN since it can manipulate the speed-
accuracy trade-off of the system. Indeed we can see that for very low
values of the input only the spontaneous attractor is stable and hence
no decision can be taken. After the first bifurcation two decision at-
tractors appear. Depending on the stability of the spontaneous sym-
metric state the system will work in a multistable or bistable regime
exhibiting different behaviors (an example of this difference is evident
in the results of chap.4). Finally for very high intensity of the input
the decision attractors disappear and again no decision is possible.

Especially in the last decade, as experimental evidence grows, both
competing theoretical frameworks succeed to account for the reported
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Figure 1.8: The landscape of an example ANN. The dynamical system
defined by the neural network can be understood with the analogy of a ball
falling on a surface. The ball will fall along the direction of local maximal
gradient. The wells represent the fixed points of the system since at the
bottom of the well the potential energy of the ball is at a minimum and it
want escape from that state. In the first configuration (left) the spontaneous
state (with both pools having low firing rate) is stable and the system
remains there until noise fluctuations bring it into the basin of attraction
of another fixed point. In the second configuration (right) the spontaneous
state is no longer stable and the system dynamics evolve towards one of the
two decision attractors (note that this is only an illustration and not the
only possible configuration of a decision mechanism).
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Figure 1.9: Bifurcation diagram of an example ANN. The input strength
modifies the attractors landscape producing in turn different trade-offs be-
tween speed and accuracy of the decision. Solid lines indicate the firing
rate of selective pools for stable solutions of the dynamical system (in the
spontaneous and symmetric states both pools have the same firing rate).
Dotted lines shows unstable solutions. The illustration on the top shows
the hypothetical 2D potential profiles associated with the different dynam-
ical regimes. Modified from Deco et al. (2013).

findings. One such example can be illustrated by the observation that
motion pulses influence both behavior and LIP neural activity, with the
later pulses being less relevant than earlier ones (Kiani and Shadlen,
2005; Kiani et al., 2008). A DDM with a leakage term could reproduce
this experimental finding, while the time-varying dynamics of the at-
tractor model explained both behavioral and neural data (Wong et al.,
2007; Wong and Huk, 2008) as much as the simplest DDM (Kiani et al.,
2008).

At the expense of a poorer biological plausibility, one of the great
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advantages of DDM over the ANN is the fact that the DDM is de-
scribed by a single equation. In contrast, ANN are endowed with
richer dynamics, thus allowing to model neurophysiological data (i.e.
neuronal spiking activity) that can be subsequently used to derive be-
havior. Moreover, the mean-field approach (Brunel and Wang, 2001a)
can also reduce the amount of equations of the ANN, thus leading to
a formal framework that allows to treat the dynamical system analyt-
ically. With this approach, the number of equations is proportional
to the number of different populations of neurons. Notably, a fur-
ther step has been done with an approach that combines numerical
and analytical methods (i.e. mean-field) to reduce the system to two
rate equations in Wong and Wang (2006). Later, Roxin and Ledberg
(2008b) derived a formal relationship between the mean-field reduction
of the ANN and a one-dimensional nonlinear diffusion in the proximity
of the bifurcation to bistability, where the spontaneous state destabi-
lizes. This is a valid reduction for all winner-take-all models, and allows
to relate the variables of the nonlinear diffusion process to those of the
full spiking-neuron model, and thus, to neurobiologically meaningful
quantities.

Regarding the biological plausibility of the DDM another approach,
different from the one of Roxin and Ledberg (2008a), has been taken
by Smith (2010). He first shows that a Wiener process is equivalent
in the long time to an integrated OU process. As already well known
from the Stein model Stein (1965), an integrated OU process can be
approximated to a pair of opponent shot noise processes (when their
intensity is very high). Thus, the link with neurophysiology can be es-
tablished in that shot noise processes have been used to model neural
responses to action potentials. This approach is interesting and inde-
pendent of the