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Graphical Abstracts 

 
Chapter 1. General Introduction. 

General introduction about the current 
environmental and energetic challenges that 
mankind faces. Solar fuels are a promissory 
solution and are based on Photosynthesis. In 
order to mimic it, an efficient and robust water 
oxidation catalyst (WOC) must be developed. 
Polypiridilic aquo Ru complexes are promissory 

candidates, although new systems based on other metals such as Ir, Mn, Co, 
Cu and Fe, even organocatalysts, are emerging. 

 
Chapter 2. Objectives. 

 
 

Chapter 3. New mononuclear Ru complexes containing the bipan ligand and 
their activity toward catalytic water oxidation. 

New mononuclear Ru complexes containing the ligand 
2,7-bipyridil-1,8-diazaanthracene (bipan) have been 
synthesized and fully characterized. The compounds 
were evaluated as water oxidation catalysts. The in- 
isomer exhibits a good activity in the order of 
structurally related mononuclear complexes whereas 

the out- isomer is a poor catalyst due to its insolubility under catalytic 
conditions. 
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Chapter 4. Mononuclear Ru water oxidation catalysts: Discerning between 

electronic and hydrogen bonding effects. 

New mononuculear complexes of 
general formula [Ru(trpy)(n,n’-F2-
bpy)X]m+, (n = n’ = 5: X= Cl, 3+ and X= 
H2O, 52+; n = n’ = 6: X = Cl, 4+ and X = 
H2O, 62+; trpy is 2,2’:6’,2”-terpyridine) 
have been prepared and thoroughly 
characterized. The 5,5’- and 6,6’-F2-
bpy ligands allow exerting a remote 

electronic perturbation to the Ru metal center that affects at the combination 
of species involved in the catalytic cycle. Additionally the 6,6’-F2-bpy also 
allows to interact through space with the Ru-O moiety of the complex via 
hydrogen bonding. 

 
Chapter 5. A Self Improved Water Oxidation Catalyst, Is One Site Really 

Enough? 

We show for the first time that highly active 
mononuclear Ru-aqua water oxidation 
catalysts are transformed into dinuclear 
complexes during oxygen evolution catalysis, 
even from the very beginning of the catalytic 
process. The new dinuclear species are much 
more robust than their mononuclear 
counterparts and remain active catalyst for the 
water oxidation, establishing the coexistence 

of two different catalytic cycles in solution. 
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Chapter 6. Behind Water Oxidation with Mononuclear Ru Complexes: The 

Oxo-bridge Scenario. 

Water oxidation catalysts (WOCs) based on 
mononuclear Ru complexes related to 
[Ru(trpy)(bpy)(H2O)]2+ (where trpy is 
2,2’:6’,2’’-terpyridine and bpy is 2,2’-
bypyridine) generate dinuclear oxo bridge 
complexes throughout or after the catalytic 
cycle which have remained unnoticed. The 
new dimer compound {[Ru(trpy)(bpy)]2(μ-

O)}4+ (1-dm4+) has been synthesized and completely characterized. The 
reactivity of this complex and previous known O-terminal dinuclear Ru 
complexes draws an oxo-bridge scenario of interconnected oxo bridge 
molecules with diverse nuclearity. 

 
Chapter 7. Exploring the properties of rugged oxo-bridge dinuclear water 

oxidation catalysts and its relationship with mononuclear catalysts. 

The complete electrochemical and 
spectroscopic characterization of the dinuclear 

complexes [(trpy)(5,5’-X2-bpy)RuIV(-
O)RuIV(trpy)(O)(H2O)]4+ (X = H, 1-dn4+; X = F, 2-
dn4+) has been accomplished. Additionally new 
rRAMAN spectroscopic studies evidence the 
conversion of the high oxidation states of the 
mononuclear complexes [Ru(trpy)(5,5’-F2-

Bpy)(H2O)]2+ (X = H, 12+; X = F, 24+) into its dinuclears counterparts, 1-dn4+ and 
2-dn4+ respectively, via the formation of trans-[RuVI(trpy)(O)2(H2O)]2+ (32+). 

 
Chapter 8. Conclusions. 
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General Introduction 
 

 

I Chapter 1. General Introduction. 

 

 

The conversion of sunlight into solar fuels has become a promissory candidate 
for replacing carbon-based energy resources. The effective formation of H2 on 
the cathode of the simplest photoelectrochemical cell prototype requires that 
water oxidation to oxygen occurs quickly on the anode. This last process is 
difficult from a thermodynamic and mechanistic point of view. In nature, the 
reaction is catalyzed by the Oxygen Envolving Complex (OEC) sited in the 
Photosystem II (PSII). The core structure of OEC consists in an CaMn4O5 
cubane. In order to functionally mimic this cluster several metallic complexes 
have been prepared. It is worth noting the high and sustained activity achieved 
by polypyridilic Ru complexes. A few of them have been subjected to extensive 
mechanistic studies that have provided a description of the processes leading 
to oxygen at the molecular level. Other metallic complexes of Ir, Mn, Cu, Fe 
and Co have been prepared and studied, but there are doubts about the true 
nature of the catalytic species.
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I 1.1. THE DICHOTOMY BETWEEN ENERGY DEMAND AND CLIMATE CHANGE. 

Mankind faces an energetic challenge because the increase of global 

population and economic growth. In 2008, the energetic demand was mostly 

supplied by fossil fuel resources1 (Figure 1). Nuclear energy only contributed 

with a 2.0 % and renewable energies (RE) with a 12.9 %. 

 

Figure 1. Contribution of resources to energetic demand in 2008. Source: International 

Panel of Climate Change. 

Industrial revolution enabled the beginning of the widespread use of 

carbon based fuels, firstly as coal and later as oil and most recently as gas. The 

consumption of these resources has occasioned two global problems: 

 Fossil fuels are Non-Renewable resources. For 

instance, in 1972 the discovery of additional conventional oil2 was 

smaller than the consumed oil, which means conventional oil 

reserves have been diminishing from then (Figure 2). Depletion of 

conventional oil will force to turn to unconventional resources that 

will increase considerably the price of oil and will produce geopolitical 

conflicts. It is estimated that current reserves will only be able to 

cover up to one half of the oil demand in 2023. 
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Figure 2. World conventional oil flux: additional discovered volume less consumed 

volume. Taken from reference 2. 

 The burning of fossil fuels has been releasing CO2 and another 

greenhouse gases (GHG) to the atmosphere. GHG are 

responsible for global warming3 and the consequent climate 

change. The Intergovernmental Panel on Climate Change (IPCC) 

has forecasted several scenarios and its consequences in the 

global surface warming (Figure 3). The mildest model B1 

predicts a rise of the average temperature of 1.5 °C in 100 

years. The less environmentally friendly scenario A1FI would 

produce an increase of 4 °C in the surface temperature, but the 

range of probable values is wide and the temperature could 

reach more than 6 °C. 
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Figure 3. Prediction of the rise of global surface temperature according to several 

proposed scenarios. The bars at the right indicate the best estimate (solid line within 

each bar) and the likely range calculated for different scenarios. 

The described problems with fossil fuels make desirable and important 

developing technology for more sustainable and clean resources. There are 

several alternatives, although the solution will be likely attained with a 

combination of different options. Some resources will be briefly considered 

below. 

1.1.1. Non carbon based energy resources. 

Nuclear Fission. It has been proposed to play an important role in the 

gradual replacement of carbon based resources. However there is a current 

controversy4,5 about that. Proponents of nuclear energy argue that it is a clean 

resource, reduces the CO2 emissions, is not intermittent and could reduce the 

dependence of Middle East imported fuels. Opponents argue that it is not 

safety because it can be the target of sabotage with terrorism goals.  There is 

also a risk of nuclear weapon proliferation. Furthermore, several nuclear 

accidents (Mile Island, Chernobyl and Fukushima) question its safety despite 

the continuous improvement of the technology. Moreover, 1 GWe (gigawatt-
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electric) nuclear power plant should be built every 1.6 days for the next 45 

years in order to cover6 the future energetic demand. 

Biomass. It is a renewable resource that it is being thoroughly 

considered to help to cover the future energetic demands. The concept of 

biomass includes two different technologies: 1) the direct conversion of 

biomass in energy and 2) the transformation of biomass in biofuels as 

bioethanol. 

A report7 from the US Departments of Energy (USDOE) and agriculture 

(USDA) in 2005 estimated that biomass could provide a 30 % of its present 

energetic demand using non-arable agricultural land and maximizing forestry 

usage. 

The most extended biomass-derived fuel7 is ethanol produced from the 

fermentation of sugar or starches. Bioethanol can be currently mixing8 in a 5-

10 % with gasoline in normal cars.  Special engines are needed to use bigger 

percentages (10-85%). In 2004, 30.000 millions of liters of bioethanol were 

produced as fuel,8 what represents a 2 % of the gasoline consumption. 

However an improvement of the technology is still required in order to convert 

cereals in ethanol. 

In spite of biomass is a good alternative to fossil fuels, it cannot supply 

by itself the future energetic demand because that would imply covering with 

the best known energetic crops7 about 30 % of the land mass of Earth, which 

means almost three times all cultivable land currently used for agriculture. 

Skeptics about this resource usually put forward this argument. Moreover, 

they affirm9 that the energetic balance is actually negative, that is, the 

production of 1 kcal of bioethanol needs more than 1 kcal of petroleum. 

Moreover, biomass is neither a CO2 neutral resource, calculations indicate that 
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1 hectare of an energetic crop releases a net amount of 3100 kg of CO2 

equivalents. 

Wind Power. It has an important role in the energetic supply in Spain 

since it provided10 a 16% of the energetic demand in 2011. It is a renewable 

resource that  is growing globally very fast because the price per unit of energy 

produced11 is similar to the price for new +coal or natural gas installations.  

Although it will not be able to cover all the future energetic demand by itself, 

the European Commission has estimated7 that the wind power will contribute 

a 30 % of the European energetic demand in a long term, an amount equal to 

the installed nuclear capacity. Intermittency12 has been pointed as one of the 

most important drawbacks of wind power. However, this inconvenient can be 

mitigated by having the wind farm distributed7 over a large geographical area. 

Issues as noise levels, effects on birds and the impact on landscape have been 

also considered. Some technological development is additionally required in 

the grid. Because, the present energy supply is thought to collect the current 

from a large-scale central generation of power and distribute it through the 

network, but wind power would distribute7 the generation directly throughout 

the network. Nowadays the grid could accommodate a 20% of wind power 

penetration; larger penetration would require its reconfiguration. 

Photovoltaic. The sun provides 100000 Terawatts (TW) to the Earth 

surface; this value is around 10000 larger than the world’s present energetic 

demand. Photovoltaic (PV) cells could collect this energy and meet our present 

needs if a 0.5 % of the Earth’s surface would be covered7 with PVs with a 

conversion efficiency of 10%. 
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The most extended commercially PVs are made of silicon (94 % of 

market share). The world production of PVs has been experienced a 

continuous growing so far (Figure 4).  

 

 

Figure 4. Growing of PVs production in the world. Source: reference 6. 

Despite the growing market for PVs, the price of PV electricity is too high 

to be competitive with nuclear power and fossil fuels. The total cost of an 

installed PV system should be lower than 1 US$/watt if PV wants to become 

competitive. The decrease of the cost seems even more difficult if we consider 

that the price of silicon is increasing a lot, 9 US$ in 2000, 25 US$ in 2004 and 60 

US$ in 2005. In fact, an increase of a 15% from the current value of PV is 

thought to be unavoidable, from 3.7 US$/watt until 4.5 US$/watt.   

A second generation of PV could reduce the cost. The new kind of 

devices are formed by nanocrystalline TiO2 coated by a dye, which is a 

molecule than can absorb light. In this PVs, the process of light absorption and 

charge carrier transport are accomplished by two different elements of the 

cell. The PV is called dye sensitized cell (DSC). The special characteristics of DSC 

could lower the price of a module until 1 € while the outdoor efficiency of the 
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device would be even better than the one of first generation cell. Furthermore, 

a third generation of PV is currently being developed. These new devices are 

based in a quantum phenomenon: several excitations can be produced by the 

absorption of only one photon, if the energy of the photon is several times 

higher than the band gap. 

On the other hand, solar energy can be also converted into electricity by 

the technology called concentrated solar power (CSP). The sunlight is 

concentrated in a small beam which is converted in heat. Then, the produced 

heat can be used for making electricity. It is a very promising technology, it has 

been estimated that it could provide13 12-25% of the world energetic demand 

in 2050. Spain is the world leader in CSP, more than 50 solar projects have 

been approved in this country and Spanish companies are exporting their 

technology around the world. 

As in the case of wind power, intermittency is a drawback for this 

resource. Pro-nuclear associations14,15 are very skeptic about the viability of 

non-hydro renewable energies to replace carbon based and nuclear energies 

because the intermittency.  However, several authors16 have suggested that 

intermittency can be overcome if solar and wind powers are combined. They 

are seasonally and geographically complementary, solar energy uses to peak in 

summer; in contrast, in many areas wind energy is lower in summer and higher 

in winter. Additionally, high pressure areas tend to have clear skies and low 

surface winds whereas low pressure areas tend to be windier and cloudier. 

Moreover, different energy storage technologies have been devised to supply 

the demand when this is very high. Pumped-storage hydroelectricity, 

rechargeable batteries, molten salts and paraffin wax are some of the 

proposed solutions. Solar fuels have been envisaged as the most practical 
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way17 to store solar energy, sunlight is converted into chemicals which keep 

the solar energy as chemical bonds. These compounds are usually hydrogen or 

ethanol. Solar fuels will be considered in-depth below. 

Other renewable resources exist, although they will not be described 

because it is out of the scope of this work. It can be mentioned that 

geothermal energy and wave and tidal power are being also exploited to help 

to supply the future energetic demand. On the other hand, fusion energy 

seems a non-realistic future alternative7 to fossil fuels, at least in a medium 

term. The first fusion reactor (the international program ITER) will not work18 

before 2016 and recent setbacks could extend the date until 2022. 
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I 1.2. SOLAR FUELS. 

Sunlight can be converted in several useful kinds of energy: heat, 

electricity and fuels. Solar fuels19 are concentrated energy carriers with long 

term storage capacity produced from energy input from solar irradiation. Solar 

fuels are a very interesting option to store solar power.  The energy density of 

traditional reservoirs17 like pumped water (≈0.001 MJ/Kg at 100 m), 

compressed air (≈0.5 MJ/Kg at 300 atm) and batteries (≈0.1-0.5 MJ/kg) is 

modest, in contrast, current liquid fuels have an energy density 100 times 

bigger (≈50 MJ/Kg) and in the case of hydrogen is even larger (140 MJ/Kg).  

Therefore, the conversion of sunlight into a solar fuel like hydrogen would 

enable to save a great amount of energy in a small space, ready to be used 

when it is needed. In this way, the intermittency issue would be resolved. 

The conversion of sunlight into solar fuels is known nowadays as 

“Artificial Photosynthesis” because it is similar to the natural occurring process 

photosynthesis, where the reaction of sunlight, water and CO2 produces the 

organic molecules that the plant needs for growing. Before “artificial 

photosynthesis” is described in detail, the principles and key points that 

operate in photosynthesis will be presented.  

1.2.1. Photosynthesis. 

Photosynthetic organisms collect sunlight as an energy source to 

synthesize carbohydrates from CO2 and H2O (Scheme 1). The side product of 

the reaction is O2 which is released into the atmosphere. 

 

Scheme 1. Photosynthesis equation. 
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At the heart of photosynthesis is the splitting of water by sunlight in O2 

and H2 (Scheme 2 (3)), although hydrogen is not produced as such, it is actually 

incorporated in the final sugars by means of some intermediates like NADPH2.  

 

Scheme 2. Water splitting reaction (3) and its two constituent half-reactions: water 

oxidation (1) and proton reduction (2). 

If a mechanistic approach to water splitting is addressed, the process 

can be divided into two half-reactions (Scheme 2 (1) and (2)). The mechanistic 

approach20 is useful since photosynthesis in green plants takes place in the 

thylakoid membrane and occurs in two physically separated molecular 

assemblies: light driven water oxidation in Photosystem II (PSII) and CO2 

reduction in Photosystem I (PSI) and Calvin cycle. 

The water oxidation reaction and PSII will be considered in-depth in the 

next sections. 

1.2.1.1. Thermodynamic and kinetic features of water oxidation. 

The oxidation of water has different thermodynamic barriers that 

depend21 on the number of removed electrons. The more electrons released, 

the lower the thermodynamic potential (Table 1). 
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Table 1. Standard potentials for water oxidation at pH=1 and pH=7. 

Redox Processa E0 / V (vs. SSCE) 

                 pH = 1                   pH= 7    

·OH + 1H+ + 1e- → H2O 2.50 2.15 

HO-OH + 2H+ + 2e- → 2H2O 1.48 1.13 

HO-O· + 3H+ + 3e- → 2H2O 1.37 1.02 

O=O + 4H+ + 4e- → 2H2O 0.94 0.58 

aThe formal oxidation state of the O-atoms are labeled according to the next code:  -2, 

red; -1, blue; 0, green. 

From a thermodynamic point of view, the 4 electrons/4 protons process 

is the less demanding one. This means that oxidation of water to oxygen (O2) is 

the most feasible reaction and nature uses it. 

However, it exhibits a mechanistic complexity, because all the 4 e- and 

the 4 H+ cannot be removed at the same time, 4 O-H bonds from two water 

molecules have to be broken and a double O-O bond has to be formed.  

Water oxidation to oxygen can also be contemplated as an addition of 

hydrogen transferring22 reactions (Scheme 3). Under this perspective, oxidizing 

water to O2 requires a hydrogen atom abstracting reagent or the combination 

of an oxidant and a base with a higher homolytic bond dissociation free energy 

for the X-H bond (BDFE) than the calculated average BDFE for the O-H bonds of 

water (BDFEaverage = 86 kcal mol-1). In PSII, the oxidizing equivalents pass 

through a tyrosine/tyrosyl radical couple, which has BDFE = 87.8 kcal mol-1 in 

aqueous solution. Although this BDFE could change inside the protein, it seems 

reasonable to assume that tyrosyl radical has just enough energy to oxidize 

water at low overpotential. 
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Scheme 3. H-transferring oxygen reduction. 

1.2.1.2. Photosystem II (PSII). 

PSII is the natural occurring assembly where water oxidation to oxygen 

takes place during photosynthesis. Several X-Ray structures have been 

resolved with a gradual increase of the atomic resolution: 3.5 Å by Barber23 

and coworkers, 3.0 Å and 2.9 Å by Saenger24,25  and coworkers and recently 1.9 

Å by Umena26 and coworkers. PSII is located in the thylakoid membrane and 

contains 20 subunits. It performs a series of light induced processes27 (Figure 5) 

leading to the oxidation of water. The first event after the absorption of a 

photon by the chlorophyll P680 is a primary charge separation: an electron is 

transferred from the excited chlorophyll P680* to a single electron acceptor 

pheophytin (process a, Figure 5), the electron transfer lasts a few ps. After 

that, the electron is transferred to secondary quinone acceptors (processes b 

and c, Figure 5). On the other hand, a tyrosine residue transfers an electron to 

the oxidized chlorophyll (process d, Figure 5) which came back to its initial 

state ready to absorb another photon. Then tyrosine will able to oxidize once 

(process e, Figure 5) the oxygen evolving complex (OEC), responsible for the 

water oxidation reaction. Tyrosine is a good donor and regenerates quickly P680 

and shuttles efficiently the redox equivalents needed for water oxidation. The 

complete pathway has to be repeated four times to provide four redox 

equivalents to OEC. The mechanistic complexity of water oxidation by PSII lies 

in storing four redox equivalents in OEC avoiding back electron transfers or 

other quenching mechanism. The long distance between OEC and P680 (approx. 

13 Å) reduces the possibility of back electron transfer. 
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Figure 5. Schematic view of PSII and light induced water oxidation.  

1.2.1.3. The Oxygen Evolving Complex (OEC). 

The oxygen evolving complex is a Mn4O5Ca cluster. X-Ray 

crystallographic studies of PSII, indicated above, have revealed its structure. 

The cluster consist in a cubane-like structure (Figure 6) where there are three 

manganese and one calcium atoms linked by oxo bridge ligands. A forth 

manganese atom is connected with the cubane by a single oxo bridge, referred 

to as “dangler”. Several amino acid residues surround the Mn4O5Ca cluster and 

provide a coordination framework to the metal atoms or facilitate a hydrogen 

bonding network.  
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Figure 6. X-Ray structure of the Mn4O5Ca cluster taking from reference 25. (Left) 

Mn4O5Ca cubane (distance in Å), (right) Mn4O5Ca cubane and surrounding amino acid 

residues. 

The high atomic resolution structure provided by Umena et al26 has 

controversial points, although it has been the only structure where the 

localization of the oxo bridge atoms within the Mn4O5Ca cluster has been 

observed. 

Two main features28 have attracted attention: 1) The identity of O5 and 

its placement, it could be assigned as a week oxo bridge, a hydroxo or an aquo 

ligand; 2) Earlier high precision extended X-ray absorption fine structure (EXAF) 

results and previous X-Ray structures gave some key metal-metal distances 

different from the 1.9 Å resolution structure. The discussion has led to two 

proposals. 

Firstly, it has been postulated that photoreduction of the manganese 

atoms occurs during data collection29-31 due to exposure to X-Ray light. The 

XRD structure would not correspond to the resting state of PSII, S1, but it 

would be a lower oxidation state. 

Secondly, it has been proposed that the mean oxidation state of 

manganese in the resting state S1 is actually +3.028,32 and not +3.5 as several 

research groups33 have claimed.  In the 1.9 Å resolution structure the 
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distribution of oxidation states would correspond to III/III/III/III and in the 2.9 Å 

III/IV/III/II. Both structures would be one proton tautomers (Scheme 4) and 

exchanging would occur with a low activation barrier (40 kJ mol-1) that favors 

the 1.9 Å structure. 

 

Scheme 4. Tautomers exchange in the S1 state of OEC. 

Water oxidation mechanism. 

The oxygen evolution reaction is mediated by a nearby oxidized tyrosine 

molecule (residue 161 of the D1 protein) that oxidizes OEC four times. The 

amino acid works as an intermediate7 electron carrier between the Mn4O5Ca 

cluster and P680˙
+.  

It is known that the oxidation of water by OEC involves at least five 

intermediate states, called S-states. The gradual change from the most 

reduced state S0 to the most oxidized one S4 is driven by each photochemical 

turnover of the PSII center (Scheme 5). The state S4 is achieved after the 

accumulation of four oxidizing equivalents. Then, S4 can oxidize two molecules 

of water and OEC comes back to the S0 state. 

2,9 Å structure 1,9 Å structure
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Scheme 5. S-state cycle for the photooxidation of two water molecules to oxygen by 

OEC mediated by a nearby tyrosine (Yz) residue. The time scale for the conversion of 

each S-state is marked in blue. 

The S1 state is thermodynamically stable34 and samples in the dark 

evolve to this state after some hours. The state S2 can be obtained after flash 

illumination at room temperature or via low temperature illumination at 200 

K. The transition S1 → S2 occurs without protein rearrangement. The state S3 

quickly decays to the S0 state with the concomitant release of triplet oxygen35 

and the rebinding of at least one water molecule. The state S4 has never been 

spectroscopically identified. 
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The pathway that OEC employs to form an O-O bond is unknown at 

present, although there are two main proposals based on computational and 

spectroscopic experiments: 

 Mechanisms where water nucleophilic attack occurs 

between two substrate oxygen atoms. There are several proposed 

pathways of this kind, although three of them are more consistent 

with crystallographic and spectroscopic data: a) A Ca2+-bound 

water/hydroxo36-38 attacks to a MnIV-oxyl or a MnV-oxo moiety, 

probably W3 and W2 (Scheme 6, WNA(1)); b) the water nucleophilic 

attack involves two water/hydroxo (W1 and W2) ligands39 on the 

“dangler” Mn (Mn4) atom (Scheme 6, WNA(2)); c) A Ca2+-bound 

water/hydroxo attacks to a μ-oxo/hydroxo bridge40 (O1) between 

Mn2 and Mn1 (Scheme 6, WNA(3)). 

 

Scheme 6. Water nucleophilic attack pathways for the O-O bond formation by OEC. 
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 Oxo/oxyl radical coupling41 of two Mn oxygen ligands. 

An exchanging fast substrate binds to the open coordination side on 

the Mn1 as an aquo or hydroxo ligand in the states S2 or S3 and 

becomes an oxyl radical in S4. Then, the radical coupling with O5 

occurs and oxygen is produced (Scheme 7). 

 

Scheme 7. Radical coupling pathway for the O-O formation by OEC. 

1.2.2. Artificial Photosynthesis. 

The concept of artificial photosynthesis is based on mimicking the light 

(photo collection) and dark (energy conversion and CO2 capture) processes of 

natural photosynthesis in order to produce energy (electricity and hydrogen) 

and biopolymers (including food) with high efficiency. 

The simplest model of a photoelectrochemical cell42,43 for water splitting 

consists of two compartments physically separated by a proton exchange 

membrane (Figure 7). One compartment corresponds to the anode and it is 

usually divided in 3 components: a photosensitizer, a photoanode 

semiconductor and a water oxidation catalysts. The other compartment is 

made only of a proton reduction catalyst. 

Water splitting starts with irradiation of the photosensitizer which is 

excited and transfers an electron to the conduction band of a photoanode 

semiconductor, usually related to TiO2 (Scheme 8, eq. 1). Then, the electron 

moves to the cathode where there is a proton reduction catalyst that produces 
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the hydrogen (Scheme 8 eq. 2). On the other hand, the oxidized 

photosensitizer is reduced by a water oxidation catalyst that can oxidize water 

to oxygen when reaches a high oxidation state (Scheme 8 eq. 3). Water 

splitting requires exchanging 4 electrons, thus the absorption of 4 photons is 

needed to carry out the process. Furthermore, multielectronic and fast 

catalysts are indispensables since multielectron catalytic processes must 

proceed before back electron transfers. 

 

Figure 7. Model of a photoelectrochemical cell. The movement of electrons after 

irradiation has been indicated by red curve arrows. 

 

Scheme 8. Electron transfer processes after irradiation of the photosensitizer. In 

purple, the proton reduction catalyst, in red, the water oxidation catalyst. 
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1.3. WATER OXIDATION CATALYSIS. 

Water oxidation catalysis is currently recognized as a bottleneck44,45 for 

the development of the described photoelectrochemical cells and is an active 

area46-51 of research. Catalysts of different transition metals have been 

synthesized and tested. Molecular catalysts are usually mononuclear, dinuclear 

and multinuclear complexes of ruthenium, manganese, iridium, iron, cobalt 

and copper. In addition, polyoxometalates of ruthenium, cobalt or copper have 

been extensively used. There is even an example of a completely organic 

catalyst. 

Heterogeneous catalysts have also been developed. Some of them 

correspond to anchored molecular catalysts, but there are more examples of 

metal oxides of manganese, cobalt and iridium working as water oxidation 

catalysts (WOCs). 

In the next sections the aforementioned catalysts will be presented. We 

will specially focus in molecular catalysts made of polypyridyl ruthenium 

complexes since the compounds synthesized and studied in this work belong 

to this kind. 

1.3.1. Polypyridilic ruthenium catalysts. 

At the end of the 70s, Thomas J. Meyer et al. found52,53 the Ru-

OH2/Ru=O system where aqua polypyridyl ruthenium(II) complexes can 

achieve the high oxidation state IV in a narrow potential window by means of 

simultaneous loss of protons and electrons. This is illustrated by the Latimer 

diagrams54 of [Ru(bpy)2Cl2] and [Ru(bpy)(py)(H2O)]2+ (Scheme 9). In the case of 

[Ru(bpy)2Cl2], the difference of Ru(IV/III) and Ru(III/II) standard potentials is 1.7 

V, the large ∆E0 is due to the increase in charge and oxidation state in the 
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Ru(IV/III) couple with regard to the Ru(III/II) one; in contrast, for 

[Ru(bpy)(py)(H2O)]2+ the difference is only 0.11 V. The small ∆E0 can be 

explained considering two main features: 

  

Scheme 9. Latimer diagrams of complexes [Ru(bpy)2Cl2] and [Ru(bpy)(py)(H2O)]
2+

. 

 The net positive charge does not change in the 

Ru(IV/III) and Ru(III/II) couples, it is always +2. The release of 

protons while increasing the oxidation state maintains the net 

charge of the complex. 

 A great stabilization of Ru(IV) because the formation of 

an oxo complex. A molecular obital diagram (Scheme 10) of the 

Ru(IV)=O motif shows the multiple character of the Ru-O bond that 

stabilizes Ru(IV), the bond order is 2. 

The HOMO and LUMO orbitals are dπ* antibonding and are 

widely mixed with the 2pO,π orbitals, although they have a strong 

4dRu character. The LUMO orbital constitutes a suitable site for 

initial orbital interaction with electron donors. The bonding sp2 and 

pπO orbitals have available electron pairs for donation or orbital 

interaction with electron acceptors. The dπn orbital is nonbonding 

and has largely 4dRu character.   
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Scheme 10. Molecular Orbital diagram of the Ru(IV)=O moiety.  

The Ru-OH2/Ru=O system is the base for the activity for the most of 

ruthenium water oxidation catalyst. In addition, analogous M-OH2/M=O 

systems have been invoked as a key element in the catalytic activity of the 

most of molecular catalysts, where M=Ir, Co or Cu. 

The Ru-OH2/Ru=O system plays also an important role in the study of 

proton coupled electron transfer processes (PCET), a currently very active 

area22,55-59 of research and related to water oxidation51,60 among other 

oxidation54 processes. 

PCET is a mechanistic concept that describes the simultaneous transfer 

of an electron and a proton in an elementary step. This transfer avoids the 

formation of high energy intermediates. A redox potential diagram61 of 

[Ru(bpy)(py)(H2O)]2+can illustrate it (Scheme 11). 
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Scheme 11. Potential diagram (square scheme) of [Ru(bpy)(py)(H2O)]
2+

. The horizontal 

lines represent redox processes and the vertical lines represent acid-base processes. 

The oxidation of [RuII(bpy)(py)(H2O)]2+ to [RuIII(bpy)(py)(OH)]2+ could 

occur in three ways according to the diagram: 

 An initial electron transfer to give a RuIII-OH2 intermediate 

followed by proton transfer to achieve the final RuIII-OH. The pathway 

is abbreviated as ET-PT (electron transfer-proton transfer). 

 An initial proton transfer to give a RuII-OH intermediate 

followed by electron transfer to get RuIII-OH. The pathway is 

abbreviated as PT-ET (proton transfer-electron transfer). 

 The simultaneous loss of a proton and an electron, that is, 

proton couple electron transfer or PCET. 

At pH=7 the ET-PT and PE-ET processes are high energy pathways 

compare to PCET. In the case of ET-PT the initial electron transfer has a larger 

standard potential (1.02 V) than PCET (0.66V), thus the process would be 

slower if we take into account that the Gibbs free energy of a redox process is 

related to its activation Gibbs energy according to Marcus theory62 in outer 

sphere electron transfers. For PT-ET the initial deprotonation step is 

thermodynamically unfavorable with ∆G0’ = +0.19 eV. Therefore, ET-PT and PT-

ET mechanisms present high energy intermediates that can decrease the rate. 

In contrast, PCET avoids the formation of such intermediates and the rate is 
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faster. The same energetic considerations can be argued for the oxidation of 

[RuIII(bpy)(py)(OH)]2+ to [RuIV(bpy)(py)(O)]2+. 

Pourbaix diagrams, the plot of potential vs. pH, are a useful tool to 

collect the electrochemical properties of aquo complexes. In a typical Pourbaix 

diagram like the one from [Ru(trpy)(bpy)(H2O)]2+ (Figure 8) the horizontal and 

diagonal lines delimit the E0-pH regions in which the different stable species 

predominate. The slope of the lines depends on the redox couple63-65 according 

to eq. 1 

    
   

      

 
           ( ) 

where m is the number of protons and n of electrons involve in the couple. 

Thus the slope gives the stoichiometry of the considered redox process. The 

vertical lines represent the pKa values of the specie to the left of the line. 

Additionally, in the case of 1H+/1e- couples the values of the horizontal 

and diagonal lines can be used to calculate the BDFEs22 of the O-H bonds 

according to equation 2 

    (  )           
 (    )      (  )                   ( ) 
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Figure 8. Pourbaix diagram of the aquo complex [Ru(trpy)(bpy)(H2O)]
2+

. 

1.3.1.1. Dinuclear polypyridilic ruthenium catalysts. 

The oxidation of water to oxygen is a 4e-/4H+ process so it seems a 

reasonable strategy the combination of two Ru-OH2/Ru=O systems linked by a 

ligand to achieve an effective catalyst. In 1982, Thomas J. Meyer et al.66,67 

reported that the dinuclear μ-oxo brigde complex cis,cis-{[Ru(bpy)(H2O)]2(µ-

O)}4+, known as “blue dimer”, can oxidize water to oxygen using Ce4+ or Co3+ as 

sacrificial oxidants. The catalytic mechanism remains to be established 

although a huge amount of UV-vis,60,68,69 EPR,69-72 rRAMAN,69-75 X-Ray 

spectroscopic71 and isotopic labeling experiments76,77 have been carried out. 

Moreover, the medium has a strong influence60,76,78,79 on the mechanism 

making more complex its analysis. For instance, differences have been 

observed60 in 0.1 M HNO3 or 0.1 M CF3SO3H. In the most recent proposal71 by 

Meyer et al. (Scheme 12) the blue dimer is oxidized to IV,V and then water 

nucleophilic attack occurs to generate a peroxidic intermediate in the 

oxidation state III,IV. After that, the intermediate is oxidized and oxygen is 

released. 
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Figure 9. Structure of cis,cis-{[Ru(bpy)(H2O)]2(µ-O)}
4+

, blue dimer. 

 

Scheme 12. Proposed mechanism for water oxidation by the blue dimer in 0.1 M 

HNO3. The oxidation state III,IV was taken as initial complex. 

However, this proposal is not exempt from controversy. Firstly, it 

suggests a peroxidic intermediate in the oxidation state III,IV, while previous 

works based on UV-vis spectroscopy60 and DFT calculations80 assigned a 

hydroperoxidic intermediate in the oxidation state IV,IV (Scheme 13). 

 

Scheme 13. Previously suggested hydroperoxidic intermediate by Meyer et. al. and 

Shaik et. al. 

Secondly, Hurst et al. have recently questioned70 the spectroscopic 

evidence for the proposed peroxidic intermediate. RR experiments discard the 

formation of a peroxidic complex, although they confirm the formation of an 
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intermediate. This intermediate appears only in the presence of CeIV and 

nitrate. 

The blue dimer can be deactivated by several side reactions: polypyridyl 

ligand oxidation78 in the higher oxidation states (Scheme 14), water oxidation 

induced anation60,68 by the weak coordinating anions of the used acids (NO3
-

¸CF3SO3
- or ClO4

-) and trans-dioxide formation by overoxidation and 

subsequent μ-oxo cleveage (Scheme 15). 

 

Scheme 14. Blue dimer deactivation by polypyridyl ligand oxidation. 

 

 

Scheme 15. Blue dimer deactivation by oxidative cleavage of the oxo bridge. 

In 2004 Llobet et al. synthesized81 a new dinuclear complex 

{[Ru(trpy)(H2O)]2(μ-bpp)}3+ (1) where the bridge is the tetradentate polypyridyl 

ligand bis(2-pyridyl)-3,5-pyrazolate (bpp-)(Figure 10). The aromatic organic 

ligand provides a robust and rigid bridge that avoids the cleavage deactivation 

pathways of an oxo ligand. Moreover, from a mechanistic point of view bpp- 

places the two aquo groups in a closer proximity than blue dimer favoring an 
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intramolecular coupling of the oxo groups in the higher oxidation states versus 

a water nucleophilic attack. 

 

Figure 10. Structure of {[Ru(trpy)(H2O)]2(μ-bpp)}
3+

 (1) 

1 catalyzes the oxidation of water to oxygen using Ce4+ as sacrificial 

oxidant faster than blue dimer and with a higher efficiency. The mechanism of 

the reaction has been extensively studied82,83 by UV-vis spectroscopy, O18-

labelling experiments and DFT calculations. When the oxidation state IV, IV is 

reached the two formed oxo group couple and generate an O-O bond (Scheme 

16). The coupling can be explained if we take into account that the Ru=O 

moieties can have a certain radicaloid character, thus the complete description 

of this bond would be the combination of two extreme resonant forms: RuIV=O 

↔ RuIII-O• 
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Scheme 16. Mechanism of water oxidation by 1. The trpy ligands have been omitted 

for clarity. The values in parenthesis show relative energies in KJ mol
-1

 including an 

additional explicit molecule of water in the first solvation shell. 

Other dinuclear complexes have been synthesized and evaluated as 

water oxidation catalysts, although they lack of a detailed mechanistic study. 

Thummel et al. have reported84,85 many dinuclear ruthenium catalysts 

(Figure 11) based on organic bridge ligands similar to bpp-. Tanaka et al. have 

studied86 a dinuclear complex (5) where each ruthenium is coordinated (Figure 

12) to a bidentate non-innocent redox ligand, 3,5-di-tert-butyl-1,2-

benzosemiquinone (3,5-Bu2SQ). The participation of the ancillary ligands in the 

redox processes adds a novelty to the catalytic mechanism that is a source of 

controversy87,88 nowadays. 
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Figure 11. Some examples of the complexes reported by Thummel et al. 

 

Figure 12. Structure of complex 5 and redox processes related to the ancillary ligand 

3,5-Bu2SQ. 

Other catalytic systems have been developed89,90 in order to favor the 

radical coupling between two RuIV=O moieties (Figure 13). However, DFT 

studies have shown that the distance between the two metal sites in these 

complexes could be as large as 7.4 Å when the two RuIV=O are formed. The big 

separation is due to electrostatic repulsion between the two oxo groups. It 

would become even larger if RuV=O moieties are invoked in the catalytic cycle. 

This distance precludes a radical coupling between the two oxo groups to 

generate an O-O bond. 
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Figure 13. Structure of some complexes with cofacial metal sites 

Sun et al. have also prepared and studied the interesting dinuclear 

complex 10 (Figure 14). The bridging ligand contains two carboxylate groups, 

which produce a decrease of the standard potentials. This catalyst is stable and 

has a high TOF value (1.2 s-1) using CeIV as sacrificial oxidant. Moreover, 

photocatalysis is also observed using [Ru(bpy)3]
2+ and Na2S2O8 as 

photosensitizer and sacrificial electron acceptor respectively (Scheme 17). 
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Figure 14. Structure of complex 10. 

 

 

Scheme 17. (Upper) chemical, (bottom) photochemical water oxidation. 

The same group has synthesized the dinuclear complexes 11, 12 and 13 

(Figure 15). As it will be explained later, it has been demonstrated that 

mononuclear complexes can also oxidize water21,84,91,92 to oxygen. In particular, 

Sun et al. have reported that complex 14 (Figure 15) oxidizes water with a TOF 

value comparable to the OEC one93 under certain conditions by a bimolecular 

pathway. Therefore, they envisaged a dinuclear complex formed by two 

analogues of 14 linked by a bridging ligand. Flexible spacers were chosen 

instead of the usual rigid ones. The catalysts are better than their mononuclear 

compounds and the oxygen evolution rate is first order in complex. 

Nonetheless, it is well known54,94 that Ru complexes in high oxidation states 
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oxidize easily sp3 C-H bonds. Therefore, it is unlikely that the used bridge 

ligands survive under the catalytic conditions. 

 

Figure 15. Structures of complexes 11, 12, 13 and 14. 

A complete different approach consists in dinuclear complexes where 

the two Ru-H2O groups are separated by a long distance, in a way that 

precludes an intramolecular reaction and leaving bimolecular interactions as 

the only possible pathways to form an O-O bond. This strategy results in 

catalysts, like 15 and 16 (Figure 16), that are usually less active and fast than 

complexes when an intramolecular process is feasible.  

 

Figure 16. Structures of complexes 15 and 16. 
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In the case of complex 15, it has been demonstrated that generates 

oxygen by means of a bimolecular radical coupling (I2M,Scheme 18). 

 

Scheme 18. I2M mechanism proposed for 15. 

1.3.1.2. Mononuclear polypyridilic ruthenium catalysts. 

In 2005, Thummel et al. reported84 that the presence of only one Ru-

OH2/Ru=O system is enough to carry out water oxidation catalysis (Figure 17). 

Later, they synthesized and evaluated the catalytic activity of various 

mononuclear95 complexes. 

 

Figure 17. Structure of the first reported mononuclear ruthenium catalysts 17, 18 and 

19. 

On the other hand, Meyer et al. have also reported mononuclear 

catalysts (Figure 18) and have studied96-98 thoroughly its mechanism. The 

proposed pathway (Scheme 19) is currently accepted and has been extended 

to different catalytic systems based on Ru,99 Ir,100 Co101 or Cu102. 
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Figure 18. Structures of some of the complexes studied by Meyer et al. 

The catalytic process starts with the oxidation of the initial Ru(II)-OH2 

complex to Ru(V)=O, where the first two redox processes are PCET. Then, 

water nucleophilic attack on Ru(V)=O occurs. This is the key O-O bond-forming 

step and results in the generation of the hydroperoxide intermediate Ru(III)-

OOH. After that, a new oxidation step takes place and Ru(IV)-OO is formed. 

This is the dominant specie in the catalytic steady state. In 0.1 M HNO3, the 

peroxo complex evolves oxygen and the initial Ru(II)-OH2 compound is 

recovered. In 1 M HNO3, Ru(IV)-OO is further oxidized to Ru(V)-OO and this 

intermediate evolves oxygen and re-enters in the cycle as Ru(III)-OH. 
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Scheme 19. Proposed mechanism for catalytic water oxidation by mononuclear Ru 

complexes.  The black arrows indicate predominant pathways in 0.1 M HNO3 and the 

green ones from Ru
IV

-OO in 1 M HNO3. 

This mechanism has been extended with additional pathways,103,104 

although the main framework is maintained. 

Mononuclear complexes with the Hbpp and H3p (2-(5-phenyl-1H-

pyrazol-3-yl) pyridine) ligands (Figure 19) have been also synthesized and 

tested105 as WOCs. The catalysts can evolve oxygen using Ce(IV) as sacrificial 

oxidant or photochemically using [Ru(bpy)3]
2+ as photosensitizer and 

[CoIII(Cl)(NH3)5]
2+ as sacrificial electron acceptor. When Ce(IV) was employed, 

the out isomers demonstrated to be more active. However, the dinuclear 

analogue 1 is a better catalyst. They follow the mechanism proposed by Meyer 

et al.  
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Figure 19. Structures of complexes 23, 24, 25 and 26. 

A different mechanism93 has been suggested for complex 14 and 

structural analogues. Although these complexes apparently do not present a 

Ru-OH2/Ru=O system, it has been showed that a seven coordinated aquo 

complex106 is generated after dissolution in acidic water. The main difference 

with the previous described mechanism is that the key O-O bond forming step 

is a radical coupling between the Ru(IV)-O• groups of two molecules of 

complex (Scheme 20). 

 

Scheme 20. Proposed mechanism for water oxidation by 14 and analogues. 

Catalyst 14 has reached currently the highest reported turnover 

frecuency (TOF) which is 300 s-1, in the order of OEC (100-400 s-1). The 

structural analogue 27 attained also a high TOF value of 176.5 s-1. The striking 

feature of 27 is the presence of two different axial ligands, DMSO and 5-

bromo-N-methylimidazol (Figure 20). Nevertheless it is highly probable that 

the DMSO ligand is oxidized under the catalytic conditions, forming an 
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unknown complex that is the actual catalyst. The reported work lacks of a 

complete mechanistic study in order to know the evolution of the compound. 

 

Figure 20. Structure of complex 27. 

A different approach for water oxidation is illustrated by the 

mononuclear PNN-ruthenium pincer-type complex 28. This catalyst can evolve 

hydrogen and oxygen in consecutive steps driven by heating or irradiation107 

respectively (Scheme 21). In the beginning of the catalytic cycle 28 reacts with 

water to form a trans hydrido-hydroxo complex. Then, this intermediate reacts 

with water under refluxing conditions, producing hydrogen and creating a cis 

dihydroxo complex. The next step is irradiation to release hydrogen peroxide 

by reductive elimination and probably a Ru(0) intermediate is generated after 

that. This compound is converted to initial 28 by migration of a proton from 

the methylene group of the phosphorous side arm of the pincer ligand, thus a 

hydride ligand is formed and the heterocycle loses its aromaticity. The 

produced H2O2 is catalytically decomposed into O2 and H2O  by 28. 
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Scheme 21. Proposed mechanism for water splitting by 28. 

Although this approach has received a considerable attention and has 

been highlighted108,109 because its novelty and great potential, it has several 

objections: the overall reaction is actually stoichiometric, it is very slow and 

the yields in hydrogen and oxygen are poor. 

1.3.1.3. Anchored polypyridilic ruthenium catalysts. 

Homogeneous catalysts have been considered so far, however the 

technology of water splitting will need a water oxidation catalyst absorbed or 

adsorbed on a photoanode next to a photosensitizer as explained in the 

section 1.2.2. 

Therefore, the previous described ruthenium catalysts should be linked 

to a surface. There are several strategies for anchoring molecular catalysts to 

photoanodes: 

 Covalent bond. The complex is attached to the surface by means of a 

covalent bond between a functional group of the molecule and a 

functional group in the surface of the photoanode. Phosphonate, 

carboxylate and sulfonate functionalities are usually the linking moiety 
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from the complex whereas the surface provides hydroxilic groups (Figure 

21). 

 

Figure 21. Example of covalent attaching in a fluorine doped tin oxide (FTO) anode. 

 Electrostatic interaction. The complex is anchored because the 

electrostatic attraction between the positive charge of the molecule 

and the negative charge of the surface or vice versa. 

 Electropolymerization. The molecular catalyst has a ligand that can 

electropolymerize and form a film on the surface. The polymerization 

process is initiated after oxidation or reduction of the aforementioned 

ligand, for this reason it is called electropolymerization. The 

electropolymerization of aniline into polyaniline (Scheme 22) is a very 

known and studied110,111 example. 

 

Scheme 22. Electropolymerization of aniline. 

 Intermolecular Forces. The anchoring takes place by means of 

intermolecular interactions like H-bond or π-π stacking. 

 Deposition. The catalyst precipitates on the surface and remains as a 

solid during the catalysis. Deposition can be carried out by dropping a 
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solution of the complex on the electrode followed by evaporation of 

the solvent. 

Anchored dinuclear ruthenium polypyridyl catalysts. 

In 2007, Meyer et al. synthesized and anchored112 complex 29 in several 

supports: SnO2 doped In2O3 (ITO), TiO2 and ZrO2. They carried out 

electrocatalytic water oxidation to evaluate the effectiveness of the attached 

catalyst. In electrocatalytic water oxidation a potential higher than E0(O2/H2O) 

is applied to the anode in order to evolve O2 electrolytically, the difference 

between the applied potential and E0(O2/H2O) is called overpotential (η) and it 

depends on pH since E0(O2/H2O) depends on it. The TON was 1.8 at pH = 1 and 

1.5 V (η = 0.53 V) applied potential. It increases up to 3 at pH = 6 and 1.32 V (η 

= 0.64 V). In both cases, the activity is very low and the overpotentials are too 

high. An even lower TON had been previously observed113 for the 

homogeneous analogue 30 using Ce(IV) as sacrificial oxidant at pH=1. 

 

Figure 22. Structure of complexes 29 and 30. 

The previous presented complex 5 was deposited86 on an ITO electrode. 

The electrocatalytic activity was evaluated at pH = 6 and 1.90 V ((η = 0.90 V). 

The TON value reached 33500 after 40 hours and the decrease of activity with 

time was due to slowly exfoliation of the deposited complex. Although the 

TON is very high, the used overpotential is also too large. 
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Complex 31 has been attached to rutile TiO2
114 by means of the 

carboxylic group (Figure 23). This compound is analogous to 1. The catalysis 

was tested chemically with Ce(IV) and yielded oxygen and CO2. It has been 

suggested that the production of CO2 results from the partial degradation of 

the bridge ligand. 

Another analogue of 1 has been electropolymerizated on vitreous 

carbon sponges (VCS) and FTO electrodes. Complex 32 comprises pyrrole 

modified terpyridine ligands (Figure 23). The pyrrolic rings polymerize after 

oxidation and create a film deposited on the electrode. The deposited catalyst 

has been demonstrated to oxidize water electrochemically and chemically 

using Ce(IV). In this last case it could be reused until 3 times, although the 

activity was progressively decreasing. The complex enhanced its activity when 

it was copolymerized with a non-active and stable dicarbollide. 

Copolymerization diluted the active centers and avoided bimolecular 

deactivation pathways for the catalyst. 

 

Figure 23. Structure of complexes 31 and 32. 

Anchored mononuclear ruthenium polypyridyl catalysts. 

Several mononuclear catalysts have been anchored to different surfaces. 

It is a common design that the mononuclear complex is firstly bound covalently 

to a photosensitizer and the complete assembly (catalyst-photosensitizer) is 

then linked to the electrode by the photosensitizer moiety (Figure 24). 
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Figure 24. Anchoring of a catalyst-photosensitizer (PS) assembly on the surface of an 

electrode. 

The assemblies 33 and 34 (Figure 25) were attached to ITO and FTO from 

acidic aqueous solutions. In this case the photosensitizer moiety works like a 

redox mediator; it means that it makes faster the electron transfer from the 

catalyst moiety to the electrode. The systems achieve impressive TONs of 8900 

after 20 hours for 33 and 28000 after 13 hours for 34. The electrocatalysis was 

carried out at pH = 0 and 1.8 V (η = 0.57 V). Interestingly, no sign of reduction 

in activity was observed during the indicated time. 

 

Figure 25. Structures of complexes 33 and 34. 

Sun et al. have exploited two different strategies115,116 to anchor its 

complexes. On the one hand, they attached an azide group to the surface of a 

glassy carbon (GC) electrode115 by means of electrografting of a diazonium 

aromatic compound that contained the azide group (Figure 26). Electrografting 

of diazonium salts by reduction is a well-known117 and studied process. Then, 

the azide is subjected to a “click chemistry” reaction with a complex that 
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contains a terminal acetylene group. The process requires a copper(I) catalyst. 

The result is a catalyst linked to the GC surface by a triazole and a phenyl 

group. Electrocatalytic water oxidation at pH = 7 and η = 0.7 V gave a TOF of 

1.6 s-1 which decreases to 0.073 s-1 with η = 0.3 V 

 

Figure 26. Electrografting of complex 35 in a GC electrode. 

On the other hand, complex 36 was anchored to multiwalled carbon 

nanotubes (MWCNTs) previously coated on an ITO glass electrode.116 The 

attaching is made by means of π-π stacking interaction between the nanotubes 

and the pyrene moieties from the complex (Figure 27). The catalyst produced 

11000 TONs in 10 hours in neutral aqueous 0.1 M Na2SO4 solutions by setting 

1.4 V (η = 0.58). This means a TOF value of 0.3 s-1. Interestingly, electrocatalysis 

can be carried out in a 0.1 M solution of NaCl without chlorine evolution, thus 

catalysis using sea water could be feasible. However, a slow desorption of 

CNTs from the ITO support has been reported, making long-term stability a 

problem. 
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Figure 27. Assembly of complex 36 and MWCNTs on a FTO surface. 

Meyer et al. have conceived a clever approach where the 

photosensitizer and the catalyst are arranged into two contiguous layers. The 

strategy is called self-assembled bilayers (SAB). The modified electrodes were 

prepared118 in a two-steps sequence. Firstly, the photosensitizer 37 is attached 

and then the catalyst 38 (Figure 28). The inverse sequence does not work 

because it was shown that anchored 38 inhibits the subsequent attaching of 

37. In contrast, the length of the alkyl chains of 38 is enough to reach surface 

binding sites available between previous attached 37 molecules. In spite of CV 

experiments show electrocatalytic water oxidation, controlled potential 

electrolysis at 1.8 V (η = 0.63 V) in 0.1 M HClO4 over extended periods resulted 

in a fast decrease of the current to the background level. It is thought that 38 

deactivates because the aquo ligand is replaced by a phosphonate group from 

the alkyl chain. The SAB structure is also released at higher pHs. 

 

Figure 28. Structure of complexes 37 and 38. 
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Any of the previous anchored catalysts have shown 

photoelectrochemical activity. However two assemblies developed by Sun et 

al. did it. 

In 2010 they built a device119 where a TiO2 photoanode supported on 

glass FTO was covered by the photosensitizer 39. A nafion film containing the 

catalyst 40 was later deposited after previous oxidation of 40 to 40+. The 

electrostatic attraction between the positively charged complex and the 

negatively charged nafion membrane catches the catalyst into the polymeric 

and inert matrix. The anodic assembly was demonstrated to evolve oxygen 

after 60 minutes of irradiation with a visible light source and without a 

potential bias. The TON was 16 and the TOF was 27 h-1. 

 

Figure 29. Structures of complexes 39 and 40 (upper) and assembly on a FTO anode 

taken from reference 117 (bottom). 

Recently the same group has developed a photoelectrochemical device 

similar to the previous one. Instead of nafion and complex 40 they have 

attached120 directly the modified catalysts 41 (Figure 30) to the surface of the 
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electrode. The photoelectrochemical cell achieves the highest photocurrent 

intensity reported until now with a low external bias of 0.2 V. 

 

Figure 30. Structure of complex 41. 

1.3.2. Iridium catalysts. 

It has been early known121-123 that colloidal IrO2 can oxidize water to 

oxygen chemically and photochemically. Recent modifications have improved 

its activity124 for photo water splitting with visible light and a small bias.  

In 2007, Bernhard et al. reported125 the first molecular Ir catalysts using 

Ce(IV) as sacrificial oxidant (Figure 31). 

 

Figure 31. Structures of the first molecular Ir WOCs. 

The complexes have been able to produce oxygen for hours; for 

instance, 45 can achieve 2760 TONs after one week. Thereafter a large number 

of Ir complexes that can oxidize water have been reported.92,100,126-130 It is 

noteworthy the extensive mechanistic studies performance by Crabtree et al. 

using a wide set of Ir(III) complexes containing the 
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pentamethylcyclopentadienyl (Cp*) ligand and different cyclometalated or 

N,N-bidentate ligands (Figure 32). 

 

Figure 32. Some of the complexes synthesized and studied by Crabtree et al. 

These compounds are currently questioned as true molecular catalysts, 

mainly when CAN is used as sacrificial oxidant. It was found131 that Ir 

complexes solutions treated with a slight or a huge excess of CAN originate IrOx 

nanoparticles which are active catalysts. Furthermore, the electrochemical 

oxidation of complex 50 in 0.1 M KNO3 results in the formation of an 

heterogeneous material onto the electrode,132,133 which is irreversibly 

electrodeposited and work as a robust solid state WOC. The heterogeneous 

catalyst is called blue layer (BL) because it takes this colour. It is a robust 

catalyst that oxidizes water at low overpotential (η = 0.2 V) during days 

without showing signs of degradation. 

On the other hand, it is also known that the Cp* ligand is oxidized under 

catalytic conditions as demonstrated by NMR and other spectroscopic 

techniques.134,135 The resulting compounds could be catalytic active species, 

deactivation products or intermediates giving access to the formation of IrOx 

nanoparticles. A recent study carried out by Crabtree et al. showed that 

complex 51 evolves to the dinuclear bis-μ-oxo Ir(IV) coordination compound 

52136 under catalytic conditions and using the mild sacrificial oxidant NaIO4 

(Figure 33). In contrast to the fate of the Cp* ligand, the chelate ligand pyalc 
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(2-(2’-Pyridiyl)-2-propanolate) does not suffer any decomposition pathway and 

is retained. The role of 52 in the catalysis must be still elucidated, although it is 

proposed as a metastable intermediate, i.e., a catalytic resting or deactivation 

state. 

 

Figure 33. Conversion of 51 into 52 under catalytic conditions. 

The same work established that the presence of an IrIII-OH2 group is 

essential to induce catalytic activity, suggesting that sequential PCET oxidations 

enable to achieve reactive high oxidation states as in the case of the RuII-

OH2/RuIV=O system. 

1.3.3. Manganese catalysts. 

The OEC consists in a tetranuclear Mn4O5Ca cluster, it is not surprising 

that oxo bridge polynuclear manganese complexes have been synthesized and 

evaluated as WOCs. 

In 1999 Crabtree et al.137 prepared the mixed-valence dinuclear 

compound [(trpy)(H2O)MnIII(μ-O)2MnIV(H2O)(trpy)]3+ (53) and claimed that it 

was able to oxidize water using oxone (KHSO5) or NaOCl as sacrificial oxidant. 

The actual capability of 53 to work as a WOC has been questioned because 

both oxidants are highly oxidizing oxygen-transfer reagents, so that the 

produced oxygen could proceed from these compounds instead from water. In 

2005 a fundamental study138 by Collomb et al. unambiguously demonstrated 

that the one electron oxidation of 53 produced the tetranuclear Mn complex 

{[(trpy)(H2O)MnIV(μ-O)2MnIV(trpy)]2(μ-O)}6+ (54) (Figure 34). 54 cannot be 
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further oxidized and thus cannot work as a water oxidation catalyst. As a 

consequence, the dinuclear compound 53 cannot oxidize water without the 

intercession of an oxygen-donor reagent as oxone or NaOCl. 

 

Figure 34. Conversion of 53 into 54 induced by oxidation. 

However, a recent report by Crabtree et al.137 showed that the 

tetranuclear complex 54 could oxidize electrochemically water, although the 

activity was very low. Additionally, it was found that the addition of 54 to a 

concentrated solution of CAN resulted in the formation of a low amount of 

oxygen and the disproportion of 54 into Mn(II) and MnO4. 

In 2008, Dismukes et al. discovered that a structural mimic of the OEC 

was able to act as water oxidation catalyst in an efficient manner. The complex 

consists in a manganese oxo [Mn4O4L6] cubane (Figure 35) where L is bis(4-

methoxylphenyl)phosphinate (55). The compound was embedded in a Nafion 

membrane deposited on a conducting electrode due to its insolubility in water 

and most organic solvents. The evolution of oxygen was driven 

electrochemically139 or photochemically.140 Later on, it was found that 55 

dissociates into Mn(II) compounds after incorporation to the Nafion films. The 

low-valent Mn species are then reoxidized to create dispersed nanoparticles of 

a disordered Mn(III/IV)-oxide phase under catalytic conditions. This material 

constitutes the actual catalyst. 
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Figure 35. Structure of complex 55. The [Mn4O4] core has been enhanced for clarity. 

In spite of the rising development of single-site water oxidation catalysts 

based on Ru and Ir, there are a limited number of mononuclear Mn examples 

described in the literature. Sun et al. reported141 a mononuclear Mn complex 

containing a ligand that comprised a xanthene and a corrole linked by an 

amide bond (complex 56 in Figure 36). The compound led to electrocatalytic 

oxygen evolution at low potential in a solution that consisted in a mixture of 

CH2Cl2, CH3CN, Bu4NOH and water as solvent. Brudvig et al. also published142 

the synthesis of three new candidates to work as single site WOCs (complexes 

57, 58 and 59 in Figure 36). The catalytic activity was evaluated using oxone or 

H2O2 as sacrificial oxidant. 57 produced oxygen with both oxidants, 58 only 

when hydrogen peroxide was employed and 59 was totally inactive. However, 

the origin of the evolved oxygen must be questioned due to two main reasons: 

1) oxone is a O-donor oxidant as previously discussed and 2) Mn compounds 

are known to catalyze the dismutation of H2O2 into H2O and O2, the same 

reaction catalyzed by the enzyme manganese catalase,143 thus the generation 

of O2 when this sacrificial oxidant is used probably proceeds from this reaction. 
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Figure 36. Structure of complexes 56, 57, 58 and 59. 

1.3.4. Cobalt catalyst. 

In 2011 Berlinguette et al. reported101 the first cobalt single-site WOC. 

They used the pentadentate 2,6-(bis(bis-2-pyridil)methoxy-methane)-pyridine 

ligand (Py5) to prepare a mononuclear complex (60) where the sixth free 

coordination position is occupied by an aquo ligand (Figure 37). The activity of 

60 was evaluated by cyclic voltammetry experiments, nevertheless it remains 

uncertain if 60 is the truly active species.144 Later on, Llobet et. al 

synthesized145 a new dinuclear Co(III) catalyst (61) based on the bridging ligand 

bpp- (Figure 37). The complex is the cobalt analogue of 1, though a peroxo 

bridge replaces the two aquo groups. Peroxo complexes are proposed to be 

key intermediates in the mechanism of water oxidation, as a consequence 61 

represents an attractive compound to carry out electrochemical and kinetic 

studies. The catalyst could electrochemically oxidize water at pH = 2.1 at high 

overpotential (η = 0.89 V), exhibiting only slight signs of degradation. However, 
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it could not be completely exclude the possibility that the actual catalyst 

proceeded from the decomposition of the complex. 

 

Figure 37. Structure of complexes 60 and 61. 

Cobalt polyoxometalates constitute an important class of WOC, but they 

will be considered later. 

It is worth noting in this section the development and study of the 

famous heterogeneous catalyst abbreviated as CoPi. In 2008, Nocera et al. 

found146 that a cobalt oxide film formed by electrodeposition from a solution 

containing cobalt, potassium and phosphate ions was able to oxidize water. 

The central structure motif147,148 of the material consists in a cluster of 

interconnected complete or incomplete CoIII-oxo cubanes (Figure 38).  

 

Figure 38. Structural motif of CoPi as deduced from X-Ray spectroscopy (XAS) data. The 

film can be composed of a mixture of complete and incomplete cubanes. Furthermore, 

the protonation states of the bridging oxo and terminal aquo ligands remain unknown. 

Taken from reference 145. 
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The heterogeneous catalyst has achieved a great media impact149 and 

has been subjected to extensive mechanistic150-153 studies. It was also 

successfully incorporated into a photoelectrochemical cell for the splitting of 

water154 similar to the one depicted in Figure 7. The promissory results led 

Nocera to set up a spin-out company called Sun Catalytix in 2009. However, 

they failed in achieving a commercially viable water splitting device and now 

have abandoned the concept of “artificial leaf”155 in order to return the 

venture capital initially invested by the Indian multinational Tata Group. This 

failure proves that the development of an effective photoelectrochemical cell 

is nowadays a very difficult task and it lacks active and robust WOCs. 

1.3.5. Copper catalysts. 

In 2012, Mayer et al. found156 the first well characterized molecular 

copper WOC. The catalyst [CuII(bpy)(OH)2] (62) is formed by self-assembling 

from copper salts and bipyridine at basic pH (Figure 39). It can 

electrochemically oxidize water at pH 11.8-13.3, although the overpotential is 

quite high (η = 0.75 V). The TOF value of 100 s-1 is impressive and lies among 

the fastest homogeneous WOCs reported at the moment, but it has been 

obtained indirectly by means of CV experiments. 

Afterwards, Meyer et al. demonstrated that simple Cu(II) salts could also 

electrochemically oxidize water in neutral or weekly basic solutions containing 

a CO2/HCO3
-/CO3

2-, acetate or HPO4
2-/PO4

3- buffer. The same group reported a 

new single-site Cu(II) catalyst102 constituted by a triglycylglycine macrocyclic 

(TGG4-) and an aquo ligands, [CuII(TGG)(H2O)]2- (63 in Figure 39). The complex 

was able to electrochemically oxidize water at pH = 11 and at high 

overpotential (η = 0.72 V) without showing any sign of degradation. The 
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calculated TOF of 33 s-1 is remarkable but it has been derived from CV 

experiments as in the case of 62. 

 

Figure 39. Structure of the copper complexes 62 and 63. 

1.3.6. Iron catalyst. 

There are several Fe complexes that have been described157-160 to work 

as WOCs using different sacrificial oxidants: [RuIII(bpy)3]
3+, Ce(IV) and NaIO4. 

This studies do not establish the truly nature of the active species in the 

catalytic cycle or preclude the formation of active nanoparticles. Lau et. al. 

have demonstrated161 that various molecular Fe complexes, among them cis-

[FeII(mcp)Cl2] (64 in Figure 40), produce Fe2O3 nanoparticles at basic pH when 

photochemical catalytic water oxidation is evaluated using [Ru(bpy)3]
2+ as 

photosensitizer and S2O8
2- as sacrificial electron acceptor. The solid is set up as 

the actual catalyst. Similar conclusions were achieved by Llobet et. al. 

recently162 employing the Fe compounds [FeII(BQEN)(OTf)2] and 

[FeII(BQCN)(OTf)2] (65 and 66 respectively in Figure 40) Furthermore, this 

group has proved that the same complexes operate as homogeneous catalyst 

in water oxidation using CAN as sacrificial oxidant, but the acidity of the media 

is a crucial factor. At pH = 1, dissociation of the BQEN and BQCN ligands occurs 

and the resulting complex is inactive. In contrast, if 65 and 66 are dissolved in 

an unbuffered solution and an excess of CAN is subsequently added, oxygen 

and a small amount of CO2 are released. Although it is known that the addition 
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of CAN decreases the pH and it could thus promote the dissociation of the 

ligands, the oxidation of the initial FeII-OH2 complex to FeIV=O is faster. Once 

the FeIV=O complex is formed, the dissociation of the ligands might be slowed 

down in this oxidation state. Therefore, this study shows that the current Fe 

catalysts are not efficient as WOCs, nevertheless it provides important 

mechanistic insights in order to develop more robust catalysts with this metal. 

 

Figure 40. Structures of the Fe complexes 64, 65 and 66. 

1.3.7. Polyoxometalates catalysts. 

I have decided to consider WOCs based on polyoxometalates (POMs) as 

an independent section in spite of they can contain a variety of transition 

metals such as Ru, Co, Cu or Ir. Most of the described WOCs so far contain 

organic ligands which can be degraded163 under the oxidatively harsh catalytic 

conditions. Inspired by this feature and the use of certain POM compounds in 

numerous catalytic organic oxidations,164 Shannon et. al. evaluated the 

performance165 of the mono-Ru [PW11O39RuIII(H2O)]4- and di-Ru 

[Ru2
IIIZn2(H2O)2(ZnW9O34)2]

14- (67 in Figure 41) POMs as water oxidation 

catalysts. The di-Ru POM was able to produce oxygen electrochemically 

whereas the mono-Ru was inactive. Later on, Bonchio et al. described166,167 a 

tetranuclear Ru POM capable of oxidizing water using CAN as sacrificial 

oxidant. The compound with formula {[RuIV
4O4(OH)2(H2O)4][γ-SiW10O36]2}

10- 

structurally consists in an electrophilic [RuIV
4(μ-O)4(μ-OH)2(H2O)4]

6+ central core 
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embedded in two divacant [γ-SiW10O36]

8- POMs (68 in Figure 41). 68 has also 

been electrostatically anchored onto functionalized multiwalled carbon 

nanotubes. The assembly evolved electrochemically oxygen at overpotentials 

as low as 0.35 V when it was deposited on an ITO electrode. The TOFs achieved 

modest values (up to 0.08 s-1) and were similar to those calculated in 

homogeneous catalysis. Furthermore, Hill et al. have reported168 that 68 can 

photochemically oxidize water using [Ru(bpy)3]
2+ as photosensitizer and S2O8

2- 

as sacrificial electron acceptor. The same group prepared and evaluated 

several POMs constituted by central cores based on Co as WOC, using 

[Ru(bpy)3]
3+ as sacrificial oxidant. The cluster with formula 

{[Co4(H2O)2][PW9O34]2}
10- (69 in Figure 41) was the only active, attaining a TOF 

of 5 s-1 and an efficiency of 64 % at pH = 8.0. The novelty of this work lied in 

the synthesis of the first POM catalyst with a central core made of an earth-

abundant element. Nevertheless, a later work169 by Stracke and Finke showed 

that the electrocatalytic oxidation of water by 69 at pH = 8.0 generates CoOx 

nanoparticles onto the electrode which are the actual catalysts. 

The single-site catalytic concept has also strongly influenced in the 

development of new polyoxometalates WOCs. Fukuzumi et al. have 

evaluated99 the previously described POMs [RuIII(H2O)SiW11O39]
5- and 

[RuIII(H2O)GeW11O39]
5- (70 and 71 respectively in Figure 41) as catalysts using 

CAN as sacrificial oxidant. The spectroscopic and kinetic studies revealed that 

the mechanism is similar to that proposed for complexes related to 

[RuII(trpy)(bpy)(H2O)]2+, although the water nucleophilic attack on [RuV=O] was 

established as the rate determining step. 
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Figure 41. Structures of the most relevant WOCs based on POM scaffolds. The 

structures were taken directly from the original references. 

1.3.8. Organic catalysts. 

It has been recently demonstrated170 that a fully organic compound can 

act as a WOC, what involves an exotic finding in the field. The N(5)-

ethylflavinium ion (72 in Figure 42) carries out electrode-assisted catalytic 

water oxidation at high overpotential (η > 0.79 V). At the molecular level, it has 

been proposed that 72 is firstly oxidized to the flavinium radical dication Et-

Fl2+. Secondly this compound undergoes a water nucleophilic attack to form Et-

FlOH+. The new specie is subsequently oxidized to the oxyl cationic radical Et-

FlO+, which represents a key intermediate in the mechanism. The oxy radical 

from Et-FlO+ enables an O-O coupling with an oxyl radical from the surface of 

the glassy carbon or Pt electrode leading to the release of oxygen (Figure 42). 
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On the basis of this work, new modified N-doped carbon electrodes could be 

assembled in order to find effective heterogeneous water oxidation catalysts. 

 

Figure 42. Structure of 71 and mechanism for electrocatalytic water oxidation 

mediated by a glassy carbon electrode. 
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“We would never discover anything if we were to consider satisfied with 

things discovered”. 

Lucio Anneo Séneca, Roman Philosopher.
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The driving force of this Thesis has been generating a meaningful knowledge 

about one of the current “hot topic” in chemistry: the catalytic oxidation of 

water to oxygen by single-site transition metal complexes. Our interest has 

been especially focused on revealing the molecular pathways taking place 

during the catalytic process. We have addressed this goal by means of the next 

points: 

i. The synthesis of new carefully designed mononuclear Ru complexes 

that can work as water oxidation catalysts (WOCs). The relationship 

between the electronic and steric properties of the complexes with the 

catalytic activity enables to gain an insight of the processes governing 

the catalysis. 

ii. The spectroscopic study of the mechanism of the reaction. 

iii. The synthesis and thorough study of the intermediates and side 

products. This research involves the spectroscopic, structural and 

electrochemical characterization of these compounds, its ability as 

WOCs and its interconnection. 
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Chapter 3. New mononuclear Ru complexes 

containing the bipan ligand and their activity toward 

catalytic water oxidation. 

 

 

The six-step synthesis of the tetradentate bipan ligand has been 
successfully accomplished. The coordination of bipan in a bidentate fashion 
allowed the preparation of the isomeric mononuclear complexes in-, out-
[Ru(trpy)(bipan)(Cl)]+ (1-in+ and 1-out+) which were fully characterized by 
spectroscopic and electrochemical techniques. The different arrangement of 
the ligands in the two isomers has a slight, but perceptible, influence upon the 
standard potentials of the RuIII-Cl/RuII-Cl couple that can be rationalized in 
terms of the nature of the aromatic ring placed in the trans position with 
regard to the Cl ligand. 1-in+ is an active catalyst for water oxidation while 1-
out+ presents a low activity due to its insolubility under catalytic conditions. 
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bipan ligand and their activity toward catalytic water 

oxidation 

Isidoro López,a Chiara Dinoi,b Xavier Fontrodona,c J. Benet-Buchholz,a Carles 

Boa and Antoni Llobeta,d 

a
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Spain. 

b
 Laboratoire de Chimie de Coordination, CNRS UPR 8241 Université de Toulouse UPS-INP-LCC 

205, Route de Narbonne, 31077 Cedex 04, France. 

c
 Departament de Química i Serveis Técnics de Recerca, Universitat de Girona, Campus de 

Montilivi, E-17071 Girona, Spain. 

d
 Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 

Barcelona, Spain. 

3.1. Introduction. 

The depletion of fossil fuels reserves1 and its recognized pollutant and 

global warming effects2 has awakened a large interest in pursuing clean and 

environmentally friendly energy resources3. The conversion of sunlight into the 

so called solar fuels like H2 or MeOH is one of the most promissory candidates 

because the solar energy is stored into powerful chemical bonds avoiding 

problems as intermittency of the resource. Furthermore, the energy could be 

stored at the individual level in the personalized energy (PE) framework4 which 

would improve its efficiency because transport is not required and losses are 

diminished. 

Water Oxidation to molecular oxygen represents one of the major 

bottlenecks in the development of commercial light harvesting devices for the 

photoproduction of H2 from water.5 In nature, this reaction takes place in the 

dark at the oxygen-evolving complex (OEC) in photosystem II. The core of OEC 
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consists in a CaMn4O5 cubane that can oxidize water quickly and close to the 

thermodynamic limit6,7 by effective accumulation of the four necessaries redox 

equivalents.  

2 H2O   →   O2   + 4 H+   + 4 e-    E0 = 1.23 V vs. NHE at pH = 0 

The multielectronic character, the high thermodynamic energy barrier 

and the kinetic complexity of the process makes difficult to find good mimics of 

OEC. The dinuclear Ru complex [(bpy)2(H2O)RuIII-O-RuIII(H2O)(bpy)2]
4+, also 

known as blue dimer, was the first well characterized reported8 molecular 

water oxidation catalyst (WOC). The complex contains two [RuIII-OH2] moieties 

than can be oxidized until [RuV=O] by PCET processes achieving the four redox 

equivalents necessaries for the catalysis. This architecture was exploited later 

in improved dinuclear Ru catalysts9-12 where the oxidatively unstable oxo 

bridge was replaced by rigid and robust aromatic organic bridging ligands. In 

2005, it was shown that mononuclear Ru complexes containing a single [RuII-

OH2] group could work as WOCs. The discovery has favored an increase of the 

number of reported single-site WOCs in the recent years.13-20 The synthetic 

simplicity and easy purification of mononuclear systems are attractive 

advantages of these catalysts. 

Herein, we present the synthesis and characterization of the 

tetradentade 2,7-bipyridil-1,8-diazaanthracene (bipan) ligand and its two new 

isomeric mononuclear complexes in-[Ru(trpy)(bipan)(Cl)]+ (1-in+) and out-

[Ru(trpy)(bipan)(Cl)]+ (1-out+) (where trpy is 2,2’:6’,2’’-terpyridine). The activity 

of the complexes as WOCs was tested in order to gain insight of the influence 

exerted by a nearby and oxidatively accessible C-H bond on the catalysis. 
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3.2. Experimental section. 

Materials. All reagents used in the present work were obtained from 

Aldrich Chemical Co. and were used without further purification. RuCl3·3H2O 

was supplied by Alfa Aesar and was used as received. Trifluoromethanesulfonic 

acid (HOTf) was pursued from CYMIT. Reagent-grade organic solvents were 

obtained from SDS and high-purity deionized water was obtained by passing 

distilled water through a nanopure Milli-Q water purification system. 

Preparations. [Ru(trpy)Cl3], 3, 5, 6 and bipan were prepared as 

described in the literature.21,22 The synthesis of 2 and 4 was carried out 

following a modified procedure to that reported. 

1,5-dymethyl-2,4-dinitrobenzene (2). m-xylene (46 mL, 0.37 mols) was 

added dropwise over stirring fumaric nitric acid (110 mL, 2.36 mols) previously 

cooled at 0 °C by means of an ice-water bath. The addition lasted 2 hours. 

Then, the orange resulting solution was stirred for 30 min. at RT and was 

subsequently refluxed for 6 h. (aprox. at 90 °C). Finally, the reaction crude was 

keep in the fridge overnight. A pale yellow amorphous solid precipitated and 

was filtered and washed with cold water. The solid was comprised a mixture of 

the desired compound and 1,3-dimethyl-2,4-dinitrobenzene. Consecutive 

fractioned recrystallizations in EtOH/H2O 95:5 allowed us to separate 2. The 

needle shape crystalline solid obtained 30 min. after cooling each 

crystallization solution was gradually enriched in the desired compound. The 

1H-NMR spectrum matched with the one reported. 

4,6-dinitro1,3-di[N,N’-bis(p-dimethylaminophenyl)iminomethylbenzol-

N,N’-dioxide] (4). All the operations, less filtration, were carried under Ar. 7.6 g 

of product crude (4.89 g of 3, 8.07 mmols) were dissolved in deoxygenated 

EtOH (50 mL) and the mixture was cold at -10 °C by means of a cryostat. Then, 
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N,N-dimethyl-4-Nitrosoaniline (2.42 g, 16.14 mmols) was added under stirring. 

After some minutes, deoxygenated 10% NaOHaq. (12 mL, 29.23 mmols) was 

added dropwise. When the addition finished, the solution was maintained 

under stirring at 2-3 °C for 7 h. using an ice-water bath. Then, it was left in the 

fridge overnight (aprox. 14 h.). A dark solid precipitated which was filtered, 

washed with cold water (3 x 30 mL), EtOH/Et2O 1:1 (10 mL), Et2O (5 mL) and 

dried under vacuum (4.12 g, 100 %). The 1H-NMR spectrum matched with the 

one reported. 

In-[Ru(trpy)(bipan)Cl]Cl (1-in(Cl)). All the operations, less filtration, were 

carried under Ar. Ru(trpy)Cl3 (132.21 mg, 0.300 mmols) and LiCl (15 mg, 0.353 

mmoles) were dissolved in deoxygenated EtOH (15 mL) and then NEt3 was 

added (85 μL, 0.611 mmols). The suspension was stirred for 20 min. Then, 

bipan (50 mg, 0.150 mmols) was added and the solution was refluxed for 5 

hours. A dark purple solid precipitated and the suspension was left to cool at 

RT. The solid was collected by filtration, washed with cold EtOH and dried 

under vacuum (93.8 mg, 85 % yield). Anal. Calcd for C37H25Cl2N7Ru: C, 60.08; H, 

3.41; N, 13.26. Found: C, 59.94; H, 3.20; N, 13.17. 1H-NMR (MeOD, 400 MHz) 

δ(ppm): 7.08 (t, 1H, H-b or b’, 3J=7.42 Hz), 7.23 (t, 1H, H-c or c’, 3J=5.77), 7.37 

(t, 1H, H-b or b’, 3J=7.42 Hz), 7.45 (t, 2H, H-3, 3J=6.59 Hz), 7.50 (d, 1H, H-a or a’, 

3J=5.77 Hz), 7.73 (t, 1H, H-c or c’, 3J=7.42 Hz), 7.82 (m, 4H, H-1, H-2), 8.21 (d, 

1H, Ha or a’, 3J=7.42 Hz), 8.26 (t, 1H, H-6, 3J=8.24 Hz), 8.45 (d, 1H, Hd or d’, 

3J=7.42 Hz), 8.51 (d, 2H, H-4, 3J=8.24 Hz), 8.56 (d, 1H, H-f or f’, 3J=7.42 Hz), 8.68 

(m, 5H, H-5, H-d or d’, H-e or e’, H-f or f’), 8.76 (s, 1H, H-g), 8.86 (d, 1H, H-e or 

e’, 3J=8.24 Hz), 10.82 (s, 1H, H-h). ESI-MS (MeOH): m/z = 704.1 ([M-Cl]+). 

Out-[Ru(trpy)(bipan)Cl]PF6 (1-out(PF6)). A saturated aqueous NH4PF6 

solution (1 mL) was added to the filtrate obtained from the preparation of 1-
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in(Cl). A dark purple solid precipitated, which was filtered, washed with cold 

EtOH and Et2O (46.5 mg). This solid contained 1-out(PF6), [Ru(trpy)2](PF6)2 and 

another unidentified products. 1-out(PF6) was isolated after column 

chromatography in alumina using CH2Cl2/MeOH 20:1 as eluent. The first 

fraction resulted be the desired compound. After evaporation of the eluent a 

dark blue amorphous solid was obtained and was dried under high vacuum 

(6.1 mg, 6%). Anal. Calcd for C37H25ClF6N7PRu: C, 52.34; H, 2.97; N, 11.55. 

Found: C, 52.15; H, 3.01; N, 11.43. 1H-NMR (CD3CN, 400 MHz) δ(ppm): 7.21 (t, 

2H, H-2, 3J=5.91 Hz), 7.57 (t, 1H, H-b’, 3J=5.91 Hz), 7.63 (d, 2H, H-1, 3J=5.91 Hz), 

7.81 (t, 2H, H-3, 3J=5.91 Hz), 8.01 (t, 1H, H-b, 3J=5.91 Hz), 8.04 (s, 1H, H-g), 8.20 

(t, 1H, H-c’, 3J=5.91 Hz), 8.42 (m, 8H, H-h, H-c, H-4, H-6, H-e, H-f, H-e’ or f’), 

8.58 (d, 1H, H-e’ or f’, 3J =9.03 Hz), 8.61 (d, 1H, H-d’, 3J=7.99 Hz), .8.72 (d, 2H, 

H-5, 3J=8.34 Hz), 8.75 (d, 1H, H-a’, 3J=4.86 Hz), 8.96 (d, 1H, H-d, 3J=7.99 Hz), 

10.51 (d, 1H, H-a, 3J=5.56 Hz).ESI-MS (MeOH): m/z = 704.1 ([M-Cl]+). 

Equipment and measurements. Cyclic voltammetry (CV) experiments 

were performed on an IJ-Cambria CHI-660 or a Bio-Logic SP-150 potentiostat 

using a three-electrode cell. Typical CV experiments were carried out at a scan 

rate of 100 mVs-1. The complexes were dissolved in MeCN or CH2Cl2 containing 

the necessary amount of (n-Bu4N)(PF6) (TBAH), used as the supporting 

electrolyte, to yield a 0.1 M ionic strength solution. A glassy carbon electrode 

(2 mm diameter) was used as working electrode, platinum wire as auxiliary 

electrode, and SSCE as a reference electrode. Working electrodes were 

polished with 0.05 micron alumina paste, and rinsed with distilled water and 

acetone followed by blow-drying before each measurement. All cyclic 

voltammograms presented in this work were recorded in the absence of light 

and inside a Faradaic cage. E1/2 values reported in this work were estimated 
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from CV experiments as the average of the oxidative and reductive peak 

potentials (Epa + Epc)/2. 

A 400 MHz Bruker Avance II spectrometer and a Bruker Avance 500 MHz 

were used to carry out NMR spectroscopy at room temperature. Samples were 

run in CD3CN or MeOD with internal references (residual protons). Elemental 

analysis was performed using an EA-1108, CHNS-O elemental analyzer from 

Fisons Instruments.  

On-line manometric O2 measurements were carried out on a Testo 521 

differential pressure manometer with an operating range of 1-100 hPa and 

accuracy within 0.5 % of the measurement. The manometer was coupled to 

thermostated reaction vessels for dynamic monitoring of the headspace 

pressure above each reaction. The manometer’s secondary ports were 

connected to thermostated reaction vessels containing the same solvents and 

headspace volumes as the sample vials. . Composition of the gaseous phase 

was determined by online mass-spectrometry with an OmniStar GSD 301 C 

(Pfeiffer) quadrupole mass-spectrometer. 

Single-Crystal X-Ray Structure Determination. Single crystals for bipan 

and 1-out+ were grown by slow evaporation of acetone or ethanol solutions of 

the compounds. All measured crystals were prepared under inert conditions 

immersed in perfluoropolyether as the protecting oil for manipulation. 

Data collection. Crystal structure determination for 1-out+ was carried 

out on a BRUKER SMART APEX CCD diffractometer using graphite-

monochromated Mo Kα radiation (λ = 0.71073 Å) from an x-Ray Tube. The 

measurements were made in the range 1.87 to 28.21° for θ. Full-sphere data 

collection was carried out with ω and φ scans. A total of 28043 reflections 

were collected of which 8623 [R(int) = 0.0946] were unique. Programs used: 
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data collection, Smart version 5.631 (Bruker AXS 1997-02); data reduction, 

Saint + version 6.36A (Bruker AXS 2001); absorption correction, SADABS 

version 2.10 (Bruker AXS 2001). 

Structure solution and refinement. Crystal structure solution was 

achieved using direct methods as implemented in SHELXTL Version 6.14 

(Bruker AXS 2000-2003) and refined by full-matrix least-squares methods on 

F2. The non-hydrogen atoms were refined anisotropically. The H-atoms were 

placed in geometrically optimized positions and forced to ride on the atom to 

which they are attached. Spurious electron density peaks non attributable to 

any solvent molecule was removed using the SQUEEZE option in PLATON. 

(Spek, A. L. (2005). PLATON, A Multipurpose Crystallographic Tool, Utrecht 

University, Utrecht, THe Netherlands.). 

Computational details. All calculations were carried out with the ADF 

program system, version 2013.01, developed by Baerends, Ziegler and 

coworkers.23-25 We used a density functional theory (DFT) based method, 

which included the local VWN exchange-correlation potential26 with GGA 

Becke’s exchange correction27 and Perdew’s correlation correction28,29 (BP86). 

A triple-ζ plus one polarization function basis set was used on all atoms, 

treating the core electrons with a relativistic frozen-core potential. Relativistic 

corrections were introduced by scalar-relativistic zero-order regular 

approximation (ZORA).30,31 

3.3. Results and discussion. 

Synthesis of bipan. The preparation of bipan consists in a six steps 

synthesis that starts with m-xylene. The first part (Scheme 1) lies in the 

synthesis of the key intermediate 1,3-diamino-4,6-benzenedicarboxaldehyde 

(6) and it was carried out according to the literature21,22 procedures, although 
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in our hands the conversion of 2 into 3 yielded a mixture of the latter and 

pyridinium cation in a 1:1.47 ratio in the collected solid (Figures S1 and S2). 

The finding allows us to improve the yield of the next step, because the exact 

amount of 10 % aqueous NaOH for double deprotonation of 3 and 

neutralization of the pyridinium cation could be controlled more precisely. 

 

Scheme 1. Synthetic route for 1,3-diamino-4,6-benzenedicarboxaldehyde (6). Reagents 

and conditions: (i) HNO3 conc., 0 °C to RT, (ii) pyridine-I2, 95 °C; (iii) EtOH/ NaOH 10%; 

(iv) H2SO4 3 M, toluene, 65 °C; (v) FeSO4·7H2O, EtOH-H2O-NH4OH, 80 °C. 

Once the dialdehyde compound 6 was obtained, it was subjected to a 

double Friedländer condensation reaction with an excess of 2-acetylpyridine to 

give the final compound bipan (Scheme 2). 

 

Scheme 2. Synthesis of bipan. Reagents and conditions: KOH 10 %, EtOH, 100 °C. 
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All the prepared organic compounds were characterized by 1H-NMR and 

the spectra fit with the reported ones. Furthemore, single crystals for suitable 

X-ray determination of bipan were successfully grown. The structure consists 

in an aromatic planar system that comprises a central azaanthracene ligand 

bound to two pyridilic rings in the 1 and 8 positions (Figure 1). The nitrogen 

atoms of the pyridilic and the central azaanthracene ring point in opposite 

directions because this conformation avoids the sterical hindrance between 

the protons bound to C14 and C4 or alternatively C19 and C10. 

 

Figure 1. Ortep plot (40 % at probability) of the X-ray structure of bipan. Color codes: 

N, navy blue; C, grey. H atoms were omitted for clarity. 

Synthesis of the mononuclear complexes. The initial approach was 

using the tetradentate bipan ligand as a dinucleating bridge similarly to Hbpp.9 

For this reason one equivalent of bipan was reacted with 2 equivalents of the 

starting material [Ru(trpy)(Cl)3] in EtOH under refluxing conditions (Scheme 3) 

for 4 hours. However, the mononuclear complex 1-in+ precipitated directly 

from the crude of the reaction as the main product and it was easily purified by 

successive EtOH washings. DFT calculations show that the in- isomer is more 

stable than the out- by 6.2 kcal mol-1, thus the favored formation and 

precipitation of 1-in+ probably prevents the generation of the dinuclear 

complex. The isomeric annotation in/out has already been employed in similar 

complexes16,32 and indicates whether the monodentate Cl ligand is oriented 

toward or away, respectively, from the inner H atom of bipan (Scheme 4). The 
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out isomer 1-out+ was isolated with a poor yield after column chromatography 

in alumina of the solid precipitated after the addition of a sat. aq. solution of 

NH4PF6 to the filtered crude of the reaction. One of the side products of the 

reaction was also separated and identified as [Ru(trpy)2]
2+ according to NMR 

spectroscopy and cyclic voltammetry (CV) (Figures S3, S4 and S5). 1-in+ and 1-

out+ were characterized by the usual spectroscopic and electrochemical 

techniques as well as by single crystal X-ray diffraction in the case of 1-out+. 

 

Scheme 3. Synthesis of the mononuclear complexes 1-in
+
 and 1-out

+
. 

 

Scheme 4. Schematic drawing of the mononuclear complexes indicating the relative 

position of the Cl ligand and the inner proton of bipan in each isomer. The coordinating 

N atoms of the trpy ligand are shown in grey. 
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Characterization of the complexes. The structure of the isomer 1-out+ 

was corroborated by single crystal X-ray diffraction analysis. The Ortep plot of 

the molecule (Figure 2) shows that the Ru atom adopts a distorted octahedral 

geometry where the trpy is coordinated as a meridional ligand, bipan acts in a 

bidentate fashion and the Cl ligand occupies the remaining sixth coordination 

position pointing away from the inner H atom of bipan (H27).  

 

Figure 2. Ortep plot (ellipsoids at 40 %probability) of the X-ray structure of 1-out
+
. 

Color codes: N, navy blue; Ru, black; C, grey; H, white. 

The bond distances and angles are comparable to related complexes.16,32 

The small bite angle of bipan (77.89°) and the steric hindrance between H27 

and the trpy ligand elongate the N5Ru1N2 angle (106.52°). The unit cell of 1-

out+ contains two molecules of the complex, one PF6
- counterion and one 

molecule of ethanol. The presence of a single counterion discards 

protonotation in the non-coordinated pyridil ring. Selected bond distances and 

angles are collected in Table 1. Single crystals of good quality for X-ray 

determination of 1-in+ could not be obtained. 
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Table 1. Selected bond distances and angles for 1-out
+
. 

Bond Lenghts (Ǻ) 

Ru1-N1 2.065(4) Ru1-N2 1.956(4) 

Ru1-N3 2.071(4) Ru1-N4 2.066(4) 

Ru1-N5 2.099(4) Ru1-Cl 2.4054(13) 

Bond Angles (degrees) 

N4-Ru1-N5 77.89(17) N4-Ru1-Cl1 92.93(12) 

N1-Ru1-N3 158.47(16) N5-Ru1-Cl1 168.79(12) 

The number of signals and the integration of the 1H-NMR spectrum of 1-

in+ is consistent with a mononuclear bipan Ru complex with CS symmetry 

(Figure 3). The singlet of the inner proton of the azaanthracene ligand is held in 

a strongly deshielded environment (10.81 ppm) because the effect of the 

nearby Cl ligand. The large influence exerted by the near proximity of a chloro 

ligand has already been evidenced11,16,32 in structurally related complexes. The 

described feature confirms unambiguously that 1-in+ is the in isomer. Further 

2D NMR spectroscopic experiments (Figures S6 and S7) provided the 

assignment of the resonances, although we could not differentiate the two 

halves of the bipan ligand.  
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Figure 3. 
1
H-NMR spectrum (CD3OD, 400 MHz) of 1-in

+
. The inset shows the deshielded 

resonance for Hh. 

A strongly deshielded doublet (10.51 ppm) is observed in the 1H-NMR 

spectrum of 1-out+ (Figure S8). The resonance corresponds to the proton next 

to the coordinating N atom of one of the pyridil ring of the anthracene ligand. 

It is downfield shifted due to the proximity of the Cl ligand as it was considered 

in 1-in+. The experiment also corroborates that the arrangement of the ligands 

found in the X-ray structure is preserved in solution. The complete assignment 

of all the resonances was provided by 2D NMR experiments (Figure S11). 

The electrospray mass spectra (ESI-MS) of 1-in+ and 1-out+ in MeOH 

exhibit two main peaks at m/z = 704.1 which correspond to [M]+. The 

simulated isotopic patterns fit pretty well with the experimental one (Figures 

S10 and S11). 
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Cyclic Voltammetries (CV) of 1-in+ and 1-out+ present a single chemically 

reversible and electrochemically quasireversible wave which is attributed to 

the RuIII-Cl/RuII-Cl couple according to related systems.16,32 

  
Figure 4 CVs of 1-in

+
 in CH3CN (left) and 1-out

+
 in CH2Cl2 (right) both solvents with 0.1 

M TBAH as supporting electrolyte. Glassy carbon was used as working electrode, a Pt 

wire as counter electrode and SSCE as reference electrode. Scan rate = 100 mV s
-1

. 

The out isomer has a lower standard potential than the in complex 

(Table 2). This feature has already been observed and it is interpreted 

considering the electro donation capability of the group placed in the trans 

position of the Cl ligand. The difference in standard potential for the isomers 

from complexes [Ru(Hbpp)(trpy)(Cl)]+ and [Ru(H3p)(trpy)(Cl)]+ is 230 and 120 

respectively (Table 2) with the out isomer having the lower potential. The 

more basic imidazole ring is situated trans with regard to the Cl ligand in the 

out isomer. This arrangement facilitates the transmission of sigma bonding 

electron density to the metal center, what stabilizes the RuIII oxidation state. In 

the case of the isomeric bipan mononuclear complexes the difference is 

markedly smaller (Table 2) suggesting that the electro donation abilities of the 

central azaanthracene and the outer pyridil rings are similar and it is less 

relevant which ring is the trans to the Ru-Cl bond. 
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Table 2. Electrochemical data for related mononuclear complexes. 

Complexa E0 / V ∆E / mVb Reference 

1-in+ 0.96  

40 

Tw.c 

1-out+ 0.92 Tw. 

in-[Ru(Hbpp)(trpy)(Cl)]+ 0.86  

230 

32 

out-[Ru(Hbpp)(trpy)(Cl)]+ 0.63 32 

in-[Ru(H3p)(trpy)(Cl)]+ 0.81  

120 

16 

out-[Ru(H3p)(trpy)(Cl)]+ 0.69 16 

a Ligand abbreviation: Hbpp = 3,5-bis(2-pyridyl)pyrazole; H3p = 2-(5-phenyl-1H-pyrazol-3-yl)pyridine. b ∆E = 

Eo
in – E0

out. 
c Tw. means this work. 

Catalytic water oxidation. Because we were unable to remove the 

chloro ligand and it has been reported15 that mononuclear cloro complexes 

convert into the aquo compounds in water, 1-in+ and 1-out+ were tested 

directly as WOCs using an excess (100 equivalents) of (NH4)2Ce(NO3)6 as 

sacrificial oxidant. The manometric monitoring of the evolved gas indicated 

that 1-in+ is a much better catalyst than 1-out+ (Figure 5 and Figure S12) 

achieving 13 TONs in 20 minutes, however 1-out+ was poorly soluble under 

catalytic conditions, what precludes a reliable comparison of the catalytic 

activities. Furthermore, on-line MS monitoring of the reaction with 1-in+ 

confirmed that O2 was the only produced gas (Figure S13). 
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Figure 5. Dioxygen evolution versus time manometric profiles for catalysts 1-in
+
(blue) 

and 1-out
+
(red) under 1:100 Cat/Ce

IV
 ratios in 0.1 M triflic acid solutions (pH = 1.0) at 

25°C. 

The activity of 1-in+ is slightly lower than the observed for the previous 

reported complex out-[Ru(Hbpp)(trpy)(Cl)]+, but it is higher with regard to the 

in isomer, in-[Ru(Hbpp)(trpy)(Cl)]+(Figure 6).  

 

Figure 6. Dioxygen evolution versus time manometric profiles for catalysts 1-in
+
(blue) 

in-(red) and out-[Ru(Hbpp)(trpy)(H2O)]
+
(green) under 1:100 Cat/Ce

IV
 ratios in 0.1 M 

triflic acid solutions (pH = 1.0) at 25°C. 

Figure 7 illustrates the arrangement of the active site in the four 

considered catalysts. The structures were obtained by means of DFT 
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calculations, except for out-[Ru(Hbpp)(trpy)(H2O)]+ which is a reported32 XRD 

structure. 

 

Figure 7. Comparison of the structure of the considered catalyst. Color code: Ru, pink; 

O, Red; N, Blue, C, grey. Hydrogen atoms are omitted for clarity, except for the aquo 

ligand and the H atom from the ligand nearer to it that are represented as white 

circles. 

The remarkable dioxygen production by 1-in+ suggests that the H atom 

placed close to the active site of the catalyst (Figure 7) does not have a 

detrimental effect upon the catalysis in spite of the known high reactivity of 

RuIV=O groups to carry out H-atom abstraction processes33-36 and the relative 

low potential found for the first oxidation of the free ligand in acetonitrile 

(Figure S14). The current accepted mechanistic proposal for mononuclear Ru 

water oxidation catalysts sets up the formation of high electrophilic 

intermediates,37 like RuIV=O and RuV=O systems. These complexes are good 
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oxidants and could abstract the nearby inner proton of the azaanthracene ring 

by an intramolecular PCET process. The formed organic radical could be quickly 

trapped by oxygen or another intermediate and evolve to give a non-catalytic 

mononuclear complex where the active site is now coordinated to bipan 

through an additional oxygen atom (Scheme 5). Further kinetic studies must be 

done in order to confirm this reactivity. The high activity for water oxidation of 

1-in+ suggests that the catalytic pathway is faster than the aforementioned 

deactivation reactions.  

 

Scheme 5. Feasible pathways after the addition of an excess of Ce
IV

 to 1-in
+
 in 0.1 M 

HOTf (pH = 1). 

3.4. Conclusions. 

In this work, we have accomplished successfully the six-step synthesis of 

the tetradentate ligand bipan after improving some of the described 

preparations of the intermediates. The ligand was later employed for the 

synthesis of the two new chloro isomeric complexes 1-in+ and 1-out+, where 

bipan is coordinated in a bidentate fashion. Both compounds were fully 

characterized by the usual analytic and spectroscopic tecniques. From an 

electrochemical point of view the different arrangement of the ligands in the 
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two isomers has a slight influence on the standard potentials, in contrast to 

previous reported related complexes where the effect is more pronounced. 

This feature suggests similar electrodonation ability for the outer pyridil and 

the central rings of bipan. 1-out+ is a poor catalyst for water oxidation probably 

due to its insolubility under catalytic conditions while 1-in+ presents a high 

activity in the order o even higher than the reported for previous structurally 

related mononuclear complexes. The good catalytic performance of 1-in+ 

suggests than processes leading to oxygen are faster than feasible deactivation 

pathways where the active site of the catalyst is trapped by a C-H bond that 

has been previously activated by the RuIV=O group. 
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Table S 1. Crystal data for bipan. 

Empirical formula C22 H14 N4 

Formula weight 334.37 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group P2(1)/c 

Unit cell dimensions a =  6.3462(5) Å α=  90.00 °. 

b =  33.381(2) Å β = 90.810(2) °. 

c =  7.4749(6) Å γ =  90.00 °. 

Volume 1802.8(5)  Å3 

Z 1583.3(2)  Å3 

Density (calculated) 4 

Absorption coefficient 1.403  Mg/m3 

F(000) 0.086  mm-1 

Crystal size 696 

Theta range for data collection 0.40 x 0.20 x 0.10 mm3 

Index ranges 2.99  to 36.60 °. 

Reflections collected -10 <=h<=10 ,-47 <=k<=55 ,-7 <=l<=12 

Independent reflections 7111 

Completeness to theta =36.60 ° 6325 [R(int) = 0.0162 ] 

Absorption correction 0.906 % 

Max. and min. transmission Empirical 

Refinement method 0.9915  and  0.9664 

Data / restraints / parameters Full-matrix least-squares on F2 

Goodness-of-fit on F2 7111 / 0 / 235 

Final R indices [I>2sigma(I)] 1.740 

R indices (all data) R1 = 0.0485 , wR2 = 0.1709 

Largest diff. peak and hole R1 = 0.0535 , wR2 = 0.1749 
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Table S 2. Crystal data for 1-out
+
. 

Empirical formula C39 H31 Cl F6 N7 O P Ru 

Formula weight 895.20 

Temperature T100(2)K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a =  8.6274(15) Å α=  79.921(3) °. 

b =  14.107(2) Å β = 79.688(3) °. 

c =  15.818(3) Å γ =  73.800(3) °. 

Volume 1802.8(5)  Å3 

Z 2 

Density (calculated) 1.647  Mg/m3 

Absorption coefficient 0.630  mm-1 

F(000) 904 

Crystal size 0.2 x 0.2 x 0.1 mm3 

Theta range for data collection 1.87 to 28.21 °. 

Index ranges --11<=h<=11, -18<=k<=18, -20<=l<=20 

Reflections collected 28043 

Independent reflections 8623 [R(int) = 0.0946 ] 

Completeness to theta =28.21 ° 0.968 % 

Absorption correction Empirical 

Max. and min. transmission 1.0  and  0.675795 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 8623 / 0 / 507 

Goodness-of-fit on F2 0.923 

Final R indices [I>2sigma(I)] R1 = 0.0636, wR2 = 0.1387 

R indices (all data) R1 = 0.1297, wR2 = 0.1599 

Largest diff. peak and hole 1.101 and -1.024  e.Å-3 
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Figure S 1. 
1
H-NMR spectra of (top) p-toluensulfonate of pyridinium and (bottom) 

Crude solid that contains compound 3. 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
WATER OXIDATION WITH MONONUCLEAR RU COMPLEXES. BELOW THE TIP OF THE 
ICEBERG: THE OXO-BRIDGE SCENARIO 
Isidoro López Marin 
Dipòsit Legal: T. 1505-2013 
 



New mononuclear Ru complexes containing the bipan 
ligand and their activity toward catalytic water oxidation  

 107 

 

III 

Figure S 2. Calculation of the ratio 3/Py
+
. 

 

From the integrals of the triplets at 8.57 and 8.71 ppm it’s known that: 

      

         
 
      

       
                               

                      

This molar relationship is converted to a weight relationship: 

                                                    

                         

This ratio allows us to estimate the amount of each compound in the final 

solid. 
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Figure S 3. 
1
H-NMR of the isolated [Ru(trpy)2]

2+
. 

 
1
H-NMR (CD3CN, 400 MHz) δ (ppm):7.15 (t, 2H, H-2 or 3, 

3
J=6.29 Hz), 7.33 (d, 2H, H-1 

or 4, 
3
J=6.29 Hz), 7.97 Hz (t, 2H, H-2 or 3, 

3
J=7.97 Hz), 8.40 (t, 1H, H-5, 

3
J=8.39 Hz), 8.48 

(d, 2H, H-6, 
3
J=8.39 Hz), 8.74 (d, 2H, H-1 or H-4, 

3
J=7.97 Hz). 

Figure S 4. COSY experiment of the isolated [Ru(trpy)2]
2+

. 
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Figure S 5. CV of the isolated [Ru(trpy)2]
2+

 in dichloromethane (0.1 M TBAH). GC was 

used as working electrode, a Pt wire as counter electrode and SSCE as reference 

electrode. Scan rate = 100 mV s
-1

. 

 

Two waves can be observed. The smallest one at E0 = 0.90 V corresponds to 

out-[Ru(trpy)(bipan)Cl]+ which is presented as an impurity, the biggest one at 

E0 = 1.35 V corresponds to [Ru(trpy)2]
2+. 
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Figure S 6. Overlapped NOESY (green and blue) and COSY (red) NMR experiments of 1-

in
+
. 

 

Figure S 7. Same experiment that previous focusing on the H1-Hh NOE interaction. 
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Figure S 8. 
1
H-NMR spectrum (CD3CN) spectrum of 1-out

+
. The inset shows the 

deshielded resonance for Ha. 
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Figure S 9. Overlapped NOESY (green and blue) and COSY (red) NMR experiments of 1-

out
+
. 
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Figure S 10. ESI-MS of 1-in
+
 in MeOH. (Top) Extended spectrum. (Bottom) Comparison 

of observed isotopic pattern for the main peak (left) and simulated (right). 
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Figure S 11. ESI-MS of 1-out
+
 in MeOH. Comparison of observed isotopic pattern for 

the main peak and simulated (inset). 
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Figure S 12. Complete dioxygen evolution versus time manometric profile for 1-out
+
 

under 1:100 Cat/Ce
IV

 ratio in 0.1 M triflic acid solutions (pH = 1.0) at 25°C. 

 

 

Figure S 13. On-line MS monitoring of the evolved O2(red) and CO2 (black) after the 

addition of 100 equivalents of Ce
IV

 to a 1 mM solution of 1-in
+
 in 0.1 M triflic acid (pH = 

1) at RT 
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Figure S 14. CV of the free ligand bipan in MeCN (0.1 M TBAH). GC was used as 

working electrode, a Pt wire as counter electrode and SSCE as reference electrode. 

Scan rate = 100 mV s
-1

. 
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Chapter 4. Mononuclear Ru water oxidation 

catalysts: Discerning between electronic and 

hydrogen bonding effects. 

 

 

New mononuclear complexes of general formula [Ru(trpy)(n,n’-F2-
bpy)X]m+, (n = n’ = 5: X= Cl, 3+ and X= H2O, 52+; n = n’ = 6: X = Cl, 4+ and X = H2O, 
62+; trpy is 2,2’:6’,2”-terpyridine) have been prepared and thoroughly 
characterized. The 5,5’- and 6,6’-F2-bpy ligands allow exerting a remote 
electronic perturbation to the Ru metal center that affects at the combination 
of species involved in the catalytic cycle. Additionally the 6,6’-F2-bpy also 
allows to interact through space with the Ru-O moiety of the complex via 
hydrogen bonding that also affects the stability of the different species 
involved in the catalytic cycle. The combination of both effects has strong 
impact into the kinetics of the catalytic process as observed through 
manometric monitoring. 
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Mononuclear Ru water oxidation catalysts: Discerning 

between electronic and hydrogen bonding effects 

 

Inorg. Chem.2013, 52, 3591. 

Somnath Maji,a Isidoro López,a Fernando Bozoglian,a J. Benet-Buchholza and 

Antoni Llobeta,b,* 

a
 Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans, 16, 43007 Tarragona, 

Spain. 

b
 Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 

Barcelona, Spain. 

4.1. Introduction. 

Since the discovery by Thummel et al.1 that mononuclear Ru complexes 

were also active as water oxidation catalysts, there has been a large 

development of the field based on this type of complexes. In 2008 Meyer et 

al.2 offered a mechanistic description, of how the water oxidation occurred at 

a molecular level, where the O-O bond formation is proposed to occur based 

on the water nucleophilic attack pathway (WNA). This description has now 

been adopted to many mononuclear Ru complexes but also to those of Ir and 

other first row transition metals, where the water oxidation catalysis is claimed 

to proceed in a molecular manner.3-7 Later on Berlinguette and coworkers 

studied the strong influence that electronic perturbation of the metal center 

exerted through remote positions of the ligands over the whole water 

oxidation catalysis process.8 Recent reports by Yagi and Fujita have shown how 

the presence of a N-lone pair can influence reactivity in isomeric 2-(2-pyridyl)-

1,8-naphthyridine complexes.9,10 In order to evaluate electronic and hydrogen 
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bonding effects individually we have designed complexes containing ligands 

that allow to have a trough space interaction with the active Ru-OH2 entourage 

in mononuclear complexes, in combination with others that only exert a 

remote electronic perturbation. In the present paper we report a new family of 

complexes of general formula [Ru(trpy)(n,n’-F2-bpy)X]m+, (n = n’ = 5: X= Cl, 3+ 

and X= H2O, 52+; n = n’ = 6: X = Cl, 4+ and X = H2O, 62+) that allow us to discern 

and quantify the electronic and hydrogen bonding effects. Additionally we 

report their activity as water oxidation catalysts and compare them with the 

reference complex [Ru(tpry)(bpy)OH2]
2+, 22+.11-14 

4.2. Results and discussion. 

The synthetic strategy followed for the synthesis of complexes 3-6 uses 

[RuCl3(tpry)], 1, as a starting material and is similar to the one used for the 

preparation of 22+. Synthetic details together with a complete structural and 

spectroscopic characterization is presented as Sup. Inf. An Ortep plot of the X-

ray structure of 62+ is exhibited in Figure 1 whereas that of 52+ is presented as 

Sup. Inf. In both cases the Ru center presents an octahedrally distorted 

geometry around the metal center and bond distances and angles are 

unremarkable except for the hydrogen bonding interaction of the F atom with 

the aqua group in 62+. This interaction is also responsible for the rotation of 

one of the pyridyl groups of bpy generating a dihedral angle of 11.6o, needed 

to be able to accommodate the F atom of the bpy so close to the aqua group. 

In turn this close and rigid interaction will ensure that all the potential species 

that can be generated along the catalytic cycle will have an interaction with 

this group. 
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Figure 1. Ortep plot (50 % probability) of the crystal structure of the complex 6
2+

. Color 

codes: Ru, cyan; N, navy blue; F, green; O, red; H, blue empty circles. Interesting metric 

parameters: d(H2W-F1B)=2.316 Å; d(F1B-O1W)=2.630 Å; <(O1W-H2W-F1B)=100.71
o
; the dihedral 

angle between the pyridyl moieties of 6,6’-F2-bpy is 11.6
o
. 

The redox properties of complexes 52+ and 62+ were investigated from 

CV and DPV experiments in water at different pHs and are reported in Table 1, 

Figure 2 and in the Supp. Inf. The presence of the F substituent at the bpy 

ligand produces a dramatic influence into the electronic structure of the metal 

center in the sense that for this complexes their oxidation state III, is unstable 

with regard to disproportion and thus a two electron wave is found, 

[RuIV=O]2+  +  2e-  +  2H+ ----> [RuII-OH2]
2+         (1) 
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Table 1. Thermodynamic and catalytic data for 5
2+

 and 6
2+

 and for related Ru-aqua 

complexes described in the literature at pH = 7. 

Entry  E1/2(V) vs. SSCE       

 Complex
a
 IV/III III/II IV/II V/IV ∆E1/2

b 
pKa,II

c 
pKa,III

c 
TOFi·10

3e
  Ref 

1 [Ru(trpy)(bpy)(H2O)]2+ 0.59 0.48 0.54 1.62 110 9.8 1.7 15.1 (18.3) Twf 

2 [Ru(trpy)(6,6’-F2-

bpy)(H2O)]
2+

 

-- -- 0.56d 1.69 -- 10.4 -- 1.7 (7.8) Tw 

3 [Ru(trpy)(5,5’-F2-

bpy)(H2O)]2+ 

-- -- 0.54
d 

1.68 -- 9.0 -- 4.3 (13.0) Tw 

5 [Ru(CNC)(bpy)(H2O)]2+ 0.50 0.45 0.48  50 10.9 2.3  15 

6 [Ru(trpy)(bpm)(H2O)]2+ -- -- 0.62d --  9.7   2 

7 [Ru(damp)(bpy)(H2O)]
2+

 0.44 0.30 0.37  140 11.5 --  16,17 

a
 Ligand abbreviations: CNC is 2,6-bis(butylimidazol-2-ylidene)pyridine; bpm is 2,2’- bipyrimidine; damp is 2,6-

bis((dimethylamino)methyl)pyridine. 
b 

∆E1/2 = E1/2(IV/III)-E1/2(III,II) in mV. 
c 

pKa,II and pKa,III represent the pKa of the 

corresponding RuII-OH2 and RuIII-OH2 species, respectively. d2 electron process. e TOFi stands for initial Turn Over Frequencies 

in cycles per second and TN for Turn over Numbers. This values are extracted for the catalytic reactions involving 1.0 mM 

Cat/100 mM Ce(IV) in a 0.1 M triflic acid solution with a total volume of 2 mL. f Tw means this work. 

Eo = 0.54 V for 52+ and 0.56 V for 62+ at pH = 7.0 (trpy and bpy ligands are not 

drawn). This is in sharp contrast to complex 22+,6 where the two one electron 

processes are separated by 110 mV. It is interesting to see here that the 

standard potential for the Ru(IV/II) couple for 22+ is practically identical to that 

of the F complexes 52+ and 62+. This reveals that the presence of the F 

substituent in the bpy produces an increase of the Ru(III/II) couple as expected 

for the electron withdrawing properties of the F-group but surprisingly 

produces a dramatic decrease of the IV/III redox potential. It is also important 

to realize here that the IV/II standard potential for 52+ and 62+ differ merely by 

20 mV and thus indicates that the direct contact of the F with the aqua group, 

distorting slightly its geometry, practically does not affect the electronic 

structure of the metal center. A similar phenomenon is observed for the next 

redox couple corresponding to the oxidation of Ru(IV) to Ru(V), where in this 

case the potentials for 52+ and 62+ differ now by only 10 mV (1.68 V for 52+ and 

1.69 V for 62+). However, while for the two electron transfer process Ru(IV/II) 
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there is not much influence because of the opposite trend of the individual 

redox potentials just described, for the Ru(V/IV) standard potential the F-

substituent produces an anodic shift of 60 to 70 mV for 52+ and 62+ respectively 

with regard to the unsubstituted bpy complex 22+. As it can be observed in 

Figure 2 this wave is accompanied with a large electrocatalytic current 

intensity associated with the oxidation of water to dioxygen. 

 

Figure 2. Cyclic Voltammetry of 1 mM solutions in 0.1 M CF3SO3H (pH=1.0) for 

complexes 2
2+

 (black), 5
2+

(blue) and 6
2+

(red). Scan rate 100 mVs
-1

 using a glassy carbon 

working electrode, Pt wire as an auxiliary electrode and the SSCE reference electrode. 

For the 22+ case it is proposed that right at this high oxidation state the 

O-O bond formation occurs, followed by a sequence of reactions that lead to 

the formation of O2, as exemplified below (again trpy and bpy ligands are not 

shown), 

[RuV=O]3+  +  H2O   ->   [RuIII-OOH]2++  H+    (2) 

[RuIII-OOH]2+  -  1e-  - 1H+   ->   [RuIV-OO]2+    (3) 

[RuIVOO]2+  +  H2O   ->   [RuII-OH2]
2+  +  O2     (4) 

and where the rate determining step (rds) is proposed to be the last reaction 

(equation 4) where the release of oxygen is produced.6b,6c The perturbation 
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exerted by the presence of the F group in 52+ and 62+ is nicely perceived in their 

acidities at oxidation state II. Whereas 52+ decreases the pKa,II by 0.8 log units 

compared to 22+, as expected from the electron withdrawing effect of the F 

substituent, 62+ causes the opposite effect increasing the pKa by 0.6 log units 

(see Table 1). The latter is attributed to hydrogen bonding in 62+, that stabilizes 

the RuII-OH2 species as seen in the Figure 1 (X-ray structure) and in Figure 4. 

Taking into account that both 52+ and 62+ isomers, according to the 

electrochemical data, have practically the same electronic effect over the 

metal center, it implies then that the hydrogen bonding effect is responsible 

for the 1.4 log units increase of the pKa, that is 62+ is roughly 25 times more 

basic than 52+. 

The catalytic activity of complex 52+ and 62+ towards the oxidation of 

water to dioxygen was also evaluated and compared to the unsubstituted bpy 

complex 22+. Figure 3 presents the oxygen evolution profile obtained when 1 

mM catalysts are treated with 100 mM Ce(IV) oxidant at pH = 1.0 in a triflic 

acid aqueous solution with a total volume of 2 mL. The oxygen generation was 

monitored manometrically and the nature of the gases was also followed on 

line by Mass Spectroscopy (MS) indicating that no other gases were formed in 

the reaction. As can be observed in the graph both the O2 generation initial 

rate (TOFi) and the overall Turn Over Number (TN) (See Table 1) are strongly 

affected by the substituted F-bpys compared to the unsubstituted. In the 

purely electronic scenario, that is comparing 22+ with 52+, the initial rates 

decreases by a factor near to 4 (15.1 vs. 4.3). On the other hand the purely H-

bonding scenario, that is comparing 52+ and 62+, the initial rate decrease by a 

factor bigger than 2 (4.3 vs. 1.7). Thus since both factors operate in the same 
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direction when comparing 22+ with 62+ the initial rate decreases by a factor of 

9. 

 

Figure 3. O2 evolution vs. time manometric profiles for catalysts 2
2+

 (blue), 5
2+

 (red) 

and 6
2+

(green) under 1:100 Cat:Ce(IV) ratios in 0.1 M triflic acid solutions (pH = 1.0). 

The 4 times decrease in the TOFi for the purely electronic effect exerted 

by 52+ with regard to 22+ indicates that equation 4 is not any more the rds since 

this is formally an intramolecular Electron Transfer (ET) step where Ru(IV) 

oxidizes the peroxide to dioxygen concomitant with its release, therefore an 

increase in the standard potentials would suppose an increase in rate. Indeed a 

kinetic study based on initial oxygen evolution velocities shows that the rate of 

the reaction is first order in Ru and second order in Ce (see sup inf.). This is 

consistent with a rds where the [RuIVOO]2+ species is further oxidized to Ru(V) 

(equation 6) preceded by a fast equilibrium step as shown in equations 5, 

below, 

[RuV=O]3+ + H2O  - 1e-   <=>   [RuIV-OO]2+ + 2H+    (5) 

[RuIV-OO]2+  -  1e-  ------------>   [RuV-OO]2+  (slow)  (6) 

followed by a fast release of dioxygen. 

[RuVOO]3+  + H2O    ------->   [RuIII-OH2]
3+  +  O2 (fast)  (7) 
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Finally, the fact that all the standard potentials for 52+ and 62+ are 

practically identical contrasts with the 2 times decrease on TOFi for 62+ with 

regard to that of 52+. This clearly points towards a potential stabilization of the 

[RuIII-OOH]2+, 7, intermediate through H-bonding as shown in the Figure 4. This 

stabilization produces a severe slowing down in the process, in line with the 

basicity increase described above for the pKa,II for 62+, given the Proton 

Coupled Electron Transfer (PCET) nature of the process. 

 

Figure 4. Drawings of 5
2+

, 6
2+

 and 7
+
 (trpy ligands are omitted except for the central N 

atom) showing the Hydrogen interactions between the aqua and peroxo ligands with 

the F-group of the bpy ligand, where appropriate. 

4.3. Conclusions. 

In conclusion, careful ligand design of mononuclear tpry-bpy-Ru-aqua 

type of complexes allows understanding how electronic perturbations and 

hydrogen bonding interactions influence their water oxidation activity. 
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Experimental Section. 

Materials: 

All reagents used in the present work were obtained from Aldrich Chemical Co. 

and were used without further purification. Reagent-grade organic solvents 

were obtained from SDS. RuCl3·3H2O was supplied by Alfa Aesar and was used 

as received. Ru(trpy)Cl3
1 and (n,n’-F2-bpy) where [n = n’ = 52 (5,5’-difluoro-2,2’-

bipyridine) and  n = n’ = 63 (6,6’-difluoro-2,2’-bipyridine)] were prepared 

according to literature procedures.  

(1) Sullivan, B. P.; Calvert, J. M.; Meyer, T. J. Inorg. Chem. 1980, 19, 1404.  

(2) Jenkins, D. M.; Bernhard, S. Inorg. Chem. 2010, 49, 11297-11308. 

(3) Singh, R. P.; Eggers, G. V.; Shreeve, J. M. Synthesis 2003, 7, 1009-1011. 

Synthesis of Chloro (5,5’-difluoro-2,2’-bipyridine) (2,2’:6’,2’’-terpyridine) 

ruthenium(II) hexafluorophosphate: [Ru(trpy)(n,n’-F2-bpy)X]+, (n = n’ = 5: X= 

Cl, 3+). 

A mixture of Ru(trpy)Cl3 (0.572 g, 1.302 mmol), the ligand 5,5’-difluoro-2,2’-

bipyridine  (0.250 g, 1.302 mmol) in ethylene glycol (3 mL) was refluxed for 4 h. 

After cooling to room temperature 5 mL ethanol was added and the mixture 

was filtered to remove the excess ligand and starting metal complex. The 

filtrate was concentrated by rotary evaporation and added dropwise excess 

saturated aqueous NH4PF6. The resulting precipitate was separated from the 

solution by vacuum filtration, washed with little portions of chilled water and 

50 mL of diethyl ether, and dried under vacuum. This crude product was then 

purified by alumina chromatography using a 100:1 (v/v) 

dichloromethane/methanol solvent mixture as the eluent. The desired product 

eluted first as a purple band, which was then concentrated by rotary 
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evaporation, dissolved in a minimal amount of dichloromethane, and 

precipitated by addition of to 200 mL of diethyl ether. The precipitate was 

again isolated by vacuum filtration and washed with diethyl ether. This 

procedure produced 0.430 g of a purple solid. Yield: 47%. Anal. Calcd (%) for 

C25H17ClF8N5PRu·H2O: C, 41.42; H, 2.64; N, 9.66. Found: C, 41.69; H, 2.63; N, 

9.68. [nm] ( [M1cm1]) in acetonitrile: 630 (2290), 489 (18020), 363 (12755), 

315 (55765), 300 (65205), 277 (40755), 259 (39215), 239 (54370). ESI-MS 

(m/z): 562.1 [M-PF6]
+. 1H NMR in CD2Cl2 [/ppm (J/Hz)]: 10.19 (d, 2.5, H16), 

9.53 (d, 9.2, H19), 9.31 (d, 9.2, H22), 8.46 (d, 7.8, H7 and H9), 8.34 (d, 7.8, H4 

and H12), 8.15 (t, 7.8, H8), 8.11 (d, 9.28, H18), 7.92 (t, 7.0, H3 and H13), 7.68 

(d, 5.3, H1 and H15), 7.61 (d, 6.8, H23), 7.33 (t, 7.0, H2 and H14), 7.09 (d, 2.5, 

H25). 13C{1H} NMR (400 MHz, CD3CN): δ =160.72,  159.47,  158.71,  155.70,  

153.37,  142.00,  141.75,  138.97,  138.27,  138.04, 135.38,  128.12,  125.98,  

125.91,  125.38,  125.32,  124.81,  124.64,  124.12,  123.96, 123.63. Single X-ray 

crystal structure was obtained by slow evaporation from a mixture of  CH2Cl2 

and diethyl ether (1:2). 

Synthesis of Chloro (6,6’-difluoro-2,2’-bipyridine) (2,2':6',2''-terpyridine) 

ruthenium(II) hexafluorophosphate : [Ru(trpy)(n,n’-F2-bpy)X]+, (n = n’ = 6: X= 

Cl, 4+). 

A mixture of Ru(trpy)Cl3 (0.572 g, 1.302 mmol), the ligand 6,6’-difluoro-2,2’-

bipyridine   (0.250 g, 1.302 mmol) in ethylene glycol (3 mL) was refluxed for 4 

h. After cooling to room temperature 5 mL ethanol was added and the mixture 

was filtered to remove the excess ligand and starting metal complex. The 

filtrate was concentrated by rotary evaporation and added dropwise excess 

saturated aqueous NH4PF6. The resulting precipitate was separated from the 

solution by vacuum filtration, washed with little portions of chilled water and 
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50 mL of diethyl ether, and dried under vacuum. This crude product was then 

purified by alumina chromatography using a 100:1 (v/v) 

dichloromethane/methanol solvent mixture as the eluent. The desired product 

eluted first as a purple band, which was then concentrated by rotary 

evaporation, dissolved in a minimal amount of dichloromethane, and 

precipitated by addition of to 200 mL of diethyl ether. The precipitate was 

again isolated by vacuum filtration and washed with diethyl ether. This 

procedure produced 0.247 g of a purple solid. Yield: 27%. %. Anal. Calcd (%) for 

C25H17ClF8N5PRu: C, 42.48; H, 2.42; N, 9.91. Found: C, 42.69; H, 2.63; N, 9.88. 

[nm]([M1cm1]) in acetonitrile: 632 (1765), 508 (13165), 373 (8030), 315 

(54945), 304 (55600), 280 (35390), 240 (41360). ESI-MS (m/z): 562.0 [M-PF6]
+. 

1H NMR in CD3CN [/ppm(J/Hz)]: 8.55 (d, 7.0, H19), 8.43 (t, 8.0, H18), 8.42(d, 

8.0, H7 and H9),  8.36 (d, 7.8, H4 and H12), 8.26 (d, 7.8, H22), 8.06 (t, 8.0, H8), 

7.94 (t, 4.9, H2 and H14), 7.92 (d, 7.8, H1 and H15), 7.83 (t, 8.0, H23), 7.69 (d, 

8.2, H17), 7.34 (t, 7.0, H3 and H13), 6.75 (d, 8.2, H24).  13C{1H} NMR (400 MHz, 

CD3CN): δ =170.36,  170.04,  168.27,  168.01,  159.35,  159.16,  157.53,  155.19,  

153.27,  142.29, 142.21,  140.86,  140.78,  137.24,  134.24, 127.09,  123.27,  

121.75,  121.09,  121.07, 121.05,  117.33,  113.85,  113.62,  111.62,  111.38. 

Single X-ray crystal structure was obtained by slow vapour diffusion from a 

mixture of  CH2Cl2 and diethyl ether(1:4). 

Synthesis of Aqua (5,5’-difluoro-2,2’-bipyridine) (2,2':6',2''-terpyridine) 

ruthenium(II) hexafluorophosphate [Ru(trpy)(n,n’-F2-bpy)X]2+, (n = n’ = 5: X= 

H2O, 52+). 

A (0.100 g, 0.141 mmol) amount of 3+ and (0.035 g,0.168 mmol) of AgClO4 

were heated together at reflux for 2 h in 40 mL of 75% acetone/25% water. 

AgCl was filtered off, the solution volume reduced to 5 mL on a rotary 
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evaporator and added dropwise excess saturated aqueous NH4PF6. The 

resulting dark red precipitate was separated from the solution by vacuum 

filtration, washed with little portions of chilled water and 50 mL of diethyl 

ether, and dried under vacuum. This procedure produced 0.092 g of a dark red 

solid. Yield: 77.8 %. Anal. Calcd (%) for C25H19F14N5OP2Ru.H2O: C, 35.22; H, 2.48; 

N, 8.22. Found: C, 35.48; H, 2.37; N, 8.30. ESI-MS (m/z): 713.9 [M-PF6 + Na]+. 1H 

NMR in D2O [/ppm (J/Hz)]: 9.37 (d, 2.3, 1H), 8.60 (d, 9.3, 1H), 8.53 (d, 8.0, 2H), 

8.40 (d, 8.0, 2H), 8.24 (d, 9.0, 1H), 8.19 (t, 8.0, 1H), 8.08 (d, 9.3, 1H), 7.93 (t, 

7.8, 2H), 7.72 (t, 5.3, 2H), 7.44 (d, 9.3, 1H), 7.28 (t, 6.7, 1H), 7.22 (d, 2.3, 1H). 

The crystal was grown by slow evaporation in mixture of acetone and water 

(1:1). 

Synthesis of Aqua (6,6’-difluoro-2,2’-bipyridine) (2,2':6',2''-terpyridine) 

ruthenium(II) hexafluorophosphate [Ru(trpy)(n,n’-F2-bpy)X]2+, (n = n’ = 6: X= 

H2O, 62+). 

A (0.100 g, 0.141 mmol) amount of 4+ and (0.035 g,0.168 mmol) of AgClO4 

were heated together at reflux for 2 h in 40 mL of 75% acetone/25% water. 

AgCl was filtered off, the solution volume reduced to 5 mL on a rotary 

evaporator and added dropwise excess saturated aqueous NH4PF6. The 

resulting dark red precipitate was separated from the solution by vacuum 

filtration, washed with little portions of chilled water and 50 mL of diethyl 

ether, and dried under vacuum. This procedure produced 0.086 g of a dark red 

solid. Yield: 72.8 %. Anal. Calcd (%) for C25H19F14N5OP2Ru: C, 35.98; H, 2.30; N, 

8.39. Found: C, 36.28; H, 2.47; N, 8.28. ESI-MS (m/z): 714.1 [M-PF6 + Na]+. 1H 

NMR in D2O [/ppm(J/Hz)]: 8.56 (d, 8.5, 1H), 8.47 (d, 8.0, 2H), 8.43 (d, 8.3, 1H), 

8.38 (d, 8.0, 2H), 8.23 (d, 7.8, 1H), 8.15(t, 8.1, 1H), 7.95 (d, 7.8, 2H), 7.91 (d, 

5.3, 2H), 7.77 (t, 8.0, 1H), 7.72 (d, 8.0, 1H), 7.31 (d, 6.8, 2H), 6.67 (d, 8.3, 1H). 
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The crystal was grown by slow evaporation in mixture of acetone and water 

(1:1). 

Instrumentation  

UV/Vis spectroscopy was performed on a Cary 50 (Varian) UV/Vis 

spectrophotometer in 1 cm quartz cuvettes. Cyclic voltammetry (CV), 

differential pulse voltammetry (DPV) and square wave voltammetry (SWV) 

experiments were performed on an IJ-Cambria CHI-660 potentiostat or a Bio-

Logic SP-150 potentiostat using a three-electrode cell. Typical CV experiments 

were carried out at a scan rate of 100 mV s-1. DPV experiments were carried 

out with the parameters: Pulses Height = 50 mV, Pulses Width = 50 ms, Step 

Height = 4 mV and Step Time = 200 ms; A glassy carbon electrode (3 mm 

diameter) was used as working electrode, platinum wire as auxiliary electrode, 

and a SSCE as a reference electrode. Working electrodes were polished with 

0.05 micron alumina paste, and rinsed with distilled water and acetone 

followed by blow-drying before each measurement. All cyclic voltammograms 

presented in this work were recorded in the absence of light and inside a 

Faradaic cage. Glassy carbon electrodes were activated following the protocol: 

a polished GC electrode was immersed in a non-degassed 0.1 M H2SO4 solution 

and four cycles of 30 s at 1.8 V (vs. SSCE) immediately followed by 15 s at -0.2 

V (vs. SSCE). After the last reductive potential, the electrode was removed 

from the solution rinsed with distillated water and acetone and dried. The 

complexes were dissolved either in CH2Cl2 (DCM) containing the necessary 

amount of (n-Bu)4NPF6 (TBAH) as supporting electrolyte to yield a 0.1 M ionic 

strength solution. In aqueous solution the electrochemical experiments were 

carried out in 0.1 M CF3SO3H (pH 1.0).  
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For construction of the Pourbaix diagrams, the following buffers were used: 

dihydrogen phosphate/phosphoric acid up to pH = 4 (pKa = 2.12), hydrogen 

phosphate/dihydrogen phosphate up to pH = 9 (pKa = 7.67), hydrogen 

phosphate/sodium phosphate up to pH = 13 (pKa = 12.12) and sodium 

hydroxide for pH = 14. The concentration of the species was approximately 1 

mM. E1/2 values reported in this work were estimated from CV experiments as 

the average of the oxidative and reductive peak potentials (Ep,a + Ep,c)/2 or 

taken as E(Imax) from SWV or DPV measurements. The NMR spectroscopy 

experiments were performed on a Bruker Avance 400 Ultrashield NMR 

spectrometer. Samples were run in dichloromethane-d2, acetonitrile-d3 or D2O 

with internal references (residual protons). Elemental analysis was performed 

using an EA-1108, CHNS-O elemental analyzer from Fisons Instruments.  

O2 Measurements. 

On-line manometric measurements were carried out on a Testo 521 

differential pressure manometer with an operating range of 1-100 hPa and 

accuracy within 0.5 % of the measurement. The manometer was coupled to 

thermostated reaction vessels for dynamic monitoring of the headspace 

pressure above each reaction. The manometer’s secondary ports were 

connected to thermostated reaction vessels containing the same solvents and 

headspace volumes as the sample vials. Composition of the gaseous phase was 

determined by online mass-spectrometry with an OmniStar GSD 301 C 

(Pfeiffer) quadrupole mass-spectrometer. 

Reaction order in catalyst has been obtained from initial rates method applied 

to manometric oxygen evolution plots. No more than 5% of total reaction time 

has been used for linear least square regression. One advantage of this 

method is that it avoids any complications arising from product inhibition or 
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from subsequent reactions. All experiments have been done at least by 

duplicate. 

Kinetics. 

For determining the order of catalyst (Ru) we recorded manometric data 

oxygen evolution vs. time obtained at the initial stages of the reaction adding 

100 mM Ce(IV) oxidant to catalysts solutions containing 0.34 to 1.0 mM of 

catalyst. Reaction order in catalyst was determined by plotting initial rates (vi) 

vs. [Ru]. All experiments were carried out in 0.1 M aqueous triflic acid solution 

at 298 K with a total volume of 2 mL. 

For determining the order of CeIV we followed the previously described 

procedure adding CeIV solutions in the range 25 to 100 mM to a 1mM Catalyst 

solution. Reaction order in Cerium was determined by plotting initial rates (vi) 

vs. [CeIV]2. All experiments were carried out in 0.1 M aqueous triflic acid 

solution at 298 K with a total volume of 2 mL. 

X-Ray Crystal Structure Determination. 

Crystals of 52+ and 62+ were grown by slow evaporation in mixture of acetone 

and water (1:1). The measured crystal was prepared under inert conditions 

immersed in perfluoropolyether as protecting oil for manipulation. 

Data collection: Crystal structure determination was carried out using a Apex 

DUO Kappa 4-axis goniometer equipped with an APPEX 2 4K CCD area 

detector, a Microfocus Source E025 IuS using MoK radiation, Quazar MX 

multilayer Optics as monochromator and an Oxford Cryosystems low 

temperature device Cryostream 700 plus (T = -173 °C). Full-sphere data 

collection was used with  and  scans. Programs used: Data collection APEX-

24, data reduction Bruker Saint5 V/.60A.  
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Structure Solution and Refinement: Crystal structure solution was achieved 

using direct methods as implemented in SHELXTL6 and visualized using the 

program XP. Missing atoms were subsequently located from difference Fourier 

synthesis and added to the atom list. Least-squares refinement on F2 using all 

measured intensities was carried out using the program SHELXTL. All non 

hydrogen atoms were refined including anisotropic displacement parameters.  

(4) Data collection with APEX II version v2009.1-02. Bruker 2007. Bruker AXS Inc., Madison, Wisconsin, USA. 

(5) Data reduction with Bruker SAINT version V7.60A. Bruker 2007. Bruker AXS Inc., Madison, Wisconsin, 

USA.  

(6) Sheldrick, G.M. Acta Cryst. 2008 A64, 112-122. SHELXTL version V6.14. 
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Figure S 1. Ortep plot (50 % probability) of the crystal structure of the complex 5
2+

. 

Color codes: Ru, cyan; N, navy blue; F, green; O, red; H, blue empty circles. 
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NMR Characterization. 

Figure S 2. 1D and 2D NMR spectra (400 MHz, 298 K, in dichloromethane-d2) for 

complex 3
+
: (a) 

1
H-NMR, (b) {

1
H-

19
F} -NMR, (c) COSY, (d) NOESY, (e) HSQC, (f) HMQC, (g) 

{
19

F-
1
H } (h) DEPT, (i) {

13
C-

1
H}. 

(a)  
1
HNMR in CD2Cl2: 

 

(b)  {
1
H-

19
F} NMR in CD2Cl2: 
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(c)  COSY 

 

(d)  NOESY 
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(e)  HSQC 

 

(f)  HMQC 
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(g)  {
19

F-
1
H } 

 

(h)  DEPT 
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(i)  {
13

C-
1
H} 
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Figure S 3. 1D and 2D NMR spectra (400 MHz, 298 K, in CD3CN) for complex 4
+
: (a) 

1
H-

NMR, (b) {
1
H-

19
F} -NMR, (c) COSY, (d) NOESY, (e) HMBC, (f) HSQC, (g)  {

19
F-

1
H } (h) DEPT, 

(i) {
13

C-
1
H}, (j) {

19
F-

1
H } HOESY. 

(a)  
1
H-NMR in CD3CN: 

 

(b)  {
1
H-

19
F} -NMR  
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(c)  COSY 

 

(d)  NOESY 
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(e)  HMBC 

 

(f)  HSQC 
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IV 

(g)  {
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(h)  DEPT 
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IV 

Figure S 4. 1D NMR spectra (400 MHz, 298 K, in D2O) for complex 5
2+

: (a) 
1
H-NMR, (b) 

{
1
H-

19
F} –NMR. 

(a) 
1
H-NMR in D2O 

 

(b) {
1
H-

19
F} NMR in D2O 
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Figure S 5. 1D NMR spectra (400 MHz, 298 K, in D2O) for complex 6
2+

: (a) 
1
H-NMR, (b) 

{
1
H-

19
F} –NMR. 

(a)  
1
HNMR in D2O 

 

(b)  {
1
H-

19
F} NMR in D2O 
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IV 

1. MS Characterization. 

Figure S 6. Experimental (top) and simulated (bottom) Mass Spectrum for complex 3
+ 

 

in methanol. 
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Figure S 7. Experimental (top) and simulated (bottom) Mass Spectrum for complex 4
+ 

 

in acetonitrile. 
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IV 

Figure S 8. Experimental (top) and simulated (bottom) Mass Spectrum for complex 5
2+ 

 

in water. 
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Figure S 9. Experimental (top) and simulated (bottom) Mass Spectrum for complex 5
2+ 

 

in water. 
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IV 

UV-vis Characterization. 

Figure S 10. UV-vis Spectra in CH3CN (a) 3
+
, (b) 4

+
. 
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Figure S 11. UV-vis spectra of complexes 2
2+

 (blue), 5
2+

 (green) and 6
2+

 (red) in 0.1 M 

triflic acid. 
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IV 

Electrochemistry. 

Figure S 12. Cyclic voltammogram in DCM (0.1 M TBAH) (a) 3
+
, (b) 4

+
. 

(a) 

 

(b) 
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Figure S 13. Pourbaix Diagram for complex 5
2+

. The diagram was built by CV 

experiments in aqueous solution at different pH (I = 0.1 M, glassy carbon working 

electrode, standard potentials vs. SSCE reference). 

 

From pH=1.0 to pKa the slope is 55 mV per pH unit very close to the expected 

value (59 mV per pH) for a 2H+/2e- process. After RuII-OH2 deprotonation at 

pH=9.0 the slope changes to 30 mV per pH unit which is approximately the 

expected value for a 1H+/2e- process. 
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IV 

Figure S 14. CVs of complex 5
2+

 at different pHs. 0.2 mM complex concentration. 

Glassy carbon working electrode, Pt wire counter electrode and SSCE reference 

electrode. Scan rate=100 mV s
-1

. 
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Figure S 15. Pourbaix Diagram for complex 6
2+

. The diagram was built by CV 

experiments in aqueous solution at different pH (I = 0.1 M, glassy carbon working 

electrode, standard potentials vs. SSCE reference). 

 

From pH=1.0 to pKa the slope is 53 mV per pH unit very close to the expected 

value (59 mV per pH) for a 2H+/2e- process. After RuII-OH2 deprotonation at 

pH=10.4 the slope changes to 29mV per pH unit indicating a 1H+/2e- process. 
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IV 

Figure S 16. Cyclic Voltammograms of complex 6
2+

 at different pHs. 0.2 mM complex 

concentration. Glassy carbon working electrode, Pt wire counter electrode and SSCE 

reference electrode. Scan rate=100 mV s
-1

. 
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Figure S 17. Diffential Pulse Voltammograms of 0.5 mM solutions in 0.1 M CF3SO3H (pH 

= 1.0) for complexes 2
2+

 (black), 5
2+

 (blue) and 6
2+

 (red). Glassy carbon working 

electrode, Pt wire counter electrode and SSCE reference electrode. Scan rate = 20 mV 

s
-1

 (Pulses Height = 50 mV, Pulses Width = 50 ms, Step Height = 4 mV and Step Time = 

200 ms). 
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IV 

Figure S 18. Upper, CV of 0.2 mM K4Fe(CN)6·3H2O and 0.2 mM 5
2+

 (scan rate = 500 mV 

s
-1

). Bottom, CV of 0.2 mM 6
2+

 (scan rate = 100 mV s
-1

). Both at pH = 1.0 (0.1 M 

CF3SO3H) using a glassy carbon working electrode, Pt counter electrode and SSCE as 

reference electrode. The comparison of the areas under the anodic waves gives a 1:2 

ratio which is indicative of 2 e
-
 process for 5

2+
 and 6

2+
. 
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Figure S 19. CV of a 0.5 mM solution of 5
2+

 at pH = 1.0 (0.1 M HOTf) using an activated 

glassy carbon electrode, Pt counter electrode and SSCE reference electrode. Scan rate 

= 100 mV s
-1

. The peak to peak separation is 40 mV which is a further indication of a 2e
-
 

process. 
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IV 

Figure S 20. Top left, CV and DPV (20 mV s
-1

 scan rate), top right, of the reaction of 3 

equivalents of (NH4)2Ce(NO3)6 with a 0.5 mM solution of 5
2+

 in 0.1 M HOTf after 4 days. 

Polished glassy carbon working electrode, Pt counter electrode and SSCE reference 

electrode. Scan rate = 100 mV s
-1

. The asterisks correspond to Ce. Bottom, DPV of a 30 

mM solution of Ce(IV). 
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Figure S 21. Upper, UV-vis monitoring of the reaction of 3 equivalents of 

(NH4)2Ce(NO3)6 with a 0.5 mM solution of 5
2+

 in 0.1 M HOTf at 20 ºC. A cuvette with an 

optical path length of 2 mm was used. Bottom, plot of absorbance vs. time at 403 nm. 

The UV-vis monitoring of the reaction of 3 equivalents of CAN with 52+ shows a 

slow formation of a [Ru-OOH]2+intermediate as in previously reported cases (J. 

Am. Chem. Soc.  2010, 132, 1545 and J. Am. Chem. Soc. 2010, 132, 16094). 

However in our case we could not see it neither by CV nor by DPV, as shown in 

Figure S 20. 
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IV 

Kinetics. 

Figure S 22. Top left, O2 evolution vs. time manometric profiles for catalyst 5
2+

 1 mM 

with Ce(IV) (25-100 mM; see graph) in 0.1 M triflic acid solutions (pH = 1.0). Top right, 

initial stages of the oxygen evolution profile, together with linear fitting. Bottom left, 

plot of initial rates vs. Ce(IV) concentration. Bottom right, linear regression data from 

previous plot. 
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Figure S 23. Top left, O2 evolution vs. time manometric profiles for catalyst 5
2+

 (0.34 

mM to 1 mM; see graph) with 100 equivalents of Ce(IV) in 0.1 M triflic acid solutions 

(pH = 1.0). Top right, initial stages of the oxygen evolution profile, together with linear 

fitting. Bottom left, plot of initial rates vs. catalyst concentration. Bottom right, linear 

regression data from previous plot. 
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IV 

Catalysis. 

Figure S 24. Online MS monitoring of the evolved gas after the addition of 100 

equivalents of CAN to a 1 mM solution of complex 2
2+

 (upper left), 5
2+

 (upper right) or 

6
2+

 (bottom) in 0.1 M HOTf at RT. 
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Chapter 5. A Self Improved Water Oxidation Catalyst, 

Is One Site Really Enough? 

 

 

We show for the first time that highly active mononuclear Ru-aqua 
water oxidation catalysts are transformed into dinuclear complexes during 
oxygen evolution catalysis, even from the very beginning of the catalytic 
process. The new dinuclear species are much more robust than their 
mononuclear counterparts and remain active catalyst for the water oxidation, 
establishing the coexistence of two different catalytic cycles in solution.
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A Self Improved Water Oxidation Catalyst; Is One Site Really 

Enough? 
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 Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 

Berlin, Germany. 

e
 Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 

Barcelona, Spain. 

5.1. Introduction. 

The replacement of fossil fuels by green and renewable solar energy 

carriers is one of the most important challenges our society is facing today. 

Intense research is currently being devoted to this topic, with emphasis on the 

development and characterization of new catalysts for water splitting such as 

the dinuclear Ru complexes introduced in this paper.1 

Nature has been using sunlight to oxidize water and generate 

carbohydrates (solar fuels) in photosynthesis for over 2.5 billion years.2 

Artificial systems inspired by Nature have been designed to capture solar light 

and extract reducing equivalents (protons and electrons) from water to 
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generate useful chemical fuels. Therefore, mastering and understanding water 

oxidation catalysis is one of the key elements needed for this strategy to 

succeed. While the research field is becoming extremely active,3 significant 

advances are still needed to develop a sufficiently rugged and efficient water 

oxidation catalyst that could be useful in large scale practical applications. 

Since the discovery by Thummel et al.4 that even mononuclear Ru 

complexes were active as water oxidation catalysts (WOCs), there has been a 

vivid development of several studies on this type of complexes.5-8 Several 

catalysts have been developed and considerable knowledge on this type of 

catalysts has been advanced.9-13 From a mechanistic perspective, Meyer et al.14 

offered a description of water oxidation at a molecular level. It was proposed 

that the O-O bond formation would take place through a water nucleophilic 

attack (WNA) pathway, as shown in a simplified manner on the left side of 

Scheme 1. Catalysts such as [Ru(trpy)(bpym)(H2O)]2+ (trpy: 2,2’:6’,2”-

terpyridine; bpym: 2,2'-bipyrimidine),15 have been reported to have impressive 

turn over numbers (TNs) larger than 28.000. However, practical applications 

require catalysts with TNs that are at least a few orders of magnitude higher. In 

order to design such highly efficient water oxidation catalysts, it is of 

paramount importance to understand the pathways that lead oxygen 

evolution from water and also the different reactions coupled to the catalytic 

cycle that might drive the intervening species towards unproductive pathways 

and decomposition. In addition, understanding pathways that derail from the 

initial catalytic cycle and generate new catalytic species with superior 

performance would be particularly valuable. 
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Scheme 1. Proposed interconnection of catalytic schemes (polypyridyl ligands are not 

shown). Energies are reported in kcal/mol and redox potentials are reported in V vs. 

the SSCE reference electrode. DFT calculations at M06-L level of theory (calc) are 

compared to experiments (exp). 

Here we report the synthesis and characterization of new dinuclear Ru 

complexes of general formula [(trpy)(5,5’-X2-bpy)RuIV(μ-O)RuIV(trpy)(O)(H2O)]4+ 

(bpy is 2,2’-bipyridine; X = H for 14+ and X = F for 24+) that are highly efficient 

and very robust WOCs. We find that these complexes are generated in the 

catalytic cycle of their related mononuclear counterparts [Ru(trpy)(5,5’-X2-

bpy)(H2O)]2+.16 

5.2. Results and discussion. 

Synthesis and spectroscopic characterization of new dinuclear Ru 

WOCs. Addition of [RuVI(trpy)(O)2(H2O)]2+, 32+, to [RuII(trpy)(bpy)(H2O)]2+, 42+, in 

the presence of Ce(IV) in acidic conditions generates complex 14+ (polypyridilic 

ligands not shown), 

[RuII(H2O)]2+ + [RuVI(O)2(H2O)]2+ → [RuIV-O-RuIV(O)(H2O)]4+ + H2O (1) 

Similarly addition of 32+ to [(trpy)(5,5’-F2-bpy)RuII(H2O)]2+, 52+, forms the 

related dinuclear fluoro complex 24+. Complexes 14+ and 24+ were thoroughly 

characterized by analytic, spectroscopic and electrochemical techniques. The 

X-ray crystal structures of 14+ and 24+ were solved by means of single crystal 
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XRD and their Ortep views are shown in Figure 1 and in the Supplementary 

Information, respectively. It is interesting to point out here the short Ru-O 

distance (1.747 Å) presented by 14+ that falls in the lower range of values 

reported for RuIV=O groups.17-22 In sharp contrast, the Ru-O distance for the 

RuIV-OH2 group is 2.120 Å. Additionally; also the nearly linear Ru-O-Ru angle 

(176.1o) is worth noting. Complexes 14+ and 24+ are diamagnetic as expected 

for high field μ-oxo dinuclear d4 Ru complexes23-26 and their NMR spectra are 

presented in the SI. 

 

Figure 1. Ortep plot (ellipsoids drawn at 50 % probability) of the X-ray structure of 1
4+

. 

Color codes: Ru, cyan; O, Red; N, Blue; C, black. H atoms are not shown except for the 

aqua ligands that are represented as small light blue circles. 

Complex 24+ has a very strong vibrational band at 801 cm-1 as shown in 

the resonance Raman (rR) spectrum (Figure 2), that we assign to the Ru=O 

stretching mode. Labeling experiments with H2
18O lead to a downshift of this 

mode to 760 cm-1 corresponding to an isotopic shift of 41 cm-1. Mixed labeling 

achieved with a 1:1 H2
16O:H2

18O mixture do not generate any new modes in the 

rR spectrum, consistently with a terminal Ru=O bond. The frequency of this 
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mode is in agreement with related Ru=O complexes reported in the 

literature.21,27-30 A very interesting feature of the rR spectrum is the small 

bands at 727, 714, 700 and 675 cm-1 that can be used as a fingerprint for the 

identification of this complex. 

 

Figure 2. Left, overlay of rR spectra of 2
4+

 (black) and the reaction product obtained 

after addition of 3 eq. of Ce(IV) to complex 5
2+

 (blue), both measured in 0.1 M HOTf in 

H2
16

O. The inset shows an enlargement of the fingerprint region mentioned in the 

main text. Right, overlay of rR spectra obtained after reaction of 3 eq. of Ce(IV) with 

complex 5
2+

 in 0.1 M HClO4 in H2
16

O (black), H2
18

O (red) and H2
16

O:H2
18

O (1:1) (blue). 

Further experimental details are given in SI. 

Electrochemistry and catalytic activity of the new dinuclear Ru WOCs. 

The electrochemistry of complexes 14+ and 24+ was carried out in 0.1 M triflic 

acid, was explored by means of CV, DPV and Coulometry, and is reported in 

Figure 3 and the SI. Complex 14+ undergoes a 2-electron reduction, as 

confirmed by Coulometry, from the formal oxidation state IV,IV to III,III, 

associated with two proton transfer steps according to (polypyridyl ligands not 

shown), 

[RuIV-O-RuIV(O)(H2O)]4+ + 2e- + 2H+ → [RuIII-O-RuIII(H2O)2]
4+ Eo = 0.78 V vs. 

SSCE (2) 
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Figure 3. Left, CV of 0.5 mM solutions of 1
4+

(red) and 4
2+

(black) in 0.1 M HOTf (pH = 

1.0) using a polished glassy carbon working electrode, a Pt wire counter electrode and 

a Hg/Hg2SO4, K2SO4 (sat.) as reference electrode (potentials reported vs. SSCE). Right, 

controlled potential electrolysis at 1.6 V vs. SSCE of a 0.4 mM solution of 4
2+

 (black) 

and 1
4+

 (red) complexes in 0.1 M triflic acid and a blank experiment without catalyst 

(blue). An activated boron doped diamond disk (3 mm diameter) was used as a 

working electrode, Pt wire as a counter electrode and a Hg/Hg2SO4, K2SO4 (sat) 

reference electrode (potentials are converted to SSCE). 

On the anodic part, a further electron transfer process is observed 

together with a large current intensity, assigned to the electrocatalytic 

oxidation of water to dioxygen. A one-electron process that generates a very 

reactive species responsible for the O-O bond formation (eqs 3-4) is proposed, 

followed by a sequence of reactions leading to dioxygen formation (Scheme 1, 

right side), 

[RuIV-O-RuV(O)(OH)]4+ + 1e- + 1H+ → [RuIV-O-RuIV(O)(H2O)]4+ Eonset = 1.45 V 

vs. SSCE (3) 

[RuIV-O-RuV(O)(OH)]4+ + H2O → [RuIV-O-RuIII(OOH)(OH2)]
4+  (4) 

Formal oxidation states are indicated to facilitate electron counting even 

though it is well known that the oxo-bridge promotes charge transfer 

interactions between the Ru metal centers.31 DFT calculations at the M06-L32-34 
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level of theory (see SI for details) were carried out to characterize the reaction 

intermediates as well as the transition states, providing a complete catalytic 

cycle (Scheme 1, right). The O-O bond formation step through water 

nucleophilic attack to [RuIV-O-RuV(O)(OH)]4+ (equation 4) was found to be the 

rds of the catalytic cycle with a ΔG‡ of 18.4 kcal/mol. The optimized transition 

state structure features a water molecule which forms the O-O bond with 

concomitant transfer of a proton to the neighboring Ru-OH group (Figure 4, 

left), to generate the corresponding hydroperoxo complex, [RuIV-O-

RuIII(OOH)(OH2)]
4+. 

 

Figure 4. Ball and stick representation of the optimized transition state structures for 

the O-O bond formation (left) and O2 evolution steps (right). H atoms are only shown 

for the aqua and hydroxy ligands. 

The next step corresponds to a proton coupled electron transfer with a 

very low redox potential leading to the formation of a superoxo intermediate, 

[RuIV-O-RuIII(OOH)(OH2)]
4+ -1e- -1H+  →  [RuIV-O-RuIV(OO)(OH2)]

4+  Eo = 

0.14 V vs. SSCE (5) 

which subsequently evolves O2 (Figure 4, right) and generates the initial 

complex, 

[RuIV-O-RuIV(OO)(OH2)]
4+ + H2O  →  [RuIII-O-RuIII(OH2)2]

4+  +  O2 (6) 
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closing the catalytic cycle. 

From the electrochemical experiments shown in Figure 3, TOFs of 0.7 

cycles per second for 14+ and 1.2 s-1 for 42+ were calculated35 which are 

comparable to mononuclear complexes reported in the literature.15,16,36 The 

capacity of 14+ to act as a WOC was also tested electrochemically under a 

constant applied potential. A potentiometric experiment was performed for 

both 14+ and 42+ in order to evaluate their relative performance at longer time 

scales as shown in Figure 3. At an applied potential of 1.6 V vs. SSCE, initial 

current densities of approximately 40 μA/cm2 are reached for 14+ and 42+. For 

14+ the current density decreases to 20 μA at about 10 ks and is maintained 

constant thereafter. On the other hand, for 42+ the current slowly drops over 

time until it merges with that of 14+ at approximately 30 ks. This phenomenon 

is attributed to the slow but progressive and irreversible conversion of the 

mononuclear complex 42+ to the corresponding dinuclear 14+ complex, as 

proposed in Scheme 1, and demonstrated by UV-vis and rR spectroscopy (vide 

infra). At 35 ks TONs of 14930 and 6683 were obtained for 42+ and 14+ 

respectively. 

A bulk electrolysis experiment at 1.4 V applied potential was also 

followed spectrophotometrically by UV-vis absorption spectroscopy as 

indicated in Figure 5. Very interestingly it was found that the absorption bands 

of 14+ at 457 and 690 nm start to emerge as the catalysis proceeds. After two 

days of applied constant potential, 23 % conversion of 42+ → 14+ was observed. 

This mononuclear to dinuclear conversion can also be observed in the rR 

spectra at the very early stages of the water oxidation reaction when adding 3 

equivalents of Ce(IV) to 52+ (Figure 2). Indeed, shortly after Ce(IV) addition, the 

rR spectrum displays a highly intense band at 801 cm-1 and four weaker bands 

at 727, 714, 700 and 675 cm-1 characteristic of 24+. In sharp contrast, exposure 
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of 14+ or 24+ for long periods of time under the same conditions (35 ks at 1.6 V 

vs. SSCE), does not show any change in the UV-vis spectrum. This manifests the 

ruggedness of 14+ as a water oxidation catalyst that does not show any sign of 

fatigue even after 35 ks controlled potential electrolysis at 1.6 V vs. SSCE. 

 

Figure 5. Left, UV-vis absorption spectra monitoring the controlled potential 

electrolysis of a 0.5 mM solution of 4
2+

 in 0.1 M HOTf, for two days at 1.4 V vs. SSCE 

using a Pt mesh working electrode, a Pt wire counter electrode and a Ag/AgCl, NaCl 

(3M) reference electrode. Spectra were recorded every ten minutes. Inset, UV-vis 

spectra of 1
4+

 in 0.1 M HOTf. Right, conversion of mononuclear 4
2+

 to dinuclear 1
4+

 over 

time, based on absorbance change at 460 nm. 

These experiments manifest the interconnection of the two catalytic 

cycles for the mononuclear 42+ and dinuclear 14+ species. The link between the 

two catalytic cycles is essentially [RuVI(trpy)(O)2(H2O)]2+, 32+, that can be 

generated by bpy loss from the mononuclear complex, potentially at oxidation 

state V, 

[(trpy)(bpy)RuV=O]3+ + CeIV + 2 H2O → trans-[(trpy)RuVI(O)2(H2O)]2+ + 

bpyH+ + H+ + CeIII (5) 

The strong trans effect generated by the RuV=O group produces a 

weakening of one of the Ru-N bpy bonds that eventually leads to the loss of 
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the bpy ligand. Furthermore the trans-Ru(O)2 entity is known to generate very 

stable complexes37,38 and thus is an additional driving force for the bpy loss. 

Once the bpy ligand is released, the reaction of 32+ with 42+ (equation 1), 

constitutes the entry to the dinuclear catalytic cycle. The free energy values 

obtained at DFT level of theory indicate that the proposed interconversion 

pathway is feasible (Scheme S2 in the supporting information) and further 

supports this hypothesis. This interconversion process also occurs between 52+ 

and 24+, suggesting a general interconversion process of single site catalysts. 

These findings shine light on the in-situ generation of long lasting water 

oxidation catalysts based on dinuclear complexes. 

The larger stability of the dinuclear complexes is due to a number of 

factors. First, the presence of two electronically coupled Ru centers through an 

oxo-bridge allows for fast intramolecular ET within the species generated in 

the catalytic cycle. Thus, due to the involvement of two metal-centers, the 

burden of multiple electron transfer at a single site is overcome. Second, the 

presence of spatially separated non-symmetrical Ru centers allows fine-tuning 

of each site, i.e. to optimize one site for electron relay and the other site for 

proton-coupled ET, responsible for the primary interaction with the water 

molecules. Third, the trans-dioxo geometry at higher oxidation states stabilizes 

the dinuclear complex as opposed to the mononuclear 32+ that is not an active 

water oxidation catalyst. In addition the higher oxidation states of 

mononuclear mono-aqua Ru complexes suffer from ligand loss and subsequent 

decomposition. Fourth, the presence of the oxo-bridge and the terminal Ru=O 

group can act as anchors for hydrogen bonding if required, as nicely illustrated 

in the transition state structure depicted in Figure 4. This hydrogen bonding 
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has been previously shown to be crucial for reducing the energy of activation 

of transition states.39,40 

5.3. Conclusions. 

In summary, we have shown that WOCs based on mononuclear mono-

aqua Ru complexes are slowly converted into active dinuclear catalysts 

through a self-assembly type of process. These dinuclear complexes are much 

more robust than the mononuclear precursors and exhibit similar activity as 

WOCs. Thus, we have shown for the first time that two interconnected 

catalytic cycles coexist where the mononuclear catalytic system is slowly and 

irreversibly converted to the more stable dinuclear catalytic system. We have 

further characterized the catalytic cycle based on DFT calculations, providing 

very good agreement with the available experimental observations. 

The mononuclear Ru complexes were prepared by Dr. Somnath Maji and the 

DFT calculations were carried by Dr. Mehmed Z. Ertem under the supervision 

of Prof. Víctor S. Batista. 
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Experimental Section. 

Materials: 

All reagents used in the present work were obtained from Aldrich Chemical Co. 

and Alfa Aesar and were used without further purification. Triflic Acid 

(CF3SO3H) was pursued from CYMIT. Reagent-grade organic solvents were 

obtained from SDS and high purity deionized water was obtained by passing 

distilled water through a nanopore Milli-Q water purification system. 

Preparations. 

Ru(trpy)Cl3,
1 [Ru(trpy)(bpy)(H2O)](PF6)2 (42+),2 [Ru(trpy)(5,5’-F2-bpy)(H2O)](PF6)2 

(52+)3 and [Ru(trpy)(C2O4)(H2O)]·2H2O
4 were prepared according to literature 

procedures. [Ru(trpy)(O)2(H2O)](ClO4)2·H2O was prepared following a 

procedure slightly modified to the reported one.4 

(1) Sullivan, B. P.; Calvert, J. M.; Meyer, T. J. Inorg. Chem. 1980, 19, 1404. 

(2) Takeuchi, K. J.; Thompson, M. S.; Pipes, D. W.; Meyer, T. J. Inorg. Chem. 

1984, 23, 1845.  

(3) Maji, S.; López, I.; Bozoglian, F.; Benet-Buchholz, J.; Llobet, A. Inorg. 

Chem. 2013, 52, 3591. 

(4) Adeyemi, S. A.; Dovletoglou, A.; Guadalupe, A. R.; Meyer, T. J. Inorg. 

Chem. 1992, 31, 1375. 

[Ru(trpy)(O)(H2O)](ClO4)2·H2O (32+). [Ru(trpy)(C2O4)(H2O)]·2H2O (50 mg, 0.079 

mmols) was disolved in deoxygenated 2 M HClO4 (8 mL) under Ar. The purple 

mixture was filtered with a Schlenck frit under Ar. If oxidation is thought to 

have occurred because the color of the solution changes from purple to blue, 

the filtered can be collected on a Zinc amalgam and stirred until the purple 

colour is recovered. The solution is added dropwise to a stirred solution of 
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(NH4)2Ce(NO3)6 (1.5 g, 2.68 mmols) dissolved in the minimum amount of 2 M 

HClO4. A yellow solid starts to precipitate a few minutes after the addition of 

the complex is finished. The mixture is left stirred for 2 hours and then it is 

kept in the fridge overnight. The yellow solid is filtered, washed with some 

drops of a cold 0.1 M HClO4 solution and air-dried. Yield: 58 mg (93 %). 

rRAMAN (0.1 M HOTf, cm-1): 835 s (νsym(O=Ru=O)). 1H-NMR (400 MHz, 0.1 M 

DOTf): δ(ppm)= 9.31 (dd, J = 5.7, 1.2 Hz, 2H, H6-H6’’), 8.91-8.82 (m, 5H, H3-

H3’’-H4’-H5’-H3’), 8.66 (ddd, J = 7.9, 7.9, 1.4 Hz, 2H, H4-H4’’) and 8.17 (ddd, J = 

7.9, 5.7, 1.3 Hz, 2H, H5’-H5’’). 

{[Ru(trpy)(bpy)][Ru(O)(trpy)(H2O)](μ-O)}(ClO4)4·4H2O (14+). A 0.75 mM solution 

of [Ru(trpy)(bpy)(H2O)](PF6)2 (67.5 mg, 0.085 mmols) in 0.1 M HClO4 was 

prepared. An amount of 3 equivalents of (NH4)2Ce(NO3)6 (139.0 mg, 0.254 

mmols) dissolved in the minimum amount of 0.1 M HClO4 was added to the 

previous stirred solution. Then, [Ru(trpy)(O)(H2O)](ClO4)2 (48.8 mg, 0.084 

mmols) was added and the mixture was left stirred at room temperature for 3 

days. A dark brown solid precipitated which was filtered and washed with 

drops of cold water. The solid was dried under vacuum for 5 hours. Yield: 54.6 

mg (48%). Anal. Calcd for C40H40Cl4N8O23Ru2: C, 35.73; H, 3.00; N, 8.33. Found: 

C, 35.75; H, 2.50; N, 8.30.  

{[Ru(trpy)(5,5’-F2bpy)][Ru(O)(trpy)(H2O)](μ-O)}(ClO4)4·7H2O (24+). A procedure 

similar to 14+ was followed. A 1.25 mM solution of [Ru(trpy)(5,5’-F2-

bpy)(H2O)](PF6)2 (57,7 mg, 0.069 mmols) in 0.1 M HClO4 was prepared and 3 

equivalents of (NH4)2Ce(NO3)6 (114.4 mg, 0.209 mmols) dissolved in the 

minimum amount of 0.1 M HClO4 were added to the stirred solution. Then, 

[Ru(trpy)(O)(H2O)](ClO4)2 (40 mg, 0.069 mmols) was added and the mixture 

was left stirred at room temperature for 2 days. After that, it was kept in the 
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fridge at 8 °C for another 2 days. A dark brown solid precipitated which was 

filtered and washed with drops of cold water. The solid was dried at air. Yield: 

55.5 mg (56 %).Anal. Calcd for. C40H44Cl4F2N8O26Ru2: C, 33.48, H, 3.09, N, 7.81. 

Found: C, 33.33, H, 2.33, N, 7.64. 

Equipment and measurements. 

UV/Vis spectroscopy was performed on a Cary 50 (Varian) UV/Vis 

spectrophotometer in 1 cm or 0.2 cm when indicated quartz cuvettes. 

Spectroelectrochemical experiments for {[Ru(trpy)(bpy)][Ru(O)(trpy)(H2O)](μ-

O)}(ClO4)4·4H2O were carried out with an Agilent UV-vis Torlon probe with an 

optical path length of 2 mm in a two compartment electrochemical cell. A Pt 

mesh was used as working electrode, a Pt wire as counter electrode and an 

Ag/AgCl, NaCl(sat) as reference electrode.   

Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) experiments 

were performed on an IJ-Cambria CHI-660 potentiostat or a Bio-Logic SP-150 

potentiostat using a three-electrode cell. Typical CV experiments were carried 

out at a scan rate of 100 mV s-1. DPV experiments were carried out with the 

parameters: Pulses Height = 50 mV, Pulses Width = 50 ms, Step Height = 4 mV 

and Step Time = 200 ms. A glassy carbon electrode (3 mm diameter) was used 

as working electrode, platinum wire as auxiliary electrode, and a SSCE as a 

reference electrode. Working electrodes were polished with 0.05 micron 

alumina paste, and rinsed with distilled water and acetone followed by blow-

drying before each measurement. When glassy carbon electrodes were 

activated, a procedure described by Meyer et al. was used.5 All cyclic 

voltammograms presented in this work were recorded in the absence of light 

and inside a Faradaic cage. The electrochemical experiments were carried out 

in 0.1 M CF3SO3H (pH 1.0). E1/2 values reported in this work were estimated 
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from CV experiments as the average of the oxidative and reductive peak 

potentials (Ep,a + Ep,c)/2 or taken as E(Imax) from DPV measurements. Controlled 

Potential Electrolysis (CPE) were carried out in a two compartment cell. The 

experiments at 1.6 V vs. SSCE were made with a 3 mm activated6 boron doped 

diamond working electrode, a Pt wire counter electrode and a Hg/Hg2SO4, 

K2SO4 (sat) reference electrode. For mononuclear complexes, the oxo 

compounds [Ru(trpy)(bpy)(O)]2+ and [Ru(trpy)(5,5’-F2-bpy)(O)]2+ were prepared 

electrochemically before oxidation at 1.6 V vs. SSCE by applying the suitable 

potentials (0.78 V and 0.70 V vs. SSCE) and using a Pt mesh as working 

electrode. The measured potentials referring to the Hg/Hg2SO4, K2SO4 (sat) 

reference electrode were converted to SSCE according to literature values.7,8  

A 400 MHz Bruker Avance II spectrometer and a Bruker Avance 500 MHz were 

used to carry out NMR spectroscopy at room temperature. Samples were run 

in 0.1 M DOTf or 0.1 M DNO3 with internal references (residual protons). 

Elemental analysis was performed using an EA-1108, CHNS-O elemental 

analyzer from Fisons Instruments.  

Samples for resonance Raman spectroscopy were prepared typically by mixing 

a 0.5  or 1 mM solution of the starting complex with the desired amount of 

(NH4)2Ce(NO3)6 and transferring 100 μL of the reaction solution to a aluminium 

crucible and subsequently frozen at appropriate times in liquid N2. Then, the 

crucible was placed into a Linkam THMS 600 temperature controlled cryo stage 

to keep the temperature at -12°C. The rR spectrum was acquired using a 

Renishaw inVia Reflex RAMAN confocal microscope (Gloucestershire, UK), 

equipped with an Ar-ion laser at 514 nm and a Peltier-cooled CCD detector (-

70°C) coupled to a Leica DM-2500 microscope. Calibration was carried out 

daily by recording the Raman spectrum of an internal Si standard. Rayleigh 
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scattered light was appropriately rejected by using edge-type filters. For wide 

spectral ranges (200-1500 cm-1), the spectra were recorded in segments with 

the accumulation of 5 scans of 20 s each. For a short spectral range (600-1000 

cm-1), the spectra were recorded with the accumulation of 10 scans of 10 s 

scan each. A 10x working distance microscope objective was used to focus 50% 

of the laser power (25 mW) onto the sample.  

(5) Cabaniss, G. E.; Diamantis, A. A.; Murphy, W. R.; Linton, R. W.; Meyer, T. 

J. J. Am. Chem. Soc. 1985, 107, 1845. 

(6) Costentin, C.; Robert, M.; Savéant, J.-M.; Teillout, A.-L. Proc. Natl. Acad. 

Sci. U.S.A. 2009, 106, 11829. 

(7) Sawyer, D.T.; Sobkowiak, A. J.; Roberts, J. Jr. Electrochemistry for 

Chemists, 2nd ed., John Wiley & Sons: NY 1995. 

(8) Meites, L. Handbook of Analytical Chemistry, McGraw Hill: NY, 1963.  
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Single-Crystal X-Ray Structure Determination. 

Single crystals of 14+ and 24+ were obtained after the addition of some drops of 

an aqueous saturated NaClO4 solution or an aqueous saturated NH4PF6 

solution to 0.1 M HOTf solutions of the complexes. Crystals were also obtained 

after the addition of some drops of an aqueous saturated NaClO4 solution to 

catalytic solutions of the complexes, i. e., after the addition of 100 equivalents 

of CAN to 1 mM solutions of the complexes in 0.1 M HOTf. All measured 

crystals were prepared under inert conditions immersed in perfluoropolyether 

as the protecting oil for manipulation. 

Data collection. Crystal structure determination for 14+ and 24+ was carried out 

using a Apex DUO Kappa 4-axis goniometer equipped with an APPEX 2 4K CCD 

area detector, a Microfocus Source E025 IuS using MoK radiation, Quazar MX 

multilayer Optics as monochromator and an Oxford Cryosystems low 

temperature device Cryostream 700 plus (T = -173 °C). Full-sphere data 

collection was used with  and  scans. Programs used: Data collection APEX-

2,7 data reduction Bruker Saint5 V/.60A. 

Structure solution and refinement. Crystal structure solution was achieved 

using direct methods as implemented in SHELXTL8 and visualized using the 

program XP. Missing atoms were subsequently located from difference Fourier 

synthesis and added to the atom list. Least-squares refinement on F2 using all 

measured intensities was carried out using the program SHELXTL.9 All non 

hydrogen atoms were refined including anisotropic displacement parameters.  

(9) Data collection with APEX II version v2009.1-02. Bruker 2007. Bruker 

AXS Inc., Madison, Wisconsin, USA. 
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(10) Data reduction with Bruker SAINT versions V7.60A. Bruker 2007. 

Bruker AXS Inc., Madison, Wisconsin, USA.  

(11) Sheldrick, G.M. Acta Cryst. 2008 A64, 112-122. SHELXTL version V6.14. 

Computational Methods. 

Density functional theory. All geometries were fully optimized at the 

M06-L level12-14 of density functional theory using the Stuttgart [8s7p6d2f | 

6s5p3d2f] ECP28MWB contracted pseudopotential basis set15 on Ru and the 6-

31G(d) basis set16 on all other atoms. Non-analytical integral evaluations made 

use of a pruned grid having 99 radial shells and 590 angular points per shell 

and an automatically generated density-fitting basis set was used within the 

resolution-of-the-identity approximation to speed the evaluation of Coulomb 

integrals as implemented in Gaussian 09 software package.17 The nature of all 

stationary points was verified by analytic computation of vibrational 

frequencies, which were also used for the computation of zero-point 

vibrational energies, molecular partition functions (with all frequencies below 

50 cm–1 replaced by 50 cm–1 when computing free energies), and for 

determining the reactants and products associated with each transition-state 

structure (by following the normal modes associated with imaginary 

frequencies). Partition functions were used in the computation of 298 K 

thermal contributions to free energy employing the usual ideal-gas, rigid-

rotator, harmonic oscillator approximation.18 Free energy contributions were 

added to single-point M06-L electronic energies computed with the SDD basis 

set on ruthenium and the 6-311+G(2df,p) basis set on all other atoms to arrive 

at final, composite free energies. 

Solvation and standard reduction potentials. Solvation effects associated 

with water as solvent were accounted for using the SMD continuum solvation 
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model.19 A 1 M standard state was used for all species in aqueous solution 

except for water itself, for which a 55.6 M standard state was employed. Thus, 

for all molecules but water, the free energy in aqueous solution is computed as 

the 1 atm gas-phase free energy, plus an adjustment for the 1 atm to 1 M 

standard-state concentration change of RT ln (24.5), or 1.9 kcal/mol, plus the 1 

M to 1 M transfer (solvation) free energy computed from the SMD model. In 

the case of water, the 1 atm gas-phase free energy is adjusted by the sum of a 

1 atm to 55.6 M standard-state concentration change, or 4.3 kcal/mol, and the 

experimental 1 M to 1 M solvation free energy, –6.3 kcal/mol. The 1 M to 1 M 

solvation free energy of the proton was taken from experiment as –265.9 

kcal/mol.20-23 

Standard reduction potentials were calculated for various possible redox 

couples to assess the energetic accessibility of different intermediates at 

various oxidation states. For a redox reaction of the form 

 (1) 

where O and R denote the oxidized and reduced states of the redox couple, 

respectively, and n is the number of electrons involved in redox reaction, the 

reduction potential 
    

   

E
O R

o
 relative to NHE was computed as 

 (2) 

where 
    



G
O R

o
 is the free energy change associated with eq. 1 (using 

Boltzmann statistics for the electron),  is the free energy change 

associated with 
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 (3) 

which is –4.28 eV with Boltzmann statistics for the electron,22,24,25 and F is the 

Faraday constant. The calculated redox potentials were reported as E vs. SSCE 

by subtracting 0.244 V from E vs. NHE values. 

Non-single-determinantal state energies. Several possible intermediates 

in the water oxidation mechanism have electronic structures that are not well 

described by a single determinant. In such instances, standard Kohn-Sham DFT 

is not directly applicable,18,26-28 and we adopt the Yamaguchi broken-spin-

symmetry (BS) procedure29,30 to compute the energy of the spin-purified low-

spin (LS) state as 

(4) 

where HS refers to the single-determinantal high-spin coupled state that is 

related to the low-spin state by spin flip(s) and < S2 > is the expectation value 

of the total spin operator applied to the appropriate determinant. This broken-

symmetry DFT approach has routinely proven effective for the prediction of 

state-energy splittings in metal coordination compounds.27,31-34 

(12) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101. 

(13) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157. 

(14) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. 
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(15) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. 

Acta 1990, 77, 123. 

(16) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular 

Orbital Theory; Wiley: New York, 1986. 

(17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; 
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Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, 
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Figure S 1. Ortep plot (50 % probability) of the crystal structure of the complex 5
2+

. 

Color codes: Ru, cyan; N, navy blue; F, green; O, red. H atoms are not shown except for 

the aqua ligands that are represented as small light blue circles. 
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NMR characterization. 

Figure S 2. 1D and 2D NMR spectra (0.1 M DNO3) for complex 1
4+

: (a) 
1
H-NMR, (b) 

COSYD, (c) NOESY, (d) DOSY. 

(a) 1H-NMR. 

 

(b) COSYD. 
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(c) NOESY. 
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(d) DOSY experiments for 1 mM solutions of 14+(blue) and 32+(red) in CF3SO3D 

0.1 M. The 1H-NMR experiment of F2 axis corresponds to 14+. 

 

According to the relation between the diffusion coefficient (D) and the 

hydrodynamic radius (rs) given by the Stokes-Einstein equation the ratio 

rs(dinuclear)/rs(mononuclear) can be calculated. The ratio is 2.29:1, it means 

that the dinuclear complex is 2.29 times larger than the monononuclear one. 

Additionally the DOSY experiment shows that the observed group of peaks for 

14+ belongs only to one compound. 
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Figure S 3. 1D and 2D NMR spectra (0.1 M DNO3) for complex 2
4+

: (a) 
1
H-NMR, (b) 

19
F-

NMR, (c) COSYD{
19

F}, (d) NOESY. 

(a) 1H-NMR. 

 

(b) 19F-NMR. 
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(c) COSYD{19F}. 

 

(d) NOESY. 
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Figure S 4. Spectroelectrochemistry experiments of a 0.4 mM solution of 1
4+

 in 0.1 M 

HOTf. (Left upper) 2e
-
 reduction at 0.6 V, (right upper) 2e

-
 reoxidation at 1.0 V, (left 

bottom). CV experiment previous to electrolysis where the applied potentials are 

marked, (right bottom) UV-vis spectra of the oxidation states of the dinuclear complex. 

Pt mesh working electrode, Pt wire counter electrode and SSCE reference electrode. 
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Figure S 5. Differential Pulse Voltammetry (DPV) of 0.5 mM solutions of complexes 1
4+

 

and 2
4+

 in 0.1 M HOTf. Activated boron-doped diamond working electrode, Pt wire 

counter electrode and Hg/Hg2SO4, K2SO4 (sat) reference electrode. 
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V 

Figure S 6. Cyclic Voltammetry of 0.5 mM solutions of 1
4+

 (black) and 4
2+

 (red) in 0.1 M 

HOTf. Scan rate 100 mV s
-1

 using a polished glassy carbon working electrode, a Pt wire 

counter electrode and a Hg/Hg2SO4, K2SO4 (sat) reference electrode. 

 

Figure S 7. Cyclic Voltammetry of 0.5 mM solutions of 2
4+

 (black) and 5
2+

 (red) in 0.1 M 

HOTf. Scan rate 100 mV s
-1

 using a polished glassy carbon working electrode, a Pt wire 

counter electrode and a Hg/Hg2SO4, K2SO4 (sat) reference electrode. 
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Figure S 8. Controlled potential electrolysis at 1.6 V vs. SSCE of a 0.4 mM solution of 1
4+

 

(black) and 2
4+

 (red) complexes in 0.1 M HOTf and a blank experiment without catalyst 

(blue). Activated boron doped diamond as working electrode, Pt wire as counter 

electrode and Hg/Hg2SO4, K2SO4 (sat) as reference electrode. 

 
Figure S 9. Controlled potential electrolysis at 1.6 V vs. SSCE of a 0.4 mM solution of 5

2+
 

(black) and 2
4+

 (red) complexes in 0.1 M HOTf and a blank experiment without catalyst 

(blue). Activated boron doped diamond as working electrode, Pt wire as counter 

electrode and Hg/Hg2SO4, K2SO4 (sat) as reference electrode. 
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Figure S 10. UV-vis spectrums before (black) and after 10 hours (red) controlled 

potential electrolysis at 1.6 V vs. SSCE of a 0.4 mM solution of 1
4+

 (upper) or 2
4+

 

(bottom) in 0.1 M HOTf with a 2 mm optical path length cuvette. 

 

The slight decrease in intensity after the long CPE is due to partial migration of 

the complexes toward the cathode. 
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Figure S 11. (a) Left, rR spectrum of the reaction product obtained by the reaction of 3 

equivalents of CAN with complex 4
2+

 in 0.1 M HOTf after 1255 min (b) Right, overlay of 

the rR spectra of 1
4+

 (black) in 0.1 M HOTf and (a) (red). The inset shows an 

enlargement of the fingerprint region. 

 

Figure S 12. rR spectra before (black) and 1200 min after the addition of 3 equivalents 

of CAN (red) to complex 5
2+

 in 0.1 M HOTf. 
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Table S 1. Crystal data for 1
4+

. 

Empirical formula C40 H46 Cl4 N8 O26 Ru2 

Formula weight 1398.79 

Temperature 100(2)K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a =  12.4742(7) Å α=  89.112(2) °. 

b =  13.7076(8) Å β = 78.894(2) °. 

c =  16.8037(10) Å γ =  67.052(2) °. 

Volume 2590.7(3)  Å3 

Z 2 

Density (calculated) 1.793  Mg/m3 

Absorption coefficient 0.886  mm-1 

F(000) 1412 

Crystal size 0.15 x 0.10 x 0.02 mm3 

Theta range for data collection 1.24  to 28.91 °. 

Index ranges -16 <=h<=11 ,-18 <=k<=17 ,-21 <=l<=22 

Reflections collected 17692 

Independent reflections 11086 [R(int) = 0.0246 ] 

Completeness to theta =28.91 ° 0.812 % 

Absorption correction Empirical 

Max. and min. transmission 0.9825  and  0.8785 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11086 / 174 / 799 

Goodness-of-fit on F2 1.074 

Final R indices [I>2sigma(I)] R1 = 0.0463 , wR2 = 0.1249 

R indices (all data) R1 = 0.0659 , wR2 = 0.1414 

Largest diff. peak and hole 1.686  and -0.976  e.Å-3 
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Table S 2. Crystal data for 2
4+

. 

Empirical formula C40 H36.50 F26 N8 O6.25 P4 Ru2 

Formula weight 1549.29 

Temperature 100(2)K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a =  13.872(2) Å α=  87.734(5) °. 

b =  14.290(2) Å β = 67.502(5) °. 

c =  15.162(2) Å γ =  69.971(5) °. 

Volume 2594.4(7)  Å3 

Z 2 

Density (calculated) 1.983  Mg/m3 

Absorption coefficient 0.856  mm-1 

F(000) 1529 

Crystal size 0.15 x 0.05 x 0.01 mm3 

Theta range for data collection 1.46  to 26.85 °. 

Index ranges -15 <=h<=17 ,-17 <=k<=18 ,-19 <=l<=19 

Reflections collected 39040 

Independent reflections 11054 [R(int) = 0.0605 ] 

Completeness to theta =26.85 ° 0.990 % 

Absorption correction Empirical 

Max. and min. transmission 0.9915  and  0.8824 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11054 / 343 / 865 

Goodness-of-fit on F2 1.018 

Final R indices [I>2sigma(I)] R1 = 0.0510 , wR2 = 0.1228 

R indices (all data) R1 = 0.0864 , wR2 = 0.1388 

Largest diff. peak and hole 1.318  and -0.996  e.Å-3 
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Scheme S 1. Proposed mechanism for catalytic water oxidation by 1
4+

 (denoted as I in 

the scheme) species. 

 

Scheme S 2. Proposed mechanism for the generation 3
2+

 (denoted as IX) and its 

subsequent interconversion to 1
4+

. 
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Chapter 6. Behind Water Oxidation with 
Mononuclear Ru Complexes: The Oxo-bridge 

Scenario. 

 

   

 

Water oxidation catalysts (WOCs) based on mononuclear Ru complexes 
related to [Ru(trpy)(bpy)(H2O)]2+ (where trpy is 2,2’:6’,2’’-terpyridine and bpy is 
2,2’-bypyridine) generate dinuclear oxo bridge complexes throughout or after 
the catalytic cycle which have remained unnoticed. The new dimer compound 
{[Ru(trpy)(bpy)]2 (μ-O)}4+ (1-dm4+) has been synthesized and completely 
characterized. The reactivity of this complex and previous known O-terminal 
dinuclear Ru complexes draws an oxo-bridge scenario of interconnected oxo 
bridge molecules with diverse nuclearity. 
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Behind Water Oxidation with Mononuclear Ru 

complexes: The Oxo-bridge Scenario 

Isidoro López,a Somnath Maji,a J. Benet-Buchholza and Antoni Llobeta,b 

a
 Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans, 16, 43007 Tarragona, 

Spain. 

b
 Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 

Barcelona, Spain. 

6.1. Introduction. 

The M-O-M linkage is a ubiquitous motif in bioinorganic chemistry. For 

instance it can be found in numerous proteins1-3 with a Fe-O-Fe core or in the 

oxygen evolving complex (OEC) of photosystem II (PSII). The OEC consists of a 

Mn4CaOn cluster responsible for the oxidation of water to dioxygen. This 

process has gained an increasing interest to achieve an efficient conversion of 

sunlight into powerful chemical fuels as H2 or CH3OH since water oxidation is 

one of the most difficult catalytic processes to develop a commercial device.  

To mimic OEC, many polynuclear μ-oxo high oxidation state metal 

complexes have been synthesized. The blue dimer was the first reported 

molecularly well characterized water oxidation catalyst and contains a RuIII-O-

RuIII unit. Later on a di μ-oxo dinuclear manganese(III,IV) catalyst was 

described, although later reports showed that this complex dimerizes in 

aqueous solution and only evolves oxygen with the help of an oxygen donor 

reagent.4 Because oxygen bridges were said to be oxidative unstable, they 

were gradually replaced by rigid aromatic organic bridge ligands5-9 or 

polyoxometalate scaffolds.10-13 
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On the other hand, the recent discovery of single site water oxidation 

catalyst6,14,15 has avoided using bridge ligands. The successive pathways that 

lead to the evolution of dioxygen in complexes related to 

[Ru(trpy)(bpy)(H2O)]2+ (where trpy is 2,2’:6’,2’’-terpyridine and bpy is 2,2’-

bypyridine) have been extensively studied14,16 and the accepted mechanism 

considers the key O-O bond forming step to be a water nucleophilic attack on a 

RuV-O moiety. Although the description has been reviewed and extended17,18 

several pathways could have been unnoticed, especially the ones producing 

deactivation product. In this sense, the dissociation of bpy and later oxidation 

to 2,2’-bipyridine N, N-dioxide has been pointed19 as a source of catalyst 

decomposition when a huge excess of CAN is used as sacrificial oxidant at 

pH=1. 

Recently our group has found20 that mononuclear complexes partially 

evolve to dinuclear oxo brigde structures of general formula [(trpy)(bpy)RuIV(μ-

O)RuIV(trpy)(O)(H2O)]4+ when high oxidation states are achieved. These 

compounds would explain the release of bpy from the coordination sphere of 

the initial complex. The formed dinuclear complexes are active and rugged 

water oxidation catalysts and its presence complements the accepted 

mechanism, showing that the system is much more complex than originally 

described (see chapter V). Furthermore, the formation of these μ-O structures 

denote a trend for the production of oxo bridge scaffolds by mononuclear Ru 

complexes in high oxidation states like it happens with Fe2,21 and Cu.21-23 

In this report we examine the interconnection between μ-oxo species 

generated after the chemical and electrochemical oxidation of mononuclear 

complexes related to [Ru(trpy)(bpy)(H2O)]2+ and discuss structural parameters 

derived from single crystal XRD. 
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6.2. Experimental section. 

Materials. All reagents used in the present work were obtained from 

Aldrich Chemical Co. and were used without further purification. RuCl3·3H2O 

was supplied by Alfa Aesar and was used as received. Trifluoromethanesulfonic 

acid (HOTf) was pursued from CYMIT. Reagent-grade organic solvents were 

obtained from SDS and high-purity deionized water was obtained by passing 

distilled water through a nanopure Milli-Q water purification system. 

Preparations. [Ru(trpy)(bpy)(H2O)](PF6)2 (12+),24 [Ru(trpy)(5,5’-F2-

bpy)(H2O)](PF6)2 (22+),25 [Ru(trpy)(6,6’-F2-bpy)(H2O)](PF6)2 (32+),25 

[(trpy)(bpy)RuIV(μ-O)RuIV(trpy)(O)(H2O)](ClO4)4 (1-dn4+)20 and [(trpy)(5,5’-F2-

bpy)RuIV(μ-O)RuIV(trpy)(O)(H2O)] (ClO4)4 (2-dn4+)20 were prepared as described 

in the literature. 

{[Ru(trpy)(bpy)]2(μ-O)}(ClO4)4·7H2O (1-dm4+). [Ru(trpy)(bpy)(H2O)](PF6)2 

(101.4 mg, 0.127 mmols) was disolved in 0.1 M HOTf (127 mL). A amount of 

100 equivalents of (NH4)2Ce(NO3)6 (7.10 g, 12.700 mmols) dissolved in the 

minimum amount of 0.1 M HOTf was added to the previous stirred solution. 

The solution is left stirred for approximately 1 week and UV-vis monitored 

periodically. When the band at 688 nm seemed to achieve a maximum value, a 

saturated aqueous solution of NaClO4 (7 mL) was added. A dark green solid 

precipitated which was filtered and washed with some drops of cold water. 

The solid was collected and dried under vacuum overnight. Yield: 39.9 mg 

(45%). Anal. Calcd for C50H50Cl4N10O23Ru2: C, 39.48; H, 3.45; N, 9.21. Found: C, 

39.24; H, 3.24; N, 9.07.  

Equipment and measurements. UV/Vis spectroscopy was performed on 

a Cary 50 (Varian) UV/Vis spectrophotometer in 1 cm or 0.2 cm when indicated 

quartz cuvettes. Cyclic voltammetry (CV) and differential pulse voltammetry 
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(DPV) experiments were performed on an IJ-Cambria CHI-660 or a Bio-Logic SP-

150 potentiostat using a three-electrode cell. Typical CV experiments were 

carried out at a scan rate of 100 mV s-1. DPV experiments were carried out with 

the parameters: Pulses Height = 50 mV, Pulses Width = 50 ms, Step Height = 4 

mV and Step Time = 200 ms. A glassy carbon electrode (3 mm diameter) was 

used as working electrode, platinum wire as auxiliary electrode, and SSCE as a 

reference electrode. Working electrodes were polished with 0.05 micron 

alumina paste, and rinsed with distilled water and acetone followed by blow-

drying before each measurement. All cyclic voltammograms presented in this 

work were recorded in the absence of light and inside a Faradaic cage. The 

electrochemical experiments were carried out in 0.1 M CF3SO3H (pH 1.0). E1/2 

values reported in this work were estimated from CV experiments as the 

average of the oxidative and reductive peak potentials (Ep,a + Ep,c)/2 or taken as 

E(Imax) from DPV measurements. 

A 400 MHz Bruker Avance II spectrometer and a Bruker Avance 500 MHz 

were used to carry out NMR spectroscopy at room temperature. Samples were 

run in 0.1 M DOTf or CD3CN with internal references (residual protons). 

Elemental analysis was performed using an EA-1108, CHNS-O elemental 

analyzer from Fisons Instruments.  

Samples for resonance Raman spectroscopy were prepared typically by 

mixing a 1 mM solution of the starting complex with the desired amount of 

(NH4)2Ce(NO3)6 and transferring 100 μL of the reaction solution to a aluminium 

crucible and subsequently frozen at appropriate times in liquid N2. Then, the 

crucible was placed into a Linkam THMS 600 temperature controlled cryo stage 

to keep the temperature at -12°C. The rR spectrum was acquired using a 

Renishaw inVia Reflex RAMAN confocal microscope (Gloucestershire, UK), 
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equipped with an Ar-ion laser at 514 nm and a Peltier-cooled CCD detector (-

70°C) coupled to a Leica DM-2500 microscope. Calibration was carried out 

daily by recording the Raman spectrum of an internal Si standard. Rayleigh 

scattered light was appropriately rejected by using edge-type filters. 

Spectrums were recorded with the accumulation of 5 scans with a 20 s scan 

time each one. A 10x working distance microscope objective was used to focus 

50% of the laser power (25 mW) onto the sample. 

On-line manometric O2 measurements were carried out on a Testo 521 

differential pressure manometer with an operating range of 1-100 hPa and 

accuracy within 0.5 % of the measurement. The manometer was coupled to 

thermostated reaction vessels for dynamic monitoring of the headspace 

pressure above each reaction. The manometer’s secondary ports were 

connected to thermostated reaction vessels containing the same solvents and 

headspace volumes as the sample vials. A typical experiment consists in the 

addition of 100 equivalents of (NH4)2Ce(NO3)6 previously dissolved in 100 μL of 

0.1 M HOTf upon a solution of the catalyst in 1.850 mL of the same solvent 

containing the suitable amount of complex to yield 1 mM final concentration. 

This combination is termed catalytic solution. 

Single crystal preparation.  

[(trpy)(6,6’-F2-bpy)RuIV(μ-O)RuIV(trpy)(O)(H2O)](ClO4)4·3H2O (3-dn4+). 

Single crystals of 3-dn4+ could be grown at RT one week after the addition of 

some drops of a sat. aq. NaClO4 solution to a catalytic solution of 32+ in 0.1 M 

HOTf when oxygen evolution had finished.  

{[RuIII(trpy)(bpy)]2(μ-O)}(ClO4)4·4H2O (1-dm4+). Single crystals could be 

obtained at RT 2 days after the addition of some drops of a sat. aq. NaClO4 

solution to concentrated solutions of 1-dm4+ in 0.1 M HOTf. 
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{[RuIII(trpy)(bpy)(μ-O)]2RuIV(pic)2}(ClO4)4 (44+). A amount of 10 equivalents 

of picolinic acid was added to a catalytic solution of 12+ in 0.1 M HOTf when 

oxygen evolution had finished. The formation of 44+ was tracked by the 

increase of a band at 688 nm in the UV-vis spectrum. Single crystals could be 

precipitated at RT 5 days after the addition of some drops of a sat. aq. NaClO4 

solution to the above solution when the increase of the band was negligible. 

{[RuIII.5(trpy)(bpy)]2(μ-O)}(ClO4)4·3/2H2O (1-dm5+). Single crystals of 1-

dm5+ could be grown at RT 5 days after the addition of some drops of a sat. aq. 

NaClO4 solution to a catalytic solution of 1-dm4+ in 0.1 M HOTf when oxygen 

evolution had finished. 

[(trpy)(bpy)RuIII(μ-O)RuIII(trpy)(CH3CN)2](PF6)4·H2O·CH3CN (1-dnCH3CN
4+), 

[(trpy)(6,6’-F2-bpy)RuIII(μ-O)RuIII(trpy)(CH3CN)2](PF6)4·CH3CN (3-dnCH3CN
4+), 

{[(trpy)(bpy)RuII(μ-O)RuIV(trpy)(CH3CN)]2(μ-O)}(PF6)6·xCH3CN (1-tn6+), 

{[(trpy)(5,5’-F2-bpy)RuIII(μ-O)RuIV(trpy)(CH3COO)]2(μ-O)}(ClO4)6·2H2O (2-tn6+) 

and {[(trpy)(6,6’-F2bpy)RuII(μ-O)RuIV(trpy)(CH3CN)]2(μ-O)}(PF6)4(ClO4)2·3/2CH3CN 

(3-tn6+). Single crystals for all these complexes could be obtained by the same 

procedure. The compounds were dissolved in CH3CN and approximately 10 μL 

of a sat. aq. solution of NH4PF6 were added. Crystals were grown by slow vapor 

diffusion of Et2O into the solutions. 

{[RuIII(trpy)(bpy)(μ-O)]2RuIV(trpy)(H2O)}(ClO4)5(PF6)·2H2O (56+). Single 

crystals for this complex were grown at RT 3 days after the addition of acetone 

to a solution of 1-dn4+ in 0.1 M HOTf containing some drops of a sat. aq. 

solution of NH4PF6. The ratio acetone/water was approximately 1:1. 

Single-Crystal X-Ray Structure Determination. All measured crystals 

were prepared under inert conditions immersed in perfluoropolyether as the 

protecting oil for manipulation. 
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Data collection. Crystal structure determination was carried out using a 

Apex DUO Kappa 4-axis goniometer equipped with an APPEX 2 4K CCD area 

detector, a Microfocus Source E025 IuS using MoK radiation, Quazar MX 

multilayer Optics as monochromator and an Oxford Cryosystems low 

temperature device Cryostream 700 plus (T = -173 °C). Full-sphere data 

collection was used with  and  scans. Programs used: Data collection APEX-

2,26 data reduction Bruker Saint V/.60A.27 

Structure solution and refinement. Crystal structure solution was 

achieved using direct methods as implemented in SHELXTL28 and visualized 

using the program XP. Missing atoms were subsequently located from 

difference Fourier synthesis and added to the atom list. Least-squares 

refinement on F2 using all measured intensities was carried out using the 

program SHELXTL. All non hydrogen atoms were refined including anisotropic 

displacement parameters. In the case of 1-tn6+ the program SQUEEZE29 was 

applied in order to avoid the highly disordered solvent molecules leading  to a 

refined model with a R1 value of 6.34 % in which all the solvent molecules 

were removed. The crystals obtained for 1-tn6+ were diffracting extremely 

weak so that only a completeness of 93.6 % could be reached at a resolution of 

sin(theta/lambda) = 0.6. 

6.3. Results and discussion. 

The oxidation of the mononuclear complexes of the general formula 

[RuII(trpy)(n,n’-X2-bpy)(H2O)]2+ [X = H (12+); X = F and n=n’=5 (22+), X =F and 

n=n’=6 (32+)] generates μ-oxo species with interesting properties and reactivity 

outlined in Scheme 1 which are presented below. The resulting oxo-bridge 

scenario can be divided into three parts according to the starting material used 

to obtain the derived complexes: 1) The route marked in black in Scheme 1 
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corresponds to the μ-oxo species generated directly after the oxidation of the 

mononuclear complexes; 2) the red arrows indicate the reactivity associated to 

the dimer {[RuIII(trpy)(bpy)]2(μ-O)}4+ (1-dm4+); 3) the processes marked in blue 

show the formation of polynuclear oxo-bridge structures from the reaction of 

the indicated organic solvents with the dinuclear oxo-terminal complexes. 

 

Scheme 1 Oxo brigde scenario derived from oxidation of mononuclear complexes. 

Abbreviation used for polypyridilic ligands: T = trpy, B = bpy and P = 2-picolinate. 

Oxidation of mononuclear complexes. The reactivity of high oxidation 

states of mononuclear complexes is marked in black in Scheme 1 and depicted 

in Scheme 2. 
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Scheme 2. Reactivity of high oxidation states of mononuclear complexes. 

Our group has reported recently20 the partial conversion of the 

mononuclear complexes 12+ and 22+ to the dinuclear oxo compounds 

[(trpy)(5,5’-X2-bpy)RuIV(μ-O)RuIV(trpy)(O)(H2O)]4+ (X = H, 1-dn4+; X = F, 2-dn4+) 

after chemical or electrochemical oxidation. Suitable crystals for XRD analysis 

of the dinuclear complex [(trpy)(6,6’-F2-bpy)RuIV(μ-O)RuIV(trpy)(O)(H2O)]4+ (3-

dn4+) could also be grown after oxidation of a 1 mM solution of complex 32+ in 

HOTf with 100 equivalents of (NH4)2Ce(NO3)6 (CAN) (Figure 1). 

 

Figure 1. Ortep plot (ellipsoid drawn at 50 % probability) of the X-ray structure of 3-

dn
4+

. Color codes: Ru, cyan; O, Red; N, Blue; C, black; F, green. H atoms are not shown 

except for the aqua ligand that are represented as small light blue circles. 

The main structural parameters of this series of dinuclear complexes are 

indicated in Table 1. The distances Ru(2)-O(terminal) fall in the lower range of 
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previous reported30-36 RuIV=O complexes; indeed, 3-dn4+ contains the shortest 

distance ever reported to the best of our knowledge.33 The oxo brigde ligand 

does not lie equally separated from both metallic atoms, the Ru(2)-Obridge 

distance is shorter than the Ru(1)-Obridge. This contrasts with previous 

reported37-39 RuIV-O-RuIV complexes where the two bonds have the same length 

(Table 1) and the molecules have a high symmetry. The structural asymmetry 

in the oxo bridge can be rationalized in terms of the different coordination 

environments at the metal atoms. The same feature was observed in the 

crystal structure of the oxidation state III,IV of the blue dimer.40 On the 

another hand, the RuIV-O-RuIV angles are slightly bent respect to the ideal 180˚ 

found in the previous reported complexes because the steric constraint 

imposed by the proximity of the bipyridine ligand to the aquo group, thus the 

less steric demanding unmodified bipyridine in 1-dn4+ makes possible a more 

linear angle (175.5˚) than that from 2-dn4+ and 3-dn4+ (171.5˚ and 172.6˚ 

respectively). 
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Table 1. Comparison of important bond distances (Å) and angles (deg) for several Ru
IV

-

O-Ru
IV

 and Ru
III

-O-Ru
III

 complexes. 

Complexa Ru(2)-Oterminal Ru(2)-Obridge Ru(1)-Obrigde Ru(1)-O-Ru(2) Ref. 

1-dn4+ 1.747(3)b
 1.832(3) 1.848(3) 175.43(18) Tw.d 

2-dn4+ 1.738(4)b 1.830(3) 1.855(3) 171.5(2) Tw. 

3-dn4+ 1.731(3)b 1.833(3) 1.850(3) 172.63(16) Tw. 

{[(OEP)ClRuIV]2O}c 

 1.793(2) 1.793(2) 180 37 

{[(OEP)(OH)RuIV]2O}c 

 1.847(13) 1.847(13) 180 38 

{[Cl5RuIV]2O}4-c 

 1.80 1.80 180 39 

Oxidation state III,III 

1-dnCH3CN
4+e   1.864(4)f 1.865(4) 169.9(2) Tw. 

3-dnCH3CN
4+  1.912(5)f 1.891(5) 166.1(3) Tw. 

aLigand abbreviation: OEP = octaethylporphinate. b Ru(2) corresponds to Ru bound to oxo terminal 

ligand c High symmetry complexes with Ru(1)-Obridge = Ru(2)-Obridge. 
dThis work. eThe bipyridene and the 

acetonitrile ligands are disordered interchanging its positions with a ratio of 86:14 which means that 

Ru(1) and Ru(2) also do it. fRu(2) corresponds to Ru bound to two CH3CN ligands. 

The UV-vis spectroscopic monitoring of the oxidation of the 

mononuclear complex 12+ with 100 equivalents of CAN shows an increasing 

absorption at 688 nm when oxygen evolution finishes (Figure 2) and the color 

of the solution becomes gradually green. This process consists in the slow 

dimerization of 12+ into {[RuIII(trpy)(bpy)]2(μ-O)}4+ (1-dm4+). The conversion 

achieves an 84 % after one week and the pure dimer can be precipitated by 

addition of sat. aqueous NaClO4. 
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Figure 2. Left, UV-vis spectroscopic monitoring of the addition of 100 equivalent of 

CAN to a 1 mM solution of 1
2+

 in 0.1 M HOTf at 25°C. The inset shows an enlargement 

of the 550-800 nm region. Right, absorption vs. time profile at 688 nm. A 2 mm optical 

pass length cuvette was used, the spikes are due to oxygen bubbles. 

Suitable crystals for X-Ray diffraction analysis of 1-dm4+ could be 

obtained by slow diffusion of diethyl ether into a solution of complex in 

acetonitrile or by addition of some drops of sat. aq. NaClO4 to a concentrated 

solution of complex in 0.1 M HOTf. The ORTEP of the single X-Ray structure of 

1-dm4+ is given in Figure 3. The structure consists in two [RuIII(trpy)(bpy)] 

halves linked by an oxo bridge ligand in which each ruthenium center is in 

oxidation state III and octahedrally coordinated. The main structural 

parameters are collected in Table 2. 
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Figure 3. ORTEP plot (ellipsoid drawn at 50% probability) of the X-ray structure of 

complex 1-dm
4+

. Color codes: Ru, cyan; O, Red; N, Blue; C, black. H atoms omitted for 

clarity. 

The Ru-O distances are practically the same for both metallic atoms and 

are in the range of previous reported related complexes (see Table 2). 

However, we have observed that the length of the Ru-O bonds and the Ru-O-

Ru angles depend strongly from the ligands coordinated to the Ru(III) atoms. 

It is interesting to note the effect of the Ru-O-Ru angle on the magnetic 

properties of this kind of compounds which has been successfully 

rationalized41,42 by Meyer et al. and it is showed in the MO diagram of Figure 4. 

If the Ru-O bond is taken as the z axis for each Ru site, the dxz and dyz orbitals 

from the metal atoms are mixed with two π-type p orbitals from the oxo 

brigding ligand. This produces three sets of bridge-based orbitals. The first set 

consists in two bonding orbitals (π1
b, π2

b) which have a large pO character. The 

next set contains two non-bonding or slightly antibonding orbitals (π1
nb, π2

nb) 

which have a large dπRu character. Finally, the third set comprises two 

antibonding orbitals (π1*, π2*) which have also a large dπRu character. The 

electronic configuration for a dinuclear oxo bridge d5 Ru(III) complex depends 

on the degeneracy of the last set of orbitals. If the Ru-O-Ru angle is close to 
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120˚, π1* and π2* are not degenerated and the electronic configuration is (π1
b)2 

(π2
b)2 (π1

nb)2 (π2
nb)2 (π1*)2. Therefore, the complex is diamagnetic as it is 

observed in {[RuIII(TAN)]2(μ-O)(μ-CH3CO2)2}
2+43 and {[RuIII(tpm)]2(μ-O)(μ-

O2P(O)(OH))2}.
42 If the Ru-O-Ru is more linear, π1* and π2* are degenerated 

and the complex consequently is paramagnetic since the two electrons arrange 

unpaired. 

 

Figure 4. Qualitative MO diagram for the π system of Ru-O-Ru complexes. ∆E depends 

on the angle of the moiety, the smaller the angle the larger the energetic separation. 

The electronic configuration illustrates the case of a d
5
-d

5
 Ru

III
-O-Ru

III
 complex with a 

linear angle (180°).  

UNIVERSITAT ROVIRA I VIRGILI 
WATER OXIDATION WITH MONONUCLEAR RU COMPLEXES. BELOW THE TIP OF THE 
ICEBERG: THE OXO-BRIDGE SCENARIO 
Isidoro López Marin 
Dipòsit Legal: T. 1505-2013 
 



Behind Water Oxidation with Mononuclear Ru 
Complexes: The Oxo-bridge Scenario 

 237 

 

VI 

Table 2. Comparison of important bond distances (Å) and angles (deg) for 

several RuIII-O-RuIII and RuIII-O-RuIV complexes. 

Complexa Ru(1)-Obridge Ru(2)-Obridge Ru(1)-O-Ru(2) Ref. 

1-dm4+ 1.8819(12) 1.8810(12) 164.31(7) Tw.b 

{[RuIII(trpy)(C2O4)]2O} 1.841(8) 1.846(8) 148.5(4) 44 

{[RuIII(TAN)(acac)]2(μ-O)}2+ 1.913(1) 1.913(1) 180.0(1) 45 

{[RuIII(bpy)2(NH3)]2(μ-O)}4+ 1.894(2) 1.894(2) 158.2(4) 46 

{[RuIII(bpy)2(H2O)]2(μ-O)}4+ 1.869(1) 1.869(1) 165.4(3) 47 

{[RuIII(bpy)2(NO2)]2(μ-O)}2+ 1.890(7) 1.876(6) 157.2(3) 48 

{[RuIII(TAN)]2(μ-O)(μ-CH3CO2)2}
2+ 1.884(2) 1.884(2) 119.7(2) 43 

{[RuIII(tpm)]2(μ-O)(μ-O2P(O)(OH))2} 1.868(2) 1.868(2) 124.7(4) 42 

Oxidation state III,IV 

1-dm5+ 1.846(2) 1.848(2) 169.90(13) Tw. 

[(bpy)2(H2O)RuIIIORuIV(OH)(bpy)2]
4+ 1.847(12) 1.823(12) 170.0(7) 40 

[(bpy)2(Cl)RuIIIORuIV(Cl)(bpy)2]
4+ 1.845(9) 1.805(9) 170.7(5) 40 

[(TAN)RuIII(O)(CH3CO2)2RuIV(TAN)]3+ 1.849(5) 1.837(5) 130.1(3) 43 

a Ligand abbreviations: TAN = 1, 4, 7-trimethyl-1, 4, 7-triazacyclononane, acac = pentane-2,4-dionate. b This 

work. 

Thus the 1H-NMR of 1-dm4+ presents paramagnetically shifted signals in 

the range of 30 to -20 ppm (Figure S1), similar spectrums can be observed in 

related RuIII-O-RuIII complexes.49 The number of signals agrees with two 

symmetric [Ru(trpy)(bpy)] halves which indicates that the dimer has certain 

fluxionality in the solution through the oxo bridge and increases the symmetry 

respect to the single crystal X-Ray structure. The dinuclear character of 1-dm4+ 

was further corroborated by a DOSY (Diffusion Ordered NMR Spectroscopy) 
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experiment in CD3CN. The calculated hydrodynamic radius of 1-dm4+ according 

to the Stokes-Einstein equation is 1.93 times bigger than that of the 

mononuclear complex [Ru(trpy)(bpy)(CH3CN)]2+ as it could be expected (Figure 

5). 

 

Figure 5. DOSY experiment for 1 mM solutions of 1-dm
4+

 (blue) and [Ru(trpy)(bpy)( 

CH3CN]
2+

(red) in CD3CN. The 
1
H-NMR experiment on the F2 axis corresponds to 1-dm

4+
. 

The electrochemical behavior of 1-dm4+ in 0.1 M HOTf was investigated 

by means of cyclic (CV) and differential pulse (DPV) voltammetries, Figure 6 

shows the CV. The initial anodic scan from the open circuit potential until 1.4 V 

leads to a reversible wave at E0 = 1.08 V (∆E = 55 mV). This electrochemical 

process is the one electron oxidation in eq. 1 according to previous 

reported45,50 related complexes. 

RuIII-O-RuIII - 1e- → RuIII-O-RuIV           (Eq.1) 

After subsequent cathodic scan until 0 V an irreversible wave appears at 

Ep,c = 0.22 V which is consistent with the 2 e- reduction in eq. 2. Furthermore 

protonation of the oxo bridge occurs according to literature. 
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RuIII-O-RuIII + 2e- + H+ → RuII-(OH)-RuII        (Eq.2) 

The wave is irreversible because the formed reduced complex is 

unstable at pH = 1 in the CV timescale and dimer cleavage takes place giving 

the mononuclear compounds. The second cycle of the CV experiment (dashed 

line in Figure 6) consequently showed a reversible wave at E0 = 0.82 V and a 

quasireversible one at E0 = 0.98 V that belong to 12+. 

 

Figure 6. CV of 1-dm
4+

 in 0.1 M HOTf, 1
st

 cycle (solid line), 2
nd

 cycle (dashed line). The 

inset shows a comparison of the second cycle (black) and a CV from a solution of 1
2+

 

(red) in the same solvent. Polished glassy carbon was used as working electrode, a Pt 

wire as counter electrode and SSCE as reference electode. Scan rate = 100 mV s
-1

. 

The UV-vis spectrum of 1-dm4+ presents a high intensity, lower energy 

band at 688 nm (Figure 7). This feature is typical of this kind of complexes 

(Table S1) and it has been associated to the overlapping of MLCT and bridge-

based transitions.51,52 Interestingly the oxidation of the mononuclear 

complexes 12+ and 22+ with only 2 or 3 equivalent of CAN produces the 

gradually increase of a band at the same wavelength observed for 1-dm4+ 

(Figures S3 and S4), what it can cause misleading with an incipient 

hydroperoxo complex,53 [Ru(OOH)]2+.  
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Figure 7. UV-vis spectrum of 1-dm
4+

 in 0.1 M HOTf. 

On the other hand, the possible molecular pathways for the conversion 

of 12+ into 1-dm4+ have been considered. The dimerization process can occur 

by direct reaction between two molecules of 12+ (direct dimerization, Scheme 

3) or by previous formation of 1-dn4+ and subsequent coordination of free 

bipyridine (mediated dimerization, Scheme 3). 

 

Scheme 3. Possible molecular pathways for the conversion of 1
2+

 into 1-dm
4+

. 

In order to get to know the mechanism 10 equivalents of 2-picolinate 

(pic) were added after catalytic dioxygen evolution by 12+ because in that 

moment the formation of 1-dm4+ starts according to UV-vis spectroscopy. If 1-

dm4+is produced by previous formation of 1-dn4+ the final complex should be 
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mostly an oxo bridge asymmetric complex that contains a [RuIII(trpy)(bpy)] half 

and a [RuIII(trpy)(pic)] half since there is an excess of pic over free bpy, but the 

new trinuclear complex [(trpy)(bpy)RuIII-O-RuIV(pic)2-O-RuIII(bpy)(trpy)]4+ (44+) 

was surprisingly crystallized from the solution (Figure 8). 

 

Figure 8. Ortep plot (ellipsoid drawn at 50% probability) of the X-ray structure of 4
4+

. 

Color codes: Ru, cyan; O, Red; N, Blue; C, black. H atoms are omitted for clarity.  

The RuIII-O-RuIV-O-RuIII moiety was for the first time discovered in the 

Ruthenium Red,54 {[(NH3)5RuIII(μ-O)]RuIV(NH3)4}
6+. There is a small amount of 

structurally characterized oxo-bridge trinuclear complexes of ruthenium and 

some of them are heterometallic complexes55 where ruthenium occupies the 

central position in the oxidation state IV. The main structural parameters for 

44+ and some compounds are collected in Table 3. It can be observed that the 

RuIV-O distance is considerable shorter than that of RuIII-O (∆d = 0.078 Å), the 

clear difference could suggest a weak or negligible electronic coupling among 

Ru sites through the oxo ligands, indeed, a XPS experiment56 on 

{[(H2O)(bpy)2RuIII(μ-O)]2RuIV(bpy)2}
6+ showed the presence of chemically 

different sites. Further work about this issue will be carried out. The RuIV-

OCarboxylate bond (2.034 Å) is shorter than that of reported57-59 mononuclear 

UNIVERSITAT ROVIRA I VIRGILI 
WATER OXIDATION WITH MONONUCLEAR RU COMPLEXES. BELOW THE TIP OF THE 
ICEBERG: THE OXO-BRIDGE SCENARIO 
Isidoro López Marin 
Dipòsit Legal: T. 1505-2013 
 



Chapter 6 

242  

 

picolinate Ru(II) complexes (2.085-2.102 Å) and similar to that of a described60 

Ru(IV) piridinecarboxylate compound (2.068(3) Å). 

The formation of 44+ points out a pathway where 1-dn4+ is partly created 

after oxidation of 12+. When the oxidant depletes or the imposed potential is 

stopped the released free pyridine coordinates slowly into 1-dn4+ to produce 

the dimeric complex 1-dm4+ (Scheme 3).  Pic seems to have a different 

reactivity compared to bpy mainly due to the carboxylate unit and produces 

the trinuclear complex instead of the dinuclear expected. 

Table 3. Comparison of important bond distances (Å) and angles (degree) for several 

trinuclear M
III

-Ru
IV

-M
III

 complexes. 

Complexa RuIV-O MIII-O Ru-O-M Refc. 

44+ b 1.799 1.877 175.0 Tw. 

56+ 1.821(3) 1.881(3) 166.0(2) Tw. 

{[(NH3)5RuIII(μ-O)]2RuIV(en)2}
6+ 1.850(4) 1.891(4) 177.2(4) 61 

{[(BuNH2)((DPG)BF2)2FeIII(μ-O)]2RuIV(TPP’)} b 1.799(11) 1.787(11) 175.0(7) 55 

{[(Salmah)FeIII(μ-O)]2RuIV(TPP)} 1.866(6) 1.848(6) 155.2(5) 62 

a Ligand abbreviation: en = ethylenediamine, BuNH2 = n-butylamine, (DPG)BF2 = (difluoroboryl)-

diphenylglyoximate, TPP’ = tetrakis(4-methoxyphenylporphyrinate), Salmah = N,N’-(4-methyl-4-azaheptane-

1,7-diyl)bis(salicylaldiminaate), TPP = 5,10,15,20-tetraphenylpophyrinate. b The complex is 

noncentrosymmetric and the collected distances and angles correspond to an average. c Tw. means this 

work. 

Reactivity of 1-dm4+. The redox chemistry of 1-dm4+ is marked with a red 

line in Scheme 1 and illustrated in Scheme 4. As it has been previously 

described, the electrochemical or chemical reduction of 1-dm4+ causes the 
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cleavage of the oxo bridge and generates two equivalents of 12+. This 

behaviour is typical for related compounds.42,50 

 

Scheme 4. Reactivity of 1-dm
4+

. 

Although 1-dm4+ lacks of an aquo ligand capable of working as active site 

for catalytic water oxidation, the activity of the dimer was tested using 100 

equivalents of CAN as sacrificial oxidant. Surprisingly the dimer produces 

dioxygen in spite of the TON and TOF are low compare to the mononuclear 

parent compound 12+ (Figure S5). After the reaction the one electron oxidized 

form (1-dm5+) of the initial complex was crystallized (Figure S6), thus it seems 

that the scaffold of 1-dm4+ is largely maintained under the described oxidative 

conditions. 

The average Ru-O distance of the dimer (Table 2) is shortened after the 

oxidation from III,III to III,IV (1.882 - 1.847 = 0.035 Å) which it is in agreement 

with a higher bond order for Ru-O because removing of an electron from the 

antibonding orbital π2*. Moreover, the two Ru-O bonds in 1-dm5+ present 

almost the same length confirming that the strong coupling through the oxo 

bridge between the metallic atoms is preserved. 
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The catalytic activity by 1-dm4+ can be explained by the partial 

conversion of the dimer to the dinuclear complex 1-dn4+, which has been 

demonstrated20 to be an active and stable catalyst for water oxidation. 

RRAMAN monitoring of the addition of an excess of CAN to 1-dm4+ shows two 

remarkable features (Figure 9). First, the resonance of the highest intensity of 

the spectrum at 392 cm-1 observed in 1-dm4+ before oxidant addition is shifted 

at 404 cm-1. This band is probably assigned to the νS Ru-O-Ru mode.40,52,63 The 

shift can be explained because the higher bond order of the Ru-O-Ru moiety in 

1-dm5+. Secondly, a new resonance appears at 801 cm-1 which is consistent 

with the formation of a small amount of 1-dn4+. The generated compound can 

react with the excess of CAN and produce catalytic water oxidation (Scheme 

5). 

 

Figure 9. RRAMAN spectrums 30 s (red) and 9840 s (blue) after the addition of 100 

equivalents of CAN to a 1 mM solution of 1-dm
4+

 in 0.1 M HOTf at 25°C. The spectrum 

before the reaction is also included (black). The inset shows the shift of the νs Ru-O-Ru 

mode. 
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Scheme 5. Underlying processes in the catalytic water oxidation by 1-dm
4+

. 

Reactivity of 1-dn4+, 2-dn4+ and 3-dn4+ with organic solvents. Attempts 

of crystallization of the oxo terminal dinuclear complexes by slow vapour 

diffusion of Et2O into CH3CN solutions of the compounds or by mixtures of 

acetone and solutions of the complexes in 0.1 M HOTf produced new 

polynuclear oxo bridge complexes marked in blue in Scheme 1 and depicted in 

Scheme 6. The transformations can be rationalized in terms of the known high 

reactivity of Ru(IV) oxo complexes toward oxidation of organic compounds,34,64-

66 in this case the used solvents. 
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Scheme 6. Reactivity of dinucler oxo-terminal complexes with organic solvents. 

Single crystals of two RuIII-O-RuIII complexes were grown, 1-dnCH3CN
4+ and 

3-dnCH3CN
4+. The framework of these structures is the same as that from 1-dn4+ 

and 3-dn4+, but the aquo and terminal oxo ligands have been replaced by two 

acetonitrile ligands (Figure 10 and S7). The Ru-O distances are longer than that 

from the parent dinuclear RuIV-O-RuIV compounds (Table 1) since the 

antibonding π1* and π2* orbitals are now partly occupied decreasing the bond 

order. The bent of the Ru-O-Ru angle is also striking and it has been observed 

in this work and previous studies (Table 2).  
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Figure 10. Ortep plot (ellipsoid drawn at 50% probability) of the X-ray structure of 3-

dn
4+

. Color codes: Ru, cyan; O, Red; N, Blue; C, black; F, green. H atoms are not shown 

except for the methyl groups from the acetonitrile ligands that are represented as 

small light blue circles. 

The new aquo coordinated trinuclear complex {[RuIII(trpy)(bpy)(μ-

O)]2RuIV(trpy)(H2O)}6+ (56+) was also crystallized in organic media (Figure 11). As 

in the case of 44+, the RuIV-O and the RuIII-O distances are significantly different 

suggesting a small coupling of the metallic atoms through the oxo bridge 

ligands (Table 3). The metal coordinated water molecule is disordered around 

the C2 axis in two positions (ratio 50:50) and one of the trpy ligands in the half 

molecule of the complex of the asymmetric unit is also disordered in two 

orientations (ratio 70:30). 56+ is postulated as an attractive candidate to work 

as a robust water oxidation catalyst (WOC) considering that it presents a trans 

dioxo O-Ru-O conformation. This motif concedes a great stability to the highest 

oxidation states species and is the driving force for the formation of the rugged 

WOCs 1-dn4+ and 2-dn4+ from its mononuclear counterparts.20
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Figure 11. ORTEP plot (ellipsoid drawn at 50% probability) of the X-Ray structure of 

complex 5
6+

. Color codes: Ru, cyan; O, Red; N, Blue; C, black. H atoms are not shown 

except for the aqua ligand that are represented as small light blue circles. 

On the other hand, the structure of the dinuclear complexes related to 

1-dn4+ suggests the possibility of a dimerization process to form tetranuclear 

oxo bridge complexes; indeed, it has been previously reported44 that reduction 

of the mononuclear trans dioxo complex [RuVI(trpy)(O)2(H2O)]2+ to 

[RuIV(trpy)(O)(H2O)2]
2+ generates quickly the dimer [(trpy)(H2O)2RuIV(μ-

O)RuIV(H2O)2(trpy)]6+. Single crystals suitable for X-Ray determination of the 

tetranuclear compounds 1-tn6+, 2-tn6+ and 3-tn6+ could be grown in organic 

media. The ORTEP plot for 3-tn6+ is presented in Figure 12 and those for 1-tn6+ 

and 2-tn6+ in Figures S8 and S9. The molecules have Ci symmetry with the 

inversion center placed in the central oxo bridge and consist in two [(trpy)(X2-

bpy)Ru(μ-O)Ru(trpy)(L)] halves, where L = CH3CN, CH3COO- or –OH, linked by an 

oxo bridge ligand. The coordinated CH3COO- and –OH in 2-tn6+ derive probably 

from the hydrolysis of acetonitrile; this reaction has already been 

documented67,68 in mononuclear Ru complexes. 
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Figure 12. Ortep plot (ellipsoid at 50 % probability) of the X-ray structure of 3-tn
6+

. 

Color codes: Ru, cyan; O, Red; N, Blue; C, black; F, green. H atoms are not shown 

except for the methyl groups from the acetonitrile ligands that are represented as 

small light blue circles. 

The assignment of the oxidation states for the Ru atoms is controversial. 

If a strong coupling through the oxo bridge ligand is assumed the charge 

balance in 1-tn6+ and 3-tn6+ indicates that all the metallic atoms are in the 

oxidation state III, [Ru2
III(O1)Ru1

III]2. Because 2-tn6+ is a 2 electron oxidized form, 

the same consideration implies that the Ru atoms in this compound are in the 

oxidation state III.5, [Ru2
III.5(O1)Ru1

III.5]2. However, this distribution does not fit 

with the observed Ru-O bond distances (Table 4). The two Ru2-O bonds are 

clearly shorter than the Ru1-O one (∆d = 0.035-0.059 Å) suggesting a different 

oxidation states for both atoms. If the different valence is taken into account, 

the charge balance in 1-tn6+ and 3-tn6+ provides a [Ru2
IV(O1)Ru1

II]2 system 

where the central Ru atoms are in the oxidation state IV. However, another 

intermediate electronic distribution could be viable, for instance 

[Ru2
III.5(O1)Ru1

II.5]2, since the RuIII.5-O and RuIV-O bonds cannot be 

crystallographically distinguished (see Table 1 and Table 2). The comparison of 

Ru-O distances in 2-tn6+ and 3-tn6+ supports the assignment [Ru2
IV(O1)Ru1

II]2. 
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Complex 2-tn6+ is a 2e- oxidized compound respect to 3-tn6+. The oxidation 

does not affect the length of the Ru2-O bonds (Table 4) while shortens 

remarkably the Ru1-O bond (0.027 Å) what it can be interpreted as oxidation 

only occurring in the terminal Ru atoms. Ru-O bond distances in the formed 

[Ru2
IV(O1)Ru1

III]2 complex, 2-tn6+, are consistent with the oxidation states of all 

the Ru atoms. In contrast, if a completely delocalized through the oxo bridge 

ligand [Ru2
III(O1)Ru1

III]2 system is assigned to 3-tn6+, the oxidation should have 

an effect on all the Ru-O bonds that it is not observed. The presence of Ru 

atoms in different oxidation states inside an oxo bridge molecule has already 

been postulated in Ruthenium Reds as it was discussed above. Further work 

needs to be done in order to corroborate the electronic structure of the 

tetranuclear complexes. We are currently working in the synthesis of larger 

amounts of these compounds to carry out electrochemical, spectroscopic and 

magnetic studies. 

Table 4. Comparison of important bond distances (Å) and angles (degree) for the 

tetranuclear complexes discovered in this work. 

Complex Ru2-O2
a Ru2-O1

b Ru1-O1
c Ru2-O-Ru1 

1-tn6+ 1.8496(3) 1.839(2) 1.883(2) 169.67(15) 

2-tn6+ 1.8364(3) 1.823(2) 1.865(3) 169.44(16) 

3-tn6+ 1.8378(8) 1.829(6) 1.892(6) 168.10(4) 

a Distance between the central Ru atom and the inner oxo brigde with the inversion center. b Distance 

between the central Ru atom and the outer oxo bridge. c Distance between the terminal Ru atom and the 

outer oxo bridge. 
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6.4. Conclusions. 

Catalytic water oxidation by mononuclear Ru complexes affords 

dinuclear oxo bridge complexes with interesting properties and reactivities 

which define an intricate and strongly interconnected oxo-bridge scenario 

(Scheme 1). 

The dinuclear compounds 1-dn4+, 2-dn4+ and 3-dn4+ present an 

additional O-terminal ligand in trans position to the oxo bridge that gives a big 

stability to the molecules. 1-dn4+ and 2-dn4+ are active and rugged WOCs as 

reported20 previously. The dimer complex 1-dm4+ has been isolated in high 

yield 1 week after the oxygen evolution by 12+ had ceased and it has been 

completely characterized by analytical, spectroscopic and electrochemical 

techniques. The conversion of 12+ into 1-dm4+ is not a simple bimolecular 

dimerization process. The crystallization of the Ruthenium Red 44+ suggests 

that 1-dm4+ is formed after coordination of the previously released bpy ligand 

in the aquo and oxo positions of 1-dn4+. 

1-dm4+ can work as WOC using CAN as sacrificial oxidant because partial 

formation of 1-dn4+ according to rRAMAN spectroscopy, although the major 

product of the process is the one electron oxidized form of the dimer, 1-dm5+, 

which has been characterized by single crystal XRD. 

The crystallization of 1-dn4+, 2-dn4+ and 3-dn4+ in MeCN/Et2O and 

Me2CO/0.1 M HOTf mixtures provided several oxo bridge complexes with 

diverse nuclearity. The dinuclear compounds 1-dnCH3CN
4+ and 3-dnCH3CN

4+ retain 

the same scaffold that the parent compounds but the oxo terminal and the 

aquo ligands have been replaced by two acetonitrile ligands. The trinuclear 

complex 56+ constitutes the second Ruthenium Red described in this work 

which is relevant due to the low number of structurally characterized examples 
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of this family in the literature. Finally, the tetranuclear complexes 1-tn6+, 2-tn6+ 

and 3-tn6+ have been obtained. The Ru-O bond lengths in these structures 

suggest two different oxidation states for the Ru atoms inside each molecule 

which disagrees with the conception of a strong delocalized system through 

the oxo bridge ligands, however this interpretation is based in merely 

structural arguments, further electrochemical, spectroscopic and magnetic 

work must be done once considerable amounts of pure tetranuclear 

complexes are achieved in order to validate the information obtained by XRD. 

The oxo-bridge scenario thoroughly studied in this work shows that 

mononuclear high oxidation state Ru complexes have a strong preference to 

form oxo bridge structures provided that no hindered ligands allow it. This 

reactivity parallels the known one for numerous mononuclear Fe complexes.21 

The resulting oxo bridge complexes are intimately related and can generate 

interesting molecules with higher nuclearity. 
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Figure S 1. 
1
H-NMR of 1-dm

4+
 in 0.1 M HOTf (500 MHz). 

 

Figure S 2. DPV of 1-dm
4+

 in 0.1 M HOTf. Polished glassy carbon was used as working 

electrode, a Pt wire as counter electrode and SSCE as reference electode. Scan rate = 

20 mV s
-1

. 
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Table S 1. Comparison of the highest intensity absorption band in the visible region for 

several Ru
III

-O-Ru
III

 complexes. 

Complexa λmax, nm (ε, L mol-1 cm-1) Solvent Ref.b 

1-dm4+ 689 (25700) 0.1 M HOTf Tw. 
{[RuIII(TAN)(acac)]2(μ-O)}2+ 596 (12400) CH3CN 1 

{[RuIII(trpy)(C2O4)]2O} 636 (10500) pH = 7 2 
trans-{[Ru(trpy)(pic)]2O}2+ 682 (13200) CH3CN 3 

cis-{[Ru(trpy)(pic)]2O}2+ 698 (16200) CH3CN 3 
{[RuIII(bpy)2(H2O)]2(μ-O)}4 637 (21100) 0.1 M HNO3 4 

a Ligand abbreviation: TAN = 1, 4, 7-trimethyl-1, 4, 7-triazacyclononane, acac = pentane-2,4-dionate, pic = 2-
picolinate. b This work. 

Figure S 3. UV-vis monitoring of the reaction of a 0.75 mM solution of 1
2+

 in 0.1 M 

HOTf with 2 (upper) and 3 (bottom) equivalents of  CAN. The absorption profiles at 688 

nm are also shown. The reactions are at 25 °C and a cuvette with 2 mm optical pass 

length was used. 
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Figure S 4. UV-vis monitoring of the reaction of a 0.5 mM solution of 2
2+

 in 0.1 M HOTf 

with 2 (upper) and 3 (bottom) equivalents of  CAN. The absorption profiles at 688 nm 

are also shown. The reactions are at 25 °C and a cuvette with 2 mm optical pass length 

was used. 

 

 

Figure S 5. Manometric measurement of dioxygen evolution after the addition of 100 

equivalents of CAN to a 1 mM solution of 1-dm
4+

 in 0.1 M HOTf at 25°C (blue) and the 

same conditions for 1
2+

 (red). 
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Figure S 6. ORTEP plot (ellipsoid drawn at 50% probability) of the X-Ray structure of 

complex 1-dm
5+

. Color codes: Ru, cyan; O, Red; N, Blue; C, black. H atoms omitted for 

clarity. 

 

Figure S 7. ORTEP plot (ellipsoid drawn at 50% probability) of the X-Ray structure of 

complex 1-dnCH3CN
4+

. Color codes: Ru, cyan; O, Red; N, Blue; C, black. H atoms are not 

shown except for the methyl groups from the acetonitrile ligands that are represented 

as small light blue circles. 

 

The bipyridene and the acetonitrile ligands are disordered interchanging its positions 

with a ratio of 86:14. 
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Figure S 8. ORTEP plot (ellipsoid drawn at 50% probability) of the X-Ray structure of 

complex 2-tn
6+

. Color codes: Ru, cyan; O, Red; N, Blue; C, black; F, green. H atoms are 

not shown except for the methyl groups from the acetate ligands that are represented 

as small light blue circles. 

 

The central Ruthenium atoms of the tetramer are coordinated to disordered 

acetate/hydroxyl anions with a ratio of respectively 80:20. The acetate complex is 

shown in the figure. 

Figure S 9. Ortep plot (ellipsoid drawn at 50% probability) of the X-ray structure of 

complex 1-tn
6+

. H atoms are omitted for clarity. Color codes: Ru, cyan; O, Red; N, Blue; 

C, black. H atoms are not shown except for the methyl groups from the acetonitrile 

ligands that are represented as small light blue circles. 
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Table S 2. Crystal data and structure refinement for 3-dn
4+

. 

Empirical formula C13.33 H12 Cl1.33 F0.67 N2.67 O7.33 Ru0.67 

Formula weight 454.24 

Temperature T100(2)K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a =  13.4923(15) Å α=  89.678(4) °. 

b =  14.3557(15) Å β = 65.882(4) °. 

c =  14.6611(17) Å γ =  69.876(4) °. 

Volume 2403.2(5)  Å3 

Z 6 

Density (calculated) 1.883  Mg/m3 

Absorption coefficient 0.953  mm-1 

F(000) 1364 

Crystal size 0.05 x 0.05 x 0.01 mm3 

Theta range for data collection 1.54  to 29.95 °. 

Index ranges -18 <=h<=18 ,-19 <=k<=19 ,-20 <=l<=20 

Reflections collected 27159 

Independent reflections 11628 [R(int) = 0.0568 ] 

Completeness to theta =29.95 ° 0.833 % 

Absorption correction Empirical 

Max. and min. transmission 0.9905  and  0.9539 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11628 / 191 / 757 

Goodness-of-fit on F2 1.002 

Final R indices [I>2sigma(I)] R1 = 0.0481 , wR2 = 0.0999 

R indices (all data) R1 = 0.0943 , wR2 = 0.1159 

Largest diff. peak and hole 0.838  and -0.936  e.Å-3 

  

UNIVERSITAT ROVIRA I VIRGILI 
WATER OXIDATION WITH MONONUCLEAR RU COMPLEXES. BELOW THE TIP OF THE 
ICEBERG: THE OXO-BRIDGE SCENARIO 
Isidoro López Marin 
Dipòsit Legal: T. 1505-2013 
 



Chapter 6 

 

264  

 

Table S 3. Crystal data and structure refinement for 1-dm
4+

. 

Empirical formula C50 H44.50 Cl4 N10 O20 Ru2 

Formula weight 1449.40 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a =  12.3879(8) Å α=  96.503(2) °. 

b =  13.3477(9) Å β = 97.743(2) °. 

c =  16.7742(11) Å γ =  94.440(2) °. 

Volume 2718.5(3)  Å3 

Z 2 

Density (calculated) 1.771  Mg/m3 

Absorption coefficient 0.842  mm-1 

F(000) 1461 

Crystal size 0.10 x 0.05 x 0.03 mm3 

Theta range for data collection 1.67  to 30.05 °. 

Index ranges -17 <=h<=17 ,-18 <=k<=18 ,0 <=l<=23 

Reflections collected 23573 

Independent reflections 23573 [R(int) = 0.0000 ] 

Completeness to theta =30.05 ° 90.3% 

Absorption correction Empirical 

Max. and min. transmission 1.00  and  0.88 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 23573 / 66 / 836 

Goodness-of-fit on F2 1.050 

Final R indices [I>2sigma(I)] R1 = 0.0311 , wR2 = 0.0783 

R indices (all data) R1 = 0.0386 , wR2 = 0.0845 

Largest diff. peak and hole 0.807  and -0.716  e.Å-3 
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Table S 4. Crystal data and structure refinement for 4
4+

. 

Empirical formula C62 H54 Cl4 N12 O26 Ru3 

Formula weight 1828.18 

Temperature 100(2)K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group P2(1)/n 

Unit cell dimensions a =  13.2783(17) Å α=  90.00 °. 

b =  22.367(3) Å β = 100.173(5) °. 

c =  22.842(3) Å γ =  90.00 °. 

Volume 6677.4(15)  Å3 

Z 4 

Density (calculated) 1.819  Mg/m3 

Absorption coefficient 0.926  mm-1 

F(000) 3672 

Crystal size 0.12 x 0.05 x 0.01 mm3 

Theta range for data collection 1.28  to 27.80 °. 

Index ranges -17 <=h<=15 ,-29 <=k<=29 ,-22 <=l<=29 

Reflections collected 67999 

Independent reflections 15714 [R(int) = 0.0967 ] 

Completeness to theta =27.80 ° 0.994 % 

Absorption correction Empirical 

Max. and min. transmission 0.9908  and  0.8970 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 15714 / 344 / 1086 

Goodness-of-fit on F2 1.090 

Final R indices [I>2sigma(I)] R1 = 0.0777 , wR2 = 0.1734 

R indices (all data) R1 = 0.1423 , wR2 = 0.2045 

Largest diff. peak and hole 2.667  and -1.366  e.Å-3 
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Table S 5. Crystal data and structure refinement for 1-dm
5+

. 

Empirical formula C50 H41 Cl5 N10 O22.50 Ru2 

Formula weight 1521.32 

Temperature 100(2)K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a =  11.624(3) Å α=  89.670(7) °. 

b =  13.136(3) Å β = 84.478(8) °. 

c =  20.002(5) Å γ =  65.182(7) °. 

Volume 2757.3(11)  Å3 

Z 2 

Density (calculated) 1.832  Mg/m3 

Absorption coefficient 0.885  mm-1 

F(000) 1528 

Crystal size 0.12 x 0.08 x 0.02 mm3 

Theta range for data collection 1.71  to 30.04 °. 

Index ranges -16 <=h<=16 ,-18 <=k<=18 ,-27 <=l<=27 

Reflections collected 97252 

Independent reflections 14633 [R(int) = 0.0393 ] 

Completeness to theta =30.04 ° 0.906 % 

Absorption correction Empirical 

Max. and min. transmission 0.9825  and  0.9013 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 14633 / 299 / 859 

Goodness-of-fit on F2 1.046 

Final R indices [I>2sigma(I)] R1 = 0.0418 , wR2 = 0.1026 

R indices (all data) R1 = 0.0585 , wR2 = 0.1135 

Largest diff. peak and hole 1.642  and -1.685  e.Å-3 
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Table S 6. Crystal data and structure refinement for 1-dnCH3CN
4+

. 

Empirical formula C46 H41 F24 N11 O2 P4 Ru2 

Formula weight 1561.92 

Temperature 100(2)K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a =  10.7906(12) Å α=  80.416(4) °. 

b =  12.8062(13) Å β = 77.861(5) °. 

c =  22.219(3) Å γ =  66.514(3) °. 

Volume 2741.4(5)  Å3 

Z 2 

Density (calculated) 1.892  Mg/m3 

Absorption coefficient 0.802  mm-1 

F(000) 1548 

Crystal size 0.30 x 0.10 x 0.02 mm3 

Theta range for data collection 0.94  to 29.80 °. 

Index ranges -14 <=h<=15 ,-17 <=k<=10 ,-29 <=l<=30 

Reflections collected 41002 

Independent reflections 13755 [R(int) = 0.0519 ] 

Completeness to theta =29.80 ° 0.877 % 

Absorption correction Empirical 

Max. and min. transmission 0.9841  and  0.7949 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 13755 / 1009 / 1057 

Goodness-of-fit on F2 1.051 

Final R indices [I>2sigma(I)] R1 = 0.0719 , wR2 = 0.1788 

R indices (all data) R1 = 0.1118 , wR2 = 0.2018 

Largest diff. peak and hole 2.224  and -1.787  e.Å-3 
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Table S 7. Crystal data and structure refinement for 3-dnCH3CN
4+

. 

Empirical formula C46 H37 F26 N11 O P4 Ru2 

Formula weight 1579.89 

Temperature 273(2)K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a =  13.240(3) Å α=  95.23(3) °. 

b =  14.214(3) Å β = 96.87(3) °. 

c =  18.518(4) Å γ =  116.81(3) °. 

Volume 
3046.6(10)  Å3 

Z 
2 

Density (calculated) 
1.722  Mg/m3 

Absorption coefficient 
0.726  mm-1 

F(000) 
1560 

Crystal size 
0.15 x 0.10 x 0.05 mm3 

Theta range for data collection 
1.12  to 27.67 °. 

Index ranges 
-17 <=h<=17 ,-18 <=k<=15 ,-23 <=l<=23 

Reflections collected 
41412 

Independent reflections 
In13608 [R(int) = 0.0733 ] 

Completeness to theta =27.67 ° 
.956 % 

Absorption correction 
Empirical 

Max. and min. transmission 
0.9646  and  0.8989 

Refinement method 
Full-matrix least-squares on F2 

Data / restraints / parameters 
13608 / 512 / 903 

Goodness-of-fit on F2 
1.018 

Final R indices [I>2sigma(I)] 
R1 = 0.0693 , wR2 = 0.1970 

R indices (all data) 
R1 = 0.1097 , wR2 = 0.2205 

Largest diff. peak and hole 
1.584  and -1.433  e.Å-3 
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Table S 8. Crystal data and structure refinement for 5
6+

. 

Empirical formula C65 H55 Cl5 F6 N13 O25 P Ru3 

Formula weight 2043.65 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group C2/c 

Unit cell dimensions a =  15.580(3) Å α =  90.00 °. 

b =  21.323(3) Å β = 101.034(6) °. 

c =  22.581(4) Å γ =  90.00 °. 

Volume 7363(2)  Å3 

Z 4 

Density (calculated) 1.844  Mg/m3 

Absorption coefficient 0.917  mm-1 

F(000) 4088 

Crystal size 0.10 x 0.10 x 0.02 mm3 

Theta range for data collection 1.64  to 30.01 °. 

Index ranges -21 <=h<=21 ,-26 <=k<=29 ,-30 <=l<=31 

Reflections collected 112958 

Independent reflections 10255 [R(int) = 0.0405 ] 

Completeness to theta =30.01 ° 95.4% 

Absorption correction Empirical 

Max. and min. transmission 0.9730  and  0.8379 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10255 / 582 / 754 

Goodness-of-fit on F2 1.054 

Final R indices [I>2sigma(I)] R1 = 0.0644 , wR2 = 0.1669 

R indices (all data) R1 = 0.0867 , wR2 = 0.1860 

Largest diff. peak and hole 
3.276  and -1.681  e.Å-3 
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Table S 9. Crystal data and structure refinement for 1-tn
6+

. 

Empirical formula C84 H66 F36 N18 O3 P6 Ru4 

Formula weight 2649.65 

Temperature 100(2)K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group C2/c 

Unit cell dimensions a =  20.078(2) Å α=  90.00 °. 

b =  19.058(2) Å β = 101.484(3) °. 

c =  28.627(3) Å γ =  90.00 °. 

Volume 10735(2)  Å3 

Z 4 

Density (calculated) 1.639  Mg/m3 

Absorption coefficient 0.758  mm-1 

F(000) 5240 

Crystal size 0.30 x 0.10 x 0.02 mm3 

Theta range for data collection 1.49  to 33.24 °. 

Index ranges -30 <=h<=30 ,-29 <=k<=20 ,-42 <=l<=42 

Reflections collected 50782 

Independent reflections 19621 [R(int) = 0.0554 ] 

Completeness to theta =33.24 ° 0.950 % 

Absorption correction Empirical 

Max. and min. transmission 0.9850  and  0.8046 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 19621 / 846 / 984 

Goodness-of-fit on F2 1.076 

Final R indices [I>2sigma(I)] R1 = 0.0634 , wR2 = 0.1709 

R indices (all data) R1 = 0.0965 , wR2 = 0.1835 

Largest diff. peak and hole 
1.893  and -0.960  e.Å-3 
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Table S 10. Crystal data and structure refinement for 2-tn
6+

. 

Empirical formula C83.20 H65.20 Cl6 F4 N16 O32.60 Ru4 

Formula weight 2503.69 

Temperature 296(2)K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a =  12.6065(8) Å α=  91.810(3) °. 

b =  13.6669(9) Å β = 112.224(2) °. 

c =  15.8222(11) Å γ =  116.112(2) °. 

Volume 2200.7(3)  Å3 

Z 1 

Density (calculated) 1.889  Mg/m3 

Absorption coefficient 0.964  mm-1 

F(000) 1251 

Crystal size 0.20 x 0.10 x 0.03 mm3 

Theta range for data collection 1.43  to 29.87 °. 

Index ranges -17 <=h<=17 ,-18 <=k<=19 ,-20 <=l<=21 

Reflections collected 44428 

Independent reflections 11330 [R(int) = 0.0350 ] 

Completeness to theta =29.87 ° 0.892 % 

Absorption correction Empirical 

Max. and min. transmission 0.9717  and  0.8306 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11330 / 228 / 737 

Goodness-of-fit on F2 1.043 

Final R indices [I>2sigma(I)] R1 = 0.0452 , wR2 = 0.1130 

R indices (all data) R1 = 0.0602 , wR2 = 0.1255 

Largest diff. peak and hole 3.677  and -0.976  e.Å-3 
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Table S 11. Crystal data and structure refinement for 3-tn
6+

. 

Empirical formula C87 H66.50 Cl2 F28 N19.50 O11 P4 Ru4 

Formula weight 2692.16 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a =  13.410(2) Å α =  74.839(7) °. 

b =  14.433(2) Å β = 66.059(7) °. 

c =  15.012(3) Å γ =  80.026(5) °. 

Volume 2555.6(7)  Å3 

Z 1 

Density (calculated) 1.749  Mg/m3 

Absorption coefficient 0.813  mm-1 

F(000) 1335 

Crystal size 0.15 x 0.10 x 0.05 mm3 

Theta range for data collection 1.52  to 24.64 °. 

Index ranges -15 <=h<=15 ,-14 <=k<=16 ,-17 <=l<=17 

Reflections collected 25220 

Independent reflections 8078 [R(int) = 0.0499 ] 

Completeness to theta =24.64 ° 93.6% 

Absorption correction Empirical 

Max. and min. transmission 0.9605  and  0.8878 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 8078 / 530 / 850 

Goodness-of-fit on F2 1.075 

Final R indices [I>2sigma(I)] R1 = 0.0801 , wR2 = 0.2222 

R indices (all data) R1 = 0.1242 , wR2 = 0.2618 

Largest diff. peak and hole 2.068  and -1.408  e.Å-3 
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Chapter 7. Exploring the properties of rugged oxo-

bridge dinuclear water oxidation catalysts and its 

relationship with mononuclear catalysts. 

 

 

The complete electrochemical and spectroscopic characterization of the 

dinuclear complexes [(trpy)(5,5’-X2-bpy)RuIV(-O)RuIV(trpy)(O)(H2O)]4+ (X = H, 1-
dn4+; X = F, 2-dn4+) has been accomplished. Additionally new rRAMAN 
spectroscopic studies evidence the conversion of the high oxidation states of 
the mononuclear complexes [Ru(trpy)(5,5’-F2-Bpy)(H2O)]2+ (X = H, 12+; X = F, 22+) 
into its dinuclears counterparts, 1-dn4+ and 2-dn4+ respectively, via the 
formation of trans-[RuVI(trpy)(O)2(H2O)]2+ (32+). This feature strongly supports 
our earlier hypothesis about two interconnected cycles leading to dioxygen 
under chemical or electrochemical catalytic conditions. Intermediates from 
different cycles interact each other producing a synergic effect in the evolution 
of dioxygen. 
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Exploring the properties of rugged oxo-bridge dinuclear 

water oxidation catalysts and its relationship with 

mononuclear catalysts 

 

Isidoro López,a Somnath Maji,a Anke Keidel,b Jordi Benet-Buchholz,a Uwe 
Kuhlmann,b Peter Hildebrandtb and Antoni Llobeta,c 

a
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 Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 

Berlin, Germany. 

c
 Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 

Barcelona, Spain. 

7.1. Introduction. 

Single-site water oxidation catalysts (WOC) are currently receiving an 

increased interest since Thummel et al. found1 the first active mononuclear 

ruthenium complexes. Extensive mechanistic2-4 studies have been carried out 

by Meyer et al. The proposed catalytic pathway is shown in the left side of 

Figure 1, where the key O-O bond formation step is a water nucleophilic attack 

(WNA) on the the RuV=O unit. Later reports by Berlinguette et al.5 and Sakai et 

al.6 added a pathway where an O-atom from (NH4)2Ce(NO3)6 (CAN) is 

incorporated to the final dioxygen product via a radical couping with the RuV=O 

unit. 

The mechanism has been proposed for a large number of mononuclear 

Ru catalyst from [Ru(trpy)(bpy)(H2O)]2+ (12+)  (where trpy is 2,2’:6’,2”-

terpyridine and bpy is 2,2’-bipyridine) analogues5,7 to single site Ru 
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polyoxometalates.8 Furthermore, this description has also been extended to 

iridium9 and other first-row transition metals molecular catalysts.10,11 

Strong efforts have been dedicated to identify and characterize the 

proposed intermediates and possible side products. Meyer et al. provided the 

first UV-vis spectroscopic and electrochemical evidences3 for the hydroperoxo 

[Ru-OOH]2+ intermediate. After that, Berlinguette et al. employed ESI-MS5 to 

gain a deeper insight into the mechanism and discovered the 

{[RuIV(trpy)(bpy)(O)][CeIV(NO3)5]}
+ and [RuIII(trpy)(bpy)O2]

+ cations which 

proceed from an side reaction where Ce(IV) activates a N-O bond of a nitrate 

ligand and the O-atom is then transferred to the [RuIV=O]2+ unit. Interestingly 

the [RuV=O] complex could not be observed by this technique. Later on Fujita 

et al. reported an exhaustive study of the intermediates of the catalytic cycle. 

They achieved a complete spectroscopic and electrochemical characterization 

of a peroxo complex [RuIV-OO]2+. However, the rRAMAN spectrum lacks a band 

for the indicative O-O stretching mode although the Ru-O mode is observed 

after labeling experiments.  

The proposed mechanism has been also indirectly validated by subtle 

modifications in the ligands of the 12+ complex. Fujita et al. have examined12 

the effect of a pendant base in catalytic water oxidation. They found a drastic 

decrease of the activity when the base is placed next to the aquo ligand while 

the stereoisomeric complex with a distant pendant base is a better catalyst 

than 12+. We have also studied7 the remarkable effect exerted by a proximal 

fluorine atom. The modified bipyridine ligand forms a hydrogen bond with the 

active site which lowers the activity. It is also worth mentioning that 2,2’-

bipyridine N,N-dioxide has been observed as the main deactivation product13 
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after catalysis with 12+ and a huge excess of CAN which points out that 

dissociation of bpy ligand is an important pathway for catalyst decomposition. 

 

Figure 1. Interconnected cycles for water oxidation by mononuclear (left) and 

dinuclear (right) complexes. 

Recently our group has demonstrated14 that 12+ and the structurally 

related complex [Ru(trpy)(5,5’-F2-Bpy)(H2O)]2+ (where 5,5’-F2-Bpy is 5,5'-

difluoro-2,2'-bipyridine, 22+) are partly converted into the new oxidatively 

rugged and active dinuclear catalysts [(trpy)(5,5’-X2-bpy)RuIV(-

O)RuIV(trpy)(O)(H2O)]4+ (X = H, 1-dn4+; X = F, 2-dn4+) under catalytic conditions 

(see chapter V). This evolution draws a complete and deep description at the 

molecular level of the activity by single-site WOCs behind the current accepted 

mechanistic proposal. Two catalytic cycles run concurrently and are 

interconnected by the gate [RuVI(trpy)(O)2(H2O)]2+ (32+). Additionally, 

intermediates of different cycles could interact each other making difficult to 

establish the pathways leading to oxygen. 

In this work, we study thoroughly the spectroscopic and electrochemical 

properties of 1-dn2+ and 2-dn4+ including its pH dependency. New 

spectroscopic evidences for the conversion of the mononuclear complexes into 

the dinuclear ones will be also discussed. All these features provide a 

complete, consistent and comprehensive understanding of the electronic 
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structure of the dinuclear complexes and the mechanism of water oxidation by 

single-site Ru catalysts. 

7.2. Experimental Section. 

Materials. All reagents used in the present work were obtained from 

Aldrich Chemical Co. and were used without further purification. RuCl3·3H2O 

was supplied by Alfa Aesar and was used as received. Trifluoromethanesulfonic 

acid (HOTf) was pursued from CYMIT. Reagent-grade organic solvents were 

obtained from SDS and high-purity deionized water was obtained by passing 

distilled water through a nanopure Milli-Q water purification system. 

Preparations. [Ru(trpy)(bpy)(H2O)](PF6)2 (12+),15 [Ru(trpy)(5,5’-F2-

bpy)(H2O)](PF6)2 (22+),7 trans-[RuVI(trpy)(O)2(H2O)]2+ (32+),16 [(trpy)(bpy)RuIV(μ-

O)RuIV(trpy)(O)(H2O)](ClO4)4 (1-dn4+)14 and [(trpy)(5,5’-F2-bpy)RuIV(μ-

O)RuIV(trpy)(O)(H2O)] (ClO4)4 (2-dn4+)14 were prepared as described in the 

literature. 

Equipment and measurements. UV/Vis spectroscopy was performed on 

a Cary 50 (Varian) UV/Vis spectrophotometer in 1 cm or 0.2 cm when indicated 

quartz cuvettes. Cyclic voltammetry (CV) and differential pulse voltammetry 

(DPV) experiments were performed on an IJ-Cambria CHI-660 or a Bio-Logic SP-

150 potentiostat using a three-electrode cell. Typical CV experiments were 

carried out at a scan rate of 100 mV s-1. DPV experiments were carried out with 

the parameters: Pulses Height = 50 mV, Pulses Width = 50 ms, Step Height = 4 

mV and Step Time = 200 ms. A glassy carbon electrode (3 mm diameter) was 

used as working electrode, platinum wire as auxiliary electrode, and a SSCE or 

Hg/Hg2SO4, K2SO4 (sat) as reference electrode. Working electrodes were 

polished with 0.05 micron alumina paste, and rinsed with distilled water and 

acetone followed by blow-drying before each measurement. When glassy 
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carbon electrodes were activated, a procedure described by Meyer et al. was 

used.17 All cyclic voltammograms presented in this work were recorded in the 

absence of light and inside a Faradaic cage. The electrochemical experiments 

were carried out in 1 M CF3SO3H (pH = 0.0), 0.1 M CF3SO3H (pH = 1.0), 

NaH2PO4/H3PO4 buffers (pH range: 2.0 – 4.0), Na2HPO4/NaH2PO4 buffers 

(pH range: 4.0 – 8.0) or sodium tetraborate buffers (pH range: 8.0 - 9.5) 

with I = 0.1 M. E1/2 values reported in this work were estimated from CV 

experiments as the average of the oxidative and reductive peak potentials (Ep,a 

+ Ep,c)/2 or taken as E(Imax) from DPV measurements. 

A 400 MHz Bruker Avance II spectrometer and a Bruker Avance 500 MHz 

were used to carry out NMR spectroscopy at room temperature. Samples were 

run in 0.1 M DOTf with internal references (residual protons). Elemental 

analysis was performed using an EA-1108, CHNS-O elemental analyzer from 

Fisons Instruments.  

Samples for resonance Raman spectroscopy using a 514 nm laser were 

prepared by mixing a 1 mM solution of 1-dn4+ with two equivalents of 

(NH4)2Fe(SO4)2 and transferring 100 μL of the reaction solution to a aluminium 

crucible and subsequently frozen at appropriate times in liquid N2. Then, the 

crucible was placed into a Linkam THMS 600 temperature controlled cryo stage 

to keep the temperature at -12°C. The rR spectrum was acquired using a 

Renishaw inVia Reflex RAMAN confocal microscope (Gloucestershire, UK), 

equipped with an Ar-ion laser at 514 nm and a Peltier-cooled CCD detector (-

70°C) coupled to a Leica DM-2500 microscope. Calibration was carried out 

daily by recording the Raman spectrum of an internal Si standard. Rayleigh 

scattered light was appropriately rejected by using edge-type filters. Spectra 

were recorded with the accumulation of 5 scans with a 20 s scan time each 
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one. A 10x working distance microscope objective was used to focus 50% of 

the laser power (25 mW) onto the sample. 

On-line manometric O2 measurements were carried out on a Testo 521 

differential pressure manometer with an operating range of 1-100 hPa and 

accuracy within 0.5 % of the measurement. The manometer was coupled to 

thermostated reaction vessels for dynamic monitoring of the headspace 

pressure above each reaction. The manometer’s secondary ports were 

connected to thermostated reaction vessels containing the same solvents and 

headspace volumes as the sample vials. Composition of the gaseous phase was 

determined by online mass-spectrometry with an OmniStar GSD 301 C 

(Pfeiffer) quadrupole mass-spectrometer. 

Single-Crystal X-Ray Structure Determination. Single crystals for the 

oxidation state IV of 22+ were grown 4 days after the addition of some drops of 

an aqueous saturated NH4PF6 solution to a reaction mixture of 3 equivalents of 

CAN and 22+ in 0.1 M HOTf that was previously left reacting one day. All 

measured crystals were prepared under inert conditions immersed in 

perfluoropolyether as the protecting oil for manipulation. 

Data collection. Crystal structure determination was carried out using a 

Apex DUO Kappa 4-axis goniometer equipped with an APPEX 2 4K CCD area 

detector, a Microfocus Source E025 IuS using MoK radiation, Quazar MX 

multilayer Optics as monochromator and an Oxford Cryosystems low 

temperature device Cryostream 700 plus (T = -173 °C). Full-sphere data 

collection was used with  and  scans. Programs used: Data collection APEX-

2,18 data reduction Bruker Saint19 V/.60A. 
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Structure Solution and Refinement. Crystal structure solution was 

achieved using direct methods as implemented in SHELXTL20 and visualized 

using the program XP. Missing atoms were subsequently located from 

difference Fourier synthesis and added to the atom list. Least-squares 

refinement on F2 using all measured intensities was carried out using the 

program SHELXTL. All non hydrogen atoms were refined including anisotropic 

displacement parameters. 

7.3. Results and discussion. 

Synthesis of the dinuclear complexes. Complexes 1-dn4+ and 2-dn4+ 

were prepared in moderate yields (40 – 50 %) by reacting equimolar amounts 

of trans-[RuVI(trpy)(O)2(H2O)]2+ (32+) and the corresponding mononuclear 

complex, 12+ or 22+, in the presence of CAN (Eq 1, polypyridilic ligands not 

shown) as previously reported. 

 

1-dn4+ and 2-dn4+ were thoroughly characterized by the usual analytic, 

spectroscopic and electrochemical techniques (see Chapter V). The X-ray 

structure obtained for 1-dn4+ is depicted in Figure 2 and it has been discussed 

in detail in previous works14 (see chapter V and VI). The complex contains two 

octahedrically distorted coordinated Ru atoms linked by an oxo bridge, where 

one of the metallic centers bears a terminal oxo ligand in the trans position to 

the oxo bridge and an aquo ligand. 
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Figure 2. Ortep plot (ellipsoids drawn at 50 % probability) of the X-ray structure of 1
4+

. 

Color codes: Ru, cyan; O, Red; N, Blue, C, black. H atoms are not shown except for the 

aqua ligands that are represented as small light blue circles. 

Electrochemical and spectroscopic properties. In order to characterize 

more completely its various oxidation states, the electrochemical properties of 

the dinuclear complexes were studied under several conditions. The cyclic 

voltammetries (CVs) of 1-dn4+ and 2-dn4+ in 0.1 M triflic acid (pH = 1) show an 

electrochemical and chemical reversible wave followed by a chemically 

irreversible wave (Figure 3). The first one is attributed to the 2 electron 

reduction, determined by coulometry, from the oxidation state IV,IV to III,III 

which is accompanied with double protonation on the oxo terminal group 

according to 

 

From relative peak height, the second wave is consistent with another 2 

electron reduction process from the oxidation state III,III to II,II which is 

associated with protonation on the oxo bridge in agreement with related 

dinuclear III,III complexes21-23 (see chapter VI also). 
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The oxidation state II,II is unstable at acidic pH and is cleaved through 

the oxo bridge generating the corresponding mononuclear complexes, thus 

new waves attributted to 32+ and 12+( or 22+) can be observed after a 

subsequent anodic scan. At pH > 4 the reduction wave becomes chemically 

reversible suggesting that the hydroxo bridge complex is stable in the time 

scale of a CV experiment (Figure S1). 

  
Figure 3. CVs of 0.5 mM solutions in 0.1 M triflic acid (pH = 1.0) for complexes 1-

dn
4+

(left) and 2-dn
4+

(right). The insets show CV experiments where the potential was 

switched before the irreversible reduction, ESW = 0.5 V. The asterisks mark 

electrochemical features for the mononuclear complexes. Scan rate = 100 mV s
-1

. 

Glassy Carbon (GC) was used as working electrode, a Pt wire as counter electrode and 

Hg/Hg2SO4, K2SO4 (sat.) as reference electrode. 

1-dn4+ and 2-dn4+ present also a large electrocatalytic increase of the 

current intensity in the anodic part which is associated to the oxidation of 

water as previously described (see chapter V). The electrochemical process is 

assigned to the one electron oxidation of IV,IV to IV,V (eq. 3) followed by a 

water nucleohilic attack on the RuV=O to form a hydroperoxo intermediate (eq. 

4) which evolves oxygen after a sequence of reactions. 
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A compilation of the standard potentials for 1-dn4+, 2-dn4+ and several 

dinuclear and mononuclear complexes is collected in Table 1. The potentials 

for 1-dn4+ and 2-dn4+ are quite similar (entry 1 vs. 2), although the electron 

withdrawing fluorine atoms in the bpy ring of 2-dn4+ increase slightly the 

potentials (20-30 mV). The absence of the mixed valence state III,IV (it should 

be considered that this distribution of formal oxidation states is a convenience, 

since strong electronic coupling through the oxo bridge has been 

demonstrated21,24,25 for structurally related complexes. A more suitable 

oxidation state description would be III.5,III.5) in the electrochemical 

experiments suggests that E0(III,IV/III,III) > E0(IV,IV/III,IV), i. e. the oxidation 

state III,IV is unstable with respect to disproportion. In sharp contrast, the 

complex {[Ru(trpy)(bpy)]2(μ-O)}4+ where the oxo terminal and the aquo ligands 

have been replaced by a bpy shows only the III,IV/III,III couple in the anodic 

region and at higher potential (entry 5 vs 1 or 2). The wave corresponding to 

the IV,IV/III,IV lies probably in a very high potential region where the surface of 

the electrode is seriously damage. These dramatically different electrochemical 

properties reveal that the two aquo ligands in the oxidation state III,III of 1-

dn4+ or 2-dn4+ play a crucial role in lowering the potentials through proton 

coupled electron transfer processes (PCET) which avoid the buildup of positive 

charge after oxidation. Furthermore, the trans dioxo coordination in the 

oxidation state IV,IV stabilizes16,26 this specie contributing to lower the 

potentials. 

The two electron reduction wave assigned to the III,III/II,II couple in 1-

dn4+ and 2-dn4+ indicates that E0(II,III/II,II) > E0(III,III/II,III) so that the mixed 

UNIVERSITAT ROVIRA I VIRGILI 
WATER OXIDATION WITH MONONUCLEAR RU COMPLEXES. BELOW THE TIP OF THE 
ICEBERG: THE OXO-BRIDGE SCENARIO 
Isidoro López Marin 
Dipòsit Legal: T. 1505-2013 
 



Exploring the properties of rugged oxo-bridge dinuclear water 
oxidation catalysts and its relationship with mononuclear catalysts 

 289 

 

VII 

valence state II,III is unstable with respect to disproportion. This behavior in 

water has already been observed for previous reported dinuclear oxo bridge 

complexes21,22 (entries 1 or 2 vs. 5). The pH-dependence of the potential for 

this couple shows that a proton is added in the reduction (vide infra), probably 

it protonates the oxo bridge group to form the corresponding hydroxo bridge 

in the oxidation state II,II. Because the μ-oxo group is strongly basic in that 

species, the protonation stabilizes it and consequently increases the potential 

for the non-observed II,III/II,II couple. The basicity of the lower oxidation states 

of dinuclear oxo bridge complexes can be rationalize in terms of the MO 

diagram presented in chapter VI. The reduction of the oxidation state III,III 

causes a gradual rise of population into the π* levels and the added protons 

stabilize the electron rich Ru-O-Ru moiety. The standard potentials for this 

couple in 1-dn4+ and 2-dn4+ are pretty similar to the one in {[Ru(trpy)(bpy)]2(μ-

O)}4+ pointing out that the electrochemical process concerns mainly the Ru-O-

Ru core. On the other hand the well-known oxo bridge water oxidation catalyst 

{[Ru(bpy)2(H2O)]2(μ-O)}4+, the blue dimer, differs from the previous discussed 

structurally related complexes (entry 3 vs. 1, 2 or 5). It exhibits an one electron 

irreversible reduction from the oxidation state III,III to II,III where the latter is 

unstable towards the oxo bridge cleavage. 

The complex {[Ru(trpy)(H2O)]2(μ-bpp)}3+ illustrates that the exchange of 

the oxo bridge by a rigid aromatic organic one has drastic consequences in 

each standard potential. The comparison of {[Ru(trpy)(H2O)]2(μ-bpp)}3+ and 1-

dn4+ or alternatively 2-dn4+ (entry 4 vs. 1 or 2) shows that the standard 

potentials for the IV,IV/III,III and III,III/II,II couples of the former are higher. 

This trend can be explained by simple electrostatic arguments, since μ-bpp 

constitutes a monoanionic bridge ligand while μ-O owns formally two negative 
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charges. The difference is more noticeable for E0(III,III/II,II) than for 

E0(IV,IV/III,III); indeed, the low value of the potential for the couple III,III/II,II 

explains why oxo bridge dinuclear complexes are usually isolated in high 

oxidation states, usually III,III. 

The standard potentials for the IV,IV/III,III couple in 1-dn4+ and 2-dn4+ 

are slightly lower than the potentials for the IV/III or IV/II couples of the 

related mononuclear complexes 12+ and 22+ respectively (entry 1 vs. 6 and 

entry 2 vs 7). However, the onset potential for the electrocatalytic increase of 

the current is quite similar.  
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Table 1. Summary of reduction potentials (V vs. SSCE) for various dinuclear and 

mononuclear complexes at pH = 1. 

Dinuclears 

 E0   

Entry Complexa III,IV/III,III IV,IV/III,III III,III/II,II Eonset
b Ref. 

1 1-dn4+ --- 0.78d 0.18d,e 1.45 Tw.c 

2 2-dn4+ --- 0.80d 0.21d,e 1.47 Tw. 

3 {[Ru(bpy)2(H2O)]2(μ-O)}4+ 0.79 > 1.17f < 0.06g --- 23 

4 {[Ru(trpy)(H2O)]2(μ-bpp)}3+ 0.88 0.98h 0.62 1.30 27,28 

5 {[Ru(trpy)(bpy)]2(μ-O)}4+ 1.08 --- 0.21d,e --- C. VIj 

Mononuclears 

  E0   

Entry Complex III/II IV/III IV/II V/IV Eonset Ref. 

6 12+ 0.82 0.98 0.90 1.62 1.45 7,15 

7 22+ --- --- 0.87d 1.68 1.48 7 

8 32+ 0.47 0.87 0.67 > 1.03i --- 16 

a Ligand abbreviation: bpp = bis(2-pyridyl)-3,5-pyrazolate. b Potential refers the value where electrocatalysis 

starts. c TW. means this work. d Two electron process. e Chemically irreversible process, the indicated 

potential corresponds to Ep,c -0.015 V. f The oxidation state IV,IV is unstable with respect to disproportion, so 

this E0 is estimated considering that E0(IV,IV/III,IV) > E0(V,V/III,IV) where the latter is 1.22 V. g The oxidation 

state II,III suffers oxo bridge cleavage in the time scale of CV, however E0(III,III/II,II) cannot be lower than 

E0(III,III/II,III). h The wave associated to the IV,IV/III,IV couple is electrochemically irreversible, so its E1/2 was 

estimated taking Ep,a-0.03 V. i The oxidation state V is unstable with respect to disproportion, thus this E0 

must be bigger than E0(VI/IV) = 1.03 V. j C.VI means chapter VI. 
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The potentials for the reductions of 1-dn4+ depend on the pH due to the 

acid-base properties of the different oxidation states (eq. 2 and 3). This 

dependency was studied over a broad pH range and is shown in the Pourbaix 

diagram depicted in Figure 4. The figure contains the E1/2-pH values obtained 

from CV. The E1/2 values are equal to the formal potentials of the couples in a 

particular media under the assumption that DOx = DRed. 

The straight line corresponding to the IV,IV/III,III couple displays a 

constant slope of 59 mV/pH unit in the whole studied pH range (0 - 9). This 

value is consistent with a 2 electron reduction with the addition of 2 protons. 

On the other hand, a slope of approximately 30 mV/pH unit is observed for the 

couple III,III/II,II in agreement with a 2 electron reduction accompanied by the 

inclusion of 1 proton. Because both couples exhibit a constant slope in the 

whole pH range, spectrophotometric determinations of the pKa values for the 

oxidation states IV,IV and III,III were carried out (Figures S2 and S3). The acid-

base titration of IV,IV showed clear isosbestic points at 363, 415, 481 and 707 

nm and a pKa(IV,IV) = 4.4 was calculated. The same titration for III,III, obtained 

by coulometric reduction of the initial IV,IV form provided pKa(III,III) = 4.3. In 

this case, the changes in the UV-vis spectra are smaller as it has been 

previously observed in the oxidation state III,III of the blue dimer.23 The close 

similarity between both pKa values explains why the slopes for the two couples 

remain unmodified in the whole pH range. 1-dn4+ is unstable above pH = 9.50 

probably because dimerization reactions occur which preclude obtaining 

reliable data from this pH. 
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Figure 4. Pourbaix diagram for 1-dn
4+

. The potential-pH regions where the various 

oxidation states are the dominant forms are indicated. The vertical line represents the 

narrow region where the pKas values are found. E1/2 values were obtained by CV using 

an activated glassy carbon as working electrode, a Pt wire as counter electrode and a 

SSCE or Hg/Hg2SO4, K2SO4 (sat.) reference electrodes. Scan rate = 100 mV s
-1

. 

The pKa for the oxidation state IV,IV of 2-dn4+ was also 

spectrophometrically determined in order to gain an insight of the influence of 

the bpy ligand onto the acid-base properties of the dinuclear complexes 

(Figure S4). The calculated pKa (4.0) is lower than the found in 1-dn4+ as 

expected from the electron-withdrawing effect of the F atoms substituents in 

the bpy ligand. The same behavior has been reported7 for the mononuclear 

complexes 12+ and 22+, however the effect size is smaller in the dinuclear 

complexes because the nature of the bpy ligand has a weaker influence upon 

the electronic structure of the complex as evidenced in the standard potentials 

(Table 1) and in the UV-vis spectroscopic features (Figure S5 and table S1). 

On the other hand, the pKa value associated to the oxidation state II,II 

must be similar to the one for III,III in order to account for the constant slope 

for this couple. We could not determine it due to the previous discussed 

instability of this oxidation state towards the oxo bridge cleavage. The release 

UNIVERSITAT ROVIRA I VIRGILI 
WATER OXIDATION WITH MONONUCLEAR RU COMPLEXES. BELOW THE TIP OF THE 
ICEBERG: THE OXO-BRIDGE SCENARIO 
Isidoro López Marin 
Dipòsit Legal: T. 1505-2013 
 



Chapter 7 

294  

 

of the proton takes place in one of the aquo ligands, since deprotonation of 

the hydroxo group has not been observed21 in structurally related complexes. 

The oxidation states IV,IV and III,III of 1-dn4+ has been previously 

characterized by UV-vis spectroscopy (see chapter V and table S1). Low energy 

resonance Raman spectroscopy for both oxidation states was also carried out. 

The spectrum of IV,IV presents a band at 800 cm-1 of very high intensity as 

main feature. It was assigned to a Ru=Oterminal stretching mode on the basis that 

was 18O-sensitive and the obtained shift (40 cm-1) (Figure 5). Resonance Raman 

spectrum of III,III could be acquired after the addition of 2 equivalents of 

Mohr’s salt, (NH4)2Fe(SO4)2, to the IV,IV form. The spectrum lacks of the band 

of high intensity at 800 cm-1 what confirms the earlier assignment and the 

absence of a Ru=O group in this oxidation state (Figure 5). 

 

Figure 5. Left; overlay of the RR spectra obtained for the formation of 2-dn
4+

 in 0.1 M 

HClO4 in H2
16

O (black), H2
18

O (red) and 1:1 H2
16

O/ H2
18

O (blue). Right; overlay of the RR 

spectra of the oxidation state IV,IV (black) and III,III (red) of 1-dn
4+

 in 0.1 M HOTf. The 

III,III form was generated after the addition of 2 equivalents of (NH4)2Fe(SO4)2 to the 

IV,IV form. A 514 nm laser was used. 

Evolution of the mononuclear complexes. The conversion of the 

mononuclear complexes 12+ and 22+ into the dinuclear ones 1-dn4+ and 2-dn4+ 
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was unambiguously demonstrated previously by UV-vis 

spectroelectrochemistry and rRAMAN spectroscopy using a 514 nm laser (see 

chapter V). Further rRAMAN experiments using a 413 nm laser were carried 

out in order to be able to observe species or stretching modes that do not 

appear with the 514 nm laser. 

It has been extensively accepted that the addition of 3 equivalents of 

CAN to mononuclear complexes structurally related to 12+ produces a 

hydroperoxo intermediate3,5 (see Figure 1, left side). We decided to monitor 

this reaction with 12+ and 22+ by rRAMAN spectroscopy using a 413 nm laser 

(Figure 6 and S6). Additionally the addition of 2 equivalents of CAN to the 

mononuclear compounds was also monitored. Interestingly any remarkable 

difference could be observed in both experiments. This close similarity leads us 

to think that the species formed under both conditions are the same unless 

there are compounds non-observable by rRAMAN spectroscopy under one of 

the conditions. However, the CV of a solution containing 3 equivalents of CAN 

and 22+ showed that the main product after 4 days of reaction was the RuIV=O 

complex (see chapter IV, figure S20). These evidences point out that the 

rRAMAN spectra correspond fundamentally to the RuIV=O complex. 
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Figure 6. RR monitoring of the reaction of 2 (red) or 3 (black) equivalents of CAN with a 

1 mM solution of 1
2+

 in 0.1 M HOTf immediately (left) or 20 hours after the addition of 

CAN (right). 

A band of small intensity appears at 800 cm-1 which corresponds to the 

formation of 1-dn4+ and 2-dn4+ in agreement with previous studies using a 514 

nm laser (see chapter V). Labelling experiments with H2
18O lead to a downshift 

of this mode to 760 cm-1 as expected. A new 18O-sensitive broad band was also 

observed at 614 cm-1 in H2
16O which is shifted at 573 cm-1 in H2

18O (∆ν = 41 cm-

1). Spectra taken in 50 % 18O-labelled water exhibited only two bands in both 

cases discarding that they are associated to some O-O stretching mode. The 

big width and downshift of the band at 614 cm-1 somehow remind the broad 

band at 688 nm found29-31 by Hurst et. al in CAN oxidized solutions of blue 

dimer in 0.1 M HNO3 or HOTf. The band only appeared in solutions containing 

CeIV and NO3
-, thus it was proposed that the band proceeded from an 

intermediate which is related to O2 evolution by an oxidized form of the blue 

dimer and a nitrate anion previously activated by ceric coordination. The 

precise nature of the intermediate is currently unknown. Our experiments 

could indicate that the same anomalous cerium reactivity can occur in 

mononuclear catalysts as suggested in previous MS, UV-vis spectroscopic and 

computational studies.5,6 However it is worth to mention that the rRAMAN 
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spectra obtained32 for the electrolysis in 10 mM sodium phosphate buffer of 

the mononuclear complex [Ru(NMP)(4-Mepy)2(H2O)]2+ (where 4-Mepy is 4-

picoline and NMP is 4-t-butyl-2,6-di-(1’,8’-naphthyrid-2’-yl)-pyridine) displayed 

a band at 547 cm-1 which was shifted at 535 cm-1(∆ν = 12 cm-1) after labelling 

with H2
18O. The band was assigned to the peroxo intermediate [RuIV-OO]2+. 

Although the band arose in CeIV, NO3
- free-conditions, it is sharp and suffers a 

low downshift in contrast to our findings. The clear difference precludes the 

identification of both resonances with the same kind of compound. Further 

rRAMAN experiments are required in order to check if the band at 614 cm-1 

also appears in the absence of nitrate anions.  

 

Figure 7. Left, overlay of RR spectra obtained in the first 5 minutes of the reaction of 2 

equivalents of CAN with a 1 mM solution of 2
2+

 in 0.1 M HOTf in H2
16

O (black), H2
18

O 

(red) and H2
16

O: H2
18

O (1:1) (blue). Right, differential spectrum of H2
16

O - H2
18

O. 

The catalytic water oxidation by 12+ and 22+ using CAN as sacrificial 

oxidant was also studied by rRAMAN spectroscopy. The first spectrum taken 

300 s after the addition of CAN exhibits a new band at 835 cm-1 which 

gradually increases its intensity (Figure 8). The band assigned to 1-dn4+ (800 

cm-1) is not so clearly discernible in the beginning of the catalysis, but it grows 

faster than the previous one. The band at 835 cm-1 corresponds to the 

symmetric stretching mode of the [O=RuVI=O] group of 32+ and is the most 
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prominent rRAMAN spectral feature of this compound in 0.1 M HOTf (Figure 

8). Therefore, our experiments confirm unambiguously the formation of 32+ 

from the very beginning of the catalysis. The trans-dioxo complex plays the 

role of a gate giving access to the catalytic cycle driven by the more robust 

catalyst 1-dn4+. When 22+ is used as catalyst instead of 12+ the rRAMAN spectra 

follow the same trend but the changes are slower in agreement with the lower 

catalytic activity of 22+ (Figure S7). 

 

Figure 8. Left, spectroscopic rRAMAN monitoring of the reaction of 100 equivalents of 

CAN with a 1 mM solution of 1
2+

 in 0.1 M HOTf. Right, rR spectrum of 3
2+

 in 0.1 M 

HOTf. 

The generation of 32+ and consequently the dinuclear complexes is 

conceived as a general process in catalytic water oxidation by mononuclear 

complexes, so it is of great interest to understand the reasons that drive this 

transformation at the molecular level. The conversion of 12+ or 22+ into 32+ has 

been proposed to occur due to bpy ligand loss from the single-site catalysts 

potentially in the oxidation state V (see chapter V), 

 

The strong trans effect exerted by the RuV=O group weakens one of the 

Ru-N bpy bonds that eventually leads to the loss of the bpy ligand. This 
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phenomenon has already been pointed out by Berlinguette et al.13 and us14 

based on DFT calculations. We could successfully get crystals suitable for X-ray 

analysis of the oxidation state IV of 22+ which corroborate the calculated 

predictions. The structure consists in an octahedrically distorted coordinated 

ruthenium (IV) metal center which bears an oxo ligand in addition to the trpy 

and bpy ligands (Figure 9). The Ru-O distance (1.85 Å) falls in the longer range 

of values reported for RuIV=O groups33-38 (see also chapter VI). A water 

molecule crystallized with the complex is making an Hydrogen Bond to the 

oxygen atom linked to the Ruthenium atom. However the most remarkable 

feature is the elongation of the trans Ru-N bpy bond (2.14 Å) with regard to 

the same bond in the aquo complex in the oxidation state II (2.02 Å). The 

striking difference (0.12 Å) suggests that bpy decoordination is a feasible 

scenario for the formation of 32+. 

 

Figure 9. ORTEP plot (ellipsoid drawn at 50% probability) of the X-ray structure of 

complex 2
2+

 in the oxidation state IV. Color codes: Ru, cyan; O, Red; N, Blue; C, black; F, 

green. H atoms are not shown except for a crystallized water molecule forming a H-

bond with the oxo group. 

Two interconnected cycles. Complexes 1-dn4+ and 2-dn4+ are rugged and 

active electrocatalysts for the oxidation of water to dioxygen (see chapter V). 
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The catalytic activity has also been evaluated using CAN as sacrificial oxidant 

and compared to the one of its mononuclear counterparts 12+ and 22+. The 

oxygen production was monitored manometrically (Figure 10) and the nature 

of the evolved gases was analyzed by mass spectrometry confirming that 

dioxygen was the only generated gas (Figure S8). As can be observed in the 

graph, the initial activity of the dinuclear complexes is practically the same as 

the one of the mononuclear compounds, nonetheless the production of 

oxygen by the dinuclears decays before and as a consequence the TON 

achieves a lower value. 

 

Figure 10. Overlay of oxygen evolution profiles for 1 mM solutions of dinuclear (blue) 

and mononuclears (red) complexes under 1:100 Cat/CAN ratios in 0.1 M HOTf (pH = 1). 

Left, 1-dn
4+

 vs. 1
2+

; right, 2-dn
4+

 vs. 2
2+

. 

In order to know if decomposition pathways had destroyed the 

dinuclear catalysts UV-vis spectroscopy was carried out upon catalytic 

solutions when the oxygen evolution had ceased. The spectrum for the 

reaction with 1-dn4+ exhibits a slight decrease of the band at 455 nm (457 nm 

for 2-dn4+) accompanied by an enhancement of a band at 691 nm (687 nm for 

2-dn4+) (Figure 11 and figure S9). The latter feature could be attributed to the 

formation of the known dimeric complex {[Ru(trpy)(bpy)]2(μ-O)}4+ (1-dm4+). 

However, the loss of absorbance at 455 nm indicates that only a 5 % of the 
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initial 1-dn4+ disappears. If this small amount would be fully transformed into 

1-dm4+, this complex should have a extinction coefficient at 691 nm of 104000 

M-1 cm-1 which is clearly larger than the observed value of 25600 M-1 cm-1 

(Figure 11 and chapter VI). 

 

Figure 11. Left; overlay of UV-visible spectra of a 1 mM solution of complex 1-dn
4+

 in 

0.1 M HOTf before (black) and after oxygen evolution induced by the addition of 100 

equivalents of CAN (red). The samples were previously 20 times diluted. Right, UV-vis 

spectrum of 1-dm
4+

 in 0.1 M HOTf. 

Therefore, the increase of the band at 691 nm must proceed from the 

generation of another compound; probably the tetranuclear complex 

{[(trpy)(bpy)RuII(μ-O)RuIV(trpy)(H2O)]2(μ-O)}6+ (1-tn6+) whose acetonitrile 

coordinated analogue was structurally characterized in chapter VI. 1-tn6+ 

comprises two 1-dn4+ halves linked by a central oxo bridge and is formally a 

dimerization product from the condensation of two 1-dn4+ molecules (Figure 

12). The large extinction coefficient attributed to 1-tn6+ is consistent with a 

common trend in structurally related oligomers stating that the higher the 

nuclearity the larger the extinction coefficients in the visible region39 of the 

UV-vis spectrum; which means that the produced amount of tetranuclear 

complex observed by UV-vis spectroscopy is considerably small. Hence, the 

dinuclear catalysts survive the harsh oxidative conditions in catalytic water 
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oxidation using CAN as sacrificial oxidant, only a small part is converted to 

tetranuclear complexes that preserve the scaffold of the dinuclear compounds. 

This ruggedness has already been found in electrocatalytic water oxidation14 

where exposure of the dinuclear catalysts at 1.6 V vs. SSCE for 10 hours did not 

show any evidence of decomposition (chapter V). 

 

Figure 12. Structure of the tetranuclear complex 1-tn
6+

. 

The conversion of mononuclear complexes into dinuclears under 

catalytic conditions establishes the coexistence of two cycles that lead to 

dioxygen. The different intermediates could interact and speed up the 

generation of dioxygen with regard to two completely independent cycles. The 

activity of a 1:1 catalytic solution of 1-dn4+ and 12+ was compared with the one 

of each separated complex at the same concentration of catalyst and CAN. The 

mixture of catalysts produced at bigger amount of O2 in a faster rate with 

regard to each separated component (Figure 13). This behavior points out 

clearly the existence of a synergic effect between the two interconnected 

catalytic cycles. 
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Figure 13. Overlay of oxygen evolution profiles resulting of the addition of a 100 mM 

solution of CAN to a solution mixture of 1
2+

 and 1-dn
4+

, both at 0.5 mM concentration, 

(blue), a 0.5 mM solution of only 1
2+

 (red) or only 1-dn
4+

 (green). 

The formation of the trinuclear complex {[RuIII(trpy)(bpy)(μ-

O)]2RuIV(trpy)(H2O)}6+ which was structurally characterized in a previous report 

(see chapter VI), could explain the increase of activity observed in the mixture 

of catalysts if the new compound would be a high active WOC, 

 

However, the UV-vis spectroscopic monitoring of the reaction of a 1:1 

mixture of 1-dn4+ and 12+ showed spectral changes consistent with the slow 

reduction of the oxidation state IV,IV of 1-dn4+ to the oxidation state III,III as 

the uniquely occurring process, discarding the formation of a new species like 

the trinuclear complex (Figure S10), 

 

Therefore, the synergic effect observed in the catalysis must proceed 

from the interaction of intermediates from different cycles. Additional 
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mechanistic studies will be developed in order to clarify the nature of such 

interactions. 

7.4. Conclusions. 

In a previous study we demonstrated that single-site WOCs structurally 

related to 12+ evolved to oxo-bridge dinuclear complexes which are rugger 

catalysts (chapter V). The presented work constitutes a mandatory 

continuation where the electrochemical and acid-base properties of the 

dinuclear compounds 1-dn4+ and 2-dn4+ have been thoroughly examined. 1-

dn4+ shows two pH-dependent 2 electron waves in cyclic voltammetry. The 

wave attributed to the IV,IV/III,III is associated to double protonation of the 

oxo terminal ligand of IV,IV according to the Pourbaix diagram. The conversion 

of the oxo ligand into an aquo group in the oxidation state III,III is consistent 

with the rRAMAN spectrum of III,III that lacks the Ru=O stretching mode. The 

second wave proceeds from the III,III/II,II couple and is associated to 

protonation in the oxo bridge ligand according to its pH-dependency. The 

electrochemical process is irreversible at pH < 4 because oxo-bridge cleavage 

occurs in the oxidation state II,II. The pKas of the aquo ligands in IV,IV and III,III 

were spectrophotometrically determined. Both values are quite similar 

(pKa(IV,IV) = 4.4 and pKa(III,III) = 4.3), what explains the constant slope for the 

two couples in the Pourbaix diagram. Additionally, the pKa for the oxidation 

state IV,IV of 2-dn4+ was obtained. The value is slightly lower than the found 

for 1-dn4+ (4.0 vs. 4.4) which is consistent with the electron withdrawing effect 

exerted by the F atoms of the bpy ligand. 

The conversion of 12+ into 1-dn4+ was studied previously by rRAMAN 

spectroscopy using a device equipped with a 514 nm laser (see chapter V). 

Herein, we have carried out the same method using a rRAMAN 
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spectrophotometer equipped with a 413 nm laser. We have observed that the 

reaction of the mononuclear complexes with 2 or 3 equivalents of CAN 

produces significantly the same features in the rRAMAN spectra, suggesting 

that both processes generate the same compounds. Two 18O-sentitive bands 

could be observed: 1) a band at 800 cm-1 which corresponds to the formation 

of the dinuclear complexes and is 40 cm-1 downshifted as expected, 2) a broad 

band around 614 nm that is 41 cm-1 downshifted. This band presents similar 

characteristics to the band found at 688 nm by Hurst et. al.31 in the study of 

catalytic water oxidation by high oxidation states of the blue dimer. It has been 

attributed to an unknown intermediate that proceeds from nitrate activation 

by CeIV and subsequent reaction with some oxidation state of the blue dimer. 

Our observations could point out the existence of a similar route in single-site 

WOCs. Catalytic water oxidation by 12+ and 22+ using 100 equivalents of CAN 

was also followed by rRAMAN spectroscopy. The spectra showed 

unambiguously the formation of the trans-dioxo compound 32+ immediately 

after the addition of the sacrificial oxidant and the gradual increase of the 

band associated to the dinuclear complexes. These evidences support our first 

proposal where the formation of 32+ plays the critical role of a gate giving 

access to the formation of the dinuclear complexes (see chapter V and Figure 

1). 

1-dn4+ and 2-dn4+ are good WOCs using CAN as sacrificial oxidant. The 

most remarkable property of these catalysts is its impressive robustness, 

proved by UV-vis spectroscopy, under the hash oxidative environment 

imposed by the huge excess of oxidant. The same ruggedness was observed 

previously under electrocatalytic conditions (see chapter V). On the other 

hand, the coexistence of two catalytic cycles suggests that intermediates from 
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different cycles could interact and speed up the evolution of dioxygen. This 

synergic effect was corroborated by manometric experiments. The formation 

of the trinuclear complex {[RuIII(trpy)(bpy)(μ-O)]2RuIV(trpy)(H2O)}6+ from the 

reaction of 1-dn4+ and 12+ was discarded as responsible for the synergic effect, 

since UV-vis monitoring of the aforementioned reaction only exhibited spectral 

changes consistent with the reduction of the oxidation state IV,IV of 1-dn4+ to 

III,III. 

The rRAMAN spectra taken with the device equipped with a 413 nm laser 

were carried out in the Max-Volmer-Laboratory (MVL) for Biophysical 

Chemistry of the Technische Universität Berlin by Anke Keidel under the 

supervision of Dr. Uwe Kuhlmann and Prof. Peter Hildebrandt. 
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Figure S 1. CVs of complex 1-dn
4+

 at different pHs. 0.3 mM complex concentration. 

Activated glassy carbon was used as working electrode, a Pt wire as counter electrode 

and SSCE as reference electrode. Scan rate=100 mV s
-1

. 
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VII 

Figure S 2. (Upper) Acid-base spectrophotometric titration of the oxidation state IV,IV 

of 1-dn
4+

 after consecutive additions of 1-5 μL of 6.16 M NaOH to a 25 μM solution of 

the complex in 0.1 M H3PO4 / NaH2PO4 buffer at pH = 2.15. pH changes: 2.32, 2.52, 

2.78, 3.29, 3.41, 3.70, 4.04, 4.26, 4.60, 4.79, 5.03, 5.21, 5.44, 5.73 and 5.95. (Bottom) 

Plot for the calculation of the pKa value. 
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Figure S 3. (Upper) Acid-base spectrophotometric titration of the oxidation state III,III 

of 1-dn
4+

 after consecutive additions of 1-5 μL of 6.16 M NaOH to a 25 μM solution of 

the complex in 0.1 M H3PO4 / NaH2PO4 buffer at pH = 2.15. pH changes: 2.94, 3.33, 

3.52, 3.78, 4.65 and 5.22. (Bottom) Plot for the calculation of the pKa value. 
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VII 

Figure S 4. (Upper) Acid-base spectrophotometric titration of the oxidation state IV,IV 

of 2-dn
4+

 after consecutive additions of 1-5 μL of 6.16 M NaOH to a 25 μM solution of 

the complex in 0.1 M H3PO4 / NaH2PO4 buffer at pH = 2.15. pH changes: 2.20, 2.27, 

2.35, 2.44, 2.54, 2.66, 2.80, 3.01, 3.34, 3.49, 3.62, 3.80, 4.17, 4.66, 5.02, 5.24, 5.38 and 

5.57. (Bottom) Plot for the calculation of the pKa value. 
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Figure S 5. UV-vis spectra of 1-dn
4+

 and 2-dn
4+

 in 0.1 M HOTf. 

 
Table S 1. UV-vis spectroscopic signatures of dinuclear complexes in 0.1 M HOTf. 

Complex Oxidation State λ (ε) / nm (M-1 cm-1) 

1-dn4+ IV,IV 274 (37000), 312 
(32000), 378 (9000), 
455 (15300), 515sh 
(8000), 691 (2200) 

III,III 445 (5200), 638sh 
(10400), 684 (13100) 

2-dn4+ IV,IV 268 (3800), 317 
(29200), 379 (8300), 
457 (16300), 511sh 
(11500), 682 (2400) 
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Figure S 6. RR monitoring of the reaction of 2 (red) or 3 (black) equivalents of CAN with 

a 1 mM solution of 2
2+

 in 0.1 M HOTf immediately (upper) or 20 hours after the 

addition of CAN (bottom). 
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Figure S 7. Spectroscopic rRAMAN monitoring of the reaction of 100 equivalents of 

CAN with a 1 mM solution of 2
2+

 in 0.1 M HOTf. 
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VII 

Table S 2. Crystal data for the oxidation state IV of 2
2+

. 

Empirical formula C25 H19 F14 N5 O2 P2 Ru 

Formula weight 850.46 

Temperature 100(2)K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a =  8.5407(7) Å α=  88.479(5) °. 

b =  12.7401(9) Å β = 79.089(4) °. 

c =  13.6574(13) Å γ =  79.697(5) °. 

Volume 1435.6(2)  Å3 

Z 2 

Density (calculated) 1.967  Mg/m3 

Absorption coefficient 0.786  mm-1 

F(000) 840 

Crystal size 0.20 x 0.10 x 0.01 mm3 

Theta range for data collection 1.62  to 27.63 °. 

Index ranges -11 <=h<=11 ,-16 <=k<=16 ,-17 <=l<=17 

Reflections collected 15045 

Independent reflections 6622 [R(int) = 0.1054 ] 

Completeness to theta =27.63 ° 0.991 % 

Absorption correction Empirical 

Max. and min. transmission 0.9922  and  0.8586 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6622 / 3 / 448 

Goodness-of-fit on F2 1.014 

Final R indices [I>2sigma(I)] R1 = 0.0661 , wR2 = 0.1575 

R indices (all data) R1 = 0.0955 , wR2 = 0.1862 

Largest diff. peak and hole 2.113  and -2.154  e.Å-3 
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Figure S 8. Online MS monitoring of the composition of the gas phase in the catalytic 

reactions of 1 mM solutions of complex 1-dn
4+

 (upper) and 2-dn
4+

 (bottom) in 0.1 M 

HOTf at RT. 
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Figure S 9. Overlay of UV-visible spectra of a 1 mM solution of the dinuclear complex 

2-dn
4+

 in 0.1 M HOTf before (black) and after oxygen evolution induced by the addition 

of 100 equivalents of CAN (red). The samples were previously 100 times diluted. 
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Figure S 10. (Upper) UV-vis time-course of the 1:1 reaction of 0.5 mM solutions of 1-

dn
4+

 and 1
2+

 in 0.1 M HOTf at 25°C. The inset shows the UV-vis spectra for the 

oxidation states IV,IV (black) and III,III (red) of 1-dn
4+

 in the same solvent. (Bottom) 

Absoption vs. time profile at 678 nm indicating the formation of the oxidation state 

III,III. A 2 mm path length quartz cuvette was used.  
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Chapter 8. Summary and Conclusions. 

 

 

 

 

 

 

“The absolute truth is never achieved, but you never are completely 

away from it”. 

Aristotle, Greek Philosopher.
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VIII 

The contribution of this thesis to the field of single-site water oxidation 

catalysts can be summarized as follows: 

Chapter 3. 

 The tetradentate ligand 2,7-bipyridil-1,8-diazaanthracene (bipan) has 

been successfully prepared by means of a six steps synthesis and 

characterized by 1H-NMR and single crystal XRD. 

 The two new stereoisomeric chloro mononuclear Ru complexes 

containing the bipan ligand in-[Ru(trpy)(bipan)Cl]+ (1-in+) and out-

[Ru(trpy)(bipan)Cl]+ (1-out+) have been synthesized and fully 

characterized by the usual analytical, spectroscopic and 

electrochemical techniques. Furthermore, the structure of the out- 

isomer could be confirmed by single crystal XRD. 

 The difference in the Ru(III/II) standard potentials for the two isomers 

is lower than in previous structurally related complexes. This feature is 

due to the particular electronic distribution in the bipan ligand. 

 The in- isomer is a good catalyst for water oxidation whereas the out- 

isomer exhibits a poor activity because it is insoluble under catalytic 

conditions. 

Chapter 4. 

 The two new aquo mononuclear Ru complexes [RuII(trpy)(5,5’-F2-

bpy)(H2O)]2+ (52+) and [RuII(trpy)(6,6’-F2-bpy)(H2O)]2+ (62+) have been 

prepared and thoroughly characterized by the usual analytical, 

spectroscopic and electrochemical techniques.  

 The electrochemical and acid/base properties of the new compounds 

were compared with that from the parent compound [RuII(trpy) 
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(bpy)(H2O)]2+ (22+). The electron-withdrawing effect of the F atoms in 

52+ decreases the pKa,II by 0.8 log units with regard to 22+, in contrast 

the pKa,II of 62+ is increased 0.6 log units because hydrogen bonding of 

the aquo ligand with the nearby F atom. 

 The complexes were evaluated as WOCs. The initial turn over 

frequency (TOFi) decreases by a factor near to 4 when comparing 22+ 

and 52+ (the purely electronic scenario), and by a factor bigger than 2 

when comparing 52+ and 62+ (the purely hydrogen-bonding scenario). 

  Kinetic studies establish a rate determining step where the [RuIV-OO]2+ 

intermediate is oxidized to [RuV-OO]2+ and is preceded by a fast 

equilibrium step involving the oxidation of [RuV=O]3+ to [RuIV-OO]2+. 

Chapter 5. 

 The new dinuclear oxo bridge Ru complexes [(trpy)(5,5’-X2-bpy)RuIV(μ-

O)RuIV(trpy)(O)(H2O)]4+ (X = H for 14+ and X = F for 24+) were prepared 

and fully characterized by analytic, spectroscopic and electrochemical 

tecniques as well as by single crystal XRD. The compounds contain an 

oxo terminal ligand defined by the short Ru-O distance. 

 The new complexes are robust and active electrocatalysts for water 

oxidation. 

 DFT calculations provide a complete catalytic cycle where the rds is the 

O-O bond formation step through water nucleophilic attack to the 

intermediate [RuIV-O-RuV(O)(OH)]4+. 

 The mononuclear Ru complexes [RuII(trpy) (bpy)(H2O)]2+ (42+) and 

[RuII(trpy)(5,5’-F2-bpy)(H2O)]2+ (52+) are converted into its dinuclear 

counterparts 14+ and 24+ respectively, under catalytic conditions as 

evidenced by rRAMAN spectroscopy and UV-vis 
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spectroelectrochemistry. The transformation is mediated by previous 

formation of [RuVI(trpy)(O)2(H2O)]2+ (32+). DFT calculations prove that 

this conversion is feasible. 

Chapter 6. 

 The single crystal XRD structure of [(trpy)(6,6’-X2-bpy)RuIV(μ-

O)RuIV(trpy)(O)(H2O)]4+ (3-dn4+) has been successfully determined and 

compared with those from the previous described structurally related 

complexes. 

 The new dinuclear oxo bridge Ru complex {[Ru(trpy)(bpy)]2(μ-O)}4+ (1-

dm4+) was synthesized and fully characterized by analytic, 

spectroscopic and electrochemical techniques as well as by single 

crystal XRD. 

 1-dm4+ is formed after catalytic water oxidation by the mononuclear 

complex [RuII(trpy)(bpy)(H2O)]2+ (12+) when the sacrificial oxidant is 

depleted or the applied potential stopped. The conversion of 12+ into 

1-dm4+ occurs via previous formation of [(trpy)(bpy)RuIV(μ-

O)RuIV(trpy)(O)(H2O)]4+ (1-dn4+) and coordination of free bipyridine 

ligand. 

 1-dm4+ can act as a WOC because the complex is partly transformed 

into 1-dn4+ under the oxidative catalytic conditions as found by 

rRAMAN spectroscopy. However, the main product after the oxidation 

is the one electron oxidized form 1-dm5+, which was characterized by 

single crystal XRD. 

 Attempts of crystallization of 1-dn4+ and 3-dn4+ in MeCN/Et2O solvent 

mixtures lead to the formation of the dinuclear complexes 

[(trpy)(bpy)RuIII(μ-O)RuIII(trpy)(CH3CN)2]
4+ (1-dnCH3CN

4+) and [(trpy)(6,6’-
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F2-bpy)RuIII(μ-O)RuIII(trpy)(CH3CN)2]
4+ (3-dnCH3CN

4+). These compounds 

preserve the scaffold from 1-dn4+ and 3-dn4+ respectively, although in 

the oxidation state III,III. 

 Attempts of crystallization of 1-dn4+, 2-dn4+and 3-dn4+ in MeCN/Et2O 

solvent mixtures also produced the tetranuclear oxo bridge Ru 

complexes {[(trpy)(bpy)RuII(μ-O)RuIV(trpy)(CH3CN)]2(μ-O)}6+ (1-tn6+), 

{[(trpy)(5,5’-F2-bpy)RuIII(μ-O)RuIV(trpy)(CH3COO)]2(μ-O)}6+ (2-tn6+) and 

{[(trpy)(6,6’-F2-bpy)RuII(μ-O)RuIV(trpy)(CH3CN)]2(μ-O)}6+ (3-tn6+). A 

structural comparative study suggests than the metal coupling through 

the oxo bridge atoms is weak or negligible. 

 Two new Rutheniun Red-type of complexes were successfully 

crystallized, {[RuIII(trpy)(bpy)(μ-O)]2RuIV(pic)2}
4+ (44+) and 

{[RuIII(trpy)(bpy)(μ-O)]2RuIV(trpy)(H2O)} (56+). As in the previous case, 

the Ru-O bond distances indicate that the Ru centers coupling is weak 

or negligible. 

Chapter 7. 

 The Pourbaix diagram of the dinuclear complex [(trpy)(bpy)RuIV(μ-

O)RuIV(trpy)(O)(H2O)]4+ (1-dn4+) was built. The compound presents two 

2-electrons PCET processes. 

 The pKa for the oxidation state IV,IV of 1-dn4+ is slightly bigger than 

that from the complex [(trpy)(5,5’-F2-bpy)RuIV(μ-O)RuIV(trpy)(O)(H2O)]4+ 

(2-dn4+) due to the electron-withdrawing effect exerted by the F atoms 

on the bipyridine ligand (pKa = 4.4 for 1-dn4+ and pKa = 4.0 for 2-dn4+). 

 rRAMAN experiments prove that the reaction of 2 and 3 equivalents of 

CAN with the mononuclear complexes [RuII(trpy) (bpy)(H2O)]2+ (12+) or 

[RuII(trpy)(5,5’-F2-bpy)(H2O)]2+ (22+) generate the same spectroscopic 
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features, in clear contrast to the current accepted mechanism for 

single-site catalysts. 

 rRAMAN monitoring of the reaction of 100 equivalents of CAN with 12+ 

or 22+ shows a characteristic resonance associated to [RuVI(trpy) 

(O)2(H2O)]2+ (32+), confirming our mechanistic proposal about two 

intimately interconnected catalytic cycles where 32+ plays the critical 

role of a gate giving access to the formation of 1-dn4+ or 2-dn4+. 

 The XRD structure of the oxidation state [RuIV=O] of 22+ exhibits an 

elongation of the Ru-N bond trans to the oxo ligand, suggesting that 

bpy decoordination is a viable scenario for the formation of 32+. 

 1-dn4+ and 2-dn4+ are active and rugged WOCs. UV-vis spectroscopy 

shows that the scaffold of the complexes is largely maintained after 

the catalysis. 

 A synergic effect that speeds up the oxygen production was found 

between 12+ and 1-dn4+. 

We have drawn a complete picture of dioxygen evolution from water by 

single-site catalysts. Our findings represent a revolutionary advance in the field 

in the sense that expands radically the current accepted mechanistic proposal. 
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