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En el desván antiguo de raída memoria, 
detrás de la cuchara de palo con carcoma, 
tras el vestuario viejo ha de encontrarse, o junto al muro 
desconchado, en el polvo 
de siglos. Ha de encontrarse acaso más allá del pálido gesto de una mano 
vieja de algún mendigo, o en la ruina del alma 
cuando ha cesado todo. 
 
Yo me pregunto si es preciso el camino 
polvoriento de la duda tenaz, el desaliento súbito 
en la llanura estéril, bajo el sol de justicia, 
la ruina de toda esperanza, el raído harapo del 
miedo la desazón invencible a mitad del sendero que conduce al torreón 
derruido. 
 
Yo me pregunto si es preciso dejar el camino real 
y tomar a la izquierda por el atajo y la trocha, 
como si nada hubiera quedado atrás en la casa desierta. 
Me pregunto si es preciso ir sin vacilación al horror de la noche, 
penetrar el abismo, la boca del lobo, 
caminar hacia atrás, de espaldas hacia la negación 
o invertir la verdad, en el desolado camino. 
 
O si más bien es preciso el sollozo de polvo en la confusión del verano 
terrible, o en el trastornado amanecer del alcohol con trompetas de sueño 
saberse de pronto absolutamente desiertos, o mejor, 
es quizá necesario haberse perdido en el sucio trato del amor, 
haber contratado en la sombra un ensueño, 
comprado por precio una reminiscencia de luz, un encanto 
de amanecer tras la colina, hacia el río. 
 
Admito la posibilidad de que sea absolutamente preciso 
haber descendido, al menos alguna vez, hasta el fondo del edificio oscuro, 
haber bajado a tientas el peligro de la desvencijada escalera, que amenaza a 
ceder a cada paso nuestro, 
y haber penetrado al fin con valentía en la indignidad, en el sótano oscuro. 
Haber visitado el lugar de la sombra, 
el territorio de la ceniza, donde toda vileza reposa 
junto a la telaraña paciente. Haberse avecinado en el polvo, 
haberlo masticado con tenacidad en largas horas de sed 
o de sueño. Haber respondido con valor o temeridad al silencio 
o la pregunta postrera y haberse allí percatado y rehecho. 
 
Es necesario haberse entendido con la malhechora verdad 
que nos asalta en plena noche y nos devela de pronto y nos roba 
hasta el último céntimo. Haber mendigado después largos días 
por los barrios más bajos de uno mismo, sin esperanza de recuperar lo perdido, 
y al fin, desposeídos, haber continuado el camino sincero y entrado en la noche absoluta con 
valor todavía. 
 
El precio de la verdad,  
Carlos Bousoño. 
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Tell me, O muse, of that ingenious hero  
who travelled far and wide  
after he sacked the famous town of Troy. 
 
Odyssey, Homer. 

 

The road to excess leads to the palace of 
wisdom... 
for we never know what is enough 
until we know what is more than enough. 
 
William Blake 
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ABSTRACT 
In this thesis, we address specific efforts towards developing the precise aspect 
of ultrashort laser pulse measurement in the context of biomedical research. The 
motivation for pursuing these new developments was triggered by the vision of 
developing fundamental tools that will enable to control matter by means of 
light with exquisite precision with the added difficulty of being next to 
biological samples which are extremely sensitive and fragile. For this, light 
matter interaction needs to be extremely well controlled to avoid undesired 
effects, like cell damage due to the high peak intensity values of ultrashort laser 
pulses, as well as promoting specific physical processes like two-photon 
fluorescence excitation of a desired fluorophore embedded in some biochemical 
environment. 
We focus in the two major bottlenecks regarding ultrashort laser pulse 
measurements for multiphoton microscopy, that aim for developing (1) new 
techniques for full characterization of ultrashort pulses under different 
experimental conditions and (2) new material with specific nonlinear properties 
that enable to obtain ultrashort pulse measurements that properly catch the 
temporal shape of light and at the same time can be readily found in biomedical 
lab, specially cost effective, non fragile and non-toxic. Combination of these 
two complementary strategies provides a new ground where it is possible to 
characterise an ultrashort pulse at the sample plane of a multiphoton microscope 
in a regular biomedical research facility. 
Importantly, we approach ultrashort pulse characterisation by developing a 
different theoretical framework to the state-of-the-art and we propose few initial 
experiments that preliminary support our theoretical statements in the form of 
new optical techniques. These findings are then experimentally tested under 
different conditions, such different optical setups and different pulsed regimes 
in order to evaluate the feasibility of the tools to measure ultrashort pulses in 
conditions that were prohibitive at the time this thesis was started. The scope of 
this thesis outlines the potential of such techniques, but further efforts shall be 
addressed to assess feasibility, robustness and further limitations. 



 
 

 4 

ABSTRACT  
(ESPAÑOL) 

 

En esta tesis dirigimos esfuerzos para desarrollar técnicas que permitan la 
medición de pulsos láser ultracortos en el contexto de la investigación 
biomédica. La motivación para la búsqueda de estos nuevos desarrollos fue 
provocada por la visión de desarrollar herramientas fundamentales que permitan 
controlar en un futuro las interacciones luz-materia con una precisión exquisita, 
con la dificultad añadida de estar al lado de las muestras biológicas, las cuales 
son extremadamente sensibles y frágiles. Para esto, la interacción luz-materia 
necesita estar muy bien controlada para evitar efectos no deseados, como el 
daño celular debido a los altos valores de intensidad de pico de los láseres de 
pulsos ultracortos, así como la promoción de procesos físicos específicos como 
excitación selectiva de un fluoroforo concreto mediante fluorescencia de dos 
fotones en un contexto bioquímico determinado. 

Nos centramos en dos cuellos de botella relacionados con la medición de pulsos 
láser ultracortos en microscopía multifotónica: (1) nuevas técnicas para la 
caracterización completa de pulsos ultracortos en diferentes condiciones 
experimentales y (2) encontrar un nuevo material con propiedades no lineales 
que permita obtener mediciones de los pulsos ultracortos y que al mismo tiempo 
pueda encontrarse fácilmente en un laboratorio de biomedicina, de bajo coste, 
resistente y no tóxico. La combinación de estas dos estrategias complementarias 
proporciona un nuevo estado-del-arte en el que es posible caracterizar un pulso 
ultracorto en el plano de la muestra de un microscopio multifotónico en un 
centro de investigación biomédica regular. 

Es importante destacar que presentamos un marco teórico diferente al estado de 
la técnica para la caracterización de pulsos láser ultracortos y proponemos 
algunos experimentos iniciales que corroboran dichos planteamientos teóricos y 
permiten introducir nuevas técnicas ópticas de medida. Estos son 
posteriormente probados experimentalmente en diferentes condiciones con 
distintos niveles de complejidad y en diferentes regímenes de pulsos con el fin 
de evaluar la viabilidad de las herramientas para medir pulsos ultracortos en 
condiciones que eran antes prohibitivas en el momento en que se inició esta 
tesis. El alcance de esta tesis describe el potencial de estas técnicas, aunque más 
esfuerzos se deberán dirigir a evaluar la viabilidad, solidez y limitaciones 
adicionales en un entorno práctico. 
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ABSTRACT 
(CATALÀ) 

 

En aquesta tesi dirigim esforços per desenvolupar tècniques que permetin el 
mesurament de polsos làser ultracurts en el context de la recerca biomèdica. La 
motivació per a la recerca d'aquests nous desenvolupaments va ser provocada 
per la visió de desenvolupar eines fonamentals que permetin controlar en un 
futur les interaccions llum-matèria amb una precisió exquisida, amb la dificultat 
afegida d'estar al costat de mostres biològiquesl les quals són extremadament 
sensibles i fràgils. Per això, la interacció llum-matèria necessita estar molt ben 
controlada i evitar efectes no desitjats, com el dany cel·lular a causa dels alts 
valors d'intensitat de pic dels làsers de polsos ultracurts, així com la promoció 
de processos físics específics com excitació selectiva d'un fluoròfor concret 
mitjançant fluorescència de dos fotons en un context bioquímic donat. 

Ens centrem en dos colls d'ampolla relacionats amb la mesura de polsos làser 
ultracurts en microscòpia multifotónica: (1) noves tècniques per a la 
caracterització completa de polsos ultracurts en diferents condicions 
experimentals i (2) trobar un nou material amb propietats no lineals que permeti 
obtenir mesures de polsos ultracurts i que al mateix temps es pugui desar  
fàcilment en un laboratori de biomedicina, de baix cost, resistent i no tòxic. La 
combinació d'aquestes dues estratègies complementàries proporciona un nou 
estat-del-art en el qual és possible caracteritzar un pols ultracurt en el pla de la 
mostra d'un microscopi multifotónic en un centre d'investigació biomèdica. 

És important destacar que presentem un marc teòric diferent a l'estat de la 
tècnica per a la caracterització de polsos làser ultracurts i proposem alguns 
experiments inicials que corroboren aquests plantejaments teòrics i permeten 
introduir noves tècniques òptiques de mesura. Aquests són posteriorment 
provats experimentalment en diferents condicions amb diferents nivells de 
complexitat i en diferents règims de polsos per tal d'avaluar la viabilitat de les 
eines per mesurar polsos ultracurts en condicions que eren abans prohibitives en 
el moment en què es va iniciar aquesta tesi. L'abast d'aquesta tesi descriu el 
potencial d'aquestes tècniques, encara que més esforços s'hauran d'adreçar a 
avaluar la viabilitat, solidesa i limitacions addicionals en un entorn pràctic. 
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CHAPTER 1 
Titanium-Sapphire Laser. 
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1 Titanium-Sapphire Laser. 
 
1.1 Introduction. 
 
Titanium-doped sapphire (Ti3+:sapphire) is a widely used gain medium 
for tunable lasers and femtosecond solid-state lasers based on transition-
metal-doped material that has many advantages. It was introduced in 
1986 (Moulton, 1986), and thereafter Ti:sapphire lasers quickly replaced 
most dye lasers, which had previously dominated the fields of ultrashort 
pulse generation and widely-tuneable lasers. Importantly, Ti:sapphire 
lasers are very convenient for many applications of physics as they can 
easily be tuned to the required wavelength and allow working at very 
high levels due to their good beam quality and high output power of 
typically several watts. 

 
1.2 Titanium-Sapphire as a lasing material. 
 
 1.2.1 General material properties. 
 
All this advantages and applications can be explained as Ti3+:sapphire 
gain medium accumulates a number of properties that are not easily 
found in other materials at the same time. In what follows, we list the 
main properties of the Ti3+:sapphire laser medium. 
 
Firstly, and probably the most singular by itself, the Ti3+ ion has a very 
large gain bandwidth (much larger than that of rare-earth-doped gain 
media), allowing the generation of very short pulses and also wide 
wavelength tenability. The maximum gain and laser efficiency are 
obtained around 800 nm. The possible tuning range is from  650 to 1100 
nm, but different mirror sets are normally required for covering this large 
range, and exchanging mirror sets is a tedious task. However, latest 
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developments in material sciences and optical materials have allowed 
reducing the number of mirrors by using ultrabroadband chirped mirrors.  
 
Secondly, Sapphire (monocrystalline Al2O3) has an excellent thermal 
conductivity, and this alleviates thermal effects even at high laser powers 
and intensities. This is particularly important for some mode-locking 
schemes that will be explained below. 
 
Thirdly, there is also a wide range of possible pump wavelengths where 
powerful diode-pumped solid state lasers are available, even though they 
are located in the green spectral region. In most cases, several watts of 
pump power are used, sometimes even 20 W. Originally, Ti:sapphire 
lasers were in most cases pumped with 514 nm argon ion lasers, which 
can deliver high average powers but are very inefficient, expensive to 
operate and bulky. The appearance of other kinds of green lasers now 
available, and frequency-doubled solid-state lasers based on neodymium-
doped gain media also contributed to the spreading of the Ti:sapphire. 
The pump wavelength is, after this development, typically 532 nm, with 
a negligibly reduced pump absorption efficiency compared to 514 nm. 
 
Fourthly, the upper-state lifetime of Ti:sapphire is short (about 3.2 µs) 
and the saturation intensity is very high. This means that the pump 
intensity needs to be high so that a strongly focused pump beam with 
high beam quality is required. 
 
Fifthly, Ti:sapphire has relatively a high cross sections in spite of the 
huge emission bandwidth. This fact, together with the short upper-state 
lifetime, reduces the tendency of Ti:sapphire lasers for Q-switching 
instabilities, which is a significant advantage for mode-locking schemes. 
Additional properties of Ti3+:sapphire crystals can be read from Table 
1.1. 
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Properties of Ti3+:sapphire crystals Value 
chemical formula  Ti3+:Al2O3 
crystal structure hexagonal 
mass density  3.98 g/cm3 
Moh hardness 9 
Young's modulus 335 GPa 
tensile strength 400 MPa 
melting point 2040 °C 
thermal conductivity 33 W / (m K) 
thermal expansion coefficient  5 × 10−6 K−1 
thermal shock resistance parameter 790 W/m 
birefringence negative uniaxial 
refractive index at 633 nm 1.76 
temperature dependence of refractive index  13 × 10−6 K−1 
Ti density for 0.1% at. doping  4.56 × 1019 cm−3 
fluorescence lifetime 3.2 µs 
emission cross section at 790 nm  41 × 10−20 cm2 

 Table 1.1. Quantitative physical properties of Ti3+:sapphire crystals. (from 
http://www.rp-photonics.com/titanium_sapphire_lasers.html) 
 

1.2.2 Coupling of electronic and vibronic energy states. 
 
In Ti3+:sapphire laser gain media, which is doped with transition metal 
ions, there is a strong interaction of the electronic states of 3d electrons 
with lattice vibrations like phonons (Moulton, 1986; Wall and Sanchez, 
1990) as illustarated in Fig. 1.1(a).  
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Figure 1.1. (a) A simplified energy-level diagram of Ti3+. The electronic 
configuration of the free ion is that of an argon shell plus a single 3d 
electron. The crystal field of the sapphire lattice removes the fivefold 
degeneracy of the ground-state level of the free ion to a triplet T ground 
state and a doublet E excited state. (b) Excitation and emission diagram in 
Ti3+ ion where a blue-green photon have enough energy to pump the free 
electron from the triplet T ground state to the doublet E state. The large 
bands formed by vibronic states allow tuning the emission of photons to a 
number of wavelengths of a remarkable bandwidth. Within the laser cavity 
(c) The Ti:Al2O3 configurational diagram shows the relationship between 
the energy of the electronic states with respect to the displacement of the 
Ti3+ ion. Absorption is indicated by the vertical transition from A to B and 
occurs in the blue and green region of the spectrum as indicated to the left. 
The emission of light is indicated by the transition from C to D and occurs 
in the red to infrared region of the spectrum as indicated at the right. (a) and 
(c) pictures are from K.F. Wall and A. Sanchez in 1990. 
 
 

The simplified excitation and emission process is illustrated in Figure 
1.1(b), which includes the excitation with a green wavelength, around 
500nm as illustrated in Figure 1.1(a), followed by a vibronic relaxation 
process onto the Sapphire lattice, red-NIR photon emission, and another 
vibronic relaxation process. This vibrational–electronic, or vibronic, 
interaction leads to a strong homogeneous broadening and thus to a large 
gain bandwidth as shown in Fig. 1.1(c). In the early years of laser 
technology, vibronic lasers were sometimes called phonon-terminated 
lasers. The Ti3+:sapphire laser has only one d electron, and can only exist 
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in two energy levels as shown in Fig. 1.2. However, as the laser operates 
on a vibronic transition, it resembles a four-level laser. The possibility of 
excited state absorption of radiative transitions is eliminated due to the 
energy level structure of the Ti3+ ion, in that it has no d-state energy 
levels above the upper laser level. 

 
Figure 1.2. The left side of the pictures shows the two level states of the 
doublet state E and the three level triplet states T. The right side of the 
figure (acknowledged from reference Wall and Sanchez, 1990) shows the 
orientation of the 3d electronic orbitals with respect to the octahedrally 
coordinated nearest-neighbor oxygen atoms. 

 
Particularly, the wide tuning range of the laser is possible because of a 
large shift between the E3/2 excited state and the 2T2g ground state. The 
upper and lower level of the 2Eg state can be split above the 2T2g ground 
state as seen in Fig.1.2. 
 
In titanium-doped sapphire the Ti3+ ions substitute for the aluminium 
ions and exist in only the 3+ charge state. The energy levels of the Ti3+ 
ions are particularly simple to analyze because only a single d electron is 
in the outermost shell while the remaining 18 electrons have the filled-
shell configuration of a neutral argon atom. When the titanium ions are 
placed in a host crystal, the electrostatic field of neighbouring atoms, or 
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the crystal field, removes the five-fold angular momentum degeneracy of 
the single d electron. In Ti:Al2O3 the 3d electron electrostatically 
interacts with the electronic charges of six surrounding oxygen ions that 
are positioned at the corners of an octahedron, as shown in Figure 1.2. In 
three of the five angular momentum states of the 3d electron (designated 
as the triplet T), orbitals do not point directly at the neighbouring oxygen 
atoms; these states have lower energy than the two states in which the 
orbitals point directly at the oxygen atoms (the doublet designated as E). 
This difference in energy corresponds to the energy of a green photon (of 
about 500 nm or 19,000 cm-1), which is able to cause transitions from the 
ground state T to the excited state E. 
In addition to this, electronic energy levels of the Ti3+ ions are obviously 
perturbed by the sapphire host lattice of Al2O3. When the Ti3+ ion is in 
the excited state, the overall energy of the system can be lowered if the 
position of the Ti3+ ion displaces itself with respect to the surrounding 
oxygen atoms (the Jahn-Teller effect, Abragam et al. 1986). This 
displacement removes the degeneracy of the two excited angular 
momentum states, which leads to a splitting of the green absorption band. 
Also, as the Ti3+ ion moves to its new equilibrium position, it kicks the 
surrounding lattice and excites vibrations (or phonons); this action is why 
the Ti:Al2O3 laser is called a vibronic laser. 
The coupling between the displacements (vibrational energy levels or 
phonons of the surrounding sapphire lattice) with the electronic energy 
states of the Ti3+ ions is vital to operate the laser as shown in Figure 
1.1(c). In this Figure, pathway from A to B indicates the absorption of a 
blue-green photon, whereas going from C to D shows the emission of one 
near-infrared photon. The purple arrow, going from B to C or D to A 
indicates the relaxation by the emission of a phonon. 
Two important consequences of this must be noted. Firstly, population 
inversion in the near infrared emission band, which is mandatory for 
amplification and can be a bottleneck for amplification if the excited state 
gets full, is more easily achieved compared to other systems because the 
emission terminates on high vibrational levels of the ground state, which 
are unpopulated because of the fast vibrational relaxation rate 
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proportional to 1/τ (for Ti:Al2O3 at room temperature τ is 3.2 µs, which 
remarkably faster compared to other lasing materials like 230 µs for 
Nd:YAG and 3 ms for Ruby). Secondly, large emission bandwidth and 
broad tunability is related to the link that exists between the broad 
probability of Ti3+ ion localization at the bottom of the E potential and 
the number of possible vertical transitions to several vibrational levels of 
the T potential as the width of the emission bandwidth depends on the 
details of the potential curves. 
Ti3+ ions have no close energy states and further excitation of 3d electron 
levels is highly inefficient as they lie far above the E levels. This means 
that Ti3+ ion exhibits no excited state absorption (ESA); higher energy 
levels are far enough removed and therefore green light (pump photons) 
or red light (laser photons) cannot cause transitions from the E level to 
higher levels. The situation with other 3d transition metal ion lasers is 
more complex, and ESA is present at some level. 
Another important feature in the design of a laser is the stimulated 
emission cross section (or gain cross section) denoted as σ and measured 
in units of area relates the number of transitions from the upper to the 
lower level caused by a particular flux of photons. The total gain per unit 
length of an amplifier is given by Nσ, where N is the population 
inversion density. For a high gain amplifier and a low-threshold 
oscillation, the larger the value of σ the better. Importantly, it is possible 
to accurately estimate σ for a material by measuring the fluorescence 
profile Δf and the fluorescence lifetime τ as stimulated emission cross 
section is given by (Siegman, 1971): 

€ 

σ =
3
4π 2

λ2

n2τΔf
     (1.1) 

where λ is the peak of the fluorescence curve, n is the index of refraction, 
and Δf is the full width at half maximum of the fluorescence curve in 
frequency. From small-signal gain measurements in a Ti:Al2O3 amplifier 
we have determined the value of σ to be 3.0 x 10-19 cm2 (Wall et. al, 
1990). 
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 1.2.3 Absorption and Fluorescence  spectra in Ti3+:Al2O3 

 
One of the most singular advantages of Ti:sapphire laser is the broad 
absorption band in pump and emitted fluorescence (see Figure 1.3) as 
mentioned above. Particularly, the peak absorption of this material is 
around 490nm and this is why Argon laser (as they have a number of 
wavelengths within the blue-green region which are suitable to pump the 
medium, particularly at 488 and 514.5 nm, among other secondary with 
less emitted power, like 454.6 nm, 457.9 nm, 465.8 nm, 476.5 nm, 496.5 
nm, 501.7 nm, 528.7 nm) was originally the preferred pumping for this 
type of lasers.  

 
Figure 1.3. The emission and absorption bands of Ti:AI203. The 
absorption band, which peaks near 490 nm, occurs in the blue-green 
region of the spectrum and allows Ti:Al2O3 to be pumped by argon-ion 
lasers, frequency-doubled Nd:YAG lasers, copper-vapor lasers, or 
flashlamps. The emission band peaks near 790 nm. A weak absorption 
band that overlaps the emission band is known as the residual absorption 
(figure from Wall and Sanchez, 1990). 

 
Other suitable lasers can be found in those emitting in the green and 
yellow like copper-vapour at 510 and 578nm, respectively. However, this 
has been substituted by doubling frequency of Neodymium YAG lasers, 
with an emission peak around 532nm, as they are all solid state and this 
makes them more reliable, less bulky and simpler to operate. The 
excitation/emission in Ti3+:Al2O3 spectra are shown in black and red in 
Figure 1.3, respectively. 
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1.3 Pulse generation in Titanium-Sapphire. 
 
 1.3.1 Introduction to pulse generation. 
 
Currently, pulsed light is an important tool for studying nonlinear light-
matter interactions (multiphoton phenomena) as it enables studying 
materials in new manners. Particularly, ultrashort laser pulses enable to 
produce high order nonlinear phenomena and minimize the damage on 
the interacting sample if the amount of energy deposited in the material is 
below its breakdown threshold. These advantages are extremely 
important for studying biological specimens as will be seen onto this 
thesis.  
Pulse generation has been an intensive research topic since Charles Hard 
Townes produced the first continuous wave maser, the ancestor of the 
laser at the microwaves range in 1953. Many years later, Nicolaas 
Bloembergen got also a shared Nobel Prize in 1981 for his research of 
nonlinear optics, and particularly for his mathematical formalism that is 
still in use. However, years before Bloembergen became a Nobel laureate 
high intensity sub-picosecond lasers were already available in many labs. 
The first laser working at the femtosecond regime was built by Shank in 
1974 and utilized a dye as a gain medium. The actual good reason to 
work with dye lasers was their huge fluorescence bandwidth. Much of 
the original work on ultrashort pulse generation was thus done with dye 
lasers (Shank and Ippen, 1974; Fork et al. 1981; and Valdmanis et al. 
1985). However, dye lasers suffer from significant disadvantages such as 
rapid degradation during operation and limited output power 
fundamentally caused by the fact that the gain medium is an organic dye 
and undergoes through high intensity fields during operation that produce 
molecular changes or even damage. More importantly for the researchers, 
dye lasers required the awkward handling of poisonous and often even 
carcinogenic materials. The dyes themselves and also the solvents used 
are sometimes highly toxic, like dimethylsulfoxide (DMSO) for cyanide 
dyes, which was particularly hazardous as it significantly accelerates the 
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transport of dye molecules into the skin. Fortunately, this changed as 
soon as Titanium-sapphire lasers evolved and most labs changed to this 
solid-state technology for the many reasons mentioned above. 
 
In order for all this to happen, it was necessary to develop a deep 
understanding in many fields and particularly a correct mathematical 
modelling of the oscillation dynamics of light in resonant cavities passing 
through an amplification medium (laser cavities). This advancement 
assisted researchers to understand how laser cavities work and which 
their limitations were at a given point of time. This knowledge was key 
to design a range of improved laser cavities and develop new types of 
lasers, like pulsed lasers. 
 

1.3.2 Cavity equations and normal mode formulation. 
In this section we develop an approximation of cavity equations that 
result in normal mode formulation by assuming some ideal condtions as 
no cavity losses  and orthonormal nature of laser modes, which are not 
valid for real laser cavities, but cavity equations can help development of 
the essential laser insight necessary to understand how a laser works. 
These equations can be readily derived from Maxwell’s equations and 
obtain the real vector electric field in the cavity. We begin in general by 
using the two main expressions: 

€ 

∇ ×ε(r,t) = −
∂b(r,t)
∂t

     (1.1) 

and 

€ 

∇ × h(r,t) = j(r,t) +
∂d(r,t)
∂t

    (1.2) 

where  

€ 

b(r,t) = µ0[h(r,t) +ma (r,t)],     (1.3) 

  

€ 

d(r,t) =  ∈ ε(r,t) + pa (r,t)    (1.4) 
 and  

€ 

j(r,t) = σε(r,t).     (1.5) 
Equations (1.3) and (1.4) are the constitutive relations that model the 
response of the elements within the cavity, where 

€ 

∈  is the dielectric 
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constant which includes the dielectric permeability of the host crystal 
(around 1.3267 for Ti:sapphire crystal at 633nm) and any other dielectric 
material inside the laser cavity. The electric and magnetic dipole 
moments, 

€ 

pa (r,t) and 

€ 

ma (r,t), which are dependant on polarization, 
model the atomic transitions (i.e. laser transitions) that may be present. 
The conductivity 

€ 

σ  of Equation 1.5 stands for ohmic losses inside the 
laser cavity, which can be extended to include scattering and coupling 
losses as well. 
We then compute the curl of Eq. 1.1 and in combination to the rest of 
equations plus the identity 

€ 

∇ ×∇ × ε =∇ ∇⋅ ε( ) −∇2ε . If we further 
assume that inside the closed cavity there are no free charges , which 
means that

€ 

∇⋅ ε = 0, we obtain the full vector wave equation: 

€ 

∂2ε(r,t)
∂t2

+
σ
∈

∂ε(r,t)
∂t

−
1

µ0 ∈
∇2ε (r,t) = −

1
∈

∂2pa (r,t)
∂t2

+
∂
∂t
∇ × ma (r,t)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 (1.6)  
This equation, named vector wave equation, enables to compute how the 
cavity fields 

€ 

ε(r,t) , on the left side, are driven by any electric and 
magnetic atomic polarizations, on the right side of Eq. 1.6. 
 
Eq.1.6 is in general solved by means of the normal mode expansion, 
which assuming that we can write the cavity fields as an expansion in a 
set of normal modes or eigenmodes 

€ 

ur (r)  in the form: 

€ 

ε(r,t) = ˆ E n (t)un (r)
n
∑      (1.7) 

where 

€ 

En (t)  are scalar functions of time only. The normal modes 

€ 

ur (r)  
in this expansion are assumed to be solutions of Laplace’s equation, 

€ 

∇2 + kn
2[ ]un (r) = 0, which satisfy the boundary conditions of the 

particular cavity. These cavity modes are therefore the transveral 
eigenmodes of the cavity as they satisfy both the wave equation and the 
boundary conditions only for discrete values of the separation constant or 
eigenvalue kn, which can be written as 

€ 

kn =ω n µ0 ∈ , where 

€ 

ω n  are the 
resonant frequencies of the empty cavity, leaving out any effects of the 
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atomic polarizations pa or ma. The laser cavity can in principle support a 
large number of longitudinal (along the cavity axis) and transverse 
(transverse to the cavity axis) modes.  
Eq. 1.7 shows how the output of the laser is obtained as combination of 
different cavity transversal eigenmodes, 

€ 

un (r) , and longitudinal 

eigenmodes that depend on 

€ 

ˆ E n (t) . This relationship can be made more 
evident by Fourier analysis: 

€ 

ˆ E n (t) = en (ω)exp(−ωt)dω
−∞

∞

∫
 
   (1.8) 

where ω is the angular frequency related to the optical wavelength by

€ 

kn =ω n µ0 ∈ . This approach assumes the Slowly Varying Envelope 
Approximation, which means that that the envelope of the pulse is much 
slower than the carrier frequency, ωo. In other words, the bandwidth of 
the pulse is much lower than the optical frequency, which is true in 
general. As there is only a discrete number of transversal eigenmodes we 
can substitute the integral by a summation as follows: 

€ 

ˆ E n (t) = en (ω p)
p=−∞

∞
∑ exp(− jω pt)

 
  (1.9) 

By unifying Eq.1.7 and 1.9, we obtain the following expression: 

€ 

ε(r,t) = un (r) en (ω p)exp(− jω pt)
p
∑

n
∑    (1.10) 

which contains the transversal wave information within the un term and 
the time-varying information within the en term. In order to better 
understand the process of time-varying electric field, we can reduce 
Eq.1.10 by assuming that there is only one allowed transversal 
eigenmode. This simplifies the previous expression to the following: 

€ 

ε(r,t) = u0(r) e0(ω p)
p
∑ exp(− jω pt)    (1.11) 

which illustrates how the temporal output of the laser can be modelled by 
linear superposition of frequency modes. For the case in which more 
transversal modes are present the average temporal profile can be 
modelled as the contribution of all the spatial components, as we are 
assuming propagation in a linear medium.  
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1.3.3 Cavity-plus-atom equations of motion. 
 

The temporal component of the electric field, however, is a complex 
issue as it depends in other factors in addition to cavity modes. In order 
to gain insight in the way a laser works, basic laser dynamics can be 
modelled by taking into account three major relationships: the 
distribution of the electric field inside the gain medium, how occurs 
inversion of population in the medium at atomic level and the interaction 
with the cavity that makes the electric field oscillate under certain 
conditions. These relationships have been specified for many laser 
systems and one of the most general approaches is found in the complete 
cavity-plus-atom equations of motion for the laser (Siegman, 1986). This 
can be written as three coupled differential equations for each cavity 
mode that relate the cavity mode itself E(t), the atomic polarization P(t), 
and the population difference ΔN(t) for a specific cavity mode. These can 
be written as follows: 

€ 

∂2E(t)
∂t2

+ γ c
∂E(t)
∂t

−ω c
2E(t) = −

1
∈

∂2P(t)
∂t2

+
8γ e
∈ Vc

dEe(t)
dt   (1.12a) 

€ 

d2P(t)
dt2

+ Δω a
dP(t)
dt

+ω a
2P(t) = κΔN(t)E(t)

 (1.12b) 

  

€ 

dΔN(t)
dt

+
ΔN(t) − ΔN0

T1
= −

2*
ω

E(t) dP(t)
dt   (1.12c) 

The advantage of this approach is that simultaneously relates and isolates 
the main processes that undergo within a laser cavity when it oscillates. 
In brief, equation 1.12a, cavity mode equation, sets the conditions of the 
allowed modes inside the cavity and how coupling from an external 
driving signal Ee(t) into the laser cavity occurs. Cavity mode equation 
relates to the structure of the cavity to keep electromagnetic waves inside 
for oscillation, in simple cases, this is dependent on the distance between 
the mirrors that limit the length of the cavity and the curvature of the 
mirrors to compensate undesired losses produced by diffraction. The 
external driving signal is related to the pumping of energy within the 
cavity. This external signal will strongly affect the working regime of the 
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laser. Some lasers like Nd:YAG will have a flash lamp that pumps 
incoherent light into the laser medium that produces spontaneous 
emission of the laser medium to initiate light oscillation. Equation 1.12b, 
atomic polarization equation, relates the atomic polarization with the 
circulating electric field inside the cavity. Atomic polarization links the 
quantum nature of the laser medium with the propagating electric field 
inside the cavity. This equation 1.12b is particularly important as it is a 
semiclassical approach that links the quatum nature of the photons, 
allowed energy levels inside the laser medium and its polarization 
dependence if required. Finally, Equation 1.12c, atomic population 
equation, sets the rate of change of energy caused by the cavity fields in 
the form of stimulated transitions.  
These three equations are the starting point for many laser analysis in 
literature as they correspond to one of the simplest analysis applied to a 
single cavity mode and a two-level atomic system in which atoms are 
quantized while fields are not, known as semiclassical quantum theory. 
Another advantage of this approach relies on the fact that these equations 
are time-dependant only, as cavity modes are eliminated by normal mode 
formulation of transversal eigenmodes as will be explained below. Thus, 
it provides the ability to adapt to many laser problems independently of 
the cavity geometry, as this is treated by the cavity eigenmodes. Each 
transversal eigenmode will have a subset of temporal solutions (also 
named longitudinal modes) that compete inside the cavity. In general, we 
can say that lasers can operate at four different regimes: continuous wave 
(CW), mode-locking, cavity-dumping and Q-switching. 
 
 

1.3.4 Temporal modulation of light in the resonator. 
 

The above equations enable to predict the complex behaviour of light 
oscillation in different circumstances and allowed to design an extended 
number of laser types. Fundamentally, the study of such equations 
enabled tailoring a laser cavity, for example, by just adding few elements 
to it, and taking into account the properties of the gain medium among 
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many others elements of the cavity. These elements, like optic 
modulators control the way inversion population occurs (in Q-switching) 
or the way the different laser modes compete to build up inside the cavity 
(in mode-locking), naturally changed the way the lasers were built. 
Although laser dynamics inside cavities is an extremely interesting topic 
is slightly beyond the scope of this thesis, so I will focus in briefly 
introducing the most important approaches to produce mode-locking, and 
particularly, explain a bit more in detail how mode-locking is achieved in 
most commercial Titanium-Sapphire lasers. Detailed reviews can be 
found in references of Siegman, 1971 and Haus, 2000.Laser cavity 
equations show that a laser cavity can be modelled as a resonator with 
gain, losses, active elements to allow the resonator working off its cavity 
eigenmodes, and passive elements that enable to modify the cavity 
eigenmodes of the resonator. In Figure 1.4 there are two examples of 
typical schemes of laser cavities with (a) active mode locking, in which a 
modulator is added to the gain medium and resonator (mirror plus output 
coupler) and (b) passive mode-locking, in which one of the mirrors is 
changed by a saturable absorber mirror that produces two effects: 
reflection and passive modulation of the pulses of the laser. 

 
Figure 1.4. two examples of typical schemes of laser cavities with (a) 
active mode locking, in which a modulator is added to the gain medium 
and resonator (mirror plus output coupler) and (b) passive mode-locking, 
in which one of the mirrors is changed by a saturable absorber mirror that 
reflects and passively modulates the pulses of the laser. 
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In summary, methods for producing mode locking in a laser may be 
classified as either active or passive depending on the additional elements 
we add to the cavity. Active methods typically involve using an external 
signal to induce a modulation of the intra-cavity light. Passive methods 
do not use an external signal, but rely on placing some element into the 
laser cavity that causes self-modulation of the light. 
 
 
 1.3.5 Active mode locking. 
 
Active mode locking consists in adding an active (meaning that it 
requires an external electric signal to operate) element within the cavity, 
like an acousto-optic or electro-optic modulator as shown in Figure 
1.4(a). Light shall pass the modulator when the losses are at a minimum. 
A pulse that matches the right cavity round-trip time is thus formed, as 
shown in Figure 1.5. Although the wings of the pulse experience only 
little attenuation, the pulse is tailored little by little in every roundtrip of 
the pulse travelling inside the cavity and this effectively leads to pulse 
shortening until an equilibrium point is reached (called steady-state) 
among all the competing effects like gain narrowing which tends to 
broaden the pulse.  
 

 
Figure 1.5. Schematic setup of an actively mode-locked laser (from 
http://www.rp-photonics.com/img/active_mode_locking.png). 
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The pulse duration is typically in the picosecond range and is only 
weakly dependent on parameters such as the strength of the modulator 
signal. This weak dependence arises from the fact that the pulse-
shortening effect of the modulator becomes less effective for shorter 
pulse durations, whereas other effects that broaden the pulse, like 
chromatic dispersion, become more effective. 
 
 
 1.3.6 Theory of active mode locking. 
 
For simplicity, we will develop the laser dynamic equations for a specific 
number of setups to illustrate how active mode-locking enables pulse 
generation. This explanation will be the base for our final mathematical 
development of Kerr lens mode-locking that is normally used for 
generating femtosecond pulses in Ti:sapphire medium. For this, we 
assume that our cavity is an optical Fabry-Pérot resonator formed by two 
mirrors. This has longitudinal modes sparated in frequency by 

€ 

ΔΩ = 2π TR , where 

€ 

TR  is the roundtrip time of the cavity. In general, 
several axial modes will be lasing if the gain level is above threshold and 
central model will be at ω0. A cosinusoidal modulation od the central 
mode at frequency  

€ 

ΩM = ΔΩ produces sidebands at 

€ 

ω 0 ± ΔΩ. These 
injection lock the adjacent modes, which in turn lock their neighbours. 
Denote the amplitude of the axial mode of frequency 

€ 

ω 0 ± nΔΩ by An. 
The amplitude changes within each pass through the amplifier of loss 1-l 
and peak gain 1+g, where l<<1 and g<<1, and can be written as follows: 

€ 

ΔAn =
g

1+ nΔΩ Ωg( )2
− l

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ An + 0.5M An−1 − 2An + An+1( )   (1.13) 

where M is the modulation. This expression can be transformed into a 
standard operator when the following three approximations apply: 

1) The frequency dependent gain can be expanded to second 
order in 

€ 

nΔΩ. 
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2) The discrete frequency spectrum with Fourier components at 

€ 

nΔΩ are replaced by a continuum spectrum. 
3) The sum 

€ 

(An+1 − 2An + An−1) /ΔΩ
2  can be approximated by 

second derivative with respect to the frequency if the spectrum is 
very dense, as normally model-locking involves thousands of 
modes. 

In that context, Eq.1.13 can be rewritten as follows: 

€ 

ΔA(Ω) = (g − l)A(Ω) − g Ω Ωg( )2A(Ω) + 0.5MΩm
2 d2A dΩ2  (1.14) 

where 

€ 

ΩM = ΔΩ  is the modulation frequency. In the steady-state, the 
change of the pulse in one roundrtrip is zero. Hence, the mode-locked 
pulse must be a solution of Eq.1.14 when is equal to zero. This solution is 
a gaussian pulse in the form of  

€ 

A(Ω) = E0 exp −Ω
2τ 2( )    (1.15a) 

where 

€ 

τ 4 = 2g MΩm
2Ωg

2( ).    (1.15b) 

This is the Kuizega-Siegman formula (Siegman, 1971) for the pulse 
width, which is proportional to the inverse of the geometric mean of the 
gain bandwidth and the modulation frequency. The eigen value of the 
equation provides the expression for the net gain,

€ 

g − l = 0.5MΩm
2τ 2. We 

can observe that the gain is greater than the loss. This is allowed and does 
not cause instabilities, since the modulator increases the loss in the pulse 
wings.  
 
 
 1.3.7 Passive Mode Locking. 
 
Passive mode-locking techniques are those that do not require an external 
signal (i.e. active element) to the laser, such as the driving signal of the 
modulator shown in Figure 1.4(a), to produce pulses. Passive mode-
locking relies on the use of an intracavity passive element that causes that 
the light inside the cavity changes without any driving signal. A 
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commonly used device to achieve this self-coupling with light is a 
saturable absorber as shown in Figure 1.4(b). 
A saturable absorber is an optical device that exhibits an intensity-
dependent transmission, as shown in Figure 1.6. For passive mode-
locking, a saturable absorber will selectively absorb low-intensity light, 
and transmit light which is of sufficiently high intensity and produces an 
analogous effect of the modulator in active mode-locking, in which for 
every roundtrip, the tails of the pulse get attenuated and the pulse is 
effectively shortened until an equilibrium point is reached. Such devices 
produce much shorter and stable pulses than electronically driven 
modulators, as electronics are much slower and underperform in 
comparison to some optical components. 

 
Figure 1.6 Temporal evolution of optical power and losses in a passively 
mode-locked laser with a slow saturable absorber. The saturable absorber 
causes a loss modulation which is fast for the leading wing of the pulse, 
whereas recovery of the absorber takes some longer time (from 
http://www.rp-photonics.com/passive_mode_locking.html). 
 

As cavities contain many eigenmodes, at the initial moments of starting 
the laser, the light inside the cavity is somehow composed by purely 
random intensity fluctuations experienced by a CW laser and any random 
intense spike will be transmitted preferentially by the saturable absorber. 
As the light travels inside the cavity selective amplification of the high-
intensity spikes takes place, at the same time that low-intensity light gets 
absorbed. After many round trips a competition among the high-intensity 
spikes occur until one of them reach the intensity saturation. After this 
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point the spike above the intensity saturation is amplified empting the 
energy in the laser medium (population inversion decreases), reducing 
the gain for the lower intensity spikes which start to disappear. 
Equilibrium is reached when the gain for the spike is equal to the losses, 
leading to mode-locking of the laser and the generation of a highly stable 
train of light pulses. 
 
Saturable absorbers started as liquid organic dyes, but currently they can 
also be made from doped crystals and semiconductors. Semiconductor 
absorbers tend to exhibit very fast response times (~100 fs), which is one 
of the requiriment to obtain short duration of the pulses in a passively 
mode-locked laser. The most important type of absorber for passive 
mode locking is the semiconductor saturable absorber mirror, called 
SESAM. This is a compact semiconductor device, the parameters of 
which can be adjusted in very wide ranges, so that appropriately designed 
SESAMs can be used to mode-lock very different kinds of lasers, in 
particular solid-state lasers, including different kinds of semiconductor 
lasers. 
 
The concept of “saturable absorbers” has been crucial for the 
development of passive mode locking and as a consequence it has been 
further extended as there are also passive mode-locking schemes that do 
not rely on materials that directly display an intensity dependent 
absorption. These methods rely on nonlinear optical effects in intracavity 
components that are used to provide a way of selectively amplifying 
high-intensity light in the cavity, and attenuation of low-intensity light. 
Such components are named to be “artificial saturable absorbers” 
because they do not have the real material properties but they produce an 
analogous effect inside the cavity. 
 
 One of the most successful schemes is called Kerr-lens mode-locking 
(KLM), also sometimes called "self mode-locking". This uses a nonlinear 
optical process, the optical Kerr effect, which results in high-intensity 
light being focussed differently than low-intensity light. By careful 
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arrangement of an aperture in the laser cavity, this effect can be exploited 
to produce the equivalent of an ultra-fast response time saturable 
absorber as explained below. 
 
 
 1.3.8 Kerr Lens Mode Locking. 
 
Ultrashort pulses from Ti:sapphire lasers can be generated with passive 
mode locking, usually in the form of Kerr lens mode locking (KLM). 
This is a passive mode locking technique that uses an artificial saturable 
absorber based on the Kerr lens effect in the gain medium. This approach 
exploits the reduction in the beam size for high optical intensities in the 
gain medium to promote one eigenmode of the cavity. This can be 
achieved under two different regimes: (1) hard aperture KLM, the Kerr 
lens reduces the optical losses at an aperture which the beam must pass in 
each resonator round trip; (2) soft aperture KLM, the Kerr lens leads to a 
better overlap of laser and pump beam, and thus to a higher gain for the 
peak of the pulse. 
 
The first Kerr Lens Modelocked Ti:sapphire laser was constructed by 
Prof. Wilson Sibbett and co-workers in University of Saint Andrews in 
1990 (Sibbett, 1991 y pon también la referencia de optics-lett. De 
Spence) which was first presented as a late paper at The Conference of 
Lasers and Electro-Optics, probably the most referenced conference in 
lasers still at the time of this Thesis (Spence et al, 1990). 
 
The combination of KLM with a SESAM allows for reliable self-starting 
of the pulse generation process. Pulse duration of 100 fs can be readily 
achieved and is typical available in commercial laser systems and even 
pulse durations around 10 fs are possible for commercial devices. 
 
Typical output powers of mode-locked Ti:sapphire lasers are of the order 
of 0.3–2 W depending on the pumping laser, whereas continuous-wave 
versions sometimes generate several watts. A typical pulse repetition rate 
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is 80 MHz, but devices with multi-gigahertz repetition rates are also 
commercially available, which can be used as frequency comb sources. 
 
 
 1.3.9 Dispersion and its compensation. 
 
Another important issue in ultrashort pulse generation (mode-locked 
lasers of femtosecond pulses) is related to the chromatic dispersion of the 
cavity that tends to broaden the temporal width of the pulse as each 
wavelength undergoes a different optical path. Particularly, chromatic 
dispersion is mostly introduced by the gain medium and other optical 
components inside the laser cavity. Chromatic dispersion is normally not 
desirable because it tends to broaden and chirp the generated pulses. 
Dispersion compensation can be achieved by introducing optical 
components with anomalous dispersion. In the case of bulk lasers, such 
components are usually either special dispersive dielectric mirrors (e.g. in 
the form of monolithic Gires–Tournois interferometers or chirped 
mirrors), or prism pairs (Fork, 1984) as shown in Figure 1.7 that enable 
introducing negative dispersion to the propagating light beam. 

 
Figure 1.7. Classical arrangement of prism pairs to introduce negative 
dispersion of a broadband pulse as detailed by Fork in 1984. 

 
 
Chromatic dispersion of an optical medium is the phenomenon that the 
phase velocity and group velocity of light propagating in a transparent 
medium depend on the optical frequency. Chromatic dispersion of 
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second and higher order is defined via the Taylor expansion of the 
wavenumber k (change in spectral phase per unit length) as a function of 
the angular frequency ω (around some center frequency ω0, e.g. the mean 
frequency of some laser pulses): 

€ 

k(ω) = k0 +
∂k
∂ω

ω −ω 0( ) +
1
2
∂2k
∂ω 2 ω −ω 0( )2 +

1
6
∂3k
∂ω 3 ω −ω 0( )3 + ...  

 (1.16) 
where 

€ 

k0  the zero-order term describes a common phase shift; the first-
order term contains the inverse group velocity (i.e., the group delay per 
unit length) and describes an overall time delay without an effect on the 
pulse shape, 

€ 

k'= ∂k ∂ω =1 vg ; the second-order (quadratic) term 
contains the second-order dispersion, or group delay dispersion (GDD) 

per unit length or Group Velocity Delay (GVD), 

€ 

k' '= ∂2k ∂ω 2
, which 

affects the temporal width of the pulse; the third-order (cubic) term 

contains the third-order dispersion (TOD) per unit length, 

€ 

k' ' '= ∂3k ∂ω 3

,which also spreads the energy of the pulse by generating small pulses, 
so-called ‘satellites’, around the main pulse. GDD and TOD reduce the 
peak intensity, which is fundamental for efficiently exploiting nonlinear 
effects of light. Measuring these effects on the delivered pulse at the 
sample plane of a nonlinear microscope is the main focus of this thesis. 

In general, the chromatic dispersion is often estimated by the “dispersion 
parameter” which relates to the second derivative of the wave number 
with respect to the angular frequency within a particular wavelength as 
follows: 

€ 

Dλ = −
2πc
λ2

∂2k
∂ω 2 = −

2πc
λ2

k' '    (1.17) 

where  is the wavelength, 

€ 

ω  is the angular frequency,  is the wave 
number and  is the speed of light in vacuum. There are circumstances in 
which dispersion of third and higher order can be used and they are 
called “higher-order dispersion parameters”. In most cases, broadband 
light is affected by normal (or positive) chromatic dispersion (for k'' > 0) 
and anomalous (or negative) dispersion (for k'' < 0). Normal dispersion, 
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where the group velocity decreases with increasing optical frequency, 
occurs for most transparent media in the visible spectral region. 
Anomalous dispersion sometimes occurs at longer wavelengths, like in 
silica (the basis of most optical fibers) for wavelengths longer than the 
zero-dispersion wavelength of around 1.3 µm. 
 
Dispersion has an important impact on the propagation of pulses, because 
a pulse always has a finite spectral width (bandwidth), so that dispersion 
can cause its frequency components to propagate with different 
velocities. Normal dispersion, for example, leads to a lower group 
velocity of higher-frequency components, and thus to a positive chirp, 
whereas anomalous dispersion creates negative chirps. The frequency 
dependence of the group velocity also has an effect on the pulse duration. 
If the pulse is initially unchirped, dispersion in a medium will always 
increase its duration (dispersive pulse broadening). For an originally 
unchirped Gaussian pulse with the duration 

€ 

τ0 , the pulse duration is 
increased as it propagates according to the following formula: 

€ 

τ = τ0 1+ 4 logn 2( ) zk' ' τ0
2( )2    (1.18) 

where z is the amount of dispersive material in which the pulse is 
propagated. 
 
Alternatively, in Figure 1.7 we observe how the scheme proposed by 
Fork produces that the red spectral components of the pulse travel 
through a longer optical path (because it propagates through more glass) 
compared to the blue spectral parts, introducing as a result a negative 
dispersion to the pulse.  
 
For pulses with durations below roughly 30 fs, it is necessary to control 
not only the second order dispersion but also the dispersion of higher 
orders. It may then be important, for example, choosing the appropriate 
material for a prism pair, or an optimized geometry of a prism 
compressor. This has produced hybrid devices composed by a grating 
pattern on a prism called GRISMs (Kane and Squier, 1997), which make 
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possible an optimized ratio of the strength of second- and third-order 
dispersion. 
 
Therefore, proper dispersion management enables that the broad band of 
optical wavelengths undergo the same, or at least, very similar optical 
path in every roundtrip to synchronize of all of them and get a Fourier 
Transform limited pulse at the output of the cavity, which is the shortest 
pulse for a given bandwidth as all optical components are at the same 
phase. 
 
 1.3.10 Pulse generation in Ti:sapphire lasers. 
 
Currently, there are many commercial systems that provide ultrashort 
lasers pulses. The most common one is the Ti:sapphire laser that is based 
on kerr-lens mode locking with a dispersion compensation stage based on 
a pair of prisms. The general scheme of commercial system is illustrated 
in Fig.1.8. 

 

Figure 1.8. Schematic of Ti:sapphire laser. (M) Mirror, (P) Prism, 
(BU) Butterfly and (L) Lens. 
 

On the left side of Fig.1.8 we can see the pump laser, which is in general 
a doubled Nd:YaG laser, as it operates at 532nm near one of the 
absortion peaks of Ti:sapphire. Ti:sapphire crystal acts as gain medium, 
saturable absorver by kerr-lens effect of the virtual pinhole as explained 
above. Pair of Prisms P1 and P2 compensate for cavity and material 
dispersion. A number of mirrors make a compact cavity and M1 is an 
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output coupler that transmits about 1% of the cavity power. Butterfly 
(BU) is used to generate “seed noise” and enhance the generation of 
modes inside the cavity to trigger the competition among modes until 
mode locking is achieved. The slit prior to M1 allows fine tunning of the 
pulse duration and spatial profile of the output beam. Several alignment 
controls of position and tilt angles are available in all the components to 
adjust and tune the system approximately from 690nm to 960nm. 
 
 
 1.3.11 Theory of pulse generation in Ti:sapphire Laser by kerr-
lens mode locking. 
 
The key feature of commercial Ti:sapphire lasers lies in achieving 
passive mode-locking by replacing the active modulator by a saturable 
absorber as mentioned above and shown in Fig.1.4(b). In order to extend 
the theory behind active mode locking (presented in subsection above) to 
passive mode locking, we need to understand the behaviour of laser 
dynamics in time. For this purpose, Eq.1.14 can be firstly generalized to 
include transient behaviour, where change per roundtrip need not to be 
zero. For non-zero, Eq.1.12 will result in different 

€ 

An (Ω), the spectrum 
of the n-th pass. If the evolution is slow compared to a roundtrip, the 
differentce equation can be replaced by a differential equation in terms of 
the long term variable T. Even though the pulse is characterized in terms 
of its spectrum, slow variation of the spectrum can be described in terms 
of time-varying spectrum. We can then write the following differential 
equation: 

€ 

1
TR

∂
∂T

A T,Ω( ) = (g − l)A T,Ω( ) − g Ω
Ωg

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

A T,Ω( ) + 0.5MΩm
2 ∂

2A T,Ω( )
∂Ω2

 (1.19) 
To solve this equation and compute the transient behaviour, it is possible 
to express the excitation by an expansion in terms of Hermite-Gaussian 
functions as it is a complete set of functions: 

€ 

A T,Ω( ) = Cn T( )Hn Ωτ( )exp −Ω2τ 2 /2( )∑    (1.20) 
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Then, we rewrite Eq.1.17 as a number of differential equations: 

€ 

dCn

dT
= g − l − n +

1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ MΩm

2τ 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Cn = −nMΩm

2τ 2  (1.21) 

This expression provides a clear picture of the behaviour of pulse 
perturbations as a combination of Hermite-Gaussians of order n>1. The 
dynamics of amplitude perturbations of the pulse itself represented by 
n=0 term of Hermite-Gaussian expansion require a separate study. Such 
a perturbation, when in phase with the main pulse, lowers the gain 
through gain saturation (generally with a relaxation time much longer 
than the pulse). This provides net loss to the perturbation that then 
decays. On the contrary, a perturbation in anti-phase raises the gain and 
thus the original pulse amplitude is restored. This interplay between gain 
and resonator response can also lead to damped relaxation oscillations of 
the pulse-train envelope, a phenomenon we shall not discuss any further. 
A perturbation n=0 in phase-quadrature with the pulse does not affect the 
energy to first order and does not affect the gain and its decay rate is 
zero. Hence it is not stabilized. Amplified spontaneous emission noise 
kicks the phase back and forth, which means that the phase experiences a 
random walk. 
The description of mode-locking in terms of a pulse spectrum that 
evolves with time can be further transformed into a description of a pulse 
with a temporal envelope that evolves on a time scale much longer than 
the pulsewidth. We can write the classical dual relationship between time 
and frequency, 

€ 

a(t) = dΩexp jΩt( )A Ω( )∫ , and further Fourier Transform 
Eq.1.15 to obtain the temporal evolution of the time-varying pulse shape: 

€ 

1
TR

∂
∂T

A T,t( ) = (g − l)a T,t( ) + g 1
Ωg

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
∂2

∂t2
a T,t( ) − 0.5MΩm

2t2a T,t( )

 (1.22) 
It can be directly seen, as expected, that general form of Eq.1.15 and 1.18 
is equivalent and Hermite-Gaussian functions are also a solution as a 
consequence of the fact that the Fourier transforms of Hermite–Gaussians 
are themselves Hermite–Gaussians. The pulse shape of steady state 
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mode-locking in time is also a Gaussian, 

€ 

A(t) = E0 exp −t
2 /2τ 2( ) . In time 

domain, the modulation provides a time dependant loss. Whenever the 
loss goes below the gain level, the curvature of the envelope becomes 
negative. The transition between net gain and net loss marks the point of 
inversion on the pulse envelope. 
Active modelocking does not lead to ultrashort pulses because frequency 
of modulation cannot be raised arbitrarily. Harmonic mode-locking 
allows for modulation frequencies at a harmonic of 

€ 

2π TR . When this is 
done the shortening of the pulse within each roundtrip can be enhanced. 
However, if the energy of the individual pulses is to be kept high, only 
one pulse must be allowed to circulate in the resonator. This can be 
accomplished through the use of step-recovery diodes for the modulation 
source. However, the bandwidth of optical modulators is limited and thus 
modulation with ultrashort electrical pulses runs into difficulties. 
Modulation by a passive, saturable absorber is much more effective in 
pulse shaping. Since the pulse itself produces the shape of the modulation 
function, considerably tighter modulation becomes feasible. Each time 
the pulse passes through the resonator it is multiplied by a time function. 
If the process is treated in the frequency domain, the multiplication in the 
time domain becomes convolution in the frequency domain. The 
resulting master equation involves convolution integrals. For this reason, 
a description of passive mode-locking has been presented in the time 
domain. 
 
In Ti:sapphire laser the effect of a fast saturable absorber is produced by 
Kerr focusing: the high intensity part of the beam is focused by the Kerr 
effect, whereas the low intensity parts remain unfocused. If such a beam 
is passed through an aperture, the low intensity parts are attenuated, 
thereby shortening the pulse. The modulation of the saturable absorber 
s(t) in transmission through the saturable absorber can be written as: 

€ 

Is(t) =
Is0

1+ I(t) Isat   
       (1.23) 
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where Is0 is the unsaterated loss and thus less than 1, I(t) the time-varying 
intensity and Isat the saturation intensity of the absorber. If saturation is 
relatively weak, this can be expanded by Taylor series as: 

€ 

Is(t) = Is0 − Is0I(t) /Isat     (1.24) 
The intensity multiplied by the effective area of the mode Aeff gives the 
power in the mode. We can then normalize the mode amplitude and 
rewrite Eq.1.17 as follows: 

€ 

Is(t) = Is0 −
Is0 E(t)

2

IsatAeff
= Is0 −γ E(t)

2     (1.25) 

where 

€ 

I(t) = E(t) 2 Aeff  and 

€ 

γ  is the self amplitude modulation 
coefficient. Therefore, the equation of passive mode-locking with a fast 
saturable absorber, i.e. Kerr lens effect, can be obtained by including the 
saturable loss in Eq.1.20 and omitting the active modulation term. The 
unsaturated loss Is0 can be incorporated into the loss coefficient and this 
results in the following expression: 

€ 

1
TR

∂
∂T

E(t) = (g − l)E(t) +
g
Ωg

2
∂2

∂t2
E(t) + γ E(t) 2E(t)  (1.26) 

The solution of this  

  

€ 

E0(t) = E0sech(t /τ)           (1.27) 
where 

 

€ 

τ 2 = 2g γE0
2Ωg

2          (1.28a) 

     and    
 

€ 

l − g = g Ωg
2τ 2         (1.28b). 

Eq.1.28a is related to the active mode-locking term of Eq.1.15b, where 

€ 

τ 4 = 2g MΩm
2Ωg

2( ), as can be directly observed. The comparison also 

explains why passive mode-locking can result in much shorter 
pulsewidths for the same filter bandwidth. As the pulse gets shorter, the 
curvature of the modulation increases as 

€ 

1 τ 2 , whereas it remains 
unchaged for active mode-locking. In other words, the net gain is 
negative preceding and following the pulse. At the pulse peak, the gain is 
positive due to the bleaching of the saturable absorber and as hyperbolic 



 
 

 37 

secant pulse has exponential wings the system behaves linearly in the 
wings since the intensity is small. The second order differential equation 
dictates exponential solutions for any bounded pulse. The solution of 
Eq.1.26 is not stable unless gain saturation is explicitly included. This 
gain saturation can be cumulative and this allows to assume that the gain 
is approximately constant during the passage of one pulse. The solution 
is also stabilized if the full saturation behavior, as modeled in Eq.1.23, is 
taken into account, but then no closed form solutions have been found.  
This situation is more realistic and this is why no assumptions can be 
made when characterising ultrashort laser pulses. If it were possible to 
ensure that the temporal shape of the electric field at the output of a 
Ti:sapphire laser is hyperbolic secant, this would impose constrains on 
the allowed spectral intensity and full characterization of ultrashort 
pulses could be highly simplified. As this is not the case, no assumptions 
can be made on the spectral profile of ultrashort pulses and completely 
general methods were needed. Furthermore, as pulse propagates through 
an optical setup, chromatic dispersion, spatiotemporal distortions and 
nonlinear effects (like self-phase modulation) that change not ony the 
phase but also the spectral intensity. Therefore, it was absolutely 
mandatory to develop fully general means to characterize such temporal 
bullets of light that are faster than any electronic device as we will 
comment on the next chapters. 
 
 
1.4 Conclusions. 
 
In summary, this chapter explains how ultrashort laser pulses can be 
produced by hosting of a suitable Ti:sapphire crystal as lasing material 
within a properly designed laser cavity. However, at the end we raise the 
point that such unique light entities are distorted as they propagate 
through media and optical elements, which is in general produced by 
chromatic dispersion and other nonlinear effects. The effects of 
chromatic dispersion diminish, and can even destroy, coherence of the 
optical pulse and might avoid accomplishing a particular application, like 
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life science imaging or multiphoton microscopy. Chromatic dispersion 
(among other effects) mainly occurs as a consequence of the intrinsic 
spectral broad bandwidth of ultrashort laser pulses. The broader the 
pulses are the more unique, but the more fragile. As a solution, ultrashort 
laser pulses need to be rebuilt at the localization were the physical 
interaction occurs to produce the desired effect in an optimal manner, 
like a contrast mechanism to generate an image. For this, particular 
optical schemes have been introduced to produce negative second-order 
dispersion, which are extendable to third-order by few changes. In the 
early age of ultrashort laser pulses, theoretical models based on light 
oscillation within particular laser cavities proved that temporal intensity 
could be approximated by a squared hyperbolic secant, which has some 
similarities with a Gaussian like pulse. These were good approximations 
as technology and science were not as developed as today. However, as 
optical setups get more complex and applications start to emerge it is 
mandatory to achieve perfect light control to let engineers develop 
automated and reliable systems that do not need dedicated experts to use 
devices based on ultrashort laser pulse technology. 
 
Therefore, controlling the shape of ultrashort laser pulses is becoming 
one of the current bottlenecks of this technology for many applications 
that range from coherent imaging or spectroscopy, to laser 
micromachining or nanosurgery, or to quantum control applications 
among others. In this line, it is becoming fundamental to measure the 
actual shape at any desired location of the light path and to find strategies 
that offer enough flexibility to control spatiotemporal delay experienced 
by all the light components of an ultrashort laser pulse and beam. This 
thesis addresses one of the topics and focuses in developing direct and 
reliable strategies to measure the actual shape of an ultrashort laser pulse 
in a flexible and general manner. 
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CHAPTER 2 
Ultrashort laser pulses and life sciences. 
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2 Ultrashort laser pulses and life sciences. 
2.1- Introduction. 

The last decades have seen tremendous progress in the development of 
lasers systems that deliver ultrashort pulses. Nowadays, every year we 
can find in the market cheaper, more powerful and more robust systems 
that were at the edge of the state-of-the-art just a few years ago. This 
tremendous leap on the access to sophisticated laser sources is currently 
pushing the number of applications in which it makes sense to use this 
type of light and the number of potential users. In spite of such 
tremendous progress and hard work, much more needs to be known and 
investigated in order to explain and utilize the unique properties of 
ultrashort laser sources. We can definitely state that currently, we are 
watching just at the tip of the iceberg of what ultrashort pulses has to 
offer. Analogously to an iceberg which typically exhibits only one ninth 
of its total volume, a closer look should reveal for the curious observer 
the amazingly huge volume we were neglecting by our firstly naïve 
picture, which was indeed superficial.
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2.2 – Scope of this thesis. 
In this thesis, we address specific efforts towards developing the precise 
aspect of ultrashort laser pulse measurement in the context of biomedical 
research. High resolution imaging of cells by means of ultrashort laser 
pulses was firstly reported by Denk and Webb in their Science paper 
(Denk, 1990). This work opened a new line of research generally named 
multiphoton microscopy that exploits the interaction of high peak 
intensity light (ultrashort light pulses) with cells and markers.  This 
further triggered the vision of developing fundamental tools that will 
enable to control matter by means of light with exquisite precision with 
the added difficulty of being next to biological samples, which are 
extremely sensitive and fragile. For this, light matter interaction needs to 
be extremely well controlled to avoid undesired effects, like cell damage 
due to the high peak intensity values of ultrashort laser pulses, as well as 
promoting specific physical processes like two-photon fluorescence 
excitation of a desired fluorophore embedded in some biochemical 
environment. Particularly, it is necessary to control the temporal shape of 
the ultrashort pulse at the focal plane of a multiphoton microscope to 
ensure that the dose of light is the desired one, and for this, methods to 
measure the temporal shape of ultrashort laser light in the focal plane 
needed to be developed at the time in which this thesis was started. 
 
The findings of this thesis should become the basis for one particular 
range of new tools in which temporal/spectral properties of ultrashort 
pulses will be of paramount importance. For this, we face the challenge 
of measuring ultrashort laser pulses in an accurate, robust and flexible 
manner.  
 
We focus in the two major bottlenecks regarding ultrashort laser pulse 
measurements for multiphoton microscopy, that aim for developing (1) 
new techniques for full characterization of ultrashort pulses under 
different experimental conditions and (2) new material with specific 
nonlinear properties that enable to obtain ultrashort pulse measurements 
that properly catch the temporal shape of light and at the same time can 
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be readily found in biomedical lab, specially cost effective, non fragile 
and non-toxic. 
Combination of these two complementary strategies provides a new 
ground where it is possible to characterise an ultrashort pulse at the 
sample plane of a multiphoton microscope in a regular biomedical 
research facility. 
 
Importantly, we approach ultrashort pulse characterisation developing a 
different theoretical framework to the state-of-the-art and we propose a 
few initial experiments that preliminary support our theoretical 
statements in the form of new optical techniques. These findings are then 
experimentally tested under different conditions, such different optical 
setups and different pulsed regimes in order to evaluate the feasibility of 
the tools to measure ultrashort pulses in conditions that were prohibitive 
at the time this thesis was started. The scope of this thesis outlines the 
potential of such techniques, but further efforts shall be addressed to 
assess feasibility, robustness and further limitations. 
 
More specifically, for new techniques for measuring ultrashort pulses at 
the focus of a microscope, firstly, I will provide some basic concepts 
regarding ultrashort pulse laser generation and mathematical modelling, 
then two chapters focused in the state-of-the-art of ultrashort pulse 
characterisation is introduced in Chapters 3-4, and subsequently, two big 
issues at the time this thesis started are detailed: (a) lack of an analytical 
general pulse measurement technique with few optical components, 
which is addressed along Chapters 5-7 and (b) lack of biocompatible and 
efficient materials that is also disclosed onto Chapter 7.  
Final conclusions and a vision of future are presented in Chapter 8. 
 
 
 
 
 
2.3- The meaning of measuring. 
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 2.3.1 General concept. 
 
Mankind has been always challenged to find the edges of nature. In order 
to know and control nature, there has been always the need to relate a 
concept with respect to a quantity. In this manner the concept would 
remain static whereas its quantity can be dynamic. Throughout this long 
pathway, mankind has been always wondering how far it could go, how 
small (or big) can it go before an obstacle is found, a new edge, a new 
opportunity... to twist reality. 
This dissertation explores new manners to measure one of the fastest 
events ever made by mankind, and how, in order to measure such type of 
fast events, you need at least, something as fast or short as itself. 
 
In general, in order to measure or quantify anything we require having a 
reference to compare with. Therefore, it is desirable that this reference is 
shorter or smaller than the object being measured. For example, 
measuring the optical table in the laboratory, which can typically range a 
few meters in length, would need an apparatus with resolution below 
meters, i.e. centimetres. The smaller the reference, the more accurate can 
be the measurement. 
 
In contrast to this common actions that anyone performs in a daily basis 
without any effort, measuring ultrashort pulses is an extremely difficult 
task because they are one of the shortest events that mankind can produce 
in a controlled manner. This fact makes measurement of an ultrashort 
pulse a current challenge and the ultrashort pulse to be measured be the 
best “reference” or “unit”. 
 
 2.3.2 The challenge of measuring an ultrashort laser pulses. 
 
The focus of this thesis will be on the measurement of ultrashort laser 
pulses that have durations shorter than the response time of any 
electronic instrument. Thus, one can never directly measure the electric 
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field envelope by using only a photodetector. This topic is still being a 
subject of intense research for more than 40 years (Maier, 1966; Weber, 
1967; Armstrong, 1967, Diels 1978a-b) and although ultrashort pulses 
were available in the late 1960’s it took almost 25 years to find a general 
method to completely characterize them with no assumptions.  
Ultrashort pulses are, at the time this thesis has been written, at least five 
orders of magnitude faster than oscilloscopes, three orders of magnitude 
faster than photodiodes, and one order of magnitude faster than the 
fastest streak cameras. It was soon realized that the only event remotely 
fast enough to measure an ultrashort pulse was the pulse itself.  
 
 
2.4 Other applications of ultrashort laser pulses. 
 
For the time being, main ultrashort pulse applications (apart from 
multiphoton microscopy of use in biology and medicine) can be found in 
different fields like micro-machining as they allow drilling sub-micron 
holes with high precision in all types of materials by exploiting high 
multiphoton absortion a producing photoablation, a physical 
phenomenon that literally breaks electronic bonds of molecules and 
produces the evaporation the material because of the tremendous energy 
deposition of high intensity light. This occurs prior to any thermal effect 
and has the advantage of making sharp and neat edges, as opposite to 
pulses of tens of picoseconds which normally produce some type of 
unaccurate cleveage due to thermal effects occurring when transforming 
part of the high peak intensity light into thermal relaxation in the bulk 
material.  
More than ten years ago, Ahmed H. Zewail was awarded with the Nobel 
prize for using ultrashort laser pulses to observe chemical reactions at the 
time scales they occur (femtoseconds), opening a new field in the area of 
physical chemistry: femtochemistry. Major contribution of 
femtochemistry is to provide details about the intermediate products that 
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form during chemical reactions, which cannot be deduced from 
observing the starting and end products.  
Another application, which can be also used as an imaging technique but 
it exploits ultrashort laser pulses by means of a different physical 
process, is generation and detection of Terahertz radiation. This can be 
used for (1) medical imaging as it has a  relatively low photon energy for 
damaging tissues and DNA, and it has the ability to penetrate up to few 
millimetres; (2) security, as it penetrates plastics and fabrics and can be 
used in surveillance; (3) manufacturing, for quality control; and (4) 
scientific purposes, like spectroscopy, THz tomography and 
submillimetre astronomy. 
Probably, one of the latest applications found for femtosecond lasers has 
been the called “optical frequency comb” that enables spectroscopist to 
have a wide range of highly pure, evenly spaced set of optical 
frequencies and produce very precise spectroscopy studies. For this, 
Theodor W. Hänsch and John L. Hall shared half of the 2005 Nobel Prize 
in Physics for contributions to the development of laser-based precision 
spectroscopy, including the optical frequency comb technique. 
In summary, ultrashort laser pulses are a relatively new technology that 
opens a range of applications that have the potential to exploit new light-
matter phenomena that were not available before. At the current stage, 
there are a number of appealing applications but many of them can be 
further tweaked, like multiphoton microscopy by ts natural extension to 
coherent imaging by means of proper characterization and shaping of the 
ultrashort laser pulses at the sample plane of an imaging system.  
 
 
 2.5 Limitations and timeliness of this thesis. 
 
The work on this Thesis started in 2003 and most part of the research was 
carried out along the years 2003 and 2007. However, professional career 
of the candidate delayed the preparation of this document, with the 
subsequent delay on thesis presentation. During 2005 I was in an 
exchange at the Massachusetts General Hospital on confocal microscopy 
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for skin cancer detection that is not reported in this document, and in 
2008 I started developing my career in medical technologies at Hospital 
Clinic de Barcelona and created a spin-off company dedicated to imaging 
biomarkers for improved management of newborns. Particularly, a 
technology that substitutes an amniocentesis procedure by a non-invasive 
ultrasound scan in the last term of the pregnancy. This allows assessing 
fetal lung and have an estimate on the risk that the newborn develop 
respiratory distress syndrome, which is one of the main causes of 
newborn morbility and morbidity. 
During these years, the candidate has continued some collaboration with 
Prof. Loza-Alvarez group on Polarization Second Harmonic Imaging. 
The state-of-the-art has partially evolved but the contributions of the 
present work are still relevant and useful. Continuation of MEFISTO 
techniques has not been possible within the group but other groups have 
further studied the technique and develop measurement methodologies 
like MIFA, which is briefly mentioned along the thesis and briefly 
explained in chapter 4. CFROG technique has been used for 
measuringone of the shortest pulses and was recently published in Nature 
Photonics as mentioned in conclusions.
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CHAPTER 3 

Ultrashort pulse measurements in the time domain: 
State-of-the-art (part 1). 
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3 Ultrashort pulse measurements in the time 
domain: State-of-the-art (part 1). 

3.1 Introduction to time domain techniques. 

Ultrashort pulses are one hundred thousand times faster than current 
oscilloscopes, one thousand times faster than photodiodes, and ten times 
faster than the fastest streak cameras (which are single shot, or can record 
a limited number of frames at such rate). Furthermore, at the time of this 
thesis has been submitted subfemtosecond pulses have been already 
available for a few years. Therefore, strategies, means and methodologies 
are mandatory to characterize the fastest event in a general manner and 
with minimal equipment. As mentioned above, it was soon realized that 
the only event remotely fast enough to measure an ultrashort pulse was 
the pulse itself. This gave birth to the now standard method of 
measurement: the intensity autocorrelation (Maier, 1966; Weber, 1967; 
Armstrong, 1967). 
 

3.2 Pulse characterization in the time domain. 

 3.2.1 Autocorrelation. 
 
One of the first methods ever employed to estimate pulse duration of an 
ultrashort pulse was the Second Harmonic Generation (SHG) Intensity 
Autocorrelation (IA). This is based on producing a quadratic interaction 
of a pulse with its delayed replica in a nonlinear medium. The 
experimental set up is based on an interferometer (Michelson) as shown 
in Figure 3.1. 
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Fig. 3.1 Device to generate an autocorrelation between ultrashort 
pulses. This consists of a Michelson interferometer where two replicas 
of the same pulse travel different optical paths before being frequency 
doubled.  Mirror (M),  Corner Cube Mirror (CCM) and a beam-splitter 
(BS).  

 
Figure 3.1 illustrates a typical device to generate an autocorrelation 
between ultrashort pulses. This consists of a Michelson interferometer 
where two replicas of the same pulse travel different optical paths before 
being frequency doubled. The interferometer splits the pulse into two 
copies. Each copy travels down a separate arm. A translation stage 
located in one of the arms of the interferometer creates a net difference of 
the optical path between the two replicated pulses. This difference in the 
optical path is also a difference in time delay, . A signal generator or a 
computer can then be used to control a programmable translation stage to 
obtain different delays. In the fixed arm we have: 

      

€ 

ε(t)exp j2πf0t( )      (3.1) 
whereas in the other arm, the pulse has a net delay :  

€ 

ε(t −τ)exp j2πf0(t −τ)( )     (3.2) 

where 

€ 

ε(t) is the base band envelope of the complex electric field in 
time, and  is the central optical frequency of the pulse. 
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By focusing the two separated beams into a nonlinear medium, it is then 
possible to generate a signal that carries the correlation information: 

€ 

ε(t)ε(t −τ)exp j2πf0(2t −τ )( )    (3.3) 
This signal is commonly generated at doubled frequency because it 
exploits the second order nonlinearity of the medium. Detection of this 
signal requires the integration of its intensity over time t of at least over 
one pulse. In general, detection results in the actual averaging over 
several pulses. This causes a delay difference τ between the two identical 
pulses. By moving the translation stage (TS) a set of different τ delays 
can be obtained. The time delayed SH signal (blue arrow) generated from 
the nonlinear crystal (NLX) is then detected. The obtained 
autocorrelation can then be acquired (for example, using a DAQ data 
acquisition device) as shown in Figure 3.1. 
By doing so, we obtain SHG intensity autocorrelation, 

€ 

RI (τ) , which 
ideally corresponds to the strict mathematical definition: 

€ 

RI (τ) = E I(t)I(t −τ ){ }    (3.4) 

where 

€ 

E  ⋅  { } is the expected value operator,  is the delay between the 
two identical pulses and 

€ 

I(t)  is the instantaneous intensity pulse shape.  
Measuring the pulses in this way has some advantages and 
disadvantages: 

1) it allows for a straight forward interpretation of some 
qualitative smooth features of the pulse such as an approximated pulse 
width of the temporal intensity (as it is explained in the next paragraph), 
which can be used as guidance when carrying some pulse compression 
experiments;  

2) it can be performed at video rate speeds or higher because it 
only requires collection of small amount of points. 

 
3) however, the amount of information that it carries is limited 

because the pulse shape (Gaussian, sech2, etc., ) has to be  assumed and 
detailed knowledge about the pulse requires more sophisticated solutions 
(which will be explained below) . 
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Because nonlinear interactions (multiphoton processes) occur at high 
intensities, which means that below certain intensity threshold 
multiphoton processes can be neglected, is then reasonable that we 
establish the Full Width to the Half Maximum (FWHM) of the intensity 
profile to roughly approximate pulse duration. 
Note  that this FWHM of the intensity autocorrelation is equal the actual 
autocorrelation of two pulses with a defined intensity profile. Therefore, 
the temporal FWHM of the measured pulse is estimated by multiplying 
the FWHM of the IA by a scaling factor:  

€ 

FWHMI ( t) =
FWHMRI ( t )

α
     (3.5) 

where 

€ 

α = 2 ≅ 1.414  for a Gaussian pulse or α = cosh(1) = 1.543 for a 
squared hyperbolic secant, sech2(t). Further coefficients can be obtained 
for different pulses depending on the experimental conditions. 
 
3.2.2 Interferometric Autocorrelation. 
 
Probably, a more natural type of measurement in the time-domain is the 
Interferometric AutoCorrelation (IAC). This method firstly proposed by 
Jean Claude Diels and Eric Van Stryland in the 70’s was named Fringe 
Resolved Second Harmonic Generation (Diels, 1978a,b) (FRSHG). It 
contains a large amount of phase information and its experimental setup 
is simpler as it consists of an autocorrelator, SHG medium and a detector. 
Unfortunately, the additional phase information available in the IAC is 
mixed in a complex manner and training is necessary to visually extract 
some pulse information. 
This means that both beams are overlapped as can be seen in Figure 
3.2(a).  This collinear arrangement causes that the detected quadratic 
signal includes interference among different terms. This can be 
mathematically written as:  

€ 

RIA (τ) = E ε(t) +ε (t −τ)exp − j2πf0τ( )( )2
2⎧ 

⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
  (3.6) 
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The complex phasor depending on , , is responsible for 
the appearance of the interferometric fringes as can be further seen in the 
following expressions: 

€ 

RIA (τ) = E ε 2(t) +ε 2(t −τ)exp − j4πf0τ( ) + 2ε (t)ε (t −τ)exp − j2πf0τ( )
2⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (3.7) 
These interferometric fringes, as shown in Figure 3.2, are the main 
difference between the IAC and the IA. From the experimental 
viewpoint, an IAC, is more practical because it is performed under 
collinear geometry. Figure 3.2 illustrates how this interference does not 
occur when non-collinear geometry is employed (Fig. 3.2(b)) and 
Intensity Autocorrelation is then obtained. 

 
Fig. 3.2 (a) Collinear and (b) Non-collinear schemes to perform ultrashort 

pulse measurements. 
 
 
The IAC can be rewritten as:  
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€ 

RIAC (τ) = E

I2(t) + I2(t −τ) +

+4I(t)I(t −τ) +

+4 I(t) + I(t −τ)( )Re ε (t)ε*(t −τ)[ ]cos 2πf0τ( ) +

+2Re ε 2(t) ε*( )2(t −τ)⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
cos 4πf0τ( )

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ ⎪ 

⎭ 

⎪ 
⎪ 
⎪ 

 (3.8) 

 
The first two terms of this equation correspond to the background, 

€ 

E I2(t) + I2(t −τ){ } = 2E I2(t){ }, which are the SHG Intensities of the 

pulse and its delayed replica without interfering. The third term is 
equivalent to the Intensity Autocorrelation 

€ 

E I(t)I(t −τ){ }. It is worth to 
mention that these first three terms are not modulated in time delay, . In 
contrast, the fourth (complex interference) term is modulated at the 
central fundamental frequency  in time delay,  and the fifth term 
represents the Intensity Autocorrelation but modulated at the SHG 
frequency 

€ 

2 f0 in time delay, τ. 

 
Fig. 3.3 Simulated Interferometric Autocorrelation of a transform limited 

pulse with Gaussian profile with FWHM=8 fs. 
 
This notation allows extracting some important information about the 
collinear measurement such as an estimate of the quality of the 
measurement and any systematic errors performed during measurement. 
This can be done by noticing that at 

€ 

RIA (τ) τ=0 = RIA (0) , which 
corresponds to the maximum value of the SHG Interferometric 
Autocorrelation,  we obtain: 
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€ 

RIA (0) = E

2I2(t) +

+4I2(t) +

+8I2(t) +

+2I2(t)

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 

⎭ 

⎪ 
⎪ 

=16E I2(t){ }   (3.9) 

In addition to that, the background value can be calculated assuming that 
for large delays, there is no temporal overlap between the two pulses, 

€ 

I(t)I(t −τ) ≅ 0 , or 

€ 

τ →∞ : 

€ 

RIA (τ →∞) = E

I2(t) + I2(t −τ) +

+0 +

+0 +

+0

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 

⎭ 

⎪ 
⎪ 

= 2E I2(t){ }  (3.10) 

Therefore, from Eq. 3.9 and 3.10 it is possible to the established 
maximum to background ratio must be 8:1 for an ideal measurement. 
Importantly, this simple rationing might help to assess which is the 
source of the experimental error if any. Ensuring the obtained result 
should be one of the main concerns when measuring ultrashort laser 
pulses; otherwise, the obtained retrieval might be erroneous. 
Another convenient feature of the IAC is the fact that it is possible to 
obtain the IA. This is because the IA term is contained at the DC spectra 
of time delay, τ. Therefore, classical Low Band Pass Filtering (LBPF) is 
enough to obtain the autocorrelation plus a constant term (background). 
This LBPF can be either performed by a slow detector, by fast scanning 
the time delay, or by digital processing techniques once the trace has 
been electronically acquired. The new ratio for the collinear IA is the 3:1 
(as can be seen from numerical simulations shown in Fig. 3.4 or deduced 
from Equation 3.10. in an analogous manner to the Interferometric 
Autocorrelation) by simply neglecting the high frequency terms (those 
modulated by cosine function) from Equation 3.8: 

€ 

RIA (τ) = E
I2(t) + I2(t −τ) +

+4I(t)I(t −τ)

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
   (3.11) 

and applying the same procedure shown above: 
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€ 

RIA (τ) = E
2I2(t) +

+4I2(t)

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 6E I2(t){ }   (3. 12) 

And the background is calculated by 

€ 

RIA (τ →∞) = E
I2(t) + I2(t −τ)

+0

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 2E I2(t){ }    (3. 13) 

which establishes the ratio 3:1 from numerical simulation assuming ideal 
experimental conditions, as shown in Figs 3.4 (c)-(f)-(i), and can be 
checked for validation of an experimental measurement. 

 
Fig. 3.4 Comparisson between (b), (e) and (h) Interferometric 
autocorrelation (1:8 ratio as seen in the axis) and (c), (f) and (i) Intensity 
autocorrelation (1:3 ratio as seen in the axis) for (a) Transform Limited 
(TL), (d) Quadratically Chirped (QC) and (g) Cubically Chirped (CC) 
pulses, respectively. 

 
IAC, being a collinear technique, is sensitive to phase changes. However, 
these IAC are not adequate for a fully characterisation of ultrashort 
pulses. This is because different pulses can in fact produce very similar 
IAC and SHG spectrum6. Based on an IAC, there have been several 
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attempts to find a general method for a full ultrashort pulse measurement. 
These will be briefly reviewed in what follows. 
 
 
3.2.3 MOSAIC. 
 
MOdified-Spectrum AutoInterferometric Correlation (Hirayama, 2002; 
Bender, 2007, 2008), or MOSAIC, is a modification to the IAC method 
that makes it sensitive to temporal chirp. This technique is oriented for 
monitoring mode-locked laser pulses while performing real-time 
dispersion control to minimize the temporal phase distortions.  

 
Fig. 3.5 Simulation of H-MOSAIC for a pulse having a symmetric spectrum with (a) no 
dispersión, (b) GVD, (c) TOD and (d) an asymmetric spectrum with no dispersión. The 
dashed line indicates zero delay. (figure acknowledged from ref. 9 Bender 2008) 
 

MOSAIC is based in a simple post-processing technique. This requires 
modifying the IAC spectrum as follows: the 

€ 

± f0  terms are eliminated, 
the 

€ 

±2 f0 terms are amplified by a factor of 2, and the intensity 
autocorrelation term is unchanged. This spectral modification gives the 
time-domain MOSAIC signal: 
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€ 

IMOSAIC (τ) =1+ 2E I(t)I(t −τ) +Re ε 2(t) ε *( )2(t −τ)exp j4πf0τ( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

  (3.14) 

This technique allows obtaining a qualitative estimation of the pulse 
chirp at video-rates by simply displaying it into an oscilloscope; 
however, expertise is required. By adding the fundamental spectrum to 
the data set, it was further developed Hybrid-MOSAIC which allowed 
more intuitive representation of the amount of temporal chirp and 
spectral dispersion of the pulses and further development enabled 
ultrashort pulse measurements. 

 
3.2.4 IRIS. 
 
Prior to MOSAIC technique, an Iterative Reconstruction from 
Interferometric Signals (IRIS) technique was proposed at 1989 as an 
algorithm to retrieve an ultrashort pulse by measuring the Interferogram 
and the IAC (Naganuma, 1989). However, it has been shown to be 
susceptible to giving erroneous results under experimental conditions 
(Chung, 2001). Similarly in 1987, a computer assisted spectrum-resolved 
SHG autocorrelator for monitoring phase characteristics was also 
proposed (Watanabe, 1987).   
 
3.2.5 PICASO. 
 
Yet, another iterative algorithm appeared at the very end of the 
millennium, in 1999, to take time domain pulse retrieval one step beyond 
by measuring an intensity cross correlation from an unbalanced 
Michelson interferometer together with the pulse spectrum to feed an 
iterative algorithm that retrieves the complex pulse amplitude 
(Nicholson, 1999, 2000, 2002) named as Phase and Intensity from 
Correlation And Spectrum Only (PICASO). Similarly to other 
methodologies, they approach the problem by introducing an linear 
element with known dispersive properties in one of the arms of the 
unbalanced Michelson interferometer to generate an asymmetric cross 
correlation and start pulse retrieval guessing an initial spectral phase. 
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They model the measured cross correlation by guessing the electric field 
in both arms of the unbalanced Michelson interferometer as follows: 

€ 

A1(t) = F−1 S(ω ) exp jφ(ω)( ){ }   (3.15)  

where 

€ 

A1(t)  is the estimated temporal electric field in the input pulse,

€ 

S(ω) is the measured intensity sectrum, 

€ 

φ(ω) is the guessed phase, 

€ 

F−1  ⋅  { } is the inverse Fourier Transform. Likewise, the output from the 
unbalanced arm, 

€ 

A2(t) , is expressed as follows : 

€ 

A2(t) = F−1 S(ω ) exp jφ(ω) − jΨ(ω)( ){ }   (3.16)  

where 

€ 

Ψ(ω) models the known dispersive properties of the linear 
element. From this, the estimated pulse is computed as: 

€ 

Ir (τ) = A1(t)
2 A2(t −τ)

2
∫ dt     (3.17) 

The iterative algorithm is then framed in the context of a 
multidimensional minimization algorithm. In order to find the optimal 
solution, the authors propose the following merit function : 

€ 

Δ2 =
1
N

Im (τ i) − Ir (τ i)( )2
i=1

N
∑    (3.18) 

where N is the number of spectral sampling points and 

€ 

Im (τ)  is the 
measured intensity cross correlation. Of the many search algorithms 
available they chose a simplex method (Press, 1992) because of its 
simplicity and global search capabilities. The downhill simplex method 
works by constructing an (N+1)-sided volume, a simplex, in the N-
dimensional space of spectral phases, where N is the number of sample 
points. The error  is calculated for each of the simplex’s vertices, and 
then, they transform the simplex by moving vertices that have a high , 
usually by using a reflection operation. The procedure is iterated until a 
predefined error is reached or the error converges. Main advantage of this 
approach is that it overcomes the limitation of time directions thanks to 
the use of an unbalanced interferometer that generates an asymmetric 
measurement. Main disadvantage is related to the practical aspect that 
different pulses might require different linear elements with known 
dispersive properties, 

€ 

Ψ(ω). 
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Further research on this idea was evolved towards an unbalanced third-
order cross-correlation setup because the original scheme had some 
problems when retrieving asymmetric pulses (Nicholson, 2000) that are 
overcome by this approach. Although PICASO is perhaps the most 
successful of all IAC techniques described here it is however, as with all 
of the IAC techniques, lacking advanced error checking ability and 
requires pulse specific optical arrangements to guarantee the computed 
retrieval, and therefore, lacks of generality. 
 
 
3.3 Conclusions. 
 
Time domain techniques were the first attempt to characterise ultrashort 
laser pulses. They are an elegant and direct solution to a major problem 
of current physics that is lasting for almost half a century. They provided 
the first neat concept that we still work on: we require the shortest pulse 
to characterise the shortest pulse as this is the fastest event that we have 
in the lab. However, deeper and thorough study on ultrashort laser pulses 
soon required better and more accurate techniques in order to keep 
advancing. 
From this sound basis, better and more refined techniques were later 
developed, and general solutions were found as is explained in the next 
chapter, however, there is still a need to develop flexible, fast and robust 
solutions to this technological bottleneck. 
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CHAPTER 4 

Methods for the complete measurement of 
ultrashort laser pulses: State-of-the-art (part 2). 
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4 Methods for the complete measurement of 
ultrashort laser pulses: State-of-the-art (part 2). 
 
4.1 Introduction to complete measurement. 
 
In the prior chapter we have outlined methods for estimating some pulse 
characteristics by means of techniques based on a temporal analysis. 
Although extracting some features of the temporal intensity profile is an 
important step, in order to accurately measure pulses it is necessary to 
know the complex electric field (modulus and phase) of the unknown 
pulse. If these two parameters are established (aside from the uncertainty 
of the carrier envelope offset phase which is important only for near 
single-cycle pulses), it is said that a full or complete measurement has 
been carried out.  
The main limitation of methods based on autocorrelations is that they are 
one-dimensional data sets and do not allow reliable neither general 
method to fully characterise ultrashort pulses. Barakat (Barakat, 1984) 
mathematically showed in 1984 that although in one dimension 
multiplicity of solutions to the phase reconstruction problem represents a 
serious problem, in two or more dimensions multiplicity would be 
pathologically rare. 
Therefore, one possible solution to the phase reconstruction problem was 
to transform it into a complex two-dimensional phase retrieval problem 
by using a joint time-frequency representation. Due to this idea, a whole 
line of methods appeared based in a range of joint time-frequency 
representations, which were named spectrograms and sonograms. 
A well-known example of joint time-frequency representation is the 
musical score, which shows in Figure 4.1 the frequencies present in an 
acoustic waveform during a given time interval, and is thus a plot of the 
waveform's frequency vs. time. Additional marks at the top - pianissimo 
or fortissimo - indicate the intensity vs. time. 



 
 

 69 

 
Fig. 4.1 Spectrograms (or sonograms), frequencies vs. time, and 
equivalent musical scores for two different pulses (one better 
described in the time domain and the other better described in the 
frequency domain). Note that the spectrogram and sonogram 
graphically follow the pulse frequency vs. time (left) or the group 
delay vs. frequency (right). (figure acknowledge to 
www.physics.gatech.edu/gcuo/opn/opn.html) 

 
 Two-dimensional measurements, within a joint time-frequency domain, 
were actually introduced at the very beginning of the 70’s with an idea by 
Brian Treacy (Treacy, 1971). Unfortunately, this work was not 
appreciated at this time because the final step of pulse retrieval from 
these time-frequency images was not taken (Trebino, 1997). It was not 
until 1993, when Rick Trebino proposed Frequency Resolved Optical 
Gating (Trebino, 1993). This was the first method to completely 
characterise an ultrashort pulse in a wide range of situations without any 
a priori knowledge of the pulse. 
After FROG algorithm solved the problem and showed a general manner 
to approach the measurement of ultrashort laser pulses in a robust and 
effective manner due to acquisition of a huge amount of data, there were 
immediately requirements for further improvements. Such improvements 
were mostly centred upon practical feasibility and speed in the retrieval. 
Interferometric techniques (Iaconis, 1998a, 1998b) were born to address 
this latter problem: speed in the retrieval. Interferometric techniques offer 
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direct phase measurement without the need for retrieval algorithms or the 
collection of large data sets. As a consequence, pulse characterization can 
be carried out in real time (Shuman, 1999). Interferometric techniques, 
however, do not have a stringent error-checking capability; they normally 
rely on pulse-specific optical arrangements that might compromise 
practical feasibility. 
In what follows, a more detailed description of different methods for 
complete measurement will be provided, and has been divided in four 
sub-sections: Time frequency, with especial emphasis to FROG; Other 
FROG implementations; Interferometric Techniques; and Recent 
techniques. 
 
 
4.2 Methods for complete measurement. 

 
 4.2.1 Time-frequency Methods. 
 
  4.2.1.1 Introduction. 
 
Time-frequency techniques attempt to fully characterize ultrashort pulses 
by processing the information from a measured image. This image is 
carried out in a joint time-frequency space. The main advantage of taking 
a 2D representation of an ultrashort pulse is that it possesses 1) several 
mechanisms to avoid multiplicity of solutions as shown by Barakat 
(Barakat, 1984) and 2) checking capabilities to ensure the obtained result 
through marginal analysis.  
There exist a number of representations in a joint time-frequency domain 
for ultrashort laser pulses. In this part we will focus only in those 2D 
image representations that can be directly measured: sonograms and 
spectrograms. Although for other disciplines spectrograms and 
sonograms are equivalent techniques (i.e. sonograms are spectrograms of 
sound waves), in the context of ultrashort pulse measurement, they are 



 
 

 71 

not (Walmsley, 1996). A few schemes will be introduced in this section 
to illustrate this. 
 
  4.2.1.2. Sonograms. 
 
Sonograms (Chilla, 1991) are defined as the intensity vs. frequency for 
different frequency slices of the pulse (See Fig.4.2). Slicing the pulse in 
frequency requires performing a gating in frequency domain as seen in 
the following expression: 

€ 

S0(Ω,T) = ε(∫ ω)h(ω −Ω)exp − jωT( )dω 2
   (4.1) 

and this is actually the quantity that Treacy measured. Although several 
others, as briefly commented below with precise referencing, Yuzo 
Ishida, Eric Ippen, Andrew Wiener and J. P. Likforman, made 
measurements of various time-frequency domain quantities in the 1980's, 
Treacy's method did not find wide application until Juan Chilla and 
Oscar Martinez (Chilla, 1991) showed in 1991 that it could be used to 
reconstruct the full intensity and phase of the pulse. They realized that it 
was possible, under certain circumstances, to measure the approximate 
group delay. This solved the pulse measurement problem for many 
pulses. This technique was labelled by them Frequency Domain Phase 
Measurement, or FDPM, and by Treacy the dynamic spectrogram. 
Experimentally it is simple to measure: a portion of the pulse spectrum is 
selected by a spectrometer and then the cross-correlation of the selected 
slice with the input pulse is taken. 
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Fig. 4.2 Sonogram technique using a scanning Mach-Zehnder 
interferometer containing a scanning tuning Fabry-Perot 
etalon. On the right, example of possible measured image of 
the ultrashort pulse. (From Heriot Watt University, 
www.phy.hw.ac.uk/resrev/ufast/sonomzi.jpg). 

 

The difficulty with the Chilla-Martinez recipe is that it requires the 
frequency gate to be extremely narrowband, making this filtering step 
quite inefficient. Only when the pulse spectral phase is well behaved (i.e. 
smooth), the gate can be made wide enough to allow through enough 
energy to detect SH signal and simultaneously narrow enough, so 
assumptions of algorithm to extract the phase work correctly. In this line, 
other researchers have since developed variations on Chilla-Martinez  
method (Chu, 1995; Rhee, 1996). This has been also experimentally 
shown in several works by performing complete pulse characterization in 
real time (Reid, 2002). Reid and Cormack reported a static single-shot 
configuration for measuring a sonogram trace of ultrashort optical pulses. 
The performance of the proposed instrument described by (Reid, 2002) 
yields complete and unambiguous pulse characterization. 
Additionally, it sometimes occurs that, for a given frequency, a sonogram 
has two or more peaks in time, so that it is not possible to define uniquely 
a group delay. In this case the pulse cannot be reconstructed using a 
simple algorithm and more complex algorithms are required to overcome 
this limitation as reported and shown by Reid (Reid, 1999). 
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  4.2.1.3 Spectrogram. 
 
Ishida and co-workers were the first to make spectrograms of ultrashort 
laser pulses, but they did not retrieve pulses from them (Ishida, 1985; 
Watanabe, 1985, 1987). The underlying concept behind spectrograms is 
that gating occurs in time, rather than frequency as occurs for sonograms. 
This opened up a new range of possibilities to unwrap the pulse 
information hidden in the measured time-frequency image and presented 
alternative limitations to sonograms.  Although this concept seems at first 
not to be straightforward, it actually is, as shown in Figure 4.1 by the 
musical score. A mathematically rigorous form of the traditional musical 
score is actually the "spectrogram" (Cohen, 1989) as defined for 
ultrashort pulse characterization :  

€ 

S(ω,τ ) = ε (t)g(t −τ )exp − jωt( )dt∫
2
   (4.2) 

where is a variable-delay gate function. The spectrogram, 
analogously to the musical score, is the spectra at different temporal 
slices of the field.  
Finally, Trebino and Kane (Trebino, 1993, 1997; Kane, 1993a, 1993b, 
1998) introduced phase-retrieval techniques for obtaining the electric 
field from Eq. 4.2 and were the first to develop a rigorous method 
(Frequency Resolved Optical Gating) for pulse characterization.  
 
 
  4.2.1.4 FROG. 

Frequency Resolved Optical Gating (FROG) is one of the most common 
and robust approaches to fully characterise ultrashort pulses. It has been 
successfully used to characterise pulses from the UV to the near-infrared 
(Trebino, 1997) with durations of only a few femtoseconds (Baltuska, 
1998).  
This development occurred when Rick Trebino and Daniel Kane realized 
that the problem of determining the pulse intensity and phase from a 
spectrogram was essentially equivalent to the two-dimensional "phase 



 
 

 74 

retrieval" problem in image science and astronomy. Phase retrieval is the 
problem of finding a function knowing only the magnitude but not the 
phase of its Fourier transform. Phase retrieval for a function of one 
variable is impossible. For example, knowledge of a pulse spectrum does 
not fully determine the phase of the pulse as many different pulses have 
the same spectrum. However, twenty years ago, image scientists found 
that phase retrieval for a function of two variables is possible. 
Knowledge of only the magnitude of a two-dimensional Fourier 
transform of a function of two variables essentially uniquely determines 
of a function with finite extent. Interestingly, these results follow directly 
from the existence of the Fundamental Theorem of Algebra for 
polynomials of one variable and its non-existence for polynomials of two 
variables (Stark, 1987). The Fundamental Theorem of Algebra states that 
every non-zero single-variable polynomial, with complex coefficients, 
has exactly as many complex roots as its degree, if repeated roots are 
counted up to their multiplicity. In other words, for every complex 
polynomial p of degree n > 0 the equation p(z) = 0 has exactly ‘n’ 
complex solutions, counting multiplicities. Measurement of a 
spectrogram (or sonogram), which is the Fourier transform of a function 
of two variables, thus frames the ultrashort-pulse measurement problem 
in a form that allows a rigorous and general solution. This realization led 
to the introduction of iterative inversion algorithms (DeLong, 1994; 
Nicholson, 1999). The general prescription is that one seeks to find a test 
field 

€ 

ε test(t)  that minimizes the difference between the measured 
spectrogram and the test spectrogram. An initial guess is refined through 
iteration by continually comparing the test and measured spectrograms 
and then using the difference between them to determine how to alter the 
test field.  

The FROG technique can be implemented by exploiting several 
nonlinear effects such as: Polarization-Gate (PG-FROG), Self-Diffraction 
(SD-FROG), Transient-Grating (TG-FROG) and Second-Harmonic-
Generation (SHG-FROG) (Trebino, 1997). Among all of them, SHG-
FROG is the most popular because it can exploit the high second order 
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nonlinear coefficient rather than the, generally weaker, third order 
nonlinearities. SHG-FROG is also the preferred method for sub-100fs 
pulse characterization as it introduces very little material dispersion 
before the non-linear process takes place. 

 
SHG-FROG 

SHG-FROG trace consists of a frequency-resolved SHG intensity 
autocorrelation that provides the necessary frequency and time 
information to reconstruct the original intensity and phase of the pulse 
through an iterative algorithm. SHG-FROG is possibly the best-known 
representative all ultrashort pulse measurement techniques. The central 
idea is to measure temporal and spectral information simultaneously in 
some combined fashion, and then reconstruct the amplitude and phase 
profiles from the raw data by way of a suitable algorithm. 

 

        

  
Fig. 4.3 Different examples of SHG-FROG measurements for 
different pulse dispersion showing a distinct SHG-FROG pattern 
except for the sign of the chirp for each type of dispersion. (figure 
acknowledged to reference Trebino 1997). 
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Experimentally, SHG-FROG is quite simple: the FROG spectrogram is 
just the spectrum of the autocorrelation. Since experimentalist already 
routinely measure pulse autocorrelations and spectra, they need only 
move their spectrometer to the output of their autocorrelator in order to 
make a SHG-FROG trace to characterise the pulses because it provides 
particular patterns for different types of chirps (except for time direction 
ambiguity), as shown in Figure 4.3. In addition, almost any nonlinear 
optical process can be used to generate a self-time gate, and a number 
have been demonstrated. Unfortunately, in general, all these approaches 
are limited for use within a non-collinear geometry (Fig. 4.1). 
 
 
FROG algorithms 
 
All FROG algorithms are fundamentally based under the same scheme as 
shown in Figure 4.4. Basically an initial pulse is guessed, this guess can 
be either a random pulse or a prior estimation from the Intensity 
spectrum and/or a measured autocorrelation. Then, a FROG trace is 
generated through steps (2 and 3) of Figure 4.4. This generated FROG 
trace is modified in the following manner: phase information is kept and 
modulus information is substituted by the measurement. The key step lies 
in number 6, in which different techniques have been utilized to retrieve 
the temporal profile of the pulse, because this step sets how the algorithm 
will actually go towards the right direction. In any iterative algorithm, the 
most important characteristics are two: (1) the algorithm in average 
minimizes the error; (2) the algorithm should not be trapped in any local 
minima. Second condition is difficult to ensure under all conditions, and 
in order to minimize this type of error is fundamental to design a proper 
global search strategy. Because even an exhaustive search in all the space 
can be compromised by sampling or become too time consuming without 
guarantee to be correct. There is also extensive literature regarding the 
first condition and there has been several algorithms to robustly ensure 
the convergence of FROG algorithm towards the measured FROG trace 
(Trebino, 1997; Kane, 1993a, 1998; DeLong 1994b, 1994c; Paye 1993; 
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Nicholson, 1999), among all, it has been suggested by Trebino and Kane 
that Principal Component Generalized Projection Algorithm (PCGPA) 
has a remarkable performance. 

 

Figure 4.4 General FROG retrieval scheme. 
 

The PCGPA handles the FROG trace as an outer product form matrix, O, 
as follows: 

  O = U x W x VT   (4.3) 
where U matrix contains the column probe vectors 

€ 

ε(t), VT the row gate 
vectors 

€ 

ε(t,τ ), and W is a square diagonal matrix that contains the weight 
of each component. After this notation was made direct Principal 
Component analysis enables to extract the eigenvectors and the eigen-
values of the FROG trace in a number of ways. Then PCGPA keeps the 
component with the largest weighting factor, which is the principal 
component, to compute the synthetic spectrogram 

€ 

εsig
' (τ,ω) . Importantly, 

PCGPA ensures that for an ideal FROG trace, when both intensity and 
phase of the spectrogram 

€ 

εsig
' (τ,ω)  are correct, the outer product form 
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matrix is a matrix of rank one. That is, it would have one and only one 
nonzero eigenvalue and one VT-eigenvector and one U-eigenvector.  
Additional components will arise in experimental acquisitions due to 
experimental errors but this should be used only to establish the quality 
of the FROG trace measurement. 
 
Furthermore, PCGPA is frequently used in phase retrieval problems 
unrelated to FROG. It is also commonly used in many other problems, 
from medical imaging (Magnetic Resonance Imaging) to the training of 
neural networks. Indeed it is one of the few algorithmic methods than can 
be proven to converge when reasonable conditions are met. Also, 
composite strategies have been strongly recommended to complement 
PCGPA when it stagnates like the use of Genetic Algorithms (Nicholson, 
1999). Trebino and co-workers (Trebino, 1997) suggested the use of an 
independently measured spectrum as an additional constraint (DeLong, 
1994c); however, this could cause instabilities under some circumstances 

(DeLong, 1994d). 

 
A very important feature is that any FROG algorithm takes into account 
all the N by N data points of the spectrogram, which is a joint distribution 
of time-frequency, rather than N data points in the time domain and N 
data points in the frequency domain, produces a better estimate of the 
pulse, since there is redundancy of the signal. It has been shown that such 
collection of data, besides providing improved noise immunity (Wang, 
2003) has built-in consistency checks via marginal analysis which allows 
the detection of different sources of error. Consequently, SHG-FROG 
techniques offer a complete set of tools to ensure a robust retrieval within 
a widespread range of cases. 
 
One of the features often outlined by FROG’s users is the fact that after 
the iterative algorithm has provided with a candidate pulse, the goodness 
of the estimate can be checked though the marginals. Marginals are 
actually the summation in any of the two axes of the retrieved FROG 
trace, therefore, we can check temporal marginal and frequency 



 
 

 79 

marginal. The temporal marginal results from adding up all the spectral 
lines of the retrieved FROG trace and compare it with the Intensity 
Autocorrelation of the pulse. The frequency marginal is calculated by 
adding up all time delays of the retrieved FROG trace and compare it 
with the SHG spectrum of the pulse. 

 
However, quite generally FROG techniques show the best results by 
analysis of more or less simple pulse shapes, such as the output pulses 
from lasers. More complex amplitude profiles remain problematic for all 
variations of FROG, in particular when there are zeros or well separated 
parts in the temporal or spectral domain (Keusters, 2003). 
Measuring an SHG spectrogram does not avoid the problems of inversion 
mentioned above; however, if anything, they are worse: because the gate 
is the pulse itself, it can never be narrow enough to accurately obtain the 
frequency vs. time directly from the trace. In such cases, iterative FROG 
algorithms (Trebino, 2002; Kane, 1999) often do not converge and give 
meaningless and simply wrong output. Therefore, a reliable full field 
reconstruction of arbitrary pulse shapes could not be guaranteed by 
conventional FROG methods. Stagnation is also a persisting problem of 
conventional iterative FROG algorithms. 
 
FROG is considered to be the gold standard for ultrashort pulse 
measurements up to date but it posses certain limitations. It was well 
know that SHG FROG trace does not allow establishing time direction 

because the same SHG FROG trace can be generated by  or 
. However, this trivial ambiguity can be overcame by using other 
nonlinear phenomena (like THG based FROG) or adding some known 
dispersion and measuring another trace. 
 
As mentioned before, FROG algorithm tends to stagnate as pulse 
complexity increases. It has especially problems to identify between 
maxima or minima with points of inflection. Additionally, the good 
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estimate is mainly focused in the FWHM of the FROG trace that causes 
the wings to be poorly fitted because the total information is limited. 
In this line, Seifert et al. performed a careful study on “Nontrivial 
ambiguities for blind FROG and the problem of uniqueness” (Seifert, 
2004), which was an issue of major concern for certain applications. This 
recently developed into a new method named VAMPIRE (Seifert, 2004) 
to solve these limitations which is further explained below in this chapter 
(section 4.2.4.). 
 
 
 4.2.2 Other remarkable FROG schemes. 
 
  4.2.2.1 Introduction. 
 
In this section, we briefly present several FROG schemes and algorithms 
that have been used and have helped to spread the technique abroad 
along the nineties and the beginning of the 2000’s.  
 
 
  4.2.2.2 GRENOUILLE: simplified and single-shot FROG. 
 
Grating Eliminated No-nonsense Observation of Ultrafast Incident Laser 
Light E-fields (GRENOUILLE) is actually a different and simpler SHG 
FROG arrangement that is able to obtain the FROG image in a single 
shot (O’Shea, 2001). GRENOUILLE is a logical extension of FROG and 
it means “FROG” in french. The optical arrangement consists in 6 
elements: three cylindrical lenses, a Fresnel biprism, a SHG crystal and a 
CCD camera (see figure 4.5). 
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Figure 4.5 GRENOULLE experimental setup. (figure acknowledged 
to http://upload.wikimedia.org/wikipedia/en/b/bb/GRENOUILLE_lo 
ng.JPG). 

 
By assuming correct alignment, this set-up and some modifications in the 
original FROG algorithm, besides obtaining the complex electric field of 
the pulse, it also allows measuring spatial pulse-front tilt (Akturk, 2003a, 
2003b) because linear wavefront deformation (pulse tilt) induces 
nonsymmetric FROG trace that can be handled by the retrieval FROG 
algorithm. This technique has exhibited to be robust and direct, however, 
it lacks of flexibility and its own compactness avoids to use it in a 
number of applications, like the focus of this thesis, to mesure an 
ultrashort laser pulse at the focus of a multiphoton microscope. 
 
 
  4.2.2.3 XFROG: Retrieval of two different pulses. 
 
XFROG (DeLong, 1995; Kane 1997,Linden, 1998a, 1998b; Reid, 2000; 
Xu, 2000) uses two different pulses, one as gate and another one as a 
probe (reference pulse). Using sum (Linden 1998a) or difference-
frequency mixing (Reid, 2000) of two pulses, we obtain a cross-
correlation signal that is spectrally resolved. This results in the XFROG 
trace, one of the fundamental advantage of this approach is the capability 
to characterize weak ultrashort pulses from the mid-IR (Reid, 2000) and 
deep UV (Linden, 1998b) spectral regions. By using a reference pulse, 
which has been previously characterised, it is used as a constraint in the 
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algorithm to recover the unknown pulse. This variant of FROG has been 
demonstrated with the extremely complex pulse shapes of white-light 
continuum generated in microstructure fibres (Xu, 2000). 
 
 
  4.2.2.4 Blind FROG: Retrieval of two unknown pulses. 
 
It was later shown that a priori knowledge of any of the pulses is not 
required to simultaneously retrieve the pulses (Kane, 2008) because 
PCGPA can cope with it due to the wealth of information contained in 
the XFROG trace and it works better for actual blind deconvolutions 
because both pulses are truly independent, as it is assumed in the 
theoretical framework of PCGPA. 
 
 
 4.2.3 Interferometric Techniques. 
 
  4.2.3.1 Introduction. 
 
In the previous section we have presented FROG, which is considered up 
to date the gold standard of ultrashort pulse full-measurements. Another 
manner to circumvent the problem of retrieving the complete pulse 
characteristics is by taking a different approach based on spectral 
interferometry (SI). SI techniques were developed to enhance one of the 
main weak points of FROG: speed of retrieval. FROG algorithm is 
relatively robust and provides confidence to its users, however it requires 
large datasets to be acquired and executing an iterative retrieval 
algorithm. All this sequence of events is time consuming and is difficult 
to be carried out in real time. However, video rate FROG retrievals have 
been reported under specific setups as discussed below. 
SI can be performed, in general, by putting the input pulse through some 
known splitters and dispersive filters. This produces at least one delayed 
pulse at specific distance and a broadly dispersed pulse. Then, by 
nonlinearly combining the pulses into an output pulse, we can measure 
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spectral interference fringes resulting of the different pulses at the 
detector. One of the key elements of the technique lies on the fact that it 
is possible to write an analytical expression of the output pulse as a 
function of the splitters and dispersive filters. In general, if the filters are 
properly chosen according to the spectral properties and dispersion of the 
input pulse, it is possible then to directly reconstruct the pulse field by an 
inversion algorithm applied to the detected output pulse. 
 
There are two main advantages of this approach. Firstly, only a single 
measurement in one dimension needs to be acquired instead of the 2D 
images typical of spectrograms in the time-frequency domain. Secondly, 
pulse information can be extracted through a direct algorithm that is not 
iterative and therefore, it results in one of the fastest approach to 
characterise pulses (Walmsley, 2009). 
One of the first IT was proposed by Diels, who reported an 
interferometric technique that uses an ultrafast diode and a Schottly 
nonlinear mixer to measure the interference intensity pattern between 
pairs of spectral components of the pulse (Prein, 1996). A similar 
technique known as Direct Optical Spectral Phase Measurement 
(DOSPM) uses a nonlinear crystal as a time gate to also trace 
interference beats (Chu, 1995). When compared to other time-frequency 
domain (i.e. FROG), these techniques are experimentally difficult which 
avoided them to be widely used. Nevertheless, all this changed in 1998 
when Walmsley‘s group developed Spectral phase interferometry for 
direct electric-field reconstruction, SPIDER (Iaconis, 1998, 1999). 
SPIDER is currently the strongest alternative to FROG for complete 
measurement of an ultrashort laser pulse and is further discussed below. 
 
 
  4.2.3.2 SPIDER. 
 
Spectral Phase Interferometry for Direct Electric-field Reconstruction 
(SPIDER) is an interferometric ultrashort pulse measurement technique 
in the frequency domain based on spectral shearing interferometry.  
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Spectral shearing interferometry is similar in concept to intensity 
autocorrelation except that, instead of gating a pulse with a time-delayed 
copy of itself, the pulse is interfered with a frequency-shifted or 
spectrally sheared copy of itself. The interferogram, measured with an 
integrating detector, is related to the input pulse spectrum by 

€ 

S( fc ) =
ε( fc )

2
+ ε( fc +Ω) 2 +

+2ε( fc ) ε( fc +Ω) cos φ( fc +Ω) −φ( fc ) + 2πfcτ[ ]
  (4.4) 

where 

€ 

ε( fc ) is the input pulse spectrum,  is the amount of spectral 
shear,  is the temporal delay between the two replicas which needs to be 
adjusted for specific pulses and  is the base band frequency. The first 
two terms on the right-hand side of Eq. (4.4) are the individual spectra of 
the test pulse and its frequency-sheared replica, respectively. The third 
term provides the spectral phase in the form of the phase difference 
between spectral components separated by the shear . One obtains the 
spectral phase for a set of discrete frequencies separated by  from the 
spectral phase difference by simply adding up the phase differences, 
which are deduced from prior knowledge on the pulse or experimental 
calibration. Initially, spectral amplitude was obtained from the square 
root of an independently recorded pulse spectrum. However, 
improvements provided ways to obtain the spectral intensity from the 
simple algebraic methods applied to the interferometric trace (Dorrer, 
1999) to reduce experimental error and become self-callibrated. 
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Fig. 4.6 SPIDER set-up and illustrative retrieval (ackowledged from 
www.swampoptics.com/tutorials_spider.htm). 

 

Experimentally, as shown in Figure 4.6, the spectral shearing of the pulse 
is achieved by combining two properly conditioned beams within a 
nonlinear crystal such that the resulting sum or difference signal 
comprises a spectrally sheared pulse pair. The first beam consists of a 
pair of identical pulses, separated by a known time delay . The second 
beam consists of a highly chirped pulse. The amount of chirp added to 
this pulse is dependent upon two conditions. First, to ensure the pair of 
pulses in the first beam successfully interacts with the chirped pulse, the 
duration of the chirped pulse must be much longer than . Secondly, the 
chirp must be large enough to ensure that when the two beams mix each 
of the paired pulses mix with a different frequency in the chirped pulse. 
This procedure results in that each pulse emerging from the mixing 
crystal has a different centre frequency (sheared spectrum). By 
measuring the spectrum from the output of the nonlinear crystal, the 
SPIDER interferogram is acquired. To ensure the sampling rate is above 
Nyquist limit the value of  must be chosen appropriately. Also, the 
amount of spectral shearing must be carefully controlled to ensure the 
Whittaker-Shannon interpolation theorem (Goodman, 1988) is satisfied. 
Importantly, if the shearing is too small or too large, phase measurement 
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will be incorrect and this difficults the generalization of the setup for any 
type of input pulse with completely unknown dispersion. 
It was not until recently (Radunsky, 2006) that a simplified optical 
arrangement of SPIDER with more relaxed conditions was reported to 
overcome this limitations: Long Crystal – SPIDER (LX-SPIDER) as 
shown in Figure 4.7. 

 
Figure 4.7 Scheme for Long Crystal – SPIDER. WP, half-wave plate; 
BS, beam splitter; M, mirror; MP, mirror pair; LX, crystal. (figure 
acknowledged from Radunsky 2006). 

 
However, the arrangement still remains complex if compared with time-
frequency techniques such as FROG. This importantly limits the range of 
applications.  
Importantly, SPIDER has been successfully demonstrated with sub-6 fs 
pulses from Ti:sapphire lasers, compressed pulses from an amplifier 
system (Gallman, 1999, 2000; Schenkel 2003; Yamame, 2003) and 
optical parametric amplifiers (Dorrer, 1999a). 
 
 
 
 
 
 

lected directly from the test pulse by the PMF of the
nonlinear crystal. This scheme is known as long-
crystal or LX-SPIDER. Figure 1 shows the theoreti-
cal PMF magnitude for optical fields traveling at two
angles tilted ±0.25° away from the cut angle through
a 2 cm long type II KDP crystal cut for maximum col-
linear upconversion at 830 nm. The particular combi-
nation of the crystal’s material, length, and the wave-
length range (Fig. 1 shows 800–860 nm) produces a
nearly vertical PMF that is simultaneously very
broad along the ordinary axis and very narrow along
the extraordinary axis. Such a highly asymmetric
PMF shape is due to a match of the group velocities
of the o-fundamental input and the e-upconverted
output fields and a mismatch between the
e-fundamental and the e-upconverted field group ve-
locities. The wavelength range over which pulses can
be characterized using a KDP crystal is comparable
to the tuning range of ultrashort Ti:sapphire lasers,
while other types of crystals have been found to sat-
isfy the above-mentioned requirement in different
wavelength regions.7 For an ultrashort pulse with
the spectrum located in the 830 nm region, the
unique shape of the PMF shown in Fig. 1 allows for
the entire bandwidth of the o-wave to mix with a
quasi-monochromatic portion of the e-wave spectrum
as selected by the PMF. The precise angle of propa-
gation relative to the crystal’s optic axis (OA) deter-
mines the exact frequency of the monochromatic slice
of the e-wave spectrum. Thus, if two copies of a pulse
are directed into the crystal, altering their respective
propagation angles produces a spectral shift between
the upconverted outputs.

The schematic of the experimental LX-SPIDER ar-
rangement used to prove the principle of operation is
shown in Fig. 2. Our latest implementation is
adapted from a Michelson interferometer, where
corner-cube mirror pairs are used as the end reflec-
tors and the output beam splitter is replaced by a
mirror to collect the otherwise unused portion of the
incident beam. Before entering the interferometer,
the polarization of an initially horizontally polarized
input test pulse is rotated by 45° (with an achromatic
half-wave plate) to obtain both the e- and the
o-fundamental components in the crystal whose OA
is set to be horizontal. A 14 mm thick quartz plate po-
sitioned in front of the interferometer (with its slow
axis oriented horizontally) delays the e-wave by
450 fs with respect to the o-wave, the general re-
quirement being that the fundamental e-ray pulse
upconverts both leading and trailing parts of the
o-ray pulse in the crystal to eliminate distortions in
the upconverted output.8,9 One arm of the interfer-
ometer is translated with respect to the other to give
a relative temporal delay !!" required in the SPIDER
reconstruction algorithm. The output beam of one
arm is also tilted with respect to the other such that
the two pulse replicas are incident at slightly differ-
ent angles onto the crystal, which is placed directly
behind the interferometer. We use a 2 cm KDP crys-
tal cut at a 68° phase-matching angle at normal inci-
dence. Each of the two pulse replicas upconverts only
with itself (type II: oe→e) in the crystal, and the re-
sultant spectrally shifted and time-delayed SFG
beams intersect after exiting the crystal. The spectral
shearogram is resolved in a spectrometer (USB2000,
Ocean Optics) with its entrance slit positioned in the
beam overlap region.

Two parameters must be known for the simple,
noniterative SPIDER reconstruction algorithm: the
spectral shear !"" and the time delay between the
two input replicas !!". In our setup the shear value is
easily obtained by independently measuring the blue
SFG spectrum in each arm and comparing the two
spectrally shifted profiles. The angle between the
beams can be used to adjust the shear value, and it is
typically set in the 0.2°–0.5° range in our experi-
ments, leading to spectral shear values of

Fig. 1. (Color online) Absolute magnitudes of the collinear,
type II PMF, sinc2!#kL /2", #k!$e ,$0"=ke!$e+$0"−ke!$e"
−k0!$0" of a L=2 cm thick KDP crystal for two (different by
0.5°) values of the propagation angle, plotted as a function
of frequency for ordinary $0 and extraordinary $e input po-
larization components (black indicating perfect phase
matching). The sum-frequency signals are drawn on the di-
agonal axis, $s=$e+$0, illustrating the shear between the
outputs.

Fig. 2. (Color online) Experimental arrangement (top
view) for LX-SPIDER. WP, half-wave plate; BS, beam split-
ter; M, mirror; MP, mirror pair; LX, crystal.

April 1, 2006 / Vol. 31, No. 7 / OPTICS LETTERS 1009
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  4.2.3.3 Retrieval algorithm of SPIDER. 
 
To retrieve the phase information of the SPIDER interferogram, Eq. 4.4, 
Fourier filtering allows recovering the modulated phase signal of the 
cosine:  

€ 

φ( fc +Ω) −φ( fc ) + 2πfcτ . The linear term can be removed by measuring 
a prior calibration interferogram that has no spectral shearing by simply 
blocking the chirped pulse. 
By using concatenation (Zavelani-Rossi, 2001), the sampled spectrum 
phase at intervals  across the pulse spectrum can be calculated. 
Straightforward Fourier transform of the Spectrum and phase of the pulse 
allows computing the temporal intensity distribution of the pulse. 
 
One of the major advantages of SPIDER is that it relies on directly 
measuring the pulses. Direct measurements are assumed to require low 
computational load to the processing units because no iterative algorithm 
is employed. Typically, acquisition speed is only limited by the readout 
speed of the CCD array used in the spectrograph. Acquisition and 
reconstruction rates of up to 20 Hz have been demonstrated (Shuman, 
1999), which makes SPIDER an ideal online tool for aligning complex 
femtosecond laser systems. SPIDER can also be used in combination 
with pulse shapers (Baum, 2002). 
Although SPIDER is an excellent technique there are a few fundamental 
disadvantages associated with it. The main disadvantage of SPIDER is its 
lack of major checking capability, in contrast to the Time-frequency in 
which marginal analysis might be utilized to seek for systematic errors. 
Consequently, SPIDER measurements are solely relying on the 
calibration of the optical arrangement, which is prone to errors. Dorrer et 
al. (Dorrer, 1999b) suggested few techniques for improving SPIDER 
calibration by measuring interference fringes at different pulse delays. 
Less data points also makes SPIDER more susceptible to noise. 
Anderson et al. studied SPIDER behaviour under noise (Anderson, 
2000). They found that additive noise of an SNR=10dB the pulse shape 
could be recovered with an accuracy of 1.5%. Averaging of several 
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interferograms was suggested as a solution, at expenses of lower update 
speeds. 
The second major disadvantage of SPIDER is the flexibility. Nyquist and 
Whittaker-Shannon sampling theorems are required and they have to be 
considered and altered for different pulses. This carries two problems: 
first, SPIDER requires some a priori knowledge on the pulse, which can 
be solved by using either an autocorrelation or FROG; second, if the 
pulse varies while measuring with SPIDER the amount of spectral 
shearing and pulse delay  will require to be modified accordingly. Thus, 
the optical set-up will need to be re-callibrated.  
As an overall, the SPIDER technique is based on interference, which is a 
delicate process that demands perfect alignment and this is quite difficult 
in different experimental circumstances. This is why SPIDER is currently 
demanding more complex algorithms. This has evolved into the 
utilization of wavelet transform that is more reliable for highly structured 
pulses at expenses of computational cost (Deng, 2005; Reolon, 2006; 
Bethge, 2007). A fast and robust algorithm should allow to be used by 
non-experts but this is still under development (Bethge, 2007). 
 
 
 4.2.4 Other techniques. 
 
  4.2.4.1 Introduction. 
 
Although it is possible to measure a wide variety of ultrashort pulses all 
current techniques present certain limitations and there is no ideal or 
general method. Therefore, new techniques have been developed since 
the beginning of this thesis. 
 
 
  4.2.4.2 IFROG. 
 
Developed by Günter Steinmeyer, Interferometric FROG (Stibenz, 2005) 
is based on a collinear FROG measurement. The full expression of a 
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collinear measurement is extensively developed in the subsequent 
chapter and the first set-up proposed by Steinmeyer can bee seen in 
Fig.4.8. 

 
Figure 4.8  IFROG scheme (figure acknowledged from Stibenz 2005). 

 
IFROG also utilizes the FROG algorithm but extracts information 
differently. First, it acquires a collinear measurement, which contains 
delay dependant fringes (as will be explained in detail in the following 
section), in a similar manner to what occurs between IA and IAC 
autocorrelations. In this line, IFROG demodulates the information coded 
around the fundamental-delay frequency to make the algorithm converge. 
This trace is not symmetric and this has some advantages for ensuring 
convergence and avoiding ambiguities. IFROG also uses the PCGPA in 
the step 6, presented above in section 4.2.2 and therefore is more 
computationally demanding than other direct measurements like 
SPIDER. 
 
 
  4.2.4.3. VAMPIRE. 
 
Very Advanced Method of Phase and Intensity Retrieval of E-fields 
(Seifert, 2004; Hause, 2007), VAMPIRE, is a sophisticated optical 
arrangement and new algorithm for FROG to thoroughly retrieve the 

Fig. 1. Experimental arrangement of a dispersion balanced interferometric autocorrelator.
Spectrally resolving the autocorrelation signal results in an interferometric FROG trace
(See Fig. 2). The fringe substructure of the IFROG trace is preserved by triggering a fast
camera with the encoder signal of a constant moving delay stage. ENC, encoder; OMA,
optical multichannel analyzer.

angle of the beams [6, 14]. This has to be carefully avoided when using this technique in the
few-cycle regime. Recently, it has been suggested to extract the second harmonic FROG trace
from an interferometric FROG measurement with collinear beams [15]. While the information
from the interferometric modulation of those FROG traces was discarded in this first demon-
stration, we will show how to use this information to independently reconstruct the pulse shape.
Alternatively, this information can be used as an additional cross check, which is particularly
valuable for the measurement of few-cycle pulses.

2. Experimental set-up

At first sight, it appears straightforward to spectrally resolve an interferometric autocorrelation
trace and to develop this method into a novel kind of FROG. There are, however, two major
problems that have hindered this approach so far. First, it is necessary to sample spectra at
sub-wavelength delay steps without corruption due to interferometer drift. Second, this dense
sampling of the FROG trace results in an overwhelming amount of data, which causes slow
convergence during reconstruction or may even prevent any meaningful interpretation of the
data. In the following we present a solution for both these technical problems.
Rather than actively stabilizing our interferometer we choose to decrease the measurement

time to the minimum amount possible, utilizing a fast line-scan camera capable of kHz acqui-
sition of spectra (Dalsa CL-C6 2048T [16]). To improve the signal-to-noise ratio of the data,
we averaged 10 independent scans of our FROG trace. To synchronize acquisition of spectra,
the camera is directly triggered by the chopper wheel encoder of a conventional crossed-roller
bearing translation stage (Physik Instrumente M126.D [16]), see Fig. 1. The delay stage moves
at constant speed throughout the entire measurement window, triggering camera shots at a rate
of 100Hz on the fly. This way, a delay range of 100 fs is equidistantly sampled in only 5 sec-
onds, which corresponds to about 30ms per fringe of the fundamental wavelength. Spectra are
sampled at a delay step of 225 attoseconds, i.e., 1/12 wave at 800nm. Regarding the second
harmonic, data is sampled at about 3 times the Nyquist limit.
We use a standard dispersion balanced collinear interferometer with two broadband (440-

(C) 2005 OSA 4 April 2005 / Vol. 13,  No. 7 / OPTICS EXPRESS  2619
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phase information ultrashort pulses as mentioned in section 4.2.2. The 
existence of this technique follows from a work focused on studying the 
nontrivial ambiguities of typical FROG measurements. 
Seifert et al.performed a careful study on “Nontrivial ambiguities for 
blind FROG and the problem of uniqueness” (Seifert, 2004), which was 
an issue of major concern for certain applications such as molecular 
dynamics studies. In order for the algorithm to fail or stagnate, mostly it 
is sufficient, that the FROG trace is close to a trace with exact or 
approximate ambiguities. 
They conclude that a unique reconstruction of the pulses requires the 
knowledge of the pulse spectra and a non-centrosymmetric blind FROG 
trace. Furthermore, they showed that one necessary but not sufficient 
condition for the blind FROG uniqueness is to make sure that the spectral 
intensities of the two fields are distinguishable.  
Therefore, a possible solution to the pulse retrieval ambiguities of the 
SHG FROG trace is to transform it into a non-centrosymmetric blind 
FROG trace. This method seeded by Seifert in 2004 was experimentally 
shown in 2007 to measure the phase structure of soliton molecules 
(Hause, 2007). They claim that VAMPIRE is the only experimental 
method up to date able to retrieve the exact information, as they needed 
for that purpose. However, this remains to be fully shown and they only 
compare it with FROG. 
The proposed experimental set up to fulfil the requirements of a non-
centrosymmetric blind FROG trace with distinguishable spectra and 
therefore unique solution is shown in Fig.4.9. However, the proposed 
setup is much more complex than typical SHG FROG arrangements. 
VAMPIRE also provides a different procedure from commonly used 
iterative algorithms. VAMPIRE treats the spectrogram locally, not 
globally. This provides the means to check every single row of the trace 
for stagnating behavior: in every Gerchberg-Saxton loop, the error 
between the intermediate result and the measured data is calculated. This 
differs from FROG, which computes the whole trace at once, and not in a 
row-by-row fashion as VAMPIRE does. 
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After several iterations, rows with a low error are kept, while those with a 
higher error may be discarded. Discarding questionable data is might not 
be a big loss since spectrograms are overdetermined. Authors further 
claim that by this procedure, VAMPIRE is not only guaranteed to 
converge, but the convergence time is reduced drastically with respect to 
the commonly used PCGPA (Kane, 2008). 

 
Figure 4.9 VAMPIRE scheme (figure acknowledged to Hause 2007). 
 

This way the VAMPIRE spectrogram would contain two spectrally 
dispersed signals from the cross-correlations of the probe pulse with the 
two different components of the gate pulse so that the required non-
centrosymmetric spectrogram is obtained (Seifert, 2004). In comparison 
to other pulse retrieval techniques, the asymmetry thus provided in the 
cross-correlation contains just that extra amount of information, which 
guarantees a unique relation between the cross-correlated pulses and the 
spectrogram. 
 
 
  4.2.4.4. MIIPS. 
 
Multiphoton Intrapulse Interference Phase Scan (MIIPS) is analogous to 
the Wheatstone Bridge in electronics (which measures an unknown 
resistance by comparing it to known resistances), this recent method 

(Lozovoy, 2004; Xu, 2006) uses a calibrated phase function to directly 
measure the unknown phase distortions after iterative compensations.  

The light pulses are sent through a variable attenuator
consisting of a half wave plate and polarizing beam splitter
to set the desired power level. By way of a Mach-Zehnder
interferometer the pulses are split, delayed, and then recom-
bined to form a pulse pair of adjustable temporal separation
!in !see Fig. 1". !in is precisely known from the path length
difference which is a better criterion than distance between
maxima, in particular for small distances. A piezoceramic
transducer allows us to fine tune the path length difference,
and thus both !in and the relative phase of the pulse pairs.
The double pulses taken from one of the interferometer out-
puts are launched into the dispersion-managed fiber line.
!The other output remains unused at this point, but becomes
important below."

In the fiber line segments of normally and anomalously
dispersive fiber alternate; the segment lengths are L+ and
L−, and the line begins and ends with a half-segment of
anomalously dispersive fiber. Second order dispersion is not
fully compensated so as to give a negative path average dis-
persion of "2=−2.3 ps2 /km to support soliton formation.
Third order dispersion is nearly compensated by appropriate
choice of fiber. The map strength is S=3.8 based on the
definition

S =
#"2

+ − "2#L+ + #"2
− − "2#L−

#FWHM
2 . !1"

Here "2
+ and "2

− are the second order dispersion parameters
for normally and anomalously dispersive fiber, respectively.

Since the fibers in the line with different dispersion also
have different modal area, there are splice losses which limit
the useful number of dispersion periods. While in Ref. $1%
just three periods were used, we now double this number by
using the fiber in a double-pass configuration: At the end of
the fiber line, the pulses are reflected back by a mirror so as
to pass through it once again in reverse direction. A Faraday
rotator before the fiber line rotates the plane of polarization

by $ /4, and once again after the second pass. Thus the coun-
terpropagating pulses are orthogonally polarized with respect
to the launched pulses and can be coupled out by a polarizing
beam splitter.

Six dispersion periods per double-pass correspond to
4.2LD, where LD=T0

2 / #"2# is the characteristic dispersion
length. This is not a very high value but an improvement
over the first demonstration in $1%.

Data acquisition involves a spectrometer !not shown in
Fig. 1" which provides measurement of spectral power pro-
files, and a replacement of the autocorrelator used in the first
experiment $1%, configured in order to allow phase retrieval
as described below.

PHASE RETRIEVAL: CHOICES

A variety of techniques exist for full assessment of pulse
profiles. FROG is possibly the best-known representative $5%,
and there are different variations of FROG $6%. The central
idea is to measure temporal and spectral information simul-
taneously in some combined fashion, and then reconstruct
the amplitude and phase profiles from the raw data by way of
a suitable algorithm. Quite generally all existing techniques
show the best results by analysis of more or less simple pulse
shapes, such as the output pulses from lasers. More complex
amplitude profiles remain problematic for all variations of
FROG, in particular when there are zeros or well separated
parts in the temporal or spectral domain $7%. In such cases,
iterative FROG algorithms $6,13% often do not converge and
give meaningless and simply wrong output. Therefore, a re-
liable full field reconstruction of arbitrary pulse shapes could
not be guaranteed by conventional FROG methods.

Of all FROG methods, SHG FROG seems to be the most
widely used. Its name is derived from the fact that it uses
autocorrelation involving second harmonic generation, its
popularity seems to stem from its relative simplicity.

FIG. 1. Experimental setup. BS: beam splitter; PBS: polarizing beam splitter; BBO: nonlinear crystal; GM: galvanometer scanner. The
initial pulse is split, delayed, and recombined in the interferometer to generate the double pulse with the desired relative phase and
separation. The probe pulse propagates through the dispersion-managed fiber, while the gate pulse propagates through the reference fiber.
The BBO crystal generates the cross-correlation signal, and a diffraction grating spectrally disperses it. The spectra are focused on an
electronic camera !CCD". The delay axis is swept by a mirror mounted on a galvanometer scanner actuated synchronously with the variable
delay of the probe pulse.
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A MIIPS-based device consists of two basic components: a pulse shaper 
(usually a liquid crystal based SLM), a spectrometer a nonlinear medium 
(like an SHG crystal) and a computer. The pulse shaper allows 
manipulation of the spectral phase and/or amplitude of the ultrashort 
pulses. The spectrometer records the spectrum of a nonlinear optical 
process such as second harmonic generation produced by the laser pulse. 
The well-known and calibrated spectral phase function is used in order to 
measure the unknown spectral phase distortions of the ultrashort laser 
pulses. Typically, the known superimposed function is a periodic 
sinusoidal function that is scanned across the bandwidth of the pulse. 
MIIPS uses a pulse shaper that introduces a calibrated reference phase 
function to measure spectral phase distortions induced at the detector (see 
Fig. 4.10). The phase dependence of nonlinear optical processes such as 
second-harmonic generation (SHG) is used by the algorithm to directly 
measure the second derivative of the phase, this allows estimating the 
total phase which is introduced in the SLM and the algorithm reiterated 
until the error in the phase becomes irrelevant. As the reference phase is 
scanned, a MIIPS trace is obtained and the phase is calculated. This 
phase is used to compensate the pulse, via a pulse shaper, to achieve 
bandwidth-limited pulses. 
The pulse shaper, which manipulates the spectral phase of the laser in the 
frequency domain, can use a programmable Spatial Light Modulator 
(SLM) capable of introducing arbitrary phase delay at specific spectral 
regions. In principle, pulse shapers can compensate any accurately 
measured spectral phase distortion. However, not all methods used to 
measure spectral phase are accurate enough, and communication between 
the pulse shaper and the pulse-characterization equipment is required.  
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Figure 4.10 MIIPS scheme (figure acknowledged from 
www2.chemistry.msu.edu/faculty/dantus/UltrafastLaserOptics.html). 

MIIPS is similar with FROG in that a frequency trace is collected 
(spectrogram) for the characterization of the ultrashort pulse. As 
explained above, a FROG trace is collected through scanning the 
ultrashort pulse across the temporal axis, and detecting the spectrum of 
the nonlinear process (Eq. 4.2). In MIIPS, instead of scanning on the 
temporal domain, a series of phase scan is applied on the phase domain 
of the pulse.  
MIIPS takes advantage of the influence that phase modulation has on the 
probability of nonlinear optical processes at specific frequencies (Broers, 
1992).This method has already proved to be useful for the demonstration 
of selective multiphoton microscopy by use of ultrashort shaped pulses 
(Pastrick, 2003). 

It has been demonstrated not only with a thin SHG crystal, but also using 
surface-SHG from a silicon wafer, from KDP (potassium dihydrogen 
phosphate) powder located approximately 30 m from the laser (a 
demonstration of standoff pulse characterization), and from third-
harmonic generation (THG). In all three cases, distortions below 0.1 rad 
are obtained across the bandwidth of the pulse without the expense and 
bandwidth restrictions of SHG crystals. 
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  4.2.4.5 PRISM. 
 
One of the last contributions reported for ultrashort pulse measurements 
is Phase resolved interferometric spectral modulation (PRISM; Wu, 
2011) and it is based on the idea of using a phase only spatial light 
modulator to control the wavefront of light, which is incident on a target. 
Each phase element is dithered at a unique frequency. The scattered light 
from the target is demodulated for each modulation frequency and the 
phase values are extracted and used as the feedback signals to drive the 
phase elements such that they all interfere constructively at the target 
position. With a conventional 4f pulse shaper, the phase of different 
wavelength can be controlled. If one of the phase elements of the pulse 
shaper is changed from 0 to π, the pulse will become longer due to the 
nonconstructive interference between the out of phase wavelength and all 
the rest of the wavelengths at the temporal peak position. If the pulse 
interacts with a nonlinear medium and generates nonlinear signals, the 
signal strength will be lower than if all the wavelengths are in phase. If 
the phase of one of the wavelengths was originally φ out of phase with 
respect to all the rest of wavelength, adding –φ to the out of phase 
wavelength with the pulse shaper can increase the nonlinear signal to the 
maximum value. By applying a continuous phase modulation and 
monitoring the nonlinear signal variation, we can determine the phase 
value of the out of phase element. The key difference between PRISM 
and many other ultrafast pulse measurement techniques is that PRISM 
requires no measurements of coherent nonlinear spectra like SHG. Even 
incoherent signals such as two-photon excited fluorescence emission can 
be used for PRISM. Such a property allows PRISM to be combined with 
multiphoton microscopy to directly use the nonlinear signal measured by 
a PMT to determine and compensate for spectral phase distortions inside 
samples. 
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4.3 Conclusions. 
 
In this chapter, we have reviewed the two most important contributions 
for ultrashort pulse measurements: FROG and SPIDER. They are the 
flagship of two philosophies, time-frequency and interferometric 
techniques. However, these findings have been insufficient to transfer all 
the potential of ultrashort laser pulses beyond experienced physicists and 
engineers. For this reason, recent techniques have been proposed to solve 
particular ultrashort pulse measurement challenges: IFROG uses new 
terms in collinear geometry, which offers a simpler experimental setup 
and enables a wider range of applications and retrieves the phase 
information from an interferometric term; VAMPIRE solves all the 
ambiguities and produces experimental redundancy in the measured trace 
in a systematic manner that ensures accurate convergence of the trace at 
expenses of adding complexity to the experimental setup; and also 
MIIPS, which reduces the number of optical elements and uses an SLM 
to iteratively solve a customized spectrogram (similar to FROG) after 
pulse compensation until the pulse is transform limited. 
All these efforts suggest that there is still a need for a general method 
which overcomes all the mentioned limitations, and most likely the 
solution lies in between time-frequency approaches and interferometric 
techniques, because the first family offers robust and self-callibrated 
solutions, whereas iterferometric techniques are fast but prone to errors. 
Furthermore, the evident transdiciplinarity of the field results in new 
challenges where the light cannot be directly measured with some of 
these techniques, like multiphoton microscopy, in which light-matter 
interaction with living specimens offers a really exciting field for 
biophysicists and biomedical researchers. 
In the next chapter we propose two tailored solutions for multiphoton 
microscopy, which aims to become a general methodology. 
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CHAPTER 5 

New methods for pulse measurements in collinear 
geometry 
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5 New methods for pulse measurement in collinear 
geometry. 
 
5.1 Introduction. 
 
Collinear geometry is often imposed in a number of cases where 
ultrashort pulse characterisation is required (Fittinghoff 1998, 1999). For 
example, in nonlinear microscopy pulse optimisation at the sample plane 
is required to minimise radiation and maximise the generated nonlinear 
signal on the biological sample (Amat-Roldan, 2004), helping to prolong 
the specimen’s lifetime. To perform such optimisation, pulse 
measurement should be carried out at the sample plane of the 
microscope. Here, a collinear geometry is imposed since the full 
numerical aperture (NA) of the objective lens has to be fully filled. 
However, a complete measurement of an ultrashort pulse under collinear 
geometry has several difficulties and no robust methodology had been 
reported before this work, being Interferometric autocorrelation (IAC) 
techniques the standards at that time. IAC, is a collinear technique that is 
highly sensitive to phase changes. For example, The IAC has been used 
to measure the pulse width of sub-10-fs pulse passing through a 
microscope objective by assuming a Group Delay (GD) which is radius-
dependent (Jasapara, 1999). However, as explained in the previous 
chapter (section 3.2) no quantitative information about this phase can be 
extracted from this type of measurements.  
To fully characterise a pulse under high numerical aperture conditions, 
several attempts have been performed. Firstly, using a collinear 
geometry, and by way of type II SHG phasematching (Fittinghoff, 1998, 
1999), a FROG trace had been measured. This technique requires the 
incorporation of λ/2 plates into one arm of the autocorrelator to cross 
polarize the beams so that no interference is introduced (and therefore, 
the interferometric fringes are eliminated). This technique however, may 
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be inappropriate when dealing with very short pulses (< 20 fs), as it adds 
extra dispersion by way of the λ/2 plates. More recently, this problem 
was solved by introducing a periscope for polarization rotation inside the 
autocorrelator (Gallmann, 2000). However, in both cases, residual 
interference was still present which had to be eliminated by Fourier 
filtering the trace. All these (λ/2 plates, periscope for polarization 
rotation and Fourier filtering) added complexity to the technique. 
Our approach for fully characterising ultrashort pulse is based on a 
collinear interferometer (Michelson, Mach-Zender,…), a nonlinear 
medium and a spectrometer as seen in Fig.5.1. 
 

 
 

Fig. 5.1 Our collinear setup is based on a spectrally resolved collinear 
autocorrelator: collinear interferometer, nonlinear medium and a 
spectrometer. 

 

By using this arrangement, it is possible to obtain a collinear 
(interferometric) spectrogram that contains the typical information of the 
known FROG spectrogram plus some other features that will be 
discussed later. 
 The full mathematical expression of the collinear spectrogram is 
presented bellow and subsequent sections of this chapter show its utility. 
Most importantly, this approach was the first general method to fully 
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characterize an ultrashort pulse at the focus of a multiphoton microscope 

(Amat-Roldan, 2004b) when this experiment was done in 2004.  
5.2 Analysis of the collinear image. 
 
The purpose of this section is to analytically show the wealth of 
information embedded into an SHG-based Collinear-FROG (CFROG) 
trace. In the subsequent sections, it will also bee shown how to classify 
the different pulse retrieval methods that can be simultaneously 
utilized/extracted with this type of collinear measurement. 
We define the complex electric fields as  

€ 

ˆ E (t) = E(t)exp j2πf0t( )   ( 5.1 ) 
where E(t) is the slowly-varying amplitude and f0 is the optical carrier 
frequency. The quadratic response of two pulses interacting in the 
nonlinear medium after the interferometer is given by  

€ 

ˆ E (t) + ˆ E (t −τ)( )2
,     ( 5.2 ) 

Note that, when using the non-collinear geometry, it is experimentally 
possible to retain only the information of the required cross-term by: 

€ 

ˆ E (t) ˆ E (t −τ) .      ( 5.3 ) 
In this case, the SHG-FROG trace is an intensity autocorrelation that has 
been frequency-resolved and sampled within a delay-frequency grid. 
Thus, its general expression as a function of the input pulse Ê(t), is 
obtained using Eq. 5.3 as (Fittinghoff, 1998; Amat-Roldan, 2004; 
Tomlinson, 1984): 

   ( 5.4 ) 
 This expression, however, does not apply for a collinear 
geometry. Thus, in order to obtain a general expression of the CFROG 
trace we need to use the most general expression based on Eq. 5.2:   

   ( 5.5 ) 
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 It is clear from this expression that the CFROG trace resolves, in 
frequency, the whole quadratic response of the medium. By expanding 
the above expression it will be possible to establish the relations between 
the FROG trace and the collinear approach as explained below. The 
expanded collinear term, Eq. 4.2, can be grouped in three major terms: 
Ê2(t), which represents the pulse interacting with itself; Ê2(t-τ), which 
represents the delayed pulse interacting with itself; and Ê(t)Ê(t-τ), the 
cross term, which represents the pulse interacting with the delayed pulse 
(FROG term). By Fourier analysis, Eq. 5.5 can be written as the addition 
of four terms occurring at different delay-frequencies: 

€ 

ICFROG
SHG (τ, f )∝

2ISHG ( f ) +

+2ISHG ( f )cos 2π 2 f0 + f( )τ( ) +

+4Re ESHG ( f )( )*EFROG
SHG (τ, f ) exp(− j2πf0τ( ) + exp j2π f0 + f( )τ( )⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

+

+4IFROG
SHG (τ, f )

(5.6) 
in which    

€ 

ESHG (τ, f )∝ E 2(t)exp − j2πft( )∫ dt   ( 5.7 ) 

where 

€ 

ISHG ( f )∝ ESHG ( f )
2
, and            

€ 

EFROG
SHG (τ, f )∝ E(t)E(t −τ)exp − j2πft( )∫ dt   ( 5.8 ) 

where 

€ 

IFROG
SHG ( f )∝ EFROG

SHG ( f )
2
. 

 The two first terms in Eq. 5.6 correspond to the intensity resulting 
from the linear interference between the SHG of the pulse and the 
delayed one. In particular, the first term, corresponding to the SHG 
intensity of both the delayed and non-delayed pulses, is related with the 
inherent background in an IA. The second term contains the exact same 
background information but modulated by 2f0 in the delay-frequencies 
and is the cross term of the interference between the two SHG pulses. 
The third term, modulated at f0 is obtained from the interaction between 
the SHG field given by Eq. 5.3 and the SHG of the two individual pulses. 
Finally, the last term carries the SHG-FROG information that can be 
directly used for running retrieval FROG iterative algorithm.  
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5.3 CFROG: removing fringes. 

 5.3.1 Introduction. 
 
Previous section shows the analytical structure of an SHG CFROG. 
Importantly, it demonstrates that the spectrogram utilized by the FROG 
algorithm is contained within the collinear measurement. In this section 
we present a general process to convert an SHG-based collinear FROG 
(SHG-CFROG) trace into a conventional non-collinear SHG-FROG trace 
and report some of the additional features of the collinear geometry 
approach. This allows the use of well established algorithms for pulse 
retrievals, while at the same time, eliminating the problems that the 
previous approaches had (Fittinghoff 1998, 1999). 
 
From the previous section, we know that the full expression of a collinear 
measurement and is then straightforward to observe that the last term in 
Eq. 5.6 is exactly the same as the measured under non-collinear 
conditions, and thus needs to be unwrapped for our purposes. The 
technique to extract the SHG-FROG term from the others is by applying 
a simple Low Band Pass Filtering (LBPF). This allows keeping the DC 
terms, which are, SHG Background and FROG trace. Because FROG 
trace occurs only within some time-delay ( ) near zero delay(

€ 

τ ≅ 0) and 
SHG Background is independent from time-delay ( ) it is possible to 
obtain both separately by simple algebra. Next section employs a 
numerical example to fully illustrate this procedure. 
 
 5.3.2 Simulation. 
 
Within this section we show by using a simulation tool that it is possible 
to unwrap the non-collinear term. By carrying out this analysis we have 
verified the integrity of the procedure helping to show important 
properties associated with the collinear approach. To do that, consider the 
pulse of Δt = 25 fs (measured at FWHM) showing an arbitrary  
shape and phase shown in Fig 5.2 (a). 
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With this pulse, it is then possible to calculate its IA (Fig. 5.2(b)) and the 
resulting CFROG trace (fig 5.2(c)) in which a delay sampling according 
to the Nyquist limit has been applied (Oppenheim, 1975). It is important 
to notice that to resolve the interferometric fringes the sampling must be 
at a delay step ΔτN < 1/(2fmax) = 1/(4f0). At this point, it is important to 
realise that a CFROG trace is an IA that has been frequency-resolved. 
Therefore, by integrating the spectrogram shown in Fig 5.2(c) in 
frequency it is possible to recover the autocorrelation shown in Fig. 
5.2(b). 

    

 

Fig. 5.2 Numerical results: (a) Multiple-pulse with cubic phase 
employed as input in our simulation tool (b) Interferometric 
Autocorrelation (c) CFROG trace (d) Fourier Transformed CFROG 
trace. 

 
This allows the characteristic 8:1 ratio of an IAC to be verified during 
acquisition, providing a simple method to check the integrity of the 
measured trace in the laboratory. Importantly, this is not available with 
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non-collinear arrangements. Additionally, the delay axis can be self-
calibrated by measuring the fringes. This enhances the detection of errors 
during the experimental measurement while, at the same time, helping 
add consistency to the acquired results.  Fig. 5.2(d) shows the 
bidimensional Fourier transform of the acquired CFROG trace of Fig. 
5.2(c), which is required to understand the procedure of unwrapping of 
non-collinear FROG term explained here below. 
To unwrap the non-collinear FROG term we should notice that the 
second and third terms in Eq. 5.6, are modulated at frequencies f0 and 2f0. 
These two terms can be removed by low pass band Fourier filtering. Fast 
Fourier transforming (FFT) a CFROG trace assumes periodicity in the 
applied direction. This is a condition that is impractical to carry out when 
experimentally acquiring the trace. As a consequence, an error will be 
introduced in the form of modulation components in the frequency 
direction. By using a two-dimentional Fourier Filter this error is greatly 
reduced. Fig. 5.2(d) reveals the two-dimensional Fourier Transform of 
the SHG-CFROG trace. It can be seen from this figure that a relaxed cut-
off frequency for filtering can be applied without major loss of 
information since the interferometric terms f0 and 2f0 are well separated 
from the DC. After filtering, the first term in Eq. (5.6), corresponding to 
the SHG spectrum, is the only non-desired term remaining in the CFROG 
trace. This overlaps with the DC term and can be easily removed by 
measuring it (for example by averaging from several samples at the edges 
of the delay axis) and then being subtracted from the trace. After all this 
process, the remaining DC term contains the same information as a non-
collinear SHG-FROG trace and thus a conventional FROG retrieval 
algorithm can be employed. Fig. 5.3(a) and (b) show the filtered CFROG 
trace and the numerically generated non-collinear FROG trace, 
respectively. An excellent agreement between both traces can be 
observed. This is confirmed with an RMS G-Error between the two 
traces being G = 2.7·10-7. Finally, the need of a two-dimensional filtering 
is highlighted by comparing this result with that obtained when using a 
one-dimensional Fourier filtering. In this case, a much larger G-Error 
(G1D), is obtained, having a value of G1D >10-2. 
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Fig. 5.3 Results: (a) filtered CFROG trace (b) FROG trace. G=2.7·10-7. 
 

This simulation has shown that it is possible to obtain SHG-FROG traces 
under collinear geometry for complex pulses. This allows for full pulse 
characterization for a broader range of cases hence, extending the 
usefulness of the FROG technique. This includes not only pulse 
characterisation under high numerical apertures, but also the possibility 
of characterising very short pulses (Δt < 20 fs) using a type I SHG 
phasematching.  
 
 
 5.3.3 FAST-CFROG: Sampling strategy. 
 
It should also be noted that when dealing with such short pulses, just a 
few points are required when sampling at the Nyquist limit and, as a 
consequence, it is possible to acquire the trace quickly. For example, 
obeying Nyquist, a Ti:sapphire laser at 800nm will require a delay step 
of 

€ 

Δτ < 0.66 fs. For unchirped 10 fs pulses only about 80 data points are 
needed. However, for pulses that include a large number of optical 
cycles, i.e. 100-fs, over 800 data points would have to be acquired. This, 
therefore, generates a large and clumsy data set that is both difficult and 
time consuming to acquire and analyse. 
The possibility to overcome the Nyquist limit will result in a faster 
measurement. To do this, we need to realize that we do not need to 
resolve the interferometric fringes as the algorithm only uses the DC 
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term. If however undersampling is carried out both the acquisition and 
data processing time can be significantly reduced without major loss in 
accuracy. In what follows we will describe a methodology to carry out 
this undersampling. We must first notice that the use of undersampling in 
the delay-frequency (or k-domain) causes frequencies above the Nyquist 
limit (BN) to shift to lower frequencies (Oppenheim, 1975). For instance, 
a component k > BN, will be shifted to a new frequency given by: 

€ 

k'= k − nkspan
'       ( 5.9 )  

where n is an integer and 

€ 

k'=1 Δτ  is the total span of the -domain. In 
order to measure an undersampled CFROG trace capable of successful 
filtering we consider two constraints. The first constraint is to choose an 
appropriate delay step (Δτ) to avoid frequency overlapping of the 
interferometric terms with the DC-FROG component. To achieve this, 
the shifted frequencies must be as far away as possible from the DC term   
( =0 ). From Eq. 5.6, it is possible to demonstrate that this optimal 
situation occurs when f0 is shifted to 

€ 

± kspan
' 3  and 2f0  to 

€ 

±mkspan
' 3. 

Given this, the optimum delay step is: 

     ( 5.10 ) 
Even if the condition in Eq. 5.10 is satisfied, overlapping of the delay-
spectral components can still occur for very large undersampling. To 
avoid this from happening, we need to ensure that the delay step in Eq. 
5.10 is not too large, thus the following restriction needs to be imposed: 

     ( 5.11 )  
where ⎮IA  is defined as the full width at 15% of the maximum of the IA 
trace. This condition is equivalent to using more that 10 samples within 
the trace envelope. For simple well behaved bell-shaped pulses, this 
condition has been proven to work fine without loss of accuracy. 
However, to retain high frequency components within more complex 
pulses, a larger number of sampling points may be required. 
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The second constraint is used to define a sufficient delay span τspan to 
give negligible error: 

            

€ 

τspan =
1
Δk

≥ 2τIA     ( 5.12) 

From Eq. (5.11-5.12), we obtain a criterion that recommends a minimum 
of 20 spectra.  
In summary, using Eq. 5.10 with the restriction in Eq. 5.11 ensures that 
the distribution of the interferometric terms is sufficiently far away from 
DC term. In addition, Eq. 5.12 helps define a sufficient delay span for an 
accurate acquisition. Thus, a flexible and robust undersampling criterion 
is proposed to allow fast-CFROG retrieval. 
The following section shows an experiment that answers two important 
issues: (1) does it work? and (2) which is the amount of error introduced 
by undersampling? can it be neglected? 
 
 
 5.3.4 Experimental results. 
 
To further test this technique, we compared two experimentally acquired 
traces. One trace was obtained as a conventional non-collinear FROG 
trace while the other one was obtained by filtering an undersampled 
CFROG trace. Both traces were obtained from the same laser source 
during a single experiment. 
 
The pulses from a Kerr-lens mode-locked Ti:sapphire laser with average 
power of 1.5W, a wavelength of 800nm and a repetition rate of 76 MHz 
were focused into an SHG type I BBO crystal through an autocorrelator. 
The SHG signal was sent to a spectrograph and detected by a CCD linear 
array. This arrangement enabled us to obtain a SHG-FROG trace and 
SHG-CFROG trace under very similar conditions. The delay step of the 
CFROG trace was fixed at Δτ = 1.76 fs, and it was estimated that 
τIA ≈ 450 fs (thus τspan = 900 fs). We first collected the data under a 
collinear geometry. Fig. 5.4 shows (a) the collinear measurement and (b) 
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the two-dimensional Fourier Transform of it. Also, in figure 3.4(c), we 
plot the IA obtained by integrating the CFROG trace showing that the 
characteristic 8:1 ratio can be checked even under undersampling 
conditions. 

 
 Fig. 5. 4  (a) Measured CFROG, (b) fourier transformed CFROG 
and (c) measured IA with a delay step of 1.76 fs and 512 samples. 
 

We then proceeded to perform the background subtraction and Fourier 
filtering to the CFROG trace. The fully filtered CFROG trace can be seen 
in Fig. 5.5(a). Without stopping the laser, we changed to a non-collinear 
geometry. The resulting FROG trace is shown in Fig. 5.5(b).  
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Fig. 5. 5 (a) filtered FAST-CFROG trace and (b) FROG trace. G=3.9·10-6. 

We demonstrated the effectiveness of this technique by comparing both 
traces and computing the G error. For this reason, it was necessary to 
interpolate the FROG trace to obtain the same delay step of 1.76 fs. 
Excellent agreement is observed between the two traces (Fig. 5.5), where 
G = 3.9·10-6. To further check this result, time and frequency marginals 
for both traces have been calculated. Fig. 5.6 shows a comparison of such 
marginals where again very good agreement is obtained. 

 
 

Fig. 5. 6 (a) Spectral marginal from the filtered CFROG trace (blue 
circles) and FROG trace (red line); (b) Intensity autocorrelation (delay 
marginal) from the filtered CFROG trace (blue dots) and the FROG 
trace (red line). 

 

From figure 5.6, we can confirm that both traces are equivalent and that 
running the FROG retrieval algorithm with any of the traces shown in 
Fig. 5.5, will retrieve the same pulses. 
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Figure 5.7 G-error as function of number of spectra (from 16 to 512) per trace. 
In order to investigate the effect that undersampling has upon the 
experimentally acquired CFROG trace, we proceeded to resample our 
CFROG trace of Fig. 5.4(a) to a lower number of points (N). Thus traces 
of N = 256, 128, 64, 32 and 16 samples were generated from the original 
(N = 512 sampled) trace and the according G-error calculated as shown 
in Fig. 5.7. This is equivalent to increase the Δτ1 in powers of two for 
each case. Even for the highest sampling rate (N = 16), we obtained a 
relatively low error of G = 1.6·10-3. This sampling rate is below our 
sampling limit (Eq. 5.10 - 5.12), but as previously mentioned, for well-
behaved pulses our criteria may be relaxed.  
 
 
5.4 MEFISTO: direct pulse measurement. 
 
 5.4.1 Introduction. 
 
Time-frequency techniques based on acquiring spectrograms generally 
allow for analysis that immediately detects systematic errors. They, 
however, rely on the acquisition of many data points as well as an 
iterative retrieval algorithms (Kane, 1998) to recover the pulse 
information. In contrast, interferometric techniques  (Iaconis, 1998a, 
1998b) offer direct phase measurement without the need for retrieval 
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algorithms or the collection of large data sets. As a consequence, pulse 
characterization can be carried out in real time (Shuman, 1999). 
Interferometric techniques, however, do not have a stringent error-
checking capability and they normally rely on a pulse-specific optical 
arrangement. In this section, we describe MEFISTO (Measurement of 
Electric Field by Interferometric Spectra Trace Observation) as a new 
and important general methodology, based on Fourier analysis (Amat-
Roldan 2004a, 2004b), which allows the phase of an unknown pulse to 
be analytically obtained. Furthermore, this novel method helps to bring 
together time-frequency and interferometric techniques while 
maintaining the robust error-checking capability of the time-frequency 
approaches and discarding some of their negative attributes. In addition 
MEFISTO requires only a simple collinear autocorrelator whose output is 
spectrally resolved as a function of delay as shown in Figure 5.1. 
 
 
 5.4.2 Theory of MEFISTO. 
 
To understand MEFISTO, consider a pulse interacting collinearly within 
a nonlinear crystal, after passing through an autocorrelator. The second 
harmonic generated signal is then directed to a spectrograph to obtain an 
interferometric trace in terms of the time-delay  and the frequency . 
An experimental example of such a trace can be seen in Fig. 5.2(c). The 
resulting trace can be mathematically described as in Eq 5.6 of this 
chapter. 
The main difference of MEFISTO with SHG-FROG is that all the cross-
terms in are retained and, as we will show below, with the new 
information carried on these terms it will be possible to analytically 
obtain 

€ 

E(t).  
 
In order to do this, we first calculate the Fourier transform of Eq. 5.6 in 

the  axis, 

€ 

Y SHG ( f ,κ) = Fτ ISHG ( f ,τ ){ }. The resulting expression consist 

of 5 main spectral components (see Fig. 5.2(d)) at frequencies DC, 

€ 

± f0
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and 

€ 

±2 f0. Since the interferometric trace (Fig. 5.2(c)) is symmetric and 
real, the negative spectral components are real and equal to the positive 
ones (see Fig. 5.2(d)). Therefore, to analyze the information enclosed in 
the transformed trace, we only need to focus on the positive frequency 
components. Each of these terms carry information of the pulse phase 
and intensity and their use will depend on the particular experimental 
conditions (Amat-Roldan, 2004).  

 

 
 

Figure 5. 8 a) Frequency resolved collinear autocorrelation. b) Same 
trace in the Fourier domain (For clarity, intensity scale is not linear). 

 
Here, we focus on and analyze 

€ 

Y SHG ( f ,κ)  at 

€ 

κ ≈ f0 , the most interesting 
term of the spectral components for this section due to its asymmetry and 
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potential wealth of phase information which will be exploited by 
MEFISTO. In order to extract such information, we rewrite this spectral 
component as, 

€ 

Yκ ≈ f0
SHG ( f ,κ) = 2ESHG ( f )E*( f + f0 −κ)E

*(κ − f0) + c.c.  (5.13) 

where 

€ 

ESHG ( f ) = df 'E( f ')E( f − f ')∫  and 

€ 

E( f ) = Ft E(t){ } . Using 
equation (5.13), it is possible to determine 

€ 

E(t) in an analytical way. To 
show this, we write the spectral component of the complex electric field 
in polar form, 

€ 

E( f ) =U( f )exp jφ( f )( ). Then equation (5.13) can be 
written as 

€ 

Yκ ≈ f0
SHG ( f ,κ) =

4USHG ( f )U( f + f0 −κ)U(κ − f0) ×
cos φ SHG ( f ) −φ( f + f0 −κ) −φ(κ − f0)( )  (5.14) 

Under typical lab conditions, the spectral amplitude of the fundamental 
pulses, 

€ 

U( f ) , and of the corresponding second harmonic, 

€ 

USHG ( f )  are 
known. Therefore, the only unknowns in equation (5.14) are the spectral 
phases of the fundamental and second harmonic pulses, 

€ 

φ( f )  and 

€ 

φ SHG ( f ) . Once the phases are known, the pulses are completely 
characterized. This can be successfully achieved by taking two different 
slices in the transformed space of the interferometric trace, e.g., at 

€ 

κ = f0  
and 

€ 

κ = f0 − Δf . Then from (5.14) we obtain:   

€ 

φ SHG ( f ) −φ( f ) −φ(0) = ±cos−1 Ω( f ,κ = f0)( )  (5.15)  
and 

€ 

φ SHG ( f ) −φ( f + Δf ) −φ(−Δf ) = ±cos−1 Ω( f ,κ = f0 − Δf )( )  (5.16) 

 

where we have defined, 

€ 

Ω( f ,κ) =
Y SHG ( f ,κ)

4USHG ( f )U( f + f0 −κ)U(κ − f0)
. 

Note that all the functions in the parameter 

€ 

Ω( f ,κ)  can be 
experimentally obtained. Then, by subtracting equations (5.15) and 
(5.16) we get 

  

€ 

Δφ( f ) = φ( f + Δf ) −φ( f ) =

= ±cos−1 Ω( f ,κ = f0)( )  cos−1 Ω( f ,κ = f0 − Δf )( ) + φ(0) −φ(−Δf )
 ( 5.17 ) 
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This is the critical equation. Similarly to spectral shearing interferometry 
we directly obtain the phase increment as a function of frequency. 
Therefore, the actual phase is just the addition along the frequency axis:     

€ 

φ( f ) = Δφ( f )
f= f1

f2
∑     ( 5.18) 

Where  and  are the lower and upper bounds of the considered 
bandwidth of the pulse respectively. This equation is the final result of 
the MEFISTO method and allows the determination of the phase of 

€ 

E( f ) taking an arbitrary origin 

€ 

φ(0) and varying . However, in order 
to use equation (5.17) there are some aspects that are worth noting. 
Firstly, the term 

€ 

φ(0) −φ(−Δf )  in equations (5.17) is a constant that can 
be decided arbitrarily. This term adds a linear phase shift that is 
equivalent to determining the electric field origin in time. Second, in the 
theoretical development, a 

€ 

cos−1Ω function was used and as a 
consequence the sign of the phase shift is not determined. This results in 
two possible solutions, 

€ 

E( f ) and 

€ 

E*( f ) , which is the characteristic 
ambiguity that also appears in FROG measurements and it cannot be 
resolved using schemes based on quadratic nonlinearities. Additionally, 
for simplicity of the analysis, we have implicitly considered that the 
sampling step in the  and κ axis coincides (

€ 

Δκ = Δf ).  
 
 
 5.4.3 Simulation. 
 
In this section a number of traces are numerically computed to evaluate 
some aspects of the performance of MEFISTO and provide evidence of 
its limitations and virtues. For this, a collinear trace is computed with a 
transform limited pulse and with a pulse with quadratic phase at different 
Signal-to-Noise Ratios (SNR). Although other experimental errors might 
be important, like small variations in the sampled delay of the trace, this 
can be experimentally solved with specific setups as reported in IFROG 
(Stibenz, 2005).  
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Figure 5.9. (a) Numerically simulated collinear trace generated with a 
transform-limited pulse with a pulse with of 94 fs acquired at 
SNR=40dB; (b) DC term, (c) fundamental term and (d) second-
harmonic term of the delay-frequency of Eq.5.6. 

 
Numerical traces are sampled in delay axis at 

€ 

Δτ = 0.6 fs  and a spectral 
resolution of 62.5 GHz (reciprocal to 16ps, which is about 0.133nm at 
800nm. The delay span is equivalent to 2.46ps (reciprocal to 406.8 GHz); 
in this context, phase measurement will be limited by the delay span. 
Figure 5.9(a) shows the numerically simulated trace of the transform 
limited pulse, 5.9(b-d) show the DC term, the fundamental term and the 
second harmonic term, respectively. Figures 5.9(b-d) illustrate the 
different frequency resolution pointed out above 62.5 GHz for the 
spectrum (in the vertical axis) versus the 406.8 GHz of the frequency-
delay (in the horizontal axis), in which the blocking effect of pixels is 
evident along the horizontal axis. 
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          (a)         (b) 

  
          (c)        (d) 
Figure 5.10. Numerically simulated spectrums form collinear trace generated with a 
transform-limited pulse at different SNRs: 40, 20, 10 and 10 dB for (a) to (d) 
respectively. Each figure contains two delays: at zero delay (green line) where SHG is 
maximum but highly inestable as small  vibrations have strong variations and at 1.23ps 
(blue line) where SHG is generated by two pulses that are temporally separated. In spite 
of this, we still observe a strong delay dependant modulation for the SHG spectrum that 
shows the effects of collinear propagation. 
 
Each trace is simulated 1,000 (one thousand) times at different signal-to-
noise ratio (SNR) ratios of 6, 8, 10, 12, 14, 16 18, 20, 25, 30, 35 and 40 
dB. This makes a total of 12,000 measurements to extract some 
exploratory conclusions. 
MEFISTO measurement is performed by generating the trace, obtaining 
the SHG intensity spectrum from the trace and an independent 
measurement of the intesity of the fundamental spectrum.  Figure 5.10 
(a)-(d) shows the appearance of the numerically simulated spectra 
acquired when doing the experiment. When doing this, delays near zero 
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produce maximal SHG signal, but this point is highly unstable and small 
changes in air temperature or minimal vibrations produce destructive 
interference and the signal is almost gone by motions of few hundreds of 
nanometers. Alternatively, delay points far beyond the tails of the pulses, 
when interference is only produced by collinearity of both pulses, we 
find the SHG intensity spectrum modulated by a cosine function at a 
frequency proportional to the delay. These points are stable and 
experimentally interesting as they allow to check collinearity in a very 
direct manner. 
 
Transform limited pulse 
 
A collinear trace is numerically simulated with a gaussian pulse with a 
spectral FWHM of 14.4nm and transform-limited FWHM of 94 fs with 
flat spectral phase as shown in Fig. 5.9 (a) and the correspondig 
frequency-delay components after Fourier transforming the trace when 
measured at 40dB of SNR in Figs. 5.9(b-d); an example of the same trace 
at SNR=6dB is shown in Fig. 5.11. 
Results of the simulation show that all pulses were measured at different 
SNRs an average phase error along the FWHM of the spectral pulse is 
50mrad as shown in Fig. 5.12. Although average error is similar, 95% 
interval of confidence of the phase error is ten times larger at low SNR 
levels at ranges from 100 to 10mrad, whereas it ranges 50 to 60mrad at 
SNR of 40dB. This indicates that higher SNR improves repeatability of 
the measurement as expected. 
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Figure 5.11. (a) Numerically simulated collinear trace generated with 
a transform-limited pulse with a pulse with of 94 fs acquired at 
SNR=6dB; (b) DC term, (c) fundamental term and (d) second-
harmonic term of the delay-frequency of Eq.5.6. 

 
It is important to notice that Fourier Transforming the trace is equivalent 
to average many data points of the acquired trace and, as observed in 
Fig.5.9(c) and 5.11(c) the fundamental term in delay-frequency is not 
visually affected. As the added noise is white gaussian it averages out 
along the trace and MEFISTO has shown nice performance under this 
type of experimental error. 
Additionally, this phase measurement utilizes an independently measured 
fundamental spectrum of the pulse and it really makes a difference. 
Computing the fundamental from the trace is highly affected by noise 
and errors increase rapidly at different SNR. However, measurement of 
the fundamental spectrum is readily available and experimental 
calibration can be achieved by registering the independently 
measurement of the fundamental and the computed from the collinear 
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trace as explained in next section in Eq. 5.21. In conclusions, this 
differences can be overcome if proper experimental attention is paid and 
does not affects the fundamental basis of MEFISTO. 

 

Figure 5.12 Error distribution at different SNRs. Solid line marks the median 
error and dashed lines mark the 95% confidence interval for the error. 

 
Pulse with quadratic phase 
 
Numerical simulation of a tranform-limited pulse supports specific 
aspects of the theoretical correctness of the MEFISTO approach. 
However, one of the main issues is whether it will behave well for large 
phase ranges, well beyond 2π where the effects of the arc cosine function 
may be a problem, and particularly under noisy situations. For this, the 
same gaussian pulse with a spectral FWHM of 14.4nm and transform-
limited FWHM of 94 fs is now modified to account for a quadratic 
spectral phase of GDD=30,570 fs2, which is equivalent to propagate the 
transform-limited pulse through a certain thickness as calculated below. 
Figure 5.12 shows the complex spectrum of the simulated pulse and 
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Figure 5.13 shows the comparison between the transform-limited pulse  
(green line) an the broadaned pulse (blue line).  

 
Figure 5.13 Spectral intensity (left axis) and phase (right axis) of the 
numerically simulated pulse. 

 
According to Eq.1.18, the expected pulse broadening of a gaussian pulse 
that has propagated through dispersive media, a transform limited pulse 
of FWHM of 94 fs will be broaden to 250 fs after a GDD of 7,854 fs2. As 
  

€ 

GDD = z GVD , where GVD is Group Velocity Delay of a specific 
dispersive material, and z is the thickness of material through which the 
pulse is propagated, it is possible to estimate the amount of thickness of 
glass or BK7 that the light has to travel in order to experience such 
dispersion. For example, for BK7, which has a GVD=50.6 fs2/mm, a 
GDD of 7,854 fs2 will be at z=155mm.  
This numbers fit very well if we look to the numerical phase of the 
simulation, where   

€ 

∂2φ ∂ω 2 = 3,871.7 fs2 . From Eq. 1.16 and that GVD =

€ 

k' '= ∂2k ∂ω 2
, the second order term of the pulse phase is equal to 

€ 

z
2
∂2k
∂ω 2 ω −ω 0( )2 for t=0, the numerically estimated quadratic phase 

corresponds to a GDD = 7,743.5 fs2, which is very similar to the gaussian 
approximation of Eq.1.18. 
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Figure 5.14. Temporal intensity of the transform-limited pulse (green 
line) and the broadened pulse (blue line). 

 
Pulses with quadratic phase were automatically measured 1,000 (one 
thousand) times at the following SNRs in dBs: 6, 8, 10, 12, 14, 16 18, 20, 
25, 30, 35 and 40. An automated and naive system to detect the change in 
phase direction, which we name phase-jump, produced by the arc cosine 
function of Eq. 5.17 was implemented in order to process in an unbiased 
manner all the 12,000 simulated traces. Constant and linear component of 
the phase was also automatically calculated and the original phase and 
the estimated by MEFISTO were compared.  
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         (a)      (b) 

 
          (c)         (d) 
Figure 5.15. Numerically simulated spectrums form collinear trace generated with the 
pulse with quadratic phase (see Fig.5.13) at different SNRs: 40, 20, 10 and 10 dB for (a) 
to (d) respectively. Each figure contains two delays: at zero delay (green line) and at 
1.23ps (blue line) where SHG is generated by two pulses that are temporally separated. 
In spite of this, we still observe a strong delay dependant modulation for the SHG 
spectrum that shows the effects of collinear propagation. 
 
Fig. 5.16 shows the numerically simulated trace at SNR of 6 dB with the 
pulse shown in Fig. 5.13 and quadratic phase. 
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Figure 5.16. Simulated trace at SNR = 6dB and quadratic phase (pulse 
shown in Fig. 5.13). 

 
Results of Fig. 5.17 show that successful MEFISTO measurement is 
related to the SNR of the trace. This is mostly related because noisy 
peaks might induce wrong phase-jumps and thus incorrect phase 
measurement. Reamarkably below 20dB the system seems to perform 
very similarly, in terms of successful measurement, that averages 10% of 
the traces. From 20dBs to 40dBs, successful measurement grows from 
20% to almost 90% respectively. 

 
Figure 5.17. Percentage of successful MEFISTO measurement of the spectral phase out 
of 12,000 traces at different SNR (1000 per SNR). 
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However, Fig.5.18 shows the differences in terms of accuracy of the 
retrival. At SNR of 6dBs root mean squared error (rmse) averages almost 
150mrad and the confidence interval achieves more than 350mrad, 
whereas at 18dBs, average rmse is below 100mrad and confidence 
interval is slightly below 300mrad. Remarkably, at 40dBs average rmse 
is below 50mrad and the confidence interval is slightly above 100mrad. 

 
Figure 5.18. Error distribution of successful MEFISTO measurement 
of the spectral phase out of 12,000 traces at different SNR (1000 per 
SNR). Solid line marks the median error and dashed lines mark the 
95% confidence interval for the error. 

 
This results show that most critical aspects related to full automatization 
of MEFISTO are related to the identification of phase-jumps, the changes 
of phase direction, related to the use of arc cosine function of Eq. 5.17. 
This will be a further development for the technique to become feasible 
and automated for non-experts. It must be notice that this numerical 
simulations only use minor part of the collinear trace and compute the 
phase based on the information of two slices of the delay-frequency. 
Utilization of more slices will improve SNR and provide more 
information related to the phase-jumps, as continuous slices are 
frequency shifted and provide different parts of the phase information 
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with the phase-jumps at different positions. However, this requires an 
intensive work for development and validation. 
Additional problems not evaluated here but present in the experimental 
section are (1) variability of the delay step (which distorts Fourier 
Transformation if not taken into acount) and (2) spectral calibration of 
the fundamental spectrum and the SHG collinear trace. However, this 
issues are overcome in this thesis by semi-automated means where gross 
correction is done automatically and fine tuning is achieved manually by 
checking the marginal errors, as normally done with other methodologies 
like FROG. 
Next section, also includes other practical considerations for the 
utilization of the MEFISTO technique to match the units and space of the 
acquired data to the mathematical framework. 
 
 
 5.4.4 Practical considerations. 
 
In this section I discuss important characteristics of MEFISTO that 
should be considered to ensure easier and successful pulse retrievals. 
 
i) Pulse Bandwidth. 
 
An important issue to consider is the maximum pulse bandwidth that 
MEFISTO can successfully characterize. This fundamental limit derives 
from the necessity to prevent overlap between the different components 
of the transformed trace as seen in Fig. 5.2(b). Specifically, the two slices 
at κ = f0  and κ = f0 - Δf  must not be affected by the tails of the κ = 0 
component. In principle, this suggests that the available bandwidth could 
be equal to almost the bandwidth of optical carrier. However, in practice 
this might be affected by the particular pulse shape. 
 
ii) Frequency Resolution.  
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In our analysis we have implicitly considered that the sampling step in 
the  f  and κ  axis coincides ( Δτ = Δf ). Initially, the frequency resolution 
is in fact given by the time-delay span τspan, i.e., Δτ = 1/ τspan, which 
experimentally can differ from the spectrograph resolution. However, it 
is allowed to use interpolation techniques to fulfil Δτ = Δf  in the case of 
a pulse with finite width (Oppenheim, 1975). Then, frequency resolution 
of the method can be extended to Δf without modifying the phase 
information. 
 
iii) Determining the fundamental spectrum and conversion efficiency 
parameter χ.  
 
In our theoretical development, we have considered all the spectral 
profiles to be normalized to unity at the central wavelength. An important 
factor that affects the determination of Ω(f,κ) is the effective conversion 
efficiency parameter χ. For pulse retrieval, the fundamental spectrum 
U2(f) is required and this can be directly obtained from the experimental 
interferometric trace. This is achieved as follows. First, the amplitude of 
the second harmonic pulse are obtained from the term at κ = 2f0, 
resulting in 

€ 

χE0
SHGUSHG ( f ) = Yκ ≈2 f0

SHG ( f ,κ = 2 f0 + f )    ( 5.19 ) 

By normalizing using USHG ( f =0 ) =1, the spectral profile USHG ( f ) and 
the factor  

€ 

χE0
SHG  needed to find χeff are obtained. Second, the term at τ = 0 in 

the degenerate case results in  

€ 

YFROG
SHG ( f ,κ = 0) = 4χE0

4 df 'U 2( f ')∫ U 2( f − f ') =

= 4χE0
4U 2( f )⊗U 2( f )

.  (5.20) 

By using the inverse Fourier transform to deconvolve (5.20) we obtain:   

€ 

χE0
2U 2( f ) =

1
2
Ft Ff

−1 YFROG
SHG ( f ,κ = 0){ }⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
  (5.21 ) 

 Here again, by normalising U ( f=0 ) =1, the spectral profile of the 
fundamental pulse 
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U ( f ) and the factor χ1/2 · E0
2 needed to finally find 

€ 

χ is obtained. By 
not requiring an extra spectral measurement, all the data used for the 
pulse measurement is contained within a single set of data. This helps 
keep everything self-consistent and as a consequence reduces the risk of 
errors entering into the final results.  
 
iii) Spectral calibration. 
 
Method 1 
 
By Fourier transforming the term modulated at the SH frequency-delay 

( ) in Eq. 3.6 we can calculate the κ and f relationship. By 
estimating the SH frequency at each pixel of the spectrometer we can 
calibrate the spectrometer based on: 
 

   (5.22) 
 

This method allows calibrating the spectrometer and registering the 
fundamental spectrum extracted from the DC term. This is crucial for the 
correct phase estimation because MEFISTO is an interferometric 
technique and relies on accurate calibration of wavelength of 
fundamental and SH spectra. 
 
Method 2 
 
An experimental measurement, in general, requires two independent 
measurements: the two fundamental pulse spectra and the interferometric 
trace. The need for the exact determination of the f0 and 2 f0 places 
extreme demands and importance on the spectral calibration for this 
interferometric techniques. These demands can be relaxed significantly 
by evaluating equation (5.20), and using it to directly relate f0 and 2 f0 
with one another: 
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By taking a convolution of the two measured fundamental spectra, an 
accurate spectral registration can be performed that relates the region of 
the fundamental spectrum with the region of the second harmonic 
spectrum, where the interferometric trace is obtained. This property 
allows the MEFISTO technique to be extremely robust against 
spectrometer miscalibration. 
 
iv) Symmetry considerations. 
 
We must take into account that the interferometic trace is symmetric with 
respect to the delay axis  thus its Fourier transform must be real. This 
has two consequences. First, the upper term in the Ω(f,κ) functions is 
directly Y SHG(f,κ), where Ω(f,κ) now is written as  
 

   (5.23) 
with χeff = χE0

SHGE0
2. In an experimental situation, any imaginary 

component in            Y SHG(f,κ) can be attributed to experimental errors. 
This is because the interferometric nature of this technique requires 
having a perfectly centered trace, exact delay steps, no laser instabilities, 
etc. In this situation, when the center of the delay axis is accurately 
known, the imaginary part can be omitted. This is the equivalent to the 
symmetrization process performed in the FROG technique. Retaining the 
absolute value is however preferred in most of the cases since 
experimental measurement are never performed under an ideal conditions 
and the delay origin is unknown. The second consequence of the trace 
being symmetric is that a positive and negative sign in front of equation 
(4.17) will give the as result E(f) and E*(f). This is equivalent to the 
intrinsic ambiguity that appears in SHG-FROG measurements.  
 
v) Error checking capabilities. 
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There are many different strategies that can be employed to check 
validity of the phase measurement performed by MEFISTO or any other 
technique based on a collinear measurement. In this part, we will number 
a few of them but the wealth of information contained in the collinear 
measurement allows for developing a manifold of new strategies. 
 
Firstly, straight check can be made by making use of the intrinsic 8:1 
ratio that inteferometric autocorrelation must have. By integrating the 
experimental data to obtain the time marginal immediately after 
acquisition, it is possible to check for the 8:1 ratio. If the ratio is not 
correct, the data can immediately be discarded and taken again. 
 
Secondly, since IAC, fundamental and SHG spectra are included in a 
collinear measurement (see Eq. 5.6), these three signals can be computed 
from the retrieved pulse and compared to those from the experimental 
measurement as done in time domain techniques. 
 
Thirdly, in an analogous manner, the FROG spectrogram, frequency and 
time marginals are also directly obtained from the collinear trace (see Eq. 
(5.6)). Thus, degree of validation can be at least as accurate as FROG. 
 
 
5.5 Experimental results from MEFISTO measurements. 
 
 5.5.1 MEFISTO vs. CFROG. 
 
To show the validity of the MEFISTO methodology, we experimentally 
obtain the spectral phase of pulses originating from a Kerr-lens mode-
locked Ti:sapphire laser. The laser had a central wavelength of 800 nm 
and a repetition rate of 76 MHz.  The laser beam was focused into a type 
I BBO crystal through a Michelson interferometer (autocorrelator). The 
SHG signal was sent to a spectrometer and detected by a CCD linear 
array. The obtained frequency resolved interferometric autocorrelation 
trace is the one shown in Fig 4.8(a). To resolve the interferometric 
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fringes we chose a delay step of Δτ=0.44 fs, which followed Nyquist 
criteria. We chose a time-delay span τspan=3 ps that resulted in a 

frequency step of Δf=0.33 ps-1 and a spectral resolution of =0.17 nm. 
We then analytically extracted the spectral phase of our pulse using 
equations (5.17) and (5.18).  
 
To demonstrate the effectiveness of MEFISTO, we used the same 
experimental data to analytically characterize the pulse and then 
compared them with a standard SHG-FROG retrieval. The SHG-FROG 
trace was obtained using the CFROG technique explained above in 
section 5.3. Marginal analysis was also carried out to ensure that errors 
were not present within the trace and to check the robustness of the 
retrieval. It should be emphasised that MEFISTO can use the same 
stringent marginal checks. The results are outlined in Fig. 5.19 where the 
spectral intensity and phase of the pulse obtained from both techniques 
are compared. 

 
Figure 5.19 Spectra and phases of the pulse obtained using MEFISTO 
(solid lines) and a standard SHG-FROG procedure (dashed lines). 
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 We can see that although the methodologies used to obtain the pulse 
characteristics were completely different, the intensity and phase are very 
similar. As a further evaluation, the calculated interferometric 
autocorrelations from both methods were compared with the 
experimental one, obtained by integrating the interferometric trace in the 
frequency axis. These results are shown in Fig. 5.20 showing good 
agreement. 

 
Figure 5.20 Numerical interferometric autocorrelations obtained from 
MEFISTO (solid line) and the SHG-FROG technique (dashed line) 
compared with experimental measurements (in light gray). 

 
So far, MEFISTO has shown excellent agreement by recovering smooth 
or well-behaved pulses that contain small amount of chirp as they come 
out from a MIRA 900 after passing an optical isolator. 
Such pulses contain almost no structure and can be well approximated by 
a sech or gaussian function. In order to assess that the technique works 
for a more general cases, the results from a number of more complex 
pulses were explored: (1) sub-7fs, (2) stretched amplified pulses and (3) 
broadband chirped pulses from a single mode fiber. 
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 5.5.2 Sub-7fs and stretched amplified pulses. 

Firstly, we characterize sub-7fs pulses, whose collinear FROG trace was 
provided by the group of Günter Steinmeyer from the Max-Born 
Institute14. The trace was taken from a broadband Ti:sapphire oscillator 
system (Femtolasers Rainbow), delivering sub-7-fs pulses with 4 nJ pulse 
energy and characterized with three different techniques: SPIDER, 
IFROG and MEFISTO. Our group at ICFO, in Barcelona, worked on the 
characterization carried by MEFISTO without knowing any a priori 
characterization result and it was thus an excellent opportunity to 
objectively compare MEFISTO with other techniques which were 
computed by international experts at the Max-Born Institute.  
 
These pulses were first characterized by Steimeyer’s group (Stibenz, 
2006) with the SPIDER method, yielding the 6.6-fs pulse shape of Fig. 
5.17(a). As a cross-check, they also performed an interferometric 
autocorrelation of the same pulses, resulting in a 6.5 fs pulse duration 
under the somewhat simplistic assumption of a hyperbolic secant pulse 
shape. More stringently, however, the reconstructed interferometric 
autocorrelation from the measured SPIDER data showed an excellent 
agreement with the measured data, independently supporting the validity 
of the SPIDER retrieval. After this, Steinmeyer’s group utilized its own 
developed iterative technique called IFROG, which is commented in 
Chapter 4. While iterative retrieval repeatedly imposes constraints on the 
electric field under reconstruction in both domains, the delay frequency 
domain and its Fourier counterpart, MEFISTO is based on a direct 
analytic dependence of the spectral phase as explained above. This 
allows for direct reconstruction of the spectral phase profile via 
concatenation of spectral phase differences in a similar manner to what is 
done in SPIDER.    
The results of the iterative retrieval from IFROG are shown in Fig. 
5.21(b), which have to be compared to the direct MEFISTO retrieval of 
Fig. 5.21 c). Most remarkably, the duration of the main pulse is 
reproduced within ±0.2 fs as about 6.7 fs by all the four methods 



 
 

 141 

employed. Moreover, all methods predict strong satellite pulses at +10 
and at +20 fs, even though their relative weight is not exactly reproduced. 
Reconstructed amplitudes in the spectral domain closely follow an 
independent measurement of the spectrum for both methods, too. 
 

 

Fig. 5.21. Pulse shapes (solid lines) and temporal phases (dashed 
lines), as measured (a) with SPIDER, (b) by an iterative retrieval 
based on the IFROG data, and (c) from non-iterative retrieval 
following the MEFISTO method. The determined half widths of the 
pulses agree within <5%; the pulses exhibit satellites at nearly 
identical locations, i.e. +10 and +20fs, however, with varying relative 
weigths. 

A second less elaborate test was done on amplified 30-fs Ti:sapphire 
pulses that were stretched to about 55 fs by a controlled amount of group 
delay dispersion (+400 fs2). 
The results of the second tests on the white-light continuum are shown in 
Fig. 5.22. Again, MEFISTO could reproduce the 55-fs pulse duration, see 
Fig. 5.22(a). The method was also capable of determining the 400 fs2 
group delay dispersion on these pulses, see Fig. 5.22(b). 
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Fig. 5.22 Characterization of chirped pulses from a Ti:sapphire 
amplifier with MEFISTO, FROG, and SPIDER. (a) Comparison in the 
time domain; both retrieval methods result in nearly identical 
durations, despite some noticeable deviations in the retrieved pulse 
shapes. (b) Spectral domain. Measured spectral phases agree for most 
of the spectral range shown. Deviations are visible in the long-
wavelength part of the reconstructions. The dotted line shows the 
reconstructed spectrum of the IFROG method in comparison to an 
independently measured one. 

 
In summary, after comparing (MEFISTO, SPIDER and IFROG) using 
pulses of 2.5 optical cycle duration from an oscillator and chirped pulses 
from an amplified source, we find that MEFISTO is capable of 
determining the major pulse parameters even under the challenging pulse 
characterization scenarios we chose.  
 
 
 5.5.3 Pulses from a single mode fiber. 
 
To further check MEFISTO, we experimentally obtained the spectral 
phase of an ultrashort pulse that was spectral broadened after passing 
through 10 cm of a single mode fiber. The laser pulses, before entering to 
the fibre, had a central wavelength of 800 nm and a repetition rate of 76 
MHz and an average pulsewith of 240 fs as shown in the first 
measurement of this section in Fig. 5.19. Due to spectral broadening 
caused by self phase modulation (Tomlinson, 1984; Pinault, 1985) 
pulses, measured by an IAC directly outside the fibre showed a FWHM 
larger than 1ps. A numerical analysis previously performed in the group 
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(Gualda, 2005) showed that these pulses had a huge amount of quadratic 
dispersion. A simple pre-dispersion stage, consisting in a pair of prisms 
to introduce negative dispersion (Fork,1984), was employed to shorten 
pulse duration. Finally, characterised using MEFISTO in which the 
autocorrelator used a type I BBO crystal of 0.1 mm thickness to cope 
with the bandwidth. 
Here, in Fig. 5.23, we show two different but representative MEFISTO 
measurements, one in which the pulse quadratic dispersion was 
compensated as much as possible using a pair of prisms (Fig.5.19) and 
another one, in Fig. 5.20, with an excessive amount of negative 
dispersion introduced by the pair of prisms which produces a longer 
pulse again. 
Figure 5.23 shows the results of the compensated pulses by two prisms 
after self-phase modulation inside the optical fiber ant it achieves 37 fs 
FWHM. It is possible to observe that central part is mainly chirped by a 
cubic phase component, introduced by the whole setup. 
Figure 5.24 shows a partially compensated pulse and strong residual 
quadratic phase modulation and it results in a temporally wider pulse and 
three satellites at 100, 150 and 200 fs from the main temporal peak. 
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   (a) 

 
  (b) 

 
    (c) 

Fig. 5.23 (a) Measured complex spectrum from the collinear 
spectrogram by MEFISTO; (b) Temporal intensity and phase of the 
measured ultrashort pulse and (c) IAC is used to confirm the measured 
phase. 
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(a) 

 
(b) 

 

     (c) 
Fig. 5.24 (a) Measured complex spectrum from the collinear 
spectrogram by MEFISTO; (b) Temporal intensity and phase of the 
measured ultrashort pulse; and (c) IAC is used to confirm the 
measured phase. 



 
 

 146 

5.6 Conclusions. 

In conclusion, in this section we have outlined new procedures based on 
a simple collinear autocorrelator that allows the complex amplitude of 
ultrashort pulses to be deduced.  
CFROG technique is a pre-processing technique that allows a 
conventional SHG-FROG retrieval algorithm to be utilized from a trace 
that has been measured under collinear conditions. This allows for more 
flexible, easier and multipurpose experimental conditions that reduce the 
overall experimental constraints of the FROG technique while at the 
same time helping to broaden the number applications in which FROG 
measurements can be utilized. e.g. nonlinear microscopy pulse 
optimisation. The preprocessing technique based on a filtering and 
background subtraction procedure has been analytically justified. The 
robustness of this approach has been fully tested using both numerical 
simulations and experimental data. In both cases, excellent agreement has 
been observed between the filtered CFROG trace and the non-collinear 
FROG trace giving G-Error as low as G < 10-5. Furthermore, we have 
shown that, as the technique does not rely on resolving all the 
interferometric fringes, and thus it is possible to significantly reduce the 
acquisition time by undersampling the CFROG trace. FAST-CFROG is 
then presented to minimize the number of samples while ensuring little 
error is introduced into the trace.  
We have focused upon SHG-FROG based measurements, but in a similar 
manner, this method can be extended to other FROG geometries. The 
result is a general method for full characterisation of ultrashort pulses 
under collinear conditions. 
 
MEFISTO technique relies on Fourier analysis after obtaining a 
spectrally resolved interferometric autocorrelation trace (i.e. a CFROG 
trace). The MEFISTO methodology has the crucial advantage over SHG-
FROG (and therefore over CFROG) in that it enables the simple 
extraction of pulse information without the need of an iterative retrieval 
algorithm. Furthermore, it still maintains the powerful error checking 
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capabilities that are associated with time-frequency techniques which 
other interferometric techniques do not posses. We have experimentally 
demonstrated the effectiveness of the new procedure by comparing 
results with the more traditional characterisation technique of SHG-
FROG using an identical optical arrangement. This setup is extremely 
flexible and simple, allowing a large number of different applications to 
be carried out.  
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CHAPTER 6 
New analytical method for measurement of two 

unknown pulses in collinear geometry. 
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6 New analytical method for measurement of two 
unknown pulses in collinear geometry. 
6.1 Introduction. 

In the previous chapter we have experimentally demonstrated a new 
interferometric-based pulse characterisation technique called MEFISTO 
(Measuring the electric field by interferometric spectral trace 
observation, Amat-Roldan 2005). MEFISTO has allowed for the first 
time, the analytical characterization of an unknown ultrashort pulse from 
a time-frequency representation of a pulse. 
MEFISTO, as SPIDER, allows the pulse information to be directly 
extracted from experimental data. However, unlike SPIDER, it is based 
on recording a time-frequency measurement of the pulse which makes it 
strongly related to FROG. This ambivalent nature makes it possible to 
share some of the advantages attributed to both methodologies. On one 
side, as in SPIDER, the extraction of the phase can be directly performed 
without the need of an iterative retrieval algorithm. On the other side, 
MEFISTO possesses extended error checking capabilities and simpler 
experimental arrangement as FROG allowing it to be used in a broader 
range of applications where collinear geometry is required (Amat-
Roldan, 2004). Furthermore, as we show in this chapter, the time-
frequency nature of the method makes possible, as in XFROG (DeLong, 
1995; Reid, 2000), the simultaneous characterization of two unknown 
ultrashort pulses, a technique we refer to as blind-MEFISTO.  
The aim of next section is to outline the theoretical background and 
discuss the retrieving analytical procedure in a more general case. Our 
main goal here is to present the generalized theory for Blind-MEFISTO 
and then go on to discuss the particular issues addressed when 
experimentally retrieving an ultrashort pulse. For this purpose, the 
chapter has been organized as follows: In section 6.2, we develop the 
general theory. This is followed by some experimental and practical 
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consideration. In section 6.4. a theoretical example of the blind-
MEFISTO retrieval is presented. Finally, general conclusions are given. 
 
 
6.2 Analysis of the image from two different pulses. 
 
BLIND-MEFISTO is based on the Fourier analysis of a spectrally 
resolved interferometric correlation trace between two pulses (not 
necessarily equal). The experimental set up to obtain such correlation 
trace can be seen in Fig. 6.1.  
 

 
Fig. 6.1. Typical experimental set up needed to obtain a Frequency 
resolved interferometric correlation trace. 

 
Two pulses interact collinearly within a nonlinear medium, one of them 
after passing through a delay arm. The second harmonic generated signal 
is then directed to a spectrograph to obtain the interferometric time-
frequency trace in terms of the time-delay τ and the frequency f. An 
example of the resulting trace can be seen in Fig. 6.2(a). In a general 
case, this trace can be mathematically described as  

  

€ 

ISHG ( f ,τ) = χ Ft E(t)exp j2πf1t( ) + G(t -τ )exp j2πf2t( )( )2⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

2

  

 (6.1) 
where E(t) and G(t) are the slowly varying amplitude of the complex 

electric field centered at the frequencies  and . The Fourier transform 
with respect to the variable t is indicated by Ft and χ is related with the 
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conversion efficiency in the nonlinear process. Note that the two 
interfering E(t) and G(t) can be either different, what is referred to us as 
Blind-MEFISTO, or equal, which is the general case that for simplicity is 
solely named MEFISTO (the degenerate case). In Blind-MEFISTO, 
phase matching must be achieved for all the cross-terms in Eq. (6.1) and, 
as we will show, the new information carried on the interferometric terms 
will allow the simultaneous analytical determination of  E(t) and G(t). In 
general, this should restricts the use of Blind-MEFISTO to the case in 
which the central frequencies of  E(t) and G(t) are equal ( f1 = f2 = f0). 
 
We start our analysis by calculating the Fourier transform of equation 

(5.1) in the τ delay axis, i.e., 

€ 

Y SHG ( f ,κ) = Fτ ISHG f ,τ( ){ }. The resulting 

expression consist of five main spectral components (see Fig. 6.2(b)) at 
delay-frequencies

€ 

κ = 0,± f0,±2 f0{ }.  Since the interferometric trace (Fig. 
6.2(a)) is real, the negative spectral components in Fig. 6.2(b) are the 
complex conjugate of the positive ones. We therefore only need to focus 
upon one of the components (either the positive or the negative) to 
analyze the information enclosed in the transformed trace. Each of these 
terms contain information of the pulse phase and intensity and their use 
will depend on the particular experimental conditions. To highlight the 
information enclosed in 

€ 

Y SHG ( f ,κ) , we will separately focus on the 
mathematical expression for each component and analyze their 
possibilities. 
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(a) 

 
(b) 

Fig. 6.2. (a) Frequency resolved interferometric correlation trace and (b) 
its Fourier transform in the delay-frequency axis, showing the different 
spectral components. 

 
We start analyzing the component at κ = 0, which can be written as:   

€ 

YDC
SHG ( f ,κ) = χ ESHG ( f )

2
+ GSHG ( f )

2( )δ(κ) +

+4χ df 'E( f ')G( f − f ')E*( f '−
−∞

∞

∫ κ)G*( f − f '+κ)
   (6.2) 
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where the second harmonic of the two unknown fields ESHG(f) and 
GSHG(f),  are related with the fundamental pulse following 

€ 

FSHG ( f ) = F( f ')F( f − f ')df '
−∞

∞

∫ , with f corresponding to the base-band 

frequency (Oppenheim, 1975). The second term in Eq. (6.2) includes the 
standard XFROG trace that has been used to characterize ultra short laser 
pulses (Reid, 2000; DeLong, 1995). It is worth noting that this term, with 
the use of adequate phase matching conditions, can be obtained even in 

the case where the spectra of the two pulses do not overlap ( ) 
allowing XFROG to be used to characterise pulses that have differing 
central frequencies. In a previous paper we outlined a filtering procedure 

capable to extract the FROG term from the  component in the 

degenerate case ( ). This technique named as CFROG (Amat-
Roldan, 2004) can straightforwardly be extended to obtain the XFROG 
term. However, when retrieving the pulses, it again relies upon the use of 
retrieval algorithms since the integral on Eq. (6.2) does not allow the 
analytical determination of E(t).  
 
We continue our analysis by focusing upon the spectral component of 

 at κ=2f0. This component can be written as 

  (6.3) 

This expression corresponds to a straight line in the transformed trace 
(Fig. 6.2(b)) given by κ = f + 2f0. This term can be used for different 
purposes. Firstly, in an experimental trace, the divergence from an ideal 
delta function gives a measure of the pulse jitter, as suggested by Stibenz 
and Steinmeyer (Stibenz, 2005), or in general, the quality of the 
measurement. In addition, any deviation from a linear dependency 
between κ (real frequency) and f (base band frequency) will indicate a 
spectrograph miss-calibration. This component can also determine E(t) 
when the gating function, G(t), is already known. It can therefore be used 
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as a further verification of the blind-MEFISTO retrieval by checking that 
the two pulses fulfill  

    (6.4) 
 

Although the terms at  and  are useful to obtain some pulse 

information, it is the component at  of  that allows the 
simultaneous analytical characterization of two unknown ultrashort 
pulses. The mathematical expression for this component can be written 
as: 

    (6.5) 

This equation shows the main advantage of Fourier transforming the 
trace as was done in Fig. 6.2(b): All the convolutions that appear in the 
time domain have been transformed into products in the frequency 
domain. This isolates the individual pulse fields and makes it possible to 
resolve analytically. To show this, we firstly write all the involved 
complex magnitudes in polar form, i.e., 

€ 

E( f ) = E0U( f )exp jφ( f )( ) , 

€ 

G( f ) =G0V ( f )exp jγ ( f )( ) , and equivalently for the harmonic pulses 

€ 

ESHG ( f ) = E0
SHGUSHG ( f )exp jφSHG ( f )( )  and 

€ 

GSHG ( f ) =G0
SHGVSHG ( f )exp jγ SHG ( f )( ).  

Here, for convenience, all spectral profiles U(f) are normalized at the 
central base-band frequency (U(f=0)=1). Then, taking 

, Eq. 6.5 can be written as 

€ 

R( f ,κ) = 2χ1USHG ( f )U( f + f0 −κ)V (κ − f0) ×

exp φSHG ( f ) −φ( f + f0 −κ) − γ (κ − f0) −θ( f ,κ)[ ] +

2χ2VSHG ( f )V ( f + f0 −κ)U(κ − f0) ×

exp −γ SHG ( f ) + γ ( f + f0 −κ) + φ(κ − f0) −θ( f ,κ)[ ]  

(6.6)
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Here we have defined two parameters 

€ 

χ1 = χE0
SHGE0G0and 

€ 

χ2 = χG0
SHGE0G0 , which can be understood as effective conversion 

efficiency parameters. In section 4.4, we will go on to describe a 
procedure to obtain 

€ 

χ1 and 

€ 

χ2  from the experimental trace. In what 
follows, and for clarity purposes, we will assume that these parameters 
are known. Under typical lab conditions the normalized spectra profiles, 
U(f), V(f), USHG(f) and VSHG(f) can be directly measured. As R(f,κ) and  
θ(f,κ) are obtained from the interferometric trace, therefore, the only 
unknowns in Eq. 6.6 corresponds to the phase of the fundamental and 
second harmonic pulse, i.e., φ(f), γ(f), φSHG(f) and γSHG(f). In order to fully 
characterize the pulses these unknowns must be calculated. This can be 
achieved by first taking two different slices in the transformed space of 
the interferometric trace, e.g., at κ = f0 and κ = f0-Δf. Then, by taking the 
real and imaginary parts in Eq. 6.6, we can isolate the phase component 
at κ = f0, obtaining   

  6.7(a) 

  6.7(b) 

and at  

     6.7(c) 

 6.7(d) 
where we have defined two functions that relate the different pulse 
spectra and the trace as  

 

 
and  

equivalently for the harmonic pulses ( ))exp()()( 0 fifUEfE SHGSHG
SHG

SHG φ=  and 

( ))exp()()( 0 fifVGfG SHGSHG
SHG

SHG γ= . Here, for convenience, all spectral profiles 
)( fU  are normalized at the central base-band frequency ( 1)0( ==fU ). Then, taking 

)),(exp(),(),( κθκκ fifRfY SHG = , Eq. (5) can be written as 

[ ]

[ ]),()()()(exp
)()()(2

),()()()(exp
)()()(2),(

00

002

00

001

κθκφκγγ
κκχ

κθκγκφφ
κκχκ

fffff
fUffVfV

fffff
fVffUfUfR

SHG

SHG

SHG

SHG

−−+−++−
×−−+⋅

+−−−−+−
×−−+=

   (6) 

Here we have defined two parameters 0001 GEESHGχχ =  and 0002 GEGSHGχχ = , 
which can be understood as effective conversion efficiency parameters. In section 4, we will 
go on to describe a procedure to obtain 1χ  and 2χ  from the experimental trace. In what 
follows, and for clarity purposes, we will assume that these parameters are known. Under 
typical lab conditions the normalized spectra profiles, )( fU , )( fV , )( fU SHG  and 

)( fVSHG  can be easily measured. As ),( κfR and ),( κθ f  are obtained from the 
interferometric trace, therefore, the only unknowns in Eq. (6) corresponds to the phase of the 
fundamental and second harmonic pulse, i.e., )( fφ , )( fγ , )( fSHGφ  and )( fSHGγ . In 
order to fully characterize the pulses these unknowns must be calculated. This can be achieved 
by first taking two different slices in the transformed space of the interferometric trace, e.g., at 

0f=κ  and ff ∆−= 0κ . Then, by taking the real and imaginary parts in Eq. (6), we can 
isolate the phase component at 0f=κ , obtaining  
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Here we have defined two parameters 0001 GEESHGχχ =  and 0002 GEGSHGχχ = , 
which can be understood as effective conversion efficiency parameters. In section 4, we will 
go on to describe a procedure to obtain 1χ  and 2χ  from the experimental trace. In what 
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Then, by subtracting equations 6.7(a) and 6.7(c) we get  

    

€ 

Δφκ ( f ) = φ( f + Δf ) −φ( f ) = ±cos−1 Ω1 f ,κ = f0( )[ ]  cos−1 Ω1 f ,κ = f0 − Δf( )[ ] +

                                              +θ f ,κ = f0( ) −θ f ,κ = f0 − Δf( ) + γ 0( ) − γ −Δf( )  
  

(6.8) 

From this equation the phase for the spectral component , i.e.,  
can be determined by taking an arbitrary origin

€ 

φ(0) and adding up 

€ 

Δφκ ( f ) as 

€ 

φ( f ) = φ(0) + Δφκ ( f ')
f '=Δf

f
∑ .    (6.9) 

In a similar way, by subtracting equations 6.7(b) and 6.7(d), we obtain 
the equation necessary to determine the phase increment for G(f) in terms 
of the frequency as  

  

€ 

Δγκ ( f ) = γ( f + Δf ) −γ( f ) =

= ±cos−1 Ω2( f ,κ = f0)[ ]  cos−1 Ω2( f ,κ = f0 − Δf )[ ] −
−θ ( f ,κ = f0) + ( f ,κ = f0 − Δf ) + φ(0) −φ(−Δf )

 (6.10) 

and, as in the previous case, by taking an arbitrary origin  find the 
spectral phase components as 

  

€ 

γ ( f ) = γ (0) + Δγκ ( f ')
f '=Δf

f
∑ .   (6.11) 

Notice that the terms  and  in Eq. 6.8 and 6.10 
are unknown constants. These terms add a linear spectral phase shift that 
only affects the electric field time origin and therefore they can be 
decided arbitrarily without affecting the shape of the temporal pulse 
envelope. Eq. 6.8 - 6.11 are the principal result of this work showing that 
to simultaneously characterize two different pulses in an analytical way 
is possible.  
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6.3 Experimental and practical considerations. 

 
In this section we discuss important characteristics of MEFISTO that 
should be considered to ensure easier and successful pulse retrievals. 
 
i) Pulse Bandwidth 
 
An important issue to consider is the maximum pulse bandwidth that 
MEFISTO can successfully characterize. This fundamental limit derives 
from the necessity to prevent overlap between the different components 
of the transformed trace (see Fig. 6.2(b)). Specifically, the two slices at 
κ = f0 and κ = f0 − Δ f  must not be affected by the tails of the κ = 0 
component. In principle, this suggests that the available bandwidth could 
be equal to the optical carrier, i.e., Δλmax  = λ0. However, in practice, this 
can be affected by the particular pulse shape. 
 
ii) Frequency Resolution  
 
In our analysis we have implicitly considered that the sampling step in 
the f and κ axis coincides (Δκ = Δ f ). Initially, the frequency resolution is 
in fact given by the time-delay span τspan, i.e., Δκ = 1/τspan, which 
experimentally can differ from the spectrograph resolution. However, by 
using interpolating techniques to fulfilΔκ = Δ f, the frequency resolution 
of the method can be extended to Δ f. 
 
iii) Determining the conversion efficiency parameters χ1 and χ2 

 
In our theoretical development, we have considered all the spectral 
profiles to be normalized to unity at the central wavelength. The energy 

of each pulse is therefore associated with the spectral amplitudes , 

,  and . These terms, together with the nonlinear coefficient 
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€ 

χ are included in the conversion efficiency parameters 

€ 

χ1  and 

€ 

χ2 . Here 
we will outline how these parameters can be calculated using the  

and components of the transformed interferometric trace. To 
achieve this we must first define three separate equations, two that are 

derived from the  term and one that is derived from the
term. Firstly, using the same procedure outlined in Ref. 8, the two 
contributions to the  term  in Eq. 6.2 can be separated. The first 
part, involving the delta function, when gives    

€ 

Y0
SHG ( f ,κ = 0) = χ E0

SHG( )2USHG
2 + G0

SHG( )2VSHG2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
 

(6.12) 

and the second part,  involving the CFROG information, when κ = 0 and 
f = 0, yields, 

   (6.13) 

where  can be experimentally determined from 

the experimental spectra  and . The third 

equation is obtained by looking at the component at and 
taking its modulus; 

(6.14) 
After some algebra, equations (5.12 - 5.14) lead to 

(6.15) 

 (6.16) 
where all terms on the right hand side are experimental parameters. The 
sign before the square root depends on the peak intensities of the two 
second harmonic pulses and must be chosen accordingly so that when, 

for example,  then . By determining equations (6.15) 
and (6.16) we have shown how it is possible to evaluate the functions 
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 and  without the need of experimentally measuring the 

intensities of the second harmonic spectra  and . 
 
iii) Spectral calibration 
 
Method 1 
 
By Fourier transforming the term modulated at the SH frequency-delay 
(κ = 2f0), expression in Eq. 6.3, we can calculate the κ and f relationship 
to calibrate the pulse image. By estimating the Second Harmonic 
frequency at each pixel of the spectrometer we can calibrate the 
spectrometer based on: 

  (6.17) 

This method allows calibrating the spectrometer and registering the 
fundamental spectrum extracted from the DC term. This is crucial for the 
correct phase estimation because MEFISTO is an interferometric 
technique and relies on accurate calibration of wavelength of 
fundamental and SH spectra. 
 
Method 2 
 
An experimental measurement, in general, requires two independent 
measurements: the two fundamental pulse spectra and the interferometric 

trace. The need for the exact determination of the  and  places 
extreme demands and importance on the spectral calibration for this 
interferometric techniques. These demands can be relaxed significantly 
by evaluating the second term of equation (6.2) at , and using it to 

directly relate  and with one another. 
By taking a convolution of the two measured fundamental spectra, an 
accurate spectral registration can be performed that relates the region of 
the fundamental spectrum with the region of the second harmonic 
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spectrum, where the interferometric trace is obtained. This property 
allows the MEFISTO technique to be extremely roboust against 
spectrometer miscalibration. 
 
 
6.4 Blind-MEFISTO results 

In this section we will numerically go through an analytical retrieval step 
by step in order to show details of how the method should be performed 
in an experimental case.  

 
Fig. 6.3. Experimental data necessary to solve equations (8) and (10). In 
(a) we show the amplitude and in (b) the phase corresponding to the two 
slices at κ=f0 and κ=f0+Δf  obtained from the transformed trace in Fig. 
6.2(b). We also show the spectra for the two fundamental pulses (c) and 
at the SHG frequency (d). 

 
First, as commented we need to take the two slices (at κ = f0 and κ = f0 + 
Δf) of the Fourier transformed interferometric trace shown in Fig. 6.2(b). 
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The amplitude of the trace R(f,κ) and the phases θ(f,κ) are respectively 

shown in Fig. 6.3 (a) and (b) at  and . In addition, to 

evaluate the  and  functions, the two fundamental pulses 
spectra are needed (Fig. 6.3(c)), which must be obtained experimentally. 
The two spectra of the second harmonic pulses (Fig. 6.3(d)) and the 
parameters 

€ 

χ1  and

€ 

χ2  can be either obtained experimentally or directly 
from the interferometric trace using the method outlined in section 6.4 
(Eq. 6.15-6.16).  

In an experimental case  and  are therefore evaluated 

using solely experimental data. The resulting  and  

function are shown, respectively, in Figures 6.4(a) and 6.4(b), at  

and . 

Fig. 6.4. (a) Function 

€ 

Ω1( f ,κ)and (b) 

€ 

Ω2( f ,κ)  at κ=f0 and κ=f0+Δf. 
Dashed lines shows the division between domains where the function 

€ 

cos−1 Ω( f ,κ = f0)[ ]  alternates the sign. 
 
Finally, by taking the results shown in Figures 6.3(b), 6.4(a) and 6.4(b), 
the phase increments can be calculated using equations 6.8 and 6.10 and 
from equations 6.9 and 6.11, the phases for both spectral components can 
be built up. Figures 6.5(a)-(b) show the calculated spectral phase 
obtained with our procedure.  
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Fig. 6.5. Retrieved pulses (a) E(f) and (b) G(f) using equations (5.8) and (5.10) 
without alternate sign in when changing between the domains shown in Fig. 
6.4. 

 
As can be seen, the results only match with the exact phase within a 
certain region. This originates from not being able to determine the sign 
of the phase, which is caused by the sign indetermination related with the 

 function present in Eq. 6.8 and 6.10. Taking into account that 

 should change continuous along the frequency axis in the 

 range, the problem can be overcome identifying those points 

where   get close to 1 or -1 and there is an abrupt change in the 

slope. In these positions an alternate sign in the  function should 
be performed. The points dividing regions with different sign are 
highlighted in Figures 6.4(a) and 6.4(b) with dashed vertical lines.  
After applying the criterion described above to equations 6.8 and 6.10, 
two possible solutions are available. Each solution corresponds to the 
positive or negative value of the sign chosen at the origin. However, care 
must be taken as only one of these solutions is correct. The correct 
solution, observed in Figures 6.6(a)-(b), results in the spectral phase 
correctly resembling the original phase, except for a small difference at 
negative frequencies. This difference is due to small errors in detecting 
the position of the sign change and can thus be easily improved. The 
second solution, when the alternative sign is chosen, greatly differs from 
the original phase (Fig. 6.6(c)-(d)). This second solution is a spurious 
solution of our equation system that correctly reproduces the component 
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at term  in Fig. 6.2(b). However, it is not solution of the complete 
interferometric trace. In particular, the pulses in Fig. 6.6(c)-(d) do not 
fulfils Eq. 6.4, that, as commented before, can be used as error-checking 
procedure. Experimentally, any source of errors, including the spurious 
solution, can be detected by numerically generating the interferometric 
trace using the retrieved pulses and comparing the result with the 
experimental trace. Equivalently, we can compare the interferometric 
correlations of the two solutions with the experimental one, which can be 
directly obtained from the interferometric trace time marginal. We have 
demonstrated this in Fig. 6.7. Here, the interferometric correlation 
corresponding to the solution in Fig. 6.6(a)-(b) is identical to the trace 
time marginal obtained by integrating the frequency axis of the 
interferometric trace in Fig. 6.2(a). Apart from the spurious solution, 
which can be rejected using the two checking procedures described 
above, we have not been able to detect other ambiguities as the ones 
present in XFROG and discussed in Ref. Seifert (2004).  
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Fig. 6.6. Retrieved pulses alternating sign at the points shown in Fig. 
4. Result (a) E(f) and (b) G(f) using the sign combination (+,-) in eq. 
(5.8) and (5.10). The spurious solution is shown in (c) E(f) and (d) 
G(f) using the (-,+) sign combination.    

 

 

Fig. 6.7. E(f) and G(f) calculated interferometric correlations (blue) 
and envelope of the interferometric correlation obtained from Fig. 
6.2(a) as the time marginal of the interferometric trace (red). (a) Result 
using the solution in Fig. 6.6(a)-(b). Here the red line coincides with 
the blue contour and is barely visible. (b) Result using the solution in 
Fig. 6.6(c)-(d) 
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The presence of noise in the experimental measurement can affect the 
phase extraction as noise increase the difficulty in determining the SSPs. 
As an example of the limits that noise impose to the technique we have 
added white Gaussian noise of 20 dB peak signal-to-noise ratio (SNR) to 

the slide R(f, ), shown in Fig. 5.3(a).  

 

Fig. 6.8. Retrieved phase for a pulse with (a) 20 dB and (b) 13 dB 
SNR. Solution in (b) has been obtained by low band pass filtering the 
functions Ω1(f,κ) and  Ω2(f,κ) in the frequency axis. 

 
Under these conditions it was still possible to detect the SSPs and we 
were able to obtain the spectral phase inside the spectrum bandwidth Fig. 
6.8(a). A further rising in the noise level, increased the difficulty in 
distinguishing the SSPs. To overcome this problem, we reject the high-

frequency noise components by filtering the  and  
functions in the f axis. This procedure allows the phase to be obtained at 
noise levels as high as 13 dB SNR, as shown in Fig. 6.8(b). 
 
 

6.5 Other X-MEASUREMENTS 
 
There are occasions in which one of the two pulses is known because it 
has been previously measured, and the algorithm can be simplified. 
Traditionally, this has been solved by using XFROG measurements. 
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The wealth of information contained within a collinear measurements 
allows finding several ways to obtain the unknown phase, which can be 
combined to better estimate the measured phase. Here, we present a few 
examples on how to proceed: 
 
1. The direct approach is to follow the procedure reported by Reid 
(2000), and obtain the DC term of the collinear trace. Analytically and 
experimentally we have shown that this introduces a negligible error. 
Therefore, it is possible to apply the standard XFROG algorithm.  
 

2. By exploiting the the component at the fundamental frequency  

of  we can add an extra constrain, because we now know the 
gating pulse g(t), to Equations 6.7(a) to 6.7(d) and solve Eq. 6.8 and 6.9 
in a straight manner. 
 
3. By exploiting the component at the second harmony  frequency 

 of  we can directly solve equation 6.3. 
 

6.6 Future directions of MEFISTO. 
 
In Chapters 5 and 6 this dissertation presents MEFISTO, a new technique 
that offers an analytical and direct manner of measuring ultrashort laser 
pulses with a simple and general optical scheme. Last part of Chapter 5 
focuses on describing a general formalism to unwrap the full pulse 
information of an unkown pulse from a single CFROG trace. This 
chapter 6 shows that it is possible extending such full characterization 
capabilities to two unkown pulses and it still maintains its analytical and 
directly measuring capabilities without any loss of generality. 
 
Although one of the strengths of the MEFISTO is its ability of detecting 
errors in methodology through its extended marginals, it must be said 
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that the technique presented in this dissertation only utilizes two spectra 
to recover phase information. Therefore, one of the main advantages of 
the MEFISTO paradigm is that phase information is well repeated along 
all the fundamental term at κ = f0, which would be similar to performing 
multiple SPIDER measurements. Therefore, more robust and more 
accurate techniques can be developed by using the best information 
available in the trace around this term, in this line, a later works was 
presented in 2007 (Hsu, 2007; Yang, 2009). 
 
Similarly to the procedure explained in detail in 5.3 (Chapter 5, section 
3) about CFROG (Amat-Roldan, 2004), for pulses that have a relatively 
narrow power spectrum compared to the optical wavelength, it is not 
necessary to resolve the interferometric fringes and apply Nyquist criteria 
on the delay step (Δτ <1/4f0). 
 
Importantly, this allows for a FAST-MEFISTO to be carried out at high 
rates without neither complex nor expensive set ups and without 
acquiring extensive datasets. As reported in the CFROG work, a simple 

undersampling criterion can be design to impose that term is 
mostly preserved. Using a similar strategy, undersampling is used to 
demodulate the spectral terms of interest from Eq 6.6 and shown in 
Figure 6.2 (b), the new obtained sampling criterion is that substitutes Eq. 
5.10: 

,   (6.18) 
where n is an integer that will establish the reduction of required samples 
and Bs is the larger of the two pulse bandwidths to preserve the spectral 
term atr the fundamental delay frequency 5.13 as opposed to the DC term 
of section 5.3 of the previous Chapter. 
 
As an example, two different pulses with 6.3nm and 5.3nm bandwidth at 
800nm, following Nyquist criterion will require the use of a delay step 

. This results in a collection of 2151 spectra. However, by 
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undersampling at , only 50 spectra are acquired, a number of 
spectra 43 times lower (n=10 in Eq. 6.18), resulting in a fast and 
comparatively short dataset compared to the dataset obtained by 
following Nyquist.  
 

 
(a)     (b) 

 
(c)     (d) 

Fig. 6.9 Numerical results by computing MEFISTO at different 
sampling delay rates. (a) Transformed interferometric trace YSHG(f,κ) 
and (b) the MEFISTO term, YSHG(f,κ=f0), when Nyquist criteria is 
applied (2151 spectra, 0.65 fs delay step). (c)  Transformed 
interferometric trace YSHG(f,κ) and (d) YSHG(f,κ=f0) when an 
undersampling using 28.3 fs delay step is performed (51 spectra, 43 
times lower than following the Nyquist criteria).   

 
Figure 6.9 shows how the transformed interferometric trace for the two 
cases and how the information for the MEFISTO term, i.e. Fig. 6.9(b) 
and (d), is preserved even after such a severe undersampling. Fig. 6.15 
also shows how the maximum pulse bandwidth decreases when 
undersampling is performed, as the distance among different spectral 
terms of Y SHG(f,κ) become smaller. 
 



 
 

 172 

6.7 Conclusions. 
 
In this work we have outlined the theory and procedure of blind-
MEFISTO and presented it as a method that allows the complex 
amplitude of two unknown ultrashort pulses with similar central 
frequency to be simultaneously obtained. Its time-frequency and 
interferometric ambivalent nature leads to a technique that possesses 
advantages and properties characteristic of interferometric techniques as 
SPIDER, as well as time-frequency measurements as FROG. In this 
sense, similar to interferometric techniques, the method enables the 
analytical extraction of pulse information without the need of an iterative 
retrieval algorithm. Similar to time-frequency techniques, it can be 
applied to simultaneously characterize two unknown pulses (blind 
MEFISTO) and enjoys extended error-checking capabilities. In addition, 
MEFISTO is based on a simpler experimental set up as it is based on a 
collinear arrangement. 
MEFISTO techniques rely on Fourier analysis after obtaining a spectrally 
resolved interferometric correlation trace. In particular, we have 
described the general theory for blind-MEFISTO, pointing out the use of 
the different terms obtained during the theoretical development. Practical 
considerations have been discussed. These include spectral calibration, 
resolution (temporal and spectral), maximum bandwidth, sign 
uncertainty, possible problems with pulses whose spectra present abrupt 
changes, error checking procedures, and effect of noise. To manage these 
experimental limitations, a set of preliminary tools have been developed 
and explained. The analysis has also demonstrated that the method is not 
affected by some of the non-trivial ambiguities that are present in other 
techniques. The particular properties of the degenerate case have also 
been analyzed to highlight additional error-checking capabilities and self-
calibrating techniques that help avoids errors entering the pulse 
measurement. 
Finally, we want to stress that this is, to the best of our knowledge, the 
first analytical methodology capable to simultaneously characterize two 
unknown ultrashort laser pulses. 
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As future directions for MEFISTO we outline how to adapt the 
previously demonstrated methodology of FAST-CFROG. In this manner, 
FAST-MEFISTO can be also implemented in a similar manner to FAST-
CFROG. A reduction of a factor of 40 has been showed which implies a 
faster characterization because it requires 40 times less samples (2150 to 
50) and significantly smaller data sets which allows faster computation.  
FAST-MEFISTO is then the final positive combination of interferometric 
and time-frequency techniques: direct phase measurement, robust error 
checking, self calibration and fast characterization. Future works beyond 
this thesis might include video rate characterization of pulses with 
appropriate optical set-up. 
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CHAPTER 7 

Measuring ultrashort pulses inside a Multiphoton 
Microscope. 
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7 Measuring ultrashort pulses inside a Multiphoton 
Microscope. 

7.1 Introduction. 
The visualization of the internal structure of biological organisms is 
essential for the advance of life sciences. Great demands are placed on 
the field of microscopy to develop techniques that are able to image more 
complicated structures and find new sources of contrast. Multiphoton 
microscopy (Denk, 1990; Göppert-Mayer, 1931; Kaiser, 1961) has 
generated much interest within the scientific community because of its 
ability to generate new high-resolution, three-dimensional images with 
reduced phototoxic effects compared to one-photon confocal 
microscopes. This can be critical, especially in some applications, such as 
in vivo brain imaging. Remarkably, multiphoton microscopy is a 
promising and colourful tool due to its ability to find new sources of 
contrast, which are often label free, and with an extremely localized 
interaction, being then a contactless tool that has just emerged. 
Additionally, multiphoton processes can be employed to enhance current 
tools for microscopists and biomedical scientists, in order to produce new 
methods, which were previously unavailable (Potter, 1996; Denk, 1997; 
Zipfel, 2003): different types of imaging (Campagnola, 1999, 2003; 
Barad, 1997; Squier, 1998; Yelin, 1999; Débarre, 2006; Zumbusch, 
1999; Cheng, 2002; Dudovich, 2002; Evans, 2008), accurate and delicate 
micro and nanosurgery (Berns, 1981; Koenig, 1995, 2000; Tirlapur, 
2002; Uday, 2002; Sachihiro, 2004; Watanabe, 2004; Vogel, 2003; Shen, 
2005; Heisterkamp, 2005), localized caging and uncaging of bioactive 
components (McCray, 1989; Callaway, 1993; Corrie, 1993; Denk, 1994; 
Katz, 1994; Pettit, 1997), electrical excitation of cells (Fork, 1971; 
Farber, 1983; Uzdensky, 1997; Smith, 2001, 2006; Hirase, 2002), gene 
transfection (Tirlapur, 2002; Zeira, 2003), optogenetics (Zemelman, 
2002; Lima, 2005; Deisseroth, 2006; Miller, 2006; Arenkiel, 2007; 
Adamantidis, 2007; Zhang, 2008), etc. 
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Recent research regarding the underlying biophysics of multiphoton 
microscopy has shown how the temporal and spectral properties of the 
incident ultrashort pulse can have significant effects on the efficiency and 
selectivity of multiphoton processes (Dudovich, 2001; Kawano, 2003; 
Bardeen, 1999; Pastrick, 2003; Dela Cruz, 2004; Chen, 2002; Ogilve, 
2006; Tang, 2006). In some of these works devoted to two photon 
excitation fluorescence (TPEF), the phase of an ultrashort pulse was 
arbitrarily altered until the desired two-photon fluorescence signal was 
optimized. Surprisingly, the optimum input pulse phase at the microscope 
objective contained a remarkable complex structure. This strongly 
suggests that the pulse at the sample was not transform limited (flat 
phase) as was thought. Yet little is known about this phase-dependent 
optimization process, and there is a great urgency to develop adequate 
tools to help in understanding it. Direct phase measurement of pulses at 
the sample plane of a microscope is thus required. 
Under a context-free viewpoint, in which experimental set up is 
disregarded or pulse characterization, due to its complexity, is the 
experimental challenge by itself, sonograms are sometimes suggested as 
a better choice for full characterisation because the measurement occurs 
at detection. Although this can be extremely useful in some situations 
because it simplifies the optical setup; this actually imposes a limit in 
some others, such as characterization at the sample plane of a 
multiphoton microscope. 
For example, sonograms would require putting a detector at the sample 
plane that seems a technological challenge. Instead, a spectrogram would 
require having some type of nonlinear response in a specimen to act as a 
probe. This confinement of the interactions, allows a simpler way to 
“select” what we want to measure. However, completely accurate 
measurements would require complete knowledge of the nonlinear 
response of the material, which might be also a challenge. In this chapter, 
we report a simple and efficient material as well as different 
characterisation techniques to overcome this situation. 
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 7.1.1 The problem. 
 
Two main problems arise when full characterization of pulses going 
through a high-numerical-aperture (NA) objective lens is desired. Firstly, 
a collinear geometry is imposed because the NA has to be completely 
filled in order to measure tightly focused traces and not cross correlations 
between different angular components that travel different thicknesses 
through all the optical system (Fittinghoff, 1998, 1999). The collinear 
geometry generally restricts the pulse measurements within multiphoton 
microscopy to the use of interferometric autocorrelation (Millard, 1999; 
Muller, 1995a, 1995b). This, however, provides no direct phase 
information on the pulse as seen in chapter devoted to the state of the art 
of ultrashort pulse characterization. 
 
Secondly, severe requirements are imposed on the nonlinear medium as 
explained below. Pioneering research based on the well-known 
frequency-resolved optical gating (FROG) technique (Kane, 1993) 
showed how to characterize pulses at the sample plane by means of type 
II phase-matching collinear geometry is required and additional optical 
elements (Fittinghoff, 1998, 1999) as shown in the original’s 
Fittinghaff’s figure in Fig.7.1. In spite of using this complex setups, 
cross-polarization of the beams is never perfect and this leads to residual 
interference fringes appear that need to be filtered out, too. 
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Figure 7.1. Schematic and figure acknowledged from Fitthinghoff 
(1998) to measure a collinear type II SHG FROG. This schematic is 
similar to an interferometric SHG FROG, ex- cept that there is a 90º 
polarization rotation between the two arms (achieved by placement of 
a half-wave plate in each arm) and that the device uses a type II 
crystal, potassium dihydrogen phosphate (KDP) in this experiment. 

 
Therefore, CFROG is a more direct approach that avoids such complex 
setups and requires similar post-processing steps steps. Recently, 
CFROG has been used to measure one of the shortest pulses generated 
and has been published in Nature Photonics by other authors (Krauss, 
2009).  
Unfortunately, several additional difficulties are present when one tries to 
measure such a trace through a high-NA lens by using conventional 
nonlinear crystals. First, at the focal point the polarization of the 
fundamental beam is modified owing to the extremely steep convergence 
angles (Pawley, 1995). Second, there is an intrinsically large range of 
incident angles at the focal plane caused by high NAs. Finally, the large 
frequency bandwidth associated with ultrashort laser pulses requires the 
phase-matching bandwidth of the nonlinear medium to be large. All the 
problems cited above make the use of traditional nonlinear crystals error 
prone. To overcome these difficulties, the use of other nonlinear media 
has been explored. One of these options is the use of nonlinear 
fluorescent dyes (Quercioli, 2004). These dyes, however, are subject to 
photobleaching. It has also been reported that protein polymer chains, 
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Fig. 1. Schematic of a collinear type II SHG FROG de-
vice that is similar to an interferometric SHG FROG, ex-
cept that there is a 90± polarization rotation between the
two arms (achieved by placement of a l�2 wave plate
in each arm) and that the device uses a type II crys-
tal. In this study the crystal was potassium dihydrogen
phosphate (KDP).

Type II SHG FROG has several advantages. Since
the signal f ield for type II SHG FROG is identical to
that for SHG FROG, type II SHG FROG traces are
identical to SHG FROG traces, and the existing SHG
FROG algorithms can be used to retrieve the intensity
and phase. One can also produce type II SHG FROG
devices from an existing interferometric SHG auto-
correlator simply by placing identical zero-order wave
plates in each arm of the autocorrelator and replacing
the type I crystal with a type II crystal. Also, a minor
rotation of the type II crystal produces temporal fringes
with a known spacing, making type II SHG FROG
self-calibrating in delay. These temporal fringes
are those normally associated with interferometric
autocorrelation.

Using a collinear geometry has another advantage as
well. Current laser systems routinely produce pulses
shorter than 30 fs, and several research groups have
produced pulse widths of 10 fs or less.3 – 5 These pulses
are only a few optical cycles long, but careful control
of dispersion, group delay as a function of radius in
the objective, and other system parameters could po-
tentially allow few-cycle pulses to be focused by micro-
scope objectives. For all noncollinear geometries, the
finite crossing angle of the beams produces temporal
blurring. For asymmetric FROG geometries, the f i-
nite thickness of the nonlinear medium also produces
geometrical distortions that produce temporal blur-
ring.6 Using a collinear geometry eliminates these
problems.

There is one important consideration in type II SHG
FROG that partially neutralizes this last advantage.
In a type II crystal the two different polarizations
propagate along different optical axes, and the differ-
ent propagation velocities along those axes produce a
temporal walk-off in the type II crystal between the
two polarizations.7 For a 50-mm-thick type II KDP
crystal, the temporal walk-off is approximately 8 fs.
Such a large walk-off would badly distort the FROG
signal for pulses of ,50 fs. If the confocal parameter
is much shorter than the crystal thickness, however,
the effective interaction may be much shorter, which
greatly reduces the temporal walk-off. The blurring
that is due to the walk-off will usually be negligible
for multiphoton microscopy when high-N.A. objectives

are used. We note that the short interaction region
also increases the effective phase-matching bandwidth.
Alternatively, shorter crystals could be used.

An unusual feature of the method presented in
this Letter is the use of a nonlinear medium that is
thick compared with the light Rayleigh range. All
previous FROG measurements have used thin media.
However, all pulse-measurement techniques require
that the pulse f ield be separated into the product
of time- and space-dependent functions. As a result,
the (spatial) thick-medium effects factor out of the
temporal integral for the FROG trace and reside in a
spatial integral, which is constant with respect to delay
and plays no role in the trace.

To demonstrate type II SHG FROG, we measured
22-fs pulses from a Ti:sapphire oscillator. For the
measurement, we used a 203 air objective with a N.A.
of 0.4 and a 50-mm-thick type II KDP crystal. We
set the focus just inside the surface of the crystal by
monitoring the intensity and scanning the position of
the crystal. The confocal parameter in this case is
�10 mm, leading to a temporal walk-off in the crystal of
1.6 fs. Since the effect of the walk-off is a convolution
of the intensity over this region, the actual distortion
should be lower. We rotated the polarization by use
of two zero-order l�2 wave plates, one in each arm of
the dispersion- and amplitude-balanced autocorrelator.
As an alternative, we could have rotated the polariza-
tion by use of an out-of-plane rotation. In this experi-
ment the FROG trace did have residual fringes that
were approximately 10% of the peak for each wave-
length, owing to the wave plates. These fringes ex-
isted because the polarization of the beams was not
extremely pure owing to the lack of polarizers, which
would have eliminated residual incorrect polarization.
Since the pulse duration in this Letter corresponded
to many optical cycles, we used Fourier low-pass f il-
tering along the time axis of the FROG trace to re-
move the residual fringes. The measured FROG trace
is shown in Fig. 2. The pulse was retrieved well, with
a FROG error of 0.0032 for a 128 3 128 pixel trace.
Figure 3 shows the retrieved intensity and phase of the
pulse as a function of time. The FWHM of the inten-
sity is 22 fs, and the FWHM of the spectrum is 63 nm.

Fig. 2. Measured type II SHG FROG trace of a 22-fs pulse
from a Ti:sapphire oscillator taken by a 203, 0.4-N.A. air
objective. The residual fringes shown in these raw data
disappear after Fourier f iltering.
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such as bacteriorhodopsin, have been used to generate the required 
second-harmonic signal (Bouevitch, 1995). This technique, however, 
requires complex preparation of the medium. 
 

 7.1.2 Reported solution. 
 
In this chapter we present MEFISTO (Amat-Roldan, 2005, 2006) and 
CFROG (Amat-Roldan, 2004) as simple and elegant techniques with 
which to characterize a pulse at the focal plane of a high-NA objective 
lens, solving the problems that we described above. These techniques are 
further complemented by the use of starch granules suspended in water as 
a novel nonlinear medium that overcomes the problems mentioned 
above. 
The use of a recently reported data processing procedures (MEFISTO and 
CFROG) to successfully extract phase information from spectrally 
resolved collinear autocorrelations of an unknown pulse is explained in 
detail in the previous chapter.  
 
Starch has been shown to have a naturally high χ(2) coefficient (Fischer, 
2000; Chu, 2002). Second-harmonic signals were previously generated 
from starch with ultrashort laser pulses with wavelengths of 700–1300 
nm (Chen, 2002). These results are highly significant because they 
demonstrate the extremely large spectral range in which starch can be 
used. In this sense, the small sizes of these granules (approximately 5-10 
µm) provide them with a naturally large bandwidth.  
Furthermore, as starch is a chiral material: 1) it naturally possesses high 
χ(2) coefficient, 2) it is possible to obtain efficient SHG at different 
polarizations and Numerical Apertures. Although this is not ideal, it 
allows obtaining an averaged measurement with a manifold of incident 
angles and polarizations. Together with these natural physical properties, 
it is also important to highlight a practical advantage: Starch is ideally 
suited for working within a microscope because a drop of the starch 
suspension in water can simply be sandwiched between two coverslips 
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and placed directly within the focal plane of a high-NA lens (or at the 
sample plane of the nonlinear microscope). All these properties make 
starch ideally suited for the high demands that are placed on a nonlinear 
medium that is being used to characterize pulses through a high-NA 
objective lens. To verify that starch can be successfully used for 
characterizing ultrashort pulses we proceeded to obtain a CFROG trace 
of pulses at the focal plane of high-NA objective lens. The general 
optical arrangement for measuring a starch-based second-harmonic 
generation (SHG) CFROG trace is shown in Fig. 7.2. 

 
Fig. 7. 2 Schematic of the CFROG optical arrangement. 

 
A telescope arrangement was used at the output of the interferometer and 
before the microscope objective to ensure that the beam filled the entire 
input aperture of the objective lens. A starch suspension in water was 
prepared and sandwiched between two coverslips. As the second-
harmonic is generated from a single starch granule, precision in the 
preparation is not critical (a pinch of starch and a drop of water as shown 
in Fig. 7.3). 
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Fig. 7.3 Image of granule starch at focus from microscope using 
NA=1.25. 

 
 
 

7.2 Forward characterization with CFROG. 
 
In this experiment, we used CFROG to characterize the ultrashort laser 
pulse at the sample plane by acquirind the forward SHG signal generated 
from starch. The suspension of starch was placed at the focus of a high-
NA (NA 1.25) lens. Refractive-index matching oil was used to ensure 
full use of the NA of the lens. Another lens was used to collimate the 
generated frequency-doubled signal, which was then sent to the 
spectrometer after passing through a BG39 filter. The interferometer and 
the spectrometer were both controlled by the computer. A backthinned 
CCD linear array (Hamamatsu HC230-1007), operated in vertical 
binning mode, was attached to the spectrometer to record the spectrum of 
the SHG signal. The pulses were generated from a Kerr-lens modelocked 
Ti:sapphire laser (repetition rate, 76 MHz) that was operating at a central 
wavelength of 835nm. The pulses entering the objective lens had an 
average power of 15 mW. The second-harmonic signal was generated 
only when the pulses were focused upon a granule of starch. We then 
acquired the CFROG trace (shown in Fig. 7.4(a)), obeying the 
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undersampling criteria outlined in (Amat-Roldan, 2004) corresponding to 
220 sample points with delay steps of 7.58 fs. It should be noted that the 
CFROG trace is in fact an undersampled frequency-resolved 
interferometric autocorrelation. 

 
 

Fig. 7.4 (a) CFROG trace and (b) its time marginal spectrum 
obtained at the focus of a 1.25-NA lens. 

 
Consequently, by integrating the CFROG trace in time (Fig. 7.4(b)) we 
can obtain the envelope of the interferometric autocorrelation and verify 
its validity by ensuring that there is the required 8:1 ratio. This result in 
itself demonstrates the effectiveness of starch as a nonlinear medium 
when high-NA lenses are used. The CFROG trace was then filtered 
(Amat-Roldan, 2004) and retrieved with a traditional SHG FROG 
retrieval algorithm explained in Chapter 5. The experimental and 
retrieved traces are presented in Fig. 7.5, along with the retrieved pulse 
and spectrum. We further checked the validity of the retrieved data by 
comparing them with the time marginal and the experimentally measured 
spectra. These spectra are shown in Fig. 7.6, where excellent agreement 
can be observed. 
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Fig. 7.5. Experimentally retrieved pulses at the focal plane of a 
1.25-NA objective lens. (a) Fully f iltered CFROG trace, (b) 
retrieved trace, (c) amplitude and phase and (d) spectrum and 
phase of the retrieved pulse. The rms error of the traces is 
G=8·10-5. 

 

 
Fig. 7.6 Comparison of experimental and retrieved pulses (λ = 835 
nm) at the focal plane of a 1.25-NA lens. (a) Time marginal and 
retrieved intensity autocorrelation. (b) Measured and retrieved 
spectra. 

  
To further investigate the use of starch as a nonlinear medium we 
proceeded to characterize the output pulses from a home-made 



 
 

 185 

synchronously pumped optical parametric oscillator (Loza-Alvarez, 
1999) operating at 1100 nm shown in Figure 7.7. To do this, we used an 
objective lens with a NA of 0.85. In this case we used a delay step of 
42.6 fs and produced 96 samples. The resultant CFROG trace was again 
filtered to produce a non-collinear SHG FROG trace and then retrieved. 
The result of this retrieval is shown in Fig. 7.8. As above, to validate the 
data we compared the retrieved results with externally measured data. 
Figure 7.9 shows the excellent agreement obtained.  
 

 
Fig. 7.7 Custom-made synchronously pumped optical parametric 
oscillator operating at 1050 – 1150 nm pumped with the Coherent 
Mira 900. 
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Fig. 7.8 Experimentally retrieved pulses at the focal plane of a 0.85-
NA objective lens. (a) Fully filtered CFROG trace, (b) retrieved trace, 
(c) amplitude and phase, and (d) spectrum and phase of the retrieved 
pulse.  
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Fig. 7.9 Comparison of experimental and retrieved pulses 
(λ = 1100nm) at the focal plane of a 0.85-NA lens. (a) 
Measured time marginal and retrieved intensity 
autocorrelation. (b) Measured and retrieved spectra.  

 
The results of both experiments confirm that starch can be successfully 
used with a wide range of wavelengths to characterize pulses with 
different characteristics at the focal plane of a high-NA lens in an easy 
and quick way.  
 
 
7.3 Relevance of the forward characterization. 
 
Prior to this forward characterization was released (Amat-Roldan, 
2004b), several important groups were trying to measure ultrashort 
pulses at the sample plane. Initially, some of them reported 
measurements, in general autocorrelations at the focus (Cannone, 2003; 
Müller, 1998). However, their successful measurements required 
assuming different constraints on the pulse working at high NA 
objectives, such as quadratic phase modulation (linear chirp).  
The first successful characterization with no assumptions of a tightly 
focused ultrashort pulse was done by David Fittinghoff from Trebino’s 
group. In 1998, they published an excellent work titled “Collinear type II 
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second-harmonic-generation frequency-resolved optical gating for use 
with high-numerical-aperture objectives” where they used type II phase-
matching to partially remove the interferometric fringes from a collinear 
FROG trace (Fittinghoff, 1998). They performed an immaculate FROG 
retrieval on 22 fs pulses at NA=0.4, which is just above paraxial 
approximation. One year later, another excellent work was reported by 
Fittinhoff were an actual high NA=1.25 microscope objective from Carl 
Zeiss was employed and pulses passing through it were successfully 
retrieved (Fittinghoff, 1999). This technique, however, has a critical 
limitation: type II phase matching condition. This importantly adds 
important drawbacks: 1) addition of optical elements is a source of 
experimental errors, 2) future polarization resolved measurements are not 
possible or can become too complex (Brixner, 2001; Suzuki, 2004; 
Silberberg, 2004), 3) it still requires digital filtering to complete remove 
some remanent interferometric fringes, otherwise, FROG algorithm 
might stagnate or give an erroneous retrieval, and the most important, 4) 
a type II nonlinear crystals are difficult to be found in a biomedical lab 
(toxicity, easy to break, very expensive,...). On the contrary, starch is 
disposable, extremely cheap, non-toxic, polarization sensitive, among 
other virtues to be foreseen.  
 
 
7.4 Backwards characterization with specimen and comparing 
CFROG and MEFISTO. 
 
In this section, we report the significant SHG signal generated from 
starch granules in the backward direction and its use to obtain 
information of ultrashort pulses interacting with the specimen inside a 
high resolution (high NA) multiphoton microscope. Backward SHG 
provides an extremely simple way to measure the SHG-autocorrelation 
trace from an unmodified TPEF microscope. With the simple addition of 
a spectrometer to the output port of the microscope, which is unnecessary 
in some commercial models, it is possible to spectrally resolve the 
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autocorrelation trace. This frequency-resolved SHG autocorrelation can 
then be processed to fully characterize the pulse. This can be done using 
several techniques such as CFROG (Amat-Roldan, 2004) or IFROG 

(Stibenz, 2005). However, these need an iterative retrieval algorithm to 
obtain the pulse information, adding complexity to the methodology. We 
decided to use the MEFISTO (Amat-Roldan, 2005, 2006) technique, 
which allows direct extraction of the pulse in an analytical way and it has 
more potential to be carried out at video rates. 
The use of backward propagating SHG from starch granules is especially 
important in multiphoton microscopy because the same epi-detection 
scheme can be used to collect both the TPEF and SHG signals making 
starch ideally suited to work with in a TPEF microscope. Additionally, 
there are several significant practical advantages of using starch as a 
nonlinear medium. Apart from being cheap, and non photo-bleaching, it 
is also non soluble and non-toxic, so it can be added into the culture 
medium where the specimen is.  
 
Importantly, preparation of the experiment was mainly carried out by 
Anisha Thayil as reported in her work (Thayil, 2008) and her thesis but 
pulse measurement was carried out by the author of this thesis.  
In order to show that in-situ pulse information can be obtained while 
imaging, two different situations were examined. In the first one, we 
added a very small quantity of starch granules into a dish of live HeLa 
cancer cells (GFP labeled). In the second, starch granules were placed 
alongside a more complex organism, a C. elegans that was prepared for 
in-vivo neuron imaging (GFP labeled on D-type neurons). The granules 
embedded in this way were 5 approximately 5-10µm in size. The non-
toxic and non soluble nature of starch allows it to be among living cells 
or the organisms without affecting them in any way. A schematic 
diagram of the optical arrangement used in this experiment is shown in 
Fig. 7.10.  
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Fig. 7.10. A schematic diagram of the experimental set-up (image 
acknowledged from Thayil 2008). 

 
Imaging was performed on an adapted inverted microscope (Nikon 
TE2000-U) with the optical scanning being performed by a pair of 
galvanometric mirrors. A X60 oil immersion objective lens (NA 1.4, 
Nikon Plain Apo-Achromatic) was used throughout the experiment. The 
ultrashort laser pulses were produced from a mode locked Ti: Sapphire 
laser (MIRA 900f) which was set at a central wavelength of 840 nm and 
a repetition rate of 80 MHz. The pulses were sent through a Michelson 
interferometer before entering the microscope. A telescope arrangement 
was used to ensure that the beam filled the entire aperture of the objective 
lens. The generated TPEF signal from the cells and the backward SHG 
from the starch granules were collected in the backward direction via the 
same objective lens. The signals were then passed through the hot mirror, 
a BG39 filter and onto the photomultiplier tube. 
 
In order to compare the SHG signal from starch granules emitted in the 
forward and  backward (epi-) directions we used an additional mount for 
forward direction as well. This mount was equipped with a collecting 
objective (1.25NA), a band pass filter centered at 420nm and a 
photomultiplier tube. Fig. 7.11 shows the combined forward and 
backward collected SHG images of the starch granules for different 

7 2 K . N. A N I S H A T H AY I L E T A L .

Fig. 1. A schematic diagram of the experimental setup

Fig. 2. SHG images of starch granules detected in the forward (green) and
backward (red) directions for different polarizations.

in starch for any laser polarization. Compared to the use of
crystals, which would require perfect alignment for satisfying
phase-matching conditions, this polarization independence
makes starch ideal for pulse characterization inside a
microscope.

This observation of backward SHG signal from starch
granules could be due to backward scattering, since starch
is a highly scattering medium. In addition, the possibility
of backward phase matching in starch (possessing semi-
crystalline shells of approximately 10 nm of thick amylopectin
side chain clusters (Gallant et al., 1997)) cannot be neglected
as it has been shown that nearly equal forward and backward
phase matching occurs when objects have an axial size less
than λSHG/10 (approximately 40 nm) (Moreaux et al., 2000;
Mertz & Moreaux, 2001; Williams et al., 2005). However,
these fail to explain the lack of a signal generated in the
forward direction. The exact nature of the backward SHG
signal from starch granules is not within the scope of this
contribution and needs further investigation (see for example,
Psilodimitrakopoulos et al., 2007).

In situ pulse characterization using backward SHG from starch

Having a better understanding of the capabilities of starch to
generate SHG signal in the backward direction, we proceeded to
perform in situ pulse characterization and imaging. Removing
the forward collecting mount (experimental arrangement as
depicted in Fig. 1) and blocking one of the interferometric arms,
it was possible to simultaneously acquire both the backward
SHG and the TPEF to obtain image of both the starch and the
cells. Cancer cells are highly prone to contaminations but we
found that the addition of starch granules do not affect them
in anyway, strongly supporting the use of starch for this kind

C© 2008 The Authors
Journal compilation C© 2008 The Royal Microscopical Society, Journal of Microscopy, 230, 70–75
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polarizations of the fundamental beam. The images correspond to a plane 
passing through the center of the granule. In this plane, the signal in the 
backward direction originates only from the edges of the granule and 
does not overlap with the forward signal originate from inside the 
granules. Interestingly, both, the forward and backward SHG signal can 
be generated in starch for any laser polarization. Compared to the use of 
crystals, which would require perfect alignment for satisfying phase-
matching conditions, this more relaxed polarization dependence makes 
starch ideal for pulse characterization inside a microscope.  

 
Fig. 7.11 SHG images of starch granules detected in the forward 
(green) and backward (red) directions for different polarizations 
(image acknowledged from Thayil 2008). 

 
This observation of backward SHG signal from starch granules could be 
due to backward scattering, since starch is a highly scattering medium 
(Mertz, 2001). In addition, the possibility of backward phase matching in 
starch (possessing semi-crystalline shells of approximately 10 nm of 
thick 7 amylopectin side chain clusters (Gallant, 1997) , cannot be 
neglected as it has been shown that nearly equal forward and backward 
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phase matching occurs when objects have an axial size less than λSHG/10, 
which is approximately 40 nm (Moreaux, 2000; Williams, 2005; 
Psilodimitrakopoulos, 2007). However, these fail to explain the lack of a 
signal generated in the forward direction. The exact nature of the 
backward SHG signal from starch granules is not within the scope of this 
contribution and needs further investigation (Psilodimitrakopoulos, 2007, 
2008). 
 
Having a better understanding of the capabilities of starch to generate 
SHG signal in the backward direction, we proceeded to perform in-situ 
pulse characterization and imaging. Removing the forward collecting 
mount (experimental arrangement as depicted in Fig. 7.10) and blocking 
one of the interferometric arms, it was possible to simultaneously acquire 
both the backward SHG and the TPEF to obtain image of both the starch 
and the cells. Cancer cells are highly prone to contaminations but we 
found that the addition of starch granules do not affect them in anyway, 
strongly supporting the use of starch for this kind of applications. Figure 
7.12(a) shows a photograph of the cell and starch mixture which has been 
overlaid with the summed SHG and TPEF image. We confirmed that the 
SHG signal (at 420 nm) was only generated when the laser was focused 
upon a granule of starch and the TPEF signal from the cancer cells was 
observed with a central wavelength of 510 nm (Fig. 7.12(a)). Similarly, 
we simultaneously epi-detected the TPEF signal from the neurons of 
C.elegans and SHG signal from starch granules (Fig. 7.12(b)). To show 
the contour of the granules, images taken with different polarizations had 
been added. Here again, presence of starch granules in the culture 
medium of the C.elegans does not affect the development of the 
organism. To check that we were indeed observing the combined signals 
we replaced the PMT with a spectrometer (Jobin Yvon, Triax 180) and a 
back-thinned CCD linear array (Hamamatsu, HC 230-1007) to measure 
the different spectra that was being generated. Importantly, in both cases, 
the two signals were well separated from one another as shown in Fig. 
7.12(c). (c) The spectra of the observed signals; TPEF (red) and SHG 
(green). 
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Fig. 7.12 (a) Image of the HeLa cells together with the starch 
granules. The inset shows the TPEF signals from cancer cells (red) 
and the backward directed SHG signals (green) from a starch granule. 
(b) The epi-detected TPEF image of the C.elegans neurons (red) and 
SHG image of the starch granules (green).  

 
To characterise the pulses, we focused the beam onto one of the starch 
granules that lies on top of the living cells or besides the C. elegans. SHG 
autocorrelation can be directly measured by rapidly scanning one of the 
interferometric arms while recording the output voltage of the PMT. To 
fully characterize the pulse, we used a spectrometer at the output port of 
the microscope to obtain the interferometric spectrally resolved 
autocorrelation. This trace is then treated in order to be able to use the 
MEFISTO technique to retrieve the pulses. To support the effectiveness 
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of the MEFISTO technique we compared the results with the more 
conventional Collinear SHG-FROG (CFROG) technique. The same 
experimental data is used in both cases. Fig. 7.13 shows the numerical 
interferometric autocorrelations obtained from MEFISTO and the 
CFROG techniques and are compared with the experimentally acquired 
one. In both cases there is an excellent overlap showing the validity of 
both retrievals.  

 
Fig. 7.13. Interferrometric autocorrelations. (a) from MEFISTO and 
(b) from CFROG. 

 
The retrieved temporal intensity, spectral intensity and phase profiles of 
the pulse at the sample plane of the microscope are displayed in Fig. 
7.14. The results obtained using both characterization techniques are in 
good agreement except for the spectral intensity and phase profiles. 
Retrieved spectral intensity profiles were validated by comparing them 
with experimentally measured data (Fig. 7.14(b)). The spectral intensity 
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profile obtained by using MEFISTO technique shows a better agreement 
with the measured spectrum. The small disagreement of the spectrum 
obtained with CFROG might be attributed to the averaging effect 
introduced by the iterative algorithm. 

 
Fig. 7.14. Retrieved phase and intensity profiles of the pulse at the 
sample plane of the microscope obtained with MEFISTO (solid line) 
and standard CFROG procedure (dashed line): (a) temporal intensity 
and phase. The temporal width (FWHM) of the pulse at the sample 
plane is 163fs. (b) The measured spectrum (circles) and the retrieved 
spectral intensity and phase profiles  
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7.5 Conclusions. 
 
In conclusion, in this chapter we have demonstrated a few successful full 
characterizations of ultrashort pulses at the focal plane of a high-NA 
objective lens in forward and backward directions and at different 
wavelengths with a clear potential to be included in a biomedical lab. 
In the forward direction, we achieved this goal in two steps: first, by the 
use of CFROG, a recently reported method that permits the use of 
collinear geometry and second, by introducing the use of starch as a 
nonlinear medium. 
In the backward direction, we also succeeded in detecting SHG signal 
from starch with no additional optical mounts in a commercial 
microscope and using more recent ultrashort pulse measurement 
technique: MEFISTO, and also CFROG, both reported in this thesis. 
The use of a starch-in-water suspension has been shown to be highly 
suitable for the characterization of pulses at the focal plane of high-NA 
lenses. This is possible because the generation of the nonlinear signal in 
such a medium is not highly dependent upon polarization and angle at a 
single spot location. Smooth changes in the nonlinear tensor can occur, as 
shown by the SHG polarization dependence of starch in Figure 7.11, due 
to small motions of the starch granule, which are seldom and can be 
averaged out by the behaviour of the whole trace. Although it is not 
perfect, starch granules also average different angular and polarization 
components to provide an averaged estimation of the pulse. More 
accurate measurements, if needed, can be readily designed by simply 
taking into account strict angular and polarization dependence of the 
SHG signal in starch granules. 
Moreover, we have shown the large bandwidth of starch by 
characterizing ultrashort pulses at two different wavelengths, confirming 
earlier reports that it can be successfully used from 700 to 1300 nm. The 
proven characteristics of starch will allow the technique to characterize 
pulses with far larger bandwidths than described here, even with the large 
acceptance angles that a high NA objective lens possesses. 
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In summary, starch importantly overcomes all inherent difficulties 
associated with thin nonlinear medium used in previous techniques; this 
material is a simple, nontoxic, easy-to-store, nonphotobleaching, easy-to-
obtain, cheap, and easy-to-handle medium for the full characterization of 
ultrashort pulses at the sample plane of a multiphoton microscope. 
Remarkably, from the life sciences viewpoint, the addition of starch to 
the sample of study, being a nontoxic and non-soluble material, does not 
affect living cells or organisms allowing the pulse characteristics to be 
measured in-situ, without the need to move back and forth the sample, 
which is a source of errors and an important limitation to achieve video 
rate measurements. 
The final procedure presented in this chapter, in which backward SHG 
signals from starch granules are collected, is a nearly ideal approach for 
pulse characterization within a TPEF microscope at the current state of 
the art. Both the fluorescence and SHG signals can be collected using the 
same epi-detection scheme, helping to considerably simplify the 
experimental arrangement. This importantly means that no alteration to a 
standard TPEF microscope is required for a complete characterization of 
pulses at focus, making it handy with no bulky parts required.  
We further highlight the use of MEFISTO technique as a simple (non 
iterative) and self-consistent method specially suited for characterizing 
pulses in a multiphoton microscope with a clear potential to achieve 
video rates regime.  
All these developed means, offer different approaches to characterise 
ultrashort pulses at the sample plane of a multiphoton microscope. This 
was the focus of this thesis as the subsequent step is to accurately shape 
the pulses and exploit multiphoton processes in different manners as 
explained at the begining of the chapter. Spatiotemporal shaping of 
pulses holds a big promise to control light-matter interactions in both 
accurate and precise manner. There are many articles that describe how 
selective fluorescence can be achieved, enhancement of SHG, even 
CARS can be achieved by pulse shaping. Other works relate shaped light 
to quantum control and tuning of chemical reactions. Although these are 
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extraordinarily challenging and difficult goals, they remain out of reach 
for researchers at subcellular level (or diffraction limited) without the 
necessary means to characterize pulses at high NA. In this sense, MIIPS, 
the technique explained in the state-of-the-art combines both pulse 
characterization and shaping. However, it is still an iterative algorithm 
and requires compensating the pulse to achieve full characterization. 
Additionally, MEFISTO can be implemented with a Spatial Light 
Modulator (SLM) after minor modifications and allow pulse 
characterization and shaping in a more direct manner. In the latter years, 
pulse characterization at the sample plane of multiphoton microscopy has 
not experienced any significant advance. Most microscopists that 
understand the unique features of ultrashort pulses simply compensate 
second order dispersion (maybe third in some cases) to achieve 
temporally narrow pulses at the focal plane, or simply approach to 
maximize detected signal. This is probably because SLM are still 
complex to use and most microscopist address biological problems, 
which are complex and currently have a more specific impact. 
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8 Summary of this thesis. 

8.1 Major contributions. 

In this thesis I have presented a series of “new tools” to fully characterise 
ultrashort laser pulses and I have achieved specific “milestones” that 
show its performance in real applications like in-vivo multiphoton 
microscopy. In summary, major contributions of this work can be 
numbered as: (1) developing two new families of techniques able to fully 
measure ultrashort laser pulses under a collinear scheme which were 
named CFROG and MEFISTO, (2) specifically, MEFISTO can directly 
measure one unknown pulse in an analytical way, (3) both techniques, 
CRFOG and MEFISTO, were experimentally demonstrated in a range of 
scenarios ranging from simple to more complex pulses, (4) fast-CFROG 
and fast-MEFISTO, which do not require large datasets neither long 
acquisitions, have both been demonstrated, (5) theoretical demonstration 
of the blind-MEFISTO technique, able to simultaneously characterize 
two unknown  pulses in an analytical way, (6) suggesting  and 
demonstrating the use of starch granules as a natural nonlinear material 
for characterising ultrashort laser pulses at the sample plane of a 
multiphoton microscope and (7) by exploiting backwards second 
harmonic generation from starch granules it is possible to characterise 
pulses without additional nor bulky mechanical mount on any 
commercial system. 
 
CFROG measurements were derived from extending the non-collinear 
theoretical framework of pulse measurement to a collinear scheme, 
which showed good performance experimentally even in its “fast” 
version at undersampling regimes. This progress was a mandatory step in 
our strategy to develop an ultrashort pulse measurement technique fully 
compatible with pulse measurement in a nonlinear microscope. 
Importantly, developing a general method based on collinear geometry 
by itself enables a simpler and more reliable scheme to carry out pulse 
measurements. For this reason, CFROG is now being employed for more 
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demanding applications. In fact, CFROG was the method of choice for 
one major contribution published in Nature Photonics (Krauss, 2009) to 
characterise single optical cycle ultrashort pulsed laser, which is basically 
at the physical limit of an ultrashort pulse at a given wavelength. 
MEFISTO was then developed to overcome an additional limitation of 
the current state-of-the-art mainly represented by FROG, which is the 
required iterative algorithm to seek for a solution through recursively 
estimating the retrieved phase. The fundamental objection of this 
procedure is that it shows specific flaws in front of some non-trivial 
ambiguities and the additional fact that it has been shown to give 
different retrievals with different initial conditions. In this sense, 
MEFISTO performs a direct measurement on the collinear measurement 
and it possess solely one possible outcome. MEFISTO has been shown to 
retrieve ultrashort laser pulses with small quadratic phase modulation 
mainly caused by an optical isolator, or complex pulses which suffered a 
number of nonlinear effects while propagating through multimodal 
fibers, additional  pulses undergoing optical components of a 
multiphoton microscope have been characterised. 
This methodology has the potential to become a sound gold standard but 
this requires further refinement of some aspects of the technique. Main 
positive aspects that require to be emphasised are: 
MEFISTO is a highly sensitve technique that can measure very subtle 
phase changes, but it requires a very good system calibration and 
convenient acquisition. 
MEFISTO has the potential to obtain phase information in the low SNR 
regime. This could be solved by the development of a multi-slice 
approach. This has been in fact preliminary demonstrated by other 
authors (Hsu, 2007), but a complete analysis is still required. 
 
In this thesis rather than trying to solve such (mathematical) problems, 
we have decided to points out other theoretical scenarios of MEFISTO. 
For example, after developing the BlindMEFISTO technique we have 
numerically computed blindMEFISTO under different SNR regimes so 
to assess its feasibility for an experimental demonstration. Additionally 
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we have focus our attention in fastMEFISTO and we have shown that it 
contains the very same information of the classical trace if Nyquist 
criterion is followed, which dramatically reduces acquisition time. 
Starch has been suggested and demonstrated as a suitable natural 
nonlinear material, which is very convenient for generating the SHG 
signal required for characterising ultrashort laser pulses of the tightly 
focused light in a microscope. Specifically, starch possess a relaxed 
phase-matching that occur not only at a broad spectral range 
experimentally demonstrated from 700 to 1300nm (in this thesis at 
830nm and 1100nm by means of a home-made SP-OPO), but also at the 
large angles and the different polarizations which are produced an 
average representation of the focused light that has passed through 
optical components of a multiphoton microscope in a different manner. 
For example, the outermost part of the objective introduces less 
dispersion because it is thinner than the innermost part, which is the 
thickest. After this works were published, another technique named 
MIIPS was presented by Dantus and co-workers, but this methodology 
possess major differences with ours: (1) it is still an iterative algorithm 
which converges after a sequence of approximations, (2) it requires to 
compensate the ultrashort pulse to characterise it, (3) it requires an 
Spatial Light Modulator, which is expensive and more complex if 
compared to a Michelson Interferometer, (4) it is dedicated to 
characterise optical components or schemes rather than characterise light 
at the focal plane, and (5) it did not reported any suitable material like 
starch. 
Therefore, the important remarks are that our techniques previously 
solved the issue of measuring an ultrashort laser pulse at the sample 
plane of a multiphoton microscope by providing a double answer: 
technique and material. MIIPS occurred in the middle of this work and 
were reported years later. Also, it should be highlighted that CFROG was 
the first general method that accurately measured the ultrashort laser 
pulse compared to previous attempts described in the thesis. 
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Finally, pulse characterisation is measured at the focal plane of a 
commercial microscope in-vivo with no additional mechanical mounts 
and epi-detection of SHG is experimentally shown in starch.  
Therefore, a wide range of “new tools” and techniques has been shown to 
be suitable to fully characterise ultrashort laser pulses, which was the 
main aim of this thesis. 
 
As I said at the beginning of this dissertation, these new tools for 
measurement of ultrashort pulses will be part of the existing basis of laser 
technologies for development of improved tools for biomedicine and 
other disciplines. The exquisite control on light matter interactions 
offered by pulse shaping can be only achieved if we can actually measure 
our ultrashort light pulses anywhere and anytime. Coherent control is an 
exciting concept that might offersan unbelievable opportunity for science 
and technology, but it requires development of many disciplines and 
realistic control to perform biomedical experiments in a direct manner 
might be available in very few sites of the world or none. In this long 
way, one of the first requirements to be acomplisshed is to ensure that 
pulse characterisation is accurate, robust, flexible and handy. The 
intention of this thesis was to build solid and specific progress in this 
direction, and we have successfully achieved that. Characterising 
ultrashort pulses in a microscope will be of high interest in life sciences 
but also in many other fields, because life sciences offer a difficult arena 
with added complications such as the fragility of life. Also, from the 
microscopy prospective coherent imaging should be the logical extension 
of this thesis to be able to exploit new contrast mechanisms by tailoring 
the shape of ultrashort light pulses to particular molecules or chemical 
environments and enhancing specificity of multiphoton imaging, which is 
lost for unshaped pulses and represents a major disadvantage when 
compared to linear confocal microscopy from the biomedical viewpoint. 
Furthermore, accurate control of temporal properties of light, will enable 
producing even shorter events, and more controllable attosecond pulses 
and understand much better ultrafast phenomena that occurs well below 
picoseconds and femtoseconds in the near future, hopefully. 
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In this line, the work presented in this thesis has continued in a number of 
projects: a European Project, named STELUM, SpatioTemporal 
Engineering of Light: Ultimate Multiphoton-microscopy, in which pulse 
characterization is followed by pulse shaping; another PhD student used 
MEFISTO to characterise ultrashort laser pulses in her experiments like 
the one reported in chapter 6; and an undergraduate student is currently 
programming a graphic user interface for using MEFISTO in a fully 
automated manner. 

No major evolutions on pulse measurement have been carried out in the 
recent years beyond those reported in chapters 3. Reamarkably, authors 
of Hsu (2007) has solved MEFISTO trace using the frequency delay axis 

(Li-Fan, 2010) which was mentioned in the paper but never carried out 
experimentally, which shows that this technique is further evolving in 
other research groups around the world. 

My major contributions to the research group led by Prof. Loza-Alvarez 
are the adaptation of a standard microscope to a multiphoton system with 
a custom-made chamber for keeping cells alive, detection of Second 
Harmonic and Two-Photon Microscopy, use of starch as nonlinear 
medium, solution of direct pulse measurements in collinear conditions, 
characterization of the pulses and this can be then reported in the works 
submitted for journals, characterization of the dispersion introduced by 
the optical elements of the setup and some pulse shaping with prisms and 
a Spatial Light Modulator (SLM). Currently the group is using this initial 
knowledge to continue the work and extend it to the spatial domain. They 
are currently using adaptive optics to compensate wavefront aberrations 
when progating through heterogeneous media. These methodologies 
allow for correct focusing at deep layers and maximization of the 
detected signal, which again enables to minimize phototoxic effects when 
imaging biological specimens. However, adaptive optics also encounter 
similar technical difficulties to those with pulse shaping as they both rely 
on SLMs. SLMs are very interesting components from the theoretical 
prospective, but in practical terms they are highly complex to use and 
require a very detailed study to efficiently use them.  
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