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being one of the most brilliant researchers I know, Joan is always willing
to share his knowledge and collaborate to improve one’s own work. His
characteristic mixture of enthusiasm and hard work has been a constant
source of inspiration to me. I would also like to mention the remarkable
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Gómez, Piotr Holonowicz, Jordi Janer, Stefan Kersten, Ricard Marxer,

vii



viii

Waldo Nogueira, Gerard Roma, Justin Salamon, Inês Salselas, Mohamed
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Abstract
In the last few years some Music Information Retrieval (MIR) researchers
have spotted important drawbacks in applying standard successful-in-
monophonic algorithms to polyphonic music classification and similarity
assessment. Noticeably, these so called “Bag-of-Frames” (BoF) algorithms
share a common set of assumptions. These assumptions are substantiated
in the belief that the numerical descriptions extracted from short-time audio
excerpts (or frames) are enough to capture relevant information for the task
at hand, that these frame-based audio descriptors are time independent, and
that descriptor frames are well described by Gaussian statistics. Thus, if we
want to improve current BoF algorithms we could: i) improve current au-
dio descriptors, ii) include temporal information within algorithms working
with polyphonic music, and iii) study and characterize the real statistical
properties of these frame-based audio descriptors. From a literature review,
we have detected that many works focus on the first two improvements, but
surprisingly, there is a lack of research in the third one. Therefore, in this
thesis we analyze and characterize the statistical distribution of common
audio descriptors of timbre, tonal and loudness information. Contrary to
what is usually assumed, our work shows that the studied descriptors are
heavy-tailed distributed and thus, they do not belong to a Gaussian uni-
verse. This new knowledge led us to propose new algorithms that show
improvements over the BoF approach in current MIR tasks such as genre
classification, instrument detection, and automatic tagging of music. Fur-
thermore, we also address new MIR tasks such as measuring the temporal
evolution of Western popular music. Finally, we highlight some promising
paths for future audio-content MIR research that will inhabit a heavy-tailed
universe.
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Resumen
En el campo de la extracción de información musical o Music Information
Retrieval (MIR), los algoritmos llamados Bag-of-Frames (BoF) han sido
aplicados con éxito en la clasificación y evaluación de similitud de señales
de audio monofónicas. Por otra parte, investigaciones recientes han señalado
problemas importantes a la hora de aplicar dichos algoritmos a señales de
música polifónica. Estos algoritmos suponen que las descripciones numéri-
cas extráıdas de los fragmentos de audio de corta duración (o frames) son
capaces de capturar la información necesaria para la realización de las tareas
planteadas, que el orden temporal de estos fragmentos de audio es irrelevan-
te y que las descripciones extráıdas de los segmentos de audio pueden ser
correctamente descritas usando estad́ısticas Gaussianas. Por lo tanto, si se
pretende mejorar los algoritmos BoF actuales se podŕıa intentar: i) mejorar
los descriptores de audio, ii) incluir información temporal en los algoritmos
que trabajan con música polifónica y iii) estudiar y caracterizar las propie-
dades estad́ısticas reales de los descriptores de audio. La bibliograf́ıa actual
sobre el tema refleja la existencia de un número considerable de trabajos
centrados en las dos primeras opciones de mejora, pero sorprendentemen-
te, hay una carencia de trabajos de investigación focalizados en la tercera
opción. Por lo tanto, esta tesis se centra en el análisis y caracterización de
la distribución estad́ıstica de descriptores de audio comúnmente utilizados
para representar información t́ımbrica, tonal y de volumen. Al contrario de
lo que se asume habitualmente, nuestro trabajo muestra que los descriptores
de audio estudiados se distribuyen de acuerdo a una distribución de “cola
pesada” y por lo tanto no pertenecen a un universo Gaussiano. Este descu-
brimiento nos permite proponer nuevos algoritmos que evidencian mejoras
importantes sobre los algoritmos BoF actualmente utilizados en diversas
tareas de MIR tales como clasificación de género, detección de instrumentos
musicales y etiquetado automático de música. También nos permite pro-
poner nuevas tareas tales como la medición de la evolución temporal de la
música popular occidental. Finalmente, presentamos algunas prometedoras
ĺıneas de investigación para tareas de MIR ubicadas, a partir de ahora, en
un universo de “cola pesada”.
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Resum
En l’àmbit de la extracció de la informació musical o Music Information
Retrieval (MIR), els algorismes anomenats Bag-of-Frames (BoF) han estat
aplicats amb èxit en la classificació i avaluació de similitud entre senyals
monofòniques. D’altra banda, investigacions recents han assenyalat impor-
tants inconvenients a l’hora d’aplicar aquests mateixos algorismes en senyals
de música polifònica. Aquests algorismes BoF suposen que les descripcions
numèriques extretes dels fragments d’àudio de curta durada (frames) son
suficients per capturar la informació rellevant per als algorismes, que els
descriptors basats en els fragments son independents del temps i que l’es-
tad́ıstica Gaussiana descriu correctament aquests descriptors. Per a millo-
rar els algorismes BoF actuals doncs, es poden i) millorar els descriptors,
ii) incorporar informació temporal dins els algorismes que treballen amb
música polifònica i iii) estudiar i caracteritzar les propietats estad́ıstiques
reals d’aquests descriptors basats en fragments d’àudio. Sorprenentment,
de la revisió bibliogràfica es desprèn que la majoria d’investigacions s’han
centrat en els dos primers punts de millora mentre que hi ha una mancança
quant a la recerca en l’àmbit del tercer punt. És per això que en aquesta
tesi, s’analitza i caracteritza la distribució estad́ıstica dels descriptors més
comuns de timbre, to i volum. El nostre treball mostra que contràriament al
què s’assumeix, els descriptors no pertanyen a l’univers Gaussià sinó que es
distribueixen segons una distribució de “cua pesada”. Aquest descobriment
ens permet proposar nous algorismes que evidencien millores importants
sobre els algorismes BoF utilitzats actualment en diferents tasques com la
classificació del gènere, la detecció d’instruments musicals i l’etiquetatge
automàtic de música. Ens permet també proposar noves tasques com la
mesura de l’evolució temporal de la música popular occidental. Finalment,
presentem algunes prometedores ĺınies d’investigació per a tasques de MIR
ubicades a partir d’ara en un univers de “cua pesada”.
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Chapter 1

Introduction

Music in digital form is nowadays so easily accessible that both, personal
collections, and on-line repositories have grown to a size that increasingly
poses difficulties for music users who want to navigate throughout this over-
whelming amount of data (Casey et al., 2008). Thus, with the aim of fulfill-
ing users’ music information needs, a new multidisciplinary field of research
known as Music Information Retrieval (MIR) has steadily grown during the
last fifteen years (Orio, 2006).

Within the above MIR field description “music users” are considered in
a broad sense, that is, music users are not only casual music listeners, but
also professional users, such as sound engineers, music critics, musicologists,
music teachers, music artists, cognitive scientists, psychologists, etc. More-
over, a myriad of multidisciplinary techniques from music, computer science,
signal processing, cognition, and information retrieval are constantly being
used and adapted by MIR researchers. Therefore, as stated by Herrera et al.
(2009), and Serra et al. (2013) the MIR field is more about music informa-
tion research than just the retrieval of music information as its own name
suggests. From our perspective, the term “music” should be also considered
in a broad sense including past and present music traditions from around
the world, soundscape recordings, sound effects, etc.

Throughout the short MIR history, multiple problems have been addressed
such as: Automatic Genre Classification, Automatic Music Recommenda-
tion, Automatic Music Transcription, Instrument Recognition, Music Sim-
ilarity, Automatic Music Tagging, Cover Song Identification, Melody Ex-

1
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traction, Artist Identification, Music Summarization, and Structure Seg-
mentation (Klapuri and Davy, 2006; Li et al., 2011; Müller, 2007).

In order to extract relevant information from music, MIR researchers count
with many data sources like: editorial metadata, user-generated context,
symbolic representations, and audio content. However, most of the of the
proposed techniques and MIR systems rely on audio content solely (Serra
et al., 2013). This audio-centric preference within MIR approaches is sub-
stantiated on the assumption that, for some of the above mentioned tasks,
other data sources are either not suitable, or unreliable, or missing (Orio,
2006). The main strength of content-based systems is their exclusive depen-
dence on the actual music file (i.e. there is no need for other, possibly unre-
liable, data sources for the system to work). On the other hand, the main
weakness of such systems is that extracting high-level concepts that users
use to relate with music collections from analyzing the audio signal alone is
extremely difficult. This gap between signal-extracted music descriptors and
high-level concepts, like evoked emotions and memories, cultural references,
etc., has been denoted within MIR literature as the “semantic gap” (Celma
et al., 2006).

In order to make music data comparable and algorithmically accessible
(i.e. able to be processed by digital computers), instead of working directly
with the original audio samples, content-based MIR algorithms start by ex-
tracting suitable features that capture relevant key aspects while suppress-
ing irrelevant details or variations (Müller, 2007). Evidently, the distinction
between relevant audio descriptors and irrelevant data depends on the task
at hand, and is not always easy to determine. For instance, let’s consider an
audio feature that numerically describes the tonal characteristics (i.e. the
harmonic content) of a piece of music. This descriptor would be very rel-
evant for tasks like melody extraction or cover song identification, but it
would be considered as irrelevant for an algorithm trying to retrieve songs
with similar rhythms.

Fig. 1.1 shows a canonical content-based MIR algorithm for music classi-
fication. Starting with the audio file, a set of audio features is computed
over consecutive short-time audio segments (or frames). These frame-based
features (usually with lengths below 100 ms) can by computed directly from
the signal’s time domain (Fig. 1.1a) or, more often, from its frequency do-
main (Fig. 1.1b), usually obtained via the Fast Fourier Transform (Klapuri
and Davy, 2006). Thus, from each short-time audio segment a numeri-
cal description of the audio frame is obtained (Fig. 1.1c). Moreover, the
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a) Audio Frames

b) FFT

c) Frame-level features

e) Song-level features

Labelsf) Classification 
   algorithm (train)Class. Model

d) Feature
    Post-processing

Figure 1.1: Block-diagram of a canonical MIR algorithm for automatic audio
classification. Frame-based audio features (c) are computed from the signal’s time-
domain (a) and/or frequency domain (b). These frame-level featured can be post-
processed to obtain new features (d). Next, all frame-level features are aggregated
into a song-level feature vector (e). Finally, song-level features from several songs
and their corresponding ground truth labels are used to train a classification algo-
rithm (f). This process generates a classification model that is later used to label
unseen audio files.

sequence of consecutive frame-based features within a song form a multi-
dimensional time series that numerically describes the temporal evolution
of relevant characteristics of the song such as its energy, timbre, melody,
tonality, tempo, etc. Of course, not all features are extracted in one step
(Fig. 1.1d). For instance, a first step could extract the energy of each audio
frame, then, a second step could detect those frames that correspond to
energy peaks. Finally, these energy peaks could be used to determine note
onsets, and these onsets could also be considered as a relevant audio feature
by, for instance, a segmentation algorithm.
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After the frame-level feature extraction process, a standard approach in song
classification is to generate a song-level feature vector that summarizes the
frame-level sequences (Fig. 1.1e). This is usually done by computing the first
statistical moments such as mean and variance of the frame-level sequences.
These song-level feature vectors, together with manually annotated labels
that provide information about the class each song belongs to, are thus used
as input for training the classification algorithm (Fig. 1.1f). Alternatively,
a similarity-based classification strategy can be adopted. This strategy has
mainly two approaches. In the first approach a similarity measure (such
as cosine or Euclidean distance) between song-level feature vectors of to-be
classified songs and song-level feature vectors of previously labeled songs is
used to assign the class membership. In the second approach, the between-
song distance is computed directly from frame-level feature vectors without
the need for a summarization step. Thus, the similarity measure is usually
obtained by modeling the distribution of local feature vectors in the feature
set with some probability model, such as Gaussian Mixture Models (GMM).
Hence, different songs can be compared according to their underlying prob-
ability models (Fu et al., 2011).

At the end, all the above described approaches discard the frame-by-frame
temporal information, i.e. the frames’ temporal ordering. Thus, these al-
gorithms are frequently called “Bag-of-Frames” (BoF) algorithms1 (Aucou-
turier et al., 2007; Casey et al., 2008; Marques et al., 2011b; Müller et al.,
2011; Quatieri, 2001).

Noticeably, by using audio descriptors, and by discarding temporal infor-
mation, the BoF algorithms end up working with a rough representation of
the audio content. This rough summarization has provided excellent results
when working with monophonic audio signals and soundscape recordings,
but unfortunately, it seems not-so-adequate when working with polyphonic
music (Aucouturier et al., 2007). Among the many causes that could ex-
plain this fact, a direct analysis of the canonical BoF process lead us to
suspect that there could be three major problems with the BoF approach
when working with polyphonic music. The first problem could be that
current audio descriptors are not able to properly “describe” polyphonic
music (Marques et al., 2010). Thus, we need better music descriptors. The
second problem could be that, since we are working with music, and tem-
poral relationships are one of the key ingredients that conforms the music

1In information retrieval, those algorithms that discard the temporal relationships
between words in text documents are called “Bag-of-Words” methods, thus, the “Bag-of-
Frames” term reflects the same behavior but with respect to audio frames.
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discourse, it is a mistake to discard this temporal information when working
with music (Casey and Slaney, 2006). Hence, we need to somehow include
temporal information within BoF algorithms. Finally, the third problem
could be that, since we are summarizing frame-level information or com-
puting distance measures within pre-defined feature spaces, it could be the
case that we are working with wrong assumptions with respect to this fea-
ture space. Thus, we need to better understand where audio features “live”
and find more adequate ways to work within these spaces (Marques et al.,
2011b). Noticeably, many MIR researchers (including ourselves) have fo-
cused on the first and second problem, and we can find a great number of
publications proposing new music descriptors and incorporating temporal
information within the BoF summarization process (Fuhrmann et al., 2009;
Haro and Herrera, 2009; Joder et al., 2009; Lyon et al., 2010; Pachet and
Roy, 2009). However, we have found a lack of research efforts in trying to
tackle the third problem: understanding the audio feature space. Therefore,
the main goal of this thesis will be to characterize the statistical properties
of common audio features, and use this information to improve over the
standard BoF approach.

1.1 Motivation

When analyzing the underlying assumptions made by BoF algorithms, we
observe that these approaches rely on a certain homogeneity in the fea-
ture vector space. That is, the multidimensional space of feature values
should not have small areas that are extremely populated and, at the same
time, extensive depopulated regions. Otherwise, the results obtained from
computing statistical moments (such as mean and variance), or from com-
puting distance measures, or modeling with Gaussians, will be highly biased
towards the values of those extremely populated areas (i.e. those extremely
frequent feature vectors frames).

Interestingly, in other research areas such as natural language process-
ing (Manning and Schütze, 1999) and Web mining (Liu, 2011), the dis-
tribution of words and hyperlinks has shown to be heavy-tailed, implying
that there are few extremely frequent words/hyperlinks and many rare ones.
Knowing the presence of such heavy-tailed distributions has lead to major
improvements in technological applications in those areas. For instance, to
Web search engines that use the word probability distributions to determine
the relevance of a text to a given query (Baeza-Yates, 1999). Recently, these
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type of text categorization techniques have also been successfully applied
in image retrieval (Jiang et al., 2010). Unfortunately, there is a lack of
research in the MIR community about the statistical distribution of sound
descriptors, and furthermore, the above mentioned homogeneity assumption
is adopted without further concerns. This lack of research could be partially
substantiated by the fact that sound descriptors do not form discrete units
or symbols that can be easily characterized by their frequency of use, as it
is the case with, for instance, text or even visual objects.

Meanwhile, in the last few years, MIR researchers have detected some persis-
tent, and possibly related, problems with respect to BoF algorithms. These
problems are: the “glass ceiling” (Aucouturier and Pachet, 2004), and the
appearance of “hub” songs (Aucouturier and Pachet, 2008; Schnitzer et al.,
2012). In the first case, it seems that regardless of the algorithm configu-
ration, empirical classification results are always below an upper-limit per-
formance called the “glass ceiling”. That is, despite using different sets of
audio features, different machine learning algorithms, and different parame-
ter sets, classification results do not show substantial improvements. More-
over, this upper-bound prevents content-based algorithms to be massively
used in commercial applications. In the second case, usually described for
distance-based algorithms, some “hub” songs persistently, and irrelevantly,
appear in the nearest neighbor lists of other songs. That is, when working
with big datasets, some songs are always ranked by the algorithm as being
similar to many other songs, but this alleged similarity is not corroborated
by human subjects listening to these songs.

In order to overcome these problems some authors have stressed the impor-
tance of adding high-level features, using source separation algorithms, or
relying on semi-automatic methods (Benetos et al., 2012; Bogdanov et al.,
2011). Moreover, other authors have stressed the need for cognitive-based
algorithms within MIR (Aucouturier and Bigand, 2013; Wiggins, 2009).

We completely agree that adding more data sources either coming from
high-level features, user-provided context, or cognitive models could be of
tremendous help and should be further investigated, but we also believe
that the knowledge extracted from the systematic analysis of audio features
within large music databases could be of great help too. In particular, the
work presented in this thesis shows that the study and characterization of
the statistical properties of standard audio descriptors helps us to improve
current BoF algorithms, and unveils new research paths that exploit the
acquired knowledge to go beyond standard MIR approaches.
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1.2 Scope and aims of the thesis

In this thesis we exclusively focus on content-based MIR, that is, the pro-
posed analyses and algorithms rely on raw audio files without depending on
other data sources. Our work can be also characterized as a “bottom-up”
data-driven approach (Casey et al., 2008). In particular, we analyze the
statistical distributions of encoded audio descriptors related to three main
musical facets such as timbre, pitch, and loudness. We put special emphasis
in working with large datasets of real-world polyphonic music. Moreover,
we propose new content-based algorithms that take advantage of the found
distribution patterns of descriptors to contribute on current MIR tasks such
as genre classification, instrument detection, or automatic tagging of songs.
Furthermore, we also use the acquired knowledge to address new MIR tasks
such as measuring the temporal evolution of Western popular music.

1.3 Main contributions

The main contributions of this thesis can be summarized as follows:

1. We have proposed a simple strategy to encode multidimensional audio
descriptors into a dictionary of pre-defined code-words.

2. We have used the proposed encoding strategy to characterize the fre-
quency distributions of common audio descriptors of timbre, chroma,
and energy as being heavy-tailed distributed.

3. We have found a simple, parsimonious generative model that could be
involved in the generation process of such heavy-tailed distributions.

4. We have proposed new audio features that take advantage of the found
distributions.

5. We have evaluated the proposed features within new algorithms that
contribute to current content-based MIR tasks and improve over the
standard Bag-of-Frames approach.

6. We have illustrated the possibilities of our approach for shedding some
light on musicological problems such as describing the temporal evo-
lution of music audio content. In particular, we have studied the
temporal evolution of popular Western music from 1955 to 2010 by
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measuring the long-term trends within the distribution of the pro-
posed code-words.

7. A moderate contribution to statistical physics is also included as we
have unveiled new power-law distributions coming from human-made
and natural sounds.

1.4 Outline

In Chapter 2 we introduce the scientific background of this thesis. Next, in
Chapter 3 we study and characterize the rank-frequency distribution of au-
dio timbral descriptors for sounds coming from speech, natural sounds, and
music from Western and non-Western music traditions. We conclude that
timbral audio features follow a power-law distribution. Hence, in Chapter 4
we investigate on plausible generative mechanisms that could be involved in
the process of producing the found heavy-tailed distributions. In Chapter
5 we perform a series of experiments for genre and musical instrument de-
tection that provide further evidence that timbral features from individual
recordings have the same type of heavy-tailed distribution as found in large-
scale databases. In Chapter 6 we characterize the statistical distribution of
other key audio features related with timbre, tonal, and energy information
as being also heavy-tailed. Moreover, we exploit the found distributions to
present new tools for the objective measurement of the evolution of popu-
lar Western music from 1955 to 2010. In Chapter 7 we propose new audio
features that take advantage of the results presented in previous chapters,
and evaluate these new descriptors for the complex task of automatic tag-
ging of music. Finally, Chapters 8 and 9 present a general discussion and
promising research directions to continue the here presented work. We also
include a series of appendices that present further information regarding
the used databases, distribution functions, fitting procedures, and other
complementary information for the presented experiments.



Chapter 2

Background

2.1 Heavy-tailed distributions

Many times when we measure human-made and natural phenomena such
as air pressure, the height of adult male chimpanzees, sea level, the actual
weights of 1 Kg rice bags produced by a particular company, etc. we observe
that the measured values vary around some typical number. That is, if
we build a histogram with the registered measures we see a characteristic
“bell-shaped” (or Gaussian) distribution with the majority of observations
clustered around one value. Moreover, we observe that even the largest
deviations from this typical value are, not only extremely rare, but also not
farther that a factor of two from the majority of observations. In these cases
we can describe the main characteristics of the distribution by quoting its
mean and standard deviation values (Clauset et al., 2009).

However, not all distributions follow the aforementioned pattern. There
are cases when the range of observed values seem to be unbounded, with
distribution shapes presenting “heavy-tails”. This means that the measured
data points are spread over an extremely wide range of possible values, and
that there is no typical quantity around which these measurements are
centered (Newman, 2005). It also implies that the majority of data points
(i.e. the ones in the tail) do not occur frequently (see Appendix B for further
information about the heavy-tailed distributions used in this thesis).

A particularly important landmark regarding heavy-tail distributions was
the seminal work of Zipf (1949), showing a power-law distribution of word-

9
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frequency counts with an exponent α close to 1,

z(r) ∝ r−α, (2.1)

where r corresponds to the rank number (r = 1 is assigned to the most
frequent word) and z(r) corresponds to the frequency value of the word
with rank r. The rank-frequency power-law described by Zipf (Eq. 2.1) also
indicates a power-law probability distribution of word frequencies (Adamic
and Huberman, 2002),

P (z) ∝ z−β , (2.2)

where P (z) is the probability mass function of z and β = 1 + 1/α.

Remarkably, power-law distributions have been reported in many scientific
disciplines such as physics, engineering, computer science, geoscience, bi-
ology, economics, linguistics, and social sciences (Adamic and Huberman,
2002; Bak, 1996; Malamud, 2004; Newman, 2005; Zipf, 1949). Moreover, as
stated by Clauset et al. (2009), these type of distributions, once regarded
as problematic or defective, constitute nowadays one of the most interest-
ing of all scientific observations. Noticeably, power-law distributions have
been described in diverse natural and human-made phenomena such as:
city sizes (Decker et al., 2007; Simon, 1955), word frequencies (Corominas-
Murtra et al., 2011; Ferrer i Cancho and Solé, 2003; Zipf, 1949), Internet file
sizes (Reed and Hughes, 2002), the number of visitors on web pages (Adamic
and Huberman, 2002), earthquake sizes (Gutenberg and Richter, 1944),
moon craters (Neukum and Ivanov, 1994), the numbers of species in bio-
logical taxa (Willis and Yule, 1922), rain event size distributions (Peters
et al., 2010), and long-term rate adaptations between the inner hair cell
and auditory nerve synapse (Zilany et al., 2009).

One of the most interesting behaviors of power-law distributions is the linear
relationship that appears when logarithms are applied to both sides of the
power-law equation. Thus, when plotting for instance, z(r) vs. r from
Eq. 2.1 in logarithmic axes, the graph will show a characteristic straight-line
over several orders of magnitude with the negative exponent α depicted in
the negative slope of the curve (see Fig. 2.1). This linear relationship reflects
the most remarkable attribute of power-laws namely their scale invariance,
that is, if we multiply the r variable in Eq. 2.1 by a constant factor c this
will produce a proportional scaling on the function z(r). Therefore,

z(cr) ∝ cr−α = c−αz(r) ∝ z(r). (2.3)
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Figure 2.1: Theoretical power-law distribution of word-frequency counts in En-
glish texts as reported by Zipf (1949). r corresponds to the word rank number
(r = 1 is assigned to the most frequent word) and z(r) corresponds to the (nor-
malized) frequency value of the word with rank r. The α exponent is 1, and is
reflected by the negative slope of the curve that corresponds with the −α exponent
in Eq. 2.1. Empirical data would not show so clean behavior, specially for low rank
frequencies.

Hence, given its scale invariance property all power-laws that share the
same exponent are equivalent up to constant factors (i.e. each power-law is
a scaled version of the others that share the same exponent). This interest-
ing characteristic also links power-law functions with Mandelbrot’s fractal
geometry (Mandelbrot, 1982).

It is worth to mention here that observing a straight-line in the log log plot
is not sufficient condition to claim a power-law behavior. Moreover, even
commonly used methods for data analysis, such as least-squares fitting, are
error-prone when trying to evaluate if a power-law fits the observed data.
Fortunately, the excellent work by Clauset et al. (2009) provides more
accurate ways for detecting power-law distributions in empirical data (see
also Appendix C for further detail regarding fitting procedures used in this
thesis).
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Even though a unifying principle that explains why power-law distributions
emerge from such a variety of complex systems has not been found yet, ma-
jor improvements in data analysis and engineering applications have already
taken place thanks to the observation and characterization of such heavy-
tailed distributions. For instance, as mentioned in Chapter 1, research on
statistical analysis of natural languages (Manning and Schütze, 1999) fa-
cilitated applications such as text retrieval based on keywords, where the
word probability distributions are used to determine the relevance of a text
to a given query (Baeza-Yates, 1999). Furthermore, researchers within the
image retrieval field have also developed algorithms for detecting images’
regions of interest by means of exploiting power-law models (Caron et al.,
2007).

With respect to music, Zipf himself reported power-law distributions in
melodic intervals and distances between note repetitions from selected mu-
sic scores (Zipf, 1949). Since then, several works have shown heavy-tailed
distributions of data extracted from symbolic representations of music such
as scores (Hsü and Hsü, 1990, 1991; Levitin et al., 2012; Telesca and Lo-
vallo, 2012) and MIDI files (Beltrán del Rı́o et al., 2008; Manaris et al.,
2005; Zanette, 2006)1. However, unlike text retrieval, music retrieval has
not directly benefited from such observations yet (Zanette, 2008). Indeed,
symbolic representations are only available for a small portion of the current
and past world’s music. Furthermore, they are non-standard and difficult
to define for other types of sounds such as human speech, animal vocaliza-
tions, and environmental sounds. Hence, it is relevant to work directly with
information extracted from the raw audio content. In this line of research,
some works can be found describing heavy-tailed distributions of sound
amplitudes for crackling noise (Kramer and Lobkovsky, 1996; Sethna et al.,
2001), sound amplitudes and pitch (estimated from zero crossing rates) for
music and speech signals (Voss and Clarke, 1975), and power spectrum of
individual frequency bands for natural sounds, music and speech (Attias
and Schreiner, 1997).

1MIDI is an industry standard protocol to encode musical information; this proto-
col does not store sound but information about musical notes, durations, volume level,
instrument name, etc.
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2.2 Audio descriptors

As mentioned in Chapter 1, one of the cornerstones of MIR is the extraction
of relevant audio features or descriptors. These numerical representations
of the audio content allow digital computers to work with sound. Hence, in
order to fulfill user’s information needs, audio descriptors should be linked
with the abstractions a listener is able to perceive when listening to music.
Thus, relevant descriptors are usually representative of key musical facets
such as timbre, harmonic content, perceived energy, rhythm, etc. (Serra
et al., 2013).

A great number of MIR descriptors have been proposed or adopted from
related fields such as Speech Processing. Usually, audio features are grouped
into three main categories according to their level of abstraction (see also
Klapuri and Davy (2006), Lesaffre (2006), Müller (2007), and Peeters (2004)
for further details regarding audio features). Following Serra et al. (2013),
these categories are:

• Low-level features: computed directly from the signal itself. Here we
find simple features directly extracted from the signal’s time-domain
such as zero-crossing rate, or attack time. We also find spectral fea-
tures extracted from the frequency-domain such as spectral centroid,
skewness, and kurtosis, and features based on simple auditory models
such as Mel-frequency cepstral coefficients (MFCC), and Bark-band
energies.

• Mid-level features: extracted from more complex procedures usually
involving task-dependent parameters. These features depart from the
audio waveform and aim at describing musical content as a MIDI-like
representation including pitches and onset times of individual notes,
and melody contours.

• High-level features: represent the highest level of abstraction, and
their computation usually involves machine learning algorithms that
use low-level and mid-level features as input. These features are re-
lated to music users’ abstractions and include concepts like genre,
instrument, harmony, rhythm, and mood. Automatically computed
high-level features are the most unreliable of the three categories, but,
on the other hand, offer the most user-friendly information. The de-
velopment of new and more reliable high-level features is an active
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area of research that constantly tries to bridge the “semantic gap”
between low-level features and high-level abstractions as perceived by
the listener.

Due to the key role played by low-level features within content-based MIR,
and the lack of research regarding their statistical distribution (see Chap-
ter 1), in this thesis, we focus on commonly used low-level features that
describe the three main facets related to the perception of short-time audio
segments. These facets are: timbre, pitch and loudness (Ball, 2010; Berg
and Stork, 1995).

According to the American National Standards Institute (1973), “timbre is
that attribute of auditory sensation in terms of which a listener can judge
that two sounds similarly presented and having the same loudness and pitch
are dissimilar”. Moreover, timbre mainly correlates with the audio waveform
shape and, thus, with the spectro-temporal envelope of the signal (i.e. the
temporal evolution of the shape of the power spectrum; Bregman, 1990).
Timbre accounts for the sound color, texture, or tone quality, and can be
essentially associated with instrument types, recording techniques, and some
expressive performance resources.

Pitch is a perceptual attribute that allows sounds to be ordered on a
frequency-related scale extending from low to high (Herrera et al., 2006).
Pitch basically correlates with the periodicity of air pressure fluctuations
(Bregman, 1990). Nevertheless, since there is still no reliable way to ex-
tract individual notes from polyphonic music, the most used pitch-related
features provide a global description of the harmonic content of an audio
segment. Thus, it is more accurate to refer to these descriptors as tonal (or
chroma) descriptors2.

Finally, the sensation of loudness is defined by the American National Stan-
dards Institute (1973) as “that attribute of auditory sensation in terms of
which sounds can be ordered on a scale extending from quiet to loud”.
Hence, loudness correlates with the amplitude of the audio waveform, where
sound amplitudes refer to air pressure fluctuations which, when being dig-
itized, are first converted into voltage and then sampled, quantized, and
stored in digital format as discrete time series. Thus, loudness descriptors
correlate in a non-linear way (because of the particularities of human audi-
tory transduction) with the energy of such digitalized audio signal. Notice

2Within this thesis, when referring to audio features we pragmatically use the term
pitch as synonym of chroma or tonal descriptors (see Sec. 2.2.2).
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that we refer to the intrinsic loudness of a recording, not to the loudness
a listener could manipulate by changing the volume control of her audio
player.

In the next three sections we provide a detailed explanation about the tim-
bral, tonal and energy descriptors used in this thesis. In particular, we
analyze three timbral, two tonal, and two loudness related descriptors. The
selection of a particular descriptor within each sound facet will depend on
the task at hand, and the availability and type of data sources. For in-
stance, due to copyright issues, public datasets usually consist of collections
of pre-computed audio features (see Appendix A). Thus, since we do not
have direct access to the original audio files, in these cases we will have to
work with the provided audio descriptors. Fortunately, all those descriptors
that refer to the same underlying sound facet are expected to provide over-
lapping information. Hence, as reflected in our experiments, similar results
are obtained for descriptors of the same sound facet.

2.2.1 Timbral descriptors

Timbral descriptors aim at describing the spectro-temporal envelope of the
audio signal. In particular, it has been shown that “timbre is closely re-
lated to the relative level produced at the output of each auditory filter [or
critical band of hearing]” (Moore, 2005)3. Therefore, timbral descriptors
usually characterize timbral sensations by numerically encoding the energy
of perceptually motivated frequency bands found in consecutive short-time
audio fragments (Müller et al., 2011; Quatieri, 2001). Hence, the timbral
content of each audio frame is represented by a multidimensional vector,
whereas the timbral information of the full audio file is represented by a
multidimensional time series formed by time-ordered frames.

These type of features are of great relevance for several MIR tasks such as
genre classification, music recommendation, automatic audio tagging, and
instrument identification. Within this thesis, we work with three timbral
features namely: Bark-band energies, MFCC, and MSD-Timbre. Next, we
provide a detailed explanation of them.

3In the auditory filter model, the frequency resolution of the auditory system is ap-
proximated by a bank of band-pass filters with overlapping pass-bands.
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Bark-band energies

The Bark-band energies descriptor (Zwicker and Terhardt, 1980) rely on the
Bark scale (Zwicker, 1961), which is a psychoacoustical scale that subdivides
the audible frequency range into critical bands of hearing4. This simple
descriptor provides a measure of the energy of each Bark-band within the
analyzed audio segment (or frame).

The original Bark scale definition considers 24 Bark-bands from 20 to 15,500
Hz (Zwicker, 1961). Nevertheless, the number of used bands for the Bark-
band energies descriptor depends on the task at hand. To compute this
descriptor, a few steps are need. The first step is to compute the power
spectrum of each short-time audio frame by taking the square of the mag-
nitude of the Fast Fourier Transform’s (FFT) output. The second step
consists of getting the Bark-band energies by adding up the power spec-
trum values found between two frequency edges as defined by the Bark
scale. To map the frequency values f (in Hertz) to the Bark scale B, the
following equation can be used:

B = 13 arctan(0.00076f) + 3.5 arctan((f/7500)2). (2.4)

Finally, the Bark-band energy values can be directly used as feature values
or, in order to minimize the global energy fluctuations related with the
general loudness of each audio frame, these energy values can be normalized
by the sum of all energy bands within each temporal frame.

MFCC

The Mel-frequency cepstral coefficients (MFCC) feature is a widely used
timbral descriptor that was originally proposed within the Speech Recog-
nition field (Rabiner and Juang, 1993). In this case, the MFCC descriptor
is based on the so called Mel scale which is a psychoacoustical scale within
which pitches are judged to be equally spaced from one another (Stevens
et al., 1937). In order to map frequency values f (in Hertz) to their cor-
responding Mel (M ), the following equation can be used (Herrera et al.,
2006):

M = 2595 log10

?
1 +

f

700

?
. (2.5)

4A critical band is the band of audible frequencies within which a second tone will
produce audible interferences to the perception of a first tone placed in the center of the
band (Roederer, 2009).
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In order to compute the MFCCs, the following steps are needed. Firstly,
as in the case of the Bark-band energies descriptor, the power spectrum
of each audio frame is computed. Secondly, the energy within each Mel
is added up using a triangular band-pass filter. Thirdly, the logarithms
of the power at each of the Mel frequencies are taken. Finally, with the
aim of separating envelope and pitch information, the resulting Mel log
power vector is transformed into the cepstral domain via the Discrete Cosine
Transform (DCT) using the following equation:

c[n] = 2
N−1?

k=0

Xkcos

?
πn(2k + 1)

2N

?
, 0 ≤ n ≤ N − 1, (2.6)

where c[n] corresponds to the amplitude of the nth Mel-frequency cepstral
coefficient , Xk denotes the magnitude of the FFT bin k and N corresponds
to the total amount of bins resulting from a 2N+1-point FFT.

MSD-Timbre

The MSD-Timbre feature is a multidimensional feature provided within
the publicly available Million Song Dataset (MSD) developed by Bertin-
Mahieux et al. (2011). This dataset consists of a collection of audio fea-
tures and metadata for a million popular Western songs (see Appendix A
for further details). The audio features that constitute the MSD were pro-
vided by The Echo Nest Analyze API5. In particular, the MSD-Timbre
descriptor represents the timbral characteristics of an audio segment as a
12-dimensional vector. In this case, the spectro-temporal shape of each
audio segment is decomposed into 12 bivariate basis functions (i.e. spectro-
temporal templates) that capture high-level abstraction with respect to tim-
bral information. For instance, the first template represents the average
loudness of the segment, the second its brightness, the third is related with
the flatness of a sound, the fourth to sounds with a stronger attack, etc.
Hence, the timbral content of the audio segment is described as a weighted
linear combination of these 12 basis functions (Jehan, 2010). Fig. 2.2 shows
the 12 spectro-temporal templates as depicted in Jehan (2010).

Given its intrinsic characteristics, the 12-dimensional vectors can be split
into an 11-dimensional timbre component and a unidimensional loudness
component. Notice that including the average loudness in the original

5http://the.echonest.com/

http://the.echonest.com/
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Figure 2.2: Spectro-temporal basis functions used by the MSD-Timbre feature.
The x-axis corresponds to time, the y-axis corresponds to frequency, and the z-axis
(color) corresponds to amplitude values. Image from Jehan (2010).

timbre representation implies a certain degree of independence of the two
components. Since, for perceptual reasons, the frequency resolution of the
spectro-temporal representation is intentionally low (Jehan, 2005), the ob-
tained timbre and loudness components can be also assumed to be quite
independent of pitch.

2.2.2 Tonal descriptors

Tonal features for short-time audio segments are usually computed as pitch
class profiles (PCP) (Fujishima, 1999), where a pitch class is defined as the
set of all pitches from the Western music chromatic scale that are a whole
number of octaves apart, e.g. notes C1, C2, and C3 all collapse to pitch
class C. In particular, as expressed by Serrà (2011), “PCPs are derived
from the frequency dependent energy in a given range (typically from 50
to 5,000 Hz) in short-time spectral representations (e.g. 100ms) of audio
signals computed in a moving window. This energy is usually mapped into
an octave-independent histogram representing the relative intensity of each
of the 12 semitones of the Western music chromatic scale (12 pitch classes)”.
Thus, the tonal information for each audio frame is represented by a real-
valued 12-dimensional vector of pitch class relative energies. For instance,
a C Major chord will have high energy values in pitch classes 1, 5, and 8
(i.e. C, E, and G).
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This type of features, also called “chroma”, have been key in the devel-
opment of many MIR applications such as the automatic identification
of near-duplicate recordings (Serrà et al., 2010), chord/tonality estima-
tion (Gómez, 2006), or music structure segmentation (Paulus et al., 2010).
Within this thesis we work with two tonal features, Harmonic Pitch Class
Profile (HPCP), and MSD-Pitch. Next, we provide an explanation regard-
ing these features.

HPCP

The Harmonic Pitch Class Profile (HPCP) feature is an enhanced PCP
descriptor (Gómez, 2006). HPCPs improve over standard PCP features by
diminishing the influence of noisy spectral components. Moreover. HPCPs
are tuning independent, and they take into account the presence of harmonic
frequencies.

In order to compute the HPCP descriptor, the following steps are needed
(see Gómez et al. (2008) for details):

1. Compute the spectrogram of the audio segment via FFT.

2. Take the 30 most prominent spectral peaks between 40 and 5,000 Hz.

3. Estimate a reference tuning frequency by analyzing the deviations of
the song’s spectral peaks from an equal-tempered chromatic scale with
A4 tuned at 440 Hz.

4. Apply a spectral whitening to each peak. In particular, each peak
is normalized with respect to the corresponding value of the spectral
envelope at the peak’s frequency. Since, as mentioned in Sec. 2.2.1,
the spectral envelope provide information about timbre, this spectral
whitening process aims at obtaining timbre-independent peaks.

5. Take all peaks plus the contributions of 7 harmonics for each peak
and build an octave-independent histogram representing the relative
intensity of the 12 pitch classes.

As described in Serrà (2011), the computation of the 12-dimensional HPCP
vector hi = [hi,1, ...hi,12] can be expressed mathematically as:

hi,j =

30?

k=1

8?

n=1

αA
n−1

?
ω

?
j,
fk
n

?
ȳi

(fk)

?2
, (2.7)
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where i is the audio frame number, j is the pitch class number (from 1
to 12), k is the number of the selected spectral peak, n is the number of
the frequency harmonic including the fk peak, ȳi

(fk) is the whitened peak
magnitude, αA is a constant, αA

n−1 is a harmonic weighting term, and
ω(j, fn) is a cosine weighting function such that

ω(j, fn) =

?
cos

?
π
2
v(j,fn)
αB

?
if |v(j, fn)| ≤ αB ,

0 otherwise
(2.8)

where αB is a constant and

v(j, fn) = 12

?
log2

?
fn

fref2
j
12

?
+ β

?
, (2.9)

where β is the integer that minimizes |v(j, fn)|, and fref is the reference
tuning frequency. The constants αA and αB are experimentally set to 2/3.
Finally the HPCP of a given window is normalized by its maximum value.

The just described HPCP computation, including the mentioned parame-
ters, has delivered excellent results for several MIR tasks such as key es-
timation, chord extraction, tonal profile determination and version identi-
fication (Gómez and Herrera, 2006; Gómez et al., 2006; Serrà, 2011; Serrà
et al., 2008; Serrà et al., 2012a).

MSD-Pitch

As mentioned in Sec. 2.2.1 MSD features are delivered within the million
song dataset and computed using The Echo Nest API. From the API’s doc-
umentation we can see that the MSD-Pitch is a standard PCP (or chroma)
feature with 12-dimensions corresponding to the 12 pitch classes, and per-
segment normalized values as in the case of the just described HPCPs (Je-
han, 2010).

2.2.3 Energy descriptors

Energy descriptors are related with our perception of loudness and are used
in many MIR tasks such as onset detection, instrument detection, and auto-
matic rhythm description (Bello et al., 2005; Fuhrmann et al., 2009; Gouyon
and Dixon, 2005; Haro and Herrera, 2009). Within this thesis we use two
energy features namely: Spectral Energy and MSD-Loudness. Next, we
offer further details regarding these descriptors.
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Spectral Energy

The Spectral energy (SE) feature is computed from the signal’s frequency
domain obtained via the FFT. Thus, the SE of the frame n is obtained by
computing the square of the magnitude of the FFT output. That is

SEn = |X(n)|2, (2.10)

where X(n) is the Fourier transform of the time domain signal x(n).

MSD-Loudness

As described is Sec. 2.2.1, the MSD-Timbre feature provides a spectro-
temporal decomposition of the audio segment into 12 bivariate basis func-
tion (Jehan, 2010). Since the first basis function corresponds to the energy
of the segment, we use the magnitude value of such a first dimension as
descriptor of the signal’s energy.

2.3 Encoding audio descriptors

As mentioned in Chapter 1, we aim at analyzing the statistical distributions
of commonly used audio descriptors. In particular we want to character-
ize the probability distribution of continuous, and often multidimensional,
frame-wise audio features. In order to do that we first need to encode the
original continuous features into discrete elements (or events) whose fre-
quency of use can be inferred from a representative sample space. For that
we need to encode the (multidimensional) vector space in such way that
similar regions of the space are assigned to the same discrete element.

There are many methods used for the discretization of continuous vari-
ables (Cios et al., 2007). These methods can be either unsupervised or su-
pervised (Dougherty et al., 1995). Unsupervised methods are the simplest
to use and implement. Two of these methods are: equal-width discretiza-
tion (EWD) and equal-frequency discretization (EFD). In the first case the
minimum and maximum values for the continuous variable are computed,
and then the interval between both values is divided into n user-provided
number of intervals all having the same width. In the case of EFD, the min-
imum and maximum values are also computed, then all values are sorted in
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ascending order, and n user-provided intervals are determined in such way
that every interval has the same number of values.

Within the supervised methods we find information-theoretic algorithms
(ITA), and clustering-based algorithms (Cios et al., 2007). In particular,
ITA algorithms need a representative annotated train set where each value
of the continuous variable is assigned to a particular element class. Then,
by using, for instance, statistical tests (Tay and Shen, 2002) or informa-
tion entropy (Clarke and Barton, 2000; Fayyad and Irani, 1993), these type
of algorithms estimate the best discretization intervals. Unfortunately, re-
garding audio descriptors, there is no such an annotated dataset since the
task of defining a set of suitable classes that can be used to annotate audio
descriptors is far from trivial. For instance, what are the classes that should
be used to annotate timbre types? Interestingly, recent research in video re-
trieval has shown that we need less than 3,000 semantic concepts to achieve
a suitable description for video images (Hauptmann et al., 2007). Having
this type of upper-bound for audio content would be an important start-
ing point towards creating suitable annotations of audio segments (Herrera
et al., 2009).

On the other hand, clustering-based algorithms rely on a representative
dataset, some pre-defined distance measure, and k user-defined number of
discrete classes to build a codebook with k feature prototypes (e.g. class
centroids). These class prototypes are later used to discretize new feature
vectors by assigning the class membership of the closest prototype. One
of the most used cluster-based discretization approaches is the so called
Vector Quantization (VQ) algorithm (Linde et al., 1980; Quatieri, 2001).
In this case the k prototypes of the codebook correspond to the k centroids
estimated from a train set by means of the k-means algorithm (MacQueen,
1967).

Noticeably, some authors have used the VQ algorithm to discretize standard
frame-wise audio features into a dictionary of feature code-words. Inspired
by text retrieval methods, these code-words are later used to create a Bag-
of-Words model which is used as input for content-based MIR tasks such
as similarity search (Riley et al., 2008; Seyerlehner et al., 2008), music au-
tomatic tagging (Hoffman et al., 2009), genre classification (Marques et al.,
2011b) and artist identification (Fu et al., 2011). Unfortunately, these works
only use the VQ algorithm as an ad-hoc approach and no reports on code-
words’ probability distributions are made.

With respect to image processing, state-of-the-art video annotation algo-
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rithms often use VQ codebooks to build “visual-words” that are later used
as input features for classification algorithms (Jiang et al., 2010). Moreover,
Mühling et al. (2012) propose a combination of vector quantized “visual
code-words” and vector quantized “auditory code-words” for multimodal
video concept detection. Finally, Yang et al. (2007) also use a Bag-of-Visual-
Words for image retrieval. Interestingly, this work presents graphical infor-
mation regarding the global distribution of visual code-words. Moreover,
the authors characterize the probability distribution of visual code-words
as Zipfian. Unfortunately, no formal fitting is presented in the paper.

From our perspective, the use of VQ as suitable tool for inferring the global
distribution of short-time audio features poses some problems that lead us
to opt for unsupervised discretization approaches. In particular, since we
plan to analyze millions of audio frames, the creation of a VQ codebook from
such amount of data would not be feasible, and we should pragmatically use
random subsamplings. Unfortunately, it is known that the quality of the
codebook is much influenced by the random subsampling and the initial se-
lection of cluster centers (Fu et al., 2011). Another problem directly linked
to the way VQ works is that every time we run the VQ algorithm a differ-
ent codebook is created thus affecting the replicability of our experiments.
Finally, and more crucially, the selection of a particular distance measure
needed to build the VQ clusters is a non trivial decision whose influence
over the obtained distribution is not easy to predict. Thus, it would be
extremely difficult to determine how the selected distance measure relates
with the underlying feature distribution. Furthermore, since the analyzed
audio features are mostly multidimensional, the used distance measure could
be affected by the so called “curse of dimensionality” that jeopardizes the
relevance of such a measure for high-dimensional data (Beyer et al., 1999).

Therefore, after discarding supervised discretization methods, we opt for
the fast and simple unsupervised ones. In particular we use EWD for one-
dimensional energy features, and EFD for the case of multidimensional tim-
bre and tonal descriptors (see Sec. 2.2). In the first case the range of all
values for the energy descriptor is divided into n segments, thus, this energy
descriptor is discretized into n code-words.

In the case of multidimensional features (timbre and tonal), each frame-
wise feature dimension is discretized into n equal-frequency segments (or
“letters”). Thus, a frame-based code-word is constructed from the “letters”
coming from each descriptor’s dimension in a particular frame. For instance,
if we have a 22-dimensional vector (per frame) and we discretize each di-
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mension into 2 equal-frequency segments, we will obtain a codebook of
222 = 4, 194, 304 possible code-words. That is, for each audio frame we will
have a “word” of 22 letters coming from a binary “alphabet”. Noticeably,
these unsupervised methods only have one user-provided parameter namely
the number of segments used to discretize each feature dimension. Further-
more, these simple discretization methods are akin to encoding methods
used, for instance, in automatic audio identification (Haitsma and Kalker,
2002) or in cochlear implant sound processors (Wilson et al., 1991), and
roughly resemble the all-or-none behavior of neurons and neuronal ensem-
bles (Bethge et al., 2003).

2.4 Audio classification

As depicted in Fig. 1.1, many MIR algorithms use a set of audio features
and manually annotated examples as input for training a classification al-
gorithm. In this training step the classification algorithm “learns” a classi-
fication model that will be used to determine the class membership of new
(unlabeled) data. For instance, for song-level classification, when a new un-
labeled song arrives, the system computes the same set of descriptors used
to train the classification model (e.g. a set of aggregated frame-level fea-
tures). Then these descriptors are used as input for the classification model
which will decide on the class membership of the song (e.g. its genre).

From the many classification methods proposed and successfully used within
the MIR field (cf. Klapuri and Davy, 2006), in this thesis, we have decided to
use the well known support vector machines (SVM) algorithm (Cortes and
Vapnik, 1995; Vapnik, 2000). This decision is motivated by several facts.
Firstly, SVMs are considered a must try on any machine learning application
due to their robustness, generalization capabilities, and accurate results (Wu
et al., 2007). Secondly, SVMs have achieved state-of-the-art results in many
content-based MIR tasks (Klapuri and Davy, 2006; Mandel and Ellis, 2005).
Finally, since we work with large datasets and large sparse feature vectors,
SVMs are the option of choice to avoid overfitting (Joachims, 1998).

The SVM algorithm is part of the general class of supervised statistical
learning algorithms that use a discriminant analysis function to classify
data (Webb, 2002). Hence, the SVM classification model is created by
finding the hyperplane with maximum soft-margin for the given training
set (Burges, 1998). Once the separating hyperplane f(x) is found, new
data instances can be easily classified by evaluating the sign of the function
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f(x). If f(x) > 0 then the instance belongs to the positive class, otherwise it
belongs to the negative class (Webb, 2002). Moreover, if the training data
is not linearly separable it can be mapped into a new (hopefully linear)
hyperspace. This mapping can be achieved by choosing the correct kernel
function where commonly used kernel functions are radial basis functions
and polynomials (of various degrees).

For assessing classification performance we opt for standard evaluation mea-
sures of information retrieval (IR) namely: precision, recall, and F-measure
(Baeza-Yates, 1999).

• Precision: it is the fraction of correctly classified items over the total
number of items:

P =
Ca

D
, (2.11)

where Ca is the number of items correctly classified as “a” and D is
the total number of retrieved items.

• Recall: it is the fraction of correctly classified items over the total of
items that belong to the class.

R =
Ca

GTa
, (2.12)

where GTa is the total number events that belong to the class “a”
(i.e. the ground truth annotations).

• F-measure: it is the weighted harmonic mean of precision and recall,
it summarizes a trade-off between both values.

F =
2PR

P + R
(2.13)

The above-described background provides a general overview of the main
tools we use in this thesis. These tools will allow us to pursue the proposed
thesis’ goals, that is, to characterize the statistical distribution of common
audio features, and propose improvements over the standard BoF approach.
Furthermore, when additional concepts and references are needed, we will
include them in the corresponding chapters. For instance, in Chapter 4
we will introduce power-law generative models, and in Chapter 7 we will
present several automatic tagging algorithms.





Chapter 3

Rank-frequency distribution of
audio timbral descriptors

Most of the results presented in this chapter were published in Haro et al.
(2012a) and Haro et al. (2012b).

3.1 Introduction

In Chapter 2 we have stressed the importance of knowing the frequency
distribution of the different elements that constitute a particular area of
study. For instance, knowing that word-frequency counts are power-law
distributed has had an important impact on several scientific disciplines
that work with written text such as information retrieval (Baeza-Yates,
1999) and natural language processing (Manning and Schütze, 1999).

In the case of sound-related areas there are still few publications that ad-
dress this point. This can be partially explained by the fact that it is
non-trivial to determine which are the “natural elements” that constitute
an audio signal. Thus, as stated in Sec. 2.1, some authors have focused
on symbolic representations of music (such as scores or MIDI files) and
reported heavy-tailed distributions on note-related events. There are also
some publications characterizing the distribution of sound amplitudes and
individual frequency bands directly extracted from raw audio signals. No-
ticeably, these works also reported heavy-tailed distributions.

27
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Working directly with audio signals would allow us to tackle the problem of
relying on arbitrary symbolic notations, most of which are not even defined
(e.g. what would be the notation to describe soundscape recordings?). Un-
fortunately, there is still no automatic algorithm that detects, identifies and
segments an audio signal into perceptually-relevant sound objects. More-
over, given the extreme subjectivity and complexity of this cognitive task,
it seems that the appearance of such an algorithm is far from imminent.
Meanwhile, the sound and music computing field has proven that working
with fixed-length audio excerpts (or frames) as “sound units” constitutes
an efficient practical approach when designing sound-related applications
such as F0 detection, cover song detection, music genre identification, etc.
Automatic descriptions of such audio frames constitute the basic low-level
elements on which many of those algorithms are constructed (Casey et al.,
2008; Müller et al., 2011; Quatieri, 2001).

Consequently, in this chapter, we analyze the rank-frequency distribution
of audio frames that account for the timbral characteristics of audio sig-
nals. As stated in Sec. 2.2, timbre is a key perceptual feature that allows
to discriminate between different sounds. Timbral sensations mainly corre-
late with the audio waveform shape and, thus, with the spectro-temporal
envelope of the signal (i.e. the temporal evolution of the shape of the power
spectrum) (Berg and Stork, 1995). In order to quantitatively characterize
such sensations, the shape of the power spectrum has to be encoded in a
way that preserves certain physical and perceptual properties. Therefore,
it is common practice to encode short-time power spectra using psychoa-
coustical frequency scales such as the Bark scale (Zwicker, 1961) or Mel
scale (Stevens et al., 1937).

In particular, in the following sections we study and characterize the statis-
tical properties of encoded (i.e. discretized) timbral descriptors extracted
on a frame-by-frame basis. For that we focus on two of the most used
timbral descriptors namely: normalized Bark-band energies1, and MFCCs
(see Sec. 2.2). We use a simple encoding process which maps each descrip-
tor’s frame to a dictionary of more than 4 million binary code-words (see
Sec. 2.3). We analyze a large-scale corpus of audio signals consisting of
740 hours of sound coming from disparate sources such as Speech, West-
ern Music, non-Western Music, and Environmental sounds. We perform a
rank-frequency distribution analysis and show that the frequency distribu-

1Within this text we pragmatically refer to the normalized Bark-band energies as
Bark-bands
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tion of encoded timbral descriptors follows a power-law distribution. This
distribution is found independently of sound source, frame size and descrip-
tor type and, since the chosen timbral descriptors are highly related with
the signal’s spectral shape (or envelope), we hypothesize that the found
power-law distribution could also be a general property of short-time spec-
tral envelopes of audio signals. Furthermore, we analyze the inner structure
of the most (and least) frequent code-words and provide evidence that a
heavy-tailed distribution is also present when analyzing individual record-
ings (e.g. individual songs). All these findings suggest promising new paths
for developing audio-related applications. Some of these paths are started
to be walked in the next chapters of this thesis.

3.2 Method

We represent the timbral characteristics of short-time consecutive audio
fragments following standard procedures in computational modeling of
speech and music (Casey et al., 2008; Müller et al., 2011; Quatieri, 2001).
We decided to work with two commonly used timbral descriptors namely:
Bark-bands and MFCC (see Sec. 2.2.1). The output of these descriptors is a
frame-based multidimensional vector of real numbers. Therefore, as stated
in Sec. 2.3, in order to characterize the rank-frequency distribution of such
real-valued vectors we first need to quantize (or encode) them in such man-
ner that similar descriptor’s values are assigned to the same encoded type.
This allows us to count the number of tokens corresponding to each type
(i.e. the frequency of use of each encoded type). Ultimately, each of these
types can be seen as a code-word assigned from a predefined dictionary of
timbres.

In this chapter we consider three perceptually motivated audio fragment
sizes namely: 46, 186, and 1,000 ms. The first one (46 ms) is selected
because it is extensively used in audio processing algorithms and tries to
capture the small-scale nuances of timbral variations (Casey et al., 2008;
Müller et al., 2011). The second one (186 ms) corresponds to a perceptual
measure for sound grouping called “temporal window integration” (Oceák
et al., 2008), usually described as spanning between 170 and 200 ms. Finally,
we explore the effects of a relatively long temporal window (1 s) that exceeds
the usual duration of speech phonemes and musical notes.
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3.2.1 Databases

We analyze 740 hours of real-world sounds grouped into four databases:
Speech, Western Music, non-Western Music, and Sounds of the Elements
(see Appendix A). The Speech database is formed by 130 hours of recordings
of English speakers from the Timit database (Garofolo et al., 1993) (about
5.4 hours), the Library of Congress “Music and the brain” podcasts2 (about
5.1 hours), and 119.5 hours from Nature podcasts3 from 2005 to April 7th
2011. The Western Music database is formed by about 282 hours of mu-
sic (3,481 full tracks) extracted from commercial CDs accounting for more
than 20 musical genres including: rock, pop, jazz, blues, electronic, clas-
sical, hip-hop, and soul. The non-Western Music database contains 280
hours (3,249 full tracks) of traditional music from Africa, Asia, and Aus-
tralia extracted from commercial CDs. Finally, in order to create a set
that clearly contrasted the other ones, we decided to collect sounds that
were not created to convey any message. For that reason we gathered 48
hours of natural sounds produced by natural inanimate processes such as
water sounds (rain, streams, waves, melting snow, waterfalls), fire, thun-
ders, wind, and earth sounds (rocks, avalanches, eruptions). This Sounds
of the Elements database was assembled using files downloaded from The
Freesound Project4. The differences in size among databases try to account
for their differences in timbral variations (e.g. the sounds of the elements are
less varied, timbrically speaking, than speech and musical sounds; therefore
we can properly represent them with a smaller database).

3.2.2 Timbral descriptors

As previously mentioned, we focus on two of the most used timbral descrip-
tors namely Bark-bands and MFCCs (Müller et al., 2011; Quatieri, 2001;
Raś, 2010). Both descriptors are computed from perceptually motivated
bands of the power spectrum in short-time audio segments, or frames (see
Sec. 2.2 for further information).

The normalized Bark-band energies descriptor is obtained by adding up the
power spectrum values found between two frequency edges defined by the
Bark scale (Zwicker, 1961). Since we want to characterize timbral informa-

2http://www.loc.gov/podcasts/musicandthebrain/index.html
3http://www.nature.com/nature/podcast/archive.html
4http://www.freesound.org

http://www.loc.gov/podcasts/musicandthebrain/index.html
http://www.nature.com/nature/podcast/archive.html
http://www.freesound.org
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tion regardless of the total energy of the signal, we normalize each Bark-
band value by the sum of all energy bands within each temporal frame.
The output of this process is a sequence of 22-dimensional vectors that
represents the percentage of energy contained in each frequency band be-
tween 0 and 9,500 Hz (i.e. the first 22 critical bands of hearing). The used
Bark-band frequency edges are: 0, 100, 200, 300, 400, 510, 630, 770, 920,
1,080, 1,270, 1,480, 1,720, 2,000, 2,320, 2,700, 3,150, 3,700, 4,400, 5,300,
6,400, 7,700, and 9,500 Hz (Zwicker, 1961). The 9,500 Hz upper bound is
motivated by the fact that most of the perceptually relevant sound energy
lie below this threshold (Berg and Stork, 1995) and because adding more
bands exponentially multiplies the computational load of our experiments.

The MFCC descriptor is obtained by mapping the short-time power spec-
trum to the Mel scale (Stevens et al., 1937) which roughly represents the
spacing between critical bands of human hearing. The Mel-energy values
are then computed using triangular band-pass filters centered on every Mel.
The logarithm of every Mel-energy value is taken and the discrete cosine
transform (DCT) of the Mel-log powers is computed. The MFCC descriptor
corresponds to a real-valued vector of amplitude coefficients of the resulting
DCT spectrum. Here, we use the Auditory toolbox MFCC implementa-
tion (Slaney, 1998) with 22 coefficients (skipping the DC coefficient). By
selecting 22 MFCC coefficients we obtain a good trade-off between the de-
tail of the spectral-envelope description and the computational load of our
experiments. Moreover, working with a 22-dimensional vector allows us
to use the same encoding strategy for both timbral descriptors (see next
section).

3.2.3 Encoding process

Independently of the chosen timbral descriptor we follow the same encoding
procedure for every sound file in every database (Fig. 3.1). Starting from
the time-domain audio signal (digitally sampled and quantized at 44,100
Hz and 16 bits) we apply an equal-loudness filter. This filter takes into
account the sensitivity of the human ear as a function of frequency. Thus,
the signal is filtered by an inverted approximation of the equal-loudness
curves described by Fletcher and Munson (1933). The filter is implemented
as a cascade of a 10th order Yule-Walk filter with a 2nd order Butterworth
high-pass filter (Madisetti, 1997).

Next, the signal is segmented into non-overlapping temporal frames of ei-
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1 01 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 1

a) Audio Frame
c) MFCC & Quantization Thresholds

Figure 3.1: Block diagram of the encoding process. a) The audio signal is seg-
mented into non-overlapping frames. b) The power spectrum of each audio frame
is obtained. c) Multidimensional timbral descriptor’s values (MFCC values in this
case) are computed (blue squares) and each vector’s dimension is binary-quantized
by comparing its value against a pre-computed threshold (red line). d) Each quan-
tized MFCC (or Bark-band) vector forms an MFCC (Bark-band) code-word.

ther 46, 186, or 1,000 ms length (Fig. 3.1a). Then, each audio segment is
converted to the frequency domain by taking the Fourier transform (Madis-
etti, 1997) using a Blackman-Harris temporal window. From the output of
the Fourier transform we compute its power spectrum by taking the square
of the magnitude (Fig. 3.1b). Next, we compute the corresponding timbral
descriptor (i.e. either Bark-bands or MFCCs) obtaining a multidimensional
real-valued vector per frame (Fig. 3.1c depicts MFCC values). Finally, we
quantize each vector’s dimension by comparing its value against a stored
threshold (red lines in Fig. 3.1c). In particular, if the dimension’s value is
smaller than the dimension’s threshold we encode this dimension’s value as
“0”, otherwise we encode it as “1” (Fig. 3.1d). Thus, after this quantiza-
tion process every audio frame is encoded as a sequence of 22 zeros and
ones. Therefore, the total amount of possible code-words (i.e. the encoding
dictionary) is 222 = 4, 194, 304 code-words.

In order to obtain the quantization thresholds we computed both timbral
descriptors on a representative database. Then, we stored the median value
for each descriptor’s dimension and frame size. This way, each dimension is
split into two equally populated groups (equal-frequency discretization; see
Sec. 2.3). The representative database contains all frame-based descriptor
values from the Sounds of the Elements database plus a random sample
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of descriptor values from the Speech database that matches in number the
ones from the Sounds of the Elements. It also includes random selections
of Western Music and non-Western Music matching half of the length of
Sounds of the Elements each. Thus, our representative database has its
descriptor values distributed as one third coming from Sounds of the El-
ements, one third from Speech, and one third from Music totaling about
20% of the whole analyzed sounds. We constructed 10 of such databases
per frame size and, for each dimension, we stored the mean of the median
values as quantization threshold.

3.2.4 Fitting procedure

To evaluate if a power-law distribution fits our data we take the frequency
of each code-word (i.e. the number of times each code-word is used) as a
random variable and apply state-of-the-art methods of fitting and testing
goodness-of-fit to this variable (Clauset et al., 2009; Corral et al., 2011). The
procedure consists in finding the frequency range [zmin, zmax] for which the
best power-law fit is obtained. First, arbitrary values for lower and upper
cutoffs zmin and zmax are selected and the power-law exponent β is obtained
by maximum-likelihood estimation. Second, the Kolmogorov-Smirnov test
quantifies the separation between the resulting fit and the data. Third, the
goodness of the fit is evaluated by comparing this separation with the one
obtained from synthetic simulated data (with the same range and exponent
β) to which the same procedure of maximum-likelihood estimation plus
Kolmogorov-Smirnov test is applied. This goodness of the fit yields a p-
value as a final result. Then, the procedure selects the values of zmin and
zmax which yield the largest log-range zmax/zmin provided that the p−value
is above a certain threshold (for instance 20%)5. See Appendix C for further
details.

3.3 Results

3.3.1 Bark-band code-words

In order to illustrate the results of the encoding procedure we show the
time-frequency representation (i.e. spectrogram) of a sinusoidal sweep in

5In all cases we have obtained that we can take zmax → ∞ and results with finite
zmax are not presented here.
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Sound Description # code-words

Sine wave 440 Hz 1

Rain 18

1/f (Pink) Noise 26

White Noise 28

Sinusoidal Sweep (0-9,500 Hz) 37

Clarinet solo 97

Female English speaker 128

String Quartet 135

Voice, Drums, Bass & Synth. Strings 140

Philharmonic Orchestra 141

Voice and Electronic Instruments 153

Table 3.1: Number of different Bark-band code-words used to describe each
sound. Examples computed from 30 s audio files using a frame size of 186 ms
(160 frames in total). Pink and white noise sounds were generated using Au-
dacity (http://audacity.sourceforge.net). String Quartet corresponds to
a rendition of F. Haydn’s Op.64 No.5 “The Lark”, Voice, Drums, Bass &
Synth. Strings corresponds to Michael Jackson’s Billie Jean, Philharmonic
Orchestra corresponds to a rendition of The Blue Danube by J. Strauss II, and
Voice and Electronic Instruments corresponds to Depeche Mode’s The world
in my eyes.

logarithmic progression over time, ranging from 0 to 9,500 Hz (Fig. 3.2a)
and its corresponding Bark-band code-words (Fig. 3.2b). In both plots we
can see the sweeping of the sinusoidal sound. Thus, we can observe how
the Bark-band code-words form a simplified representation of the spectral
content of the signal while preserving the main characteristics of its spectral
shape6. As a further example, we consider the number of distinct Bark-band
code-words used to encode sounds with disparate timbral characteristics,
ranging from a simple sinusoidal wave up to multi-instrument polyphonic
music (Table 3.1). As expected, we observe a positive correlation between
the timbral “richness” of the analyzed sounds and the number of code-words
needed to describe them (i.e. as the timbral variability increases, sounds are
encoded using a greater number of different code-words).

6The difference between both curve shapes is due to the use of different frequency
representations; the spectrogram uses a linear frequency representation while the Bark-
band code-words are computed using a non-linear scale based on psychoacoustical findings
(i.e. the Bark scale).

http://audacity.sourceforge.net
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Figure 3.2: Spectrogram vs. Bark-band code-word example. a) Spectrogram
representation for a sinusoidal sweep in logarithmic progression over time ranging
from 0 to 9,500 Hz. The color intensity represents the energy of the signal (white =
no energy, black = maximum energy). This standard representation is obtained by
means of the short-time Fourier transform. b) Bark-band code-word representation
of the same audio signal. The horizontal axis corresponds to temporal frames of
186 ms and the vertical axis shows the quantized values per Bark-band (black = 1
and white = 0). For instance, in the first 40 temporal frames only the first Bark-
band is quantized as one (the first Bark-band corresponds to frequencies between 0
and 100 Hz). A total of 37 different code-words are used to encode this sinusoidal
sweep.

Once obtained the Bark-band code-words for all sounds in all databases we
count the frequency of use of each code-word within each database (i.e. the
number of times each code-word is used in the database) and sort them in
decreasing order of frequency (Fig. 3.3a). We find that a few code-words
are very frequent while most of them are very rare. In order to evaluate if
the found distribution corresponds to a Power-law distribution, instead of
working directly with the rank-frequency plots we focus on the equivalent
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Frame size N words zmin β α

Speech

46 ms 494,926 2,000 2.20 ± .05 0.84 ± .04
186 ms 219,595 501 2.22 ± .05 0.82 ± .03
1,000 ms 100,273 79 2.33 ± .05 0.75 ± .03

Western Music

46 ms 1,724,245 2,000 2.26 ± .04 0.79 ± .03
186 ms 798,871 794 2.33 ± .06 0.75 ± .03
1,000 ms 240,236 79 2.29 ± .03 0.78 ± .02

non-Western Music

46 ms 1,905,444 126 2.17 ± .01 0.85 ± .01
186 ms 947,327 50 2.17 ± .01 0.85 ± .01
1,000 ms 306,682 5 2.17 ± .01 0.86 ± .01

Sounds of the Elements

46 ms 125,248 794 1.95 ± .04 1.05 ± .05
186 ms 34,171 20 1.79 ± .02 1.27 ± .03
1,000 ms 10,231 8 1.79 ± .02 1.27 ± .03

Table 3.2: Power-law fitting results for Bark-band code-words per database and
frame size. N words is the number of used code-words, zmin is the minimum
frequency for which the Zipf’s law is valid, β is the frequency-distribution exponent
(Eq. 2.2), and α corresponds to the Zipf’s exponent (Eq. 2.1).

description in terms of the distribution of the frequency (Fig. 3.3b) and
apply the fitting procedure described in Sec. 3.2.4. In all cases we obtain
that a power-law distribution (see Eq. 2.1) is a good fit beyond a minimum
frequency zmin. Moreover, consistently with Zipf’s findings in text corpora,
all the estimated Zipfian exponents are close to one (Table 3.2) therefore,
the found distributions can be further described as Zipfian distributions
(see Sec. 2.1). The high frequency counts for few Bark-band code-words
are particularly surprising given the fact that we used a very large coding
dictionary (each temporal window was assigned to one out of more than
four million possible code-words).

In the case of text corpora, it has been shown that simple random texts
do not produce a Zipfian distribution (Ferrer-i-Cancho and Elvevȧg, 2010).
In the case of our Bark-band code-words it is clear that it would be very
difficult to generate random sequences with Zipf-like rank-frequency distri-
bution. In particular, all Bark-band code-words have the same length (i.e.
22 characters) and are formed by two possible characters (“0” and “1”).
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Figure 3.3: Bark-band code-words. a) Rank-frequency distribution of code-words
per database (frame size = 186 ms). b) Probability distribution of frequencies
for the same Bark-band code-words. Music-W means Western Music, Music-nW
means non-Western Music and Elements means Sounds of the Elements.

Given that we opt for a binary equal-frequency discretization (i.e. using
representative median values as quantization thresholds), the probability of
occurrence of each character in our experiments is close to 0.5. Therefore,
if we generate a random sequence of words formed by 22 binary charac-
ters having similar probability of occurrence we would observe similar word
counts for all generated random words. Thus, the rank-frequency distribu-
tion for those random words would be close to a horizontal line (i.e. slope
close to zero). Only in extreme cases where the probability of occurrence of
one character is much higher than the other we will observe long tailed rank-
frequency distributions, but, even in those cases, the distribution will differ
from a real Zipfian distribution. In this case, instead of being a straight
line in the log-log plot the distribution would present a staircase shape.
In the utmost case of one character having probability one, only one word
(a sequence of 22 equal characters) will be repeatedly generated producing
a delta-shaped rank distribution7. Finally, we empirically tested several
quantization thresholds, extracted from a sample of different database com-

7Note that in our encoding scenario, a delta-shaped rank distribution would be pro-
duced if the analyzed database contains only one static sound, like in the case of the sine
wave encoded in Table 3.1
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binations, without observing any significant change in the rank-frequency
plots.

Now we study the robustness of the found Zipfian distributions against
several variables used during the encoding process.

Robustness against frame size

Remarkably, changing the frame size by almost one and a half orders of
magnitude (from 46 to 1,000 ms) has no practical effect on the estimated
exponents. This is especially valid for Speech and both Western and non-
Western Music databases. For instance, in Fig. 3.4 we show an example
of the probability distribution of frequencies and the estimated power-laws
for Bark-band code-words of non-Western Music analyzed with the three
considered temporal windows or frames (46, 186, and 1,000 ms). The main
effect produced by changing the frame size seems to be that the smaller the
window, the larger the minimum frequency value from which the power-law
is found to be a plausible fit for the data (zmin in Table 3.2).

Robustness against frequency bands

Since, to represent timbre, we are describing the spectro-temporal envelopes
using a psychoacoustical scale (the Bark scale) and, given that psychoacous-
tical scales present higher resolution (i.e. small bandwidth) in the low fre-
quency ranges, we now re-compute the code-words using 22 equally-spaced
frequency bands (431.8 Hz each). Again, the obtained rank-frequency dis-
tribution are very similar to those obtained using Bark-bands (Fig. 3.5).
Table 3.3 shows the fitting results for the equally-spaced encodings from
the different databases and frame sizes. Noticeably, in this case, all Zipf’s
exponents are bigger than one and they are stable for the two small tem-
poral frames only (except for non-Western Music were all frame sizes share
almost the same exponent).

This experiment suggest that similar distributions would be also obtained
for other psychoacoustical scales like the Mel scale (Stevens et al., 1937)
(see Sec. 3.3.2) or the ERB scale (Moore and Glasberg, 1996).
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Figure 3.4: Probability distribution of frequencies of timbral code-words for non-
Western Music analyzed with frame sizes of 46, 186, and 1,000 ms.

Robustness against equal-loudness filtering

As described in Sec. 3.2.3, our original encoding process includes a pre-
processing step that in order to emulate the sensitivity of the human ear,
filters the signal according to an equal-loudness curve. Thus, we re-compute
the whole encoding process without this equal-loudness filter. In this case
the obtained results were practically identical to the ones obtained using
the equal-loudness filter.

Robustness against audio length

Up to this point all our rank-frequency counts refer to whole databases
(i.e. many hours of audio recordings). Now we analyze the distribution
of code-words for randomly selected audio segments of up to 6 minutes
in length (a duration that includes most of the songs in western popular
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Figure 3.5: Timbral code-words encoded from equally-spaced frequency bands.
a) Rank-frequency distribution of timbral code-words encoded from equally-spaced
frequency bands (Bandwidth = 431.84 Hz, frame size = 186 ms). b) Probability
distribution of frequencies for the same code-words.

music). Noticeably, we find again a similar heavy-tailed distribution as the
one found for the whole databases. Fig. 3.6, shows an example of rank-
frequency distributions of randomly selected audio excerpts per database.
In the case of Western and non-Western Music databases the excerpts
correspond to individual songs. In the case of Speech and Sounds of the
Elements the audio files were cut with arbitrary lengths of up to 6 min. In
this experiment we empirically noticed that the rank-frequency exponents
of the audio excerpts fluctuate depending on the timbral variety of the
excerpts.

The evidence presented so far suggests that the found Zipfian distribution of
Bark-band code-words is not the result of a particular type of sound source,
sound encoding process, frame size, or sound length. In the next sections we
further study the intrinsic characteristics of this encoded timbral descriptor.

Code-Word analysis

Since Bark-bands can be easily traced back to a rough representation of the
spectral envelope we now study the specific characteristics of Bark-band
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Frame size N words zmin β α

Speech

46 ms 383,207 200 1.75± .02 1.33 ± .03
186 ms 139,452 79 1.74± .02 1.35 ± .03
1,000 ms 48,717 200 1.95± .06 1.05 ± .06

Western Music

46 ms 1,288,416 126 1.91± .01 1.11 ± .01
186 ms 457,575 50 1.88± .01 1.14 ± .02
1,000 ms 103,364 32 1.80± .02 1.26 ± .03

non-Western Music

46 ms 1,514,576 50 1.97± .01 1.04 ± .01
186 ms 613,361 20 1.95± .01 1.05 ± .01
1,000 ms 175,518 79 1.98± .03 1.02 ± .03

Sounds of the Elements

46 ms 111,593 50 1.77± .02 1.31 ± .03
186 ms 26,557 8 1.74± .02 1.35 ± .03
1,000 ms 5,453 20 1.70± .04 1.44 ± .08

Table 3.3: Power-law fitting results for code-words encoded from equally-spaced
frequency bands per database and frame size. N words is the number of used
code-words, zmin is the minimum frequency for which the Zipf’s law is valid, β is
the frequency-distribution exponent, and α corresponds to the Zipf’s exponent.

code-words. Thus, specific patterns in Bark-band code-words could unveil
underlying patterns in spectral envelope shapes.

Noticeably, when we examine the inner structure of Bark-band code-words
as ordered by decreasing frequency usage, we find that in all analyzed
databases the most frequent code-words present a smoother structure, with
close Bark-bands having similar quantization values. Conversely, less fre-
quent elements present a higher band-wise variability (Fig. 3.7).

In order to quantify this observed smoothness, we compute the sum of the
absolute values of the differences among consecutive bands of a given code-
word. Thus, a code-word smoothness s was computed using

s =
c−?B−1

i=1 |bi − b(i−1)|
c

, (3.1)

where B corresponds to the number of bands per code-word (22 in our
case), bi corresponds to the value of band i and c = (B − 1)(Q− 1), where
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Figure 3.6: Rank-frequency distributions of Bark-band code-words from ten ran-
domly selected audio excerpts per database (frame size = 46 ms). In the case of
Western Music and non-Western Music each line corresponds to one song. In the
case of Speech and Sounds of the Elements each line corresponds to an arbitrary
audio segment of up to 6 min in length.

Q corresponds to the number of quantization steps (e.g. Q = 2 for binary
quantization).

The results show that all databases follow the same behavior, namely, that
the most frequent code-words are the smoother ones. Thus, the smoothness
value tends to decrease with the rank (see Fig. 3.8).

Next, we analyze the co-occurrence of Bark-band code-words between data-
bases (see also Appendix D). We find that about 80% of the code-words
present in the Sounds of the Elements database are also present in both
Western and non-Western Music databases. Moreover, 50% of the code-
words present in Sounds of the Elements are also present in Speech. There is
also a big overlap of code-words that belong to Western and non-Western
Music simultaneously (about 40%). Regarding the code-words that ap-
pear in one database only, we find that about 60% of the code-words from
non-Western Music belong exclusively to this category. The percentage of
database-specific code-words in Western Music lies between 30 and 40%
(depending on the frame size). In the case of the Speech database, this per-
centage lies between 10 and 30%. Remarkably, the Sounds of the Elements
database has almost no specific code-words.



3.3. results 43

Most Freq. Music−W

50 100 150 200

5
10
15
20

Least Freq. Music−W

50 100 150 200

5
10
15
20

Most Freq. Music−nW

50 100 150 200

5
10
15
20

Least Freq. Music−nW

50 100 150 200

5
10
15
20

Most Freq. Speech

50 100 150 200

5
10
15
20

Least Freq. Speech

50 100 150 200

5
10
15
20

Most Freq. Elements

50 100 150 200

5
10
15
20

Least Freq. Elements

50 100 150 200

5
10
15
20

Figure 3.7: Most (left) and least (right) frequent Bark-band code-words per
database (frame size = 186 ms). The horizontal axis corresponds to individual
code-words (200 most common and a random selection of 200 of the less common).
The vertical axis corresponds to quantized values per Bark-band (white = 0, black
= 1). Every position in the abscissa represents a particular code-word.

We also find that within each database, the most frequent code-words were
temporally spread throughout the database. Therefore, their high frequency
values are not due to few localized repetitions. In fact, we observe local
repetitions of frequent code-words across the whole database. In Fig. 3.9
an example of the temporal distribution of the most frequent code-words
that account for 20% of the non-Western Music database is shown. As it
can be seen, the code-words are temporally spread throughout the entire
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Figure 3.8: Smoothness values (s) per database. For a better visualization we plot
the mean and standard deviation of the smoothness value of 20 logarithmically-
spaced points per database (frame size= 186 ms).

time axis. The same temporal spreading was observed for the most frequent
Bark-band code-words found in the rest of the databases and for different
frame sizes.

Finally, we logically find that the smaller the frame size the bigger the num-
ber of different code-words obtained after encoding the four databases. In
particular, in the case of the 46 ms frame size a total of 2,516,227 different
Bark-band code-words were used to encode the four databases. Interest-
ingly, there were 1,678,077 code-words (40% of the dictionary) that were
never used (i.e. more than 1.5 million Bark-band combinations that were
not present in 740 hours of sound).

3.3.2 MFCC code-words

Following the methodology described in Sec. 3.2.3 we now encode every
audio frame into its corresponding MFCC code-word. As done for the Bark-
band code-words (Sec. 3.3.1), for each database and frame size, we count
the frequency of use of each code-word and sort them by decreasing order
of frequency. As shown in Fig. 3.10a, when plotting these rank-frequency
counts we observe heavy-tailed distributions for all the analyzed databases.



3.3. results 45

1 2E+5 4E+5 6E+5 8E+5 1E+6
1

100

200

300

400

Temporal window

r

Figure 3.9: Temporal distribution of 485 most frequent code-wods in non-Western
Music (frame size = 1,000 ms). Each dot indicates the temporal location (x axis)
of a particular Bark-band code-word (y axis).

Again, as in the case of Bark-band code-words, these distributions imply
that a few code-words are very frequent while most of them are very unusual.

In order to evaluate if the found heavy-tailed distributions of MFCC code-
words specifically correspond to power-law distributions we apply the previ-
ously described estimation procedure (Sec. 3.2.4). This procedure, instead
of working directly with the rank-frequency plots, it focuses on the equiv-
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Figure 3.10: a) Rank-frequency distribution of MFCC code-words per database
(frame size = 186 ms). b) Probability distribution of frequencies for the same
code-words (the black lines correspond to the fitted distribution).

alent description in terms of the distribution of the frequency (Fig. 3.10b).
The obtained results reveal that for all analyzed databases and frame sizes,
the best fit corresponds to a particular type of power-law distributions called
shifted (discrete) power-law. This distribution can be described by the fol-
lowing equation:

P (z) ∝ (z + c)−β , (3.2)

where c is a constant value. By adding this constant value to Eq. 2.2 we
obtain better fittings, specially in the low z region, whereas for the high z
region the distribution tends to a pure power-law. In Table 3.4 a complete
list of the fitted parameters can be seen.

From the obtained fitting results we observe that not only all the analyzed
databases follow the same distribution type, but also that their exponents
are somewhat similar (i.e. all the α exponents lie between 0.45 and 0.81).
Regarding the effect of the frame size in the distribution exponent we can
see that, for Speech, increasing the frame size seems to decrease the rank-
frequency exponent α. The opposite effect is observed for Sounds of the
Elements. Notably, in the case of Western and non-Western Music, chang-
ing the frame size has practically no effect in the distribution exponent.
This high stability, also observed in the case of Bark-band code-words, is
quite surprising given the fact that we are changing the frame size by almost
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Frame size zmin β c α

Speech

46 ms 3.20 (1.93) 2.23 (0.01) 0.76 (0.07) 0.81 (0.01)
186 ms 29.40 (23.43) 2.41 (0.22) 12.98 (12.07) 0.73 (0.12)
1,000 ms 32.00 (0.00) 3.22 (0.00) 36.90 (0.00) 0.45 (0.00)

Western Music

46 ms 29.90 (21.63) 2.78 (0.08) 8.67 (3.26) 0.56 (0.03)
186 ms 7.50 (4.12) 2.64 (0.06) 1.90 (0.73) 0.61 (0.02)
1,000 ms 4.20 (0.63) 2.61 (0.02) 0.30 (0.10) 0.62 (0.01)

non-Western Music

46 ms 82.20 (58.94) 2.76 (0.18) 27.85 (35.20) 0.57 (0.05)
186 ms 18.60 (2.95) 2.67 (0.05) 5.38 (1.25) 0.60 (0.02)
1,000 ms 8.50 (6.08) 2.66 (0.13) 1.65 (1.42) 0.61 (0.05)

Sounds of the Elements

46 ms 8.10 (3.51) 2.70 (0.04) 2.35 (0.49) 0.59 (0.01)
186 ms 3.40 (0.97) 2.42 (0.02) 0.40 (0.07) 0.70 (0.01)
1,000 ms 4.20 (0.63) 2.29 (0.01) 0.15 (0.09) 0.78 (0.01)

Table 3.4: Fitting results for MFCC code-words per database and frame size. Av-
erage values from 10 random samples of 300,000 code-words per database and frame
size are reported (standard deviation in parenthesis). zmin stands for minimum
frequency for which the shifted power-law is valid, β corresponds to the frequency-
distribution exponent, c refers to the constant value of the shifted power-law and
α corresponds to the rank-frequency exponent.

one and a half orders of magnitude (from 46 to 1,000 ms) and seems to be
a unique feature of timbral music code-words.

To explore the differences between the most and least frequent MFCC code-
words we select from each rank-frequency distribution the 200 most frequent
and a random sample of 200 of the less frequent code-words per database.
As done for Bark-band code-words the white color corresponds to those
MFCC values encoded as zero and the black color to those quantized as
one (Fig. 3.11). From this exploratory analysis we can clearly see that the
most frequent code-words present characteristic structures while the least
frequent ones show no detectable patterns. In particular, the most frequent
code-words in Speech present a very distinctive structure, with some MFCC
coefficients mostly quantized as zero (e.g. coefficients 2, 6, 8, and 17) and
some others mostly quantized as one (e.g. coefficients 1, 4, 7, and 10). This
distinctive pattern in Speech is particularly intriguing, specially given the
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Figure 3.11: Most (left) and least (right) frequent MFCC code-words per
database using a frame size of 186 ms. For each plot, the horizontal axis cor-
responds to individual code-words and the vertical axis corresponds to quantized
MFCC coefficients (white = 0, black = 1). Every position in the abscissa represents
a particular code-word.

fact that the MFCC descriptor was originally designed to describe speech
signals. Furthermore, it is not only that the most frequent code-words of
speech are quite different from the ones in the other type of sounds but
also, when computing and plotting the smoothness s (see Sec. 3.3.1) we see
a different behavior for speech sounds (Fig. 3.12). We leave this issue for
future research.
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Figure 3.12: Smoothness values (s) per database. Notice that in three “non-
Speech” databases the most frequent code-words present a smooth structure, with
close/neighboring MFCC coefficients having similar quantization values. In the
case of Speech the smoothness value seems to be somehow stable across all rank
values. For a better visualization we plot the mean and standard deviation of the
smoothness value of 20 log-spaced points per database (frame size = 186 ms).
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Figure 3.13: Example of rank-frequency distributions of MFCC code-words from
10 randomly selected music recordings per database using a frame size of 46 ms.
Each line type corresponds to one recording.

We further investigate the rank-frequency distribution of MFCC code-words
of randomly selected audio segments of up to 6 minutes in length. We ob-
serve the same behavior as with Bark-band code-words namely, a similar
heavy-tailed distribution as the one found for the whole databases. Exam-
ples of the obtained distributions, in this case for randomly selected songs
from the music databases, can be seen in Fig. 3.13.
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3.4 Discussion and conclusion

In this chapter we have analyzed the rank-frequency distribution of en-
coded timbral descriptors computed out of 740 hours of real-world sounds
coming from four sound categories that represent a large portion of the
timbral variability perceivable in the world - i.e. Speech, Western Music,
non-Western Music, and Sounds of the Elements. In this analysis we work
with two of the most commonly used timbral descriptor namely Bark-bands
and MFCCs. Whilst both descriptors mainly characterize the shape of the
spectral envelope of a short-time audio excerpt (or frame), the Bark-band
descriptor, due to its straightforward computation, it is easier to relate-back
to an envelope shape. This feature motivated us to study the Bark-band
code-words in a more exhaustive manner. Noticeably, with respect to their
rank-frequency distributions, both descriptor’s code-words are power-law
distributed in all four databases. In the case of Bark-band code-words this
distribution can be further characterized as a Zipfian distribution (i.e. a
power-law with exponent close to one) and, in the case of MFCC code-
words as a shifted power-law. We also exhaustively analyzed the robustness
of the found distributions against several encoding variables such as frame-
size, frequency bands, audio length, etc. All robustness experiments showed
that the power-law distribution of timbral code-words is very stable and
seems to be independent of the type of sounds analyzed and the encoding
method. Our results also indicate that regardless of the analyzed database,
the most frequent timbral code-words have a more homogeneous structure.
This implies that, for frequent code-words, proximate descriptor bands tend
to have similar encoded values (except for the case of MFCC code-words of
Speech where a different pattern is observed for frequent code-words).

Regarding the shared Bark-band code-words among databases we found
several interesting patterns. In particular, the presence of database-specific
code-words in both speech and music, and the absence of such distinctive
code-words for Sounds of the Elements. This suggests that these natural
sounds have been incorporated, possibly by imitation, within the human-
made “palette” of timbres. Noticeably, it has been recognized that human
vocal imitation, which is central to the human language capacity, has re-
ceived insufficient research attention (Hauser et al., 2002). Moreover, a
recent work (Assaneo et al., 2011) has suggested a mechanism by which
vocal imitation naturally embeds single sounds into more complex speech
structures. Thus, onomatopoeic sounds are transformed into the speech el-
ements that minimize their spectral difference within the constraints of the
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vocal system. In this context, our observations could be taken as supporting
the role of imitation within language and music evolution.

The fact that 40% of the Bark-band code-word dictionary remained unused
after 740 hours of sounds suggests that this dictionary was big enough to
accommodate the different timbral variations present in the databases, but
it also poses the question about the reasons for this behavior. It could
be that the unused spectral envelopes were unlikely (in physical-acoustical
terms) or, perhaps, that animal sounds and urban soundscapes (the two
large categories that have not been included in our study) would account
for that.

In the light of all these findings, the establishment of a power-law rank-
frequency distribution seems to be a physical property of short-time spec-
tral envelopes of sound signals. Thus, all our experiments point towards
this intrinsic property of spectral envelopes, where a few spectral shapes
are extremely repeated while most of them are very rare and, at the same
time, there is no characteristic separation between both groups. All this
suggests that, as in the case of text corpora (Ferrer i Cancho and Solé,
2003), the most frequent code-words are also the least informative ones8.
That is, the highly frequent code-words possess little discriminative power
because they are present in many types of sounds. Moreover, we argue that
the existence of such scale-invariant distribution should have some influ-
ence on the way perception works given that the perceptual-motor system
reflects and preserves the scale invariances found in the statistical structure
of the world (Chater and Brown, 1999). Following this line of thought, we
hypothesize that any auditory system, being natural or artificial, should ex-
ploit the here-described distribution and characteristics of short-time spec-
tral envelopes in order to achieve an optimal trade-off between the amount
of extracted timbral information and the complexity of the extraction pro-
cess. Furthermore, the presented evidence could provide an answer to the
question posed by Bregman in his seminal book Auditory Scene Analy-
sis (Bregman, 1990):

[...] the auditory system might find some utility in segregat-
ing disconnected regions of the spectrum if it were true in some
probabilistic way that the spectra that the human cares about

8Informative in the sense of information theory’s self-information concept, where
the self-information (or surprisal) I(wn) of a code-word wn is defined as I(wn) =
−log(P (wn)), where P (wn) is the probability of occurrence of the code-word. There-
fore, the bigger the code-word’s probability, the smaller its self-information.
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tend to be smoothly continuous rather than bunched into iso-
lated spectral bands.

According to our findings, these smoothly continuous spectra correspond
to the highly frequent elements in the power-law distribution. We expect
these highly repeated elements to quickly provide general information about
the perceived sources (e.g. is it speech or music?). On the other hand, we
expect that the rare spectral envelopes will give information about specific
characteristics of the sources (e.g. the specific type of guitar that is being
perceived).

Since we have found similar distributions for medium-time (i.e. a few min-
utes) than for long-time (i.e. many hours) code-word sequences, this be-
havior has direct practical implications that we would like to stress and
explore in the following chapters. One practical implication is that when
selecting random short-time audio excerpts (using a uniform distribution),
the big majority of the selected excerpts will belong to the most frequent
code-words. Therefore, the knowledge extracted from such data sample will
represent these highly frequent spectral envelopes but not necessary the rest
of the elements. This is the case in two recently published papers (Bigand
et al., 2011; Plazak and Huron, 2011) where the perception of randomly
selected short-time audio excerpts was studied. Moreover, auditory gist
perception research (Harding et al., 2008) could also benefit from know-
ing that spectral envelopes are heavy-tailed distributed. Thus, future gist
perception studies can evaluate how fast and accurate we recognize stimuli
formed by code-words from different parts of the distribution.

Another area on which the found heavy-tailed distributions will have prac-
tical implications is within audio-based technological applications that work
with short-time spectral envelope information. For instance, as described in
Chapter 1, in automatic audio classification tasks it is common practice to
use an aggregated spectral envelope as timbral descriptor. That is, all the
short-time spectral envelopes that form an audio file are aggregated into one
mean spectral envelope. This mean envelope is then used to represent the
full audio file, e.g. one song. Evidently, computing statistical aggregates,
like mean, variance, etc. on a set that contains highly frequent elements will
be highly biased towards the values of this elements. In audio similarity
tasks, the similarity between two sounds is usually estimated by comput-
ing a distance measure between sequences of short-time spectral envelope
descriptors (Klapuri and Davy, 2006), e.g. by simply using the Euclidean
distance. Again, these computations will be highly biased towards those
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highly frequent elements. Therefore, the influence these biases have on each
task should be thoroughly studied in future research. It could be the case
that for some applications, considering only the most frequent spectral en-
velopes is the best solution. But, if we look at other research areas that
deal with heavy-tailed data we can see that the information extracted from
the distribution’s tail is at least, as relevant as the one extracted from the
most frequent elements (Liu, 2011; Manning and Schütze, 1999).

Finally, the relationship between the global power-law distribution present
in long-time audio sequences, and the local heavy-tailed distributions de-
picted by medium-time sequences should be also further studied. For in-
stance, in text information retrieval, these type of research has provided im-
proved ways of extracting relevant information (Baeza-Yates, 1999). There-
fore, it is logical to hypothesize that this will be also the case for audio-based
technological applications.





Chapter 4

A plausible power-law
generative model

Most of the results presented in this chapter were published in Haro et al.
(2012b).

4.1 Introduction

In Chapter 3 we have found that the frequency distribution of encoded tim-
bral descriptors follows a power-law distribution. In particular, our exper-
iments indicate that, regardless of the sound source, rank-frequency distri-
butions of encoded short-time spectral envelopes show a Zipfian distribution
(i.e. a power-law with exponent close to one).

As mentioned in Sec. 2.1, power-laws are highly common in both natu-
ral and human-made phenomena. This ubiquitous presence has increas-
ingly attracted research interest over the last decades, specially in trying
to find generative mechanisms and unifying principles that link and govern
such disparate complex systems. Thus, several models have been proposed
including the least effort principle (Ferrer i Cancho and Solé, 2003; Zipf,
1949), preferential attachment (Barabasi et al., 1999; Cattuto et al., 2007;
Peterson et al., 2010; Simon, 1955), multiplicative dynamics (Montroll and
Shlesinger, 1982), superposition of independent stochastic signals (Eliazar
and Klafter, 2009), proportional growth (Saichev et al., 2010), extinction
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dynamics (Newman and Palmer, 2003), coherent noise (Sneppen and New-
man, 1997), self-organized criticality (Bak et al., 1987) or general stochastic
systems (Corominas-Murtra and Solé, 2010). See Mitzenmacher (2003),
Sornette (2004), and Newman (2005) for excellent reviews on this subject.

In the following sections we provide early evidence that the power-law be-
havior displayed by encoded short-time spectral envelopes could be gener-
ated by a mechanism proposed by Cattuto et al. (2007). This model is
a modification of the original “rich-get-richer” model originally described
by Simon (1955).

4.2 Method

Given the straightforward mapping between Bark-bands and spectral en-
velopes, we aim at finding a power-law generative model that matches the
distribution of Bark-band code-words as described in Sec. 3.3.1. Finding
this generative model could provide more evidence regarding the empiri-
cally observed power-law behavior in short-time spectral envelopes of sound
signals. In particular, we select from the literature those models that were
both simple and applicable to our case.

Thus, we have taken into consideration the following characteristics of our
data. First, although a sequence of short-time spectral envelopes constitutes
one of the relevant information sources used in the formation of auditory
units (Bregman, 1990), individual Bark-band code-words cannot be seen as
communication units like in the case of musical notes, phonemes, or words.
Second, we have here found the same distribution for processes that in-
volve a sender and a receiver (like in speech and music sounds) and for
processes that do not involve an intelligent sender (like inanimate environ-
mental sounds). Therefore, we do not consider generative models that imply
a communication paradigm, or any kind of intentionality or information in-
terchange between sender and receiver (e.g. like in the case of the “least
effort” model (Ferrer i Cancho and Solé, 2003; Zipf, 1949)).

As for the generative models that are plausible to be applied to our data,
we consider two simple preferential attachment models namely: the classical
Yule-Simon model (Simon, 1955) and Catutto’s model (Cattuto et al., 2007).
The Yule-Simon model was originally proposed by Udny Yule (1925) as an
explanation of the empirical data on the abundances of biological genera. In
1955 Simon, trying to model the power-law distribution of word-frequencies



4.2. method 57

in text, re-introduced this model in a more mathematically-elegant way (Si-
mon, 1955). A similar behavior is also present in the preferential attachment
model proposed by Barabasi et al. (1999) when modeling the growth of net-
works. The Yule-Simon power-law generative model can be summarized
as follows: consider a dictionary of discrete elements, our goal is to form
a stream of elements that once examined according to its rank-frequency
distribution it produces a power-law behavior. In the original Yule-Simon
model, at each time step, a new element (a code-word in our case) is ex-
tracted from the dictionary with constant probability q, whereas an existing
code-word (an element already present in the stream) is uniformly selected
with probability q = 1−q. This model generates a power-law rank-frequency
distribution P (z) ∝ z−β where β = 1+1/q. Since, the power-law is created
by favoring the appearance of already used elements, this model is some-
times referred as “rich-get-richer”, “cumulative advantage” or “preferential
attachment”.

Recently Cattuto et al. (2006, 2007) proposed a modification of the origi-
nal Yule-Simon model. In Cattuto’s model a hyperbolic memory kernel is
introduced in a way that when selecting an existing code-word, the kernel
promotes recently added code-words thus favoring small time gaps between
identical elements. That is, instead of choosing uniformly from past code-
words (as with the Yule-Simon model), this model selects a past code-word
that occurred i time steps behind with a probability K that decays with i
as a power-law,

K(i) =
C(t)

τ + i
(4.1)

where τ is a characteristic time-scale over which recent code-words have
similar probabilities and C(t) is a time-dependent normalization factor of
the form:

C(t) =

?
i=t?

i=1

1

τ + i

?−1

. (4.2)

Each realization of the model starts with n0 code-words and, at each time
step t, a new code-word may be introduced with probability q, while with
probability 1 − q one code-word is copied from the existing stream going
back i time steps in the past with a probability K(i).

When evaluating the results produced by both models we consider as out-
put of the model the rank-frequency curve produced after averaging 50
realizations with identical parameters. In all cases we generate a stream
of code-words having the same length as each of the databases we aim at
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modeling. In order to match each model’s output against the empirically
observed Bark-band distributions we do a grid search over each model’s pa-
rameters. This grid search aims at minimizing the sum of the squares of
the distance (i.e. least-squares fitting) between the data points generated by
the model and the one from the empirical distributions. Finally, we define
the inter code-word distance as the number of code-words found between
two identical and consecutive code-words plus one. Then, we visually com-
pare the histogram of inter code-word distances for the 10 most frequent
code-words per database against the inter code-word distance histogram as
produced by the best matching model.

4.3 Results

As stated in the previous section we first perform a grid search over Yule-
Simon’s parameter q and evaluate the obtained distributions against the
rank-frequency Bark-band plots for each database. However, no q value
produced an even close fit to our data.

Next, we explore the histogram of inter code-word distances for the 10 most
frequent Bark-band code-words per database (Fig. 4.1). From these plots we
can see that, in general, the most frequent inter code-word distances corre-
spond to short time gaps. This behavior corresponds with the modification
of the Yule-Simon model proposed by Cattuto et al. (2007) where recently
occurred code-words have more probability of being selected (see Sec. 4.2).
When considering this modified Yule-Simon model a reasonable fitting is
observed for all rank-frequency distributions. In this case we perform a grid
search for the model’s parameters q, τ , and n0, that correspond to the proba-
bility of adding a new code-word, the memory parameter, and the number of
initial code-words respectively. In Table 4.1 the resulting model parameters
per database can be seen. These parameters produce the output depicted in
Fig. 4.2 where we can see the model-produced rank-frequency distributions
overlapped with the Bark-band code-word distribution per database.

Finally, we explore the inter code-word distances for the 10 most frequent
code-words produced by Cattuto’s model per database. In Fig. 4.3 we can
see the inter code-word distance histogram for one random realization of
Cattuto’s model. By comparing the histogram of Fig. 4.3 with the one ob-
tained from the sound databases (Fig. 4.1) we can see that although the
histograms are not identical, a similar behavior is present in both cases
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Figure 4.1: Inter Bark-band code-word distance for the 10 most frequent code-
words in Speech (a), Western Music (b), non-Western Music (c) and Sounds of
the Elements (d) databases (frame size = 1,000 ms). Each color represents one
particular code-word.

namely a heavy-tailed distribution of inter code-word distances for approx-
imately the same numeric ranges.

4.4 Discussion

The aim of this chapter was to find one power-law generative model that
could generate the empirically observed rank-frequency distributions of Bark-
band code-words described in Chapter 3. With this goal in mind, we explore
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Modeled Database q τ n0

Speech 0.11 250 200
Western Music 0.095 250 15
non-Western Music 0.12 150 100
Sounds of the Elements 0.05 1,000 50

Table 4.1: Selected parameters in Cattuto’s model. The parameters q, τ , and n0

correspond to the probability of adding a new code-word, the memory parameter,
and the number of initial code-words respectively.

and select, from the vast amount of power-law generative models proposed
in the literature, two plausible models that could be easily applied when
trying to mimic the empirically observed distributions namely: the classic
Yule-Simon model and Cattuto’s model.

We have found that the modified version of the Yule-Simon model proposed
by Cattuto et al. (2007) provides a reasonable quantitative account for the
observed distribution of Bark-band code-words. This fact suggests the ex-
istence of a common generative framework for all considered sound sources.
This model also implies a fundamental role of temporally close events. In
our case, this means that when repeating pre-occurred spectral envelopes,
those that have occurred recently have more chance to reappear.

This simple generative mechanism could possibly act as universal frame-
work for the generation of timbral features. In particular, we know that the
analyzed sounds are formed by mixtures of individual sources (e.g. notes
simultaneously played by several musical instruments). Most of these indi-
vidual sources can be modeled by an excitation-resonance process (Berg and
Stork, 1995). That is, an excitative burst (or series of bursts) of decaying
energy that goes through biological or human-made structures that impose
certain acoustic properties on the original spectrum of the burst (e.g. the
spectrum of the burst produced by the vocal folds is modulated/filtered
by the shape of the vocal tract). Thus, the intrinsic characteristics of this
resonance structure will favor the close reappearance of certain types of
spectral envelopes every time the resonance structure is excited. This tem-
porally close reappearance is properly reproduced by Cattuto’s model.

As future research, it would be both artistically and scientifically interesting
to try to sonify the stream of code-words produced by Cattuto’s model.
It would be interesting to know if the code-word streams produce sound
sequences somehow related with the type of sounds present in the databases
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Figure 4.2: Rank-frequency distribution of Bark-band code-words (frame size =
1,000 ms) and Cattuto’s model (Cattuto et al., 2007) per database. Gen. Model
stands for the computed generative model. For clarity’s sake the curves for non-
Western Music, Western Music, and Speech are shifted up by one, two, and three
decades respectively. All model’s curves were computed by averaging 50 realiza-
tions with identical parameters.

we try to model in the first place. These future experiments could also help
us to further explore the impact of power-law distributions as a new tool
for algorithmic music composition.
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Figure 4.3: Inter code-word distance for the 10 most frequent code-words in
one random realization of Cattuto’s model of Speech (a), Western Music (b),
non-Western Music (c) and Sounds of the Elements (d) databases (frame size
= 1,000 ms). Each color represents one particular code-word.



Chapter 5

Song-level distribution
assessment

Most of the results presented in this chapter were published in Haro et al.
(2012a).

5.1 Introduction

As stated in Chapter 1, it is common practice within the MIR commu-
nity to build automatic classification algorithms using aggregated descrip-
tor sets (Casey et al., 2008; Klapuri and Davy, 2006). For instance, the
content of several minutes of audio (e.g. an entire song) is represented by a
real-valued vector containing the mean values of the frame-based audio de-
scriptors (and often their variances and covariances). Moreover, many tech-
nological applications dealing with audio signals use Mel-Frequency Cep-
stral Coefficients (MFCC) (Davis and Mermelstein, 1980) as main timbral
descriptor (Casey et al., 2008; Klapuri and Davy, 2006; Müller et al., 2011;
Quatieri, 2001).

A standard bottom-up implementation for timbral-based audio classification
(e.g. for automatic musical genre recognition) can be implemented as fol-
lows: first, the MFCC coefficients from consecutive short-time audio frames
(usually with lengths below 100 ms) are computed. Then, the mean value of
each MFCC coefficient is computed thus obtaining one mean-MFCC vector
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per song. Finally, these mean vectors are introduced as features in the ma-
chine learning algorithm. This approach is usually referred in the literature
as the “Bag-of-Frames” (BoF) approach and is often used by researchers as
comparison baseline when evaluating new classification algorithms.

As stated in Chapter 1, these types of procedures assume a certain homo-
geneity in the MFCC vector space. Otherwise, the results obtained from
computing statistical moments, such as mean or variance, will be highly
biased towards the values of those extremely populated areas (i.e. those ex-
tremely frequent MFCC vectors). Nevertheless, in Chapter 3 we have shown
that at the database level, encoded timbral descriptors (including MFCCs)
are power-law distributed, thus being unhomogeneous and extremely biased
towards certain values. We have also shown that individual recordings (e.g.
individual songs) seem to show the same type of rank-frequency distribution
(see Fig. 3.13).

In this chapter, we provide additional evidence to support the claim that
MFCC vectors from individual music recordings are also heavy-tailed dis-
tributed. Our working hypothesis is the following: if a set of MFCC vectors
presents a heavy-tailed distribution, then, when computing the mean of
such vectors the resulting values will be highly biased towards those few
extremely frequent vectors (i.e. those MFCC vectors that belong to the
most frequent code-words within the set). Therefore, this bias will imply
that computing the aggregated mean vector, used as input for BoF algo-
rithms, from just those few highly frequent MFCC vectors, will yield similar
classification results as when computing the mean vector from all frames.

We evaluate this hypothesis with two supervised semantic inference tasks:
automatic genre classification and musical instrument identification. Thus,
our main goal is to compare the classification results obtained when using all
audio frames versus those obtained when using a distribution-based reduced
set of selected frames to compute the mean feature vector.

5.2 Method

In order to compare the standard BoF approach against a “Selection-of-
Frames” strategy we set up two music classification algorithms namely:
automatic musical genre classification and musical instrument identifica-
tion. Since our goal is not to achieve state-of-the-art performances but, to
compare two identical classification strategies that only differ in the frame-
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selection step, we deliberately choose a simple pattern recognition strategy.
In particular, we use support vector machines (SVM) (Cortes and Vapnik,
1995) to classify aggregated feature vectors of 22 MFCC-mean values per
audio file (see Sec. 2.2.1 for details regarding the MFCC descriptor and
Sec. 2.4 for further information about SVM).

The general framework to compute the “bag-of-frames” approach can be
described as follows:

1. Each audio file is segmented into frames of 46 ms (with 50% overlap).

2. For each audio frame 22 MFCC coefficients are computed.

3. A mean MFCC vector is computed by taking the mean of each MFCC
coefficient across all frames in the audio file.

4. Each mean MFCC vector is used as song-level descriptor for the SVM
classification algorithm.

The framework for the selection-of-frames approach is identical to the bag-
of-frames framework except for step number 4. Here, instead of computing
a mean MFCC vector with all frames in the audio file, we compute it from
a reduced set of pre-selected frames. To select these frames we first encode
each MFCC frame into its corresponding MFCC code-word (see Sec. 3.2.3).
Next, for each audio file we count the frequency of use of each code-word and
sort them by decreasing order of frequency (i.e. we build the song’s rank-
frequency distribution). Then, we select the N most frequent MFCC code-
words of the audio file. Finally, we randomly choose one original MFCC
descriptor per code-word. Thus, at the end of this process we have N
selected MFCC vectors per audio file that are used to compute the mean
MFCC feature vector. Therefore, those selected MFCC vectors belong to
the most frequent code-words of the music recording. Finally, we execute
this same procedure except that, in this case, we select the N least frequent
code-words. In all selection strategies we report mean classification results
after running five times each particular framework.

5.2.1 Database

The audio files used in these experiments do not form part of the databases
described in Sec. 3.2.1. For the genre classification task we use an in-house
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collection of 400 full songs extracted from radio recordings. The songs are
equally distributed among 8 genres: hip-hop, rhythm & blues, jazz, dance,
rock, classical, pop, and speech1. The average length of these audio files is
4 min 18 s (9,853 frames). This dataset was defined by musicologists and
previously used in Guaus (2009). For the musical instrument identification
task we use an in-house dataset of 2,355 audio excerpts extracted from com-
mercial CDs (Fuhrmann, 2012). These excerpts are labeled with one out of
11 possible instrument labels. Each label corresponds to the most salient
instrument in the polyphonic audio segment. The audio excerpts are dis-
tributed as follows: piano (262), cello (141), flute (162), clarinet (189), violin
(182), trumpet (207), saxophone (233), voice (265), organ (239), acoustic
guitar (221), and electric guitar (254). The average length for these excerpts
is 19 s (828 frames).

5.2.2 Evaluation metrics

To evaluate the classification results we select the best F-measure (see
Sec. 2.4) result obtained after performing 10-fold cross-validation in each
database. In all cases we keep the best classification result after evaluating
four SVM kernels with default parameters2 (i.e. rbf, linear, and polynomial
of degree 2 and 3). Notice that according to each label distribution the
F-measure results for a random classification baseline are 2.77% and 1.83%
for the genre and instrument datasets respectively.

5.3 Results

The obtained F-measure results for both genre and musical instrument clas-
sification can be seen in Fig. 5.1. In both classification tasks we confirm our
working hypothesis, i.e. we obtain nearly the same classification results by
selecting very few properly selected MFCC vectors than using all frames.
In particular, by taking only 50 frames belonging to the 50 most frequent
code-words we obtain classification accuracies that are similar to those ob-
tained when using all the frames in the audio file. Importantly, we should
notice that 50 frames correspond to just 0.5% of the average song length

1The speech audio files consist of radio speaker recordings with and without back-
ground music.

2We use the LibSVM implementation: http://www.csie.ntu.edu.tw/~cjlin/

libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 5.1: Genre (a) and Instrument (b) F-measure classification results (%).
These classification results correspond to the selection of either the N most frequent
code-words per song (blue line) or the N least frequent code-words per song (red
line). The ’ALL’ label corresponds to selecting all frames in the song to compute
the aggregated mean MFCC vector (i.e. the classic bag-of-frames approach). The
selection results correspond to mean F-measure values after running five times each
selection framework.

of the genre dataset and 6% of the average sound length of the instru-
ment dataset. The obtained results also show that, in both tasks, selecting
the N least frequent code-words delivers systematically poorer results than
selecting the N most frequent ones. In particular, the difference between
both selection strategies is considerably large in the genre classification task
where we obtain, on average, 28.2% worst results when selecting the least
frequent code-words (see Table 5.1). In the case of instrument identification
we obtain, on average, 8.6% worst results when using this strategy. Notice
that in this case we are working with short audio excerpts, which could
indicate that the heavy-tailed distribution is not as pronounced as when
working with bigger audio segments (e.g. full songs).

Finally, if MFCC frames follow a heavy-tailed distribution, this should imply
that when taking N random frames from the bag-of-frames (using uniform
distribution) there is a very high probability that those selected frames be-
long to the most frequent MFCC code-words (because those code-words are
very common). Therefore, similar classification results as the ones obtained
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Number of selected frames (N)
Strategy 2 5 10 20 50 All

Genre

Most Frequent Code-Words 48.49 55.44 58.59 61.65 62.75 66.42
Least Frequent Code-Words 26.36 27.28 26.43 29.81 35.96 66.42

Difference 22.14 28.15 32.16 31.83 26.79 0.00

Instrument

Most Frequent Code-Words 36.81 38.09 38.85 39.93 42.22 44.87
Least Frequent Code-Words 24.38 27.02 29.12 34.14 38.14 44.87

Difference 12.43 11.07 9.73 5.80 4.08 0.00

Table 5.1: Genre and instrument F-measure classification results (%). We com-
pare two frame selection strategies: taking N MFCC vectors that belong to either
the most or less frequent code-words of each audio file. The last column includes
the classification result obtained when using the mean of all the frames in the
recording. The differences between both classification strategies are also shown.
The selection results correspond to mean F-measure values after running five times
each selection framework.

Number of selected frames (N)
Strategy 2 5 10 20 50 All

Genre

Most Frequent Code-Words 48.49 55.44 58.59 61.65 62.75 66.42
Random Frames 43,99 51,62 56,19 59,26 64,72 66.42

Instrument

Most Frequent Code-Words 36.81 38.09 38.85 39.93 42.22 44.87
Random Frames 33,57 38,15 40,26 42,23 43,55 44.87

Table 5.2: Genre and instrument F-measure classification results (%) for two
frame selection strategies: taking N MFCC vectors that belong to the most fre-
quent code-words of each audio file, and selecting N random MFCC vectors with
uniform distribution. The last column includes the classification result obtained
when using the mean of all the frames in the recording. The selection results corre-
spond to mean F-measure values after running five times each selection framework.

after selecting the N most frequent code-words should be obtained. Notice-
ably, once more the experimental results confirm our hypothesis. Table 5.2
shows the obtained classification results when selecting N random MFCC
vectors from a uniform distribution, and the aforementioned results after
taking the N most frequent code-words. As can be seen in the table both
strategies provide similar results.
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5.4 Discussion and conclusion

In this chapter we have presented two supervised semantic inference tasks
that provide further evidence that MFCC code-words from individual record-
ings have the same type of heavy-tailed distribution as found in the large-
scale databases. Such heavy-tailed distributions allow us to obtain similar
classification results when working with just 50 highly-frequent frames per
audio file as when using all frames in the file (e.g. reducing the total num-
ber of processed frames to 0.5% in the case of full songs). Moreover, since
MFCCs are heavy-tailed distributed, when taking N random frames from
the bag-of-frames (using uniform distribution) there is a very high proba-
bility that those selected frames correspond to the most frequent MFCC
code-words. Therefore, high classification results are also achieved by just
selecting a few random frames to represent each song. Importantly, this
fact could lead to faster classification algorithms that work well with big
datasets.

Another area where the presented results could have a major impact is in
audio similarity tasks. Here, the highly frequent MFCCs should introduce
a tremendous bias in some distance measures and could be the underlying
cause of “hub” songs (i.e. songs that appear similar to most of the other
songs in a database without having any meaningful perceptual similarity;
Flexer et al., 2010, see also Chapter 1). We hypothesize that “hubs” are pro-
duced by songs that, according to the distance measure, are close to many
other songs because they share a great amount of highly frequent descriptor
frames. Whereas, at the same time, these extremely frequent frames are not
the ones our perception rely on in order to determine timbral similarities be-
cause they are too common (i.e. do not have enough discriminative power).
Noticeably, Aucouturier and Pachet (2008) discovered that in typical music
databases, hub songs are distributed along a scale-free distribution. From
our perspective this scale-free distribution should be some how linked with
the underlying heavy-tailed distribution of MFCCs and short-time spectral
envelopes. Furthermore, since audio similarity is at the core of audio-based
recommender systems, improving the former will also benefit the latter.

Finally, the relationship between global (i.e. database-level) and local (i.e.
song-level) distributions should be further considered. For that purpose,
we can use the huge amount of mining techniques developed by the text re-
trieval community. For instance, we could try to remove the highly frequent
code-words as found in the global distribution, since these code-words could
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be considered as analogous to stop words in text processing3. We could also
try to apply different weights to every frame by using an adaptation of the
tf-idf weighting scheme commonly used in text mining tasks (Baeza-Yates,
1999). Later on, these weighted MFCC frames could be used in classification
or audio similarity tasks. In Chapter 7 we further explore these ideas.

3Stop words are highly frequent words that offer little information when processing
natural language text. Some examples of such words are: the, is, at, which, on, etc.



Chapter 6

Measuring the evolution of
popular Western music

Most of the results presented in this chapter were published in Serrà et al.
(2012b).

6.1 Introduction

In Chapter 3 we have reported our findings regarding rank-frequency distri-
butions of audio timbral descriptors for various types of sound. Our results
show that independently of the sound source, encoded timbral descriptors
are power-law distributed. In particular, this distribution is remarkably
stable for music databases. Furthermore, in Chapter 5 we have presented
further evidence that encoded MFCC frames of individual music recordings
are also heavy-tailed distributed. Consequently, in this chapter we further
concentrate our analysis on musical recordings.

We know that music is a human universal involving perceptually discrete
elements displaying organization (Patel, 2007). In other words, as stated by
Edgard Varèse, music is organized sound (Roads, 2001). Thus, contempo-
rary popular music may have a well-established set of “rules” that materi-
alize in underlying patterns and regularities such as well established chord
sequences, instrument combinations, etc. (Ball, 2010; Honing, 2011; Huron,
2006; Patel, 2007). Some of these “rules” could be inherited from the classi-
cal tradition (Lerdahl and Jackendoff, 1983; Levitin et al., 2012; Temperley,
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2007). Nevertheless, as an incomparable artistic product for conveying emo-
tions (Juslin and Sloboda, 2001), music must incorporate variation over such
patterns in order to play upon people’s memories and expectations. Possi-
bly, the “right” combination between known patterns and unexpected vari-
ations is what makes music so attractive to listeners (Honing, 2011; Huron,
2006; Levitin et al., 2012)1. For the very same reasons, long-term variations
of the underlying patterns may also occur across years (Reynolds, 2005).
Unfortunately, many of these aspects remain formally unknown or lacking
of scientific evidence, specially the latter, which is very often neglected in
music-related studies, from musicological analyses to technological applica-
tions. Interestingly, current MIR technologies (Casey et al., 2008; Müller
et al., 2011) are starting to provide excellent tools to study the evolution
of those underlying patterns under objective, empirical, and quantitative
premises. Moreover, akin to recent advances in other cultural assets (Michel
et al., 2011), they allow for unprecedented large-scale analyses. In resonance
with Aucouturier and Bigand (2013), we believe that MIR technologies, if
applied correctly, can shed new light on music-related fields such as cognitive
psychology, neuroscience, and musicology. Thus, traditional human-based
intelligent subjective analysis can be complemented with machine-based
“unintelligent” objective large-scale information.

Therefore, in this chapter we study the evolution of popular music under the
aforementioned premises and large-scale resources. We take advantage of
the tools and concepts described in previous chapters of this thesis to unveil
a number of statistical patterns and metrics characterizing the general usage
of pitch2, timbre, and loudness within contemporary Western popular music.
Our working hypothesis is that the characterization of the yearly-based
changes on the statistical distribution of audio descriptors that account
for key musical facets will provide objective, empirical, and quantitative
information regarding the long-term temporal evolution of music.

In particular, we take advantage of the existence of a publicly available
database of audio descriptors and metadata for approximately one million
songs called The Million Song Dataset (MSD) (Bertin-Mahieux et al., 2011).
We investigate the distribution of the dataset’s audio descriptors that ac-

1It is worth to mention here the words of the composer Arnold Schöenberg on dis-
sonance (Schönberg, 1983): “Two impulses struggle with each other within man: the
demand for repetition of pleasant stimuli, and the opposing desire for variety, for change.”

2Within this chapter we use the term pitch to refer to tonal information expressed
as the per-note energy level of an audio segment collapsed into one octave (i.e. a 12-
dimensional chroma feature (Casey et al., 2008)).
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count for the three primary and complementary sensations associated with
music perception: timbre, pitch and loudness (Ball, 2010). In this case,
when choosing our analysis units we have decided that, instead of working
with fixed-length audio frames, it would be more relevant to work with au-
dio segments that correspond with rhythmic beats. In particular, rhythmic
beats form a discrete time grid that corresponds to the rate at which most
people would tap or clap in time with the music (Gouyon and Dixon, 2005).
This decision of working with beat-based segments is substantiated in three
facts: first, we are now exclusively dealing with music signals, second, the
beat interval is probably the most relevant temporal unit in music, specially
in Western popular music (Ball, 2010; Honing, 2011) and, third, the MSD
already provides, besides the classic frame-based descriptors, beat-based
representations. Finally, we use the metadata information that accounts
for the year in which each song in the dataset was released to study the
temporal evolution of popular Western music from 1955 to 2010.

6.2 Method

6.2.1 Database

The million song dataset (Bertin-Mahieux et al., 2011) is a publicly available
collection of audio descriptors and metadata3 for “a million contemporary
popular music tracks”4 (see also Appendix A for further details). This large-
scale collection was made available by Columbia University’s LabROSA5

and the company The Echo Nest6. As a whole, it comprises music from
44,745 unique artists and it includes a variety of music genres such as rock,
pop, hip-hop, electronic, jazz, or folk. From the million tracks, 515,576
have information on the release year according to MusicBrainz7, an open
music encyclopedia that collects and makes music metadata available. Since
there are some duplicate tracks in the original dataset8 and others that do
not have the full audio descriptions, the size of the dataset used here was

3Notice that, due to copyright laws, the database contains audio descriptors and
metadata but not the actual audio files.

4http://labrosa.ee.columbia.edu/millionsong
5http://labrosa.ee.columbia.edu
6http://the.echonest.com
7http://musicbrainz.org
8http://labrosa.ee.columbia.edu/millionsong/blog/

11-3-15-921810-song-dataset-duplicates

http://labrosa.ee.columbia.edu/millionsong
http://labrosa.ee.columbia.edu
http://the.echonest.com
http://musicbrainz.org
http://labrosa.ee.columbia.edu/millionsong/blog/11-3-15-921810-song-dataset-duplicates
http://labrosa.ee.columbia.edu/millionsong/blog/11-3-15-921810-song-dataset-duplicates
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Figure 6.1: Tag cloud of the genres included in the analyzed subset of the million
song dataset (using the default MusicBrainz genre information provided in the
dataset). The font size represents the logarithm of number of tracks associated
with a given annotation or genre tag.

reduced to 465,259 items. Further discarding the years before 1955 due to
lack of representativeness, we obtain a working collection of 464,411 distinct
music recordings (from 1955 to 2010), which roughly corresponds to more
than 1,200 days of continuous listening. A diversity of popular music genres
is included in the final subset (Fig. 6.1).

6.2.2 Selected audio descriptors

As previously mentioned, the million song dataset provides state-of-the-
art audio descriptors for each beat of a given track (Jehan, 2005, 2010).
Therefore, for each track, a beat-based sequence of multi-dimensional values
is provided. The most relevant descriptors are related to pitch, timbre,
and loudness. These descriptors are psychoacoustically-motivated, and its
computation includes several steps to mimic the response of the human
ear such as the grouping of energies into perceptually-motivated frequency
bands, the consideration of spectro-temporal dynamics, or the application
of an outer and middle ear filter (Jehan, 2005).

In this chapter we analyze the statistical properties of three encoded MSD’s
descriptors namely: MSD-Pitch, MSD-Timbre and MSD-Loudness. As de-
scribed in Sec. 2.2 MSD-Pitch is a 12-dimensional descriptor that roughly
corresponds to the harmonic content of the piece, including its chords,
melody, and tonal arrangements. In particular, each descriptor’s dimension
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consists in a real value between 0 and 1 indicating the degree of absence
or presence of each of the 12 pitch classes of the chromatic scale (C, C#,
D, D#, etc.). MSD-Timbre accounts for the sound color, texture, or tone
quality, and can be essentially associated with instrument types, record-
ing techniques, and some expressive performance resources. In particular,
each audio segment is decomposed into 12-bivariate spectro-temporal ba-
sis that correspond to high level abstractions of the spectral shape. Since
the fist dimension of this basis decomposition represents the energy of the
signal, we take dimensions 2 to 12 (11 values) as the MSD-Timbral de-
scriptor. Finally, MSD-Loudness basically correlates with our perception
of sound amplitude or volume9 and corresponds with the first dimension of
the previously described spectro-temporal basis decomposition (see Sec. 2.2
for further information regarding these descriptors).

6.2.3 Encoding

To identify structural patterns of musical discourse we take advantage of
our musical code-words and use them as main analysis units. As described
in previous chapters we use a simple encoding process which maps each
descriptor’s beat-segment to a dictionary of predefined code-words. Fig. 6.2
shows a schematic summary of the encoding process applied, in this case,
to MSD-Pitch descriptions. Table 6.1 shows the most important aspects of
the followed encoding process.

To facilitate the interpretation of MSD-pitch code-words, we opt for a bi-
nary discretization of each MSD-Pitch dimension, therefore only accounting
for presence or absence of a given pitch class. This way, this 12-dimensional
descriptor can be encoded using 212 = 4, 096 code-words. In particular, we
use a single threshold set to 0.5 and map the original pitch vector values
to 0 or 1, depending on whether they are below or above the threshold, re-
spectively. The value of 0.5 is near the mean value of the considered vector
components and other arbitrary numbers close to it provided no apparent
change in the results of our analysis. Before discretization, MSD-Pitch de-
scriptions of each track are automatically transposed to an equivalent main
tonality, such that all pitch code-words are considered within the same tonal
context or key. For this process we employ a circular shift strategy (Serrà
et al., 2008), correlating (shifted) per-track averages to cognitively-inspired

9In this case we refer to the intrinsic loudness of a recording, not the loudness a
listener could manipulate by changing the volume control of her audio player.
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Figure 6.2: Method schematic summary for MSD-Pitch data. The dataset con-
tains the beat-based music descriptors of the audio rendition of a musical piece.
For pitch, these descriptions reflect the harmonic content of the piece (Jehan,
2005), and encapsulate all sounding notes of a given time interval into a compact
representation (Casey et al., 2008; Müller et al., 2011), independently of their ar-
ticulation (they consist of the 12 pitch class relative energies). All descriptions are
encoded into music code-words, using a binary discretization in the case of pitch.
Code-words are then used to perform frequency counts.

tonal profiles (Krumhansl, 1990). This strategy is commonly applied to
pitch class descriptions in many music processing contexts (Casey et al.,
2008; Müller et al., 2011), specially in the retrieval of versions of the same
musical composition (Serrà et al., 2010) and in automatic chord/key esti-
mation (Gómez, 2006).

Compared to pitch, timbre is believed to have a much higher dimensionality,
at least perceptually (Bregman, 1990). To account for this, and also in order
to better match the underlying distribution of the timbre descriptions pro-
vided in the million song dataset, we make use of a ternary, equal-frequency
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Musical facet Pre-processing Dimensionality Discretization Threshold Value(s)

MSD-Pitch Transposition to the same
tonal context.

12 real values (be-
tween 0 and 1).

Binary 0.5 (same value for each
dimension).

MSD-Timbre Remove the loudness compo-
nent and get a sample of beat-
based timbre descriptions (see
text).

11 real values. Ternary 33 and 66% quantiles
of the extracted sam-
ple (different values for
each dimension).

MSD-Loudness Take the loudness compo-
nent from timbre descriptions
and get a sample of beat-
based loudness descriptions
(see text).

1 real value. 300 steps Equal-sized steps in the
range of the extracted
sample.

Table 6.1: Summary of the encoding process for deriving music code-words from
the beat-based descriptions provided in the million song dataset. In total we have
4,096 possible MSD-Pitch code-words, 177,147 possible MSD-Timbre code-words,
and 300 possible MSD-Loudness code-words.

encoding (Cios et al., 2007), providing a total of 311 = 177, 147 possible
MSD-Timbre code-words. Thresholds are set to the 33 and 66% quantiles
of a representative sample of beat-based timbre description values10. To
construct such sample we randomly chose one million MSD-Timbre vectors
from the dataset such that a maximum of 8,000 vectors corresponded to the
same year. In this way we controlled that no bias towards a certain year
was introduced into the sample.

MSD-Loudness values are originally provided in decibels (dB), and limited
within a range from 0 to 60 (Jehan, 2005, 2010). To study their distri-
bution we treat these loudness values directly as a random variable (see
below). Nonetheless, in order to conform to the standard signal process-
ing criterion (Oppenheim et al., 1999), we subtract the loudness reference
of 60 dB used in the million song dataset from them. This yields val-
ues x ∈ [−60, 0]dBFS , where dBFS means full-scale decibels. Since this
descriptor has only one dimension, in order to encode it we use an unsuper-
vised equal-width discretization (Cios et al., 2007) into 300 equal steps. In
preliminary analysis we experimented with other discretizations (e.g. 200
steps, 300 quantiles), obtaining very similar results.

10This sample should not be confused with the final sample used for analysis. It is just
an initial sample for obtaining the 33 and 66% quantiles that will allow to threshold the
music descriptions.
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6.2.4 Fitting procedure

As in previous chapters we analyze the rank-frequency distribution of code-
words (i.e. the number of times each code-word type appears in a sam-
ple). In this case we study the long-term temporal variation (from 1955 to
2010) of the distribution parameters for the three selected audio descriptors
(i.e. MSD-pitch, MSD-timbre and MSD-Luodness). For the case of MSD-
Pitch and MSD-Timbre we evaluate, as in previous chapters, if a discrete
power-law

P (z) ∝ (z)−β , (6.1)

or a discrete shifted power-law

P (z) ∝ (z + c)−β , (6.2)

fits our data.

In the case of MSD-Loudness we evaluate our data against a truncated
reversed log-normal distribution

P (z) =

?
2

πσ2

?
erf

?
ln zmax − µ√

2σ

?
− erf

?
ln zmin − µ√

2σ

??−1

...

1

z
exp

?
− (ln z − µ)

2

2σ2

?
(6.3)

with 0 ≤ zmin ≤ z ≤ zmax and where

erf(y) = 2π−1/2

? y

0
e−u2

du (6.4)

is the error function (implemented as in Press et al. (1992)). The adjective
‘reverse’ refers to the fact that, considering x as the MSD-Loudness values,
P (x) is the mirror image of the true (truncated) log-normal distribution
thus, the variable z = −x. See Appendix B for a detailed explanation
about the three considered distributions.

The fitting procedure for power-laws and log-normals is based, as in previous
chapters of this thesis, on the procedure described by Clauset et al. (2009).
See Appendix C for further details.
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6.2.5 Variation assessment

To quantify long-term variations of a vocabulary of code-words, we need
to obtain samples of it at different periods of time. For that we perform a
Monte Carlo sampling in a moving window fashion. In particular, for each
year, we sample one million beat-consecutive code-words, considering entire
tracks and using a window length of 5 years11. This procedure, which
is repeated 10 times, guarantees a representative sample with a smooth
evolution over the years.

To assess trends in fitting parameters over the years, we perform an ordi-
nary least squares linear regression (Chatterjee and Hadi, 1986; Wasserman,
2003) and report the slope found. Statistical significance is evaluated under
the null hypothesis that the slope is different from zero, using a two-tail
t-test and p < 0.01 (if p > 0.05 we deem the slope as not statistically
significant).

6.3 Results

6.3.1 MSD-Timbre

Fig. 6.3a shows examples of the obtained MSD-Timbre density distribu-
tions (i.e. the probability distribution of the code-wods frequencies). As
in the case of Bark-band and MFCC code-words analyzed in Chapter 3,
the distribution of MSD-Timbre code-words across years is also well fit-
ted by a power-law distribution. Once more the robustness of power-law
timbral distributions is highlighted since in this experiments we are using
a different timbral descriptor which has only 11 dimensions, as opposed
to 22, and we are using a ternary, as opposed to binary, quantization.
In particular for MSD-Timbre code-words, we find that the distribution
of code-word frequencies for a given year nicely fits to a discrete shifted
power-law: P (z) ∝ (c + z)−β for z > zmin, where we take z as the random
variable (Adamic and Huberman, 2002), β = 1 + 1/α as the exponent12,
and c as a constant. As described in previous chapters, a power-law indi-
cates that a few code-words are very frequent while the majority are highly

11The window is centered at the corresponding year such that, for instance, for 1994
we sample one million consecutive beats by choosing full tracks whose year annotation is
between 1992 and 1996, both included

12Where α is the rank-frequency power-law exponent.
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Figure 6.3: MSD-Timbre distributions. (a) Examples of the density values and
their fits, taking code-words’ frequencies z as the random variable. Curves are
chronologically shifted by a factor of 10 in the horizontal axis. (b) Temporal
evolution of the fitted exponents β. (c) Spearman’s rank correlation coefficient for
all pairwise distributions.

infrequent (intuitively, the latter provide the small musical nuances neces-
sary to make a discourse attractive to listeners (Honing, 2011; Huron, 2006;
Levitin et al., 2012)). Nonetheless, it also states that there is no charac-
teristic frequency nor rank separating most used code-words from largely
unused ones (except for the largest rank values due to the finiteness of the
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vocabulary). Remarkably, when analyzing the fitted β exponent we can see
that since 1965, β constantly decreases to values approaching 4 (Fig. 6.3b).
Although such large values of β would imply that other fits could also be
acceptable, the power-law provides a simple parameterization to compare
the changes over the years (and is not rejected in a likelihood ratio test
in front of other alternatives). Smaller values of β indicate less timbral
variety: frequent code-words become more frequent, and infrequent ones
become even less frequent. This evidences a growing homogenization of
the global timbral palette. It also points towards a progressive tendency to
follow more fashionable, mainstream sonorities. In order to evaluate if the
ranks in the rank-frequency counts were changing across years or not (e.g. a
certain code-word was used frequently in 1963 but became mostly unused by
2005) we compute the Spearman’s rank correlation coefficients (Hollander
and Wolfe, 1999) for all possible year pairs. Interestingly, MSD-Timbre’s
rank correlation coefficients are generally below 0.7, with an average of
0.57± 0.15 (Fig. 6.3c). These rather low rank correlations would act as an
attenuator of the sensation that contemporary popular music is becoming
more homogeneous, timbrically speaking. The fact that frequent timbres
of a certain time period become infrequent after some years could mask
global homogeneity trends to listeners. Global timbre properties, like the
aforementioned power-law and rankings, are clearly important for music
categorization tasks (Ball, 2010; Casey et al., 2008) (one example is genre
classification (Scaringella et al., 2006)). Notice however that the evolving
characteristics of musical discourse have important implications for artificial
or human systems dealing with such tasks. For instance, the homogeniza-
tion of the timbral palette clearly challenge tasks exploiting this facet.

6.3.2 MSD-Pitch

Fig. 6.4a shows examples of the obtained rank-frequency distributions with
illustrations of the most frequent and infrequent code-words. We observe
that most used MSD-pitch code-words generally correspond to well-known
harmonic items (De Clercq and Temperley, 2011), while unused code-words
correspond to rare and dissonant pitch combinations. Noticeably, as in
the case of the timbral code-words, the distributions of MSD-Pitch code-
words are also well fitted by power-laws. Specifically, as for MSD-Timbre,
we find that the distribution of code-word frequencies for a given year fits
to a discrete shifted power-law of the form P (z) ∝ (c + z)−β (Fig. 6.4b).
This indicates that a few tonal combinations are very frequent while the big
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Figure 6.4: MSD-Pitch code-word distributions. (a) Examples of the rank-
frequency distribution (relative frequencies z? such that

?
r z

?
r = 1). For ease

of visualization, curves are chronologically shifted by a factor of 10 in the verti-
cal axis. Some frequent and infrequent code-words are shown. (b) Examples of
the density values and their fits, taking z as the random variable. Curves are
chronologically shifted by a factor of 10 in the horizontal axis. (c) Spearman’s
rank correlation coefficient for all pairwise distributions. As mentioned in the text,
correlations are all above 0.92 (we use the same color bar as in Fig. 6.3c for the
sake of comparison).

majority are extremely rare. Again, we hypothesize that this power-law be-
havior provides an optimum balance between expected and unexpected note
combinations that make a musical discourse attractive to listeners (Honing,
2011; Huron, 2006; Levitin et al., 2012). As previously mentioned, it also
implies that there is no characteristic frequency nor rank separating most
used code-words from largely unused ones. Another non-trivial consequence
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of power-law behavior is that when α ≤ 2, extreme events (i.e. very rare
code-words) will certainly show up in a continuous discourse providing the
listening time is sufficient and the pre-arranged dictionary of musical ele-
ments is big enough.

Importantly, we find this power-law behavior to be invariant across years,
with practically the same fit parameters. In particular, the exponent β re-
mains close to an average of 2.18 ± 0.06 (corresponding to α around 0.85),
which is similar to Zipf’s law in linguistic text corpora (Zipf, 1949) and
contrasts with the exponents found in previous small-scale, symbolic-based
music studies (Beltrán del Rı́o et al., 2008; Zanette, 2006). The slope of
the least squares linear regression of β as a function of the year is negligible
within statistical significance (p > 0.05, t-test)13. This makes a high sta-
bility of the distribution of MSD-Pitch code-word frequencies across more
than 50 years of music evident. However, it could well be that, even though
the distribution is the same for all years, code-word rankings were changing
across years. As in MSD-Timbre, we evaluate this possibility by computing
the Spearman’s rank correlation coefficients for all possible year pairs and
find that they are all extremely high, with an average of 0.97 ± 0.02 and
a minimum above 0.91. These high correlations indicate that code-word
rankings practically do not vary with years.

6.3.3 MSD-Loudness

MSD-Loudness distributions are generally well-fitted by a reversed log-
normal function (Fig. 6.5a). Plotting them provides a visual account of
the so-called loudness race (or loudness war), a terminology that is used
to describe the apparent competition to release recordings with increas-
ing loudness (Deruty, 2011; Milner, 2009), perhaps with the aim of catch-
ing potential customers’ attention in a music broadcast (from our point
of view, loudness changes are not only the result of technological devel-
opments but, in part, also the result of conscious decisions made by mu-
sicians and producers in the musical creation process, cf. Milner (2009)).
The empiric median of the MSD-Loudness values x grows from −22 dBFS

to −13 dBFS (Fig. 6.5b), with a least squares linear regression yielding a
slope of 0.13 dB/year (p < 0.01, t-test)14. In contrast, the absolute dif-

13The specific linear regression values for the β parameter are: Slope = 0.002, p-value
= 0.097, t-statistic = 1.66, R2 = 0.005.

14The specific linear regression values for median(x) are: Slope = 0.13, p-value =
2.4 · 10−96, t-statistic = 25.84, R2 = 0.554.
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Figure 6.5: MSD-Loudness distributions. (a) Examples of the density values and
fits of the loudness variable x. (b) Empiric distribution medians. (c) Dynamic
variability, expressed as absolute loudness differences between the first and third
quartiles of x, |Q1 −Q3|.

ference between the first and third quartiles of x remains constant around
9.5 dB (Fig. 6.5c), with a regression slope that is not statistically significant
(p > 0.05, t-test)15. This shows that, although tracks become louder year
after year, their absolute dynamic variability has been conserved, under-
standing dynamic variability as the range between higher and lower loud-
ness passages of a recording (Deruty, 2011). However, and perhaps most
importantly, one should notice that digital media cannot output signals over
0 dBFS (Oppenheim et al., 1999), which severely restricts the possibilities
for maintaining the dynamic variability if the median continues to grow.

15|Q1(x) − Q3(x)| linear regression values: Slope = 0.002, p-value = 0.321, t-statistic
= 0.99, R2 = 0.002.
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6.4 Discussion and conclusion

Beyond the specific outcomes discussed above, we now focus on the evolu-
tion of musical discourse. Much of the gathered evidence points towards
an important degree of conventionalism, in the sense of blockage or no-
transformation, in the creation and production of contemporary Western
popular music. Thus, from a global perspective, popular Western music
would have no clear trends and show no considerable changes in more than
fifty years. MSD-Pitch code-word frequencies are found to be always under
the same underlying pattern: a power-law with the same exponent and fit-
ting parameters. Moreover, frequency-based rankings of MSD-pitch code-
words are practically identical. Frequency distributions for MSD-Timbre
and MSD-Loudness also fall under a universal pattern: a power-law and a
reversed log-normal distribution, respectively. However, these distributions’
parameters do substantially change with years.

In Serrà et al. (2012b) we also studied the characteristics of the yearly-
based evolution of the transition networks formed by code-word successions,
where each node represents a code-word and each link represents a transi-
tion. Again, several of the computed network metrics for MSD-Pitch, MSD-
Timbre, and MSD-Loudness remain immutable across years. Remarkably,
the yearly-based evolution of the MSD-Pitch networks showed a reduction
in the variety of pitch transitions from 1955 to 2010.

Thus, beyond the global perspective, we observe a number of trends in the
evolution of contemporary popular music. These point towards a consistent
homogenization of the timbral palette (although with timbral popularity
varying across years), towards a standardized pitch usage and less varied
pitch transitions, and towards louder and, in the end, potentially poorer
volume dynamics.

Each of us has a perception of what is new and what is not in popular
Western music. According to our findings, this perception should be largely
rooted on well known pitch sequences, the usage of relatively novel tim-
bral mixtures that are in agreement with the current tendencies, and the
exploitation of modern recording techniques that allow for louder volumes.
This brings us to conjecture that an old popular music piece would be
perceived as novel by essentially following these guidelines. In fact, it is in-
formally known that a “safe” way for contemporizing popular music tracks
is to record a new version of an existing piece with current means, but
without altering the main “semantics” of the discourse.
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Some of the conclusions reported here have historically remained as con-
jectures, based on anecdotal evidence, or rather framed under subjective,
qualitative, and non-systematic premises. Noticeably, by taking advantage
of the previously proposed feature encodings and distribution analysis, we
have explored a promising new way to acquire formal, quantitative, and
systematic empirical evidence throughout the analysis of large-scale mu-
sic collections. Thus, we encourage the development of further historical
databases to be able to quantify the major transitions in the history of mu-
sic, and to start looking at more subtle evolving characteristics of particular
genres or artists, without forgetting the whole wealth of cultures and music
styles present in the world.



Chapter 7

Music autotagging

7.1 Introduction

In Chapters 1 and 5 we have described the standard “Bag-of-frames” (BoF)
approach used within the MIR community. This approach is often used to
build automatic classification algorithms by means of aggregated descrip-
tor sets (Casey et al., 2008; Klapuri and Davy, 2006). In Chapter 5 we
compare the BoF algorithm against a “Selection-of-frames” strategy where
only the most frequent frames within a song (i.e. those frames that belong
to the most frequent code-words) where used to compute the aggregate
feature vector. We obtained similar classification results, for genre and mu-
sical instrument classification tasks, for both approaches (i.e. using just
50 highly-frequent frames per audio file or using all frames in the song
as in the BoF approach). This behavior can be explained by code-word
frequencies being heavy-tailed distributed within songs. Thus, according
to the findings reported in this thesis, encoded audio descriptors for tim-
bre, chroma and loudness are heavy-tailed distributed whether they be at
database-level or at song-level. This fact is akin to what happens when
analyzing text documents and it has be thoroughly exploited by the IR
community (Baeza-Yates, 1999).

Noticeably, recent works in video tag classification use a combination of
code-word encoding and text-retrieval techniques to outperform state-of-
the-art tag classification algorithms (Jiang et al., 2010). In these cases
the code-words are obtained by the well known vector quantization (VQ)
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algorithm. In particular, one very recent paper applies this technique to
multimodal video concept detection with promising results (Mühling et al.,
2012). In this work “visual code-words” are complemented with “auditory
code-words” which are computed from vector-quantized MFCC frames. Re-
garding audio classification Fu et al. (2011), also inspired by text-retrieval
methods, proposed, as an alternative to the BoF approach, a bag-of-features
approach. In this case, MFCC code-words are obtained via VQ. Then, a
feature vector is computed by taking the frequency of use of each code-word
within the song. Promising results are reported by using SVM as classifica-
tion algorithm in two public datasets of about 1,000 songs. The evaluated
classification tasks were genre classification and artist identification. Un-
fortunately, the paper does not report on rank-frequency distribution of
VQ code-words. Finally, due to the intrinsic problems of VQ, where the
performance of the algorithms are much influenced by the quality of the
codebook (that depends on the initial sample, chosen distance measure,
etc.), the authors propose a more complicated multi-codebook approach.

Motivated by the similarities between the distributions of our code-words
and words in text documents (both heavy-tailed distributed), and the promis-
ing results in video tag classification when using text-retrieval techniques,
in this chapter we explore the use of text-retrieval approaches to automatic
audio classification. In particular, we explore the use of frequency weighted
code-words for automatic tagging of songs. We call this strategy as “Bag-
of-Code-Words” (BoC-W) and we compare classification results against the
BoF approach and several other state-of-art automatic tagging systems.

We perform two autotagging experiments using two completely different
public databases. In the first experiment we use the Million Song Dataset
(MSD) to evaluate our algorithm against the BoF approach using the same
audio descriptors and classification algorithm. Our train set consists on
259,552 full tracks, and our test set has 35,811 tracks, totaling 295,363
tracks. From the labels provided by last.fm1 users we have selected 54 tags
that appear in at least 10,000 songs of the dataset. In the second experi-
ment we use the Computer Audition Lab 500-Song (CAL500) dataset (Turn-
bull et al., 2007) to compare classification results from a small and well-
annotated dataset that has been used to evaluate and compare several au-
totagging algorithms in the literature (see also Appendix A).

1www.last.fm

www.last.fm
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7.2 Background on automatic tagging of music

Music automatic tagging (or autotagging) refers to the task of automat-
ically attaching meaningful semantic labels (or tags) to a novel piece of
music (Turnbull et al., 2008). These meaningful tags are related to very
different music descriptions such as evoked emotion, presence of musical in-
struments, genre, music usage, etc. (Marques et al., 2011a). Usually, these
tags are later on used as input for music recommendation systems.

Current commercial systems assign tags to music pieces by either expert-
generated descriptions, which manually annotate songs with a rich vocab-
ulary of musical terms, or by combinations of collaborative filtering and
analysis of user-supplied tags for artists, albums and tracks (Levy and San-
dler, 2009). Two paradigmatic examples are Pandora2 for the first case, and
Last.fm3 for the second. However, these approaches have their own draw-
backs, for instance, expert-based manual annotations are expensive with
respect to both money and time, and more importantly, they are not scal-
able (i.e. it would be impossible to manually-annotate the huge amount of
new music that is generated every day). On the other hand, user-based sys-
tems that exploit the user-generated context of each track suffer from the so
called “cold-start” problem (Celma, 2008). This problem appears when the
system does not have enough information from users or tracks in order to
assign relevant tags and recommend new music. Another drawback of these
systems is that track information is highly unbalanced and often follows a
power-law distribution (i.e. a small set of extremely popular songs gets the
majority of user-generated labels whereas the majority of songs are mostly
unknown and therefore gets very few labels). Thus, new or not-so-popular
songs that lay in the “long tail” of the distribution are not recommended
by the system (Celma, 2008).

To tackle these problems many researchers have proposed automatic tagging
algorithms that, using audio descriptors and machine learning algorithms,
can directly exploit the audio content of the analyzed tracks (Sordo, 2011).
Moreover, it has been shown that combining context and content provides
better results than using one approach alone (Knees et al., 2009; Turnbull
et al., 2009).

Unfortunately, the proposed content-based systems have been tested mostly
on relatively small or private corpora. Moreover, some of the methods

2www.pandora.com
3www.last.fm

www.pandora.com
www.last.fm
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do not scale to work with massive datasets (Sordo, 2011). Thus, there is
a lack of research on content-based algorithms dealing with large public
datasets while, at the same time, having those systems could provide a
major aid for solving the aforementioned problems of music recommendation
systems (Casey et al., 2008).

Content-based autotagging algorithms started as a logic expansion of pre-
vious works in genre, instrument, and artist classification (Marques et al.,
2011a). However, this is a much more difficult problem that involves multi-
class classification with a greater number of tags covering many musical
facets. Moreover, tags are not always clearly defined and can have multiple
meanings (polysemy). Furthermore, autotagging is also a multi-label prob-
lem, that is, multiple pertinent tags are associated to the same song (e.g. a
song can have many tags such as: “happy”,“party”, “dance”, “piano”, etc.).

Next, we describe state-of-the-art autotagging algorithms that are used
within this chapter as basis for comparison. We also refer the interested
reader to Sordo (2011) for an excellent review on the subject.

Turnbull et al. (2008) consider the autotagging task as one supervised multi-
class, multi-label problem. The authors propose to model the joint proba-
bility of audio features and words. For that they train a Gaussian mixture
model (GMM) over a timbral audio feature space. They estimate the pa-
rameters of the GMM using the weighted Mixture Hierarchies expectation
maximization algorithm which is computationally less expensive than tra-
ditional parameter estimation techniques.

In Bertin-Mahieux et al. (2008) the authors propose a set of 360 classifiers
trained using the on-line ensemble learning algorithm FilterBoost. They
evaluate aggregated feature vectors of MFCCs, and multi-descriptor sets
including autocorrelation coefficients of an onset trace, and spectrogram
coefficients sampled by constant-Q (or log-scaled) frequency.

Hoffman et al. (2009) propose a Code Bernulli Average (CBA) probabilistic
model that attempts to predict the probability that a tag applies to a song
based on a vector-quantized (VQ) representation of MFCCs delta features.
The CBA’s model parameters are estimated with Maximum Likelihood es-
timation using the Expectation Maximization algorithm.

Finally, Sordo (2011) proposes several distance-based autotagging algo-
rithms. In this case instead of learning from train set observations before-
hand (as in the case of GMM, Boosting methods or SVMs) the proposed
method propagates tags to unlabeled songs from closest tagged songs in
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some pre-defined acoustic space. A set of multi-faceted musical descriptors
are used including low-level (i.e. signal-based), rhythm, tonal, and high-level
(i.e. semantic tags inferred from SVM classifiers). Besides K-NN tag propa-
gation with or without feature selection, Sordo (2011) also propose a Class-
based Distance Classifier (CBDC) where instead of looking at the nearest
songs, it focuses on the nearest tags. In particular, the CBDC algorithm
computes, form a training set of tagged feature vectors, a cluster-based rep-
resentation (i.e. a centroid) for every tag. Then, when a new song arrives, all
tags whose centroids are closer than a pre-defined threshold are attached
to the song. Noticeably, two of the proposed distance-based autotagging
algorithms provided state-of-the-art results within the Music Information
Retrieval Evaluation eXchange (MIREX4) 2011 Audio Tag Classification
task. MIREX is an annual evaluation contest for Music Information Re-
trieval algorithms. Regarding tag classification the MIREX competition
compares algorithm performances against two datasets. One collection has
1,400 different tracks with 45 diverse tags not related with mood (i.e. tags
from genre, instrument, sound characteristics, etc.). The other dataset has
18 mood tag groups and 3,469 unique songs.

7.3 General method

In the following experiments we use the same general method to compute,
on one side, the standard BoF approach and, on the other side, the proposed
BoC-W algorithm. In both cases we start from short-time audio descriptors
of timbre, chroma, and loudness and generate a feature vector that is used
as input by an SVM classification algorithm.

In the case of the BoF approach, we decided that, in order to have a
more challenging algorithm to compare with, we should compute not only
the mean feature values but also its covariance, delta-mean and delta-
covariance, where delta denotes the difference between descriptor values
of two consecutive audio frames and covariance refers to the upper triangle
of the covariance matrix computed as:

Σij = cov(Xi, Xj) = E
?
(Xi − µi)(Xj − µj)

?
(7.1)

where µi = E(Xi) is the expected value of ith entry in the random vector
X (i.e. the descriptor’s values). For instance, for a frame-level descriptor of

4http://www.music-ir.org/mirex/wiki/MIREX_HOME

http://www.music-ir.org/mirex/wiki/MIREX_HOME
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Musical Facet Descriptor Quantization Codebook size
Autotag experiment I: Autotagging the MSD

Timbre MSD-Timbre (11 dim) Ternary 177,147 (311)
Harmonic Cont. MSD-Pitch (12 dim) Binary 4,096 (212)
Loundness MSD-Loudness (1 dim) 300 steps 300

Autotag experiment II: Autotagging the CAL500 dataset
Timbre MFCC (11 dim) Ternary 177,147 (311)
Harmonic Cont. HPCP (12 dim) Binary 4,096 (212)
Loundness SE (1 dim) 300 steps 300

Table 7.1: Summary of encoding strategies for the BoC-W approach.

12 dimensions we obtain a feature vector with 180 values: 12 mean values,
78 covariance values, 12 delta mean values, and 78 delta-covariance values.

For the BoC-W algorithm we first encode each frame-level descriptor into its
corresponding code-word (see Sec. 3.2.3) then we count the frequency of use
of each code-word within the audio file. Following text-retrieval techniques
we apply a weighting strategy to each frequency value and then use these
weighted values as feature vector (see Sec. 7.3.1).

It is important to notice that in the case of the BoF approach, regardless of
the song content, we always obtain a fixed-sized feature vector as summa-
rized representation of the song (e.g. the 180 values of the above example
for a descriptor of 12 dimensions). Nevertheless, in the case of the BoC-W
approach we obtain a very sparse feature vector that will vary according
to the content of the song. For instance, taking a binary-quantized 12-
dimensional descriptor, it could be the case that an extremely repetitive
song whose frames are encoded into only 10 different code-words the result-
ing feature vector will have only 10 non-zero values (out of a codebook of
212 possible values). These sparse representations are also obtained when
classifying text documents.

As mentioned in Sec. 7.1 we perform two autotagging experiments, one for
the MSD, and one for a small and well-annotated dataset called CAL500.
Table 7.1 shows a summary of the encoding strategies for each experiment.

7.3.1 Weighting strategies

In the proposed experiments we use common weighting strategies from
text information retrieval namely: Binary (BIN), Term Frequency (TF),
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and Term Frequency - Inverse Document Frequency (TF-IDF) (Salton and
Buckley, 1988).

The BIN weighting strategy just looks for the presence or absence of a
code-word within a document (or song in our case). Thus, the BIN weight
of a code-word will be “1” if the song contains such a code-word and “0”
otherwise.

In the case of TF we count the number of times a code-word is used within
a song and divided it by the total number of code-words present in the song:

tfi =
ci,j?
cj
, (7.2)

where tfi is the TF of code-word i, ci,j is the number of times the code-
word i appears in song j, and

?
cj corresponds to the total amount of

code-words within song j. Thus, the weight of each code-word can be seen
as the probability of occurrence of such code-word within the song. The
main advantage of normalizing by the song’s total number of code-words is
that the length of the song does not interfere with the resulting weights of its
code-words (which will certainly do if we just count code-words’ frequency
of use).

If we consider that highly frequent code-words as found in the “universe” of
songs (i.e. code-words with low ranks in the global distribution) are not very
informative (like stop-words in document retrieval) we could try to “reduce”
their weights within the song’s feature vector. Following the same line of
thought, we could try to “amplify” the original weight of rare code-words
as found in the global distribution. Thus, we multiply the TF weights by an
inverse-document-frequency (IDF) factor that tries to compensate for global
frequency distributions. Variations of this so called TF-IDF algorithm have
proven to be very effective within the IR filed (Manning et al., 2008).

In our case the TF-IDF (tfidf) weight for a code-word i is computed as
follows:

tfidfi = tfi ∗ idfi, (7.3)

where tfi corresponds with the previously defined TF weight of the code-
word i and idfi is the inverse document frequency for code-word i computed
as:

idfi = log(
N

dci
), (7.4)

where N is the total number of documents (i.e. songs) in the train set
and dci corresponds to the number of documents of the train set where the
code-word i was used.
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7.3.2 Classification

Regarding classification algorithms we opt for the well known support vector
machines (SVM) classifier (see Sec. 2.4 for further information about SVMs).
This decision is motivated by the fact that SVMs are widely used in MIR
in general and in autotagging algorithms in particular (Sordo, 2011). Fur-
thermore, SVMs are also of choice to avoid overfitting when having sparse
feature vectors as in our BoC-W model (Joachims, 1998).

In all cases we train binary classifiers using class-weights to compensate
for imbalance data (He and Garcia, 2009; Tang et al., 2009). Given the
big amount of data we are working with we opt for the large scale imple-
mentation of linear SVMs called LIBLINEAR (Fan et al., 2008). We also
perform a grid search for several complexity parameters (C) to find the best
classification results in every autotag experiment.

7.4 Autotag experiment I: autotagging the MSD

7.4.1 Database

For this experiment we use the same large-scale public database as in Chap-
ter 6 namely: the Million Song Database (MSD) (Bertin-Mahieux et al.,
2011). Fortunately, the authors of the dataset also provide song-level tags
for about 500,000 songs within the MSD. These tags correspond with user-
provided labels from the on-line music service last.fm5 that were matched
with songs in the MSD. This MSD subset is called the Last.fm dataset6

(LFD). In this experiment we use the provided train / test splitting for the
LFD. This splitting was made in such way that artists belong into one set
only (i.e. if an artist is present in the train set is not present in the test set
and vice versa).

Firstly, we pre-process the provided tags by manually stemming similar tags.
For instance, Progressive rock, and prog rock tags are merged into the tag
Progressive rock. Next, from the 522,366 unique tags, we select those used
in at least 10,000 songs (after the stemming process) obtaining a final list
of 54 tags to work with. The majority of the selected tags are related with
musical genre and mood (see Appendix E for a complete list of stemming

5www.last.fm
6http://labrosa.ee.columbia.edu/millionsong/lastfm

www.last.fm
http://labrosa.ee.columbia.edu/millionsong/lastfm
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words and selected tags). Finally, following LFD authors’ recommendations
we deleted a set of duplicate tracks7, and a set of matching errors between
song names and last.fm tags8.

After this selection and correction process the final dataset that we call
MSD-Tag, contains 259,552 tracks in the train set and 35,811 tracks in the
test set totaling 295,363 songs with at least 1 of the 54 selected tags.

7.4.2 Method

We use the general method described in Sec. 7.3 to compare the proposed
BoC-W algorithm against the standard BoF approach. We use the same
MSD descriptors as in Chapter 6 namely: MSD-Timbre, MSD-Pitch, and
MSD-Loudness (see also Sec. 2.2). However, in this case instead of using
a beat-based temporal segmentation, we use the more detailed temporal
resolution as provided by the MSD’s segments9.

In the case of BoF, for each song we compute an aggregate feature vector of
mean, covariance, delta mean and delta covariance values. Whereas, for the
BoC-W approach we use the same encoding strategy as in Chapter 6 (see
also Table 7.1). Thus, each of the 11 dimensions of the MSD-Timbre descrip-
tor is quantized into one out of three possible values (ternary quantization)
providing a total of 311 = 177, 147 possible MSD-Timbre code-words.

In order to estimate the quantization thresholds for MSD-Timbre we ran-
domly select 167,754 songs from MSD-Tag. This corresponds to 155,938,102
frame-size segments. Then, we use as future quantization thresholds the val-
ues that correspond to the 33 and 66% quantiles of the distribution of each
dimension’s values.

In the case of MSD-Pitch we binary-quantize each of the 12 descriptor’s
dimension using a threshold of 0.5. Thus, we obtain a total of 212 = 4, 096
possible MSD-Pitch code-words.

7http://labrosa.ee.columbia.edu/millionsong/blog/

11-3-15-921810-song-dataset-duplicates
8http://labrosa.ee.columbia.edu/millionsong/blog/

12-2-12-fixing-matching-errors
9According to MSD’s on-line documentation segments are the smallest musically rel-

evant elements, and are defined as: “a set of sound entities (typically under a second)
each relatively uniform in timbre and harmony. Segments are characterized by their per-
ceptual onsets and duration in seconds, loudness (dB), pitch and timbral content (from
http://developer.echonest.com/docs/v4/_static/AnalyzeDocumentation.pdf)

http://labrosa.ee.columbia.edu/millionsong/blog/11-3-15-921810-song-dataset-duplicates
http://labrosa.ee.columbia.edu/millionsong/blog/11-3-15-921810-song-dataset-duplicates
http://labrosa.ee.columbia.edu/millionsong/blog/12-2-12-fixing-matching-errors
http://labrosa.ee.columbia.edu/millionsong/blog/12-2-12-fixing-matching-errors
http://developer.echonest.com/docs/v4/_static/AnalyzeDocumentation.pdf
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The MSD-Loundess descriptor is quantized by using 300 equal-sized steps
extracted from the same database sample used to estimate the MSD-Timbre’s
quantization thresholds.

When computing the sparse feature vector of BoC-W we evaluate the three
weighting strategies described above namely: BIN, TF and TF-IDF (see
Sec. 7.3.1).

Regarding classification, as described in Sec. 7.3, we use the same SVM
classification algorithm to automatically label tracks from the MSD-Tag
test-set for both BoF and BoC-W feature vectors. In this case we perform a
grid search of the C parameter within the linear kernel10 using the following
values: C=1, C=10, and C=100.

7.4.3 Evaluation

Due to the imbalance nature of this classification task (i.e. some tags are
much more frequent than others), instead of reporting per-song results,
we compute per-tag F-measure results. Thus, in order to obtain global
classification results, following Marques et al. (2011a) recommendations, we
compute the mean of all tags’ F-measures (meanF), and we also compute a
global F-measure (globalF). In this case, instead of taking the mean of all F-
measure values, we take the mean values for both Precision and Recall and
then use these mean values to compute the global F-measure. Therefore,
our evaluation measures are:

meanF =

?
(Fmeasuretag)

numTags
, (7.5)

where Fmeasuretag is the F-measure value for a particular tag computed as
F = 2∗Precision∗Recall/(Precision+Recall) and numTags corresponds
with the total number of tags (i.e. 54 in this experiment), and

globalF =
2 ∗meanPrecision ∗meanRecall
meanPrecision +meanRecall

, (7.6)

where meanPrecision and meanRecall are the mean values for Precision and
Recall from all Tags (see also Sec. 2.4 for further information).

We use the same evaluation measures for both BoF and BoC-W algorithms.
10Due to the size of the database it was not possible to evaluate other SMV kernels.

For instance, using the LiBSVM (Chang and Lin, 2011) implementation with rbf kernel,
it took about ten hours to train and test only one label. Moreover, the results obtained
for the few calculated labels were worst than those obtained using a linear kernel.
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BoC-W BoF
Descriptor Dataset Codebook Mean Std. Dev. Length

MSD-Timbre train 177,147 776,38 386,81 154
MSD-Timbre test 177,147 802,17 418,10 154
MSD-Pitch train 4,096 231,34 103,62 180
MSD-Pitch test 4,096 235,47 107,29 180
MSD-Loudness train 300 104,68 32,16 4
MSD-Loudness test 300 105,36 32,68 4

Table 7.2: BoC-W and BoF feature vector lengths for train and test datasets.
In the case of BoC-W only non-zero values are counted. Codebook’s size, mean,
and standard deviation values are shown for BoC-W. In the case of BoF all feature
vectors have the same length.

7.4.4 Results

Table 7.2 shows the mean and standard deviation values of the number of
different code-words in BoC-W feature vectors (i.e. the number of different
code-words per song). For illustration purpose we also show the size of the
encoding codebook and the dimensionality of each fixed-length BoF feature
vector. As can be seen from the table, the BoC-W’s feature vectors are
sparse and their lengths (i.e. non-zero values) are, on average, larger than
the BoF feature vectors.

Tag classification

Fig. 7.1 shows meanF classification results for the BoF approach and the
different weighting strategies of the BoC-W approach. All results corre-
spond to the best classification values from grid search of the C parameter.
Detailed results can be seen in Table 7.3, including meanF, globalF and
best C parameters.

The classification results show that for both meanF and globalF the BoC-W
approach outperforms the standard BoF approach. In particular, comparing
BoF and best BoC-W results per descriptor type we always obtain classifi-
cation results that at least double the ones obtained with the BoF approach.
Furthermore, the MSD-Timbre descriptor using the BoC-W strategy with
TF-IDF weighting produces the best overall classification results (27,91%
and 31.13% for meanF and globalF respectively). These results are more
than 2.4 times the ones obtained with the best BoF approach.



98 music autotagging

MSD-Timbre MSD-Pitch MSD-Loudness

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

BoF

BoC-W (BIN)

BoC-W (TF)

BoC-W (TF-IDF)

m
e

a
n

F

Figure 7.1: MSD-Tags’ meanF classification results (y-axis) per descriptor type
(x-axis). BoF corresponds with the Bag-of-Frames approach, BoC-W means Bag-
of-Code-Words with either BIN, TF, or TF-IDF weighting strategy (in parenthesis).
Classification results are shown in percentage.

Approach MSD-Timbre MSD-Pitch MSD-Loudness

MeanF values

BoF 11,23 (C=1) 8,76 (C=10) 5,98 (C=10)
BoC-W (BIN) 19,32 (C=1) 16,69 (C=1) 7,83 (C=1)
BoC-W (TF) 27,34 (C=10) 19,42 (C=10) 14,13 (C=10)
BoC-W (TF-IDF) 27,91 (C=10) 19,42 (C=10) 14,13 (C=100)

GlobalF values

BoF 12,70 (C=1) 10,00 (C=10) 7,42 (C=10)
BoC-W (BIN) 22,83 (C=1) 21,05 (C=1) 15,09 (C=1)
BoC-W (TF) 29,52 (C=10) 19,97 (C=10) 14,33 (C=10)
BoC-W (TF-IDF) 31,13 (C=10) 20,03 (C=10) 14,28 (C=100)

Table 7.3: F-measure results for MSD-Tag dataset. F values are expressed as
percentage, and best C values from grid search are shown in parenthesis.

Regarding BoC-W weighting strategies we observe that both TF and TF-
IDF produce better classification results than BIN (except for globalF MSD-
Pitch and globalF MSD-Loudness). Moreover, we observe that TF and
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TF-IDF strategies mostly produce comparable results for both meanF and
globalF.

Following Marques et al. (2011a) recommendations, we also analyze how
individual tag performances are related to the a-priori tag frequencies. As
can be seen in Table 7.4 classification results are not strongly correlated with
tag frequencies. When computing the correlation coefficient for all tags and
their corresponding total frequencies we also obtain a moderate correlation
value of 0.4683 (see Appendix E for the complete list of per tag results, and
a scatter plot of classification results vs. tag-frequencies). This seems to
indicate that there are sufficient examples in the database for the machine
learning algorithm to learn from. Therefore, since classification differences
can not be explained by tag frequencies, it seems that those differences
are related with inherent tag properties which facilitate or not the learning
process. Moreover, nine of the ten best classified tags correspond with
musical genres being “female vocalists” the only non-genre tag within this
group. In the case of the 10 worst classified tags we found genre tags (indie
pop, progressive rock, new wave, pop rock, folk), mood tags (sad, fun,
happy), and the tags “party” and “soundtrack”. Not surprisingly, most of
these tags are ill-defined or too complex to be captured by nowadays audio
features.

In the next sections we further evaluate the best classification strategy
namely: BoC-W for MSD-Timbre with TF-IDF weighting.

Code-word selection

In this experiment we analyze the impact of removing (or keeping) the most
frequent code-words as found in the MSD-Tag train set. This procedure is
akin to “stop word removal” in IR where the most frequent terms found in
texts (e.g. words like a, the, and, to..) can be removed to increase search
performance. The idea behind this experiment is to assess the importance
of these extremely frequent code-words within the tag classification task11.
For that we apply the same method used to classify tags for the MSD-
Tag dataset. In particular, we use the best approach found in the previous
experiment namely: BoC-W with MSD-Timbre and TF-IDF weighting, and
classified with a linear SVM with C = 10. The only difference is that we
remove (or keep) from each song’s feature vector those code-words that

11Note that these highly frequent code-words correspond with low-rank code-words
within the power-law rank-frequency distribution described in previous chapters.
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Tag Frequency
Tag F-measure Train Test Total

10 best classified tags

hip-hop 58.70 14,694 2,282 16,976
metal 56.90 23,948 3,292 27,240
rap 50.49 7,918 1,220 9,138

electronic 49.71 31,266 4,734 36,000
jazz 49.51 21,264 3,585 24,849
rock 48.85 73,233 8,284 81,517
pop 41.31 47,031 5,790 52,821

female vocalists 40.42 33,388 4,344 37,732
trance 39.93 6,208 972 7,180
indie 37.70 36,105 4,588 40,693

10 worst classified tags

indie pop 15.25 10,062 1,257 11,319
progressive rock 13.86 9,638 1,593 11,231

sad 13.50 9,062 1,084 10,146
party 13.22 8,745 1,166 9,911

new wave 12.32 6,994 721 7,715
pop rock 12.01 11,295 1,279 12,574
folk 11.71 17,402 2,306 19,708
fun 9.32 7,964 897 8,861

soundtrack 7.87 8,773 849 9,622
happy 7.75 8,797 948 9,745

Table 7.4: 10 best and 10 worst tag classification results for BoC-W (MSD-Timbre
with TF-IDF weighting) and their corresponding tag frequencies. F-measure results
in percentage.

belong to the N most frequent code-words in the train set. We analyze
logarithmically spaced values of N from 1 to 100,000. Fig. 7.2 shows the
meanF classification results obtained after removing (or keeping) the N
most frequent code-words. Table 7.5 also shows meanF and globalF results.

Interestingly, if we compare the obtained results with the ones obtained
when using all code-words (i.e. 27,91% and 31.13% for meanF and globalF
respectively) we observe that we can safely remove up to 10,000 of the most
frequent code-words without affecting the classification results. On the
other hand, classification results obtained after using only those N most
frequent code-words are comparable to the previous ones only when we
keep the 100,000 most frequent code-words.

The previous experiments suggest that we can discard the 10,000 most fre-
quent code-words and, at the same time, that the 100,000 most frequent
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Figure 7.2: MeanF classification results after removing (blue) or keeping (red)
the N most frequent code-words. F-measure results in percentage.

MeanF GlobalF
N Remove Keep Remove Keep

1 28.26 31.77
10 28.26 31.77
100 28.25 15.58 31.75 15.86
1,000 28.28 19.92 31.76 20.48
10,000 28.03 23.30 31.46 24.35
100,000 24.85 27.59 27.40 30.48

Table 7.5: MeanF and globalF classification results for MSD-Tag dataset after
removing or keeping the N most frequent code-words. F-measure results in per-
centage.

code-words contain enough information to classify the test set with the
same F-measure values as when using all code-words. Thus, we also eval-
uate the classification results obtained after using only those code-words
with 10, 000 ≤ N ≤ 100, 000.

The meanF and globalF results for code-words with N between 10,000 and
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Selection Strategy MeanF GlobalF

All 27,91 31.13
Remove 10k 28.03 31.46
Keep 100k 27.59 30.48
Keep btw 10k-100k 26,13 28,61

Table 7.6: MeanF and globalF classification results for MSD-Tag dataset per
code-word selection strategy. “All” corresponds to the original results using all
code-words, “Remove 10k” means removing the 10,000 most frequent code-words,
“Keep 100K” means keeping the 100,000 most frequent code-words, and “Keep btw
10k-100k” corresponds to keeping code-words whose frequency lies between 10,000
and 100,000 (both included). F-measure results in percentage.

100,000 are 26,13% and 28,61% respectively (see Table 7.6). This result
further suggests that like in the case of text classification, the most “in-
formative” code-words are neither the most frequent nor the most rare
ones (Ferrer i Cancho and Solé, 2003).

Regarding computation times, Table 7.7 depicts the required time to train
and test all 54 labels for the MSD-Tag using MSD-Timbre descriptor. These
results correspond with the output of the linux time command executed on
an Intel R?CoreTM2 Duo CPU E8200 @ 2.66GHz x2 with 6 GB of RAM
running Ubuntu 12.04. As can be seen from the table, computation times
are drastically reduced when discarding the most frequent code-words. In
particular, the total CPU time (i.e. Usr+Sys times) is 62m06.021s for code-
words between 10,000 and 100,000 whilst the total CPU time for BoC-W
using all code-words is 127m01,913s, and for BoF is 301m52,888s. Notice
that due to the reduction of train and test file sizes the BoC-W algorithm
that uses code-words with frequencies between 10,000 and 100,000 also dras-
tically reduces the total (Real) computation time from 670m9.053s (BoC-W
with all code-words) to 93m38.779s (about 14% of the original time).

Train set reduction

Finally, we evaluate the classification results while reducing the size of the
MSD-Tag training set for MSD-Timbre, MSD-Pitch and MSD-Loudness
in the proposed BoC-W algorithm (C = 10 and TF-IDF weighting). We
randomly select a percentage of the original train set and perform the clas-
sification as in the previous experiments. We execute this procedure 3 times
(i.e. performing 3 random selections) and analyze the mean and standard
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Computation times
Algorithm Real Usr Sys

BoF 302m46.638s 299m53.201s 1m59.687s
BoC-W 670m9.053s 106m37.132s 20m24.781s
BoC-W Removed 10,000 180m3.199s 73m51.865s 9m28.208s
BoC-W Between 10,000-100,000 93m38.779s 56m34.624s 5m31.397s

Table 7.7: Computation time required to train and test with LibLinear all tags us-
ing the MSD-Timbre descriptor. All BoC-W algorithms use the TF-IDF weighting.
Real: corresponds to the total amount of time between invocation and termina-
tion of the classification process. Usr: corresponds to user CPU time and Sys:
corresponds to system’s CPU time.
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Figure 7.3: MeanF classification results after randomly selecting a percentage of
the MSD-Tag train set. Selection percentages are: 100% (i.e. the original train set),
50%, 25%, 10%, and 5%. The random selection process is performed 3 times. Here,
mean and standard deviation (error bars) of the selection rounds are depicted.

deviation of the meanF and globalF values. Fig. 7.3 shows the meanF classi-
fication results for train set reduction. The selection percentages are: 100%
(i.e. the full train set), 50%, 25%, 10%, and 5%. These results show that the
MSD-Tag train set can be safely reduced up to one quarter of its original
size without affecting the classification results. The same behavior is shown
when evaluating globalF results.
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7.4.5 Conclusions for autotag experiment I

In this section we have evaluated the proposed BoC-W algorithm for auto-
matic tag classification within a large-scale dataset. Comparing the BoC-W
against the standard BoF approach it seems clear that the BoC-W provides
much better results than the BoF approach in all evaluated descriptors. In
particular, we have found that the MSD-Timbre descriptor with TF-IDF
weighting provides the best classification results. These BoC-W results are
more than 2.4 times the ones obtained with the best BoF approach.

Code-word selection experiments suggest that the most informative code-
words are neither the most frequent nor the most rare ones of the global
distribution. We hypothesize that those extremely frequent code-words
have not enough discriminative power with respect to tags because they are
present in almost all tracks regardless of their attached tags. On the other
hand, rare code-words do not have enough generalization power to be con-
sidered by the machine learning algorithm as characteristic of a particular
tag. Thus, according to our code-word selection experiments, those code-
words whose frequency ranks lie between 10,000 and 100,000 offer a good
trade-off between generalization and discrimination power. Furthermore,
working with this reduced set of code-words not only produces comparative
classification results as working with all code-words, but also provides signif-
icant reduction in computation time specially when working with large-scale
datasets.

Finally, our experiments also reveal that the MSD-Tag train set can be re-
duced down to 25% of its original size (from 259,552 original tracks to 64,888
tracks) without damaging the overall classification results. Both train set
reduction and code-word selection experiments provide good heuristics for
drastically reducing the size of the datasets, and therefore the computation
time of the classification process, specially when working in tag classification
of datasets containing thousands of songs.

To the best of our knowledge there are no publications reporting tag clas-
sification for the Million Song Dataset. Therefore, since this is a public
dataset, the here presented results can be also used as baseline for future
research.
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7.5 Autotag experiment II: autotagging the CAL500

7.5.1 Database

In this experiment we use the Computer Audition Lab 500-Song (CAL500)
Dataset (Turnbull et al., 2007). This small and clean dataset consists of 500
musical tracks from 500 artists with 174 manually annotated tags related
to genre, mood, instrumentation, solo instrument, music usage, and vocal
characteristics (see Appendix E for a complete list of CAL500’s tags). In
our case, the main advantages of using this public dataset are: i) CAL500’s
tags are well annotated (i.e annotated by a minimum of three listeners),
and ii) there are several algorithms in the literature that have reported tag
classification results from this dataset. Therefore, our results can be put in
perspective with respect to state-of-the-art tag classification algorithms.

As in the case of the MSD, the audio files of the dataset are not distributed
by the authors due to copyright reasons. Nevertheless, the reduced number
of songs that constitute this dataset allow us to manually grab from our
in-house music collection the 500 tracks that form the CAL500 dataset.

7.5.2 Method

Here we use the same BoC-W algorithm as in autotag experiment I, but in
this case, since we have the actual audio files, we compute the audio de-
scriptors related with timbral, tonal, and energy information. In particular,
as timbral descriptor we compute MFCC coefficients, for tonal information
we use the Harmonic Pitch Class Profile (HPCP) descriptor, and for energy
we compute the Spectral Energy (SE) descriptor (see Sec. 2.2 for further in-
formation). The implementation details of each descriptor are the following
ones:

• MFCC: FFT frameSize=2,048 samples, FFT Hop Size=1,024 sam-
ples, FFT windowType= BlackmanHarris window with 62dB rolloff,
number of triangular band-pass filters=40, low frequency bound=0
Hz, high frequency bound= 11,000 Hz. In order to be consistent with
the MSD-Timbre descriptor we select the first 11 MFCC coefficients
(skipping the DC coefficient). As in Chapter 3 we use the Auditory
toolbox MFCC implementation (Slaney, 1998).
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• HPCP: FFT frame size=4,096 smples, FFT hop size=2,048 samples,
FFT window type=BlackmanHarris window with 62dB rolloff. In this
case we use the 12 HPCP coefficients following the implementation
described in Gómez (2006).

• SE: FFT frame size=2,048 samples, FFT hop size=1,024 samples,
FFT window type=BlackmanHarris window with 62dB rolloff.

As in Chapter 3 we pre-process each audio file by applying an equal-loudness
filter. This filter implements an inverted approximation of the equal-loudness
curves described by Fletcher and Munson (1933).

When generating the corresponding code-words the 11 MFCC coefficients
are ternary quantized, the 12 HPCP coefficients are binary quantized (with
threshold = 0.5), and the SE descriptor is quantized by using 300 equal-
sized steps. The threshold values used to quantize the MFCCs (33 and 66%
quantiles) and SE descriptors were computed from a public medium-size
dataset called CAL10k dataset (Tingle et al., 2010). As in the case of the
CAL500 dataset we match 7,065 files from the CAL10k dataset to our in-
house collection. Afterwards, we extract MFCC and SE descriptors using
the parameters listed above. As result we obtained 14,344,343 descriptor-
frames that were used to estimate the quantization thresholds.

In this experiment we work with BoC-W with TF-IDF weighting. Thus, the
CAL10K dataset was also used to determine the number of documents and
the code-word document frequencies that form the IDF part of the TF-IDF
weighting strategy.

The aim of this experiment is to compare the BoC-W (TF-IDF) algorithm
against state-of-the-art autotagging algorithms. Nevertheless, for the sake
of completeness, we also included the results of the BoF approach. That is,
from the computed descriptors we generate an aggregated feature vector of
mean, covariance, delta mean, and delta covariance values.

For classification, we use the same linear SVM (libLinear) algorithm as in
autotag experiment I after grid search of the C parameter (C= [0.5,1,10,100]).
We use the same configuration for the BoF strategy.

This time, instead of classifying with one descriptor at a time (like in au-
totag experiment I ), and since according to the previous results, Timbral
descriptors seem to be more suitable for the task, we decided to evaluate the
descriptors’ synergies with respect to classification results by progressively
adding to the MFCC feature vector the HPCP and SE feature vectors.
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Finally, since most autotagging algorithms evaluated against the CAL500
dataset follow the evaluation strategy proposed by Turnbull et al. (2008), in
this experiment we also adopt the same evaluation criteria. This evaluation
reports per-Tag results after predicting ten tags per song (i.e. the ten most
reliable tags from the output of the machine learning algorithm). In the
case of BoF and BoC-W we take the ten most probable tags from the
SVM probability outputs. The reported metrics are: mean Precision, mean
Recall, and F-measure (i.e. globalF). All BoF and BoC-W results are means
and standard errors computed from five-times tenfold cross-validation (i.e.
450-song for training, and 50-songs for testing). For the sake of completeness
we also report meanF results. Moreover, besides reporting tag results for
best 10-tags as in Turnbull et al. (2008) we also compute meanF and globalF
measures for all predicted tags (regardless of their number) as in the case
of autotag experiment I.

7.5.3 Results

Table 7.8 (adapted from Sordo (2011)) shows the different categories of
acoustic description used by several state-of-the-art algorithms together
with the BoF, and the proposed BoC-W. Interestingly, all algorithms in-
clude timbral descriptors (either alone or together with other audio fea-
tures). This fact goes in concordance with our findings in autotag exper-
iment I where MSD-timbre produced the best classification results when
evaluating timbre, tonal, or energy descriptors separately.

Table 7.9 shows classification results for several autotagging algorithms
including: three baseline models from Turnbull et al. (2008) (i.e. Ran-
dom, Upper-bound, and Human), the state-of-the-art algorithms from Ta-
ble 7.812, BoF, and the proposed BoC-W. In particular, the “Random”
(lower-bound) baseline is obtained by sampling tags (without replacement)
from a multinomial distribution parameterized by the tag’s prior distri-
bution computed from the ground-truth tags’ frequencies. The “Upper-
Bound” model is computed directly taking ten ground-truth tags per song13.
However, since CAL500 songs have different number of tags (26 on average),
and we are annotating only ten tags per song, this upper-bound is less than
100%. The “Human” model is created by comparing the annotations of one

12All state-of-the-art results are taken as published by their corresponding authors.
Thus, we did not re-run nor re-implement these algorithms.

13If the song has less than 10 tags, random tags are selected until reaching 10 tags
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Algorithm MeanP MeanR GlobalF MeanF
BoF MFCC 22,75 (1,42) 32,57 (2,26) 26,79 25,46 (1,49)
BoF MFCC+HPCP 23,61 (1,67) 26,90 (1,91) 25,15 24,06 (1,51)
BoF MFCC+HPCP+SE 23,44 (1,67) 27,46 (2,04) 25,29 24,25 (1,57)
BoC-W MFCC 21,09 (0,98) 55,44 (3,33) 30,55 26,55 (1,24)
BoC-W MFCC+HPCP 21,68 (1,06) 53,86 (3,03) 30,92 26,62 (1,29)
BoC-W MFCC+HPCP+SE 21,34 (1,15) 51,28 (3,08) 30,14 25,59 (1,36)

Table 7.10: Autottaging classification results for BoC-W, and BoF for all pre-
dicted tags. All results are presented as percentage. Standard Deviations are
depicted in parenthesis. All C parameters are equal to 0.5.

subject against a ground truth formed by the annotations of at least other
four individuals.

Noticeably, results from Table 7.9 show that the proposed BoC-W approach
outperforms all state-of-the-art algorithms but the CBDC algorithm (which
is 1.24 percentage points above). Moreover, whilst the CBDC algorithm uses
multiple descriptor categories (see Table 7.8), our BoC-W does not benefit
from adding tonal and energy descriptors to BoC-W MFCC. Therefore, the
BoC-W approach offers a simple approach that relies only in one timbral
descriptor and offers excellent classification results when compared with
more complex state-of-the-art algorithms. Interestingly, GMM-MH, Boost
afeats exp., CBA, CBDC, and BoC-W algorithms provide globalF results
that are better than the “Human” baseline.

If we now focus on results from the BoF approach we can see that despite
using the same descriptors as the BoC-W, the obtained classification results
are far below the ones obtained with the BoC-W algorithm (and other state-
of-the-art algorithms such as CBDC or CBA). Regarding meanF results
we observe an important difference of approximately 10 percentage points
below the corresponding globalF results (much more than the difference
between MSD-Tag’s meanF and globalF results). This difference could be
linked to the fact of taking only 10-tags and the relatively small size of the
dataset, but unfortunately, meanF results were not reported for the other
approaches and we do not know if this difference is also present in the other
algorithms.

Now, instead of forcing the per-song predictions to be equal to ten labels we
take, as in autotag experiment I, all tags predicted by the SVM, regardless
of their number. In this case, both BoF and BoC-W algorithms offer better
results (see Table 7.10) and the difference between globalF and meanF is
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smaller. In particular, the best results for BoC-W are 30.92% and 26.62% for
globalF and meanF (BoC-W MFCC+HPCP), and the best BoF results are
26.79% and 25,46% (globalF and meanF) for BoF MFCC. Furthermore, we
observe that the improvement in F-measure results for the BoC-W approach
is due to an increment in recall values which are above 50% in all BoC-W
approaches14.

Finally, also as in autotag experiment I, we analyze how individual tag
performances are related to the a priori tag frequencies. Thus, Table 7.11
shows F-measure classification results for the 10 best and 10 worst classified
tags for the BoC-W MFCC algorithm. The table shows that besides the
intrinsic characteristics of each tag, there is a strong correlation between tag
frequency and classification results (i.e. low frequent tags are also poorly
classified and vice versa). The correlation coefficient between all F-measure
and tag frequency values also indicates a strong correlation of 0.9101 (see
Appendix E for the complete list of per tag results, and a scatter plot of
classification results vs. tag-frequencies). This fact stresses the importance
of having enough examples in the dataset for all to-be-classified elements,
one of the main weakness of working with small datasets.

7.5.4 Conclusion for autotag experiment II

In this experiment we have evaluated the proposed BoC-W algorithm for au-
tomatic tag classification within a small and well-annotated public dataset
(i.e. the CAL500 dataset). After comparing the performance of the BoC-W
approach (with TF-IDF weighting) against the BoF approach and several
state-of-the-art algorithms we observe that the simple BoC-W MFCC ap-
proach outperforms all other algorithms except for the more sophisticated
CBDC algorithm proposed by Sordo (2011) that uses multiple descriptors.
Once more, the BoC-W approach offers significantly better results than the
standard BoF approach computed from the same descriptors and same clas-
sification algorithm. With respect to the CAL500 dataset, we have spotted
the performance differences between computing meanF and globalF results.
Finally, we have also stressed the importance of having enough tag exam-
ples in the dataset to achieve good classification results. Otherwise, the
classification results are affected by those underrepresented tags.

14Recall values reflect the fraction of correctly classified items over the total of items
that belong to the class.
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F-measure Category Tag Tag Frequency

10 best classified tags

74.31 Song Texture-Electric 326
72.85 Song Recorded 444
69.81 Song High-Energy 231
68.38 Song Quality 287
66.86 NOT-Emotion-Tender Soft 206
66.05 Instrument Drum-Set 275
65.71 Instrument Male-Lead-Vocals 339
63.70 NOT-Emotion-Touching Loving 219
62.92 NOT-Emotion-Angry Aggressive 319
61.91 NOT-Emotion Sad 221

10 worst classified tags

1.82 Genre-Best Soul 5
1.64 Instrument Acoustic-Guitar-Solo 6
1.63 Usage Waking-up 8
1.11 Genre Bebop 6
1.11 Genre Roots-Rock 8
0.95 Instrument Female-Lead-Vocals-Solo 7
0.00 Genre Contemporary-Blues 7
0.00 Genre Country-Blues 6
0.00 Usage With-the-family 5
0.00 Instrument Trumpet-Solo 6

Table 7.11: 10 best and 10 worst tag classification results for BoC-W MFCC. F-
measure results in percentage. Category and tag names correspond to the original
CAL500 definition.

7.6 Discussion and conclusion

In this chapter we have proposed and evaluated a new algorithm for auto-
matic tagging of audio files. This algorithm is inspired by the similarities
between text distributions and the distribution results of the code-word en-
coding proposed in previous chapters of this thesis. Thus, we apply text-IR
classification techniques to our encoded audio descriptors.

The proposed BoC-W algorithm provides sate-of-the-art results a in small
and clean dataset such as CAL500 and, more importantly, scale well to real-
life large and noisy datasets such as the Million Song Dataset. In all cases
the obtained results for the BoC-W approach are much better that using
the classic BoF approach. Moreover, the fact that we use a simple encod-
ing strategy that provides a very large dictionary leading to a very sparse
feature vector with similar characteristics as the bag-of-words features used
in document classification, enables us to use fast IR algorithms specially
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developed to work with this type of features (like the SVM LibLinear im-
plementation). Furthermore, results from code-word selection and train set
reduction experiments can be exploited as a way to reduce the computation
time when classifying datasets containing thousands of instances.

Finally, since in the conducted experiments, we use two public datasets,
the here presented results provide an important comparative landmark for
future research in autotagging. Specially in the case of the MSD where, up
to our knowledge, this are the first autotagging results presented for this
corpus.





Chapter 8

Final conclusions

As stated in Chapter 1 the main goals of this thesis were: a) to analyze the
statistical distributions of commonly used MIR audio-content descriptors
as found in large datasets of real-world polyphonic music; and b) to use
the acquired knowledge regarding the distribution patterns of descriptors
to contribute to current MIR tasks and, if possible, address new tasks. On
the light of the results presented in this work we can say that these goals
have been fully accomplished. On the other hand, we feel that this thesis
constitutes a promising starting point and, at the present time, we envision
many future applications that could take profit of the here described ap-
proach (see Chapter 9). Therefore, there is still much work to be done in
the near future.

We started this manuscript by providing a general description of current
popular content-based MIR algorithms, together with their main recog-
nized problems, and possible solutions as suggested by some MIR researches
(Chapter 1). Then, we highlighted some undergoing assumptions regarding
the statistical distribution of frame-wise audio features and, at the same
time, we stressed the lack of research in trying to characterize such distri-
butions. Moreover, since this characterization effort has proven its validity
in related research fields we incorporated this aim as one of the thesis goals.

In Chapter 2 we presented background information regarding the main top-
ics addressed in the thesis. Hence, we provide a review on heavy-tail distri-
butions (Sec. 2.1), audio descriptors (Sec. 2.2), encoding methods (Sec. 2.3),
and audio classification (Sec. 2.4).
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Next, in Chapter 3, we proposed an unsupervised encoding strategy to study
the rank-frequency distribution of timbral code-words as found in large
databases of Western and non-Western music, speech, and natural sounds.
After conducting several experiments we concluded that the distribution of
the studied timbral features (i.e. Bark-band energies and MFCCs) for all
four databases is well fitted by a power-law function. Moreover, a detailed
study of the Bark-band energies descriptor led us to conclude that short-
time spectral envelopes are also heavy-tailed distributed. Furthermore, our
experiments also showed that short-time spectral envelopes present char-
acteristic morphological differences between their most and least frequent
elements.

Then, we wondered if a common mechanism that generates the observed
power-law distributions of encoded Bark-band energies could be found. In
order to answer this question, in Chapter 4, we reviewed the most suitable
power-law generative models described in the literature. After selecting
two plausible model candidates we tried to recreate the empirically ob-
served power-law distributions by performing a grid search on each model’s
parameters. From this process we found that a modified version of the tra-
ditional Yule-Simon model was able to produce quite similar distribution
results. Remarkably, with respect to our data, this model implies that when
music, speech or natural sound signals are being recorded or analyzed, we
can expect that recently occurred spectral envelopes have a great chance of
reappearing in the close next future.

Up to this point we had focused on the distribution of timbral code-words
as found in full databases. However, when plotting the rank-frequency
distribution of code-words for individual songs we had also observed similar
heavy-tailed distributions as the ones depicted in the full databases. Hence,
in Chapter 5 we provided further evidence to support the fact that timbral
features from individual songs are also heavy-tailed distributed. For that we
performed frame selection experiments for two classification tasks namely:
genre classification and musical instrument detection. We demonstrated,
using the standard BoF approach, that working with a reduced set of most
frequent MFCC frames, either obtained by using code-words’ frequencies or
by simply selecting random frames, produces similar classification results as
working with all song’s frames. This fact can be perfectly explained if the
song-wise distribution of MFCC frames follows a heavy-tail distribution.

In Chapter 6 we decided to use the proposed encoding algorithm for a
twofold purpose. The first purpose was to analyze the distribution of tim-
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bral, tonal and energy descriptors as found in a very large music dataset.
The second purpose was to measure the evolution of popular Western mu-
sic by characterizing the year-based patterns of features’ distributions. For
that we used the publicly availableMillion Song Dataset, and analyzed more
than 460,000 songs with yearly annotations between 1955 and 2010. Re-
garding the distribution of the database’s timbral feature we found that, as
in the previous experiments, its distribution can be well fitted by a power-
law. With respect to the tonal descriptor we found that its distribution
also follows a power-law. In particular, the best fit corresponds to a shifted
power-law distribution. Finally, the energy descriptor follows a reversed
log-normal distribution. On the other hand, the year-based evolution of
popular Western music showed that the distribution patterns of the tonal
descriptor remained practically unaltered for all the analyzed time period
(1955-2010). The timbral content showed a consistent homogenization of
the timbral palette with timbral popularity varying across years. Finally
the energy descriptor depicted a characteristic trend towards ever louder
recording. The proposed historical analysis of music content offers a new
perspective and new empirical evidence through a formal, quantitative, and
systematic analysis of large-scale music collections. Thus, this new source
of information could be used to complement other musicological research.

Finally, inspired by text retrieval algorithms, in Chapter 7 we proposed
new audio descriptors that take advantage of the proposed encoding and
the found distributions. We evaluated these new “Bag-of-Code-Words” fea-
tures in the complex task of automatic tagging of songs. Noticeably, the
proposed features provided state-of-the-art results when used to classify a
small and well-annotated database. Moreover, since the proposed algorithm
scale well to very large datasets, we were able to report, for the first time, on
tagging results for the Million Song Dataset. In this case, using the “Bag-of-
Code-Words” features offered much better results than using the standard
“Bag-of-Frames” approach. Furthermore, we conducted code-word selec-
tion, and train set reduction experiments that can be exploited to reduce
the computational time when classifying datasets containing thousands of
instances.

From a global perspective this work shows that, contrary to what is usually
assumed, common frame-wise audio features are heavy-tailed distributed.
Noticeably, this type of distributions are also observed for image and text
documents. This new knowledge led us to propose new strategies that
exploit this fact and provide better results than the standard Bag-of-Frames
approach. Moreover, the proposed approach is able to address common MIR
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tasks such as genre classification, instrument detection and automatic audio
tagging, and, at the same time, can be used to objectively characterize the
evolution of audio content coming from very large datasets.

The heavy-tail distribution of audio features, together with the discov-
ered evidence that short-time spectral envelopes are also heavy-tailed dis-
tributed, lead us to wonder on the implications with respect to standard
MIR algorithms. In particular, current feature summarization methods and
distance measures within the feature space should be re-assessed from this
new perspective. Furthermore, this here-discovered property could be one
of the causes of known MIR problems such as the existence of a “glass ceil-
ing” in audio classification and the presence of “hub” songs. Thus, we urge
researchers to do more work in this direction. Moreover, in the next chapter
we introduce some promising paths for future research.

Finally, according to the well known “efficient coding hypothesis” there
is a quantitative link between the statistical properties of the world and
the structure of the perceptual system (Geisler, 2008; Simoncelli, 2003).
Hence, since heavy-tailed distribution patterns seem to be a core statistical
property of short-time audio segments, we expect that this fact should be
also exploited by future “artificial perception” algorithms involved in sound
processing, sound creation, and machine listening tasks.



Chapter 9

Future work

During the creation process of this thesis many ideas have appeared in the
form of interesting new tasks and experiments. Unfortunately, time is finite
and one has to prioritize what experiments to conduct and what others to
include in the future-research bag. Nevertheless, moved more by curiosity
than by strict experimental design, we have performed a set of exploratory
experiments on some of the to-do-later ideas. Hence, in this chapter we
briefly report on some of these informal experiments whose outcomes de-
picted promising results. Therefore, we encourage future researches to fur-
ther investigate on these subjects.

9.1 BoC-W for artist identification

The automatic identification of the performer/s of a song (i.e. artist identifi-
cation) from the song’s audio content has attracted increasing interest from
MIR researches during the last few years (Ellis, 2007; Kim et al., 2006).
The interest on this task is not only on trying to label songs with missing
artist names, or identifying forgeries or false attributions, but also on trying
to understand how this task is so easily performed by humans (e.g. what
are the audio features that help most in achieving this task?).

In this case we perform an exploratory study regarding electronic music
artist identification. These experiments are included in the master thesis of
Melidis (2012). The goal of the master’s thesis was to report on the chal-
lenging task of automatic artist classification within a particular musical
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Approach MFCC HPCP SE

Essentia 19.42% 8.48% 2.25%
MIRToolbox 4.74% 3.39% 6.66%
BoC-W 21.37% 8.62% 8.17%

Table 9.1: Electronic artist identification results (F-measure) from Melidis (2012).
The Essentia, and MIRToolbox approaches correspond to the standard BoF ap-
proach with features extracted using either Essentia or the MIRToolbox libraries.
MIRToolbox results indicate hold-out set for testing.

genre. This task is more difficult than traditional artist identification be-
cause, since in this experiments, all artist belong to the same musical genre,
their music would much probably share several stylistic features. Thus, the
classification task becomes more difficult, even for human listeners. In par-
ticular, Melidis (2012) gathered a collection of 111 electronic music artists,
each of them contributing with 5 albums. The training of the algorithms
was done using 3 albums whereas the remaining 2 were used for testing.
Moreover, train and test sets were interleaved along time, e.g. artist X hav-
ing albums from 2000 (train), 2001 (test), 2003 (train), 2005 (test), 2006
(train).

This database was analyzed by several types of audio features (from Essen-
tia1 and the MIRToolbox2), and classification algorithms. The best classi-
fication result, 24.8% F-measure, was obtained with a set of 315 features
classified with SVMs in 5-fold cross-validation. This result, even not very
high, is far from the random classification baseline of 1.1% F-measure. No-
ticeably, if instead of the full set of descriptors, an aggregated feature vector
of mean and covariance MFCCs is used, the F-measure performance stayed
relatively high at 19.4%. This fact points towards the relevance of tim-
bral information for artist identification. At this point we performed an
exploratory evaluation of our BoC-W descriptor for MFCCs with TF-IDF
weighting (see Chapter 7). Interestingly, we obtained better classification
results than the standard MFCCs approach (BoF). In particular, the final
F-measure result for the BoC-W was 21.4% (see Table 9.1).

Thus, automatic artist identification seems to be a MIR task that could
also benefit from our BoC-W approach. In future research, we would like to
evaluate the BoC-W from different feature combinations, and extend this

1http://essentia.upf.edu/
2https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/

mirtoolbox

http://essentia.upf.edu/
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
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within-genre artist identification evaluation to bigger datasets containing
artist from different musical genres.

9.2 Tonal “unexpectedness” descriptor

In this experiment we propose a new audio descriptor that aims at describing
unexpected tonal segments of music. Since the TF-IDF weighting of each
audio frame (see Sec. 7.3.1) provides high values when the code-word occurs
many times within a small number of songs; mid values when the code-
word is not-so-frequent in a song, or occurs in many songs; and low values
when the code-word is present in virtually all songs, we propose to use
this weighting strategy, computed from tonal code-words, as a measure
of tonal “unexpectedness” of the frames within a song. Thus, high tonal
“unexpectedness” values will correspond to pitch-class combinations that
are used many times in a given song but are rare in most of other songs,
etc.

In particular, the tonal “unexpectedness” descriptor is computed as follows:

1. Frame-based HPCP features are computed (see Sec. 2.2).

2. HPCP frames are transposed to a common key (see Sec. 6.2).

3. Each HPCP frame is encoded into a 12 dimensional tonal code-word
(using binary EFD; see Sec. 6.2).

4. For each tonal code-word we define the “unexpectedness” value as the
TF-IDF weight of the frame computed as in Sec. 7.3.1. In this case we
used the CAL10k dataset (Tingle et al., 2010) to estimate the global
distributions.

5. The tonal “unexpectedness” descriptor corresponds to the time series
of code-words “unexpectedness” values.

In order to evaluate the proposed descriptor we take advantage of the audio
content used as stimuli in Koelsch et al. (2008)3. In particular, Koelsch
et al. (2008) investigated neural correlates of music processing by recording
event-related brain potentials, skin conductance responses and heart rate

3Downloaded from http://www.stefan-koelsch.de/stimulus_repository/

Koelsch+_2008/Repository6.html

http://www.stefan-koelsch.de/stimulus_repository/Koelsch+_2008/Repository6.html
http://www.stefan-koelsch.de/stimulus_repository/Koelsch+_2008/Repository6.html
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while listening to authentic music stimuli. The authors created a database
with 28 excerpts from classical piano sonatas performed by professional pi-
anists and recorded in MIDI format. These excerpts contain music-syntactic
irregularities in the form of “unexpected” irregular ending chords as origi-
nally arranged by the composers. Then, by manipulating the recorded MIDI
notes, the authors created two more sets namely: one set where the irregular
chords were transformed into “expected” regular endings, and another set
with “very unexpected” endings. Moreover, by further manipulation of the
MIDI notes the authors created a second dataset with the three aforemen-
tioned sets but, in this case, played without musical expression (i.e. without
variations in tempo and loudness). The study shows a number of physiolog-
ical responses from the played stimuli for unexpected endings independently
of the emotional qualities the stimuli.

In our case, we use the above dataset, and information regarding the trigger
time of the final chord4, to evaluate how the proposed tonal ”unexpected-
ness” descriptor behaves with such dataset. Hence, figures 9.1 and 9.2 show
the mean “unexpectedness” values for the three sets of 28 excerpts with
and without musical expression respectively. Noticeably, these encourag-
ing results clearly show that our descriptor reacts to unexpected and very
unexpected chords regardless of the musical expression5. Remarkably, this
behavior is similar to the physiological responses reported by Koelsch et al.
(2008).

In future research we plan to evaluate the usefulness of the proposed de-
scriptor within MIR tasks such as automatic mood classification and musical
surprise detection. We also believe that this new audio feature could help
in the automatic segmentation of music.

9.3 BoC-W weights for detecting regions-of-interest

Following the previous idea of the tonal unexpectedness descriptor we con-
ducted a series of informal tests with other encoded descriptors (e.g. MFCC,
and SE). Interestingly, the time series of TF-IDF weightings ramped in song
segments that were somehow different from the rest of the song. Depending
on the used descriptor these region-of-interest (ROI) zones were “unex-
pected” with respect to timbre, energy, etc. Thus, a systematic evaluation

4Information generously provided by Dr. Koelsch and collaborators in personal com-
munication.

5Quartile information shows a similar behavior than mean values.
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Figure 9.1: Mean values for the tonal “unexpectedness” descriptor (y-axis) from
28 stimuli with musical expression as reported in Koelsch et al. (2008). The x-axis
corresponds to time in frames of 2,048 samples. At time = 0 the final (expected,
unexpected, or very unexpected) chord is played.

of this approach is needed in the future. This task will require an annotated
database of ROI for songs. Unfortunately, up to our knowledge there is not
such public dataset available.

Noticeably, Caron et al. (2007) use power-law models to detect ROI in
image data. In this work ROIs are detected from automatic descriptions of
the image’s real rank-frequency distribution and its fitted power-law. We
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Figure 9.2: Mean values for the tonal “unexpectedness” descriptor (y-axis) from
28 stimuli without musical expression as reported in Koelsch et al. (2008). The
x-axis corresponds to time in frames of 2,048 samples. At time = 0 the final
(expected, unexpected, or very unexpected) chord is played.

believe that a similar approach can be also applied to our code-words.

Finally, if frame-wise code-word weightings are proven to be useful for de-
tecting ROIs in audio files, we believe that a song-level “interestingness” de-
scriptor could provide useful information for many classification tasks. This
“interestingness” descriptor can be computed as the number of ROI frames
divided by the total number of frames of the audio file, where ROI frames
are those frames with TF-IDF weights above some pre-defined threshold.



9.4. concluding thoughts 125

9.4 Concluding thoughts

In the first chapter of this thesis we highlighted three main problems of
BoF algorithms working with polyphonic music namely: the need for bet-
ter audio descriptors, the need for incorporating temporal information, and
the need to better understand the feature vector space. Now, at the end
of this work, we see these three problems as highly interlinked. Thus, we
have started the thesis by studying the feature vector space (problem num-
ber three). Then, the unexpected results we have discovered -i.e. that
the feature vector space is distributed in a heavy-tailed manner- led us to
propose new audio descriptors thus, moving to problem number one. Fi-
nally, in this chapter we have proposed new frame-level features that can
be used to detect interesting regions of songs. This approach can be easily
adapted to incorporate more temporal information within our descriptor
sets. For instance, we could compute one set of features from ROI segments
and another set for non-ROI ones. Moreover, looking once more at the IR
community, it would be very interesting to work with code-word n-grams
for classification. That is, to work with sequences of n code-words thus
reflecting temporal relationships between frames. All this approaches are
directly linked with problem number two. Finally, we expect that studying
n-gram distributions and statistics from code-word networks (as we started
to do in Serrà et al. (2012b)) will provide further solutions to tackle problem
number three and thus, this virtuous circle will start again.
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B. Corominas-Murtra and R. V. Solé. Universality of Zipf’s law. Phys Rev
E, 82(1):011102, 2010. doi: doi:10.1103/PhysRevE.82.011102. 56

B. Corominas-Murtra, J. Fortuny, and R. V. Solé. Emergence of zipf’s law
in the evolution of communication. Phys. Rev. E, 83:036115, Mar 2011.
doi: 10.1103/PhysRevE.83.036115. 10

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


130 bibliography
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Appendix A

Used databases

A.1 The Million Song Dataset

The Million Song Dataset (Bertin-Mahieux et al., 2011) is a publicly avail-
able dataset of audio descriptors and metadata for “a million contemporary
popular music tracks”1. This dataset was made available by Columbia Uni-
versity’s LabROSA2 and the company The Echo Nest3.

The dataset contains tracks from 44,745 unique artists from a variety of
popular Western music genres such as rock, pop, hip-hop, electronic, jazz,
or folk. It also includes metadata information like the name of the song,
the artist and, in the case of 515,576 tracks, it also includes the release year
(from 1922 to 2010).

The audio features for each track were computed by The Echo Nest Ana-
lyze API and include descriptors of timbral, tonal, loudness, and rhythmic
content. Furthermore, the provided audio features were computed at the
segment level (i.e. small audio excerpts that mainly correspond with note
onsets), but the rhythmic information can be also used to obtain, for in-
stance, beat-synchronous features.

1http://labrosa.ee.columbia.edu/millionsong
2http://labrosa.ee.columbia.edu
3http://the.echonest.com
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A.2 Speech database

The Speech dataset is an in-house collection of 130 hours of English speaker
audio files gathered from the following places:

• 5.48 hours from the TIMIT dataset (Garofolo et al., 1993), which is
a corpus of phonemically and lexically transcribed speech of English
speakers.

• 5.11 hours from the Library of Congress “Music and the brain” pod-
casts4, which corresponds to a set of 15 interviews made to scientists
related with the music and cognition fields.

• 119.43 hours from Nature podcasts5 from 2005 to April 7th 2011.
These podcasts are audio shows that feature highlighted content about
Nature published works. In order to skip music content from the
opening and closing of the audio show, we have removed the first and
last 2 minutes of sound in every file.

A.3 Western Music database

The Western Music database is an in-house database built with approxi-
mately 282 hours of Western music extracted from commercial CDs. This
collection has a total of 3,481 full tracks accounting for more than 20 mu-
sical genres including: rock, pop, jazz, blues, electronic, classical, hip-hop,
and soul. A subset of this collection (2,720 tracks) was previously used
in Gómez et al. (2009).

A.4 Non-Western Music database

The non-Western Music database contains 280 hours (3,249 recordings) of
traditional music distributed by geographical regions, as defined by UN-
ESCO6 that corresponds to countries from the Pacific, Central Asia, Asia,
Arab States and Africa. The recordings were extracted from commercial CD

4http://www.loc.gov/podcasts/musicandthebrain/index.html
5http://www.nature.com/nature/podcast/archive.html
6http://portal.unesco.org/geography
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collections used for ethnomusicological studies (field recordings and compi-
lations of traditional music) discarding those having some Western influence
(e.g. equal-tempered instruments). Once more, a great part of this collec-
tion (3,185 tracks) was previously used in Gómez et al. (2009).

A.5 Sounds of the Elements database

The Sounds of the Elements is an in-house database that contains 47.8
hours of sounds of natural inanimate phenomena such as water (rain, water
streams, waves, melting snow, waterfalls, etc), fire, thunders, wind and earth
sounds (rocks, rumbles, volcanic eruptions, etc.). This database consists of
1,141 files manually gathered from The Freesound Project7 and labeled by
the site’s users as “field-recording”.

A.6 The CAL500 database

The Computer Audition Lab 500-Song8 (CAL500) dataset (Turnbull et al.,
2007) is a public dataset that consists of 500 musical tracks from 500 artists
annotated by 3 non-expert undergraduate students using 174 tags related
to genre, mood, instrumentation, solo instrument, music usage, and vocal
characteristics. The database’s tags correspond to those tags annotated by
at least three human annotators (see Appendix E for a list of possible tags).

A.7 The CAL10k database

The CAL10k database (Tingle et al., 2010) contains 10,870 songs that were
weakly-labeled (i.e. the absence of a tag does not mean that the tag does
not apply to the song) with 475 acoustic tags and 153 genre tags. These
tags were gathered from Pandora’s9 website and, given the characteristics
of the site’s annotations, the tags were annotated by expert musicologists
involved with the Music Genome Project.

7http://www.freesound.org
8http://cosmal.ucsd.edu/cal/projects/AnnRet/
9http://www.pandora.com

http://www.freesound.org
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Appendix B

Distribution functions

As stated in the main text of this thesis, three different types of heavy-
tailed distributions are reported: discrete (pure) power-laws, shifted discrete
power-laws, and truncated reversed log-normals. For the discrete cases, the
random variable takes only integer values, which represent, in our case, the
frequency of a codeword. Then, P (z) is the probability mass function, and
gives the probability that the random variable takes the value z.

For the discrete power-law, and discrete shifted power-law P (z) is given by

P (z) =
1

ζ(β, c+ zmin)(c+ z)β
(B.1)

with z = zmin, zmin+1, . . . , where c and β are parameters (β ≥ 1), and zmin

is the minimum value of the variable for which the fit holds. We note that
zmin takes integer values and that fulfills c+ zmin > 0. The discrete (pure)
power-law case is recovered by setting c = 0.

The bivariate function ζ(β, q) is the Hurwitz zeta function,

ζ(β, q) =

∞?

n=0

1

(q + n)β
, (B.2)

which yields the Riemann zeta function for q = 1, i.e. ζ(β, 1) = ζ(β).
At several points the fitting procedure will require the computation of the
Hurwitz zeta function, which is done by means of an algorithm based on
the Euler-Maclaurin series (Vepstas, 2008).
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For the MSD-loudness distribution values of Chapter 6 (denoted by x), z
is a real variable, defined as z = −x, as well as its minimum and maximum
values zmin and zmax. Although we use the same notation as for discrete
variables, for a continuous variable the function P (z) will not be the prob-
ability mass function but the probability density, given in this case by a
truncated log-normal,

P (z) =

?
2

πσ2

?
erf

?
ln zmax − µ√

2σ

?
− erf

?
ln zmin − µ√

2σ

??−1

...

1

z
exp

?
− (ln z − µ)

2

2σ2

?
(B.3)

with 0 ≤ zmin ≤ z ≤ zmax and where

erf(y) = 2π−1/2

? y

0
e−u2

du (B.4)

is the error function (implemented as in Press et al. (1992)). The adjective
‘reverse’ used in the main text refers to the fact that P (x) is the mirror image
of the true (truncated) log-normal distribution for the variable z = −x.
Note that µ and σ do not correspond to the mean and standard deviation of
the data, but to those of the underlying non-truncated normal distribution.



Appendix C

Power-law fit

As mentioned in the main text, to visualize a straight-line in the log-log plot
it is not sufficient condition to claim that the observed data is well fitted
by a power-law. Moreover, commonly used methods for data analysis, such
as least-squares fitting, are also prone to errors when trying to evaluate
if a power-law fits our data. Hence, following the recommendations made
by Clauset et al. (2009) we use maximum likelihood (ML) estimation to
perform the fits. In particular, we evaluate if frequency distributions are
well fitted by power-laws. The reason to work with frequency distributions
is that the frequency can be considered as a random variable, whereas the
rank is not.

For a continuous random variable Z, following a power-law distribution
given by the probability density,

f(z) =
β − 1
1− jβ−1

aβ−1

zβ
∝ 1

zβ
,

defined in the range a ≤ Z ≤ b and with j = a/b (note that a and b
correspond to zmin and zmax in the main text), the ML estimator of the
exponent β is given by the maximization of the log-likelihood as a function
of β,

lnL

Nab
= ln(β − 1)− ln(1− jβ−1)− (β − 1) ln Gab

a
− lnGab,

where Nab is the number of code-word types comprised between a and b
and Gab is the geometric mean of the frequencies on that range.
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For a discrete random variable Z taking values a, a + 1, . . . b − 1, b, it is
easy to show, following Clauset et al. (2009), that the log-likelihood in the
power-law case is well approximated, in the limit of large a, by

lnL

Nab
= ln(β − 1)− ln(1− kβ−1)− (β − 1) ln Gab

a− 1/2 − lnGab,

where k = (a − 1/2)/(b + 1/2). This means that a discrete power-law
distribution between a and b can be replaced by a continuous one between
a−1/2 and b+1/2 if a is large enough, which in practice is usually achieved
by a ≥ 5 (Clauset et al., 2009) if b is much larger than a. For a power-law
with no upper limit (b→ ∞), the previous formula is still valid just taking
k = 0 and therefore a closed formula can be obtained for β, which is given
by β = 1 + 1/[lnGab − ln(a− 1/2)].

For the error ε of the exponent β, we approximate the formula for the
continuous case,

?
Nab ε =

?
1

(β − 1)2 − kβ−1 ln2 k

(1− kβ−1)2

?−1/2

,

which corresponds to one standard deviation of the distribution of β when
Nab is large. For b→ ∞, the limit k = 0 yields ε = (β − 1)/√Nab.

A maximization of the likelihood does not guarantee a good fit if the prob-
abilistic (power-law) model is not appropriate. Thus, it is necessary then
to test the goodness of the fit. In the same way as Clauset et al. (2009)
(and this choice is a matter of taste) we use the Kolmogorov-Smirnov (KS)
test (Press et al., 1992). This is defined by the KS statistic, or KS distance,
which is the maximum difference between the empirical cumulative distri-
bution and the theoretical cumulative distribution corresponding to the ML
fit, i.e.,

dKS = max∀zi

?
S(zi)−

i

Nab

?
,

where i denotes the number of data equal or above zi, zi corresponds to a
value taken by the variable Z, and S(zi), the survivor function of Z, is well
approximated (for large a) by

S(z) =
1

1− kβ−1

??
a− 1/2
z − 1/2

?β−1

− kβ−1

?
.
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The value of the KS distance does not suffice to characterize the fit as good
or bad, thus, we need a scale in order to compare it. This scale is obtained
by computer simulations of the resulting fitted ML power-law distribution,
approximated, for reasonably large a, by

z =

?
a− 1/2

[1− u(1− kβ−1)]1/(β−1)
+
1

2

?
,

where u is a continuous uniform random number between 0 and 1 and ?...?
denotes the integer part of its argument (which therefore, with the term
+1/2 inside, rounds the other term to the nearest integer). For a large
number of synthetic data sets, with Nab elements each, the same procedure
as for the empirical data is repeated: ML estimation of the β exponent plus
the calculation of the KS distance between each synthetic distribution and
its fit. In this way, a distribution of KS distances is obtained under the null
hypothesis that the data come from a power-law distribution. The p−value
is then defined as the probability that for true power-law distributed data, as
the synthetic sets we have generated, the KS distance is above the empirical
value; this is computed as the number of synthetic data sets for which their
KS distance is larger than the empirical one divided by the total number of
synthetic data sets.

In principle, for fixed values of a and b, we obtain the ML value of the
exponent β and an associated p−value. In practice, however, a and b are
not known, and one needs a criterion to select the optimum ones. At this
point we depart from the recipe provided by Clauset et al. (2009) since
that algorithm was shown to reject the power-law hypothesis for power-law
simulated data in some specific cases (Corral et al., 2011). We repeat
the previous procedure for many different values of a and b and select the
ones which maximize the log-range of the data, b/a, provided that the
corresponding p−value is high enough. We usually use a threshold value
equal to 20%. It is important to realize that the p−value of the whole
procedure is not the one corresponding to the selected values of a and b.
Computer simulations tell us that the former is a factor 2 or 3 smaller
than the latter. Nevertheless, the precise calculation of the p−value is not
relevant for our purposes.

It turns out that for the data analyzed in this thesis the resulting values of
b are always larger than the maximum value taken by the variable (i.e. no
data are outside the power-law range from the right side) and therefore it
is simpler to assume k = 0 in the previous formulas and just work with a
non-upper truncated power-law.
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Additional details regarding the fitting procedure can be found in the sup-
plementary information of Corral et al. (2010).



Appendix D

Co-occurrence tables for
Bark-band code-words

Tables D.1, D.2, D.3 and D.4 show the number of co-occurring Bark-band
code-words as obtained with the 186 ms frame. These tables account for
co-occurrence of code-words that describe 20, 50, 80 and 100% of each
database, respectively.

20% Music-nW ¬(Music-nW)

Music-W
Speech

Elements 0 0
¬(Elements) 34 1

¬(Speech) Elements 5 0
¬(Elements) 175 91

¬(Music-W)
Speech

Elements 0 0
¬(Elements) 18 16

¬(Speech) Elements 1 0
¬(Elements) 323 —–

Table D.1: Co-occurrence of code-words that account for 20% of each database
(frame size = 186 ms). The symbol ¬() denotes the negation of the proposition
inside the parentheses, e.g. ¬(Speech) stands for timbral code-words that do not
belong to the Speech database.
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50% Music-nW ¬(Music-nW)

Music-W
Speech

Elements 33 0
¬(Elements) 523 6

¬(Speech) Elements 9 0
¬(Elements) 4,434 2,253

¬(Music-W)
Speech

Elements 1 0
¬(Elements) 328 154

¬(Speech) Elements 0 0
¬(Elements) 11,784 —–

Table D.2: Co-occurrence of code-words that account for 50% of each database
(frame size = 186 ms).

80% Music-nW ¬(Music-nW)

Music-W
Speech

Elements 438 1
¬(Elements) 8,906 280

¬(Speech) Elements 68 0
¬(Elements) 60,471 41,477

¬(Music-W)
Speech

Elements 1 0
¬(Elements) 2,992 847

¬(Speech) Elements 0 0
¬(Elements) 121,154 —–

Table D.3: Co-occurrence of code-words that account for 80% of each database
(frame size = 186 ms).

100% Music-nW ¬(Music-nW)

Music-W
Speech

Elements 20,495 741
¬(Elements) 93,674 21,912

¬(Speech) Elements 8,344 1,729
¬(Elements) 291,497 360,478

¬(Music-W)
Speech

Elements 363 166
¬(Elements) 38,101 44,142

¬(Speech) Elements 1,055 1,277
¬(Elements) 493,797 —–

Table D.4: Co-occurrence of code-words that account for 100% of each database
(frame size = 186 ms).
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Autotagging experiments

E.1 Experiment I: detailed results

The list of stemming tags is shown in Table E.1 (the first tag in every line
is the one used as final tag).

Table E.2 shows the final list of selected tags and their frequencies within
the MSD-Tag dataset.

Table E.3 shows the per-tag F-measure results for the MSD-Tag dataset.
The table presents results from both BoF and BoC-W approaches using
the three selected audio features namely MSD-Timbre, MSD-Pitch, and
MSD-Loudness.

Fig. E.1 shows per-tag F-measure results for the BoC-W approach using
the MSD-Timbre descriptor vs. the total tag frequency of the MSD-Tag
dataset. As can be seen in the figure, there is no strong correlation between
both variables.

E.2 Experiment II: detailed results

Tables E.4, E.5, and E.6 show the original CAL500 tag-categories, tag names
and tag frequencies. Moreover, the tables show per-tag F-measure classifi-
cation results for the BoC-W MFCC, and BoF MFCC approaches.
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Figure E.1: F-measure results for the BoC-W approach using MSD-Timbre (y-
axis, in percentage) vs. total tag frequency (x-axis) for the MSD-Tag dataset.
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Figure E.2: F-measure results for the BoC-W approach using MFCCs (y-axis, in
percentage) vs. total tag frequency (x-axis) for the CAL500 dataset.

Fig. E.2 shows per-tag F-measure results for the BoC-W approach using
the MFCC descriptor vs. the total tag frequency of the CAL500 dataset.
As can be seen in the figure, there is a strong correlation between both
variables.
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rock 80s rock , 70s rock , 60s rock , 2000s rock , 00s rock.
pop My pop music , 80s Pop , 60s pop , Pop Music , pop singles , 90s pop , general

pop , 70s pop , Good Pop , 00s pop , pop favorites.
alternative 00s alternative , Alternative In The 2000s , Alternative In The 1990s.
indie extraordinary indie , favorite indie , mainstream-indie , indie hits.
electronic electronic music , electronic top , -electronic- , greatest electronic.
female vocalists female vocalist , female vocals , female vocal , Female Voices , female singers

, female voice , female singer-songwriter , femalesinger , female singer , vocals
female , magic female voice , sexy female vocals , female singer songwriter , female
vocal group , female singer-songwriters , female lead singer , female-vocalists ,
female vocalist , f singer-songwriter.

dance dance dance dance , 80dance , dance music , 90s dance , dance dance , dancemusic
, dance top , dance musik , Dance 90s.

alternative rock alternative-rock , rock alternative.
jazz pure jazz , Jazzz , Great Jazz , greatest jazz.
singer-songwriter singer songwriter , singersongwriter , singer-songwriters , Singer/Songwriter.
metal heavy metal , classic metal , 80s metal , true metal , classic heavy metal , 80s

Heavy Metal , metal top , 90s metal , 90s heavy metal , traditional heavy metal ,
70s heavy metal , Metal Gods , Metal songs , heavy.

chillout chill , chilled , chill-out , chill music , chilly , Chilled Out.
male vocalists male vocalist , m singer-songwriter , male vocals , malesinger , male vocal , vocals

male , Male Singers , magic male voice , male voice , male-vocalist , male singer
songwriter , a distinctive male lead vocal , malevoice , male singer.

classic rock rock classics , classic rock favorites , Classic Rock , classicrock , the best of classic
rock.

soul soul tag , 80s soul , favouritesoul , 70s soul , soulsongs , 90s soul , 60s soul , the
very best of soul , soul music.

indie rock Indie-Rock , indierock , indie rock favs.
instrumental instrumentals , Instrumental music.
punk Punk Favorites , top punk songs , 1970s-punk , 1970s punk , 80s punk , 70s punk.
oldies golden oldies , Oldies Tag , oldie , oldiess , oldies but goldies , oldies favorites ,

golden oldie.
blues Blues Tag , Blues Blues Blues.
hard rock 80s hard rock , 90s hard rock , hardrock , 70s hard rock , 60s hard rock.
guitar guitar virtuoso , acoustic guitar , Guitar Solo , Guitar Gods , electric guitar ,

guitar riffs and solos , guitar god , an electric guitar solo , guitars , instrumental
guitar , great guitar solo , 100 Greatest Guitar Solos.

Hip-Hop hip hop , hiphop , True Hip Hop , Real hip-hop , hip hop tag , real hip hop ,
hip-hop favorites , greatest hip hop.

party party music , it is party time , party time , party songs , Party Mix.
country country legends , country music , 90s country , Real Country , Country Favorites

, Country Songs.
funk funky , Funk Tag , favouritefunk.
Progressive rock 70s progressive rock , prog rock.
rnb r&b , rythm and blues , r-n-b , r & b , rhythm and blues , rhythum and blues tag

, rhythm-blues , rhythm & blues.
indie pop indiepop , Fave Indie Pop , indie-pop , indie pop favs.
Soundtrack Soundtracks , movie soundtrack , movie soundtracks.
sad sad songs , sad song , sadness , so sad , Mood: Sad.
House house music.
happy makes me happy , songs that make me happy , Happy Music , get happy , Happy

songs , Make you happy , happy happy.
punk rock punkrock , Punk-Rock.
piano solo piano , piano solo.
psychedelic psych , psy , psychadelic , psychodelic , psyhdelic.
pop rock RockPop , Pop/Rock , Rock Pop , pop - rock , rock-pop , Rock/Pop , Rock Pop ,

Pop-Rock , poprock.
downtempo down tempo.
trance favorite trance , Anthem Trance.
melancholy melancholic , melancholia , -melancholic- , melancholie , Melancholisch , melanco-

holic , melancolia , melancolic.
techno Tecno.
relax relaxing , relaxed , relaxing mood , relaxation.
new wave 80s New Wave , newwave.

Table E.1: Stemming Tags. The first column shows the selected tag name.
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Tag frequency
Tag F-measure Train Test Total
hip-hop 58.70 14,694 2,282 16,976
metal 56.90 23,948 3,292 27,240
rap 50.49 7,918 1,220 9,138
electronic 49.71 31,266 4,734 36,000
jazz 49.51 21,264 3,585 24,849
rock 48.85 73,233 8,284 81,517
pop 41.31 47,031 5,790 52,821
female vocalists 40.42 33,388 4,344 37,732
trance 39.93 6,208 972 7,180
indie 37.70 36,105 4,588 40,693
dance 37.59 19,565 2,781 22,346
ambient 36.18 13,446 2,079 15,525
reggae 35.93 7,906 918 8,824
hardcore 35.24 8,700 1,136 9,836
techno 35.23 6,579 1,089 7,668
instrumental 34.51 16,199 2,579 18,778
country 33.41 10,305 1,494 11,799
house 32.44 6,905 1,021 7,926
alternative 31.82 40,751 4,533 45,284
electronica 31.77 16,040 2,306 18,346
electro 31.18 8,861 1,458 10,319
rnb 30.98 10,596 1,443 12,039
chillout 30.07 28,083 3,734 31,817
punk 29.12 16,159 1,516 17,675
soul 28.93 16,177 2,053 18,230
piano 28.89 8,576 1,204 9,780
oldies 27.69 11,634 1,581 13,215
acoustic 27.50 12,935 1,483 14,418
singer-songwriter 26.85 21,210 2,113 23,323
indie rock 26.67 18,442 2,215 20,657
blues 25.56 14,087 1,448 15,535
funk 25.31 11,857 1,591 13,448
alternative rock 24.97 22,052 2,407 24,459
punk rock 24.23 9,528 962 10,490
downtempo 20.95 8,459 1,102 9,561
experimental 20.63 13,566 1,861 15,427
lounge 19.65 7,669 1,080 8,749
hard rock 19.55 14,731 1,219 15,950
male vocalists 18.64 23,602 2,800 26,402
relax 18.32 12,000 1,674 13,674
melancholy 17.82 12,022 1,449 13,471
classic rock 16.62 16,644 1,378 18,022
psychedelic 16.53 8,909 1,151 10,060
guitar 16.20 14,048 1,458 15,506
indie pop 15.25 10,062 1,257 11,319
progressive rock 13.86 9,638 1,593 11,231
sad 13.50 9,062 1,084 10,146
party 13.22 8,745 1,166 9,911
new wave 12.32 6,994 721 7,715
pop rock 12.01 11,295 1,279 12,574
folk 11.71 17,402 2,306 19,708
fun 9.32 7,964 897 8,861
soundtrack 7.87 8,773 849 9,622
happy 7.75 8,797 948 9,745
Total 882,030 111,507 993,537

Table E.2: Selected Tags and their frequencies for the train and test subsets;
also F-measure results (in percentage) for BoC-W (MDS-Timbre with TF-IDF
weighting) are shown.
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MSD-Timbre MSD-Pitch MSD-Loudness
Tag BoF BoC-W BoF BoC-W BoF BoC-W
acoustic 25.99 27.50 0.13 16.80 11.60 11.15
alternative 29.73 31.82 10.58 29.15 26.94 25.77
alternative rock 8.68 24.97 1.77 20.35 6.90 19.03
ambient 28.16 36.18 28.74 21.43 18.74 18.06
blues 11.73 25.56 25.90 16.64 10.21 10.94
chillout 17.40 30.07 11.44 25.62 12.50 23.88
classic rock 12.06 16.62 0.22 13.03 5.67 8.89
country 26.46 33.41 9.46 20.71 6.20 10.15
dance 29.73 37.59 22.76 28.01 12.96 17.73
downtempo 3.59 20.95 0.98 10.62 2.07 9.09
electro 16.99 31.18 7.98 20.34 8.26 11.44
electronic 19.88 49.71 20.20 40.56 7.74 28.46
electronica 4.27 31.77 5.01 23.94 2.03 15.54
experimental 7.63 20.63 4.96 14.55 4.69 12.07
female vocalists 21.91 40.42 9.58 26.24 8.93 15.91
folk 11.54 11.71 4.36 24.35 6.33 16.57
fun 4.41 9.32 0.00 6.97 1.53 6.18
funk 12.21 25.31 1.49 13.94 6.71 12.06
guitar 4.78 16.20 0.00 10.80 3.08 8.57
happy 1.79 7.75 0.00 7.35 0.92 6.09
hard rock 8.93 19.55 8.46 15.64 5.99 11.50
hardcore 22.45 35.24 22.46 21.12 12.38 15.54
hip-hop 39.55 58.70 30.39 30.86 16.79 17.53
house 8.88 32.44 9.25 19.91 4.08 9.51
indie 11.01 37.70 11.93 31.75 8.53 25.60
indie pop 2.11 15.25 0.74 11.60 0.87 8.36
indie rock 3.14 26.67 1.80 18.25 2.04 16.74
instrumental 12.89 34.51 9.08 21.43 8.34 19.86
jazz 25.54 49.51 37.00 38.90 16.97 29.80
lounge 1.01 19.65 0.00 10.52 0.70 9.03
male vocalists 6.02 18.64 0.00 17.63 2.71 11.90
melancholy 1.85 17.82 3.00 15.83 1.00 9.93
metal 30.51 56.90 36.49 42.68 20.11 34.10
new wave 3.80 12.32 0.00 6.12 0.00 4.36
oldies 9.78 27.69 7.36 18.77 3.04 12.15
party 1.36 13.22 5.63 10.19 0.82 8.08
piano 4.15 28.89 10.56 14.46 2.30 12.62
pop 10.92 41.31 9.32 35.06 6.10 26.41
pop rock 0.79 12.01 0.00 10.79 0.36 8.69
progressive rock 6.69 13.86 6.42 13.15 4.43 9.27
psychedelic 4.41 16.53 2.74 9.80 1.84 7.08
punk 9.40 29.12 12.09 19.95 5.98 16.45
punk rock 4.32 24.23 6.09 14.56 2.61 11.85
rap 9.33 50.49 6.22 20.23 2.57 10.65
reggae 24.00 35.93 26.98 15.00 8.61 7.53
relax 0.47 18.32 0.00 15.08 0.29 12.65
rnb 4.85 30.98 1.61 12.86 2.89 10.29
rock 9.31 48.85 9.55 45.67 7.36 38.48
sad 0.54 13.50 0.00 12.27 0.21 7.19
singer-songwriter 2.04 26.85 2.13 19.11 1.11 12.06
soul 4.81 28.93 3.61 17.20 1.90 14.61
soundtrack 4.19 7.87 0.00 6.08 1.80 6.83
techno 8.44 35.23 12.08 21.70 4.25 9.93
trance 9.78 39.93 14.63 22.98 0.00 8.96
Mean F 11.23 27.91 8.76 19.42 5.98 14.13
Global F 12.70 31.13 10.00 20.03 7.42 14.28

Table E.3: Per-tag autotagging results (F-measure in percentage) for best BoF
and BoC-W approaches for MSD-Timbre, MSD-Pitch, and MSD-Loudness.
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Category Tag Tag Frequency BoC-W MFCC BoF MFCC
Emotion-Angry Aggressive 48 27.02 35.09
NOT-Emotion-Angry Aggressive 319 62.92 72.46
Emotion-Arousing Awakening 154 52.15 46.84
NOT-Emotion-Arousing Awakening 99 49.18 49.87
Emotion-Bizarre Weird 22 9.18 4.32
NOT-Emotion-Bizarre Weird 296 56.00 59.83
Emotion-Calming Soothing 148 56.98 56.96
NOT-Emotion-Calming Soothing 154 60.84 55.91
Emotion-Carefree Lighthearted 109 30.43 32.45
NOT-Emotion-Carefree Lighthearted 152 45.54 39.39
Emotion-Cheerful Festive 107 40.89 37.16
NOT-Emotion-Cheerful Festive 180 50.17 51.33
Emotion-Emotional Passionate 160 43.54 39.84
NOT-Emotion-Emotional Passionate 73 32.09 29.67
Emotion-Exciting Thrilling 117 46.70 41.93
NOT-Emotion-Exciting Thrilling 147 56.02 56.06
Emotion Happy 135 44.45 41.13
NOT-Emotion-Happy Happy 135 46.15 43.11
Emotion-Laid-back Mellow 109 48.04 50.20
NOT-Emotion-Laid-back Mellow 161 58.57 52.97
Emotion-Light Playful 92 31.77 25.76
NOT-Emotion-Light Playful 187 56.52 50.94
Emotion-Loving Romantic 76 33.89 28.08
NOT-Emotion-Loving Romantic 230 61.09 56.92
Emotion-Pleasant Comfortable 184 52.92 48.55
NOT-Emotion-Pleasant Comfortable 67 31.30 35.42
Emotion-Positive Optimistic 120 41.75 39.20
NOT-Emotion-Positive Optimistic 118 38.53 38.09
Emotion-Powerful Strong 160 49.23 43.40
NOT-Emotion-Powerful Strong 65 31.50 19.95
Emotion Sad 58 31.86 28.67
NOT-Emotion Sad 221 61.91 56.46
Emotion-Tender Soft 104 52.00 50.00
NOT-Emotion-Tender Soft 206 66.86 59.18
Emotion-Touching Loving 75 37.94 33.28
NOT-Emotion-Touching Loving 219 63.70 56.32
Genre Alternative 100 40.89 38.28
Genre Alternative-Folk 8 3.92 0.00
Genre Bebop 6 1.11 0.00
Genre Brit-Pop 9 6.41 2.86
Genre Classic-Rock 90 40.40 35.78
Genre Contemporary-Blues 7 0.00 0.00
Genre Contemporary-R&B 16 8.21 0.00
Genre Cool-Jazz 13 9.68 10.19
Genre Country-Blues 6 0.00 0.00
Genre Dance-Pop 21 10.45 4.72
Genre Electric-Blues 9 9.80 0.00
Genre Funk 11 5.65 5.00
Genre Gospel 7 11.54 0.00
Genre Metal/Hard-Rock 32 19.17 26.18
Genre Punk 23 16.81 20.05
Genre Roots-Rock 8 1.11 0.00
Genre Singer-Songwriter 25 16.47 11.95
Genre Soft-Rock 48 22.67 26.44
Genre Soul 29 15.26 4.58
Genre Swing 5 3.10 0.00
Genre Bluegrass 10 7.25 0.00
Genre Blues 24 12.95 4.22
Genre Country 33 19.04 18.67
Genre Electronica 56 27.70 37.74
Genre Folk 30 20.47 17.62
Genre Hip-Hop/Rap 21 17.01 61.86
Genre Jazz 32 19.96 19.10
Genre Pop 72 35.73 34.09
Genre R&B 36 19.21 10.27
Genre Rock 136 50.36 52.68

Table E.4: CAL500 Tag-category, Tag name, tag frequencies, F-measure results
for BoC-W MFCC, and F-measure results for BoF MFCC (part I).
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Category Tag Tag Frequency BoC-W MFCC BoF MFCC
Genre World 21 11.79 9.00
Instrument Acoustic-Guitar 58 38.02 39.51
Instrument Ambient-Sounds 32 20.96 14.95
Instrument Backing-vocals 153 43.05 47.46
Instrument Bass 164 54.63 46.75
Instrument Drum-Machine 44 26.63 24.32
Instrument Drum-Set 275 66.05 73.10
Instrument Electric-Guitar-(clean) 124 41.49 36.63
Instrument Electric-Guitar-(distorted) 65 37.72 37.51
Instrument Female-Lead-Vocals 90 42.87 55.28
Instrument Hand-Drums 12 6.48 0.00
Instrument Harmonica 10 6.22 9.00
Instrument Horn-Section 18 5.58 2.00
Instrument Male-Lead-Vocals 339 65.71 85.24
Instrument Organ 6 5.24 0.00
Instrument Piano 84 39.51 31.12
Instrument Samples 32 19.09 18.57
Instrument Saxophone 23 7.71 6.54
Instrument Sequencer 39 22.24 20.42
Instrument String-Ensemble 20 16.22 21.86
Instrument Synthesizer 99 40.52 35.38
Instrument Tambourine 12 2.97 12.86
Instrument Trombone 8 4.26 0.00
Instrument Trumpet 21 16.35 4.04
Instrument Violin/Fiddle 9 7.48 0.00
Song Catchy/Memorable 165 47.66 49.28
NOT-Song Catchy/Memorable 81 33.31 24.81
Song Changing-Energy-Level 36 14.04 6.95
NOT-Song Changing-Energy-Level 200 45.73 46.77
Song Fast-Tempo 135 47.67 45.81
NOT-Song Fast-Tempo 135 57.18 57.80
Song Heav-Beat 130 50.70 42.19
NOT-Song Heavy-Beat 107 51.65 53.33
Song High-Energy 231 69.81 67.17
NOT-Song High-Energy 93 53.80 49.56
Song Like 164 37.66 35.27
NOT-Song Like 55 21.62 18.79
Song Positive-Feelings 172 51.99 43.60
NOT-Song Positive-Feelings 78 29.45 30.82
Song Quality 287 68.38 59.98
NOT-Song Quality 13 11.16 13.33
Song Recommend 84 22.46 18.92
NOT-Song Recommend 99 28.59 27.67
Song Recorded 444 72.85 81.73
NOT-Song Recorded 9 8.79 6.67
Song Texture-Acoustic 278 59.48 69.63
Song Texture-Electric 326 74.31 75.81
Song Texture-Synthesized 160 55.23 47.07
Song Tonality 92 34.01 30.51
NOT-Song Tonality 44 8.87 9.29
Song Very-Danceable 68 31.46 30.97
NOT-Song Very-Danceable 246 56.34 60.45
Usage At-a-party 62 27.82 36.12
Usage At-work 14 4.58 0.00
Usage Cleaning-the-house 43 15.61 8.44
Usage Driving 141 46.82 38.79
Usage Exercising 22 12.70 13.83
Usage Getting-ready-to-go-out 29 15.86 8.53
Usage Going-to-sleep 56 31.34 32.82
Usage Hanging-with-friends 34 6.99 14.75
Usage Intensely-Listening 20 2.92 7.86
Usage Reading 20 12.54 12.73
Usage Romancing 19 17.16 5.56
Usage Sleeping 8 5.02 13.33
Usage Studying 33 14.28 13.33
Usage Waking-up 8 1.63 0.00
Usage With-the-family 5 0.00 0.00

Table E.5: CAL500 Tag-category, Tag name, tag frequencies, F-measure results
for BoC-W MFCC, and F-measure results for BoF MFCC (part II).
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Category Tag Tag Frequency BoC-W MFCC BoF MFCC
Vocals Aggressive 37 22.81 31.65
Vocals Altered-with-Effects 35 18.08 10.30
Vocals Breathy 20 6.85 4.68
Vocals Call-Response 15 8.62 13.33
Vocals Duet 6 3.06 0.00
Vocals Emotional 95 35.42 34.91
Vocals Falsetto 11 4.25 2.50
Vocals Gravelly 12 8.04 9.00
Vocals High-pitched 35 20.23 8.61
Vocals Low-pitched 27 15.02 15.89
Vocals Monotone 6 3.08 0.00
Vocals Rapping 20 16.82 62.17
Vocals Screaming 15 10.90 10.83
Vocals Spoken 10 2.84 0.00
Vocals Strong 72 28.80 23.85
Vocals Vocal-Harmonies 57 20.69 20.04
Genre-Best Alternative 42 19.90 17.21
Genre-Best Classic-Rock 47 27.76 18.15
Genre-Best Metal/Hard-Rock 10 7.15 4.00
Genre-Best Punk 9 6.38 0.00
Genre-Best Soft-Rock 27 15.94 20.85
Genre-Best Soul 5 1.82 0.00
Genre-Best Blues 8 4.17 0.00
Genre-Best Country 9 3.72 0.00
Genre-Best Electronica 40 23.79 31.15
Genre-Best Folk 7 6.04 0.00
Genre-Best Hip-Hop/Rap 19 16.01 68.83
Genre-Best Jazz 9 6.57 5.00
Genre-Best Pop 23 10.87 1.67
Genre-Best R&B 13 7.28 11.86
Genre-Best Rock 37 19.79 16.15
Genre-Best World 16 9.39 3.33
Instrument Acoustic-Guitar-Solo 6 1.64 0.00
Instrument Electric-Guitar-(clean)-Solo 21 10.80 6.04
Instrument Electric-Guitar-(distorted)-Solo 36 23.08 12.44
Instrument Female-Lead-Vocals-Solo 7 0.95 0.00
Instrument Harmonica-Solo 6 2.50 0.00
Instrument Male-Lead-Vocals-Solo 40 13.05 11.81
Instrument Piano-Solo 14 11.05 2.86
Instrument Saxophone-Solo 10 4.63 0.00
Instrument Trumpet-Solo 6 0 0.00

Table E.6: CAL500 Tag-category, Tag name, tag frequencies, F-measure results
for BoC-W MFCC, and F-measure results for BoF MFCC (part III).
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P. Semantic audio content-based music recommendation and visualization
based on user preference examples, Information Processing & Management,
Volume 49, Issue 1, 13-33, ISSN 0306-4573, 2013.
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Molina P., Haro M., and Jordà S. BeatJockey: A new tool for enhancing
DJ skills. New Interfaces for Musical Expression (NIME). 288-291, 2011.

Bogdanov D., Haro M., Fuhrmann F., Gómez E., and Herrera P. Content-
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