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Chapter 1

Introduction

The thesis is devoted to the analytical and geometrical study of some integrable
finite-dimensional dynamical systems of classical mechanics, namely, the classical
generalization of the Euler top: the Zhukovski—Volterra system describing the free
motion of a gyrostat, the Steklov—Lyapunov integrable case of the Kirchhoff equation
and generalization of Steklov—Lyapunov system Rubanovskii system.

Studying integrable systems of classical mechanics had been a principal task in
the area of dynamical systems in XIX-th century. Moreover, during the last decades
a considerable progress in this direction was made due to the relation to some
nonlinear partial differential equations and discovery of new methods of integration,
in particular, the Lax representation approach.

However, some little-known integrable problems, which may have important ap-
plications, remained practically without consideration, among them the gyroscopic
generalization of the Euler and the Steklov—Lyapunov systems. It appears that the
methods that allow to integrate the original systems are not directly applicable to
these generalizations, and some non-trivial modifications or changes of variables are
required.

The main objective of the thesis is twofold. First, to perform explicit integration
of these systems by means of their reduction, separation of variables, and invert-
ing the quadratures. Second, to give a description of bifurcation diagram of the
Zhukovski—Volterra system, the Steklov—Lyapunov integrable case of the Kirchhoff
equation and its generalization - Rubanovskii system.
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1.1 Objectives of the Thesis

1.1.1 Explicit solution of the Zhukovsky—Volterra gyrostat

The first objective is the explicit integration and a qualitative study of behavior of
the classical generalization of the Euler top: the system describing the free motion
of a gyrostat: a rigid body carrying inside a symmetric rotator whose axis is fixed in
the body. As was shown by N.E.Zhukovsky [64] and, independently, by V. Volterra
[58], the system can be reduced to the following equations describing the evolution
of the total angular momentum vector M € R3:

M =M x (aM — g), M = (My, My, M3)7T, (1.1)

where g € R? is a constant vector characterizing the axial angular momentum of the
rotator. In the case g = 0, these equation reduce to the classical Euler top problem.

The motion of the gyrostat in space is then described by solutions of the Poisson
equations

4 =7 xw(t), where w=aM(t)—g,

w being the angular velocity vector.
Like the Euler top, the system (1.1) has two quadratic integrals, which, however,
are not all homogeneous in M;,

f1(M) = M} + M5 + M3 =, (1.2)
fQ(M) = CL1M12 + a2M22 + agM:? —2Myg1 — 2Mogo — 2M3g3 =1 k, | = const.
(1.3)

Then, according to a theorem of the algebraic geometry (see e.g., [23]), for generic
values of the constants k, [, the complex invariant variety of the Zhukovsky—Volterra
(ZV) system (1.2) is an elliptic curve £. However, in contrast to the classical Euler
top, explicit integration of the ZV system and, especially, the explicit description of
the motion of the gyrostat in space given by solutions of the Poisson equations in
practice appears to be a much more complicated problem.

In [58] Volterra presented expressions for the components of the momenta M and
of the rotation matrix of the gyrostat in terms of sigma-functions and exponents,
however these expressions include several undetermined parameters and only provide
the structure of the solution, but not explicit formulas.

We bridge these gaps, namely,
1) To find expressions for the components of momenta M; as elliptic functions on

the curve £ by using a new rational parametrization for M; in terms of some
canonical coordinates on £, whose dependence on time is known;

2) To derive all explicit solutions of the Poisson equations and obtain trigonometric
functions of the Euler angles as functions of time ¢.
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It is expected that the obtained explicit formulas provide an effective description
of the motion of the gyrostat in space and be useful in practice.

Zhukovski-Voltera system described above has the property of being
bi-Hamiltonian. By using this property and applying the new scheme for topo-
logical analysis of bi-Hamiltonian system [12] we construct bifurcation diagram of
momentum mapping, given by integrals f1, fo:

D(f1, fo) : R3 (M, Mo, M3) — R*(f1, f2).

We describe the set of critical points, verify the non-degeneracy condition and de-
termine the stability of equilibrium points. By using the parametric description of
critical points, we obtained the bifurcation diagram of momentum mapping ® and
analyze the topological type of common level of integrals fi, fo.

Notice, that the standard scheme for describing set of critical point and analysis
of their stability consists of the Jacobi matrix and Hessian of the restriction f; onto
simplectic leaf, whereas this new technics has allowed us to answer all this questions
without difficult computations.

1.1.2 Separation of variables, explicit integration and bifurcation
analysis of the Steklov—Lyapunov systems

The classical Steklov integrable case of the Kirchhoff equations

. OH
M=Mx_—+4+pXx—, p=pxX—, (1.4)
dp
where M,p € R? are the vectors of the impulsive momentum and the impulsive
force, and H = H (M, p) is the Hamiltonian, which is quadratic in M, p. given by
13
H = 33" (ba M2 + 20b3b, Mapa + v2ba (b5 = b,)92) (1.5)
a=1
b; and v being arbitrary constants, was first integrated in terms of theta-functions
of 2 arguments by F. Kétter [38] in 1900. However, the method of integration was
not indicated in that paper and, moreover, the solutions presented contain several
undetermined parameters, which make impossible to apply them in practice.
The second group of objectives of the thesis are

1) To revise the separation of variables and explicit integration of the classical
Steklov—Lyapunov systems. Namely, we give a geometric interpretation of the
separating variables;

2) then, applying the Weierstrass root functions, obtain an explicit theta-function
solution to the problem.

3) construct and analyze the bifurcation diagram for the Steclov-Lyapunov system
by using the bi-Hamiltonian properties of the system [12] and then, indicate on
the plane (hi, he) the domains of real motion, describe the type of the special
motion for each segment of the bifurcation curves and do stability analysis for
critical periodic solutions.
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1.1.3 Bifurcation analysis of Rubanovskii sistem

Apart from the classical Steklov integrable case of the Kirchhoff equations, in [50]
V. Rubanovsky found its gyroscopic generalization describing the motion of a gy-
rostat in an ideal fluid and also the rigid body in presence of non-zero circulation.
In contrast to the Steklov Hamiltonian (1.5), the Hamiltonian of the gyroscopic
generalization contains linear terms in M, p and has the form

3

1
Hy = 2(%(1\@ — 290)? + 20bsby Mapa
a=
2 2,2
#1200 (bs — by) P + 40(bs + b, )gapa ) (1.6)

v, g1, g2, g3 = const.

Like in the case of the Zhykovsky—Volterra gyrostat, here the vector g characterizes
the axial angular momentum of the rotator inside the body.

The Kirchhoff equations with the Hamiltonian (1.6) possess a second integral
quadratic in M, p.

It can be observed that under the change of variables M — 2

QZazMa_(b,B+b7>pav Ct:1,2,3, (Oé,ﬂ,’}/):(l,273)
these equations take the form
2=2z2x(Bz—g)—Bpx(Bz—g), p=px(Bz—g).

and, as was shown in [27], the latter equations admit the following Lax pair with
skew-symmetric matrices and an elliptic parameter s

L(s) = [L(s), A(s)], L(s),A(s) € so(3), seC, (1.7)
L(8)ap = 6,157(\/8 — by (2y +50y) + 9y / /5 — bfy) ,
Ao = 2oy (5 — b5 — b) (b33 — 95) (18)

Writing out the characteristic equation for L(s) we arrive at the following quadratic
integrals

H=(p) h=20) — (Bop), Hi= (2B - (s.9),

1 .
Hy=3(2,2) — (Bop) + (p.g), B = ding(by, b, by)
Lax-pair to the Rubanovskii case [27] allows to describe a bi-Hamiltoian struc-
ture corresponding to this system. Using the fact that Rubanovskii system is bi-

Hamiltonian and applying new techniques [12] we solve the following problems:

1) description of the singularities of the momentum mapping defined by four inte-

grals
D . R6(Z,p) — R4(J17 J27H17H2);
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2) stability analysis for closed trajectories;
3) non-degeneracy and stability analysis for equilibria;

4) some property of bifurcation diagram of Rubanovskii system.
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1.2 Background and the main tools

Here we quote some fundamental and recent results, as well as some methods in the
area of integrable systems, which we are going to use to achieve the objectives of
the thesis.

1.2.1 Theorems of integration

The most fundamental notion of integrability of a dynamical system is integrability
by quadratures, that is, finding its solutions using finitely many ”algebraic” opera-
tions (including inverting functions) and calculation of integrals of known function.
If, moreover, the system on n-dimensional manifold M" is Hamiltonian and its
vector field can be written as I d H, then the main tool is the following theorem

Theorem 1.2.1 (Liouville) Suppose that the smooth functions Fi,...,F, : M™ —
R are pairwise in involution and dim M = 2n. If

1). their differentials are linearly independent at each point of My,
2). the Hamiltonian vector fields generated by F; (1 <i < n) are complete on My,
then

a) each connected component of My is diffeomorphic to a cylinder TF x R**, or,
in the particular case k = n, to a torus T";

b) on TF x R"™* there exist coordinates {¢1,...,pr | mod2n} and {y1,...,Yn_r}
such that Hamilton equations on My takes the form

Om = Wmis  Ys = Csi, Wi, Csi = CONSL.

The Hamiltonian system with the Hamilton function F; for each i = 1,...,n is
said to be completely integrable.

A system of differential equations with invariant measure. We consider a
system of differential equations

t=f(x),reM (1.9)

and let { gt} be its phase flow. Suppose that equation (1.9) has an integral invariant
with some smooth density M (z), which means that

/gtM(:n) d:v:/DM(x)dm (1.10)

for any measurable domain D C M and for all . Recall the well-known assertion of
Liouville on the existence of an integral invariant.
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Proposition 1.2.2 A smooth function u : M — R is the density of the invariant
[ w(z)dz if and only if

div(pf) = 0.
If M (z) > 0 for all x,then formula (1.10) define a measure in M that is invariant
under the action of {gt} .

The existence of an invariant measure simplifies integration of the differential
equation.

Theorem 1.2.3 (Euler-Jacobi) Suppose that the system of equation (1.9) with an
invariant measure (1.10) has n — 2 first integrals Fi,...,F,_o. Suppose that the
differentials of functions Fi,..., Fn_o are linearly independent on an invariant set

M.={zeM:F.=c;,1<s<n-—2}.
Then
1. The solution of equation (1.9) lying on M. can be found by quadratures.

2). If L. is a compact connected component of the level set M. and f(z) # 0 on
L,

then

L. is a smooth manifold diffeomorphic to the two-dimensional torus;

On L. there exist angle coordinates x,ymod2m such that in these variables equa-
tion (1.9) on L. takes the form

A . jz

T = NES ;
P (z,y) P (z,y)

where A\, u =const and ® is a smooth function 2m— periodic in x,y.

It should be mentioned that, historically, this theorem had been formulated
before the Lioville theorem and it was successfully applied to prove the integrability
of several classical systems, like the Jacobi geodesic problem or the motion of a
heavy rigid body.

Various generalizations of this theorem that use the existence of integral invari-
ants of different kind, as well as symmetry fields were constructed in [33].

1.2.2 Examples of Completely Integrable Systems.

Integrable cases of the motion of a heavy rigid body about a fixed point.
The motion is described by the Euler-Poisson equations

Av=Aw xXw+exr, é=eXuw,

where w, e € R3 are the angular velocity and the a unit vector fixed in space. These
equations contain six parameters: three eigenvalues Ay, Ao, Ag of the inertia operator



12

1.2. Background and the main tools

A and three coordinates of the center of mass r = (r1,79,73)7 with respect to the
principal axes. These equations are Hamiltonian on the four-dimensional invariant

symplectic manifolds
M, = {(w,e) €ERS: (Aw,e) =c¢, (e e)=1}.

There always exists one integral of these equations on M., the energy integral. Thus,
by the Liouville theorem, for the complete integrability it is sufficient to have one
more independent integral.

We list the known integrable cases, when such integrals exist:

1) The Euler case: r1 = r9 = r3 = 0 (the center of mass coincides with the fixed
point). The new integral (Aw, Aw) is the square of the magnitude of the angular
momentuim.

2) The Lagrange case: A1 = Ag and 1 = r9 = 0 (the body has an axial
symmetry, which contains the mass center). The new integral ws is the projection
of the angular velocity onto the axis of symmetry.

3) The Kovalevskaya case: A = Ay = 2A3 and r3 = 0. Choose coordinate axes
in the plane perpendicular to the axis of dynamical symmetry such that ro = 0.

4) The Goryachev-Chaplygin case: A; = Ay = 4A3 and r3 = 0,c = (Aw, e) = 0.
In contrast to the cases 1)-3), here we have an integrable Hamiltonian system only
on the integral level Mj.

Integrable cases of the Kirchhoff equations. These equations describe the
motion of a rigid body in an ideal fluid and have the form

: OH OH oH
M =M x —— T p=px — 1.11
X6M+p><ap, p=px 5 (1.11)

where M,p € R3 are the vectors of the impulsive pair and the impulsive force
respectively and H = H (M, p) is the Hamiltonian, which is quadratic in M, p.

The system possesses first integrals (M, p), (p,p), H(M,p) and the following
integrable cases are known:

1) The Clebsch case: H =
diagonal matrix.

2) The Steklov—Lyapunov case:

%(M, AM) + 5(p, A"'Mp), A being an arbitrary

3
1
H=23" <baM§ + 2wbsby Mapa + v2ba (b — bv)2p§> : (1.12)
a=1
b; and v being arbitrary constants.
In both cases equations (1.11) have an extra integral, also quadratic in M, p.
As was recently shown by V. Sokolov, apart from these classical cases, there exist
two other quadratics Hamiltonian, for which the equations have quartic additional

integrals (see, e.g., [16]).
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The Jacobi geodesic problem. Consider geodesic motion on an ellipsoid () in
R? given by equation
2 2 2
x x x
b I A
ap a2 as

=1, a1 >as>a3>0. (1.13)

The equations of motion in the redundant coordinates x are

T = M, (1.14)

1

where 77 is a normal vector for @) at the point Z, that is, 7 = a7 Z, and A is Lagrange

multiplier, which can be found by differentiating the condition <f, )y =0:

<i’, a_lf> + <f, a_li'> =0.

Then, using (1.14) we find

Equations (1.14) defines a Hamiltonian flow on the 4-dimensional tangent bundle
TQ and has two independent integrals

L= 5(5, ), = (& a BT a 27).
In addition, the system (1.14) preserves an invariant measure on 7'Q), hence it is
integrable by the Euler—Jacobi theorem.

1.2.3 Some Methods of integration of Hamiltonian systems.

Separation of variables via the Stackel theorem. The simplest and most
effective method of integration is the separation of variables. In the case of a Hamil-
tonian system on M?" with the symplectic coordinates pi,...,pn, q1,...,qn there
is a special case, when the separation of variables can be performed straightforward.

Theorem 1.2.4 (Stéckel, [51]) . Let ® be a determinant of the matriz (v;;(q;)),
(1 <4,5 < n) and ®;; be the cofactor of the entry ¢;j. Suppose that the Hamiltonian
function has the form

n

H (p’ q) _ z_; cbls(qzl)]zsq()psa QS), (1‘15)

then the following n functions

n

_ (I)ksf(pSaQS)
B=2 750

s=1

form a complete involutive set of integrals of the system on M?" and the Hamilton
equations are integrable by the Liouville theorem.
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Note that there is no general rule for finding separable variables for an integrable
system. However, if a given integrable Hamiltonian system admits a Lax represen-
tation with a rational spectral parameter, then, according to [1, 2], one can find
such variables in a systematic, although quite tedious, way.

Example: The Jacobi geodesic problem. One of the classical examples of a
successful application of the method is related to elliptic coordinates in R™ (or, in
general, in R™), which allows to reduce to quadratures the Jacobi geodesic problem
described in the previous section. A similar approach, using spheroconical coordi-
nates allows reducing to quadratures the Neumann problem describing the motion
of a mass point on S? in a quadratic potential field ([45]).

The Cartesian coordinates = of a point on the ellipsoid @ given by (1.13) are
related to the Jacobi elliptic coordinates A1, Ao as follows

o _ Wi (a; — A1) (a; — A2)
" (@i —ay) (@ — ak)

(1.16)

Then the Lagrangian function L = % (:cl + @3+ x3) describing the free motion on
the ellipsoid, takes the form

-1 < (A1 —A2) M 524 (A2 — A1) Ao }\2)
8 ()\1 — al) (/\1 — ag) ()\1 — ag) 1 (AQ — al) ()\2 — CLQ) (/\2 — a3) 2
_ (1.17)
Now we pass to the conjugated momenta p; = OL/0\;, i = 1,2, that is,
1 (A —A2) A1 .
= — A s
P1 4(/\1 —al) ()\1 —ag) ()\1 —a3) ! (1 18)
I I—" |
4 (A2 —a1) (A2 — az2) (A2 — a3)
The energy of the free motion on the ellipsoid takes the form
(A —a1) (A —ag) (M1 —a3) 5 (Ao —a1) (A —az) (A2 —as)
H=2 + . (1.19
( (Al I )\2) )\1 b1 ()\2 — )\1) )\2 p?) ( )

It is seen that this Hamiltonian has the Stéckel form (1.15) with the matrix

1 1
SO_(Al )\2>7 det‘P—)\Q—)\l

and the cofactor of an element 11 is ®17 = A, the cofactor of an element 19 is
Py = -1 .

According to the Stéckel theorem, the system with the Hamiltonian (1.19) has
a first integral I1(p, ¢), which commutes with H and, when written in terms of A, A,
takes the form

(A1 — A2) At g
(A1 —a1) (M — a2) (A1 — a3)

(A2 — A1) Aoy

\ 2
A (A2 —a1) (A2 — a2) (A2 — a3)

I = A2, (1.20)
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Now we set H(p,\) = L(\, )\) = h, 1 (A, )\) = [, where h,l are constants of mo-
tion, and combining the integrals (1.20) and (1.19), we obtain the following quadra-

tures
Ard\ Aad)y Ad) A3d);

VRs (M) /Rs () VRs (M) VRs ()

where Rs (\) = ~A(A—a1) A —a2) A —a3z) (A —c), c=1+.
Following Weierstrass [61], under the reparameterization dt = —AjAadr, the
equations take the form

) )

dA1 dXa A1dAq Aad A2

2RO 2 /ROw) N RN T

which, upon integration, lead to the following quadratures

/Al d\ A2 g\

- 4 — =,
x 2R S 20/R(N)

/Al Ad\ A NdA

A

RN B NN =0

The latter are a particular case of the Abel-Jacobi equations, which arise as quadra-
tures in many classical integrable problems of dynamics. In order to obtain their
explicit solutions, one has to invert these quadratures. The corresponding method
will be briefly considered in subsection 1.4.

(1.21)

Method of Lax-pairs. Assume that a system of differential equations

d
@xi:Fi(ml,...,xn), 1=1,...,n. (1.22)

can be obtained from a matrix commutator equation

d
ﬁL(x, A) = [L(z, A), A(z N)], (1.23)
where the matrices L, A depend in a rational way on an extra parameter A € C.

It follows from (1.23) that L(z(t)) undergoes the similarity transformation

L(t) = TOLO)T ), A(t)=T@®)T ).

Hence, the eigenvalues of L(z(t),\) do not depend on ¢, that is, the coefficients of
the polynomials tr (L*(x, \), k € N are first integrals of the system (1.22).

The equation (1.23) is called a Laz pair. In modern approach to integrable
systems it plays one of the main roles. If it produces sufficiently large number of
independent integrals, then the corresponding system (1.22) is completely integrable.
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Example. The best known example is the Lax pair for the Euler—Frahm equations
(generalized Euler top) describing the free motion of an m-dimensional rigid body

M +[Q,M] =0, (1.24)

where M, € so(m) are the matrices of the angular momentum and the angular
velocity of the body respectively. This system possesses ”trivial” integrals I, =
tr M* k =2,4,..., the invariants of the Lie algebra so(m).

A first Lax pair for the multi-dimensional body problem had been discovered by
Manakov [42] in the form

d
Z(M4AU) = [M+AU,Q+AV],  AeC (1.25)

U = diag(ay,...,am), V =diag(by,...,by), U,V = const.

Under the condition [M, V] = [, U], the coefficients at A° in (1.25) give the system
(1.24) with
b; + bj

a; + a;

Qz‘j = ij -
The coefficients of the polynomials tr (M + AU)*, k = 2,...,m provide a complete
set of first integrals, which is sufficient to prove the integrability by the Liouville
theorem ([43]).

Another type of Lax pair for the Euler—Frahm equations that involves an elliptic
parameter was indicated in [27].

If a dynamical system can be written in a Lax form (1.23), in which both matrices
L, A depend on parameter A, then using algebraic geometry methods developed in
[19, 20, 1] and some other paper, one can write directly the generic solution to the
system in terms of the theta-functions associated to the spectral algebraic curve
S € C% = (A, i) given by the characteristic equation |L(z,\) — uI| = 0.

However, in many integrable problems, including quite simple ones, this ap-
proach leads to too complicated theta-function solutions, which require a simpli-
fication. Hence, the alternative classical approach of separation of variables and
reduction to quadratures remains to be important.
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1.2.4 Theta-function solution of the Jacobi inversion problem

Abelian differentials and Jacobian varieties. Recall the definition of Jacobian
variety of a regular Riemann surface I' of genus g. Namely, consider a differential
1-forms (differential) w = ¢(7)dr on I', where 7 is a local parameter at a point
P € T'. The differential w is called holomorphic (or an Abelian differential of the
first kind), if ¢(7) is a holomorphic function for any point P. It is known that
on a genus g surface I', there exist exactly ¢ independent holomorphic differentials
Wi, ...,wy, each of them having 2g — 2 zeros. Let us choose a canonical basis of
cycles ai,...,aq, by,...,by on I' such that

aioaj:biobj:O, az-obj:csij, i,jzl,...,g,

where 77 o 75 denotes the intersection index of the cycles 71,72 (see an example in
Figure (1.2.1) ).

Figure 1.2.1:

Let us calculate the g x g period matrix

Aij —% ws.

7

Since wy,...,w, are independent, A is non-degenerate. Hence we can uniquely find
a basis of the normalized holomorphic differentials 1, ...,w, such that
g
% Wi = 27T](52'j, that is, @; = QW]ZCkiwk, C=A" (1.26)
43 k=1

Then the matrix of b-periods B;; = fbj w; is symmetric and has a negative def-

inite real part. Consider the period lattice A = {27979 4+ BZ9} of rank 2g in
CY9 = (21,...,24). The complex torus Jac(I') = C9/A? is called the Jacobi variety
(Jacobian) of the curve T'. It is a compact principally polarized Abelian variety. No-
tice that for g = 2, any principally polarized Abelian variety that does not contain
elliptic curves is the Jacobian of a hyperelliptic Riemann surface.

For points P, Py on a nonsingular Riemann surface I', we define the vector func-

tion
P P T
/ Wlyeooy / wg>
Py Py

A(P) = <
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in which the integration paths on I' are all the same. The function describes a
correctly defined holomorphic mapping I' — Jac(I") with the basepoint Py.

Now consider g-th symmetric product ST of the curve I'. A point on S9T is
represented by a disordered set D = {Py,..., P;} of g points on I' called a divisor
of points. The mapping I' — Jac(I") can be extended to the mapping

SIT — Jac(T) : D — A(D) = A(Py) + -+ A(P,),

which is called the Abel-Jacobi mapping. The latter gives rise to the system of g

Abel-Jacobi equations
P P,
/ w+---+/ W=z, (1.27)
Py Py

0= (@1,...,09)7, z=1(21,...,2)7 €C.

Under the mapping, functions on S9T, i.e., symmetric functions of the coordineits
of the points P,..., P, are 2g-fold periodic functions of the complex variables
21,...,24 with the period lattice A° (Abelian functions). Thus we arrive at the
celebrated Jacobi inversion problem: to express meromorphic functions on S9I" in
terms of z, or, in a geometric formulation, given a point on the Jacobian T9 with
coordinates z, to recover the corresponding divisor D = {P,...,P;}. We call a
divisor D nonspecial, if in the neighborhood of A(D) the Abel-Jacobi mapping is
uniquely invertible. Otherwise, D is called a special divisor.

Now we concentrate on hyperelliptic Riemann surfaces of genus g represented in
standard forms

U= {w” = Rog11(\) = (A= E1) -+ (A = Bagi1)},
I = {w? = Rygra(\) = (A = En) -+ (A — Bagy2)},

which we call the odd order form and the even order form respectively. The curves
are represented as 2-fold ramified coverings of C = {\} Uoo. Let us choose canonical
cycles ai,...,aq,b1,...,by as shown in Figure (1.2.1), where segments of cycles on
the lower sheet of C are depicted by dashed lines.

In this case a natural basis of holomorphic (non-normalized) differentials is

k—1
wk:)\ dA, k=1,...,9. (1.28)
w

Let 7 = 1/v/) be a local parameter in a neighborhood of co € T' : 7(c0) = 0.
Then d\ = —2d7/73, and in the same neighborhood the differentials (1.28) take the
form

wg = <—27'9_k + O(’Tg_k)) dr, k=1,...,9.

Analogously, let 7 = 1/ be a local parameter in a neighborhood of co_ on IV :
7(co_) = 0. Then d\ = —d7/72, and in this neighborhood

Wi = (_%g—k + 0(%g—k)) dr, k=1,...,9.
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It is seen that wy, ..., wy—1 have zeros at oo in the odd order case and at co_, 0oy in
the even order case. In view of the condition (1.26), for the chosen canonical basis
of cycles, the basis of normalized holomorphic differentials is given by

g i—1 E. j—1
M7 _ 2k NTHdA

j=1 Ea—1
Solution to the Jacobi inversion problem. The problem of inversion of the
Abel-Jacobi map (1.27) is solved by means of theta-function 6(z|B) of the Riemann

surface I' with the period matrix B,defined by the series

0(2|B) = > exp((BM, M) + (M, 2)), (1.30)
MezZs9

g g
(M,2) =Y Mz, (BM,M)= Y ByjMM;.
i=1 i,j=1

It is convergent everywhere in C9 provided the real part of B is negative definite.
The function 0(z|B) enjoys the following quasiperiodic property

0(z +2m)K + BM|B) = exp{—(BM,M)/2 — (M, z)}0(z|B), (1.31)
K, M €79,

The vectors 2mgeq, ..., 2me,, Bei, ..., Bey and their linear combinations with inte-
ger coefficients are called quasiperiods of 6(z|B). Notice that, up to multiplication
by a constant, §(z|B) is a unique entire function of 21, ..., z4 satisfying the condition
(1.31). On the torus CI9/Ag, Ao = {279Z9 + BZI}, equation 0(z|B) = 0 defines a
codimension one subvariety O (for g > 2 with singularities) called theta-divisor. No-
tice that if an Abelian variety (C9/Ag, D) is principally polarized, then the divisor
D is a union of translates of ©.

Let o = (au,...,ay)%, B=(B1,...,B,)T be arbitrary real vectors. Define theta-
functions with characteristics, which are obtained from 6(z) by shifting the argument
z and multiplying by an exponent:

em (2) = 0[0‘1 “9] (2) = exp{(Ba,a)/2 + (= + 2138, 0)} 6(= + 2738 + Ba)
ﬁ 51 T Bg

(here and below we omit B in the theta-functional notation). As a consequence, for
a pair of characteristics we obtain the following useful relations

a

o+ o
0
| ﬁ

ﬂ—i—ﬁ'] (2) = exp{(Bd/,a/) /2 + (2 + 2138 + 277]5’,0/)}9[

} (z 4+ 2my8 + Bd).
(1.32)

Clearly, 6 [8] (z) = 0(2). The quasiperiodic law for # [g} (z) has the form

(07

B](z), (1.33)
€= (aaK) - (B?M)v

9[;] (z 4+ 2my)K + BM) = exp(2mje) exp{—(BM,M)/2 — (M, z)}@[
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which differs from the quasiperiodic law (1.31) only by multiplication by a root of
unit.

Notice that characteristics oy, ) are defined modulo 1.

An important particular case is represented by theta-functions with half-integer
characteristics «, 8 € %Zg /Z9. For example, the function 6 [00162} (2) on C? has
quasi-periods 2mjey, 4mes, Bey, Bes and changes sign after a shift by 2mjes. The 49
points 3 (2m)Z9 4+ BZ9) /79 on T9 /Ay are called half-periods (or second order points).
A half-integer characteristic [g} and the corresponding half-period 273 4+ Ba are
said to be even if the integer 4(a, 3) is even, and odd if 4(«, ) is odd. As follows
from (1.33), the function 6 {g] (z) is even (resp. odd) if {g] is even (odd). In

particular, 6(z) is even. The clue to the solution is given by the following theorem:
Theorem 1.2.5 The theta-divisor {0(z|B) = 0} admits parametrization
©={z=AP)+ -+ A(Py-1) + K}, (1.34)

where P, ..., Py_1 are arbitrary points on I', and K = (K4, ..., ICg)T is the vector
of the Riemann constants

1 1 < ) P .
lcj:2(2ﬂ3+3jj)—2mz<j{ WI(P)/P wj)v j=L....9 (1.35)
aj 0

%]

Py being the basepoint of the Abel mapping A(P).

Observe that K depends only on Py and on the choice of canonical cycles on I'. Tt
turns out that under an appropriate chose of Py, the vector K becomes a half-period
on Jac(I') (see [26] and expressions (1.36) below).

It passes through the six odd half-periods of the 16 half-periods on the Jacobian.
In the simplest case g = 1, Jac(I") coincides with the elliptic curve I', and © is one
of the four second order points on the Jacobian.

Now introduce the function F(P) = 0(A(P) — e), where P € I" and e is an arbi-
trary vector in C9. The function is single-valued and analytic in a simply connected
domain T, the dissection of the surface I' along its canonical cycles having a single
common point.

Lemma 1.2.6 1). The function F(P) equals zero identically on T if and only if
e=A(Q1)+ -+ AQgy) + K, where the divisor {Q1,...,Qq4} is special.

2). If F(P) does not vanish identically, then it has precisely g zeros on T' (possibly,
with multiplicity).

As a corollary of Theorem 1.2.5 and Lemma 1.2.6 we obtain
Theorem 1.2.7 (Riemann) Let D = {Py,..., Py} be a nonspecial divisor on T'.

Then the function F(P) = 0(A(P) — z — K) has precisely g zeros P1,...,P; on T
giving the solution to the problem of inversion of the mapping (1.27).
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Indeed, since D is a nonspecial divisor, F'(P) does not vanish identically on I".
If P coincides with one of the points Py, ..., P, the argument of the theta-function
admits the parameterization (1.34) for the divisor ©, i.e., F(P) = 0. In addition, by
item 2) of Lemma 1.33, F'(P) cannot have zeros except Pi,..., Py.

In the hyperelliptic case the vector of the Riemann constants K can easily be
found in an explicit form. For the basepoint Py = Ea442 or oo and the above choice
of canonical cycles, the formula (1.35) gives (see e.g., [26, 44])

1
K =2miA"” + BA' (mod A), A" A€ §ZQ/Z9, (1.36)

A =(1/2,...,1/2T, A"=(g9/2,(9g—1)/2,...,1,1/2)T (mod 1).
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1.2.5 Hyperelliptic root functions and solutions

In order to give explicit theta-functional solutions of many integrable systems one
can apply remarkable relations between roots of certain functions on symmetric
products of hyperelliptic curves and quotients of theta-functions with half-integer
characteristics, which are historically referred to as root functions (Wurzelfunktio-
nen), see e.g., [17, 35, 36] . The root functions give the shortest way to obtain
theta-functional solution in a great variety of integrable systems admitting separa-
tion of variables. It is these functions which have been used by Kowalewski, Weber,
Kotter, and other mathematicians in their works devoted to integration of equations
of classical dynamics.
Consider first an odd-order hyperelliptic surface

P={w’=RN} RO\ =O\-E) (A= Eag)}

of genus g, a divisor of points P; = (A1, w1),..., Py = (Ag, wy) on it, and the Abel-
Jacobi mapping z = A(P, ..., Py) with the basepoint co. Let E; briefly denote the
branch point (£;,0) on I'. Introduce the polynomial U(X,s) = (s — A1) -+ (s — Ag).
The square root of it can be regarded as a single-valued function on the symmetric
product of g coverings of I'. Then under the above mapping, the following relations
hold

_ 00 +mi(2)
VONE) = \J(Bi = M)+ (Bi - A) = ) (1.37)

~  VROW) VU E)VUNE)) _ . 010+ mig](2) (138)
= LMk = A) - (Bi = M) (Ej — Ag) Yo06)(z) '
ij=1,...,29—1, i#j,

where ¢;, ¢;; are are certain constants depending on the periods of I' only and A, n;
are half-integer theta-characteristics such that

/ / E;
0= (((;//) y i = (2},) , 271:777;’ + Bng = -A(Ez) = / w (mod A), (139)

For the chosen canonical basis of cycles a1, ...,aq,b1,...,b, on I', the character-
istic A is given by (1.36). Next, in view of relations

Eagt1 1 Esy, Eop—1 1
/ w=—= fw—i—-"—}—j{w , / w:/ w—i—f w,
00 2 al ag 00 00 2 ag

from (1.36) we have

nékfl _1 O --- 010 --- 0 négﬂ _1 0O --- 0
M) 2\1 -+ 1.0 0 - 0)7 \mfyy) 2\1 -+ 1)°



1. Introduction

23

where the unit in the upper rows for 71,...,n2, stands at k-th position.

Apparently, relations (1.38) were first obtained in the explicit form by Konigsberger
([34]). Earlier, the root functions (1.37) had been considered by K.Weierstrass
in [59] as generalizations of the Jacobi elliptic functions sn(z),cn(z), and dn(z),
and later in [44]. More nontivial root functions that are prepresented as quotients
of theta-functions including a sum of half-integer theta-characteristics of the type
M, + -+ 1, are indicated in [3] and the modern book [7].

According to the quasiperiodic law (1.33), the quotients

1A +mil(z)  O1A +mil(2)
0lAl(z) © 0[A](2)

are not single-valued functions on the Jacobian Jac(I') = CY9/Ag, Ay = {2m)Z9 +
BZ9} but on its certain unramified covering C9/A, where the lattice A is obtained
by multiplying some of the periods of Ay by 2 (under a shift of z by a period of Ag
some of the theta-quotients change sign).

To indicate analogs of the root functions for the case of even-order hyperelliptic
curve I = {w? = R(\)}, R(\) = (A — E1) -+ (A — Eagy2), it is natural to consider
the Abel-Jacobi mapping (1.27) with basepoint Py = Eag419. First, notice that the
rational function f(P) = A(P) — E; on I has a double zero at the branch point
(F;,0) and two single poles at co_, 0o..

, 0%[A + ni(2)
O[A](2 - q/2)0]A(z +q/2)

004 S
q:/ (D:2/ w, R; = const, 1=1,...,29+ 2.

o0 — Eag 2

U()\,Ei)E()\l—Ei)"'()\g—Ei):/%

(1.41)

The half-integer characteristics A, 7; are defined in (1.36),( 1.40). Under the Abel-
Jacobi mapping (1.27) including the normalized holomorphic differentials of I”, the
following analogs of the root function (1.37),(1.38) hold:
U0 E) _,, 06+
TnE,) U olA ()

S VROW VU E) \/U A Ej) 016+ misl(2) 0[] (2)
)

(1.42)

Ok = N) (B = M)(Ej = k) i N(z ’
(1.43)
N =6[A](z — q/2) 0[A](z + q/2),
J R(\) VU, E) \/U O E) o O1A i+ (2)
S Tk = M) (Bi = M) (Bj = M) (Bs = Ae) 7" 0[A+n5(2)
(1.44)

/{;jﬂ%gjwcgj :COnSt, Tij :772+17] (mOdZ2g) ’L',j,SZ 17729+2

These relations can be deduced directly from (1.37), (1.38) and (1.41) by making a
fractionally-linear transformation of A that sends the Weierstrass point E442 on I
to infinity.
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1.2.6 Compatible Poisson brackets and
bi-Hamiltonian systems

Many completely integrable Hamiltonian systems arising in mechanics, mathemat-
ical physics and geometry have the remarkable property of being bi-Hamiltonian,
i.e., they are Hamiltonian systems with respect to two different Poisson structures
at the same time (e.g., see [9, 16, 18, 27, 13, 30, 22, 41, 40] ). Very often, these
structures are compatible, and the system in question is Hamiltonian with respect
to any of their linear combinations (with constant coefficients).

Since the pioneering work by Franco Magri [41] it has been well known that
integrability of many systems is closely related to their bi-Hamiltonian nature [8, 9,
10, 18, 40, 53]. The bi-Hamiltonian structure have been observed in many classical
systems and, at the same time, by using the bi-Hamiltonian technics, many new
interesting and non-trivial examples of integrable systems have been discovered [16,
22, 54, 46, 47]. Moreover, this approach, based on a very simple, natural and elegant
notion of compatible Poisson structures, proved to be very powerful in the theory of
integrable systems not only for finding new examples, but also for explicit integration
and description of analytical properties of solutions.

It turns out (see [12]) that the bi-Hamiltonian approach can also be extremely
effective in the study of bifurcations and singularities of integrable systems, espe-
cially in the case of many degrees of freedom when using other methods often leads
to serious computational problems. However, as we shall see below, even for two
degrees of freedom systems these ideas are very useful too.

Speaking of singularities of integrable Hamiltonian systems, we mean those inte-
gral trajectories which lie outside the set of Liouville tori or, in other words, which
belong to the singular set that corresponds to those points where the first integrals
of a given system become functionally dependent. The analysis of the system on this
set and in its neighborhood is undoubtedly very important because the singular set
usually contains the most interesting trajectories, in particular, equilibrium points,
and its topological structure is closely related to the bifurcations of Liouville tori,
monodromy phenomena and other global effects.

The main idea introduced and developed in [12] can be explained as follows: the
structure of singularities of a bi-Hamiltonian system is determined by that of the
corresponding compatible Poisson brackets. Since in many examples the underly-
ing bi-Hamiltonian structure has a natural algebraic interpretation, the technology
developed in in [12] allows one to reformulate rather non-trivial analytic and topolog-
ical questions related to the dynamics of a given system into pure algebraic language,
which often leads to quite simple and natural answers.

Below, we recall briefly some basic notions and results related to the bi-Hamiltonian
approach to integrability and sketch some idea from [12].

Definition 1 A skew-symmetric tensor field A = (AY) of type (2,0) on a smooth
manifold M is called a Poisson structure if the operation on C*°(M) defined by

i O 99
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satisfies the Jacobi identity:

{£ g,y +H{g,{n f}} +{h.{f,9}} =0 forall f,g,h € C*(M).

In this situation, the space of smooth functions has the natural structure of
an infinite-dimensional Lie algebra, and the operation { , } is called the Poisson
bracket.

Definition 2 Let f be a smooth function. A vector field of the form

. OH
i— Al
(Xpg)y =A oy

is said to be Hamiltonian, and the function H is called a Hamiltonian. The invariant
definition states: X is a vector field such that any smooth function H satisfies the
identity Xg(f) ={H, f}.

The rank of the Poisson structure (bracket) A at a point x is the rank of the
skew-symmetric matrix A% (z). Speaking of the rank of A on the manifold M as a
whole, we mean its rank at a generic point, i.e.,

rank A = max rank AY (z).
zeM
Below we confine ourselves with real-analytic Poisson structures so that generic
points always form an open everywhere dense subset in M.
If A(z) is non-degenerate at each point € M, then we can consider the inverse
tensor to A% as a differential 2-form w = wijdz; A dxj, wijAjk = 5!-“. This form,
as is easy to see, is a symplectic structure, i.e., it is nondegenerate and closed.

However, below we are going to deal with degenerate Poisson structures only, i.e.
rank A < dim M.

Definition 3 A function f : M — R is a Casimir function of a Poisson structure A
if {f, g} = 0 for any smooth function g. We shall denote the space of such functions
by Z(A).

A Casimir function f can be characterized by the following condition: df (z) €
Ker A(x) at each point x € M.

If the Poisson structure A is degenerate, then locally in a neighborhood of a
generic point, Casimir functions always exist and the number of functionally inde-
pendent Casimir functions is exactly the corank of the Poisson structure corank A =
dim M —rank A, i.e., the differentials of Casimir functions generate the kernel of A(z)
at generic points x.

Example 1. The simplest example of a Poisson structure is a constant one:
A" (z) = AY where AY € R are certain constants. If rank AY < dim M = n (here M
is an open domain in R"), then the Casimir functions are linear f(z) = Y ¢;z*, where
¢; € R are defined from the system of linear equations > A¥c; =0, j=1,...,n.
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Example 2. One of the most important examples of Poisson brackets are linear
Poisson brackets or PoissonLie brackets. Linearity means that the coefficients of
the tensor field A;j(x) are linear functions of the coordinates x',...,z, (here it is
convenient to interchange the superscripts and the subscripts). It is easy to see
that there is a natural one-to-one correspondence between such brackets and Lie
algebras. Indeed, let g be a finite-dimensional Lie algebra, and g* be its dual space.
On g* we define the Poisson bracket by the formula

{f,9}(@) = z([df (x),dg(2)]), xeg", df(x),dg(x)c (g°)" =9.  (1.45)
Equivalently, in coordinates, this bracket can be written as

of o0
1.9} @) = Y hang o

where the cfj are the components of the structural tensor of the algebra g in the
basis corresponding to the coordinates x1, ..., x,.

Conversely, if we have a linear Poisson bracket, i.e., if A7 (z) = cfjxk, then cfj is
the structural tensor of some Lie algebra. The Casimir functions of the PoissonLie
bracket are exactly the invariants of the coadjoint representation of the correspond-
ing Lie group G on g*.

Two examples of Lie-Poisson brackets are particularly important for applications
in classical mechanics.

For the Lie algebra so(3), the corresponding Poisson-Lie bracket in coordinates

My, My, M3 is defined as:

{M;, M} = &, My,
or, in matrix form:

0 Ms  —M>
A: A(Ml,MQ,Mg) - *Mg 0 M1 (146)
My —M; 0

This bracket is degenerate of corank 1, and the Casimir function is
F(M) = M} + Mj + M3

For the Lie algebra e(3) = so(3) @ R3, the corresponding Poisson-Lie bracket in
coordinates My, Ms, M3, v1, 72,73 is defined as:

{M;, M} = eijpMy, {M;,v;} = €ijpve, {7V} =0.
or, in matrix form:

0 Mz —Ms; 0 3 =72

A= A(M,~) = (1.47)

o
cocooco
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This bracket is degenerate of corank 2, and its independent Casimir functions
are

J1={(1,7) =%+ +13,
Jo = (M,~) = yi My + y2Ma + v3Ms.

Definition 4 Two Poisson structures A and B are said to be compatible if their sum
A + B (or, equivalently, an arbitrary linear combination of A and B with constant
coefficients) is again a Poisson structure.

The non-trivial and essential part of the compatibility condition is that the sum
of two Poisson brackets also satisfies the Jacobi identity. This From the analytical
viewpoint, this condition is equivalent to the fact that the so-called Schouten bracket
{{A,B}} of the Poisson structures A and B vanishes, which amounts to a rather
non-trivial system of PDEs. A local description of compatible Poisson brackets can
be found in (see [30, 48]).

Example 3. Any two constant Poisson brackets are compatible.

Example 4. Let g be a finite-dimensional (real) Lie algebra and g* its dual
space endowed with the standard Lie-Poisson bracket (1.45)

Along with this standard Lie—Poisson bracket, on the dual space g* we can define
a constant bracket { , }, for any a € g* by

(2 gYal) = a(ldf (x), dg(x)]) = kggi (1.48)

It can be easily verified that (1.45) and (1.48) are compatible.

Example 5. Let g = so(n) be considered as the space of skew-symmetric (nxn)-
matrices. As usual, we identify so(n) and so(n)* by means of the Killing form. Along
with the standard commutator [X,Y] = XY — Y X we introduce on so(n) another
operation:

[X,Y]s = XBY — YBX, (1.49)

where A is a symmetric matrix.

It is easy to see that [X,Y]p satisfies the Jacobi identity and is compatible
with the standard commutator in the sense that any of linear combinations A[ , | +
N[, =1, |agryp still defines a Lie algebra structure on so(n) (considered as the
space of skew-symmetric matrices). Such an algebraic structure (i.e. linear family
of Lie algebras) is called a Lie pencil.

Interpreting this observation into the dual language, we may say that on so(n) =
so(n)* there is a pencil of compatible Poisson brackets { , } pyar related to the
commutators [ , |pyag-

Example 6. In some (very exceptional!) cases Examples 4 and 5 can be com-
bined as follows. Let

e {, } be the standard so(3) bracket (1.46),
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e { . } B be the bracket related to the commutator (1.49) where B is a diagonal
3 X 3 matrix and

e {, }4 be the constant bracket defined by the matrix

0 g3 —g2
—g93 0 g
92 g1 O

Then these three brackets are all compatible in the sense that any linear combi-
nation

)‘{a }+:u{a }B+V{a }9

is still a Poisson bracket. This family of Poisson bracket is closely related to the
Zhukovskii-Volterra systems discussed below. Notice that for n > 3 this construction
fails: the brackets described above are not compatible in general.

Many integrable dynamical systems in mathematical physics and mechanics pos-
sess the property of being bi- Hamiltonian, i.e., Hamiltonian with respect to two com-
patible Poisson brackets A and B (or with respect to any non-trivial combination
N A+ AB). This property can be understood as an additional symmetry of a given
system which leads to the existence of a big algebra of commuting first integrals.
These integrals can be constructed by using the so-called Magri-Lenard scheme (see
[41, 40]). Here we recall one of its versions.

Consider a family (pencil) of compatible Poisson brackets J = {NA + AB |
N, X € R} on a manifold M.

Convention. In this theory, one considers linear combinations A A + A\B up
to proportionality, so that we may assume that A’ = 1, but A may have value co.
Thus we shall use notation Ay = A+ AB (assuming that A € R or A € C) and shall
sometimes refer to B as A.

Assume that all Ay € J are degenerate, i.e. rank .4y < dim M. By definition,
we set the rank of the pencil J to be

rank J = maxrank A.
AER
If rank A is maximal in the family 7, i.e., rank Ay = rank J, we shall say that A
is generic.
The next statement gives a recipe for constructing a large family of commuting
functions on M.

Theorem 1.2.8 Let Fz be the algebra generated (with respect to usual multiplica-
tion of functions) by Casimir functions of all generic Poisson structures A, € J.
1) F7 is commutative with respect to every Poisson structure Ay € J.
2) If & = v(x) is a dynamical system which is Hamiltonian with respect to every
generic Poisson structure A, € J, then each function from Fy is its first integral.
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For simplicity, we shall assume that the pencil F; satisfies the following natural
conditions (which are fulfilled for almost all known examples)

e M and J are real-analytic.

e The Casimir functions of every Poisson structure Ay € J are globally defined
and they distinguish all symplectic leaves of maximal dimension. More pre-
cisely, we assume the following: if x € M is a point of maximal rank for Aj,
then the kernel of Ay (x) is generated by the differentials of Casimir functions
f e Z(A):

Ker Ay(z) = span{df(z) | f € Z(A\)}.

e The family F7 admits a basis, i.e., a collection of functionally independent
functions fi,...,fy € Fg such that every (basic) Casimir function f\ €
Z(A)) can be expressed as a smooth function f\ = F(f1,..., fn) (this prop-
erty must hold for almost all A € R).

Notice that Theorem 1.2.8 say nothing about the number N of functionally
independent integrals in the family F7. Recall that the completeness condition for
F7 that guarantees Liouville integrability is N = %(dim M+corank J). A necessary
and sufficient condition for completeness is given by the following

Theorem 1.2.9 ([8]) The family F is complete if and only if for a generic point
x € M the following mazimal rank condition holds:

rank Ay (z) = rank J for all X € C. (1.50)

There is a natural and efficient principle that allows us to verify this completeness
condition. To formulate it, we first notice that if the family F 7 is complete, then all
the structures A, must be of the same rank on M, but, for each A, the rank of Ay (x)
may drop on a certain singular set Sy = {x € M | rank A)(z) < rank J}. From the
viewpoint of completeness these points are “bad”. Condition (1.50) simply says that
for completeness there must exist “good” points which belong to none of Sy’s. For
such points to exist, it is sufficient to require that singular sets .S have codimension
at least two. Then the union of sets Sy over all A’s will have codimension at least
one and its complement will consist of “good” points, as needed.

In this “codimension two principle” there is a subtle point: we consider a real
manifold M, but the parameter A is complex so that from the real point of view,
the “space of parameters” is not one-, but two-dimensional. However, in concrete
examples we have to deal with, the difference between “real” and “complex”, in
fact, disappears. The point is that we usually work with algebraic objects (mani-
folds, Poisson structures, Casimir functions) which can be naturally complexified:
we can introduce a new complex manifold M€ endowed with the complex Poisson
pencil J€ and construct the corresponding family of complex functions ]-'g. In all
natural situations, the complex functions that generate ]—“g are obtained from the
real functions f(z1,...,x,) generating F7 just by replacing real variables x; with
complex ones z; € C. If such a complexification is well-defined, then we have the
following
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Theorem 1.2.10 (Codimension Two Principle) Let all the brackets Ay, A €
C, have the same rank and codim Sy > 2 for almost all A € C. Then Fg s complete.
The completeness of]-"g is equivalent to the completeness of F 7.

Critical points of the momentum mapping As was already noticed, the struc-
ture of the set of critical points of the momentum mapping plays an important role
in the study of topological properties of integrable Hamiltonian systems.

Suppose that we have n commuting independent (almost everywhere) integrals
F,...,F, : M — R of a Hamiltonian system given on a symplectic manifold
(M?",w). Then we can naturally define the momentum mapping

o: M — R", O(z) = (Fi(x),..., F,(x)).

Definition 5 We will say that a point x € M is a critical point of the momentum
mapping if rank d®(x) < n.

In real problems we have to deal with, the situation may often be slightly differ-
ent. First of all, the phase space of a system is often not symplectic, but Poisson. In
this case, it is natural to add Casimir functions to a given family F of first integrals
and consider them all together. Also, for some families F there is no canonical
method for choosing a basis. To avoid this ambiguity, it is convenient to work
with the Poisson algebra generated by the given commuting integrals and Casimir
functions. Since we do not add any essentially new integrals, we will use the same
notation F for this “wider” algebra of first integrals.

Definition 6 Let (M, .A) be a Poisson manifold and let F C C*°(M) be a complete
commutative Poisson algebra of functions on M. We will say that a point x € M is a
critical point for F if the subspace dF(x) C T M generated by the differentials df (x)
of all functions f € F is not maximal isotropic with respect to A.

It is clear that the standard Definition 5 of a critical point of the momentum
mapping is a particular case of Definition 6. The reason for such a modification is
that now we don’t need to fix any universal basis in the algebra of integrals, but
may chose appropriate basis integrals depending on a point x € M under consider-
ation which can be quite convenient. The modification of the other definitions and
constructions discussed below to the case of Poisson manifolds is straightforward,
and we will follow the standard “symplectic” setting.

Consider the set of critical points of the momentum mapping;:

K ={x e M |rankd®(z) < n}.

Its image ¥ = ®(K) C R" is called the bifurcation diagram of ®.

If a ¢ %, then its preimage ®~1(a) is a disjoint union of Liouville tori. These
tori transform smoothly in M under any continuous change of a outside ¥, however,
if a passes through 3, then Liouville tori undergo a bifurcation.
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It is clear that the topological properties of the momentum mapping ®, its sin-
gular set IC, and bifurcation diagram 3. keep very important information about qual-
itative behavior of a given dynamical system both in local and in global. Roughly
speaking, they help us to understand and to describe the structure of the fibration L,
which, in turn, can be viewed as a portrait of the system and contains almost all
qualitative information we usually want to know about the system (number and
types of equilibrium points, stability of solutions, bifurcations of tori, Hamiltonian
monodromy and so on).

Let us recall some basic notions and terminology related to this subject (see [11]
for details).

We say that @ € M is a critical point of corank k (or, equivalently, of rank
(n—k)) if rank d®(xz) = n— k. This condition is equivalent to the fact that the orbit
/(x) of the R™-action generated by the integrals passing through z has dimension
n—k. A singular fiber L of the Lagrangian fibration £ may contain several orbits of
different dimension (the standard situation is that this fiber is a stratified manifold
whose strata are those orbits). If n — k = I;lelil dim/(x), we shall say that L is a

singularity of corank k.

First of all, as usual in the theory of singularities, one distinguishes the class of
generic (or non-degenerate) singularities.

We recall this definition first for critical points x € M of corank n. In other
words, we assume that the Hamiltonian vector fields of the integrals Fi,..., F, all
vanish at . From the dynamical viewpoint, such points can usually be characterized
as isolated equilibria of the system.

Definition 7 Let rank d®(z) = 0. Then the critical point x is called non-degenerate
if the Hessians d>Fy(z),...,d*F,(x) are linearly independent and there exists a lin-
ear combination \1d?Fy(x)+- - -+ A\ d? F,,(z) such that the roots of its “characteristic
polynomial”

x(t) = det <§:1 N\ d2Fy(z) —t - w) (1.51)

are all distinct.

In a more abstract terminology, the non-degeneracy condition (for a critical
point of corank m) means that the linearizations of the Hamiltonian vector fields
sgrad F1,...,sgrad F,, at the point x generate a Cartan subalgebra in the symplectic
Lie algebra sp(T,M).

It is not hard to generalize this definition to the case of arbitrary rank of d®(x)
(see, for example, [11]). But in this work, we shall discuss two degrees of freedom sys-
tems only, so in addition to Definition 7, we’ll need the definition of non-degeneracy
for critical points of corank 1 only.

Definition 8 Let x € K be a critical point of corank 1, i.e., rankd®(x) = n — 1.
This point is called non-degenerate if there exists a function f € F such that df (z) =
0 and the linearization of the Hamiltonian vector field sgrad f at x has at least one
non-zero eigenvalue.
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Equivalently, this condition means that the restriction of f onto the common
level of arbitrary n — 1 independent integrals fi,..., fn_1 € F passing through x is
a Bott function.

In the case of two degrees of freedom, non-degenerate singularities of corank
one represent closed trajectories. They can be of two kinds: hyperbolic and ellip-
tic depending on the type of eigenvalues which can be respectively real and pure
imaginary. In the latter case, the trajectory is stable, hyperbolic trajectories are
unstable.

Non-degenerate critical points of the momentum mapping possess a number of
remarkable properties. One of them is the existence of a very simple and natural
local normal form, see [21].

Theorem 1.2.11 (Eliasson Theorem, [21]) Let x be a non-degenerate critical
point of rank l. Then in a neighborhood of x, there exist symplectic coordinates

D1y --3Pn, qls - - -, qn and a diffeomorphic transformation of the integrals
F=F(F,....F,), ..., F,=F,(F,...,F,)
such that B B
FIZPI’ ) E:pla

and F, fori=14+1,...,n has one of the following forms:

1) ﬁz = pg + q? (elliptic case),
2) F, = DiG; (hyperbolic case),

Fooo
3) & Pidi1 = Pit1di (focus-focus case).
Fiy1 = pigi + piv1gir1

In the case of two degrees of freedom, in addition to nondegenerate closed tra-
jectories, there are non-degenerate equilibrium points of four types depending on
the roots of the characteristic polynomial (1.51):

1) two pairs of real roots A, —A, u, —p (saddle-saddle type),

2) pair of real and pair of imaginary roots A, —\, iu, —iu (saddle-center type),
3) two pairs of imaginary roots A, —\, i, —u (center-center type),

4) four complex roots A + ip, A — ip, —A + i, —A — ip (focus-focus).

Thus, the Eliasson theorem shows that the local structure of non-degenerate
singularities (up to a symplectomorphism) can be uniquely characterised by its type,
i.e., its (co)rank and the number of elliptic, hyperbolic and focus-focus components.

Before starting any global topological analysis for a specific integrable system
we have, as a rule, to deal with the following tasks:

1) describe the set of critical points;
2) verify the non-degeneracy condition for observed singularities;

3) find the type of non-degenerate singularities.
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The straightforward approach is just to take the Jacobi matrix

orn .. OR
o1 O0Ton
o . OB
d(I)(x) = Oz Oxan , (1.52)
8:)31 81%

compute all its (n x n)-minors, and then find those points where all of them vanish.
Then for each critical point we need to analyze the Hessians of the integrals in order
to verify non-degeneracy and determine the type of the corresponding singularity.

It turns out that the property of being bi-Hamiltonian affects the structure of
singularities of a system and helps to simplify its topological analysis by reformu-
lating the above questions in terms of compatible Poisson brackets.

Singularities of bi-Hamiltonian systems We now consider a bi-Hamiltonian
dynamical system and take the algebra F s of its integrals generated by the Casimir
functions of the pencil of Poisson brackets J = {A + AB | A € R}. Suppose that
this algebra is complete and therefore according to the general construction, all the
brackets in the pencil are of the same rank.

Under the natural assumptions formulated above, the set of critical points for
the family F oz

Ky={zeM ! dim dF7(z) < 3(dim M + corank J)}

can be described as follows.
As before, for each A\ € C, we consider the set of singular points of the Poisson
structure Ay in M

Sy ={x € M | rank(A(z) + A\B(x)) < rank J }.

In addition, we formally set Soc = {z € M | rank B(z) < rank J}. Also consider
the set of singular points of the pencil J:

Sy =] S
AeC

Theorem 1.2.12 ([12]) A point x € M 1is a critical point for F7 if and only if
there exists A € C such that x € Sy. In other words, K7 = Sy7.

Thus, in the case of bi-Hamiltonian systems the set of critical points of the
momentum mapping has a natural description in terms of the singular sets of the
Poisson structures Ay, A € C. Here we see the following general principle: the
singularities of the Lagrangian fibration associated with a bi-Hamiltonian system
are defined by the singularities of the pencil 7.

Now let z belong to a regular symplectic leaf of the Poisson structure A = Ay.
We say that x is a common equilibrium point for F if sgrad f(z) = Adf(z) =0
for any f € F7.
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Theorem 1.2.13 ([12]) A point x € M is a common equilibrium point for F if
and only if the kernels of all (regqular) brackets at this point coincide

Equivalently, for x to be a common equilibrium it is sufficient to require that
the kernels of just two brackets coincide: Ker A, (z) = Ker Ay(x), p # .

Now assume that z € M is a critical point of corank 1. This means that the
dimension of the subspace dF.7(x) is k— 1, where k is the dimension of the maximal
isotropic subspace in Ty M. In this case, there exists a unique A € R such that the
rank of A(x) + AB(z) is not maximal.

According to the Weinstein theorem [63], the Poisson structure Ay in a small
neighborhood of z splits into direct product of the transversal Poisson structure
and the non-degenerate Poisson structure defined on the symplectic leaf through .
The non-degeneracy condition is formulated in terms of this transversal structure.
For simplicity we shall assume that the Poisson structure Ay is semisimple in the
sense that M has a natural identification with a real semisimple Lie algebra g = g*
endowed with the standard Lie-Poisson bracket.

Then z is a singular element in the semisimple Lie algebra g and the dimension
of its centralizer (which, as we know, coincides with the kernel of Ay(z)) is ind g+ 2.
For simplicity, we shall assume that = € g is a semisimple element (this is obviously a
generic case). Then the centralizer of x in g is a Lie subalgebra of the form u@ R/,
where u is a three-dimensional real semisimple Lie algebra and [ = ind g.

Consider another bracket A, from [J, u # A, and take the restriction of A, (z) to
Ker Ay(z) = u®R'~!. Then Ker (A, (z)|ker Ay (x)) has codimension 2 in Ker Ay (z) =
udR™L. It can be easily checked that the center R'! belongs to Ker (A, (2)|ker .AA(x))'
This means that the restriction of A, to u has rank 2 and Ker (A, (x)[,) is generated
by some vector £ € u. It turns out that non-degeneracy condition can be naturally
formulated in terms of this vector £. Namely, the following holds.

Theorem 1.2.14 ([12]) Let x be a corank 1 critical point of F7. Suppose that
1) there exists unique A € R such that rank Ay (x) < rank J,

2) the bracket Ay is semisimple, i.e., (M, Ay) has a natural identification with
the dual space g* of a real semisimple Lie algebra g endowed with the standard
Lie—Poisson bracket,

3) z is a semisimple singular element in g* = g, and Ker Ay(zr) = u @ R
where u is a three-dimensional semisimple subalgebra, | = indg,

4) Ker (Au(x)]y) is generated by £ € u, € C 0, p C A

If € is semisimple element in u, then x is non-degenerate. Moreover, if (£,£) > 0,
then the singularity is hyperbolic, and if (£,£) < 0, then the singularity is elliptic,
where ( , ) is the Killing form on u.

The verification of non-degeneracy condition for higher corank singular points
can be done in a similar way. In the case of two degrees of freedom, the points
of corank 2 (i.e., equilibria) of the family F; are characterized by the following
condition: there are two values A\ and A9 for which the rank of Ay = A+ A\B
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drops (sometimes A\; = Ay may represent a double characteristic number of the
pencil). The sufficient non-degeneracy condition is that A\; # Ay and for each A = \;
separately the assumptions 2), 3) and 4) of Theorem 1.2.14 are fulfilled.



Chapter 2

Explicit solution of the
Zhukovski—Volterra gyrostat

The Chapter 2 is devoted to explicit integration of the classical generalization of
the Euler top: the Zhukovski—Volterra system describing the free motion of a gy-
rostat. We revise the solution for the components of the angular momentum first
obtained by Volterra in [58] and present an alternative solution based on an al-
gebraic parametrization of the invariant curves. This also enables us to give an
effective description of the motion of the body in space. The results of this problem
was published in [6].

2.1 Introduction

One of the simplest known integrable systems of classical mechanics is the Euler
top, which describes the motion of a free rigid body about a fixed point. Let w
be the vector of the angular velocity of the body, J be its tensor of inertia and
M = (My, My, M3)T = Jw € R? be the vector of the angular momentum. Then the
evolution of M is given by the well known Euler equations

M = M x aM , a = J ! = diag(a1, as, a3), (2.1)
which have two independent integrals
(M,aM) =1, (M, M) = k?*, I,k = const. (2.2)

It is also well-known (see e.g., [62]) that the solution of this system is expressed in
terms of elliptic functions associated to the elliptic curve Ej given by the equation

2 =—(\—a)(\—az2)(A—az)(\ —¢), c=1/k? (2.3)

In the real motion, when a; < as < as, one has ¢ € [a1, as].
Next, let v be a unit vector fixed in space. The motion of the top in space is
described by 3 independent solutions of the Poisson equations

F=vXw=7vxaM(t).

36
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The latter were completely solved by Jacobi [37], who gave explicit expressions for
the Euler angles and the components of the rotation matrix of the body in terms of
sigma-functions and exponents (see also [62]).

On the other hand, N. Zhukovski [64] and, independently, V. Volterra [58] in-
vestigated the problem of the motion of the rigid body with a cavity filled with an
ideal incompressible liquid. They showed that in the frame attached to the body
the evolution of its angular velocity w is described by the equations

d

—(Jw) = (Jw+d) x w,

dt

where d is a constant vector characterizing the cyclical motion of the liquid in
the cavity. From the form of the equation it is seen that the generalized angular

momentum M = Jw + d remains fixed in space. By setting
w=aM —g, g=/(g1,92,93)" =J'd,

one can rewrite this system in the form (1.1)

Like the Euler top, the Zhykovski-Volterra (ZV) system (1.1) has two quadratic
integrals, which, however, are not all homogeneous in M; (see(1.2)).

Then, for generic values of the constants k,[, the complex invariant variety of
the system is again an elliptic curve (see formula (2.5) below).

However, in contrast to the classical Euler top, an explicit integration of the ZV
system and, especially, the explicit description of the motion of the gyrostat in space
appear to be a much more complicated problem.

In [58] Volterra presented expressions for the components of the momenta M and
of the rotation matrix of the gyrostat in terms of sigma-functions and exponents,
however, on our opinion, these expressions include several undetermined parameters
and only provide the structure of the solution, but not explicit formulas.

An alternative method of integration of the ZV equations (1.1) only, which is
based on a trigonometric parametrization of the intersection of two quadrics was
proposed in [60] (see also [16]).

To obtain the evolution of the ZV top in space, one could also apply the powerful
method of Baker—Akhiezer functions based on a representation of the system (1.1)
in a Lax form.Following [27], there exists the following Lax pair with a parameter
ranging over the elliptic curve {w? = (s — a1)(s — a2)(s — a3z)}, namely

L(s) =[L(s),A(s)], L,Aes0(3), (2.4)

Lap(s) = €apy <\/ (s —ay) My +g,/ V(5 — av)) )

A0p(5) = /(s — aa)(s —ag) My, (a.8,7) = (1,2,3),

where 44, is the Levi-Civita symbol.

As calculations show, the spectral curve of the matrix L(s) has genus 5. On
the other hand, it is known that the complex invariant manifold is an algebraic
curve of genus 1. Hence, a direct application of the method seems to be ineffective,
since it will lead to a complicated process of reduction of theta-functions to elliptic
functions.
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Contains of the Chapter. In Section 2.2, following Volterra [58], we briefly
derive the explicit solution of the Euler equations (1.1) in terms of elliptic functions.
In Section 2.3 we provide a new alternative solution of these equations by using
an algebraic parametrization of the momentum M in terms of coordinates of the
invariant elliptic curve (Proposition 2.3.1).
In Section 2.4, by using this parametrization, we obtain explicit expressions for
the Euler angles describing the motion of the gyrostat in space.

2.2 Volterra’s solution of the ZV system

To give the explicit solution of the ZV system we note that its complex invariant
variety is the intersection of the two quadrics in C* = (My, My, M3) defined by the
integrals (1.2). Thus, according to a theorem of the algebraic geometry (see e.g.,
[23]), in the generic case this intersection is an open subset of a spatial elliptic curve,
which is birationally equivalent to the plane curve

E= {w2 = Py(2)}, (2.5)

where Py(z) is a polynomial of degree 4 given by the discriminant equation

z—ai 0 0 g1
_ 0 Z— Qg 0 g2 | _ B B B B
P, = 0 0 s o E(z—=A1)(z—X2)(z = A3) (2 — A\g). (2.6)
g1 92 93 l—kz

The curve E can be viewed as 2-fold cover of the Riemann sphere P = CUoo ramified
at the roots A; of Py(2).

In the sequel we assume that the roots A, are all distinct (otherwise E becomes
singular and the corresponding solutions are asymptotic). In the real motion, when
the quadrics defined by (1.2) have a nonempty real intersection, all A\, are either
real or two of them are real and the other two are complex conjugated.

For future purposes it is also convenient to represent the curve E in the canonical
Weierstrass form

W2 =4(Z —e1)(Z —e)(Z —e3), e1+ex+e3=0,
which is parameterized by the elliptic p-function of Weierstrass and its derivative:
d
7 = p(u|wi,ws), W= %p(u]wl,wg).

Here wi,ws are half-periods of p (note that wy = —w1 — w3) and e; = p(w;).
Let o(u|2wi,2ws),o1(u),02(u),o3(u), v € C be the sigma functions of Weier-
strass such that

— = =1,23.
\/{{J(U|W1,W3) €a O’(’U,)7 « ) &y

Then, following V.Volterra [58], we have
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Theorem 2.2.1 The explicit complex solution of the ZV equations (1.1) with the
constants of motion k,l has the form

23:1 Ajattaoa(u) + Ajaprao (u)
Zi:l Asattata(u) + Agaprgo(u) ’

where ug is a constant phase of the solution and

M;(t) = i=1,2,3,  u=0dt+uy, (2.7)

VR

gi .
Aia:—7 :172737 Aaziv :17273747 2.8
((11; _)\a)\/Aa ! ! VAa “ ( )
3 2
9; 0

A, = —— — ko= . (2.9)

i—1 (ai - )\a)Z hy \/()\J — )\z)()\k — /\z)

The parameters of the curve E in the canonical form are given by

ei = 5%()\1)\4 FAM) o= [1080 — AP (A — A2 — Ae)?] TP (2.10)

Remark 1. Note that due to the invariance property o(Au|Awi, Aws) = Ao (u|wi,ws)
the rescaling parameter ¢ can be chosen arbitrary nonzero.

Remark 2. As follows from (2.6), in the limit ¢ — 0 one has {A1,..., \s} —
{a1,a2,as,c}. Assuming, without loss of generality, that \; — a;, Ay — ¢, one can
show that g g

lim —2— =00, lim———=0(j#1

g—0 (CLi — >\z) g—0 (aj — )\1) ('7 7& )

and, therefore,
A1, Az, Ag =00, Ay — =k, Aig=0ia, Asa=1
Then in this limit, the solution (2.7) transforms to

oa(u)

o(u)’

which coincides with the solution for the Euler top equations (2.1).

Mo (t) = pa

a=1,23,

Using the quasi-periodic properties of o1(u),...,0(u) one can show that the
set of solutions (2.7) are elliptic functions of u with the minimal periods 4wy, 4ws
and that they have the same poles ¢, ..., q4 in the corresponding parallelogram of
periods. As a result, the solutions are not single-valued functions on the curve Ey,
but on its 4-fold unramified covering F obtained by doubling the two periods of Ej.
Therefore, the curves Ey and E are isomorphic and can be described by the same
equation (2.2).

According to the Abel theorem, the momenta M;, as functions of u, can also be
written in the form
vt — o =) o= p") 5 —pi) 7(u — pl)
i(u) = s6—— = -

o(u—q1)o(u—q2)o(u —q3)0(u — qa)

Qi

( .
=1,2,3, (211
6’ Y ? Y 9 9 ( )
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where 7(u) = o(uldwi,4ws) is the sigma-function with the doubled quasi-periods,

the numbers p;”,...,p;” are the zeros of M; such that, modulo the period lattice
{4W1Z + 4&)32},
)+ a4t

and 3¢ are certain constants that depend on the periods 4w, only. ‘
The relation between the numbers pg), g and the corresponding points Po(f), Qo

on the "big” curve E is described by the elliptic integrals,

i i Paz
= AP w=a@). Ar =[5

Remark 3. The solution in the form (2.11) was used by Volterra to give a de-
scription of the motion of the gyrostat in space. Unfortunately, the solution (2.7)

does not provide the information about position of poles ¢; and zeros pgj ) of M;(t)
in the above parallelogram of periods. More precisely, the zeros and poles appear as
solutions of transcendental equations, obtained by equating to zero the denominator
and the numerators of (2.7).

For this reason, in the next section we present another, algebraic solution of the

ZV system.

Proof of Theorem 2.2.1 As noticed by Volterra [58], equations (1.1) admit represen-
tation in the following symmetric form

9 9
dt oMy, My) | Sh)

f1, f2 being the integrals (1.2). Here and below (4,7, k) is a cyclic permutation of
the indices (1,2,3).
Now let us set fi(M) = k, fo(M) = I, k,l =const and introduce projective
coordinates z1, ..., z4 by formulas
2

M, =2, i=1,2,3, (21,202321) € CH\{0}. (2.13)
Z4

Substituting (2.13) into equations (2.12) we find

zadz; — zidzg 01, @2)
_ 2.14
dr 3(Zj;2k) ’ ( )

where ¢; are homogenous quadratic forms in z;,

SOZ(217227237Z4) - Zi (fl <Z]-7227Z3) - hl> ) l= 1727

that is,

01 = 22 + 25 + 23 — k23,

g = alzf + agzg + a;;z% — 2912124 — 2Go2024 — 2932324 — lzz. (2.15)
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Lineal combinations of the relations (2.14) also imply

dzi — z:dz O
Z’L Z] Zj ZZ — (()017 SDQ). (2.16)
dr 0(zj,24)
As was also noticed by Volterra, the relations (2.14), (2.16) are invariant with
respect to any linear non-degenerate transformation of z;. On the other hand,
according to a well-known theorem of lineal algebra, there exists a unique transfor-

mation

Ze= Apbs,  T=1,2,34, (2.17)
which reduces 1, 2 to a diagonal form simultaneously:
pr=E 4t e =G Mg (218)

Ar being the roots of (2.5). One easily derives the values of A, in the form (2.8).
Due to the invariance of the relations (2.14), (2.16), in the new coordinates one
obtains

GG =Gl =k = N)GE GG =G =R = M)Gg.  (219)
It was observed in [58] that the system (2.14), (2.16) has the same structure as the

system of differential equations for the four Weierstrass sigma-functions o1, 02, 03, 04
of the complex argument u

oi0; — 0j0; = (ej — €)oo, olo0 —d'o; = —0jop, (2.20)
where dor(u)
, o(u .
- k) = (1,2,3).
7= = (2.9)

Then it is natural to look for the solution of the system (2.19) in the form
o = paoa(u), a=1,2.3, & = pgo(u), u=7t+wug, oO=const, (2.21)

where, without loss of generality, one can set g = 1. Substituting (2.21) into (2.18)
and using (2.20) we obtain the following system for the constants p, €4, 0:

1id = (Nj — M) pipns  pipiolej —e) = pr, (4, 5,k) = (1,2,3). (2.22)

Taking into account the condition e; + e3 + e3 = 0, we obtain the expressions (2.9)
and (2.10). This proves the theorem.

Theorem 2.2.1 actually establishes the following relation between generic solu-
tions of the ZV system and the Euler top, which will be used in the next section.

Proposition 2.2.2 Let M(t) be a solution of the ZV system with constants of mo-
tion k,l and the corresponding roots A1, ...,y defined in (2.6), and let M(t) be the
solution of the Euler equations (2.1) with the parameters ao = Ao, and k = 1,1 = \4.
Then these solutions are related by the projective transformations

> Ma _ !
M, = g T ai — Aa)VDBa (4 — M)V=D (2.23)
T S0 Mo/VBa + 1/ 7

where A; are defined in (2.9).
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Indeefi, the transformation (2.23) is equivalent to the composition of the substi-
tutions M; = &;/(v/—1&4), (2.17), and (2.13). Under this composition the quadrics
(1.2) transform to the homogeneous form

which coincide with the Euler top integrals (2.2) if we set aq = Ao and k = 1,1 = \g1.

Next, since the equations (2.12) are invariant under the transformation (2.23),
the variables M; satisfy these equations with fi, fo replaced by the left hand sides
of (2.24), that is, the Euler equations (2.1).

A numerical example. Consider the motion of the ZV top with
a1 =3, as=4, ag=5, g=(0.5,0.5,0.5)T

and the initial conditions M = (4,4,2)T. Then the constants of motion will be
[ =122, k =36 and up to 1078,

{A1,..., A} = {3.018214867, 3.386547967, 3.98841998, 4.995706073}.

This implies that invariant curve of the ZV top with given initial conditions has two
connected components. We then choose A1, Ao, A3 close to the values of a;, that is,

A1 = 3.018214867, Ao = 3.98841998, A3 = 4.995706073, A4 = 3.386547967.
Then

A = T17.83121275, Ay = 1828.8243593,
Az = 13523.41092, Ay = —33.5664995.

Substituting these values into (2.23), we obtain the following relation between the
trajectories of both systems.

—11.871M; — 0.13731 M5 — 2.4999 x 10~2M5 — 2.5873

M; =0.5 = = _
0.216 06 M7 + 0.13572M5 +4.9891 x 1072M5 + 1.0

0.22006M; + 11.700M5 — 5.0107 x 1072M3 + 1.6300

My =05 L _ -
0.216 060, 4 0.135 72My + 4. 989 1 x 10~2M3 + 1.0

Mo — 0.5 0109 02M; + 0.13416M> + 11.603Ms + 0.619 77
3 20.216 060, + 0.135 72Ms + 4. 9891 x 10—2M5 4+ 1.0

Note that in contrast to the ”physical” Euler top, the parameters \; are not necessarily real
positive.
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2.3 Alternative parametrization of
the ZV solution

Apart from the solution in terms of sigma-functions (2.7), one can give a rational
parametrization of the momenta M; in terms of the coordinates z,w on the elliptic
curve E given by equation (2.5), that is,

w? = Py(2) = —k(z — M) (z — A2) (2 — A3) (2 — \a).

For this purpose we first note that the coordinate w on has 4 simple zeros in
the roots of A1,..., A4 and 2 double poles in the two infinite points of the curve
(denoted as oco_,004), while the coordinate z has 2 simple zeros at the points
O+ = (0,£4/P4(0)) and two simple poles at co_,00. The next proposition de-
scribes the structure of this parametrization.

Proposition 2.3.1 1) The components of momenta M; have the following natural
parametrization in terms of the coordinates z,w on E:

a;w+ U; (2)

. Ui =up2? +uy 0, 1=0,1,2,3, 2.25
w+ To(2) i = uipz” +unz + up, 1 (2.25)

M; =
where oy, u;; are certain constants depending only on the values of the integrals
(1.2), which are determined below in (2.45);

2) The evolution of z is described by the quadrature

e _ dz = dt. (2.26)
W \/=k(z = M) (2 = A2) (2 = A3) (2 — A
Proof. 1t is sufficient to show that the right hand sides of (2.25) has precisely 4 simple
poles and zeros on the curve E, as required by the structure of the Volterra solution
(2.7) or (2.11). Indeed, the zeros of the common denominator and numerators in
(2.7) are uniquely defined by the equations

\/—k(z — )\1)(2’ — )\2)(2 — )\3)(2 — )\4) + UO22’2 + ug1z +ugg = 0,

(2.27)
\/—k:(z — )\1)(2’ — /\2)(2 — )\3)(2’ — )\4) + ui2z2 + w12 + ui0 = 0,

which, in general, lead to algebraic equations of degree 4 in z, whose roots are
z-coordinates of the points Q1,...,Q4, Pl(j), . ,P4(j) € E. Finally, in view of the
analytic behavior of z,w described above, at the infinite points co_, 004+ € £ both
the denominator and the numerators in (2.7) have poles of second order, which
implies that M; are finite at coL. |

Thus, given the values of a;, u;j, the parametrization (2.25) allows to determine
the poles and zeros of the solution (2.11) in an algebraic way. That is, solving the
equations (2.27) and obtaining the points @1, ..., Q4 and Pl(J), - ,P4(J), one gets
the required poles and zeros in (2.11) by calculating the integrals
Podz

w(z)’

Go = AQu), pY) = APY)), where A(P) = /
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Determination of the constants a;,u;;. To calculate these constants, we first
obtain a similar rational parametrization for the solutions M; of the standard Euler
top equations (2.1).

Recall that the latter solutions admit the following irrational parametrization in
terms of the coordinates on the elliptic curve (2.3) (see, e.g., [29])

Mi:k\/((aj—c)(ak—c) A—a; (2.28)

a; —a;)(a; —ag) V A—c’

(4,7,k) =(1,2,3), AeC,
and the evolution of A is given by the equation
A=2y/~(A—a))(A—a2)(A —az)(A —¢).

Note that, according to this parametrization, the squares Mf are rational func-
tions on Ey with a pole at the origin O = A(c) and zeros at the half periods A(a;).
However, due to the irrationality in (2.28), the momenta M; themselves are not
meromorphic on Ey, but on its 4-fold unramified covering E, obtained by doubling
of the both periods of Fy. Then the "big” curve F is also elliptic and is described
by the same equation as Ey. To distingush between the curves Fy and E, we use
different letters, namely

E={w?=—k(z —a1)(z —a2)(z — a3)(z — ¢)}. (2.29)
The curve can be represented in the canonical Weierstrass form
Ey={W?=4(Z —e1)(Z — e2)(Z — e3) = 4Z° — g2Z — g3}, (2.30)
e1+ex+e3=0
by the birational transformation

z=2F o Y (2.31)
z—c (z—c¢)

such that Z(z = ¢) = oo and Z (z = a;) = e;. Substituting (2.31) into (2.30) and
comaring with (2.3), we obtain the following system of equations for ej, e, €3, a, 7y

at+ec = —a(y—er)
atexe = —ag(y—e2)
atec = —az(y—es)
eirt+ext+es = 0
—A(y—e1)(y—e2)(y—e3) = 1,
which yields
€ = P(Z2 +cXq — 3(ajak + Cai))a (iaja k) = (17 2, 3)7 (232)

v =p(By — 2c81 +3c), a=p(2cEy — %) — 3%3), (2.33)
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where
Y1 =a1+as+as, Yo =aias+ azai + asas, 3= aijasas, (2.34)

—1/3

p=3[2(c— ar)’(c — az)(c — as)”] .

Since the ”big” curve E' is obtained by doubling of the two periods of Ep, it can be
written in the same form (2.30) but with different coordinates Z, W:

E= {Vv2 :4(2—61)(2—62)(2—63)} (2.36)
These coordinates admit parameterizations
. - ) ZW) 4z
Z=pu|%,Q), W=¢pul|,Q), u—/ 7 (2.37)

where 201 = 4wy, 203 = 4ws are the periods of E2. Then p(€2; | Q1,Q3) = e;.

Proposition 2.3.2 The momenta M; of the Euler top admit the following rational
parameterizations:
1). in terms of the coordinates Z,W of the canonical curve (2.36):
72 — ZSiZ + ejej + ee — ejeg
W )

M; = B

B = ks/Q(C —a1)(c—az)(c—a3)
Z V0 —aj)(ai —ap)

where e; are given by the expressions (2.32),

(2.38)

(i,5,k) = (1,2,3), (2.39)

2) and in terms of the coordinates z,w on the degree 4 curve (2.29):
- k

" 2w Vv —(a; —a;)(a; — ag)

+ c(ajar — a;aj — ajay) + ajasas) . (2.40)

[(aj + ar —a; — )2 + 22(ca; — ajay)

Proof of Proposition 2.3.2 1). As follows from the irrational parametrization (2.28),
on each of the 4 copies of the small curve Ej the function M; has a simple pole at
the origin of Ey and a simple zero at the half-period w; and does not have zeros or
poles elswhere. It follows that on the big curve E = C/{2Q,Z + 2Q5Z} the function
M; has
1). 4 simple poles at u = 0,1, Q3,1 + Qs;
2). 4 simple zeros obtained from these poles by shifting them by the quarter-period
Q;/2 = w;. In particular, M; has zeros at
Q1 31 30
—, —, — +Q3, — +Q 241
2’ 9 ' 9 + 423, 2 + 423, ( )
as depicted on Figure (2.3) (a).

2As usual, it is assumed that Qo = —Q; — Q3.
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Note that, in view of the pairness p(—u) = p(u), we have

0 30 O 30
— | = — — 4+ Q3] = — +Q

which means that the pair of points {u = Q;/2, v = 3Q;/2} have the same Z-
coordinate, as well as the pair of points {u = Q1/2 + Q3, u = 3Q1/2 + Q3}.

Now we want to find a rational expression for M; in terms of Z, W that has the
above zeros and poles. It is seen easily that such expressions must have the structure

i = 5y (Z - 9(91/2))(%/— P(Q21/2 + Q3))

and similar expressions for My, M3. Indeed, when u coincides with one of the above
four quarter-periods, the numerator of (2.42) has a simple zero and, as a second
order polynomial in Z, it does not vanish elsewhere. Next, as seen from (2.36), the
denominator W has simple zeros when Z = ey, e, e3, that is, when u = Oy, Q3, Q; +
Q3 and does not vanish elsewhere. Finally, take into account that in a neighborhood
of u=0

, B1 = const (2.42)

_ 1 - 2
Therefore, at u = 0 all the quotients (2.42) have a simple pole as well. As a result,
they have the required zeros and poles on the curve F.

Next, using the formulas of multiplication/division of the argument of p by 2
(see, e.g., [39]), we find

o(0/2), p(0/2+ )} = {er £ Vier—e) (1 —ea))  (244)

and similar expressions for other quarter-periods on E. Substituting these expres-
sions into (2.42), we obtain the fractions in (2.38).

Next, the constants ; are chosen such that the expressions (2.38), (2.39) satisfy
the momentum and energy integrals (2.2) for any Z € C. Namely, in view of the
expressions (2.32) and the equation (2.30) of the curve E,

3 5 _ _
ZM2 = k2 (2(c — a1)(c — az)(c — az))*/? Z (Z4: 46;(23 i O()Z2)2

i = \ai —aj)(a; —ag
=k?(2(c—a1)(c—az)(c — a3))1/3 3p,
3

74 _ An-e. 73 72
Z a;M? = k* (2(c — a1)(c — az)(c — ag))l/?’ Z a;Z" —4daie;Z2° + O(Z7)
‘ i—1

(ai — aj)(a; — ax)W?

= k2 (2(c — a1)(c — as)(c — a3))1/3 3cp,
which, due to (2.35), equal k? and [ respectively.

2). Making in the parametrization (2.38) the substitution (2.31) and taking into
account (2.32), (2.33), after simplification we get the parameterizations (2.40) in
terms of the coordinates z,w of the curve (2.3). The proposition is proved. |
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Real part of the parametrization for the Euler top. Due to the structure
of formulas (2.40), when a;,c¢ € R, the momenta M; cannot be all real when the
coordinate z is real.

It appears that the two real commented components of the trajectory M(t) C
R3 are parametreized by two loops R4,R_ on E, which, under the projection
(z,w) — z, are mapped to an oval R on the complex plane z. Under the Abel
map A : E — C = {u}, the loops Ry pass to two real lines passing through some
of the quarter-periods €2;/2 = w;, whereas the branch points z = a;, 2 = ¢ pass to
the half-periods 0, Qq, Qs, w3, that is, the poles of M;3.

In particular, if a; < ¢ < ag < a3, the real trajectory M(t) has 2 components, on
each of them the momentum M; does not vanish, whereas Ms, M3 has two simple
zeros. These components are images of the ovals on the upper and lower z-sheets
of E that embrace the branch points z = a;,z = ¢, as shown in Figure 2.3.1 (b).
The white dots on the ovals stand for pairs of real zeros of Ms(z) and complex
conjugated zeros of M3(z). On C = {u} these ovals correspond to the two (dashed)
lines parallel to the real axis, as shown in Figure 2.3.1 (a). These two lines pass

through zeros of My, M3, but do not contain neither the zeros (2.41) of Ms, nor the
common poles.

o
o

e ®
w
o
° ®
o [ )

x L 2
w0y

Figure 2.3.1: a) The big curve E as a 4-fold unramified covering of Ey (grey area)
on the complex plane u. The zeros and poles of M; are represented by black dots
and crosses respectively. b) The big curve E as a 2-fold ramified covering of C = {z}
and the oval R, which corresponds to 2 real trajectories M (t) for the case a; < ¢ <
as < as.

Now, in order to calculate the coefficients «;, u;2, u;1, u;p in the rational
parametrization (2.25), we consider the momenta M; above as the image of the
projective transformation M + M described by Proposition 2.2.2 and set a; =
Ai,¢ = Ag. Then, substituting the,parametrization (2.40) for M with k = 1 into

3This contrasts to the irrational parametrization (2.28), when real trajectories M(t) correspond
to segments of the real aris on the complex plane \.



48 2.4. Determination of the motion of the gyrostat in space

formulas (2.23), we obtain the parameterizations (2.25) for the momenta M; with

N

)\,3 + )\»y — Ao — M
VAa(a; — )‘a)\/_()‘a - AB)()‘a - )‘7)
3
A — Aghy
uil = 2gi/ —Ay
Z:: 2v/Aq(a; — )‘oc)\/_(/\a —A8)(Aa — Ay)
2 (A8 — Aads — Aad ) A+ e,

Z 2\/7(‘12 a)\/_()‘a - /\ﬁ)()‘a - Av)

o gi
oy = 7_ Ve (2.45)

— As 4 Ay — Ao — A
e Z2F\/ Ao = Ag)(Ra = Xy)

Aads — Aghy
=2y/-A :
U1 422%¢ 0

)\,3)\ - A )\5 — Ao ))\4+/\a)\,3)\7
Upo =
R e =L

where in summations (¢, 8,7v) = (1,2, 3) and, as above,

3
:ZL_,{
‘ (ai_)\a)Q .

=1

)

3
Ui = gi/ —A\y Z 5
a=1

A numerical example. For the ZV gyrostat with given initial conditions param-
eterization for the momenta M; has the form

~ —1.2937w + (0.10912 — 41.547) z — (2.2188 x 1072 — 5.52061) 2% — (0.10269 — 76.5964)
' w— (021571 — 1.341 17) z + (4. 3862 x 10-2 — 0.176 86i) 22 + (0.203 — 2. 843 2i)

~0.81500w — (9.298 — 0.85747i) z + (1.8906 — 0.11466i) 22 + (8. 750 1 — 1. 577 8)
2T W= (021571 — 1.3411i) z + (4.3862 x 10~2 — 0.176 86i) 22 + (0.203 — 2. 843 2i)

~0.30989w — (0.106 62 + 19.6787) 2 + (2.1680 x 102 + 2.776 47) 2% + (0.100 34 + 35. 538()
S W= (021571 — 1.3411i) z + (4.3862 x 102 — 0.176 861) 22 + (0.203 — 2. 843 27)

2.4 Determination of the motion of the gyrostat in space

The main objective of this section is to determine the motion of the gyrostat in the
space by making use the parameterizations (2.25) and the relation (2.26).



2. Explicit solution of the Zhukovski—Volterra gyrostat

49

Let us choose a fized in space orthonormal frame frame O ejeq, e3 such that the
third axis is directed along the constant momentum vector M of the gyrostat, and
0,1, ¢ be the Euler angles of nutation, precession, and rotation with respect to this
frame. Then, according to the definition of the angles,

M, = —|M|sinfsin¢, My =|M|sinfcos¢p, Ms= |M]|cosé. (2.46)

These expressions allow to determine trigonometric functions of  and 1 in terms
of M; and, in view of the solution (2.7), as functions of time ¢.
Next, as follows from the Euler kinematical equations (see e.g. [62])

—w1 €OS P + wa sin @
sin 0 '

=

Substituting here the expressions for cos,sint from (2.46) and using |M| =
k =const, we find

= _wiMh +wpMy w1+ walMy

k sin? 0 M? + M2

Next, expressing w; = a;M; — g;, i = 1,2 and fixing the value [ of the energy integral
in (1.2), we obtain

a1 My 4 agMy — g1 My — g2 My —k:l + g1 My + gaMa + 293 M3 — agM3
k2 — M;»? k2 — Mé)’
[ — a3k2 + g1 M1 + goMs + 2g3 M3 B
K2 — M2

=~k

= —k kas. (2.47)

This form suggests introducing new angle ¢ = v + kast. In view of the relation
(2.26) between dt and dz, we then get

1 —a3k® + g1 My + gaMy + 293 M3 dz
(k — Ms)(k + Ms) V= =) (2 = A2)(z = A3) (2 — M)
(2.48)

dyp =

Now, in view of the parametrization (2.25) for M; in terms of z, w, we see that (2.48)
is a meromorphic differential of the third kind on the big elliptic curve F with

1). 4 pairs of simple poles Df, . ,Df given by equations M3 = 4k, that is, their
z-coordinates are the solutions of

(043 F k:)\/—k(z — )\1)(2’ — /\2)(2 — )\3)(2 — )\4) = Ug(z) F kUQ(Z). (2.49)

Using the expressions (2.45) for the coefficients of U;(z), Up(2), one can also
show that the residues of di at Df are £+/—1.

2). 4 simple zeros as the zeros of the numerator | — ask? + gy My + go Mo + 293 M3,
and 4 simple zeros 1, ..., Q4, which are the poles of Ms.
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There are no other poles or zeros of d?;. Note that the conjugated poles DZT" and
D, have different z-coordinates, that is, they are not symmetric with respect to the
involution w — —w on FE.

It follows that the latter differential can be represented as a sum of 4 elementary
differentials of the third kind:

d& = \/—71(91 + -+ (), (2.50)

where (2; has only simple poles at DZ?JE with the residues +1.

Now we use the following classical result (see e.g. [39]): Let f2xy be the
meromorphic differential of the third kind on an elliptic curve E having a pair
of simple poles at X,Y € FE (only) with the residues +1 respectively. Then, for
u=A(P) = D dz with a fixed basepoint Py € E, one has

—JPy w
Doy mlog S AXY) o (AX)
/PO QX’Y_IOgG(u—A( ))+ —|—1 gO(A(Y)), (2.51)

where the constant factor v is determined from the condition that both sides of
(2.51) have the same periods on E.

Let now A denote the Abel map with the basepoint Py = (A4,0) on the degree
4 curve (2.5) and set di = A(DF). Let also o(u) = o(u | Q1,Q3). Integrating the
differential (2.50) and using formula (2.51), we can express the new angle 1 as the
following function of wu:

- J(u—d+)---a(u—d+) B o(dy)---o(dy)
w_\/jlloga(u—di_)---a(u—d;) +Vu+C, C_\/?llogo(d%)---a(zl}).)
2.52

In order to find the factor V', we use the quasi-periodicity property o(u + 2€;) =
—e21:(ut ) 5 (4, 1; being the quasi-period of the Weierstrass function ¢(u) and,
changing in (2.52) u — u + 2, get the condition

M 4
152/ d = 2m Z(d;r—d;)—i-QQlV.
A -
7j=1

4

Here the value of the integral Z can be calculated numerically by considering M; in
(2.48) as functions of z,w, that is, by using the parametrization (2.25). Once Z is
known, we also calculate

4
V= o @2 m Y - 7).
j=1

As a result, for the original precession angle ) we obtain

oV _

ou—dy)-olu—dy) v_pag)uic
. 2.53
olu—df)-otu—df) " (2:53)
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This formula allows to express
cosy = (eﬁ¢ + e_‘/jw> /2,sinvy = (e\/jw — e_\/jw) /(2v/—1)

as meromorphic functions of the complex variable u and, therefore, the components
of the unit vectors e, es, e3 in the body as functions of time ¢.

Remark 4. The above procedure follows the same lines as that first used by K.
Jacobi [37] in calculation of the rotation matrix for the Euler top. As I understood,
in [58] Volterra used similar approach, however, as was mentioned in Introduction,
a method of explicit calculation of the poles dli and of the constant angular velocity
V in (2.53) was not indicated there.

In given chapter we presented a new rational parametrization of the classical
Euler top in terms of coordinates z, w of the appropriate elliptic curve (Proposition
2.3.2). It was observed that the real trajectories M (t) do not correspond to real z,
but to oval on the complex plane z. In this sense, this parametrization is essentially
complex.



Chapter 3

Bifurcation analysis of the
Zhukovskii-Volterra system
via bi-Hamiltonian approach.

3.1 Introduction

The main goal of Chapter 3 consists of the bifurcation analysis for the ZV system
(1.1,1.2), including analysis of stability of solutions. To be more precise, we state
the problem as follows:

1) find the equilibrium points of the system;

2) check the non-degeneracy condition for the equilibrium points in the sense of
the singularity theory of Hamiltonian systems;

3) determine the types of equilibrium points and verify whether they are stable or
not;

4) do bifurcation analysis of the ZV system, i.e., construct and analyze the bifur-
cation diagram of the momentum mapping given by the Hamiltonian H and
the integral F;

5) describe topological type of common levels of integrals {H = hg, F' = fy} for
different values of parameters hg, fo; find out how many connected components
this level contains and how it transforms if the point (hg, fo passes through
the bifurcation diagram.

The result of this chapter was published in ([5].

In the case of two degrees of freedom, similar problems have been discussed in
many papers (for references see, for example, [11]). Here we deal, in fact, with
just one degree of freedom, but the problem still remains quite interesting and
substantial. Although all calculations can be done directly, we propose to proceed
ina different way: we use the fact that the ZV system is bi-Hamiltonian and apply
new techniques for analysis of singularities of bi-Hamiltonian systems, which have

02
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been recently developed by A. Bolsinov and A. Oshemkov in [12]. The ZV system
can serve as a very good illustrating example for this new method.

Thus the goal of this work is double: to study the system and to demonstrate
some new techniques. It is a remarkable fact that using the bi-Hamiltonian property
makes it possible to answer all the above questions practically without any compu-
tations (however, all the results of this work presented below have been also checked
by independent direct computation).

These techniques have been developed in [12] to study the case of multidimen-
sional integrable systems where other methods are less effective because of compu-
tational difficulties. In the case which we discuss below, the dimension of the system
is just 3, and all the results can, of course, be obtained by more direct methods.
However, Zhukovskii-Volterra system is a very good example to illustrate new tech-
niques from [12] and to show how some very natural and classical constructions in
the theory dynamical systems are reflected in the algebraic mirror.

3.2 Bi-Hamiltonian structure for the
Zhukovski-Volterra system

Lax representation with spectral parameter and bi-Hamiltonian structure for
Zhukovski-Voltera system is the property, which helps to hold bifurcation analysis
practically without any calculation.

We assume a1 < a2 < as.

The family of compatible Poisson brackets is:

s =stu b+ {sds =3

The bracket {-,-}s is given by the skew-symmetric matrix:

0 sM3 +a3Ms — g3 —sMy — a M + g2
As = | —sM3 — agM3 + g3 0 sMy + a1 My — g1 (3.1)
sMy —agMs + g2 —sMy — a1 My + g1 0

First of all we describe the algebraic type of these brackets and the corresponding
Casimir functions, assuming that g; # 0.

Proposition 3.2.1 The bracket {-,-}s is semisimple except for three values of the
parameter s, namely s = —a;, i = 1,2,3. Moreover, for s € (—oo, —a3)U(—ay,+00)
the corresponding Lie algebra is isomorphic to so(3), whereas for s € (—ag, —ag) U
(—ag, —ay) it is isomorphic to sl(2). The Casimir function for {-,-}s is

3 3

1
fo=5 D (st a)MI £ g
i=1 i=1
If s = —a,;, then {-,-}; is diffeomorphic to a constant Poisson bracket. To see
this for s = —ag, for example, it is sufficient to consider the following (everywhere

non-degenerate!) change of variables:

My =My, My= My, M;z= f_q,(Mi, My, M)
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In this coordinate system, we obviously have

0 —g3 O
As = g3 0 0
0 0 0

In particular, the singular set S_,, for each of these three exceptional brackets
is empty.

3.3 Set of critical points and equilibria
Consider the integrals

1
H(M) = §(Q1M12 + asM3 + azM3) — (g1 My + goMs + g3 M)

(3.2)
F(M) = M{ + M3 + M3
of our system and define the momentum mapping
® = (H,F) : R3(My, My, M3) — R*(H, F) (3.3)

Consider the set of critical points of ®:
K ={M = (M, My, M3) € R* | dH(M) and dF (M) are linearly dependent}

According to the general scheme (Theorem 1), this singular set can be characterized
as the union of the singular sets for all the brackets from this family. The singular
set for a particular Poisson bracket { , } consists, by definition, of those points
where the rank of Ay is less than 2, in other words, the matrix As just vanishes:
As = 0. Notice that this may happen only for real values of the parameter s.
Thus, we immediately obtain the parametrization for for the singular set:

Theorem 3.3.1 The critical set K consists of the points Mg with coordinates

Mi(s) = Sfai, i=1,2,3, seR\{—ai,—as —as} (3.4)

It is easy to see that for s = 400 we obtain, in fact, the same point M =
(0,0,0) and moreover the two families of critical points corresponding to the in-
tervals (—oo, —a3) and (—aj,+00) are smoothly attached to each other at this
point. Thus, we have 3 families of critical points (connected components of K)
for s € (—o0, —az) U (—a1,+0), s € (—ag, —az), and s € (—ag, —ay).

It is worth noticing that the pencil Ay, A € R consists of three exceptional
brackets and three families of semisimple brackets. The three connected components
of K correspond exactly to these semisimples families.

Notice that the standard scheme for describing K consists of the analysis of the
Jacobi matrix of ®, whereas Theorem (3.4) has allowed us to describe it without
any computation.

Since the symplectic leaves are two-dimensional, all point of K are common
equilibria of the Zhukovski-Volterra system. “Common” means that at x € K, the
Hamiltonian vector fields generated by H and F' both vanish.
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3.4 Non-degenaracy and topological types of equilibria

The Zhukovski-Volterra system “lives” on a 3-dimensional Poisson manifold and,
being restricted to symplectis leaf, can be treated as a Hamiltonian system with 1
degree of freedom. The non-degeneracy condition for such systems becomes very
simple and can be formulated as follows (in this case “non-degeneracy” in the sense
of integrable systems coincides with that in the sense of the Morse theory).

Definition 9 Let x be an equilibrium point for a Hamiltonian system with a Hamil-
tonian H given on a 3-dimensional Poisson manifold (M, .A) and rank A(z) = 2. This
point is said to be non-degenerate if the Hessian of the restriction of H onto the
symplectic leaf through « is non-degenerate, i.e. det d? (H \O(x)) # 0. The equilibrim
point is elliptic if det d (H|o(,)) > 0 and hyperbolic if det d® (H|p()) < 0.

Notice that a non-degenerate equilibrium point is stable if and only if it is elliptic.

We are going to verify the non-degeneracy condition and stability by using
Proposition ?7. In our particular case its statement becomes much simpler. For
each critical point M we consider two objects: the kernel of A and the kernel
of any other bracket A;, t # s. We can choose, for example, A, and assume,
that the kernel at point M, is generated by vector &. Clearly, Ker A, = R3 and
Ker Ay is one-dimensional. It is important that R3 carries the natural structure of
the Lie algebra gs defined by As. The following statement is just an adaptation of
Proposition 77 to our particular situation.

Proposition 3.4.1 M, is non-degenerate if and only if £ € gs is semisimple.
Moreover, My is stable if and only if & is of elliptic type.

It is easy to see that the kernel of A, at the point M; is generated by My itself,
the commutator in gg is given by (3.1) where the constant terms g; are omitted. In
other words, gs is the space of skew-symmetric matrices with the commutator given
by

[X,Y]s=X(sE+B)Y —Y(sE+ B)X.

Thus the question is to determine the type of the matrix

0 g3 __92
B s+as 89+a2
— 93 _91
MS - s+as 0 s+aq
g2 _ 9 0
s+ao s+aq

in this Lie algebra.
We use the following simple criterion.

Proposition 3.4.2 Let g be a semisimple real Lie algebra of dimension 3 (i.e.,
either so(3), or sl(2)), and & € g be one of its elements. Let ( , ) be the Killing
form on g. Then

1. & is elliptic if (£,€) < 0;
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2. & is hyperbolic if (£,€) >0
3. € is nilpotent if (£,€) = 0.

It is easy to see that (up to a constant positive factor) the Killing form form g
is defined by
(X,Y); =Tr X(sE + B)Y(sE + B)

Hence, we immediately obtain the following description for the equilibrium points
of the Zhukovskii—Volterra system.

Theorem 3.4.3 The equilibrium point My given by (3.4) is non-degenerate if and
only if

3
Mg, Mg)s = —
(Mg, M) (s+a1)(s+a2)(s+ as) S—"az
=1
Moreover, this point is stable if and only if the above expression is negative.

Notice that for the first family of critical points, i.e., for s € (—o0,—a3) U
(—a1,+00) the Lie algebra is isomorphic to so(3) and all of its elements are ellip-
tic. The same conclusion follows, of course, from Theorem 3.4.3 because ¢(s) =
(Mg, M) s is obviously negative for all s € (—o0, —a3) U (—a1,+00). On the other
two intervals the situation is opposite: the function ¢(s) = (Ms, My)s changes sign
and therefore the point Mg changes its stability type. The stability intervals are
those where ¢(s) < 0.

3.5 Bifurcation diagram.

To get a parametric description of the bifurcation diagram ¥ = ®(K) C R*(H, F)
we simply substitute the parametric equations (3.4) of K to (3.2).

Theorem 3.5.1 The bifurcation diagram of the momentum mapping (3.3) is given
parametrically by

The result is shown in Figure 3.5.1. The image of the momentum mapping is
inside of the curve G;. The boundary of the momentum mapping (i.e., the curve
G1) is the image of equilibria points corresponding to s € (—oo0, —a3) U (—az, +00).
According to Theorem 3.4.3 all of them are stable. The two other curves Gs and Gs
correspond to s € (—oo, —a3) U (—ay, +00). The lost of stability happens exactly at
those points where these curves have cusp singularity.
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Figure 3.5.1: Bifurcation diagram of Zhukovskii-Volterra system

The bifurcation diagram divides the image of the momentum mapping into three
zones denoted in Figure 3.5.1 by Roman digits I, I and III. Based on the above
presented analysis we can now determine how many connected components each
common level of integrals H and F contains. If (ho; fo) € I, then the level H(M) =
ho; F(M) = fo is connected and represents a closed trajectory of the system. If
(ho; fo) € II, or 111, then the level H(M) = ho; F(M) = fo is disconnected and
contains two periodic trajectories.

Also it is not hard to see if (ho; fo) belongs to the unstable part of the curve
vi,© = 2,3, then the level H(M) = hg; F(M) = fy represents a eight-figure curve,
i.e., consists of a hyperbolic equilibrium point and two asymptotic trajectories.



Chapter 4

Separation of variables and
explicit theta-function
solution of the classical
Steklov—Lyapunov systems: A
geometric and algebraic
geometric background.

In the Chapter 3 we revise the separation of variables and explicit integration of
the classical Steklov—Lyapunov systems, which was first made by F. K&tter in 1900.
Namely, we give a geometric interpretation of the separating variables and, then,
applying the Weierstrass root functions, obtain an explicit theta-function solution
to the problem. All results of this chapter were presented in ([25]).

The motion of a rigid body in the ideal incompressible fluid is described by
the classical Kirchhoff equations (1.4). Note that this system always possesses two
trivial integrals (Casimir functions of the coalgebra e*(3)) (M, p), (p,p) and the
Hamiltonian itself is also a first integral.

Steklov [52] noticed that the classical Kirchhoff equations are integrable under
certain conditions i.e., when the Hamiltonian has the form (1.5). Under the Steklov
condition, the equations possess fourth additional integral

3
1
Hy= 53" (Kg — Wb Kope + v2(bg — 67)2p§> . (4.1)
a=1
Later Lyapunov [55] discovered an integrable case of the Kirchhoff equations whose
Hamiltonian was a linear combination of the additional integral (1.10) and the two
trivial integrals. Thus, the Steklov and Lyapunov integrable systems actually define
different trajectories on the same invariant manifolds, two-dimensional tori. This

fact was first noticed in [32].

o8
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In the sequel, without loss of generality, we assume v = 1 (this can always be
made by an appropriate rescaling p — p/v).

The Kirchhoff equations with the Hamiltonians (1.5), (4.1) were first solved
explicitly by Kotter [38], who used the change of variables (K,p) — (z,p):

224 = Ko — (bg + by)Da a=1,2,3, (o,8,7) =(1,2,3), (4.2)
which transforms the Steklov-Lyapunov systems to the form
2=2xBz—Bpx Bz, p=px Bz, B = diag (b1, ba, b3) (4.3)

and, respectively,
2=pxBz, p=px(z—Bp). (4.4)

Kotter implicitly showed that the above systems admit the following Lax repre-
sentation with 3 x 3 skew-symmetric matrices and a spectral parameter

L(s) =[L(s),A(s)], L(s), A(s) € so(3), seC,

4.5
L(S)ozﬁ = 50467( s — b’Y (ny + sp,y)> , ( )

where €44, is the Levi-Civita tensor. Equations (4.3) and (4.4) are generated by
the operators

ga
A(8)ap = %\/(S —ba)(s — bg) byzy resp.

A(8)as = apyy/ (s — ba) (5 — bg) by,

(4.6)

The radicals in (4.5)-(4.6) are single-valued functions on the elliptic curve &, the
4-sheeted unramified covering of the plane curve & = {w? = (s —by)(s—ba)(s —b3)}.
For this reason, the Lax representation has an elliptic spectral parameter.

Writing out the characteristic equation for L(s), we arrive at the following family
of quadratic integrals

3
F(s) =D (5= by)(zy + spy)> = 15" + Jos® + 2sHp — 2H (4.7)
=1

where

Hy=(sB2), Hy=(n2) —(Bap), h=20p)- (Bop), Ji=().
(4.8)
It is seen that under the Kotter substitution (4.2) the functions Ji, Jo transform
into invariants of the coalgebra e*(3), whereas the integrals Hi(z,p), H2(z,p) (up
to a linear combination of the invariants) become the Hamiltonians (1.5),(4.1).
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4.1. Separation of variables by F. Kotter.

4.1 Separation of variables by F. Kotter.

The explicit solution of the Steklov—Lyapunov systems in the generic case was given
by Kétter in the brief communication [38], where he presented the following scheme.

Let us fix the constants of motion, then the invariant polynomial (4.7) can be
written as

f(g) = 60(8*61)(8*62)(8*03), Cp,Cly...,C3 = const. (49)

Assume, without loss of generality, that b < bs < b3. Then for real z,p :

Proposition 4.1.1 The roots c1, co, c3 are either all real or 2 of them are complex
conjugated. If co is real, then it belongs to the segment [by, bs].

Proof. Indeed, setting in F'(s) s = c,, we obtain

3
Z )(2y + capy)? = 0. (4.10)
v=1

If z;,p; are real, then (z, + cod'vy)2 are all non-negative. Moreover, since zy + capy
are not integrals of the motion, at certain time their squares are all positive. Hence,
the above sum can be zero iff by < ¢, < bs. This holds for any real ¢,. O

Proposition 4.1.2 In the real case, the separating variables A1, Ao are also real and
A € [bl,bQ], Ao € [bQ,bg].

Next, when no one of ¢, coincides with by, bo, b3, the level variety of the four
first integrals of the problem (given by the coefficients at 53, s2, s, s°) is a union of
two-dimensional tori in R® = (z,p). We restrict ourselves to this generic situation,
excluding the other cases, which correspond to special motions.

Let A1, Ay be the roots of the equation

3
Sy o = (1,2.3), (4.11)
i=1
where, when all ¢, are real,
Al € [bl, 61] , A2 € [63, bg] . (4.12)

Then for fixed cg, c1, co, c3 the variables z,p can be expressed in terms of i, Ay in
such a way that for any s € C the following relation holds (see formula (7) in [38])

= (ca—cp)(ca—cy) | (M—=bi)(Az—ca)  (A2—bi)(A1—ca)
zi + 8pi = \/co—— ;
A—ca)(A2—ca)
(A1 = o) z e

(ca—cg (Ca cy)

T; Z(S—ca)\/*()Q*CQ Y(A2—ca) ( Vo) V/o2)P(\) >

(4.13)
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where

DN =A=b)A=b2)(A—=b3), YN =A-c)A—c2)(A—¢c3),  (4.14)
%(Al—b»(xz—b)

V(b = by) (b — by)

(i,4.k) = (1,2,3), (o, B,7) = (1,2,3).

(4.15)

T; =

Setting in the above expression s — oo and s = 0, one obtains the corresponding
formulas for p;, z;.

Note that for real z;, p;, in the case (1) (all ¢, are real), in view of the condition
(4.12) all the expressions under the radicals in (4.13) are non-negative. In the
rest of the cases the roots can be complex. For any o = 1,2,3, the branches of
vV —(A1 — ¢a) (M2 — ¢q) in the numerator and the denominator of (4.13) must be the
same.

Next, the evolution of A1, As is described by the quadratures

dX dA
! + 2 =6 dt,
A1 dA A d)\ '
10A1 20Ny = 5y dt,

VR(A1) \/R A2)

R(\) = —B(\(\)

with certain constants 1, 62 depending on the choice of the Hamiltonian only. Note
that the paper [38] does not describe explicitly this dependence, which can be found
n [14], [57].

The above quadratures rewritten in the integral form

/Ald)\+ )\2L:u1
x 2RO e 2RO ’ (4.17)

/Al Ad\ N A NdA y
_— —— = U2,
v 2VEO) e 20ROV
up = 01t + u1g, uo = dat + usp, (4.18)

which represent the Abel-Jacobi map associated to the genus 2 hyperelliptic curve
p? = —®(\)p()\). Inverting the map (4.17) and substituting symmetric functions of
A1, A2, i1, o into (4.13), one finally finds z, p as functions of time.

Everyone who had read paper [38] might be surprised by how Kétter managed to
invent the intricate substitution (z,p) — (A1, A2, ¢, c1, 2, ¢3) and to represent the
result in the symmetric form (4.13). Unfortunately, the author of the paper gave no
explanations of his computations. Nevertheless, it is clear that behind the striking
formulas there must be a certain geometric idea, which we try to reconstruct in the
next section.
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4.2. A geometric background of Kotter’s solution.

4.2 A geometric background of Kotter’s solution.

Let (21 : z2 : 3) be homogeneous coordinates in P? defined up to multiplication by
the same non-zero factor. Consider a line [ in P? = (z1 : x5 : 3) defined by equation

Y121 + Yoo + ysxz = 0.

Following Pliicker (see e.g., [31]), the coefficients yi,y2,y3 can be regarded as ho-

mogeneous coordinates of a point in the dual projective space (IF’Q)*. Now let

I1,ly be two intersecting lines in P? with the Pliicker coordinates (y§1),y§1),y§1)),

2 2 2
(2,48, ).

Then, for any constants A, u € C not vanishing simultaneously, the linear com-
bination )\yél) + uyg) are also Pliicker coordinates of a line [, € P2. Hence, we
arrive at an important geometric object, a pencil of lines in P?, i.e., a one-parameter
family [y ,. It is remarkable that all the lines of a pencil intersect at the same point

P € P2. The point P is called the focus of the pencil.

Theorem 4.2.1 ([31]) Let Iy, be a pencil of lines in P? defined by Pliicker coor-

dinates )\yél) + ,uy,(f), (X : pu) € P. Then the homogeneous coordinates of the focus

are

1) (2 1) (2 1) (2 1) (2 1) (2 1) (2
P=(é)y:(),)—y:(),)yé)ryi)yé)—yé)yi)ryi)yé)—yé)?ﬁ))-

Next, consider the family of confocal quadrics in P?

Q(s):{ IR :0} (4.19)

S—b1 S—bg S—bg

and a fixed point P = (X; : X2 : X3). Then one defines the spheroconical coordi-
nates A1, Ay of this point (with respect to Q(s)) as the roots of the equation

Xt X3 X3

)\fb1+)\fb2+>\fb3:0'

Now, going back to the Steklov—Lyapunov systems, we make the following ob-
servation.

Proposition 4.2.2 The separating variables A1, Ao defined by formula (4.11) are
spheroconical coordinates of the focus P of the pencil of lines in P? with the Pliicker
coordinates z + sp = (z1 + sp1 : 22+ Spa : 23 + sp3), s € P with respect to the family
of quadrics (4.19).

Proof. According to Theorem 4.2.1, the homogeneous coordinates of the focus P
are

(z2p3 — 2z3p2 @ 23P1 — 21P3 © Z1P2 — 22D1) , (4.20)

hence, the spheroconical coordinates of P with respect to the family (4.19) are
precisely the roots of the equation (4.11), i.e., A1, Ao. O
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Note also the following property: for a = 1,2, 3, the line ¢, with the Pliicker
coordinates z + c,p is tangent to the quadric Q, = Q(cq). Indeed, setting in the
right hand side of (4.7) s = ¢4, we obtain

3

> (ca = bi)(zi + capi)* =0,

=1

which represents the condition of tangency of the line £, and the quadric Q.

As a result, the following configuration holds: the three lines (1, 4o, 03 in P?
intersect at the same point P and are tangent to the quadrics Q1, Q2, Q3 respectively.
An example of such a configuration is shown in Fig.4.2.1.

It follows that a solution z(t), p(t) defines a trajectory of the focus P on P? or
on S? = {x% + x% + x% = 1}, and it natural to suppose that the Steklov—Lyapunov
systems define dynamical systems on the sphere. Indeed, some of these systems were
studied in [57] and were shown to be related to a generalization of the Neumann
system with a quartic potential.

Figure 4.2.1: A configuration of tangent lines in R? = ( X; = %, Xo = %) for the
case by < ¢1 < by < c9 < c3 < bz, when the quadrics (), are two ellipses and a

hyperbola.

In the sequel our main goal will be to recover the variables z and p as functions
of the spheroconical coordinates of the focus P, that is, to reconstruct the Kotter
formula (4.13). Obviously, the solution is not unique: to each pair (A1, A2), \p #
b1, b, by there correspond 4 points on P2, and for each point P that does not lie on
any of the quadrics Q(c,), 22 = 8 different configurations of tangent lines /1, £2, 3
are possible (Fig.4.2.1 shows just one of them). Thus, under the above generality
conditions, a pair (A1, A2) gives 32 different tangent configurations.

Reconstruction of z,p in terms of the separating variables. Let (P?)* =
(Gy : Gy : G3) be the dual space to P? = (z1 : z2 : z3), (G; being the Pliicker
coordinates of lines in P?). It is convenient to regard G; also as Cartesian coordinates
in the space (C*)* = (G1,G2,G3). The pencil o(P) of lines in P? with the focus
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(4.20) is represented by a line in (P?)* or by plane
m = {(z2p3 — 23p2)G1 + (23p1 — 21p3) G2 + (21p2 — 22p1)G3 = 0} C (C?)*.

Consider the line 5(P) = {2+ sp|s € R} C (C3)*. Obviously, {z + sp} C 7. Now let
us use the condition for the three lines ¢1, {5, {3 defined by the points z+c1p, z+ cap,
z+ c3p in (P?)* to be tangent to the quadrics Q(c1), Q(cz2), Q(c3) respectively. Let
Vo = (Var, Va2, Vaz) C m, a = 1,2,3 be some vectors in (C?)* representing these
points, so that ¢, = {Va121 + Vaows + Vasaxs = 0}. Then we have

z+cp—mVi=0, z4+cp—puVa=0, z+cp—pu3Vs=0 (4.21)

for some indefinite factors p,. This system is equivalent to a homogeneous system
of 9 scalar equations for 9 variables zq, pa, fta, @ = 1,2,3. Thus the variables can
be found up to multiplication by a common factor. Eliminating z,p from (4.21), we
obtain the following homogeneous system for pq, po, pis

(c2 — e3)Varpr + (e3 — c1)Vaguz + (c1 — c2)Vazpuz =0, a=1,2,3,

which has a nontrivial solution, since det ||V,;|| = 0 (the vectors V,, lie in the same
hyperplane 7). It follows, for example, that

p = pXi/(ca —c3), p2=pS2/(cs—c1), ps=pXs/(c1—ca), (4.22)
Y =VaaVag — VaoVaz, Yo = VaoVig — VasVia, X3 = VigVaz — Viglao, (4.23)

u # 0 being an arbitrary factor. Substituting these expressions into (4.21) and using
the obvious identity
iV +235Ve 4+ 33V3 =0,

after transformations we find

I
- PR 2oV 23V 4.24
! (01—02)(02—03)(63—(:1)(61 1Vi+ 622 Vo +c323V3), (4.24)

o
B 2V 2V $3Vs).  (4.25
z (c1 — c2)(ca — c3)(cs — 1) (cac3 X1V + 13X Vo + c102X3V3) ( )

As a result,
3

Frer= . Z(Cas + cgcy)ZaVa . (4.26)

(e1 = e2)(e2 —e3)(e3 — 1) 2o

Now we calculate the components of V,. Up to an arbitrary nonzero factor,
they can be found from the system of equations

3
Vorz1 + Vaga + Vagzs =0, Y (ca — b))V =0,  a=1,2,3, (4.27)
=1

which represent the conditions that the line ¢, passes through the focus P = (z; :
x9 : x3) and touches the quadric Q(c,).
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In the sequel we apply the normalization 23 + 23 + 2% = 1, which gives rise to
expressions (4.15).

For P ¢ Q(c,), this system possesses two different solutions, and for P € Q(c,)
a single one (the line touches Q(c,) at the point P). In the latter case we can just
put

Vai = Ty / (Ca - bl) . (428)
Next, it is obvious that under reflection (z; : 9 : x3) — (—x1 : 22 : x3), a
solution (Va1 : Vg @ Vag) transforms to (—Vyu1 : Vi @ Vig) (similarly, for the two

other reflections). Let us seek solutions of equations (4.27) in the form of symmetric
functions of the complex coordinates A1, Ao such that

1) for \j = cq Or Ay = ¢o (i.e., when P € Q(c,)) there is a unique solution
proportional to (4.28);

2) if A1 or Ay circles around the point A = ¢, on the complex plane A, the two
solutions transform into each other;

3) for A\ = b; or Ay = b; (i.e., when z; = 0), V,; does not vanishes.

Using the Jacobi identities

0, k<n-—1
n
a¥ )L k=n-1 (4.20)
_t ) )
’i:l H(az_aj) ai’ k:n’
i=1

one can check that the following expressions satisfy equations (4.27) and the above
three conditions

Vo.o— w,(%@(Al)(Ag — Ca) N Ve2) (A1 — ca) ) . VO =) (g — b;)
! ’ A1 —b; A2 — b; o V(i — b;)(b; — by,
(4.30)

Then, using again the identities (4.29), we have

(Va, Va) = (A2 — A1) <\/(/\2 — ca)(Ma — c5) — \/(/\1 — )M — cﬁ)> (431

and, in particular, (V, Vo) = (A1 — X2)? for a = 1,2, 3.
Next, substituting (4.30) into (4.23) and applying the symbolic multiplication
rule vVaby/ac = av/be, we find the factors ¥, in form

Ta= (= 2)m (/=1 —e)a —ep) = [~ —ep) e —¢y)) s (432)
(a,ﬁ,fy) = (17 273) .
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Further, putting (4.30), (4.32) into (4.26), we obtain

(/\1 - )\2)561 - 3
(c1 —c2)(ca — c3)(cg — Cl)xl Z(Cas + Cﬁcv)

) )\2 Al—cy A1—cg )\2)1/) (A1) Aa—cy A1—cg
)\1 b A2—Cry A2—cg Ao—b; Al—Cy A2—cg

Zi + Spi =

(ca—cp)(ca—cy) (M- b)(>\2 Ca) (A2—b;)(AM1—ca)

= p(h —)\2)90156i2(8—c )\/ (1 —ca) (A2 —ca) ( Ve)y 2(2)v(\)
a=1

(4.33)

which, up to multiplication by a common factor, coincides with the numerator in
Kotter’s formula (4.13).

To determine the factor p in (4.26) and in (4.33), we apply the condition (p, p) =
co which follows from (4.9). Then, from (4.24) we get

co  |aXiVi+ X Va+ c3X3Vs)?

12 (1 —c2)2(c2 —c3)?(es —c1)? (4.34)
Using the expressions (4.31), we obtain
3 2 3
D caZaVa| =D [AZN(Va, Va) + 2056, 535,(V5, V)]
a=1 , a=1 ,
= =20t 3 [0 =) (=0n = el =) = = il <))

#2050y (/200 = )0 = es) = =On — )l =)
(VA=) = ) = == e )0n - )
(V-0a et ) = S0 - ) |

Simplifying the above expression and again using symbolic multiplication of square
roots, one can verify that it is a full square:

3 2
Z caYaVa
a=1

Hence, from (4.34) we find

3

2
= 27(A1 — do)* <Z(Cﬁ — )V =M — o) (Ao — Ca)) :

a=1

3
—(A1 — ca)( A2 — cqo
Ve _ L = Ao) Z 1 ) (A2 )

p —  (ca—cp)(ca — &)

Combining this with (4.33), we finally arrive at (4.13).

Thus, we derived the remarkable Kotter formula by making use of the geometric
interpretation of the variables A1, A\o. We also note that the expressions (4.13) are
symmetric in A1, Ag.
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Remark 1. As noticed above, a disordered generic pair (A1, A2) gives 32 differ-
ent configurations of tangent lines to the quadrics Q(c1), Q(c2), Q(c3). Since the
common factor p in (4.26) is defined up to sign flip, we conclude that, according to
the formula (4.13), to each generic pair (A1, A2) there correspond 64 different points
(z,p) on the invariant manifold (a union of 2-dimensional tori) defined by the con-
stants cg, c1, 2, c3. This ambiguity corresponds to different signs of the square roots
in the Kotter formula.

In the next section we shall use the expressions (4.13) and the quadratures (4.17)
to find explicit theta-functional solutions for the Steklov—Lyapunov systems.

4.3 Explicit theta-function solution of the
Steklov-Lyapunov systems

The root functions. To obtain theta-functions solution of Steklov-Lyapunov sys-
tems we apply the root functions described in Introduction (1.2.5).

For our purposes it is sufficient to quote only several root functions for the
particular case g = 2 and the even-order hyperelliptic curve

= {u® =R}, RN =(A—E)-- (A Eg).

Let us introduce the polynomial U (A, s) = (s — A1)(s — A2).

Proposition 4.3.1 Under the Abel-Jacobi mapping (1.27) with g = 2 and the base-
point Py = Eg the following relations hold

62 [A + m](z)
0[A](z — q/2) 0[A](z + q/2)’

o0+ [o oFS
q:/ w:2/ w, K; = const, 1=1,...,6,
Eg

1 R(\1) B R(A2)
A= A2 \ (B = A)(Ej — M) (Es — A1) (B — A2)(Ej — A2)(Es — A2)

1A + mi + nj + 1] (2) 01AI(2 — ¢/2) O]Al(2 + ¢/2)

U()\,El) = (Al — Ez)(AQ — EZ) = K

(4.35)

T T () 0A + ] (2) 01D T 0(z)
(4.36)
VO ENVUN E) R(\) - R()
AL — A2 (Bi = AM)(Ej — M) (EBs — A1) (B — M) (Ej — A2)(Es — A2)
;o OIA+mi 4+ +ns)(2) (4.37)

= "{ijs 9[A+?73](Z) ’
mjs,ﬂgjszconst, i,j,s=1,...,6, i#j#*s#i,

)
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where
(1) aom (0 1) seme(y 1)
AM?’_G?; 1(/)2>, A+n4_<£ 8) A+775—<1g 1(/)2).

and o004, 00_ are the infinite points of the compactified curve I'. The constant
factors ki, Kijs, m;js depend on the modulo of I' only.

The constants k;, Kijs, &, js can be calculated explicitly in terms of the coordinates
FE4, ..., Eg and theta-constants by equating A1, Ao to certain E; and the argument
z to the corresponding half-period in Jac(T") (see, e.g., [15]).

Explicit solution. Now we are able to write explicit solution for the Steklov—
Lyapunov systems by comparing the root functions (4.35), (4.37) with the Kotter
expression (4.13).

Namely, let I' = {42 = ® (A) ¢ (\)} where the polynomials ¢ and ¢ are defined
in (4.14) and identify (without ordering) the sets

{E1,Es, E3,Eq, E5, Eg} = {b1, b2, b3, 1,2, c3}.

By m,,1c. we denote the half-integer characteristics corresponding to the branch
points (b;,0), (ca,0) respectively, according to formula (1.40).

Theorem 4.3.2 For fized constants of motion c1,ca,c3 the variables z,p can be
expressed in terms of theta-functions of the curve I' in a such a way that for any
seC

Zizl ki (5 - Ca) 0 [A + Neg + Ne, + 771%-] (Z)

&t spi = S0 1 Koo O1A +1¢,](2) et 2(5 28)

where kiq, koo are certain constants depending on the modulo of I' only, and the
components of the argument z are linear functions of t:

zj = leél + Cj2(52 + Zj0, Zjo = const, C = Al (4.39)
A being is the matriz of a-periods of the differentials d\/p, N\d\/u on T'.

Thus, we have recovered the theta-function solution of the systems obtained by
Kotter in [38].

Remark 2. In view of the definition of theta-function with characteristics, under
the argument shift = — z — IC the special characteristic A is killed and the solutions
(4.38) are simplified to

S Kia(s — ca)0ne, + e, + ;) (2)
) i = - ’ ) = 1,273, 4.40
arp 55 Fon 0l10.](2) (@8,7) = (1,2.3), (440)
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where the constants l?:m,lzr()a coincide with kjq, koo in (4.38) up to multiplication
by a quartic root of unity. In each concrete case of position of b;, c,, one can also
simplify the sums of characteristics in the numerator of (4.40) by using the relations
(?7).

Proof of Theorem 4.3.2. The summands in the numerator of the Ko6tter solution
(4.13), when divided by A\; — A2, can be written as

S = Ca V-1 —ca)(h2—ca) < A)Y(A2)  VP(A)Y(M) )

o= e)la—c) M- Br =)0 —ca) ~ Do~ )0 — o)
_ S — Cq \/—()\1 —65)()\2—05)\/—()\1 —cy)( A2 —¢y)
(ca —cg)(ca —¢y) AL — A2

M1 _ K2
- <(A1 —bi)(AM —cg)(M—cy) (A2 —bi)(A2 —cp) (A2 — Cv)) ’
pr =V eA)Y(A1),  p2 =V P(A2)h(A2).

The right hand sides have the form of the root function (4.37). Hence, up to a
constant factor, they are equal to

0 [A+ ey +ne, +m,) (2)
O[A + mp,](2)

(s — ca)

Next, in view of (4.35), we obtain

Ti =

O[A + ] (2)
VOIA](z — ¢/2) 0]A](z + q/2)
[A+776a](z)
NN IIN TR

i, ¥ = const.

\/_()‘1 - Coz)(>\2 - Ca) (4.41)

Combining the above expressions, we rewrite the right hand side of (4.13) in the
form

O[A + m,](2) > Kia (s — ¢a) 0 [A + ey + e, + 1, (2)
@ 0[A] (z — q/2) 0[A] (z + ¢q/2) —*! 0 [A +mp,] (2)
0 3 koa0[A + 1e,](2) ’

> a—1 0[A](z — q/2)0[A](z + ¢/2)

which, after simplifications, gives (4.38).

Formulas (4.39) follow from the relation (wy,@9)? = C(d\/p, Ad\/u), where,
as above, @, are the normalized holomorphic differentials on I', and the functions
(4.18). O

In given Chapter 3 we gave a justification of the separation of variables and the
theta-function solution of the Steklov—Lyapunov systems obtained by F. Kotter [38].



Chapter 5

Bifurcation analysis of
Steklov-Lyapunov system.

The main contribution of this chapter consists of construction the bifurcation dia-
gram of Steklov-Lyapunov system, description of zone of real motion and stability
analysis of critical periodic solutions.

5.1 Description of bifurcation curves and their mutual
position.

To construct the bifurcation diagram of Steklov-Lyapunov system, which was orig-
inally presented in [11] by using the method based on linearly dependence of grad
H,, grad Ha, we apply the new techniques developing in ([12]) and based onthe
existence of bi-Hamiltonian structure.

Bi-Hamiltonian structure for the Steklov-Lyapunov systems can be obtained
from bi-Hamiltonian structure of Rubanovskii system (6.1), when the gyroscopic
constant g = 0:

0 (bs — s)(2z3 + sp3) —(b2 — s)(2z2 + sp2)
—(bs — s)(23 + sp3) 0 (b1 — s)(21 + sp1)
(bg — 5)(22 + sp2) —(by — 5)(21 + sp1) 0
0 ps —p2
-p3 0 m
p2 —p1 0O
(5.1)

Following the above method, description of critical points is based on the follow-
ing statement: a point (z,p) € RO is singular if and only if the rank of the bracket
(5.1) drops for some s € C.

Let s = by. The set of those points (z, p) for which the rank of the Poisson matrix
drops is defined by two linear equations z; + bgp; = 0, ¢ # k. The kth component
of z can be arbitrary, so it will be convenient for us to represent this singular set as

70
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follows:
z=—-bgp+dex, AER

where e; denotes the kth basis vector.

The corresponding part of the bifurcation diagram is the image of this set. To
describe it we substitute the above relation between z and p to the formulas for first
integrals:

< >: Ji,

(2z,p) — (Bp,p) = Ja,
(z,2) —2(z, Bp) = Ho,
(z,Bz) = H;.

This substitution gives:

= (p,p),
= (2z,p) — (Bp7p> = —2bk<p,p) +2Apr — (Bp,p),
<z Bz) = b2 w(p, Bp) — 2)\b WDk + b2

Simplifying, we obtain:
hy = (z,2) — 2(z, Bp) = —3b2.Jy — 2b.Jo + A2,
hi = (2, Bz) = —2b3.J1 — biJy + b A2,
which gives, by excluding A, one linear relation between the integrals:

hy = by + b2 Jo + biha.

For fixed value Js, this relation defines a line ¢; of the bifurcation diagram D. Assume
Ji=1.

If s # b; it appears from the form of the matrix (5.1) that the rang of the matrix
also drops if z; + sp; = 0. Thus, this implies description of critical points:

Theorem 5.1.1 For fized value Ja, the bifurcation diagram is a subset of the curve
D given parametrically s € R by the formulas:

ha(s) = —3s — 2s.J, (5.2)
hi(s) = =253 — s2.J;

and three lines /;

hy = —3b2 — 2by.Jo + A2,
hy = —2b3 — biJy + bpA2,
where X € R.
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5.1. Description of bifurcation curves and their mutual position.

For our further purposes we need the implicit form of the above curve D, that under
transformation take the form

D = {~27h3 — 18.Jahohy + J3h3 + 4J3hy — 4h3 = 0}

The following Proposition presents geometrical properties of the above curve D and
three lines ¢;,7 = 1,2, 3.

Proposition 5.1.2 1) The curve D has a unique return point (a cusp) C at (hy =
J2/3,hy = —J3/27), and is tangent to all the lines. It is also tangent to the
horizontal axis hy at the origin.

2) For Jy = —(by + ba + b3) the three lines {; have a unique intersection point with
the coordinates ho = bibs + babs + b1bs, h1 = bi1bobs.

For the other values Jo the lines £; form a triangle A = Ay Ay Az with vertices
Ay = 404G, (i,4,k) = (1,2,3). The triangle A lies completely inside the
domain R of real roots. As a consequence, the cusp C cannot be inside A.

3) The cusp C lies on the line {; iff Jo = —3b;. In this case the curve D has a
double tangency with £; at C' and there are no other points of intersection of

D and ¥;.

Examples of the bifurcation lines and curve are given in Figure 5.1.2.

Proof of Proposition 5.1.2.

1) The coordinates of the cusp C' are calculated in the standard way, by deter-
mining singular points of D. Next, substituting the equation of ¢; into that of D,
we obtain an equation for hi, which always has a double root hy = —2Jsb; — 3612.
This implies that at the corresponding point (hi, he) the curve D is tangent to /;.

2) For generic different b;, the condition for ¢1, /s, ¢3 to intersect at the same
point gives a system of three equations b?’ + ng? + bih1 — ho = 0 on hq, he, Jo,
solving this equations we find the coordinates of intersecting point and condition on
Ja, for which the intersection is possible (see an example in Figure 5.1.2)

Next, at the vertices Ay, of the triangle A we have ¢, = b;, cg = bj, that is, 2
roots are real. Hence, at Ap all ¢, must be real, and all the vertices must belong
to the domain R. Finally, in view of 2), the curve D cannot cross two times any of
the edges of A since otherwise it will not be tangent to ¢;. As a result, the triangle
itself belongs to R.

3) Substituting the coordinates of the cusp C into the equation for ¢; we obtain
the above condition on J. Then it is shown directly that under this condition D
and ¢; have a unique triple intersection at C. [J

The bifurcation diagram divides the image of the momentum mapping into dif-
ferent zones denoted in Figures by Roman digits I, IT and III, IV. If the point (hq, h2)
passes throw this zones the number of Liouville tori changes. Now we describe which
part of R? = (hy, hy) correspond to real z;, p;.
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Figure 5.1.1: J2 == *8, b1 = 0.5,b2 == 1,b3 = 3.
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5.1. Description of bifurcation curves and their mutual position.

50 7 03

Figure 5.1.2: Jo = —10,b1 = 0.5,by = 1,b3 = 7.

o

40
III

A o I

20 O

D1
D 20 ' 40
hi
D

Figure 5.1.3: Jo = —8,b; = 0.5, by = 10, b3 = 11.
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Figure 5.1.4: J, = —10,b; = 0.4,b2 = 0.6,b3 = 0.8.

3004 | O3

-100+

Figure 5.1.5: JQ == 15,b1 = 1762 = 2,b3 = 3.
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5.2. Description of zones of real motions

5.2 Description of zones of real motions

Let S be a subset of the ”positive” sector restricted by the lines ¢1, f3. The domain
of real motion depends on the relative position of D and the sector S.

Now let S;2 be the part of S restricted by ¢; and /5. Let Kf,ﬁz}f be the corre-
sponding rays with the vertex O = ¢1 N¥3. Summarizing the above observations, we
arrive at

Proposition 5.2.1 There are 5 different domains of real motion depending on the
value of Js.

The segment [—3bs, —3b1] necessarily consists of 3 parts corresponding to differ-
ent domains of real motion:

2 12
1) If Jy € (—3bs, %), then D is tangent to {3 inside S.(See Figure 5.1.1)

In this case the domain of real motion is S — Q, where Q is a subset of the
sectors, restricted by rays Ei" and E;‘ and the segment of the curve D between the

intersection point of the D and €3 and tangency point of the D to f1;

b2 4b1b3—2b2  b2-+bibs—2b2 ‘ . y
2) If Jo € 1+b3173b1 = 3+b1173b3 1), then D is tangent neither to 3 nor {1 inside S

(See Figure 5.1.2) The domain of real motions coincides with the sector S;

3) If Jy € (W, —3b1>, then D is tangent to {1 inside S.(See Figure 5.1.3)
The domain of real motion is S — Q;

4) If Jo < —3bs, cusp C' ¢ S and it is above the line {3 (see Figure 5.1.4.);

5) If Jy > —3b1, cusp C' ¢ S and it is below the line {1 (see Figure 5.1.5.) In both
cases 4) and 5) the curve D crosses all the 3 rays Ej of the sector S, and the domain
of real motions is the truncated sector S — SNR.

Proof.
1), 3).The coordinate hg of the point O = ¢; N ¢3 (the vertex of the sector S) is

h; = —Jg(bl + bg) — (b% + b1bs + b%)
The coordinate h; of the tangency point T35 = D N {3 is
hy = —2.J3b3 — 3b>

Let us set Jo = —3bs, that is, the cusp C lies on ¢3. Substituting this into the
above formulas, we get hy = 3b3 and hj = 2b3 + 2b1b3 — b3. Then

hy — h = b3 — 2by1bs + b = (b — by)? > 0,

hence the tangency point T3 is to the right of the vertex O for any by < bs < bs.

Now change J5 by setting Jo = —3bs + e, that is, adding a small number e. Then
the cusp C is inside of the sector S and, by continuity, the tangency point 75 on /3
is again to the right of the vertex O, that is, it belongs to S.

The same argumentation works in the case when D is tangent to ¢;.
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There are three real roots c1, co, c3 inside of the sectors Q, but one of them does
not belong to [by, bs].

Hence, all the points of the sector @ do not correspond to real z;, p; and for this
case the domain of real motion is & — Q.

Note that in the case (2) it is possible that D can be or can not be tangent to
{5 inside the sector &. This does not changes the domain of real motions, but the
tangency point D N ¢s inside S gives a very special motion (periodic or equilibria).

2). As follows from the assumption by < b2 < bz and item 4) of Proposition
5.1.2, under the condition —3by < Jy < —3b; the cusp C must lie between the lines
¢1 and /> outside of the triangle A. Hence, it belongs to the subsector Si 2. Next,
due to item 2) of Proposition 5.1.2, at the cusp C the polynomial F(s) has the
triple root ¢1 = co = ¢3 = —Ja/3, which implies by < ¢1 = co = ¢3 < by. As (hy, ha)
moves away from C, but does not cross the rays Ef,ﬁ;, either the roots c1, co, c3,
when all real, stay inside [b1, bs] or ¢, co are complex and c3 € [by, b3]. The same
argumentation holds if C' € Sy 3. Hence, all the points of the sector S correspond
to real z;,p;. For the points (hi, hs) inside the area of intersection the domain of
real motion with R all the 3 roots ¢, are real and belong to [b;, b3, for the points
(h1, ho) outside that area there is only one real root ¢, and this root belongs to
[b1,b3] .

4),5). Due to items 2), 4) of of Proposition 5.1.2, when Jo > —3b; the cusp C is
below ¢1, i.e., outside of the sector §. Then at C' we have ¢; = co = ¢3 < by. When
the point (hy, he) leaves C, but stays inside R and outside of S, all ¢, are real and
less than by.

When (hq, hg) crosses ¢{ and enters the area SR, one of the ¢, enters [by, bs],
but the other real roots remain less than b;. Hence, due to Proposition 4.1.1, the
points of this area cannot correspond to real z;, p;. Finally, when (hq, hy) crosses D
and enters the truncated sector S —S NR, there is one real root ¢, € [b1,bs] and 2
complex roots, and z;, p; are real.

Similar argumentation holds when Jo < —3bs and the cusp C is above the line
ls.

Finally, since the discriminant curve D cannot cross the triangle A, it must cross
all the rays of the sector S.

For the points (h, h2) inside S — S NR only one root ¢, is real and it belongs
to [bl, bg]. ]

Now we present a geometrical description of the different types of the bifurcation
diagram.

As was noticed before, D has one tangency point and one intersection point
with each of the lines I;, ¢ = 1,2,3. To find the values of the parameter s where
the tangency and intersection take place, we substitute (5.2) into the equation of
l;. The solutions of the cubic equation so obtained are easy to find. We have one
double root s = b; (that corresponds to the tangency point) and one simple root

Jo + b1

5 (that corresponds to the intersection point).

S =
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The parameter s corresponding to the cusp point can be found from (5.2) by

OH OH. J
differentiation, i.e., from the equations it 0, “=2 — 0. We obtain s = ——=.
0s 0s 3J1

The form of the bifurcation diagram is determined by the mutual position of
these 7 mentioned points, namely, 3 intersection points, 3 tangency points and one
cusp point. This position changes as we vary Js. It is convenient to use the scheme
shown in Figure 5.2.1, which illustrates the mutual position of these points on the
part of D corresponding to real motion. Each of these seven points is now presented
as a line on the (s, J2)-plane:

e s =10, for the tangency points, i = 1,2, 3;
o s = —(Jy+ b;)/2 for the intersection points, i = 1,2, 3;

e s = —Jy/3 for the cusp point.

I T I
-5 \ 5 10

-10

J

-20

4TI

Figure 5.2.1:

As was shown in Proposition 5.2.1, this real motion zone is always located be-
tween the lines ¢; and /3. In other words, s € [—(J2 + b3)/2,—(J2 + b1)/2]. In
Figure 5.2.1 this zone is shown as a horizontal segment between two straight lines
s = —(J2+0b3)/2 and s = —(J2 + b1)/2]. As Jp decreasing, this segments moves
down always remaining between these lines. The bifurcation diagram changes its
form when this horizontal segment passes through one of nine points of intersec-
tion of the seven lines shown in Figure 5.2.1. Thus, for fixed geometric parameters
b1, ba, by we always have 10 different types of bifurcation diagram. The correspond-
ing 10 horizontal segments are shown in Figure 5.2.1 too.

Using Figure 5.2.1 one can easily describe the position of D relative to £1, {5 and
¢3. For example, the upper horizontal segment in Figure 5.2.1 “says” that D first
intersects transversally ¢1, then f5 and /3 and exits from the real zone. Next, on D
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there appear the cusp and, finally, three tangency points with ¢1, ¢5 and ¢3. This is
exactly the situation which we see in Figure 5.1.5

The next segment (second from above in Figure 5.2.1 “says” that D transversally
intersects {3, then 5. After this comes the tangency point with ¢1, then the cusp
and, finally, the intersection point with ¢;. The tangency points with ¢5 and /3 are
located out of the real zone. This is exactly the situation shown in Fig. 5.1.3

Each “real motion” part of the bifurcation curve corresponds to a certain sin-
gular periodic motion of the system (the same point can correspond, of course, to
several (two or more) periodic solutions. Our next goal is to analyze their stability
depending on the location on the bifurcation diagram.

5.3 Stability analysis for critical periodic solutions

We start with the stability analysis for critical solutions corresponding to the dis-
criminant curve D.

Proposition 5.3.1 FEach (non-exceptional) point of the “real motion” part of the
discriminant curve D corresponds to exactly two critical periodic solutions of the
Steklov-Lyapunov system.

Proof. From the definition of D, it easily follows that for the point P € D with
parameter s (see (5.2)) we have

3
F(s) = Z(s — by)(2y + spy)? = J18° + Jos® + Has — Hy = 0
=1
The preimage of this point is a singular integral surface that contains one or
more critical periodic solutions on which the first integrals Ji, Jo, H; and Hs become

functionally dependent. From the above form of F([) we can conclude that their
critical points are characterized by a very simple condition

2y +spy =0, v=1,2,3.

Here we assume that s does not take exceptional values that correspond to
tangency, intersection or cusp points. If we substitute these three equations into

Ji=(p,p), J2=2(z,p) — (Bp,p)

we obtain two equations for p:

(p,p) =J1, (Bp,p) =—J2—2sJi. (5.3)

These equations define two closed curves being the projection of the corresponding
periodic solutions onto the sphere (p,p) = J;. The solutions can be obtained from
the projection by letting z = —sp. [

Notice that these critical solutions can be found without integration by solving
the system of two algebraic equations (5.3). We now want to analyze their stability.
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5.3. Stability analysis for critical periodic solutions

As well known, generic critical periodic solutions can be of two different types:
elliptic and hyperbolic. Elliptic ones are stable and can be characterized by the fact
that the corresponding integral surface J; = j;, H; = h;, (i = 1,2) is one dimensional
and coincides with this solution itself. The integral surfaces that contain hyperbolic
periodic solutions are two-dimensional and always contain separatrices attached to
these solutions. This observation makes it possible to analyze the stability by an-
alyzing the dimension of singular integral surfaces. The formal justification of this
method can be found in [4], where is proofed the following criterion for stability of
any closed trajectory of an integrable Hamiltonian system :

Theorem 5.3.2 A closed trajectory of an integrable Hamiltonian system is stable
if and only if the connected component of the integral manifold containing this tra-
jectory coincides with the trajectory itself.

In order to apply this method, it is convenient to use the following change of
variables: Z = z 4+ sp (p remains unchanged). After this change, the critical solution
will be characterized by the condition Z = 0. We also use following elementary
algebraic

Proposition 5.3.3 Consider the restriction of the quadratic form ax?® + by? + cz?
to the plane Ax + By + Cz = 0. This restriction

A?  B* (?
e is positive or negative definite if abc < + 5 + ) > 0,
a c

A2 B2 2
e is indefinite if abc ( + o + C> <0,
a c

A2 B? (P
e is degenerate if abc ( + —+ ) = 0.
a b c
So, we have the following result
Theorem 5.3.4 Let a critical periodic solution of the Steklov-Lyapunov system
passes through a point (z,p) with z + sp = 0 (these solutions correspond to the

discriminant curve D). This solution is stable depending on the sign of the follow-
g eTpression

3
(b1 —5) (b — 5)(bs —5) S (b — 8)p? = (b1 — ) (ba — 5)(bs — 5) ((Bp, p) — s(p, p)) (5.4)
=1

Namely, if this expression is positive then we have stability, if this expression is
negative, then this solution is unstable.

Proof.
It is easy to see that the corresponding integral surface
{p.p) = 1,
(22,p) — (Bp,p) = J2,
(z,2) — 2(z, Bp) = Ho,
(z,Bz) = Hj,
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in these new variables takes the form

(p,p) = J1,

(22,p) — (Bp,p) = Ja + 251

(2,2) — 2s(z,(B—s)p) =0
(3,(B — 8)3) = 0

If we consider p as parameter, then two last equations can be easily analyzed to
verify whether or not they admit local solutions different from z = 0. If not, then
the integral surface coincides with the critical trajectory and therefore the latter is
stable. Otherwise, it is unstable.

At the point Z = 0, the equation (2, BZ) —2s(Z, (B—s)p) = 0 represents a regular
two-dimensional surface with the tangent space T' defined by (Z,(B — s)p) = 0. If
we restrict the quadratic function (Z, (B — s)Z) on T we can have three possibilities:
this restriction can be either positive definite, or indefinite, or negative definite.
Positive and negative definiteness correspond to the stable situation, the indefinite
case means instability. Applying the Proposition 5.3.3, in our case a = by — s,
b=0by—s,c=bs—sand A= (by — s)p1, B= (b2 — s)p2, A= (b3 — s)ps. Thus we
have result of theorem. [

Figure 5.3.1:

This criterion has a natural interpretation in terms of the bifurcation diagram.

Theorem 5.3.5 A point P lying on the "real motion” part of the discriminant
curve D corresponds to a stable periodic solution if and only if

(bl — S)(bg — 8)(b3 — S)(—Jg — 3SJ1) > 0.
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Proof. Notice that for our critical solution we have z = —sp, so

Jo = 2(z,p) — (Bp,p) = —2s(p,p) — (Bp,p), ie. (Bp,p)=—J2—2J.

This implies that the expression (Bp,p) — s(p,p) = —Jo — 3sJ; changes sign for

3Ja . .
§ = — o i.e. exactly at the cusp point.
1

In other words, the whole expression (5.4) changes sign if and only if the point
P € D passes either through the tangency points with parameters s = b;, or through

the cusp point with parameter s = —72. However, the stability does not change if

the point P € D passes through the trailsversal intersection points with parameters
s = —(Ja+ b;J1)/2. The stability zone on the (s, J2)-plane is shown in Figure 5.3.1
as a shadowed region. [

As an example, consider the case presented in Figure 5.1.3. Theorem 5.3.5 says
that the stable periodic solutions correspond to the part of D located between the
points A and D, then between D and the cusp point we have unstable periodic
solutions, and finally between the cusp point and D; these solutions become stable
again.

The stability analysis for the periodic solutions corresponding the three straight
lines ¢1, ¢2 and {3 is simpler, namely we have the following

Theorem 5.3.6 The periodic solutions corresponding to the lines £1 and {3 are
stable, whereas those corresponding to ¢o are unstable.
Proof. This analysis is based on the same ideas. We need to analyze the relation

3
F(s) = Z(S —by)(2y + 5py)° = J15” + Jos® + Has — Hy = 0
y=1

for s = bl,bg,bg.
Let s = by. Then we have

F(b1) = (b1 = b2)(22 + bapa)® + (b1 — b3) (23 + bips)?
The corresponding critical points are defined by the following relations:
20 +b1p2 =0, 2z3+bip3=0

This is an invariant four-dimensional subspace in R(z, p).

To describe the critical solutions and the corresponding integral surface we, as
before, use the following change of variables Z = z + bip (p remains unchanged).
Then the integral surface is defined by:

(5.5)
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Since critical periodic solutions are characterized by Zs = Z3 = 0, then we can
find them by solving the following system of three equations for p and Z;:

(p,p) = J1,
2Z1p1 — (Bp,p) = J2 + 281 (5.6)
32 = Ho + 2by.Jo + 3b3.J

The third equation simply means that Z; is constant along each critical solution.
The remaining two equations define a curve in the 3-dimensional p-space which
is the intersection of two quadrics. This curve may have one or two connected
components. Taking into account the fact that z; is defined up to sign, we see that
a point P € [; may correspond to two or four critical periodic solutions. Notice
that the system (5.6) allows one to describe the corresponding critical solutions of
the Steklov-Lyapunov system without integration by means of solving a system of
algebraic (quadratic) equations.

To analyze the stability of these solutions we consider the system (5.5). The last
equation

(b2 — bl)gg + (bg — bl)gg =0

immediately implies that Zo = Z3 = 0, i.e. the integral surface belongs to the critical
set and therefore coincides locally with the critical solution, in particular, this surface
is not two-, but one-dimensional. This condition guarantees the stability.

In the case of /3 the situation is similar because (by — b3) and (b; — bs) are of the
same sign. In the case of ¢5 the situations is opposite because (b — by) and (bs — ba)
are of different signs, so the equation (by — bg)7? + (b — b2)Z2 = 0 has non-trivial
solutions (two intersecting lines) and therefore, the corresponding integral surface
has dimension two which means instability. This completes the proof.



Chapter 6

Bifurcation analysis of the
Rubanovskii sistem
via bi-Hamiltonian aproach

6.1 Bi-Hamiltonian structure and integrals for the Rubanovskii
case

The generalization of the “Kotter type” Lax-pair to the Rubanovskii system (1.8)
discovered by Y. N. Fedorov [27] makes it possible in a natural way to describe a
bi-Hamiltonian structure corresponding to this system. It is, in fact, an obvious
generalization of the bi-Hamiltonian structure for the Steklov-Lyapunov case (see
[13]). It can be also derived from the paper by A. Tsyganov [56] where the clas-
sification of all bi-Hamiltonian structures related the Lie algebras so(4) and e(3)
was obtained. The bi-Hamiltonian structure we are interested in has a natural al-
gebraic interpretation, but for our purposes it would be more convenient to give its
definition just in coordinates.

Theorem 6.1.1 The Rubanovskii system is Hamiltonian with respect to any linear
combination of the following Poisson brackets given in the space R%(z,p):

0 23 —b3ps —zo+bapa 0 p3 —po
—2z3 + b3ps3 0 z1—bip1 —p3 0 p1
T bope —z1 + bip1 0 p2 —p1 0O
0 p3 —p2 0 0 0
—P3 0 P1 0 0 O
P2 —P1 0 0 0 0
0 b3z — g3 —bazo + go 0 0 0
—b323 + g3 0 biz1 — g1 0 0 0
H1 _ bQZQ — g2 —blzl + g1 0 0 0 0
0 0 0 0 p3 —p2
0 0 0 -p3 0 m
0 0 0 p2 —p1 O

84
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Here b; < by < b3 are positive numbers, and g1, g2, g3 denote arbitrary real
numbers appearing in the Rubanovskii case as parameters. If we assume g; = 0, we
obtain exactly the brackets for the Steklov-Lyapunov case. For generality, we will
suppose that all g; are non-zero.

From now on we shall denote the parameter of the family of compatible brackets
by A. It is exactly the spectral parameter s used above for the Lax representation.

It is useful to keep in view the following properties of the family of brackets
II; — Allg. We are not going to use these properties essentially, so we state them
without a detailed discussion.

Proposition 6.1.2 1. IIy and I1y are compatible Poisson brackets.

2. Iy is isomorphic to the standard Lie-Poisson bracket related to the Lie algebra
e(3).

3. If X # b;, then I1y — Mg is isomorphic to a semisimple bracket. In more detail,
if A\ € (—00,b1) or A € (b3, +00), then this bracket is isomorphic to so(4) =
s0(3) @ so(3), and if X € (b1,ba) U (be,b3), then this bracket is isomorphic to
so(3) @ sl(2).

4. If X = b;, then the given bracket does not correspond to any Lie algebra (it
follows from the fact that it does not vanish at any point).

The proof can be easily obtained from the following construction.
Consider the linear combination II; — AIlg. The structure of this bracket becomes
clear if we make the following change of variables:

after which the bracket takes the form:
0 (bs — N\)Z3 —(ba — A\) 22
— (b3 — \)Z3 0 (b1 — Nz
(bg —N)Z2 —(b1 — N)Z1 0 (6.1)
0 p3 —p2
-p3 0 p1
p2 —p1 O

This formula shows that II; — Ally splits into direct sum of two semisimple
brackets. One of them corresponding to the p-block is isomorphic to the bracket on
s0(3), and the other is isomorphic either to so(3) or to sl(2) depending on the signs
of the coefficients b; — A\, i = 1,2, 3.

Casimir functions of this bracket (which are just the first integrals of the Rubanovskii

system) are evident. One of them is J; = (p, p).

To describe the second Casimir function explicitly, we use of the reduction of
IT; — Ml to the canonical form given by formula (6.1). The Casimir function in
this canonical representation is defined by the obvious formula:

3

Fyx=> (A=b)7.

=1
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Coming back to the initial variables, we obtain:

3

_ 9gi 2
F/\—Z()\—bi) (zi—i-)\pi—i-)\_b) (6.2)

=1

We simplify this expression and expand it (excluding the constant term) in
powers of A

3 3 3
Fx=X)"pl + A2 " (2zipi — bipd) + A > (27 — 2bizipi + 2gipi)+
i=1 i=1 =1
3 3 g2
2o . _
+ ;(—bzzi +2gi%) + ; - 5= (6.3)

2

3
— TN+ JoA2 4 ONHy — 2H 9i
AT + AT + 2 1+;>\_bz

where

Ji=(p,p), J2=2(z,p) —(Bp,p), Hi= %%Bz} —(2,9),

1 .
Hy=(z.2) = (Bzp) +(p.g), B =diag(bi,ba,by).

The integrals we have to deal with are: Jq, Jo, H; and Hy. Of course, the same
integrals arise from the Lax representation with the spectral parameter s. The first
two of them, J; and Js, are Casimir functions of the bracket IIy. After the Kotter
transformation they become standard invariants of the Lie algebra e(3). These
functions are considered below as parameters, and Hi, Hy as nontrivial integrals.

Our further goal is to describe the singularities of the momentum mapping de-
fined by these four integrals

@ : RO(z,p) — RY(Jy, Jo, Hy, Ho). (6.4)

or of its restriction to one of the symplectic leaves of Ily, which is defined by fixing
values Jp and Jo:

@y, My, g, = {(2,p) €R®, Ji(z,p) = j1, Jo(2,p) = jo} — R*(Hy, Ha).

It is convenient to treat it exactly this way, i.e. to allow J; be not only 1 (what is
motivated by physical meaning) but to take any positive values. The point is that
the dynamics on the level J; = ¢ # 1 is connected with the dynamics on the level
J1 = 1 by means of some transformation, which involves not only transformation
of dynamical variables but also some change of geometrical parameters g and b.
Therefore the case J; = ¢ # 1 has, in fact, some physical meaning as well.
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6.2 Description of critical points of the momentum map-
ping

To describe the critical points (z,p) € R® of the momentum mapping (6.4) we will
use the technics developed in [12].

According to the results of this paper, a point (z,p) € RS is singular if and only
if the rank of the bracket II; — Al drops for some A € C.

Such points are easy to describe. Preceding this description we state an obvious
remark. The rank of any bracket from our family drops, if p = 0. But from the
physical viewpoint this case is of no interest for us, and below we don’t consider it
at all. In other words, we suppose from now on that p # 0. Next, we notice that for
A = b; the rank of the bracket II; — Allj is everywhere equal to 4 and cannot drop
(recall that we suppose g; # 0, p # 0, otherwise the rank can drop!). Thus, we have
to consider only the case A\ # b;, for which, as we have seen above, the bracket can
be brought to the block-diagonal form. It is clear, that its rank drops if and only if
the upper block vanishes, i. e. z; = 0.

This immediately implies the complete description of all critical points of the
momentum mapping (6.4).

Theorem 6.2.1 A point (z,p) € RS is a singular point of the momentum mapping
(6.4) if and only if there exists A € C\ {b1, b2, b3} such that

gi
A—b;

zi + Ap; + =0, 1=1,2,3. (6.5)

If A is a real number, then equation (6.5) determines some three-dimensional
subspace. Varying A, we can say that the set of critical points is represented as one
parameter family of three-dimensional subspaces (or better to say: four separate
families, because A changes not on the whole real line but on four disjoint intervals).
Note that A in this theorem is not necessarily a real number. It may well happen
that the written equation is fulfilled for a pair of complex conjugate values A, .
These points do not get into the subspaces mentioned above. From the dynamical
viewpoint, they can be characterized by the property that the rank of the momentum
mapping at these points drops by two. This implies in particular that they are
equilibria of the system.

Since we deal with two degrees of freedom, the rank of the momentum mapping
can drop either by one or by two. If the rank drops by two, then we have an equi-
librium of the system (more precisely, a common equilibrium for the both integrals
Hy and Hj). The next step is to distinguish equilibria of the system (i. e., points of
rank zero) in the set of singular points of the momentum mapping.

Theorem 6.2.2 A point (z,p) € RS is a common equilibrium for the integrals Hy
and Hos if and only if the rank of the matriz

p1 21 —bipr g1 — bz
C=|p2 2z2—Dbapa g2 —Dbazo (6.6)
p3 23 —b3ps g3 — b3z
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s equal to 1. One can reformulate this constraint by saying that the vectors p, z— Bp
and g — Bz are proportional.

Proof. Let (z,p), p # 0 be a common equilibrium for all the integrals si-
multaneously (we consider the Hamiltonian dynamics generated by the bracket I1j).
According to [12], these points are characterized by the fact that the kernels of all
(regular) brackets from the pencil coincide at these points. In particular, the kernels
of the initial Poisson brackets IIy and II; must be the same. For II;, the kernel is
generated by the vectors (¢ — Bz,0) and (0,p). The latter vector belongs to the
kernel of the bracket Iy automatically, and the assumption that the first vector also
belongs to the kernel of IIy amounts to the fact that the vector g— B~z is proportional
both to p and z — Bp which is exactly the statement of Theorem 6.2.2.

Since the first column of matrix (6.6) is always supposed to be non-zero, it
suffices to consider the system of vector equations z — Bp = ap, g — Bz = f[p in
order to find all solutions. This system can be easily solved:

p=(B>+aB+p)""g, z=(B*+aB+ )" (B+a)g.

This solution can be interpreted as a two parameter family of points which has
two real numbers o and [ as parameters.

It is useful to notice that not every point p is admissible. Those points p for
which the equilibria (z,p) really exist, comply with a natural restriction obtained
by excluding a and § from the equations written above. Namely:

p1 bipt bipi— ¢
det [ p2 bopa b3p2 —g2 | =0
ps bsps bips — g3

Now we give another description of those points where the rank of the momentum
mapping drops by one. We first notice that the equation (6.5) can be rewritten in
vector form:

Np+XNz—Bp)+g—Bz=0,

whereof it follows that the vectors p, z — Bp and g — Bz are linearly dependent. In
particular, the vanishing of the determinant of matrix (6.6) is a necessary condition
for (z,p) to be a critical point. This condition is not sufficient because we need the
coefficients of the nontrivial linear combination between the vectors p, z — Bp and
g — Bz to have a special form, namely A2, \, 1.

In order to rewrite this additional condition as an algebraic equation, we note
that the triple of 2 x 2 subdeterminants of matrix (6.6):

(

obliges to be proportional to the triple (A2, \, 1). This evidently implies the condition

p1 21 — bipr
P2 22 — bapo

p1 biz1 + g1
P2 bazo + g0

z1 —bipr —biz1 + 51
29 — bopa  —bazo + go

) )

2
p1 21— bipr

P2 22 — bapo

_|;—bipp —bizi g
29 — bapa  —bozo + g2

p1 bizi + ¢
P2 bazo + go
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Analogously, for all the other indices:

2
zi —bipi  —bizi + gi

|z —bips —bjzj+g;

pi bizi+gi
pj bjzj +gj

|\pi oz — bips

6.7
pj % —bjp; (6.1

The above conditions are not algebraically independent. However, the following
statement holds true:

Proposition 6.2.3 The rank of the momentum mapping (6.4) drops exactly by one
at a point (z,p) if and only if the rank of matriz (6.6) is equal to 2 and at the same
time the conditions (6.7) are fulfilled.

Once again, we sum up the obtained results.

Theorem 6.2.4 A point (z,p) is a common equilibrium of the Hamiltonians Hy
and Hy if and only if the vectors z — Bp and g — Bz are proportional to the vector
p. In other words, the rank of the matriz

p1 21 —bipr g1 —bizy
P2 22 —bapa g2 — bz
p3 23 —b3ps g3 — b3z

s equal to 1.
The rank of the momentum mapping at a point (z,p) drops by one if the rank of
this matriz is equal to 2 and there exists A € R such that

p1 z1—bipr g1 —biz A2
P2 Z2 —bapa g2 — bazo A =0.
p3 23 —baps g3 — b3z 1

We can say this in a little bit different way as follows: the nontrivial solution
(z1,x2,23) of the system of homogeneous equations

p1 z1—bipr g1 —biz x1
P2 22 —bapa g2 — bazo x| =0.
p3 23 —b3ps g3 — b3z 3

satisfies the condition 173 = 3.

This theorem supplies a simple and effective method to verify the criticality
condition for a given point. We should also make one more remark. Any singular
point of rank one is characterized by one real parameter A\. A critical point of
rank zero is characterized by two parameters ); ; which represent the roots of the
quadratic equation A24+aA+f = 0, where a and 3 are the proportionality coefficients
between the vectors p, z — Bp and p, g — Bz, respectively, i. e. z — Bp = ap,
g — Bz = pPp.

The parameter A (or the pair of parameters (A1, A2)) is convenient for the char-
acterization of dynamics, amongst others for the stability conditions.
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6.3 Construction of the bifurcation diagram

Now let us discuss the question about the image of the critical set of the momentum
mapping, that is, the bifurcation diagram.

Note that we have already described all critical trajectories of the Rubanovskii
system together with related stability conditions. At the same time (it may seem
to be surprising at the first glance) we did not whatever consider the system of
dynamical equations itself and did not discuss its first integrals. It’s been sufficient
for us to analyze the pencil of brackets 11y — Ally.

Now, since we are going to describe the bifurcation diagram, we have to con-
sider the integrals (otherwise the discussion about the bifurcation diagram becomes
almost meaningless).

The integrals have been described above by means of formulae (6.2) and (6.3).

The singular points of the momentum mapping are also known, and we now
intend to describe its bifurcation diagram in terms of integrals Hy and Hs thinking
of J; and Jy as parameters.

We will define the branches of the bifurcation diagram in parametric form taking
A as a parameter.

First, we call our attention to formula (6.2). Since every singular point is char-
acterized by the condition z; + Ap; + )\ﬂ—ibi = 0 for some A € R, we can see that I
vanishes at this point. Hence we obtain the relation

2

3
A3J1 + A2Jy + 2NHy — 2H T A—
1+ 2 + 2 1+;>\_bi

However, we have yet another relation. The point is that not only the function
F), itself vanishes at the given point but its differential as well. This readily implies
that we have one more condition (that can be verified directly) at every singular
point:
OF) 2 - 9
Sy =3 J1+2)\J2+2H2—;()\_bi)2 =0
In terms of differential geometry, it means that the bifurcation diagram rep-
resents the enveloping surface for the family of hyperplanes Fy = 0 in the space
R*(Jy, Ja, Hy, Hs). The desired description can be immediately obtained by solving
the system of equations (from which we want to express H; and Hs as functions of
Jl, J2 and )\):

5 5 3 9
ATy + N2 o + 20Hy — 2Hy + 3071 324 =
2
BA2Jy + 2)\Jy + 2Hy — 30 (,\flbi)Z =

This system is linear in H; and Hy and easy to solve. However, to formulate the
answer, we have to keep in view the fact that the conditions we obtain are necessary
but by no means sufficient. This yields that the bifurcation diagram lies on the
curves defined below but does not coincide with them. Some parts of these curves
should be removed afterwards.
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Theorem 6.3.1 For fixed values of J1 and Jo, the bifurcation diagram is contained
in the union of four curves (branches) given parametrically by the same formulas:

3 1< g?
Hy(\) = =N = M2+ 5 > m
i=1 !

3

2)\ — b;)g?
Hi(A) = =201 = N + > ((A_b;g’@
i=1 v

The parameter X runs over the following intervals (—oo, by), (b1,b2), (b2, b3), (b, +00).

Example of such a curve is given in Figure 6.6.

There is an important observation which is helpful to complete the reconstruction
(i. e., for removing the redundant parts) of the bifurcation diagram:

If A > b3, then all the expressions (A—b;) are also positive, therefore the function
F), is always positive as well.

This means that the image of the momentum mapping is situated on the same
side of the straight line

3 2
2\Hy — 2H; + <A3J1 + A2, + 2 - m) =0.

Since this straight line is tangent to the bifurcation curve, then the image of the
momentum mapping will always lie on the same side of this curve. The same will
be true for A < by (in this case the function F) will be strictly negative).

For various values of parameters of problem the bifurcation diagrams may differ
substantionally from each other.

6.4 Stability analysis for closed trajectories

First of all, note that those closed trajectories of the Rubanovskii system that are
not critical cannot be stable. Therefore it suffices to make the stability analysis only
for the trajectories laying in the critical set described in Theorem (6.2.1).

As we have already shown above, the relation

Mp4+XNz—Bp)+g—Bz=0

is fulfilled (identically) on any critical trajectory, where \ is a uniquely defined real
number which belongs to one of the intervals into which the real line is divided by
the points by, b2, bs.

If a critical trajectory is given (it is sufficient to define its initial conditions),
then we can easily compute A and therefore from the very beginning we can think
of A\ as a given parameter and use it in our formulations.

According to the general construction, the non-degeneracy and stability of this
trajectory should be proved as follows. First we should consider the kernel of the
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bracket II; — My at the point (z,p). In our case, this kernel appears to be four-
dimensional and can be naturally identified with a Lie algebra, which is isomorphic
to either so(3) @ R or si(2) @ R. Then we have to distinguish the semisimple part
and restrict to it any other bracket from the pencil. If the kernel of this restriction
turns out to be one-dimensional then we should consider its generating vector as
an element of the corresponding semisimple Lie algebra. The trajectory is non-
degenerate if and only if this element is semisimple, i. e. if the Killing form on this
element is non-zero. The trajectory is stable if this form is negative, and unstable
if it is positive.

This general algebraic scheme can be essentially simplified in the case under
consideration. It would be reasonable to clarify this scheme by means of a simple
example. Without going into algebraic particulars we can illustrate the situation as
follows.

Assume that we have two compatible Poisson brackets in the three-dimensional
space R3(x1, x2, 23), one of these brackets vanishes at some point, whereas the other
is of rank two. Let us consider their Casimir functions f and g respectively. We need
to characterize the singularity of the mapping ® = (f, g) : R3(x1, z2, 23) — R%(f,g)
at this point. This can be easily done in terms of these brackets only. We shall
comment on the most important special case. Let the first bracket be linear and
defined by a matrix of the form (any semisimple bracket can be brought to such a
form):

0 C3T3 —C2X2
A= —C3X3 0 C1T1 y
CoX9 —C1T1 0

and the second one be of the form:

0 asz+ ... —ag + ...
B=|—-a3+... 0 ai+ ... s
as + ... —a1 + ... 0

where “dots” denote the higher-order terms and a1, a2, as = const. The following
statement can be easily proved.

Proposition 6.4.1 The singularity of the mapping ® = (f,g) : R3(z1, 20, 23) —
R2(f,g) at the origin is non-degerenate if and only if

L)
@i
c162C3 £ 0.
— (&
=

2
Moreover, if cicocs Z?Zl % > 0, then the singularity is of elliptic type, and if

Ci

2
ci1c2C3 Zf’:l % < 0, then it is of hyperbolic type.

Recall that the elliptic singularities are diffeomorphic to those of the form f =
22 + y?, g = z, and the hyperbolic ones are diffeomorphic to the singularities of
the form f = 22 —y%, g = 2. Elliptic singularities correspond to stable critical
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trajectories of an integrable Hamiltonian system, and hyperbolic singularities to
unstable ones.

In the case in question, the situation will coincide with that we’ve just described
if we make a coordinate change bringing the bracket II; — Ally to the canonical
form (6.1). Our singular point is thereby defined by the condition Z = 0. Thus
the upper left 3 x 3-block of this matrix corresponds exactly to a three-dimensional
subalgebra (which is always semisimple but can be isomorphic either to so(3) or to
sl(2) depending on \)

After the change z — Z, the brackets Iy and 1I; take the following form:

H0:<Z—Bp p) N <%—|—()\—B)p—()\—B)1g p>

D 0 D 0

H1_<Bz—g 0) N (BZ—}—A((A—B))\];—()\—B)lg) App>

Here, in order to shorten our notation, we use the standard identification of
vectors in a three-dimensional space with 3 x 3 skew-symmetric matrices.

According to the general construction, we have to restrict all forms contained in
the considered pencil to the three-dimensional subspace corresponding to the upper
left block and examine the singularity of the resulting three-dimensional pencil. The
point p plays the role of a parameter.

Using Proposition 6.4.1, where the upper left blocks of the Poisson brackets
IT; — A and Il are taken as A and B (one can also take II; instead of IIy, the
result remains the same):

0 (bg — N)zz —(ba — \)Z2
A= [-(bs—N\)z3 0 (b1 — Nz
(be —N)Z2 —(b1 — N2 0
and
0 A=b3)ps — 38-+...  —(A=b)p2+ B +...
B=|-(A—b3)ps+ 35 +... 0 A =b)p1 — 3% + -
()‘ - b2)p2 - )\ngQ + . _()‘ - bl)pl + )\glbl + ... 0

we obtain the following result (Z; are considered as variables for this block, and p;
are used as parameters).

Theorem 6.4.2 Let a critical closed trajectory of the Rubanovskii system pass through
a point (z,p) with a parameter \. This trajectory is non-degenerate if and only if
the condition

3

N2
A= b)(A =)A= b) 3 ((/\—bi)pz-— A%bi) Aibi 20 (638)

=1

1s fulfilled. The trajectory is stable if this expression is greater than zero, and un-
stable if it is less than zero.
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Remark. It is noteworthy to mention the case when the expressions in brackets
(A —bi)pi — )ﬁ—ibi vanish simultaneously. It is not difficult to prove that in this case
the point (z,p) turns out to be an equilibrium with A being its multiple value of
parameter. Thus, on the critical trajectories the expressions (A —b;)p; — /\iibi cannot
vanish simultaneously.

We also note that the condition (6.8) can be rewritten in terms of the first
integrals which could be useful to interpret the corresponding singularity by means

of the bifurcation diagram.

6.5 Non-degeneracy and stability analysis for equilibria

The non-degeneracy condition for the equilibria of the Rubanovskii system can be
verified in the same way as we did for closed trajectories. One should just remember
the fact that an equilibrium is characterized not by one but two values of parameter
A. The condition (6.9) should be verified for each of them.

Theorem 6.5.1 Let (z,p) be a common equilibrium for the Hamiltonian Hy and
Hy which corresponds to parameters A1 and Xo. If the conditions

3

2
i 1
ca = Ma=b1)(Ma—b2)Aa—b3) > <(Aa ~bpi - 5 g_b,> ——#0,  a=12
i=1 (0% 7 (0% (2

(6.9)
are fulfilled, then the equilibrium is a non-degenerate singular point of the momentum
mapping.

Its type is determined by the signs of ¢y and co. For real A1, A2, we have three
possibilities. Namely,

1. if c1 > 0,c0 > 0, then the singular point is of center—center type and stable;

2. ifc; > 0,c0 <0 (orc; <0,c9 >0), then the singular point is of center—saddle
type and unstable;

3. if cp < 0,c9 <0, then the singular point is of saddle—saddle type and unstable.

Finally, if Ay and Ay are a pair of complex conjugate numbers then the singular point
1s of focus—focus type.

It is important to emphasize that all listed possibilities can be realized for some
appropriately chosen parameters. Hereby is rather surprising that focus-focus sin-
gular points appear in the Rubanovskii case in contrast to the Zhukovskii-Volterra
and Steklov- Lyapunov system where no focus singularities exist.

6.6 An open problem

As our computer experiments show, the number of different types of bifurcation
diagrams for Rubanovskii case is quite large. This happens because the bifurcation
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diagram essentially depends on three additional parameters g1, g2, g3 (in contrast to
the Steklov-Lyapunov case where the only essential parameter is the integral Jy). It
is still an open problem to classify all possible types of the bifurcation diagram for
the Rubanovskii case and to describe their dependence on parameters g1, g2, gs.

Figure 6.6.1: The bifurcation curve in the plan R? = (Hy, Hy) for the case g; =
0.1, g2 = 0.5, gs = 0.2, b1 = 5, b2 = 4, bg = 3, Jl = 1, JQ = —T.
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