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ABSTRACT 
 
 
 

The DNA Damage response is a crucial signaling network that preserves genome 
integrity. This network is an ensemble of distinct but often overlapping sub-networks, 
where participating components exert different functions according to precise spatio- 
temporal frameworks. To understand how these sub-networks have been assembled 
and emerged along evolution, we have screened DDR components in 47 selected 
species covering the tree of life and analyzed their evolutionary and functional 
properties according to different gene ages and following a variety of classifications. 
This is the first time a systematic analysis covers the DDR network’s evolution as a 
whole. Our results indicate that most of the DDR components are ancestral genes, that 
all the subnetworks contain at least one representative protein traceable to Prokaryota, 
and that the ancestral core of the DDR machinery is mainly related to repair and is 
mostly built upon sensor and effector activities. Along evolution the enlargement of the 
network has occurred through the addition of new components that have evolved to 
interact and work together with the ancient ones, which may have increased the 
complexity of the DDR network in terms of fine-tuning and cross-talk to other pathways. 
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RESUMEN 

 
 
 
La respuesta al daño en el ADN (DDR) es una red de señalización esencial que 
mantiene la integridad genética. Esta red es un conjunto de sub-redes distintas, pero a 
menudo solapantes, donde los componentes que participan desempeñan diversas 
funciones según marcos espacio-temporales precisos. Para comprender cómo estas 
sub-redes  han surgido a lo largo de la evolución y cómo se han ido ensamblando, 
hemos buscado componentes de DDR en 47 especies que cubren el árbol de la vida, 
y hemos analizado sus propiedades evolutivas y funcionales según distintas edades 
de genes y siguiendo varias clasificaciones.  
Esta es la primera vez que un análisis sistemático cubre la evolución global de la red 
de DDR. Nuestros resultados indican que la mayoría de los componentes de la DDR 
son genes antiguos, que todas las sub-redes contienen al menos un representante 
trazable hasta procariotas, y que el núcleo ancestral de la maquinaria de DDR está 
principalmente relacionado con reparación y se construyó sobre actividades de 
detección y efectores. A lo largo de la evolución, la ampliación de la red ha ocurrido a 
través de la adición de nuevos componentes que han evolucionado para interaccionar 
y funcionar junto a los antiguos, lo que puede haber incrementado la complejidad de la 
red de DDR en términos de precisión y de comunicación con otras redes. 
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Cells are continuously at risk of DNA damage from multiple sources, both exogenous 
(e.g. ionizing radiation or ultraviolet rays, chemicals, etc) and endogenous (e.g. 
reactive oxygen species and DNA replication errors) [1,2]. To detect DNA lesions, signal 
their presence and promote repair of the damage, cells have evolved a sophisticated 
and intricate network of concerted pathways that overall constitutes the DNA damage 
response (DDR).  
Perturbations to the network either by a deficient function of its components or by 
alterations on its regulation produce genomic instability, which can lead to disease. 
Every living organism requires a proper and efficient system for genome protection, 
and this system has likely evolved to adapt to different life-styles. 
Although various research works using different approaches has been done to 
delineate the structure of the DDR network, our understanding regarding how this 
network as a whole ever emerged is still far to be complete. 
 
 
 

1.1 DNA DAMAGE AND REPAIR MECHANISMS 
 

1.1.1 Brief history of DNA repair research 
 
Long before the structure of DNA was determined and before DNA was identified as 
the fundamental repository of the genetic information of all known organisms (with the 
exception of RNA viruses), experiments by Hermann Muller showed in 1927 the 
mutagenic effects that environmental agents, such as X-rays, have on the genetic 
material of cells. 
Later, in 1935, the first direct experimental evidence for DNA repair was obtained by 
Alexander Hollaender, who discovered that organisms have the ability to recover from 
the lethal effects of UV light and proposed the existence of cellular responses that 
momentarily arrest the growth of exposed cells, therefore enabling the repair of the 
damage before resuming growth.  
It was not until almost a decade later that the term DNA repair was incorporated into 
the lexicon of molecular and cellular biology. [3]. 
 
Discoveries of diverse DNA repair pathways during the second half of the 20th century 
explained many of the early observations in mechanistic terms. Nevertheless, it was 
not until the 1990s, with the discovery of DNA damage-induced signal transduction 
pathways linking DNA damage to cell cycle arrest and apoptosis, and with the finding 
of the role of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia mutated 
Rad3-related kinase (ATR) genes, that the full meaning of the DNA damage response 
began to be understood. 
 
In this century, new discoveries such as the deep connection among DNA damage, 
aging and cancer [4], or the importance of post-translational modifications (PTMs) in the 
regulation of DDR pathways [5] have greatly expanded our views of how cells and 
tissues limit mutagenesis and tumorigenesis. Besides, over the past decade enormous 
progress has been made in the clarification of the workings and interconnections of 
repairs pathways, and in the spatio–temporal orchestration of DNA repair [6-8].  
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Some of the key findings in the field of DNA repair and DDR are summarized in Figure 
1. Despite all these discoveries, we are still far away from encompassing the whole 
complexity of the DDR, but surely in the next years new incredible advances will be 
made in the field. 
 
Nowadays, new elements involved in the DDR are being identified almost every week 
and recent discoveries are starting to unveil the role of miRNAs in the regulation of 
DDR genes [9-11]. Moreover, due to the development of new technologies such as 
genome-wide RNAi screening and next generation sequencing, the post-transcriptional 
regulation of the DDR by non-coding RNAs (ncRNAs) and RNA-binding proteins 
(RBPs) is beginning to be understood, adding a new layer of complexity to the DDR 
landscape [12-14]. 
 
Finally, thanks to our increasing knowledge of DNA damage responses and our 
understanding of their complexity and effects, opportunities for improving disease 
detection and management are arising.  
 
 

 
 

Figure 1. Timeline summarizing some of the key findings in the DNA repair and DDR fields. The discoveries listed on 
top are related to various effects of DNA damage on cellular functions and DNA damage signaling while the discoveries 
listed on the bottom are related to DNA repair (figure adapted from Ljungman M., 2010) [15]. 
 
 

1.1.2 Sources and types of DNA damage 
 
Threats to DNA integrity come from multiple endogenous and exogenous sources. 
Regarding the former, there are three main sources: i) Spontaneous reactions (mainly 
hydrolysis) inherent to the chemical nature of DNA in an aqueous solution, which 
generate abasic sites and cause deamination [16,17] ii) Products of our own metabolism, 
such as reactive oxygen, nitrogen and carbonyl species [18], endogenous alkylating 
agents, estrogen and cholesterol metabolites, and lipid peroxidation products, all of 
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which damage DNA. iii) Replication errors: replication defects can cause mismatches 
and replication fork collapse can result in strand breaks [19]. 
Regarding the exogenous sources, the main DNA damaging agents are chemicals and 
physical agents such as ionizing radiation or ultraviolet rays. 
It has been estimated that reactive oxygen and nitrogen species alone generate more 
than 70 oxidative base and sugar products in DNA as well as different types of single-
strand breaks (SSBs), while spontaneous base losses in nuclear DNA have been 
estimated to reach 104 per cell per day [16,17]. Together with other types of damage, the 
total number of DNA lesions that each of the ~1013 cells in the human body receives 
per day may be close to 105 [16]. 
 
 
Table 1 (below in section 1.1.3) summarizes some of the most common kinds of DNA 
damage and their sources, and a short description of the main types of DNA damage 
follows: 
 

- Deamination 
Deamination involves the loss of amino groups from DNA bases. All DNA bases but 
thymine (which does not have an amino group) undergo spontaneous deamination. 
Most types of deamination reactions produce a base that does not naturally occur in 
DNA (with the exception of deamination of 5-methylcytosine) and this fact facilitates the 
identification and excision of the deaminated base by DNA glycosylases [20].  
The most frequent type of deamination event in cells is deamination of cytosine into 
uracil. In mammals this happens in about 100-500 bases per cell per day in 
spontaneous deamination reactions [2]. 
          

- Abasic sites, depurination and depyrimidination 
An abasic site, also termed “apurinic or apyrimidinic” (AP) site, is formed when a base 
is lost from the DNA by cleavage of a N-glycosyl bond, leaving the sugar-phosphate 
chain intact [2]. Abasic sites can be produced by spontaneous depurination and 
depyrimidination reactions and are potentially mutagenic. Depurination reactions 
involve the loss of purine bases (adenine and guanine) from DNA. In these reactions, 
the N-glycosyl bond to deoxyribose is broken by hydrolysis, leaving the DNA’s sugar-
phosphate chain intact and producing an abasic site, while depyrimidination imply the 
loss of pyrimidine bases (cytosine and thymine) from DNA [16]. Abasic sites can also be 
produced by reactive oxygen species (ROS) [21] and in intermediate steps of the base 
excision repair [22]. 
 

- Pyrimidine dimers  
Pyrimidine dimers are mutagenic lesions formed from thymine or cytosine bases in 
DNA via photochemical reactions. These dimers alter the structure of the double helix 
and interfere with base pairing during DNA replication, consequently inhibiting 
polymerases and arresting replication [23]. 
Covalent linkages between adjacent pyrimidines in the same DNA strand characterize 
cyclobutane pyrimidine dimers (CPDs), which are the most frequent type of 
photoproduct produced when DNA is exposed to UV-B [16] or UV-C radiation. Thymine 
dimers are the type of CPD most frequently found in DNA. The formation of CPDs can 
also enhance the deamination of cytosine.  
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Other common UV product are 6,4-photoproducts, or 6,4 pyrimidine-pyrimidones, 
which occur at one-third the frequency of CPDs but are more mutagenic. [2]. 
 

- DNA strand breaks 
Ionizing radiation (for example, from cosmic radiation or X-rays) can cause SSBs and 
double-strand breaks (DSBs) in the DNA double helix. If these breaks are not properly 
repaired, they can induce mutations and lead to widespread structural rearrangement 
of the genome. 
Some strand breaks are generated in intermediate steps of natural occurring reactions. 
For example, the process of V(D)J recombination during B- and T-cell development is 
initiated by a DSB between two recombining variable-region gene segments and their 
flanking sequences [24]. Nevertheless, other strand breaks are a severe form of DNA 
damage and inhibit DNA replication, leading to the activation of the DNA repair 
machinery. This is the case when SSBs occur due to the oxidation of DNA bases by 
ROS, or when stalled DNA replication forks collapse and free double-stranded ends 
[25]. 
 

1.1.3 DNA repair mechanisms  
 
The core of the cellular defense against DNA injuries is composed by diverse DNA 
repair mechanisms, each with their own damage specificity (Table 1, adapted from 
Giglia-Mari et al., 2010). Collectively, they are capable of removing most lesions from 
the genome.  
 

 

Table I. Sources of DNA lesions and corresponding repair pathways 
 

 

Lesion 

 

 

Cause 
 

Repair pathway/process 
 

CPD, 6-4PP(1) 
 

Sunlight 
 

Photoreactivation, NER 
Bulky adducts(2) Food, cigarette smoke NER 
Intrastrand crosslinks Chemotherapy (e.g., Cis-Pt) NER 
8-oxo-dG(3) ROS(4), respiration BER 
Thymineglycol(3) ROS(4), respiration BER 
N7-Alkyl-dG, N3-Alkyl-dA Food, pollutants BER 
O6-Alkyl-dG Food, pollutants DR(5), BER? 
5-methyl-dC DNMT(6) BER 
Uracil, (Hypo)Xanthine Spontaneous deamination BER 
Abasic site Spontaneous hydrolysis BER/ Trans-lesion bypass 
Single-strand breaks Ionizing radiation, ROS Ligation, BER 
Double-strand breaks Ionizing radiation, ROS, V(D)J-rec HR, NHEJ 
Tyrosyl-3’ DNA(7) Topo-I inhibition, ROS SSBR 
Mismatches Replication errors MMR 
Small insertion/deletions Replication slippage MMR 
Interstrand crosslinks Chemotherapy Fanconi anaemia pathway/ ICLR(8)/ 

HR? 

 

 
1. CPD: cyclobutane pyrimidine dimer; 6-4 PP: 6-4 pyrimidine-pyrimidone photo-product. 
2. A large group of chemicals conjugated to bases that cause DNA helix destabilization such as: Benzo(α)pyrene (a polycylic aromatic 
hydrocarbon); Aflatoxins (present in fungal food contaminations); and Nitrosamines (tobacco smoke). 
3. A large group of different oxidation products affecting either the base or the phosphate-sugar backbone of which 8-oxo-dG is the most 
abundant. 
4. ROS: reactive oxygen species, produced as side-product of respiration/metabolism and ionizing radiation. These species include 
superoxide, hydrogen peroxide, hydroxyl radicals and singlet oxygen.  
5. DR: direct reversal.  
6. DNMT: DNA methyltransferase, functions in epigenetic gene-expression control (e.g., at CpG islands).  
7. Proteolytic degradation of conjugated Topo-I to 3’DNA termini creates tyrosyl-3’DNA bonds, resolved by TDP1. 
8. ICLR: interstrand crosslink repair. 
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Depending on the nature of the DNA lesion [26], the cell type, the cell cycle phase in 
which the lesion is encountered [27], and if the DNA can be repaired after careful 
checking by the checkpoint pathways [28], different DNA repair systems can be utilized 
to restore the damaged DNA. 
 
The existence of these pathways enables to avoid or minimize possible alterations of 
genome structures leading to loss of proliferative control or cell death, and therefore it 
ensures the accurate transmission of genetic information to the next generation. 
 
DNA repair systems have received much attention [15,29-31], and the main ones are 
classified as direct reversal, mismatch repair (MMR), base excision repair (BER), 
nucleotide excision repair (NER), homologous recombination (HR) and non-
homologous end-joining (NHEJ). Their specificities and functioning are explained 
below: 
 
a) Direct reversal 
 
The first DNA repair mechanism that is thought to have emerged in evolution (which 
was also the first to be discovered) is enzymatic photoreactivation, a process carried 
by photolyases, which selectively reverse UV-induced DNA damage [32]. 
Photolyases are not conserved in mammals, which have to rely on a more intricate 
mechanism to remove UV injuries: nucleotide excision repair [31]. 
Other simple solution that emerged in nature is the suicide enzyme O-6-
methylguanine-DNA methyltransferase, which transfers the methyl group from a 
guanine in DNA to an internal cysteine residue in the enzyme, thereby inactivating itself 
[2]. 
 
b) Mismatch repair 
 
The MMR system is a highly conserved pathway that elevates the fidelity of DNA 
replication and plays an important role in maintaining genetic stability [33]. Though MMR 
proteins are known to be involved in cellular responses and repair synthesis at the 
sites of various types of DNA damage [34,35], its best understood function is the 
elimination of mismatches arising during DNA replication, a process that has been 
extensively studied and best characterized in E. coli. In eukaryotes, mismatches 
produced during replication are recognized by the heterodimers MutSα (MSH2/MSH6), 
which binds base-base mismatches and small insertion-deletion loops, and MutSβ 
(MSH2/MSH3), which binds larger insertion-deletion loops. The heterodimer 
MutLα (MLH1/PMS2) is recruited by the MSH2 protein to form a ternary complex with 
one of the MutS complexes and promotes the repair process via its endonucleolytic 
activity, leading to an excision repair of the mismatch [36]. Additional proteins involved in 
this process may include the 5’–3’ double-stranded DNA exonuclease I (EXO1), 
helicase(s), replication protein-A (RPA), replication factor C (RFC), proliferating cell 
nuclear antigen (PCNA), and DNA polymerases α and β [37]. 
MSH6 has been reported to be involved in the repair of DSBs through a direct physical 
interaction with the NHEJ protein Ku70, upregulating the activity of the latter. The exact 
mechanism by which the mismatch repair protein interacts with and regulates Ku70 is 
still to be elucidated, though it is suggested that MSH6 could increase the binding 
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affinity of Ku70 for DNA, modulate the amount of Ku70/80 complexes or facilitate the 
recruitment of other important NHEJ proteins to bind the broken-DNA ends [38]. 
 
 
c) Base excision repair 
 
Lesions caused by endogenous and exogenous reactive species generating small 
chemical alterations like alkylation, deamination, abasic or AP sites, SSBs and 
oxidization of DNA bases are corrected by BER through excision of the damaged base, 
incorporation of the correct nucleotide(s), and strand ligation [30,39]. 
BER is initiated by DNA glycosylases, which remove the damaged base, leaving an AP 
site with mutagenic potential. The AP site is then processed by AP endonucleases and 
the gap is subsequently processed by at least two BER sub-pathways: the short-patch 
(SP) BER and the long-patch (LP) BER. In SP-BER, the gap is filled inserting a single 
nucleotide and is performed by the DNA polymerase β, while in LP-BER two to about 
thirteen nucleotides are incorporated and is carried out by the DNA polymerase β and 
the replicative DNA polymerases ∂ or/and ε [40]. The pathway requires several DNA 
replication factors, including PCNA. Finally, the strand ligation is performed by the X-
ray cross-complementing group 1 (XRCC1)/DNA ligase III complex in SP-BER, while in 
LP-BER the ligation step is carried out by DNA ligase I [41]. 

 
 

d) Nucleotide excision repair  
 

The NER system, which recognizes bulky and helix-distorting base lesions, uses two 
sub-pathways that differ in the mechanism of lesion recognition: global genome repair 
(GG-NER), which scans the entire genome for distorted DNA and eliminates the 
damaged bases, and transcription-coupled repair (TC-NER), which specifically 
removes lesions that block transcription [29]. 
In TC-NER, damage sensing is performed by the stalled RNA polymerase II, and the 
Cockayne syndrome factors CSA and CSB play essential roles in TC-NER complex 
assembly [42]. In GG-NER, the XPC-RAD23B complex detects the lesions, opens the 
DNA locally and helps recruit transcription factor IIH (TFIIH). In the next steps, the two 
sub-pathways converge. The combined action of these complexes creates short 
stretches of single-stranded DNA around the lesion, and then the unwound DNA is 
stabilized by XPA and RPA. Sequentially, XPB and XPD, the two helicase subunits of 
TFIIH, bind and extend the single-stranded DNA around the damage site, allowing 
further NER factors to bind and form a pre-incision complex. The endonucleases XPF-
ERCC1 and XPG then cleave on the 5’ and 3’ sides of the lesion, respectively, 
generating a patch of approximately 30 nucleotides that is subsequently filled in by 
DNA replication proteins, including RFC, PCNA, RPA, and several DNA polymerases. 
Finally, the gap is sealed by DNA ligases I or III [4,43,44]. 
 
 
e) Double-strand break repair 

 
Among the different type of lesions, and because of their potential to provoke major 
chromosomal rearrangements, DSB are particularly hazardous and elicit a very robust 
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cytotoxic response; therefore, efficient repair of DSBs is essential for genome stability 
and viability.  
As explained above, DSBs can be caused by a variety of sources such as ionizing 
radiation or X-rays, certain chemicals and ROS. In addition, DSBs can be produced 
during V(D)J recombination and when the replication machinery collapses at replication 
blocks [29]. 
In eukaryotes, the main pathways involved in the repair of DSBs are homologous 
recombination (HR) and non-homologous end-joining (NHEJ).  
NHEJ uses limited or no sequence homology to rejoin juxtaposed ends, while HR 
requires a homologous sister chromatid as a template to properly align and seal the 
broken DNA ends [29]. This availability of a homologous template makes HR an error-
free repair system of the damaged DNA. On the contrary, NHEJ is considered an error-
prone repair system since bases are generally deleted or inserted as part of the 
reparation process of this pathway.  
Nevertheless and despite its mutagenic nature, NHEJ is responsible for repairing a 
major fraction of DSBs in higher eukaryotes, especially in mammals; whereas HR is 
the preferred pathway for DSB repair in bacteria [45,46] and lower eukaryotes [47,48].  
 
Non-homologous end-joining 
In modern eukaryotes, NHEJ consists of at least two distinct sub-pathways: the main 
classic end-joining pathway (C-NHEJ), and an alternative NHEJ (A-NHEJ) [49]. Little is 
known about the regulation and the elements involved in A-NHEJ, in contrast, at least 
seven proteins are known to be required for C-NHEJ in mammalian cells. 
 
Ku70 and Ku80 form the ring-shaped heterodimer Ku, that recognizes and binds to 
DSBs protecting the DNA ends from resection [50]. DNA-dependent protein kinase 
catalytic subunit (DNA-PKcs) is then recruited to the DSB and activated by 
autophosphorylation. Once autophosphorylated, DNA-PKcs bridges the two proximal 
broken DNA ends [51]. Together, Ku and DNA-PKcs form the DNA-PK holoenzyme 
which, when end processing is required, binds to and phosphorylates Artemis, a 
downstream factor of the ATM signaling pathway, activating its nuclease function [52]. 
Besides Artemis, other end processing enzymes are recruited to the DBS. Finally, the 
end ligation step is mediated by a complex consisting of DNA Ligase 4 and X-ray repair 
cross complementing protein (XRCC4), whose activity is stimulated by the association 
of the XLF protein (XRCC4-like factor), also called Cernunnos or nonhomologous end-
joining 1 (NHEJ1) [53].  
 
Homologous recombination 
HR is implicated in the repair of damaged replication forks and their re-initiation when 
stalled and collapsed. Besides, it is involved in centrosome stabilization [54], in the 
repair of telomeres through the action of the SMC5-SMC6 complex [55], and it is also 
responsible for accurate segregation of homologous chromosomes in meiosis [56]. Also, 
during meiosis a fundamental role of HR is to generate crossovers between 
homologous chromosomes, thereby contributing to genetic variation. Such events arise 
at the molecular level through either resolution of double Holliday junctions (HJs) by 
the SLX1-SLX4 complex [57] or through MUS81-EME1 dependent cleavage of HJs  [58]. 
In addition, HR is used to repair interstrand DNA crosslinks, the repair of which 
involves the Fanconi anemia protein complex [59].   



INTRODUCTION 

 10 

 
The HR pathway starts when the MRN (Mre11–Rad50–Nbs1) complex recognizes the 
DSB, binds there, and holds together and stabilizes the DNA ends [60]. The MRN 
complex also provides scaffolding for the CtBP-interacting protein (CtIP) nuclease, 
which catalyzes end resection at the break together with the Bloom syndrome protein 
(BLM) Helicase, DNA2 helicase/nuclease [61] and EXO1 [62,63]. EXO1 is a key mediator 
of DNA end resection and DSB repair and damage signaling decisions, since resection 
by this exonuclease facilitates a transition from ATM- to ATR-mediated cell cycle 
checkpoint signaling [64]. 
 
DSB end processing generates an extended region of ssDNA that is then bounded by 
RPA. Next, Rad51 and other factors are recruited to the DSB. Afterwards, the RPA-
coated ssDNA is replaced with Rad51 in a process that involves Rad52, BRCA1 and 
other proteins implicated in the Fanconi anemia pathway such as BRCA2 and PALB2 
(partner and localizer of BRCA2) [59]. The Rad51 nucleofilament promotes the search 
for the homologous duplex DNA in the undamaged sister chromatid and facilitates 
strand invasion into the homologous template. Finally, the action of DNA polymerases, 
nucleases, helicases, resolvase enzymes and other HR factors, mediate DNA ligation 
and resolution of repair intermediates to produce undamaged DNA molecules [65].   
 
 

1.1.4 DNA Damage Tolerance 
 
Persisting lesions not fixed by any of the repair mechanism will negatively affect DNA 
replication. At least two mechanisms to bypass DNA damage have evolved: translesion 
synthesis (TLS) and template switching. These processes do not eliminate lesions, but 
serve as a temporary solution to overcome lesion-stalled replication forks, which can 
lead to highly cytotoxic DSBs and thus require a quick response. 
 
In TLS, upon lesion-induced replication blockage, the usual high-fidelity DNA 
polymerases (pol∂, ε or α) are transiently replaced with low-fidelity translesion 
polymerases (polζ-κ) that are able to synthesize DNA using a template strand 
encompassing a DNA lesion. Once the replication fork passes the site of the lesion, the 
low-fidelity DNA polymerases are replaced with the usual high-fidelity enzymes, which 
allows DNA synthesis to continue as normal [66]. Though TLS can circumvent lesion-
induced replication stalling the low fidelity of the alternative polymerases usually 
causes enhanced mutagenesis [31].  
 
In template switching, the DNA lesion is bypassed at the replication fork by leaving a 
gap in DNA synthesis opposite the lesion. Once the lesion has passed the replication 
fork, the single-strand gap is repaired utilizing template DNA on a sister chromatid, in a 
similar way to the process employed during HR [25]. 
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1.1.5 Regulation of DNA repair throughout the cell cycle 
 
Eukaryotic cells are equipped with a wide range of mechanisms to maintain genomic 
stability during the cell cycle (Figure 2). DNA lesions activate checkpoint pathways that 
regulate specific DNA-repair mechanisms in the different phases of the cell cycle. 
Recent studies have provided insights into the mechanisms that contribute to DNA 
repair in specific cell-cycle phases and have highlighted the machinery that controls 
cell-cycle progression or arrest [6,67,68]. Besides, it has been proposed that PTMs may 
tune the efficiency or the specificity of the repair machinery towards a certain type of 
lesion, often to facilitate repair in a specific cell-cycle phase [6]. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2. Overview of the major mechanisms to maintain genomic stability during the cell cycle (figure from Z. Shen, 
2011).  
 
 
The driving force to select alternative repair pathways largely depends on the cell cycle 
status of the cell (Box1).  
In the case of DSBs, although the exact mechanisms underlying DNA repair pathway 
choice and the precise role of the proteins involved in this process are still to be 
elucidated, there are a series of factors known to influence this selection, including the 
source and dose of the damage, the kind of lesion, the chromatin context of the DSB, 
the process of DSB resection, the cell type and the cell cycle phase [6,69-71].  
NHEJ uses limited or no sequence homology to rejoin juxtaposed ends and acts 
throughout the cell cycle, being the major pathway in G1 [72], while HR is limited to the 
S, G2 and M phases, since it requires a homologous sister chromatid as a template to 
properly align and seal the broken DNA ends [29].  
Apart from being controlled by DNA damage response signaling pathways, HR is also 
tightly influenced by a high cyclin-dependent kinase activity that triggers end resection, 
and which is present only in the S, G2 and M phases of the cell cycle [73].  
 
 
 

II.  Segregation of chromosomes in 
mitosis  

• Chromosome condensation 
• Sister chromatid cohesion 
• Kinetochore assembly and 

attachment 
• Centrosome duplication and 

separation 
• Spindle formation and checkpoint 
• Chromatid segregation 
• Cytokinesis 

During the cell division cycle, four major 
mechanisms are involved in maintaining 
the genomic stability: 
I. Fidelity of DNA replication (S-phase) 
II. Accurate segregation of 

chromosomes (M-phase) 
III. Precise repair of DNA damage 

(throughout the cell cycle) 
IV. Cell cycle checkpoints 

 

I.  Fidelity of DNA replication in  
S-phase  

• DNA polymerase 
• Mismatch repair 
• Replication licensing 
• Maturation of Okazaki fragment 
• Restart of stalled replication forks 
• Re-chromatinization  
• Telomere maintenance 
• Preservation of epigenetic signatures 

III.  Precise repair of sporadic DNA 
damage throughout the cell cycle  

• DNA repair pathways 
• DNA damage signaling 
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G1 
 

S 
 

G2-M 

 

 

DSBs or SSBs 

 

 

NHEJ 
 

HR-mediated fork restart 
 

HR-mediated repair 
 

Mismatches 

 

 
 

Mismatch repair  
 

Bulky lesions 
 

NER  

  

 

Template–switch–mediated damage bypass 

 

TLS–mediated damage bypass 
 

 
    

   Box1: Main repair mechanisms used in the different cell-cycle phases. 
 
 
 
 
 

1.2 THE DNA DAMAGE RESPONSE 
 

1.2.1 A combined signaling and genome-maintenance network 
 
Maintenance of genome integrity is a continuous task in all cells and to preserve 
cellular viability and prevent disease, a perfectly synchronized response to DNA 
damage is essential. Eukaryotic cells have an intricate genomic maintenance network 
formed by multiple repair pathways and diverse sensing, checkpoint, signal-
transduction, and effector systems linked to replication, transcription, recombination, 
chromatin remodeling, and differentiation [74]. Besides, genome maintenance 
safeguards the integrity of mitochondrial DNA [75] and includes the complex telomere-
processing machinery [76].  
 
The DDR is a signal transduction cascade of proteins composed of sensors, mediators, 
transducers and effectors [77] (Figure 3). The DDR starts with sensing the damage at 
the break sites by a variety of sensor proteins such as the MRN complex [60,78], 
members of the poly(ADP-ribose) polymerase (PARP) family [79], the Ku heterodimer [50] 
or proteins of the phosphatidylinositol 3-kinase-like protein kinase family —ATM, ATR, 
and DNA-PK— [80]. These sensors recruit mediator proteins to the damaged site and 
activate transducer proteins. The transducers amplify the damage signal and activate a 
complex signalling transduction cascade that activates effector proteins and induces 
cell cycle arrest to allow time for lesion removal prior to replication or cell division. 
When the damage cannot be properly repaired or when too many injuries are 
encountered, replicative senescence is induced or apoptosis is activated in order to 
protect the organism from potentially harmful cells [29]. 
Effector proteins are directly phosphorylated by ATM/ATR or by kinases such as 
CHK1, CHK2 or MK2 [74], and they elicit a series of cellular responses. 
Besides phosphorylation, the assembly of the DDR cascade depends on other 
posttranslational modifications like acetylation, ubiquitination, sumoylation, poly(ADP-
ribosylation), methylation or neddylation [81]. These modifications are specifically 
recognized by a variety of proteins, many of which mediate the recruitment of other 
DDR factors to sites of DNA damage. This recruitment can be visualized by light 
microscopy as nuclear domains, or foci, which are highly dynamic structures subjected 
to a precise spatiotemporal regulation [82] and whose formation involves protein-protein 
interactions [5]. These foci have become a tool to evaluate the presence of certain 
proteins at DNA breaks. 
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Figure 3. The DDR: a signal transduction cascade of proteins composed of sensors, mediators, transducers and 
effectors. DDR pathways contain four major components (some of which have overlapping functions):  the “sensors” 
detect the damage and transmit signals to the “transducers,” that convey the signals with the help of “mediators” to 
down-stream “effectors,” which in turn execute the response (Image from Jackson and Bartek, 2009). 

 

1.2.2 Chromatin and DDR 
 
Recent research has provided insights into how chromatin responds to DNA damage 
and how cells mobilize large segments of chromatin to protect the genome against 
destabilizing effects posed by DNA lesions, and thus guard genome integrity.  
 
DNA lesions can trigger histone alterations, nucleosome repositioning and changes in 
higher-order folding of the chromatin fibre. These modifications cause massive 
accretion of proteins in large segments of lesion-flanking chromatin that are visible as 
nuclear foci, the study of which has led to unravel the molecular pathways that reshape 
chromatin around DNA lesions.  
DNA-damage-induced chromatin responses are promoted by PTMs of histones and 
histone-binding proteins, which generate modifications on the chromatin structure that 
need to be carefully tuned in space and time for proper damage signaling, DNA repair 
and modifications reversal after completion of DNA repair. For instance, while histone 
deacetylations and PAR-dependent events generally tend to silence or compact 
chromatin, most other modifications induce chromatin relaxation [83]. 
Some repair events are context-specific and determined by the status of the loci before 
DNA damage. For example, simple DSBs taking place in euchromatic DNA can be 
rapidly ligated by the NHEJ core proteins, while more complex DSBs and those 
occurring in heterochromatic regions of DNA activate the ATM kinase, which in turn 
triggers the DNA damage response, and the recruitment of HR elements [73]. 
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1.2.3 The ATM/ATR pathway 
 
Both ATM and ATR are key regulators of the DDR, coordinating cell cycle transitions, 
DNA repair, DNA replication and transcription, RNA splicing, metabolic signaling and 
apoptosis, among many other cellular activities [84,85]. One of the most recent canonical 
DDR pathway representations (see figure 4a and 4b) is the one described by Harper 
and Elledge [74]. 
 
DNA damaging agents (e.g. ionizing radiation) can cause DSBs and, as stated before, 
when these are located in heterochromatic regions of DNA, and when NHEJ fails, they 
lead to the activation of ATM. ATM then phosphorylates and inactivates KRAB-
associated protein 1 (KAP-1, also known as TIF1-beta or E3 SUMO-protein ligase 
TRIM28), a heterochromatin-building protein, to cause local chromatin relaxation [86-88], 
enabling access of signaling and repair components to the site of damage. Besides, 
ATM is essential in the immediate response of cells to DSBs and the following switch 
to ATR activation after DNA end resection [74,89]. 
 
 
a) ATM 

 
ATM is recruited to DSB sites by the MRN complex (see figure 4a), and there its 
activation is mediated by MRN in conjunction with other proteins such as 53BP1 [90] 
and the tat-interactive protein 60kDa (TIP60, also termed KAT5) acetyltransferase [91], 
which also modifies chromatin at sites of DNA damage [92].  
Next, ATM phosphorylates the variant histone H2AX on Ser 139 to form γH2AX [93]. 
This event is accompanied by dephosphorylation of the neighbouring Tyr 142, a 
residue constitutively phosphorylated in the absence of damage [94]. γH2AX provides a 
high-affinity binding site for the MDC1 protein, which in turn orchestrates the 
recruitment of many additional factors to the damaged DNA leading to the generation 
of IR-induced foci (IRIF) [95]. MDC1 retains MRN, which further enhances ATM 
activation and γH2AX expansion [96]. Then the E3 ubiquitin-protein ligase RNF8 is 
recruited to the DSB, where it binds MDC1, recruits other downstream E3 ligases such 
as UBC13, RNF168, HERC2 and RAD18, and initiates a complex ubiquitylation 
cascade of histones H2A and H2AX at the DSB-flanking region, which causes 
chromatin restructuration [97]. 
Sequentially, ATM phosphorylates HERC2, which stimulates the interaction of the latter 
with RNF8. HERC2 is needed for RNF8 to promote UBC13-dependent poly-
ubiquitylation of H2A-type histones [98]. Next, RNF168 assembles at the DSB, interacts 
with ubiquitylated H2A, and by targeting H2A and H2AX, further propagates the 
ubiquitylation of H2A and other targets at the DSB [99].   
Consecutively, RAD18 is recruited in an RNF8/UBC13-dependent manner, where it 
directly binds to the ubiquitin chains at the sites of DNA breaks through its Zinc finger 
domain. In response to DSB, RAD18 binds to RAD51C, which allows the accumulation 
of RAD51C at DNA damage sites and thus facilitates RAD51 foci formation and HR 
repair [100].   
 
Another protein whose localization to DNA damage foci is dependent on RNF8 and 
UBC13 is the PAX-interacting protein 1 (PTIP), which is involved in the recruitment of 
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53BP1 to these sites and acts as a local assembly platform for chromatin modulating 
activities [101]. Besides, PTIP is thought to promote ATM signaling in response to 
genotoxic stress through its ability to interact with 53BP1 [102] and has recently been 
found to interact also with γH2AX [103]. PTIP and 53BP1 induce chromatin remodeling 
at the damage sites, which promotes the association of ATM with chromatin and 
induces the phosphorylation of ATM substrates such as SMC1A (Structural 
maintenance of chromosomes protein 1A) [104,105], which is a structural component of 
the cohesin complex, involved in gene expression regulation, maintenance of genome 
stability, and in sister chromatid cohesion. [106] 
 
Ubiquitylated histones at sites of DNA damage mark the spot for important downstream 
factors of the DDR such as 53BP1 and BRCA1. BRCA1 is recruited to IRIF though the 
BRCA1-A complex, composed of the RAP80/UIMC1 protein, which binds to 
ubiquitylated histones, and the proteins Abraxas/FAM175A, MERIT40/NBA1, the de-
ubiquitinating enzyme BRCC36/BRCC3, BRE/BRCC45, BRCA1 and the BARD1 
(BRCA1-associated ring domain protein 1) E3 ligase [107-109]. 
 
In addition to BRCC36, several de-ubiquitylating enzymes also function at DSBs, like 
USP11 (Ubiquitin carboxyl-terminal hydrolase 11), which interacts with BRCA2 [110] and 
also regulates the recruitment to IRIF of a subset of DSB repair proteins including 
RAD51 and 53BP1 [111]. 
 
Regarding sumoylation, DSB repair is promoted by PIAS1 and PIAS4, small ubiquitin-
like modifier (SUMO) E3-ligases that are recruited to the damage sites, and are 
needed for the complete accretion of repair proteins to these locations [112]. PIAS4 acts 
earlier in the DDR cascade, where it influences RNF168 and the subsequent RNF168-
dependent protein recruitment, while PIAS1 appears to induce RAP80 and BRCA1 
accumulation. Besides, SUMO proteins also regulate BRCA1’s ubiquitin ligase activity 
[113]. 
 
ATM activation leads to the phosphorylation of CHK2, which regulates cell cycle 
checkpoints, and p53, a nuclear transcription factor that induces cell-cycle arrest, 
senescence or apoptosis in response to DNA damage [114]. Both ATM and CHK2 
regulate p53 by preventing its ubiquitination by the RING E3 ligase MDM2, which, 
along with MDMX (MDM4), is part of a multi-component E3-complex that targets p53 
for proteasomal degradation. DNA damage also induces ATM-dependent 
phosphorylation of MDMX, which is then selectively bound and degraded by MDM2 
preceding p53 accumulation and activation [115]. 
 
 
The transcription factor SOX4 is also required for the activation of p53 since it 
enhances its acetylation and interacts with and stabilizes p53 blocking its MDM2-
mediated ubiquitination and degradation [116]. In addition, MDM2 controls degradation of 
hnRNP K (Heterogeneous nuclear ribonucleoprotein K), a p53 cofactor that plays key 
roles in coordinating transcriptional responses to DNA damage [117]. 
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Moreover, ATM mediates phosphorylation of FBXO31 [118], a component of a SCF 
(SKP1-cullin-F-box) protein ligase complex that triggers the ubiquitination and 
subsequent degradation of cyclin D1 by the proteasome, resulting in G1 arrest after 
DNA damage [119]. 
 

 
b) ATR 
 
While ATM is set in motion at DSBs, ATR is activated when ssDNA are generated at 
stalled replication forks (see figure 4b) or due to the processing of DSBs ends, and 
also responds to damage by ultraviolet light. Subsequently, the single strand DNA-
binding protein replication protein A (RPA) binds the newly created ssDNA overhangs, 
and recruits ATR via ATR-interacting protein (ATRIP) to regulate the checkpoint 
response [120]. RPA also recruits SMARCAL1, an ATP-dependent annealing helicase 
involved in the replication stress response [121]. 

Figure 4a. DDR canonical 
pathway, ATM and DSBs. 
Modified from Harper and 
Elledge, 2007. Since this date, 
important new components of 
the DDR network have been 
discovered. 
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ATR activation depends on RAD17 loading of the PCNA-related 9-1-1 (RAD9, RAD1 
and HUS1) complex onto DNA through a RAD9–RPA interaction. Then TopBP1 (DNA 
topoisomerase 2-binding protein 1) and Claspin are recruited to the site to be 
phosphorylated by ATR, which also phosphorylates RAD17 and the 9-1-1 complex. 
Consequently, RAD17 and Claspin, together with the TIM-Tipin complex promote ATR 
phosphorylation and activation of CHK1 and other kinases such as Tao and MK2 [7] 
which, in turn, phosphorylate effector proteins that control the cell cycle checkpoints, 
stabilize stalled forks, repair collapsed forks and prevent late origin firing [122]. 
 
 
 

 
 

  Figure 4b. DDR canonical pathway, ATR and replication block, from Harper and Elledge, 2007. 
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c) The ATM/ATR pathway and the cell cycle 
 

Both the ATM/CHK2 and the ATR/CHK1 sub-pathways lead to the phosphorylation and 
inactivation of proteins of the CDC25 family of dual-specificity phosphatases (see 
figure 4a and 4b), which play an important role in driving dividing cells through the cell 
cycle [7].  
CDC25C phosphorylation by checkpoint kinases leads to cytoplasmic sequestration of 
the dual-specificity phosphatase by 14-3-3 proteins [123], and phosphorylation of 
CDC25A by CHK1 leads to its ubiquitination by the SCFb-TRCP ubiquitin ligase and its 
subsequent degradation [124]. CDC25A regulates the G1/S transition by controlling 
CyclinE and CyclinA/Cdk2 activity, and also seems to play a role in facilitating the 
G2/M transition by activating CyclinB/Cdk1 [125]. 
 
In a normal G2/M transition, PLK1 (Polo-like kinase 1) phosphorylates WEE1 and 
Claspin, generating a phosphodegron (specific phosphorylated sequence of amino 
acids) that targets them for destruction via ubiquitination by SCFb-TRCP [124], leading to 
Cdk activation, reduced CHK1 signaling and cell-cycle progression [126]. PLK1 also 
promotes nuclear translocation of CDC25C [127] and inhibits CHK2 and 53BP1 [128].  
 
When the DDR is triggered, on the one hand PLK1 is inhibited, which prevents the 
formation of the WEE1 phosphodegron and, on the other hand, CHK1 and CHK2 
kinases regulate CDC25, WEE1 and p53, which eventually inactivate cyclin-dependent 
kinases, thus inhibiting cell-cycle progression [7]. 
 
As mentioned previously, an important role of the DDR is the inhibition of DNA 
replication during repair to prevent polymerases from encountering DNA damage. Part 
of this regulation occurs by targeting the DNA replication factor CDT1 for ubiquitin-
mediated destruction by an SCF-like ubiquitin ligase composed of Ddb1, Cul4, RBX1 
and Cdt2 [129].  
 
After successful DNA repair, PLK1 and phosphatase Wip1 switch off the checkpoint by 
contributing to the activation of cyclin B/Cdk1 and by allowing checkpoint recovery, 
which leads to regain of the ability to exit the cell cycle arrest [130]. 
 
 

1.2.4 DDR and disease 
 
Due to its essential role in safeguarding the genome, the DDR signalling pathway is 
crucial to preserve mammalian health [77]. Cells defective in DDR and DNA repair 
mechanisms normally display heightened sensitivity towards DNA-damaging agents. 
Besides, the majority of the mutations and large genomic alterations (loss of 
heterozygosity, amplifications, etc.) that are relevant to cancer originate from aberrant 
genome maintenance [4]. 
 
The DDR has gained much attention because of its involvement in cancer [131-133], 
aging-related pathologies and other diseases and complex disorders (see ST10 in 
Annex) such as Ataxia-telangiectasia (ATM deficiency) [134], Seckel syndrome (ATR 
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deficiency) [135], Nijmegen breakage syndrome (caused by mutations in Nbs1) [136] or 
Cockayne syndrome (caused by mutations in the ERCC6 and ERCC8 genes) [137]. 
Moreover, alterations to the pathway generate genomic instability impairing the cell 
viability. This has produced much work in human [4,138,139], where detailed and extensive 
studies have been conducted in particular components of the DDR [90,120,140]. 
 
DNA break-associated proteins and the foci that they assemble into are of 
considerable medical importance, with defects in them being associated with various 
pathologies, particularly cancer (reviewed in [83]). Besides the widely acknowledged role 
of BRCA2, other proteins are involved in cancer development. For instance, the ALC1 
chromatin-remodelling enzyme is frequently amplified in human hepatocellular 
carcinomas, raising the possibility that unscheduled chromatin relaxation contributes to 
the pathogenesis of this malignancy. Mutations of impact are for instance those 
affecting the RNF168 ubiquitin ligase first associated with RIDDLE syndrome [141], and 
homozygous deficiency of RNF168, that underlies a radiosensitivity syndrome that 
mimics ataxia-telangiectasia [142]. In this regard, it is notable that the immunodetection 
of γH2AX foci, which indirectly measure DSB formation and repair, is showing promise 
as a sensitive diagnostic tool to detect cancer cells and also monitor cancer 
progression and assess responses to treatment [143]. Moreover, the existence of many 
druggable protein targets in DNA break-associated events is providing exciting 
opportunities for developing new therapeutic agents that, by exploiting differences 
between normal cells and cancer cells, have the potential to markedly improve cancer 
management [144]. Besides, the possibility of using miRNAs as potential therapeutic 
candidates is beginning to be addressed [145]. On the contrary, little is known still about 
the maintenance machinery of the epigenome and its contribution to aging and cancer 
[4]. 
 
 
 

1.3 NETWORK STUDIES TO APPROACH EVOLUTION 
 

1.3.1 Introduction: what has been done? 
 
Since the complete sequencing of the first organism in 1995 [146], the rate of growth in 
available genomes has increased exponentially, and the pace to complement this data 
with functional studies has become unfeasible. As of November 2012, more than 
18888 genome and metagenome sequencing projects had been developed, from 
which 3811 are completed genomes according to the Genomes OnLine Database [147]. 
 
Given the unfeasibility of experimentally characterizing all these data, it is necessary to 
use computational methods to analyze nucleic acid and protein sequences and 
structures, which has helped develop high confidence predictions regarding biological 
function directly from genome sequence.  
To this purpose it is important to predict the proteins included in pathways; thus, many 
approaches have been developed to expand pathways in unknown organisms, like the 
use of phylogenetic profiling [148], protein domains analysis to increase the mapping of 
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proteins to pathways [149] or machine learning methods to infer functional relations in 
predicted protein networks [150]. 
The genomic revolution permitted the first glimpses of the architecture of regulatory 
networks and pathways. Combined with evolutionary information, the network 
perspective of biological processes leads to significant insights into how organismal 
systems have been shaped along evolution. Moreover, the birth of genomics permitted 
the first robust reconstructions of evolutionary relationships between organisms and 
also allowed the identification of the genomic correlates of main morphological 
transitions in evolution, such as the emergence of eukaryotes and the origins of 
multicellularity [151,152]. 
 
Concerning the evolution of networks, most of the early comparative genomics 
research was done in bacteria and was focused mainly in metabolism, in which the 
evolution of metabolic pathways and how the networks assemble were analyzed. Also, 
the specialization and evolution of enzymes and the role of HGT in the formation of 
gene clusters in operons involved in metabolism were investigated [153]. 
In this regard, and more recently, several studies have been conducted about the 
evolutionary mechanisms that shape metabolic pathways and the evolution of 
metabolic network organization, in which a wide range of organisms, from prokaryotes 
to complex eukaryotes, have been compared [154]. 
Beyond metabolic pathways, other biological systems like the apoptosis network [155], 
the Ras switch genetic system [156,157], the insulin/TOR signal transduction pathway [158] 
or the cellular stress response [159] are examples of the analysis of the evolution of 
regulatory processes. 
 
The evolutionary perspective is essential in comparative studies since all organisms 
have an evolutionary history and thus, analyzing the genetic similarities and differences 
among species allows us to better understand how and why these variations arose. 
Besides genomics, many fields of comparative biology including developmental 
biology, physiology or ecology have extensively used evolutionary information in their 
studies.  
 
 

1.3.2 Homology-based extension of pathways 
 
As aforementioned, determining the function of unknown proteins encoded by the DNA 
sequences produced in sequencing projects has become an important challenge. 
Functional annotation has been traditionally done using only sequence similarity, but 
below 25% similarity the "twilight zone" is reached (see Figure 5), and assigning 
evolutionary relationships becomes unfeasible because the determination of homology 
at this level of low identity is extremely difficult [160]. Further development of sequence 
structure techniques allowed lowering this threshold; in particular, the use profile-based 
identification of homologs due to the conservation of position-specific patterns 
important for the three-dimensional folding and function of proteins. Thus, utilizing 
structural information, homology-based detection can be successfully performed with 
sequence identity as low as 15-10% [161]. 
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Figure 5. Pair-wise sequence similarity versus alignment length (modified from Chothia and Lesk, 1986; 
and Rost B. 1999). The "twilight zone" is reached when the proteins’ sequence similarity is below 25%, or 
below 15-10% when structural information is also used. The length of the protein is also an essential 
parameter to establish potential homology; thus, at low sequence similarity and with short sequences, no 
evolutionary relationship can be determined. 
 

Even so, prediction of protein function from homology-driven approaches presents 
certain problems. Though all homologous proteins should have a common ancestry 
and thus are expected to have similar three-dimensional structures and to perform the 
same or highly related functions, these proteins might evolve different functions due to 
sequence variation or context-dependent changes [162]. 
 
Recently, computational methods for inferring protein function are complementing the 
traditional sequence homology-based approaches with information on the context of a 
protein in cellular networks. These network-based functional inference techniques 
provide data on the proteins’ function and their role in a given network, and also offer a 
better understanding of the function of uncharacterized proteins [163]. 
 
 

1.3.3 Methods for homology-based annotation of sequences 
 

Different computational methods can be applied to extract biological information from 
proteins and to annotate unknown sequences. Some of the most commonly used 
methods use pair-wise comparisons and multiple sequence alignments; motif, profile 
and pattern searching; and structure prediction (fold assignment).  
Most of these function-prediction methods rely on inferring relationships between 
proteins by transferring functional annotations from one to the other. An important 
challenge in this regard is deciphering the connection between the detected similarities 
(both in sequence and in structure) and the actual level of functional relatedness [164].  
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a) Sequence-based methods: 

Initially, proteins identified in genome sequencing projects were habitually annotated by 
sequence homology inferred using pair-wise alignment tools such as BLAST [165]. Thus, 
sequence similarity has been used as surrogate of function. This method for homology-
based annotation transfer has traditionally been the most widely used in computational 
function prediction, though it has been shown with technological developments that, in 
general terms, is not very accurate. 
 
Another approach is to use partial information of proteins, using protein domains. 
Domains are the functional units and building blocks of proteins, and therefore, 
studying proteins at a domain level allows more accurate functional inference [166]. 
Besides, due to genome rearrangements during evolution, domains have duplicated, 
fused, recombined and have been inserted and depleted within sequences to produce 
proteins with novel structures and functions [167-169]. Consequently, domain analysis is 
useful for predicting the function of novel domain combinations that possibly gave raise 
to new protein functions.  
In the available resources, a family of domains is represented as a multiple sequence 
alignment, which is then converted into a statistical family signature profile (for example 
in PROSITE [170] and NCBI-CDD [171]) or into a profile hidden Markov model (HMM) 
provided by the HMMER package [172], such as in InterPro [173], Pfam [174] and SMART 
[175]. These profiles capture position-specific information about how conserved each 
column of the alignment is, and which residues are likely to be in that position. 
 
For most of them there is 3D information that is incorporated in the structural profile. 
Therefore, regardless of the algorithm used, the precision of these sequence-based 
methods is influenced by the type and amount of information on the particular protein 
family but, in general, they are fairly accurate. 

b) Structure-based methods: 

During evolution, the three-dimensional structure of homologous proteins usually 
remains more conserved than their sequence due to spatial and physical restraints [160]. 
Thus, similarities in protein structure can be more consistent than similarities in 
sequence for identifying distant homologs, which sometimes preserve a common 
function [176]. The two most complete structure-based family resources, CATH [177] and 
SCOP [178], classify domains into structural classes and evolutionary families. Besides, 
other structure-comparison methods such as HHPred [179] can identify sequences with 
structural similarities in the Protein Data Bank [180], which may be functionally related. 
However, in all cases, transferring function from one protein to another should be done 
with caution, since two proteins may have similar fold but different functions (i.e, the 
TIM-barrel scaffold) [164]. 
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1.3.4 Limitations of function transfer by homology-based methods 
 

The underlying principle behind homology-based annotation comes from the Neutral 
Theory of Molecular Evolution [181], which predicts that if two sequences have a high 
similarity at sequence level, then they have a common phylogenetic ancestor and, 
subsequently, they should have similar three-dimensional structure.  
This theory also serves as the null model of molecular evolution and plays a central 
role in data analysis. According to this theory, most evolutionary change is invisible to 
natural selection and thus it is evolutionarily neutral. The outcome of neutral mutations 
is determined by random genetic drift, a stochastic process by which a neutral mutation 
will be lost to evolution, but sporadically by chance a neutral mutation can become the 
predominant variant in a population [182].  
 
 
Sequence similarity, a mathematical concept used as a proxy for homology (an 
evolutionary concept), is frequently used to support the transfer of functional 
annotations from experimentally characterized proteins to new sequences lacking 
functional characterization. However, functional annotation via sequence similarity 
seems to have reached its limit since most of the newly identified proteins do not show 
significant sequence similarity with well-studied protein examples [183]. Besides, the 
power of homology-based annotation is being challenged due to the effects of gene 
duplications and domain shuffling events, which might lead to divergence of function. 
 
Moreover, homology-based annotation transfer has led to error propagation even 
across human curated sequence databases. Recently, it was found that function 
prediction error (i.e., misannotation) is a significant issue in all databases but the 
manually curated database Swiss-Prot [184]. Morevoer, it must be pointed out that 
similarity in sequence, structure and function has only been verified for globular 
segments of proteins. For non-globular regions, similarity of sequence is not 
necessarily a result of divergent evolution from a common ancestor but the 
consequence of amino acid sequence bias. This has led to many proteins inheriting 
completely wrong function assignments from protein databases containing domain 
models with transmembrane regions and signal peptides, which are non-globular 
segments of proteins with a hydrophobic bias [185]. 
 
Although domain assignation methods have been extensively studied, still nowadays 
their accuracy to predict domain boundaries is not entirely satisfactory. Various 
methods provide reliable predictions if a structural template for the protein is available, 
but when this is not the case, the experimental annotation used to infer the function 
might refer to a different domain or region in the analyzed sequence, an thus the 
annotation by homology-based inference would be erroneous [186]. Besides, in given 
cases the availability of a structural template does not guarantee the identification of 
protein function [187]. 
 
Regardless all these caveats, there has been a boost in the number and variety of 
automated approaches for functional inference. These automated methods are based 
on different features, such as sequence identity (best bidirectional hits (BBHs), 
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orthologs detection, etc.), sequence profiles, protein structure patterns, chromosomal 
location, expression profiles, protein-protein interaction data, phylogenetic information, 
and gene co-evolution [163]. 
 
Although homology-based inference of function can produce misannotations, the 
frequency of such errors is fairly small compared to the number of correct inferences 
[185]. In addition, these homology errors can be alleviated by careful tree-based 
inference with extensive human input. 
 
 

1.3.5 Homology, orthology and paralogy 
 

It is very important to emphasize that homology refers to sequences that share a 
common ancestor. However, the term ‘homology’ is still often incorrectly used instead 
of ‘similarity’ in articles describing a comparison of protein or nucleic acid sequences 
[188]. 
 
Orthology and paralogy are key concepts of evolutionary genomics and reflect two 
different kinds of evolutionary relationships. Orthologs are defined as genes from 
different species that derive from a single gene in the last common ancestor of those 
species, while in-paralogs are genes that derive from a single gene that was duplicated 
within a genome after the speciation event [189] (see Figure 6). 
As with homology, the term ‘orthology’ has been frequently misused in comparative 
genomics and specially in the fields of molecular and cell Biology, to indicate genes 
that are functionally equivalent across species, but without any reference to speciation 
events and many times without any common origin [190]. 
 
   

 

 

 

 

 

 

 

 

 

 

 

 

While orthologs in different species tend to retain identical or similar molecular and 
biological functions, paralogous proteins are likely to diverge along evolution to carry 
out different functions through sub-functionalization or neo-functionalization paths [191]. 

Figure 6. Diagram showing the 
hypothetical evolutionary history of a 
gene. An ancestral species split into 
two daughter species, each of 
whose genomes contains one copy 
of gen X. Genes X in the two 
species are orthologs. If, after the 
speciation event, gene X duplicates 
within species 1 and a new gene Y 
emerges, genes X and Y within the 
same species are in-paralogs, while 
they are homologs if we consider 
the two different species. 
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Nevertheless, functional conservation among orthologs should be inferred with caution 
as some orthologous genes can diverge functionally even among closely related 
organisms [192] and some paralogs could retain the original function. 
  
Distinguishing between orthology and paralogy is critical for the construction of a 
reliable evolutionary classification of genes and to consistently annotate newly 
sequenced genomes. This distinction can be achieved by using sequence-similarity 
patterns, by analyzing the specific conservation of residues responsible for function in 
the family of orthologous proteins, or on the basis of the protein structure. However, 
sequence similarity of orthologs may decrease with divergence time, and this poses a 
problem when identifying orthologs in phylogenetically distant organisms. In spite of 
this, genome comparisons have shown that orthologous relationships with genes from 
taxonomically distant species can be established for most genes [193]. 
 
Automated approaches that infer orthology relationships from pair-wise sequence 
comparisons alone were the first to be developed. Although these methods perform 
reasonably well, they have numerous drawbacks that can lead to annotation errors or 
misinterpretation of data [194]. An example is when genes are lost after duplication 
events, which would lead to paralogs being identified as orthologs when using BBHs 
methods (see figure 7).  
 
 

 
 
 
 
Another problem when identifying orthology is the existence of convergent evolution. 
Examples of this process are the antifreeze glycoproteins from the fishes D. mawsoni 
and B. saida, which show 69% sequence identity but are not homologous [195]. 
 
An additional difficulty in defining orthology relationships among proteins is that they 
frequently contain different domains that may have followed distinct evolutionary paths. 
These proteins can be generated by fusion processes and recombination between 
genes, and may lead to the acquisition of a new domain by a member of a given 
protein family after recombination with another family. These are represented by 
multidomain families, where the different domains should be considered as 

Figure 7. Diagram showing how 
differential gene loss after a duplication 
event can lead to the incorrect prediction 
of orthology. The speciation event occurs 
after the duplication of an ancient gene 
A, and thus, (a) species X contains 
genes A1 and A2, and species Y has 
genes A1’ and A2’. Genes 1 and 2 are in-
paralogs within the same species, while 
A1 - A1’, and A2 - A2’ are orthologs 
between the two species. (b) If gene A1 
is lost in species X and gene A2’ is lost in 
species Y, when using BBH methods to 
identify orthology relationships, the most 
similar genes between both species will 
be A1’ and A2 (c), and they will be 
considered as orthologs when they are 
actually paralogs.          
Double-headed arrows indicate orthology 
relationships. 
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independent evolutionary units and the orthology relationships should be first 
established among the core domains and then extended to the newly acquired 
domains or the flanking regions [194]. 
 
 

1.3.6 Methods for the identification of orthology 
 

The myriad of algorithms and methods available for the identification of orthology 
[196,197] can be classified into two main groups [198]:  
 
a) Phylogenetic tree-based approaches  
These methods are more precise and less prone to error than pair-wise heuristic 
approaches when used carefully, because they use information on the evolutionary 
history of the genes, but on the other hand, they demand large amounts of time and 
computing power, so the use of these methods is limited to single gene families or 
small datasets. Some examples of phylogenetic tree-based methods are HOPS 
(Orthostrapper/hierarchical grouping of orthologous and paralogous sequences) [199], 
RIO (Resampled inference of orthologs) [200], COCO-CL (COrrelation COefficient-based 
Clustering) [201] and MetaPhOrs (MetaPhylogenyBased Orthologs) [202]. 
 
b) Heuristic best-match methods 
These methods are usually easy to automate and implement and are fast since they 
are BLAST-based. Besides, the BLAST score ranking they provide has proven to 
generally be a good statistical predictor of orthology at genome scale, especially the 
BBHs. The main drawbacks of these heuristic methods are that they do not use an 
evolutionary distance model and that they fail to detect differential gene loss (see figure 
7). Some of the most widely used heuristic best-match methods are COG/KOG 
(Clusters of Orthologous Genes) [203], InParanoid [204], OrthoMCL [205] and DODO 
(Domain-based detection of orthologs) [206]. 
 
For evolutionary inference purposes, orthology relationships are generally best inferred 
by phylogenetic analyses [193,194]. 
 
  

1.4 PHYLOGENETIC APPROACHES TO COMPARATIVE GENOMICS  
 

Phylogenetics is the discipline devoted to delineate the evolutionary relatedness 
among organisms or taxa through molecular sequencing data, and is considered to be 
the seed discipline that contributed to the development of Computational Biology [207]. 
Phylogenetic analyses are performed by a variety of automatic methods and algorithms 
in order to reconstruct a phylogenetic tree representing the evolutionary history and 
relationships among the sequences and species involved [194].  
 
Comparative biological analysis can be carried out only in the context of a phylogeny. 
Phylogenetic approaches permit different types of comparative analyses, including 
detection of domain shuffling and horizontal gene transfer, speciation and duplication 
events, reconstruction of the evolutionary diversification of gene families, assessment 
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of gene orthology and paralogy relationships, tracing of evolutionary variation in protein 
function at the amino acid level, and prediction of structure-function relationships [162]. 
Limitations are that they require a good coverage of genes or species, and sequence 
quality is paramount. 
 
To date, nucleotide or preferably amino acid sequences are still the most used data 
type for phylogenetic reconstruction. In most phylogenetic methods, sequence 
alignments are extensively used to construct and refine phylogenetic trees to classify 
the evolutionary relationships between homologous genes from genomes of divergent 
species. 
 

1.4.1 Phylogenetic methods 
 

The most commonly used methods for phylogeny reconstruction from sequence data 
are: Parsimony, Neighbour Joining, and probabilistic-based methods (Maximum 
Likelihood (ML) and Bayesian inference (BI)). The main difference between the 
probabilistic-based methods is that ML generates one tree while BI creates thousands; 
also ML is computationally much demanding than BI. 
All methods depend upon an implicit or explicit mathematical model describing the 
evolution of the sequences from the species included in the study (see Table 2 for a 
comparison of the methods and main characteristics of each of them). Although 
different methods may identify different topologies as optimal, the disparities among 
these topologies usually involve poorly resolved groupings.  
 
The most frequent approach for phylogenetic analysis is generally a two-step process: 
first, the input DNA or preferably protein sequences are aligned with a multiple 
sequence alignment (MSA) program, such as MAFFT [208], T-Coffee [209] or the original 
ClustalW [210] that has been replaced by the former ones. 
This step is critical as the quality of the alignment is the most crucial step in 
phylogenetic reconstruction [211}], and frequently neglected. 
Then, the phylogeny is inferred from the alignment using phylogenetic tools such as 
Mr. Bayes [212], PHYLYP (Phylogeny Inference Package) (www.phylip.com/) or MEGA 
(Molecular Evolutionary Genetic Analysis) [213]. Most phylogenetic reconstruction 
methods assume a fixed alignment of the input sequences, which is known to have 
impact on the accuracy of the inferred phylogeny.  
 
According to a methods comparison study, Bayesian trees estimated from protein 
sequences alignments are the most accurate, followed by Maximum Likelihood trees 
calculated from DNA sequences and way less Parsimony trees estimated from protein 
sequences [214]. In these cases, it is important to select a correct evolution model for 
the proteins to be analyzed. Software as ProtTest [215] allows inferring the best 
evolution model prior to running ML trees. 
MrBayes is a program for Bayesian inference of phylogenies from DNA and protein 
sequences, and morphological characters [216]. It assumes a prior distribution of tree 
topologies and uses Markov Chain Monte Carlo (MCMC) methods to search tree space 
and infer the posterior distribution of topologies. The program outputs posterior 
distribution estimates of trees and parameters. It can use different models of sequence 
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evolution, and allows for rate variation among sites and for multiple-chain Metropolis-
coupled Markov Chain Monte Carlo (MC3) runs for more extensive search. Besides, it 
can spread jobs over a cluster of computers using the MPI message-passing interface 
implementation [217].  
 
 

 
Table 2. Summary of the main methods of phylogeny reconstruction (from [218]). 

 
Robustness and reliability 
Regardless of the method utilized to construct the tree, a numerical assessment on the 
reliability of the grouping should be provided in non-probabilistic based methods. The 
most commonly used method for this is “phylogenetic bootstrapping”, which 
simulates obtaining new data on the relationships among a group of sequences by 
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resampling with replacement the same set of characters and performing a new 
phylogenetic analysis. This is done thousands of times and typically a further majority 
rule consensus tree is constructed for the resulting trees. The frequency with which 
specific groupings appear on the majority rule tree gives a measure of their support by 
the sequence data [182].  
Bootstrap values are conservative measures of phylogenetic accuracy. Values of 80% 
or more are considered as indicators of strong support, corresponding to “true” clades 
in experimental phylogenies [219]. In contrast, probabilistic inference allows to directly 
sample probabilities. Though different phylogenetic methods may yield dissimilar 
optimal topologies, the variations normally involve poorly supported clades, since those 
strongly supported usually appear in topologies independently of the method of 
phylogenetic inference used [218].  
 

1.4.2 Limitations of phylogenetics 
 

As aforementioned, the large demands of time and computing power needed to 
generate reliable trees have traditionally limited the use of phylogenetics to single gene 
families or datasets of moderate size. Moreover, phylogenetic trees are difficult to 
automate for genome scale data, and the topology of the tree is strongly dependent on 
the tree building method chosen. Besides, in some occasions, pair-wise comparison 
approaches have outperformed more complex algorithms that use sophisticated tree 
reconstruction and reconciliation approaches [198].  
 
Generating a phylogenetic tree involves a estimation of divergence among the 
characteristics shared by the species being compared. In molecular studies, a crucial 
problem is producing a good MSA, especially in studies of genes from divergent taxa. 
Although alignment of nucleotide or amino acid sequences should be a major 
consideration, yet it remains one of the most complicated and badly understood 
aspects of molecular data analysis. Researchers should revise the MSA automatically 
generated and also modify the default settings in the phylogenetic programs to adapt 
the analysis to the type of data examined [220]. 
 
Sometimes, different genes of the same species evolve at distinct paces or speed. This 
is another prediction of the Neutral Theory [181], which suggests the existence of a 
molecular clock, where the different families evolve at distinct rates. Knowledge of how 
genes evolve and at what rate they do it is essential for understanding gene function 
across species or within gene families.  
 
 
One of the most challenging facets of reconstructing evolutionary relationships using 
comparative genomic analyses and phylogenetics is the existence of extensive HGT 
events among organisms, which can produce unexpected phylogenetic tree topologies 
for some genes [221], for instance the chymotrypsin from fungi [222]. 
 
Other complication is when the analyzed sequences are involved in recombination 
events and they evolve under positive selection; thus, an increase in polymorphisms in 
some lineages and not others might blur the correlation between genetic similarity and 
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evolutionary relatedness [223]. Besides, gene duplication followed by gene loss may 
produce alternative phylogenetic topologies, which may then be confused with HGT 
[224]. 

 

1.4.3 Incongruences between phylogenies: gene- vs. species-trees 
 

The phylogenetic gene-trees constructed do not always perfectly reproduce the 
taxonomy tree, or in other words, the evolutionary tree that represents the historical 
relationships between the species being analyzed, as we are comparing sequences at 
our present time.  

Common sources of incongruence between gene-trees and species-trees are: 
 

• The taxonomic tree is an artificial tree prone to mistakes. 
 

• Mixing paralogous and orthologous sequences. Only orthologous sequences 
can be used to infer taxonomic relationships, since paralogous sequences trace 
the history of gene duplication events within species. 

 
•    HGT events. These can make two sequences similar not because the 

organisms share a recent common ancestor, but because the species have 
horizontally acquired a genomic segment from another distantly related 
species, which is particularly frequent in bacteria, and also in eukaryotes. In 
these cases, phylogenetic trees with incorrect topologies and wrong branch 
lengths can be generated [225]. 
 

• Unequal amounts of divergence in different lineages. This can occur when DNA 
sequences evolve very rapidly in one lineage but not in another (i.e. amphibians 
and reptiles versus mammals [226]). 
 

• Back mutations. The probability of multiple substitutions on the same site 
producing undetectable “aminoacid saturation” augments as time since the 
divergence of two taxa increases, and this can result in homoplasies. 

 
• Convergent evolution. This process, that occurs in short stretches of sequences 

(for example the catalytic triad of serine-proteases with subtilisin in prokaryotes 
and the chymotrypsin clan in eukaryotes), or the presence of linear motifs that 
can make two sequences reach a high identity when sequence length is not 
accounted for.  
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1.4.4 The concept of gene ages 
 

Recent work has provided evidence of the existence of a universal model of evolution 
along different groups of genes with associated evolutionary-based ages [227]. This 
universal distribution implies a steady-state process, with equal distributions of 
evolutionary rates among genes that are gained and genes that are lost. 
A gene is considered to belong to a certain “gene age” (for example plant-specific 
genes in A. thaliana), if there are no detectable homologs of the encoded protein 
outside the given taxon. Thus, genes can be divided into different age classes 
according to their time of emergence, ranging from very ancient (already present in 
proteobacteria) to very modern (detected only in mammals). 
Gene evolution can be described by the sequence evolution rate and by the proclivity 
of a gene to be lost or preserved during evolution. Generally, those genes that are 
indispensable for the organisms will be conserved in all lineages, as long as there is no 
substitute gene for their function. 
 
According to previous studies [228,229], ancient genes usually encode large proteins with 
functions that are common to a broad range of cells. Also, these old genes are 
evolutionarily conserved, having strong selection pressure, slow sequence evolution 
and little propensity to be lost; their expression levels are high, and generally have 
numerous physical and genetic interactions. On the other hand, modern genes usually 
possess the opposite characteristics and are mainly involved in lineage-specific 
processes. 
 
This simple model of genome evolution provides a novel and an amenable framework 
to systematically analyze the DDR network globally. 
 

 
 

1.5  DDR AND EVOLUTION 
 
The comparison of biological networks in different organisms is of particular interest in 
the fields of evolutionary and systems biology. Such comparisons eventually help us to 
understand the forces influencing the evolution of biological pathways and systems. 
 
In the case of the study of DDR and DNA repair proteins, the first comparisons 
between species revealed that organisms possess multiple repair pathways, that the 
repertoire of repair mechanisms frequently vary between species and that differences 
in specificity are found in almost all types of repair [230-233]. 
Comparative studies of repair genes and DDR can be used to infer the evolutionary 
history of species, to understand the similarities and differences found among them, 
and to shed light into the evolutionary history of DNA repair processes and pathways. 
 
Evolutionary studies have many other potential uses in the study of DDR and DNA 
repair including the prediction of functions for conserved uncharacterized genes [234-236] 
and domains [237]; the characterization of genes that are part of multigene families 
[238,239], the identification of motifs or domains conserved among homologs [240,241]; and 
the study of structure-function relationships of repair genes [242,243]. 
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The boundary between evolution and repair is of high interest due to the influence that 
repair mechanisms and pathways have in evolutionary patterns. Since repair 
processes influence mutation rates and patterns, differences in repair mechanisms can 
lead to different mutational rates and evolutionary capabilities within and between 
species. Therefore, there is a complex interplay between the need for fidelity of 
transmission of genetic information to the offspring and the need for evolvability (that 
is, the ability of an organism to generate adaptive genetic diversity, and thereby evolve 
through natural selection)[244]. 
 
During evolution, organisms with high levels of genetic variation have had better 
chances to survive sudden environmental changes by random variations in their 
genome. However, as organisms evolved more complex genomes, genomic instability 
became mostly detrimental and the need for systems safeguarding the integrity of DNA 
increased [15]. 
 
 

1.5.1 Previous computational approaches / State of the art 
 
DNA repair proteins and pathways have been studied in quite a few species, mainly 
Bacteria. However, the ecological and evolutionary diversity of such studies has been 
limited [231,245] and a systematic approach addressing this issue in a larger evolutionary 
scale has not been conducted. 
 
The usual procedure to approach a given pathway is to focus in a particular model 
organism. Much work has been done in the popular components of DDR using yeast 
and flies. For instance, homologous proteins containing domains such as BRCT 
repeats, Tudor domains or kinase domains have been found to perform the same 
functions in different species, like the case of checkpoint kinases [246]. Less studied are 
proteins involved in the aforementioned post-translational modifications (reviewed in 
[5]).  
In humans, examples of protein components of DDR that have received much 
attentions are BRCA1 [247], BRCA2 [248], ATM [249,250] and ATR [135,251], due to the great 
impact that their alterations produce in the pathway and their effect on disease 
[30,74,77,252] and aging [253]. Therefore, it has been proposed that targeting specific 
components of the pathway may be useful to address disease [254].  
In alternative organisms, the focus has been directed to human important orthologs, for 
instance p53 in several mammals [255], CHK1/2 in Neurospora crassa [256,257] and ATM 
in plants [258].  
Some work has been conducted analyzing DDR-related pathways, where the focus 
has been made on specific sub-modules or sub-networks in animals involving popular 
proteins like p53 and its interactors (exemplified by the p53-MDM2 interaction [259]). 
Alternative network approaches make use of evolutionary information [260] to establish 
their topological constraints, while others are based on protein-protein interactions only 
[261], or focus in checkpoint proteins [262].  
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From an evolutionary point of view, systematic analyses of DDR-related proteins have 
been conducted only in specific parts of the process as exemplified by the chromatin 
modifiers genes [263], where their evolutionary landscape has been compared in human 
and hundreds of eukaryotic genomes. Network dynamics approaches have been also 
conducted in yeast, where the effect of given perturbations affect the DDR transcription 
network [264]. Although these works are helping to understand the structure of the 
network, our understanding regarding how this network as a whole ever emerged is still 
far to be complete.   
 
To understand how such a delicate network has been efficiently assembled since life 
emerged on earth, it is necessary to interrogate this question using a wide evolutionary 
framework that implies screening in very deep nodes of the species tree of life which is 
far to be resolved [265]. 
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There is one commonality that transcends all the differences among living organisms: 
for a species to survive, its cells need to replicate faithfully.  
Therefore, if having a damage detection system to prevent genomic instability is 
universal, we hypothesise that there must be an essential core of components 
common to all living organisms, which expanded along evolution according to particular 
needs to suit specific organisms demands originated by different life-styles. 
 
In this work we aim to delineate the emergence and evolution of the DDR pathway, and 
to understand its functional implications. 
 
To this purpose we have established 4 specific objectives: 
 

a) Establishing a consensus set of DDR components 
 

By identifying well known DDR components from four model organisms in a set of 
species covering the whole tree of life and including the widest variability of phyla 
available, we aim to establish the “core machinery” of the DDR pathway. 
 

b) Infer the age of the network comparing gene-content and gene-trees 
 

Focusing on the human DDR network, we aim to clarify how the different DDR 
pathways have been shaped along evolution. In this work we try to reconstruct the 
ancient network by tracing the presence of DDR orthologs along evolution, and by 
determining the appearance of novel components along evolutionary lineages. To this 
purpose we will use information from species phylogenetic profiles and gene-trees. 
 

c) Creating a curated pathway of the human DDR network 
 

So far there is a lack of a formal representation of the human DDR network. In the 
pathways repositories only partial networks can be found, especially the repair fraction 
(Reactome, Kegg, etc). However, there are intricate relationships and overlaps among 
the different sub-networks.  
By using the data available in the literature, we aim to manually reconstruct the human 
DDR network, illustrating how components of the sensing part are also participating in 
related pathways like cell cycle checkpoints and DNA repair. 
 

d) Domain-based analyses of the DDR components 
 
Domains are the functional units and building blocks of proteins. In this work we study 
the DDR proteins at a domain level to increase the functional inference, to analyze the 
conservation of domains in DDR orthologs from different species, and to determine the 
acquisition of novel functions due to diverse domain architectures reflecting differences 
at the species level. Also, we intend and to identify whether there are domains 
enriched in DDR-related functions. 
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3.1 OVERVIEW 
 
In this work we have:  

1. Manually compiled from literature DNA repair and DDR components in four 
model organisms: Escherichia coli, Arabidopsis thaliana, Saccharomyces 
cerevisiae and Homo sapiens. 

2. Searched for DDR orthologs in 43 additional species covering the whole 
species tree used in this study. 

3. Studied the evolution of the DDR based on gene-content and gene-trees. 
4. Analyzed the functional repertoire of these genes using different classification 

systems. 
5. Identified evolutionary time-points with potential for establishment of post-

translational modifications activities. 
 
An overview of this flow is depicted in Figure 8.  

 
Figure 8. Flow chart depicting the main steps followed in this work and the data analysis performed (divided in letter 
panels A to G).  
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A collection of Perl scripts was written to, from the InParanoid output, automatically 
generate the phylogenetic profiles, determine the protein domain content of the 
orthologous sequences and to generate the MSAs. 
 
 
 

3.2 DATASETS AND GENOME SOURCES  (Figure 8, Panel A) 
 
- Literature mining: 
We have manually checked the literature to compile a comprehensive list of DDR 
components in four model organisms where DNA repair and DDR have been 
extensively studied. The four seed data and the number of proteins selected from 
literature are the following (see Box 2):  
 

  

Species 
DDR proteins 

selected 

 

 
Code 

H. sapiens 118 
 

Hsa-118 

E. coli 46 
 

Eco-46 

A. thaliana 122 
 

Ath-122 

S. cerevisiae 91 
 

Sce-91 

              

 
Information about the DDR proteins selected from literature for each of the four seed 
organisms can be found in Table ST1 Annex.  
 
 
- Genomes: 
To trace the presence of DDR orthologs along evolution, sequence datasets for 47 
proteomes were downloaded from the available databases (for a full list of organisms, 
data sources and characteristics such as completeness, quality, etc., see Table ST2 
Annex), which represent complete and incomplete proteomes and include both 
predicted and confirmed peptide sequences. When a particular proteome was available 
from different databases, the coverage was compared (Figure 13, Results 4.3) and the 
version containing the highest number of human DDR orthologs was chosen. 
These datasets include 8 eubacteria, 3 archaea and 36 eukaryotes ranging from 
Cryptophyta to mammals.  
 
- Species tree: 
Organisms were grouped on the basis of previously defined phylogenetic studies [266,267] 
(see Figure 10 for the species phylogenetic tree) always accounting for the polytomy at 
the Eukarya tree [268]. The species divergence time values have been extracted from 
http://www.treetime.org [265] where consensus estimates from literature have been used 
due to the fact that no expert dates are available for all the species. 
 
 
 

Box2: Seed species and 
number of DDR proteins 
selected from literature. 
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3.2.1 Sequence selection 
 
For the eukaryotic seed DDR proteins we selected the Uniprot’s definition of ‘canonical 
peptide sequence’ [269]. To reduce redundancy, the UniProtKB/ Swiss-Prot describes in 
a single entry all the protein products encoded by one gene in a given species. For 
each entry, a ‘canonical sequence’ is chosen based on the following criteria: i) it is the 
most prevalent, ii) it is the most similar to orthologous sequences found in other 
species, iii) due to its length or amino acid composition, it allows the clearest 
description of domains, isoforms, polymorphisms, post-translational modifications, etc. 
and iv) in the absence of any information, the longest sequence is chosen. 
 
 

3.2.2 Selection of organisms 
 
Deep branching organisms from the three kingdoms of life were selected to obtain the 
widest variability of phyla. Nevertheless, this was not always possible since many phyla 
lack completely sequenced representatives. Also, model organisms have been 
preferentially chosen, as well as those whose genomes are completely sequenced and 
well characterized. 
 
To incorporate information regarding different lifestyles we have included free-living 
organisms, as well as endosymbionts (3) and parasites/pathogens (8) in the tree. 
Besides, species inhabiting diverse environments (aquatic, terrestrial, extreme 
ecosystems, etc.) and with distinct types of metabolism (heterotrophic or autotrophic) 
have been selected. 
 
 
Here follows a brief summary of the characteristics of those species selected in this 
study that have interesting features or distinctive lifestyles: 
 
 
a) Bacteria worthy of note 
 
- Gemmata obscuriglobus and Pirellula staleyi (Taxonomy: Planctomycetes; 
Planctomycetacia; Planctomycetales) [270,271] 
The Planctomycetales order forms an independent, monophyletic phylum of the 
Bacteria kingdom. It consists of four genera: Planctomyces, Gemmata, Isosphaera, 
and Pirellula. These organisms have a life cycle consisting of a motile swarmer stage 
and an aggregate-forming sessile stage. They are quite abundant in terrestrial 
freshwater environments and marine habitats, where they catalyze essential 
transformations in global carbon and nitrogen cycles. 
Both bacteria present unique combinations of morphological and structural properties, 
such as budding replication, a lack of peptidoglycan in their cell wall and a membrane-
bound DNA-containing nucleoid resembling the eukaryotic nucleus, for which these 
species represent an exception of prokaryote/eukaryote dichotomy and are thus 
important in the understanding of the evolutionary implications of compartmentalization 
on major molecular processes in the cell [272]. 
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- Deinococcus radiodurans (Deinococcus-Thermus; Deinococci; Deinococcales) 
This organism can tolerate high levels of chemical, oxidative, UV, and ionizing 
radiation-induced damage to the cell's DNA, which it efficiently repairs. The resistance 
to radiation may reflect its resistance to desiccation [273] and oxidative stress [274], which 
also causes DNA damage. This organism carries multiple copies of many DNA repair 
genes, suggesting a robust system for dealing with DNA damage [275].  
 
- Bacillus subtilis (Firmicutes; Bacillales; Bacillaceae) 
It is one of the better-characterized bacterial organisms and is a model system for cell 
differentiation and development. This soil bacterium can divide asymmetrically, 
producing an endospore at times of nutritional stress that is resistant to environmental 
factors such as heat, acid, and salt, and which can persist in the environment for long 
periods of time. The sporulation process is complex and involves the coordinated 
regulation of hundreds of genes [276]. 
 
 
b) The endosymbionts 
 
- Buchnera aphidicola (Proteobacteria; Gammaproteobacteria; Enterobacteriales) 
This bacterium is the primary endosymbiont of the pea aphid, Acyrthosiphon pisum. 
Almost all aphids contain maternally transmitted bacteriocyte cells that house the 
Buchnera, which provide the essential nutrients the host lacks [277]. Due to the 
symbiotic relationship with aphids for millions of years, Buchnera have lost the genes 
to produce lipopolysaccharides for the outer membrane, and those required for 
anaerobic respiration, synthesis of amino sugars, fatty acids, phospholipids, and 
complex carbohydrates. This makes for an obligate endosymbiont relationship between 
host and Buchnera, and has also resulted in one of the smallest and most genetically 
stable known genomes of any living organism [278].  
Buchnera is believed to have had a free-living ancestor similar to modern 
Enterobacteriaceae, such as E. coli. Thus, comparative genomic studies can shed light 
on the evolutionary mechanisms of intracellular endosymbiosis as well as the different 
underlying molecular basis between organisms with parasitic behaviour and symbionts. 
 
- Guillardia theta  (Cryptophyta; Pyrenomonadales; Geminigeraceae) 
This organism is a flagellate, unicellular alga that consists of a flagellate host cell, 
complete with mitochondria and nucleus, surrounding another cell with reduced 
cytoplasm that contains a plastid and a residual nucleus called nucleomorph, which 
were acquired through secondary endosymbiosis by engulfing and retaining a red alga 
[279]. The G. theta nucleomorph consists of 3 chromosomes with a genome size of 551 
kilobases [280] 
 
- Bigelowiella natans (Rhizaria; Cercozoa; Chlorarachniophyceae)  
As G. theta, this amoeboflagellate cercozoan obtained its chloroplast by engulfing a 
photosynthetic eukaryote by secondary endosymbiosis. The host cell also contains the 
nucleus and the cytoplasm of the engulfed alga though in reduced form. B. natans is 
useful in studying evolution of the chloroplast and is used for comparative analyses 
[281]. 
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The nuclear genomes of the cryptophyte G. theta and the chlorarachniophyte B. natans 
have been recently sequenced [282]. Both genomes have more than 21,000  protein 
genes, but in this study we only include the proteome of the nucleomorphs, since these 
would represent the more ancient genomic contributor. 
 

            
 

Figure 9. Secondary endosymbiosis process in Cryptomonads and chlorarachniophytes (Modified from Douglas S. et al. 
2001). These eukaryotes acquired plastids by secondary endosymbiosis whereby a eukaryotic phagotroph engulfed and 
retained another plastid-containing eukaryote that was a descendant of the primary endosymbiotic event. 
 
 
Because of their reduced size and cell simplification, the minute nucleomorphs make 
an important model system to study genome and cell function and help in the 
understanding of the more complex chromosomes of typical nuclei. 
 
 
c) The parasites/pathogens 
 
- Mycoplasma genitalium (Bacteria; Tenericutes; Mollicutes; Mycoplasmataceae) 
This small parasitic bacterium lives on the ciliated epithelial cells of the primate genital 
and respiratory tracts. Infection proceeds through attachment of the bacteria to the host 
cell via adhesins and subsequent invasion, which can result in prolonged intracellular 
persistence that may cause lethality.  
The genome of M. genitalium consists of 521 genes (482 protein encoding genes), 
being the free-living bacteria with the smallest known genome [283], and thus was the 
organism of choice in The Minimal Genome Project to find the smallest set of genetic 
material necessary to sustain life. 
Along evolution, mycoplasmas seem to have lost many genes involved in metabolism 
and biosynthesis, resulting in the requirement of a full spectrum of substrates and 
factors taken up from the host. Besides, they lack a number of genes involved in cell 
division, heat shock response, regulatory genes, the two-component signal 
transduction systems and most transcription factors [284]. 
 
- Batrachochytrium dendrobatidis (Fungi; Chytridiomycota; Chytridiomycetes) 
This recently emerging pathogen, the first sequenced representative of the 
Chytridiomycota phylum, is considered as a primary causative agent of amphibian 
declines in populations all over the world. This fungus contains proteolytic enzymes 
and esterases that help it digest amphibian cells and use amphibian skin as a nutrient 
source. B. dendrobatidis zoospores invade the top layers of the skin cells of the host, 
forms a cyst underneath the surface, initiates the reproductive portion of its life cycle 
and causes thickening of the keratinized layer [285]. The amphibians infected with these 
zoospores are shown to die from cardiac arrest. 
 

 
   Nucleomorph    Nucleus  

  (~350 Mb) 
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- Encephalitozoon cuniculi (Fungi; Microsporidia; Unikaryonidae)  
This single-celled obligate intracellular parasite infects various mammals, among them 
humans, where it causes a variety of conditions affecting the nervous system and 
respiratory and digestive tracts.  
Microsporidia are atypical fungi that are thought to have lost mitochondria during 
evolution. E. cuniculi has one of the smallest known eukaryotic genomes (2.9 Mb), 
which is organized in 11 chromosomes and has approximately 2,000 predicted protein-
encoding genes [286] 
 
- Cryptococcus neoformans (Fungi; Dikarya; Basidiomycota)  
This facultative intracellular pathogen [287] is found worldwide, and frequently in soil 
contaminated by bird excrement. C. neoformans are the causal agents of most human 
and animal cryptococcosis, which is acquired via inhalation of haploid yeast or 
basidiospores from the environment. These infections usually occur in 
immunocompromised hosts and mainly consist of a lung infection, though fungal 
meningitis and encephalitis, especially as a secondary infection for AIDS patients, are 
often caused by this fungus, making it particularly dangerous [288]. 
 
- Cryptosporidium parvum (Alveolata; Apicomplexa; Coccidia)  
This protozoal species is an obligate intracellular parasite that has a complex life cycle, 
with multiple asexual and sexual developmental stages. It is a causal agent of 
cryptosporidiosis, a parasitic disease of the intestinal tract in mammalians, which 
consists of acute diarrhea. Infection is caused by ingestion of sporulated oocysts 
transmitted by the faecal-oral route. This alveolate has emerged as a very important 
pathogen worldwide due to its morbidity and mortatility in AIDS patients.  
C. parvum has a compact genome and is one of the few organisms without 
transposable elements. Unlike other apicomplexans, it has no genes in its plastids and 
possesses a degenerate mitochondrion that has lost its genome [289]. 
 
- Plasmodium falciparum (Alveolata; Apicomplexa; Aconoidasida).  
This protozoan parasite is the causal agent of human malaria. This parasite has a very 
complex life cycle, involving vertebrate and invertebrate hosts. Infective forms 
(sporozoites) are transmitted to the human host by the female Anopheles mosquito. 
The disease is caused by those parasite stages that multiply asexually in red blood 
cells [290]. Malaria is a devastating parasitic disease that infects 300 million people and 
kills up to three million people per year.  
The entire genome of this organism has over 5,300 genes described [291]. 
 
- Trypanosoma brucei (Euglenozoa; Kinetoplastida; Trypanosomatidae)  
This ubiquitous unicellular flagellated protozoan is the causal agent of African sleeping 
sickness that is transmitted by the tse-tse fly. African trypanosomiasis is a zoonosis 
and both cattle and wild game can act as reservoirs of human infective trypanosomes. 
Due to the large difference between its hosts the trypanosome undergoes complex 
changes during its life cycle to facilitate its survival in the insect gut and the mammalian 
bloodstream.  
The incidence of this disease in humans is considerable (up to 500,000 cases per 
year) and in most cases is fatal if left untreated. 
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T. brucei has several large chromosomes that contain most genes, while the small 
chromosomes it possesses carry genes involved in antigenic variation [292].  
 
- Schistosoma japonicum (Metazoa; Platyhelminthes; Trematoda) 
This organism is a parasitic flatworm with a complex life cycle with various 
differentiated stages. It causes human schistosomiasis, which affects approximately 
210 million people in 76 countries, is a cause of serious morbidity and is estimated to 
account for more than 250 thousand deaths per year, mainly in China and the 
Philippines. Besides, it also infects at least 30 species of mammals.  
The S. japonicum genome consists of 7 autosomes and 2 sex chromosomes. Its 
genome is 397Mb in size and encodes at least 13,469 genes [293]. 
 
 
 

3.3 DISTRIBUTION OF DDR COMPONENTS IN AGE GROUPS   (Figure 8, 

Panel A) 
 

To establish important evolutionary points it is necessary to define groups of genes that 
share the same “age”. In this work, “age” indicates in what precise evolutionary point of 
a given species tree a gene is present. Following this scheme, we have defined 11 age 
groups in the 47 species tree ranging from proteobacteria to human. Thus, from more 
ancient to more modern age-groups, group 1 includes homologs present in the main 
three supra-kingdoms (along the 47 proteomes); group 2 contains genes present in 
most eukaryotes (except those organisms with particular life-styles, see Discussion), 
but absent in prokaryotes; group 3 includes proteins found conserved from plants; 
group 4 includes one Unikonta (Amoebozoa) representative; group 5 points to 
conservation in the Opisthokonta (Fungi and Metazoa) split; group 6 from Metazoa 
(being Placozoa, the most primitive animals in our study); while group 7 from Radiata 
includes one cnidarian species to represent different body plan symmetry; group 8 from 
Bilateria; group 9 includes Chordata, group 10 includes Vertebrata; and finally group 11 
contains the mammalians (Figure 10, red boxes). This distribution is similar to previous 
classifications in ages [227]; therefore it is amenable to conduct comparative analyses. 
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Figure 10. Species tree and age-groups. The red boxes show the age-groups in this study. On the right, the 47 species 
have been divided in wider phylogenetic groups. The dashed boxes are ages used elsewhere (Wolf et al. [227]). 
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3.4 IDENTIFICATION OF ORTHOLOGS   (Figure 8, Panel A) 
 
Orthologs are defined as genes from different species that derive from a single gene in 
the last common ancestor of those species, while in-paralogs are genes that derive 
from a single gene that was duplicated within a genome after the speciation event [189].  
We developed a computational pipeline (Figure 8) to systematically identify orthologs 
using Inparanoid [294], an automatic method that uses pair-wise similarity scores, 
calculated using NCBI-Blast [165], between two proteomes for constructing orthology 
clusters. These clusters are seeded with a two-way best pair-wise match of 
orthologous sequences, after which an algorithm for adding in-paralogs is applied. The 
basic assumption is that sequences from the same species that are more similar to the 
main ortholog than to any sequence from other species are in-paralogs belonging to 
the same group of orthologs. Each member of the cluster receives an in-paralog score, 
which reflects the relative distance to the seed in-paralog. The confidence that the 
original seed-ortholog pair contains true orthologs is estimated by sampling how often 
the pair is found as reciprocally best matches by a bootstrapping procedure. Bootstrap 
values are generated by counting how many times the seed-pair of genes are each 
others best match in a sampling with replacement procedure that is applied to the 
original Blast alignment.  
 
Each of the four seed datasets (H. sapiens, E. coli, A. thaliana and S. cerevisiae) were 
used as a query list to find DDR orthologs in the 47 proteomes included in this study 
(ST2 Annex), which cover the whole tree of life.  
 
We run InParanoid using the default and also modified parameters to:  

a) Avoid obtaining too many in-paralogs with very low similarity to the main ortholog 
in distantly related organisms. To this purpose we set:  

$conf_cutoff = 0.25 (raising it from the default value of 0.05). 
 

b) Obtain hits that share common domains in sequences that have non-conserved 
regions: 
  $segment_coverage_cutoff = 0.2 (instead of the original 0.25) 
Then the matching segments must cover at least 20% of the longer sequence, but 
always forcing the total matched area to be longer than 40% of the longer 
sequence: 

$seq_overlap_cutoff = 0.4 (lowered from the default 0.5).  
This should avoid clustering sequences that share only short domains.  

 
Regarding the matrices, in all cases BLOSUM45 was used to compare prokaryotes, 
BLOSUM62 when comparing eukaryotic proteomes, and BLOSUM80 for orthologs 
within metazoa. All InParanoid blastalls were run with -e 0.01 to set the threshold e-
value to 0.01. 
 
We compared both strategies (Results 4.3, Figure 14). Besides, in some particular 
cases we manually checked the hits to increase the number of potential orthologs. 
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3.4.1 The human dataset: Expanding the repertoire of DDR proteins 
 
We expanded the repertoire of DDR proteins for the 47 species and collected the 
orthologous sequences for the Hsa-118 set detected using the four different seeds 
(henceforth “Ortho-DDR”); in this way we could alleviate the effects of using a specific 
seed. 
 

3.4.2 Multiple sequence alignments (Figure 8, Panel B) 
 
The orthologous proteins were aligned using T-COFFEE [209] and MAFFT [208] to 
manually confirm the quality of the relationships, and the sequence coverage of the 
Hsa-118 orthologs was checked (Results 4.3.2 Figure 16).  
 
 

3.4.3 Evolutionary conservation of orthologs 
 
To assess if the sets of proteins involved in DDR are more evolutionarily conserved 
than other groups of proteins in the selected species, random sets of 100 proteins were 
sampled from both the Hsa-118 DDR set and H. sapiens proteome (excluding the 118 
DDR proteins). Then their orthologs were identified in all the species and the results 
were compared using z-scores.  
 
Using Z-scores to assess the significance of random distributions: 
The statistical significance of the results can be measured by estimating the z-score for 
the different sets of proteins.  
Each species has a collection of orthologs values in the different sets of 100 sampled 
proteins. If the distance values for all the sets show a normal distribution, the mean (µ) 
and standard deviation (σ) can be calculated for each set of orthologous proteins from 
each species, and z-scores can be calculated for each ortholog value (x) within each 

set: .  Z is a normalized parameter that can be used for comparing different 
pairs of sets and their distributions. 
 
 

3.5 PROTEIN DOMAIN IDENTIFICATION   (Figure 8, Panel C) 
 
In order to establish the domain repertoire of our target proteins and analyze its domain 
organization we have used the Pfam database (release 24.0) [174]. Pfam is a large and 
widely used database of protein domains and families. It contains curated multiple 
sequence alignments for each family, as well as associated HMMs for finding these 
domains in new sequences.  
We have used the Pfam database since it has a wider coverage than other domain 
databases (Pfam v24.0 contains a total of 11,912 domain families versus 809 in the 
SMART database v6.0 or 5,608 in InterPro v28.0). 
To identify domains we have used the improved version of HMMER (HMMER 3.0) 
[172,295] that uses profiles derived from high quality multiple sequence alignments taking 
into account structural features. These profiles are models representing the statistical 
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formalization of the multiple sequence alignments, which are useful to determine 
domain boundaries. 
 
The orthologous sequences obtained were checked for consistency in their domain 
architectures (Figure 18 and 19 in Results 4.4.2, and ST4 in Annex), and some 
additional proteins found using alternative seeds with no clear annotations to DDR 
were identified (ST3, Annex). 
 

3.5.1 In-silico determination of domain architectures in DDR proteins 
 

Some DDR proteins have different isoforms, which may result in variations in domain 
composition of the orthologous proteins in the different species analyzed. Though there 
are efforts to establish the different repertoire of the protein isoforms and splice 
variants in a variety of species (like the ENCODE Project in human) [296], most of this 
information is available only for some model organisms and there are little data for a 
systematic analysis. As these data are incomplete or are not available for most of the 
species we have analyzed, we have built synthetic proteins for each set of DDR 
orthologs to try to represent the widest possible domain composition for a given gene 
and to facilitate further comparisons.  
 
In-silico synthetic architecture domains were computed for each analyzed DDR protein 
in the 47 proteomes. The synthetic proteins were built to collapse all possible domain 
architectures in each group of DDR orthologous proteins (see example figure 11). 
 
 

 
 

Figure 11: In-silico domain architecture, BLM protein example. 
 
 

 
 
 

Figure 11. Example of the construction of a synthetic domain architecture protein. The domains 
detected in the BLM orthologs in the different species are included in the synthetic protein. In this 
particular case, the Helicase_Sgs1 and the HRDC domains are excluding, and may have an 
equivalent role since they are homologous domains belonging to the same HRDC-like domain 
clan (CL0426). 
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3.5.2 Conserved regions in proteins without detected Pfam domains  
	
  
For those DDR proteins in which no Pfam domains were identified, we conducted 
extensive searches looking for distant relatives based on conserved regions. In this 
regard, multiple sequence alignments of orthologs were used as input for an in-house 
pipeline that uses HHPred [179] to detect and annotate the conserved regions in the 
sequences. The HHPred program is part of the open-source HH-suite software 
package, and it is mainly used for homology detection and structure prediction by 
HMM-HMM comparison.  
 

3.5.3 Protein domain enrichment 
 
The domain composition of the proteomes of H. sapiens and some model organisms 
(E. coli, A. thaliana, S. cerevisiae, S. pombe, C. elegans, D. melanogaster) belonging 
to different phylogenetic groups was analyzed, and later compared to the results 
obtained for the DDR proteins to determine whether the DDR proteins are enriched in 
given domains. 
Even though they are completely sequenced model organisms, some proteomes 
contain repeated sequences, protein fragments, cDNA sequences and different 
isoforms; consequently, the proteomes were filtered to discard these sequences and 
when there were proteins with different isoforms, only the canonical ones were 
considered. 
 
To do this analysis we compared the domain composition of the DDR proteins 
(including the seed proteins extracted from bibliography plus those orthologs detected 
when using other seed species) and the domains included in the model species’ 
filtered proteomes (Results 4.4.5, Box3). For the statistics, we performed a Fisher’s 
exact test and a multiple testing Bonferroni correction to normalize the data. 
 
 
 

3.6 PHYLOGENETIC PROFILES OF PROTEINS AND DOMAINS   (Figure 8, 
Panels B/D) 

 
We constructed phylogenetic profiles [148] of the Ortho-DDR proteins identified. The 
profiles can be formalized as binary matrices of presence/absence of identified 
orthologs. These profiles are based on the assumption that proteins that function 
together in a pathway or structural complex are likely to evolve in a correlated fashion 
and tend to be coincidently present or absent within different genomes. Consequently, 
phylogenetic profiles can be used to delineate the correlated evolution of proteins [148].  
 
To analyze the profiles in the context of evolution, we used as a reference the given 
phylogeny (Section 3.3, Figure 10) described previously and conducted different 
analyses:  
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3.6.1 Clustering of protein and domain profiles    (Figure 8, Panel B) 
 
Hierarchical clustering of the phylogenetic profiles was done using the open source 
software Cluster 3.0 [297]. Euclidean distance was used for the similarity metric with 
average linkage as the clustering method, which is suitable to cluster our data [298] and 
has been successfully used in previous studies [297,299]. 
Hierarchical methods are useful for representing protein sequence family relationships. 
These clustering algorithms partition the objects into a tree of nodes, where each node 
represents a cluster. Linkage is the criterion by which the clustering algorithm 
determines distance between two clusters. Average linkage takes the mean distance 
between all pairs of objects of two clusters, which makes it more computationally 
expensive than other methods, but is the most robust linkage method since it avoids 
the chaining problem of single linkage (which forces clusters together due to single 
objects being close to each other) and does not give special weight to outliers as 
complete linkage. 
Finally, the clustering is illustrated by appending a tree showing sequence relations, 
with branch lengths reflecting profile similarity. We used Java Tree View to visualize 
the trees of clusters [300].  
 
The same method was used to cluster the domains phylogenetic profiles in the Ortho-
DDR dataset of proteins. 
 
 

3.6.2 Gene-content (Figure 8, Panel D) 
 
We have established 11 age groups to reflect important evolutionary points given our 
phylogenetic tree (Section 3.3, Figure 10, red rectangles). To analyze the evolution of 
gene content in the species in our study, we used the Count package [301] that contains 
different algorithms.  
In particular, we used Wagner and Dollo parsimony to analyze the profiles of the 
Ortho-DDR dataset. Both algorithms aim to reconstruct the evolutionary history of 
proteins from given phylogenetic profiles.  
 

• The Dollo parsimony assumes a single event of emergence per family (because 
gaining a gene is more rare than losing it), and the presence-absence pattern is 
explained by lineage-specific losses. This method leads to a considerable 
simplification of evolutionary analysis and provides for unambiguous 
reconstruction of evolutionary scenarios. 
 

• The Wagner parsimony allows multiple gain and loss events and assumes that 
all character states are reversible with similar rates of transitions. It penalizes 
the loss and gain of individual family members, and infers the history with 
the minimum penalty.  

 
These assumptions are strongly influenced by the quality of the profiles in the sense of 
true losses (see Discussion). 
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3.7 ENRICHMENT ANALYSES FOR GENE AGES    (Figure 8, Panel D) 
 
As aforementioned, the genes present in a given species emerged at a variety of 
evolutionary times, and several works have suggested that the context of a gene’s 
origin can provide information about its cellular functions, regulation, interactions of the 
encoded proteins and adaptability [148].  

To determine whether the H. sapiens dataset (Hsa-118) is enriched in certain ages, we 
have used ProteinHistorian [302] and calculated enrichments using five different 
methods (Jaccard, Multiparanoid, Panther7, OthoMCL and Naive Ensemble (Nens)) 
and two different ancestral family reconstruction algorithms (Wagner and Dollo 
parsimony) to account for expected differences according to different phylogenies and 
datasets. In all cases p-values were Bonferroni corrected (Results 4.6, Table 9). 
 
Given an input set of proteins of interest, its phylogenetic distribution can be compared 
to that of a relevant background set. As different definitions of protein “age” may suit 
distinct contexts, diverse strategies for estimating ages from phylogenetic patterns 
using databases of evolutionary relationships can be utilized. However, age 
estimations are for eukaryotic proteins only, since prokaryotic proteins may have been 
affected by HGT events, which would complicate the inference of the evolutionary tree 
in prokaryotes. 
 
ProteinHistorian makes use of several sets of protein family predictions from the 
Princeton Protein Orthology Database (PPOD) [303]. PPOD provides family predictions 
for all proteins in the genomes of the GO Reference Genome Project [304], which are 
made with MultiParanoid [305], OrthoMCL [205], Nens clustering-based consensus of the 
MultiParanoid and OrthoMCL predictions, and PPOD's own Jaccard clustering-based 
approach. 
 
Regarding the pre-computed databases, the OrthoMCL, MultiParanoid and Nens 
contain families of predicted orthologs, while the Jaccard clustering produces larger 
families of more distantly related protein sequences. The Panther database is based 
on an OrthoMCL clustering of all proteins in the 48 species present in v7.0 of the 
PANTHER classification system. Ages are provided for all proteins in the eukaryotic 
species (32 in the present day) included in the PANTHER database [306].  
 
 
 

3.8 PHYLOGENETIC TREES ANALYSIS (Figure 8, Panel E) 
 
We built a phylogenetic pipeline where multiple alignments of the orthologous 
sequences were used as input for probabilistic-based phylogeny [216]. The probabilistic 
phylogeny was run using the MPI implementation of Mr. Bayes [217]. Alignments were 
manually checked to identify potentially conflictive regions. Only proteins and families 
with representatives in ancient eukaryotes were analyzed (SF1, Annex). Each job was 
run in 8 independent Markov chains for more than twenty-five thousand hours in a 
cluster that consists of 64 cores with an average of 8Gb/core of ram each. Every tree 
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was sampled for at least 5 million Markov generations and we discarded 25% of the 
generated trees to ensure convergence was reached. In a first approach, in-paralogs 
and paralogs as defined by Ensembl COMPARA were included to assure the correct 
ortholog was selected. In a second approach, phylogenies were run only with the 
orthologous sequences. 
A total of 65 gene trees were generated, which were visualized with iTOL [307] and 
further analyzed for consistency with the species tree. 
 
 

3.9 FUNCTIONAL CLASSIFICATION OF GENES AND DOMAINS  (Figure 8, 
Panel F) 

 
a) GO assignment 
 
Next, we used the available server (DAVID, http://david.abcc.ncifcrf.gov/) [308] to 
calculate functional enrichment using GO terms [309] in three main categories: Biological 
process, Cellular component and Molecular function (ST6, Annex).  
 
 
b) A broader classification 
 
Alternatively, we have used a broader classification of the genes and the domains 
contained in these into a 4 tiers classification: “Effectors”, “Sensors”, “Transducers” and 
“Mediators”. It should be noted that the same gene could belong to more than one tier 
(ST7, Annex).  
In this schema, sensors and effectors would represent the extremes of a given directed 
pathway, while alternative functions can be incorporated to increase the complexity of 
the network by addition of proteins (or functions) belonging to the remaining classes. 
Consequently, “Mediators” will usually form complexes to recruit additional proteins 
acting as docking platforms (i.e. containing for instance protein-protein interaction 
domains, or phospho-peptides binding domains), and “Transducers” would trigger 
alternative signaling pathways (i.e.: kinases involved in checkpoints) and would 
therefore create complicated crossing-roads connecting different pathways. On the 
other hand, this assignment does not preclude functional overlapping in proteins of 
DDR, where some proteins are involved in more than one repair pathway or might 
switch their functions. For instance, MSH6 senses damage and acts as a repairing 
protein in MMR, but also acts regulating Ku70 in the NHEJ pathway [38].  
 

3.10 COMPONENTS INVOLVED IN PTMs    (Figure 8, Panel G) 
 
We established pairs of target-modifier in the human dataset (Hsa-118), where targets 
are proteins post-translationally modified in DDR events, and modifiers are those 
proteins from the same dataset performing the modification. The PTMs considered 
here are phosphorylation, sumoylation, ubiquitination, acetylation, de-ubiquitination and 
de-acetylation; for which precise experimentally confirmed information was found for a 
fraction of the DDR proteins (see Table 11; ST8, Annex). We next checked whether a 
given pair of interactors was conserved along the evolutionary scale. 
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3.11 MAPPING EVOLUTION INTO THE HUMAN NETWORK   (Figure 8, 
Panel G) 

 
The DDR network encompasses a variety of processes and signals, including repair, 
sensing and activation/resuming of cell cycle check points. Recent work has focused 
on elucidating the dynamic properties of the network via PTMs, and even when there is 
some consensus, still some of its dynamic properties remain largely unknown.  
Most DDR components and dynamic processes have extensively been studied in 
human, and therefore we focus on this species. Subsequently, we have collected the 
available literature and we have classified the overall network in 3 sub-networks:  
 

• General damage repair sub-network, which contains proteins involved in 
general repair pathways (BER, NER, NHEJ, etc). 

• Replicative stress sub-network, which includes proteins involved in the 
sensing and repair of damage at the replication fork or SSBs.  

• Double Strand breaks damage sub-network contains proteins involved in 
sensing the damage at DSBs when NHEJ fails, and ATM-based takes over. 

 

It should be mentioned that some sub-networks as ICL, or meiosis-specific DDR 
components, etc. have not been included for the sake of broadness.  
Illustrations with associated published references are depicted on figures 32-34, and 
extensive explanations regarding each step are available in sections 1.1.3 and 1.2.3 of 
the Introduction. 
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4.1 DDR COMPONENTS BY LITERATURE    (Figure 8, Panel A) 
 
We manually extracted from literature DDR components from Homo sapiens (118 
proteins, Hsa-118), Arabidopsis thaliana (122 proteins, Ath-122), Saccharomyces 
cerevisiae (91 proteins, Sce-91), and Escherichia coli (46 proteins, Eco-46) (Table ST1 
Annex), and we calculated the overlap among these literature-based four datasets 
(Figure 12A), which is very low (MLH1, MSH6, RAD51 and SMC1A) and constitutes 
the common core of literature-based DDR.  
 
 

4.2 HOMOLOGY-BASED EXTENSION OF DDR COMPONENTS FROM 
LITERATURE IN SEED SPECIES (Figure 8, Panel A) 

 
To alleviate the effect of biases due to publication trends or research interests focusing 
on specific organisms and/or particular pathways, we conducted a systematic 
screening for orthologous proteins for each seed dataset along the complete 
proteomes of our model organisms in a “four model versus four model” approach to 
identify potential related proteins. In this regard, we identified a common set of proteins 
with a potential role in DDR, as well as lineage-specific proteins (Figure 12 B). 
 
 

 
 
Figure 12. Overlap of DDR elements. Venn diagram showing the overlap among the literature-based DDR components 
from the four selected seed species (A), and the overlap among the same proteins plus the orthologs detected by 
InParanoid using the different seeds (B). The 13 proteins common to the four seed species are: BLM, CLPX, DPO2, 
DPO4, ERCC2, LON, MLH1, MSH3, MSH6, NTH, RAD51, SMC1A and UNG. 
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4.3 ORTHLOGS IDENTIFICATION: EXTENSION OF THE PATHWAY USING 
HOMOLOGY-BASED INFORMATION IN 47 SPECIES (Figure 8, Panel A) 

 
We selected the source proteomes according to the number of orthologs retrieved 
(Figure 13).  
 

 
Figure 13. Comparison of the Hsa-118 DDR orthologs set detected in the proteomes downloaded from the EBI and 
NCBI of various species. 

 
 
By modifying the InParanoid parameters (see Methods 3.4), we could detect a higher 
number of orthologs in the various species (Figure 14). 
 

 
 

Figure 14. Human DDR orthologs coverage: orthologs detected in 46 species by InParanoid with the default and 
modified parameters. The # marks those species with completely sequenced genomes. 
 
 
With these customized parameters, more than 2400 orthologous sequences were 
identified by InParanoid for the Hsa-118 set. These were manually checked and some 
best bidirectional hits and low confidence orthologs that had not passed the threshold 
were added when clear homology was detected manually. Also, we included hits that 
did not comply with the criteria settled up by means of length and score, but that were 

!"#$%&'()%)
*+#,%#-#

."')'(+%,#/
01,#-'2#)*1"

.#-%'/"1"%' 3#,,4)/2#,,4) 5'-'&1,(+%)
/&'01)*%6#

54)/04)64,4) 7"-%*+'"+8-6+4)
/#-#*%-4)

9:;

<=:;

!"#$%#&

'(
)
)
*
("
+,
-#
%.
&

/0

10

20

30

400

4/0

5+-6,7,89#&(:,+(69;<.())*("+,-#%.&(%.(=%::#+#.-(&"#$%#&

!"
#

$%
&

'(
"

!)
*

+
,- .)
/

0&
1

23
"

45
&

+
"% 6)
&

0/
7

$7
*

!8
" ./
3

4#
"

.9
"

:1
3

;,
3

43
-

.#
"

<)
"

'/
7

2=
>

$%
*

!=
-

48
-

6#
&

6%
-

+
13 :"
=

;(
-

4/
-
6?
"

4-
@

:%
"

'A
-

2A
-

4>
8 !9
@

23
-
B/
3

0,
"

<"
8

+
=& +
*)

C C C C C C C C C C C C C C C C C C C C

D8#"3"8&>=E=-9"*@/E#"3"A-/-3)

D8#"3"8&>=EA&=>9>-=E#"3"A-/-3)

FG

HG

IG

JG

KGG

KFG

6#-%>-)

CE
&9
E#
3&
/-
>8
)

L*A"8E22ME&3/7&@&,*-)E%&(-3",-



 

 61 

BBHs, contained specific DDR domains found only in given proteins (i.e. RFA3, with 
the Rep_fac-A_3 domain) / shared the domain architecture of the corresponding 
orthologs, and aligned consistently in the MSA of these orthologous sequences. On the 
other hand, those orthologs detected by InParanoid that misaligned in the multiple 
alignments of orthologs and that lacked the characteristic domains of a given DDR 
protein were taken out from the sets. Table 3 below includes some examples of added 
and discarded orthologs when using the Hsa-118 set as seed: 
 

Examples of added orthologs Examples of discarded orthologs 

Proteins 
 

Species Proteins 
 

Species 

 
Reason for 

removal 

1433E Mbr, Cel CHK1 Cko 1 

ATM Sce, Cel, Cin 
ERCC2 
(XPD) 

Eco, Pst, Gob, Cko, 
Sso 1, 2 

ATR Osa, Ecu, Sja, Cel EXO1 Ptr 1, 2 

BLM Sce 
F175A 

(Abraxas) Bde, Tad, Ame 1, 2 

ERCC1 Bde FANCM Mac 1, 2 

ERCC5 Nve, Dre FBX31 Cre 1, 2 

MLH1 Dra HNRPK Ath 1, 2 
MMS21 
(NSE2) Oan MDC1 Ehu, Bde, Cte 1, 2 

NBN Ppa, Osa MDM2 
Ehu, Ngr, Ath, Nve, 

Cte 1, 2 

PALB2 Dre, Xtr MDM4 Ehu, Ath 1, 2 

PARP2 Mbr MTA2 Mbr 1, 2 

PLK1 Cne PRKDC Osa, Ath 1, 2, 3 

RAD17 Mbr RAD17 Ngr 1, 2 

RAD50 Mac RAD23B Ame 1, 2 

RAD9 Ehu, Ngr RNF8 Ath 1, 2 

RFA3 
Ehu, Ptr, Cpa, Pfa, Tbr, Ddi, 

Ecu, Bde, Cne SIR1 Bsu, Ppa 1 

TOPB1 Mbr TAOK1 Ehu 1 

WEE1 Ddi 
UIMC1 
(Rap80) Cte, Oan 1, 2 

 

Table 3. Examples of added orthologs and discarded hits from InParanoid when using the Hsa-118 set as 
seed. Reasons for removal codes: (1) Inconsistent alignment in MSA of orthologs, (2) differences in 
domain architecture/only promiscuous domains shared, (3) experimental evidence of not being the 
corresponding ortholog (according to bibliography, the detected orthologs were actually mTOR). 

 
As seen in Figure 14, the number of orthologous DDR proteins detected tends to 
increase as the organisms are more phylogenetically related to H. sapiens. Few 
orthologs were detected in parasites (C. parvum, P. falciparum, E. cuniculi and S. 
japonicum), endosymbionts (B. aphidicola) and especially in the small nucleomorph 
genomes of the secondary endosymbionts (G. theta and B. natans).  
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4.3.1 Evolutionary conservation of orthologs 
 
As explained in Methods 3.4.3, to assess if the components of the DDR network are 
more evolutionarily conserved than other proteins, random groups of 100 proteins were 
sampled from the Hsa-118 DDR set and the H. sapiens proteome (excluding the 118 
DDR proteins), their orthologs were identified in all the species used in this study, and 
the results were compared using z-scores.  
Figure 15 shows, for the different species, the percentage of orthologous proteins 
involved in DDR and of those chosen randomly in the whole human proteome. The 
results indicate that in all organisms except prokaryotes (with the exception of the 
bacterium M. genitalium) and the nucleomorph proteomes of G. theta and B. natans 
(probably due to the reduced number of orthologs detected in all sets), there are 
significant differences (p-value < 0.01) regarding the number of orthologs detected in 
the sets of randomly chosen proteins and the set of DDR proteins. This suggests that 
the DDR components are more conserved along evolution than other proteins. 
 

 
 
Figure 15.  Random proteins conservation: orthologs detected by InParanoid in 46 species considering random sets of 
100 proteins from the Hsa-118 set and the whole H. sapiens proteome. 
 

 

4.3.2 Sequence coverage of the human orthologs 
 
An analysis of the Hsa-118 DDR orthologs length coverage was performed to check 
the consistency of the orthology relationships and to analyze whether there is a trend in 
the sequences length distributions. The length of every sequence of the DDR orthologs 
(2538 sequences) was compared to the length of the corresponding human protein. 
Thus, the sequences were divided into four groups according to the coverage 
percentage, as seen in Figure 16.  
 
The results show that 53% of the 2538 orthologs identified by InParanoid have a 
coverage equal or over 90%, and if we consider a coverage equal or over 80%, the 
sequences constitute nearly 70% of all the orthologs, which reinforce the reliability of 
the orthology predictions by InParanoid. Besides, if we take into account the 
phylogenetic distribution of the orthologs, we see that the phylogenetic groups 
(Prokaryotes, Ancient Eukaryotes, Plants, Fungi and Metazoa) are quite equally 
distributed among the different coverage percentage groups (except the prokaryotic 
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sequences, which fall mainly in the ‘50 < % < 79.99’ group, likely due to the large 
phylogenetic distance between these organisms and human). 
 
On the other hand, those orthologs detected by InParanoid with coverage under 50% 
constitute only 9% of the proteins, and correspond mainly to distant orthologs and to 
incomplete sequences in species whose proteomes are in early draft versions. 
 

 
 
Figure 16. Length coverage of human DDR orthologs. The lengths of the orthologous sequences identified for each of 
the 118-Hsa proteins were compared and divided into four groups according to the coverage percentage referred to the 
length of the human proteins. Orthologs were coloured according to taxonomy of the species: metazoa in pink; fungi in 
orange; plants in green; ancient eukaryotes in red and prokaryotes in blue.  

 
 
Regarding the sequences length distributions, a total of 308 orthologs were at least a 
10% longer than the corresponding human protein. Among these, in 45 orthologs the 
sequence was at least 1.5 times longer than the human protein, being SLX1 the most 
numerous in this group since it was found in 5 species, followed by ERCC1 and 
MUS81 (each found in three organisms). These 45 orthologs were mostly from D. 
discoideum (7 proteins), followed by C. neoformans, D. melanogaster, M. brevicollis 
and P. falciparum, with 4 proteins each. 
If we consider those orthologs with a sequence between 1.1 and 1.5 times longer than 
the corresponding human protein, MUS81, RBX1 and PLK1 are the most frequent, 
while the species where these longer proteins are found are mainly fungi, plants and 
again, D. discoideum, presenting 20 proteins longer than the human equivalent. The 
fact that this organism has a total of 27 proteins (out of the 65 DDR orthologs detected 
in this species) notably longer than their human counterparts could be because this 
genome is a draft assembly and the protein boundaries may have not been correctly 
predicted, or maybe it is due to this organism having longer genes than most of the 
other species.  
On the other hand, 884 orthologs were at least a 10% shorter than the corresponding 
human protein. Of these, in 185 orthologs the sequence was below half the length of 
the human protein, being these proteins mainly in O. anatinus (16 proteins), N. 
vectensis (14 proteins) and C. intestinalis (11 proteins), which is not surprising since 
the genomes of these three organisms are in the first draft versions and contain many 
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incomplete and wrongly predicted proteins. Regarding the proteins, the most numerous 
among these 185 orthologs were ERCC3 (in 36 species), BLM (in 12) and FANCM (in 
10 organisms). These three proteins are among the most ancient in the DDR network 
for they are found in prokaryotes. Besides, BLM has suffered important domain 
shuffling events, which may have contributed to the variations found in its length in the 
different organisms. Regarding the ATP-dependent helicases ERCC3 and FANCM, 
they both have the same domain composition (ResIII – Helicase_C) and are members 
of Family 17; the human ERCC3 sequence is notably longer than the ones found in 
most species, while FANCM seems to have increased its length along evolution, 
probably to be able to interact with an increasing number of proteins. 
 
 
Although we use species that are distantly related in phylogenetic terms, and even 
though we have included a large number of incomplete proteomes in this study (being 
many of these in the first draft versions), most of the orthologs detected have a high 
percentage of coverage, which shows that our orthologs are quite reliable. 
 
 

4.3.3 Expanding the search 
 
Considering that using one species as seed would induce a bias towards an increased 
detection of orthologs in those species more phylogenetically related to the seed 
organism, and keeping in mind that there could be lineage specific domain insertions 
and/or losses in some orthologs, we decided to expand the original datasets by 
collapsing the four seed datasets and thus retrieve orthologs that might have skipped 
detection using only one species as seed. Therefore, for Hsa-118 we found 2453 
orthologs, 498 for Eco-46, 2461 for Ath-122 and 1595 for Sce-91 (data not shown). 
 
Besides, using four different seeds might allow us to detect proteins poorly described in 
one seed but well characterized in the other seed species. For instance, more than 50 
orthologs of proteins not included in the original seed dataset of Homo sapiens (Hsa-
118) because they are not published frequently in recent reviews, were detected in 
human after our searches using the DDR seeds from alternative organisms, suggesting 
that some of this hits could have a more important role in the network (Table ST3 
Annex). Moreover, 13 proteins are common to the four DDR seeds (Figure 12b). From 
these, BLM, MLH1, MSH6, RAD51, SMC1A, TOP3A, present in the Hsa-118 seed, 
have well described functions in DDR, while other proteins with potential functions in 
human DDR or poorly characterized as DDR-related in human are: CPLX 
(mitochondrial ATPase), DPO2 (DNA polymerase delta, replication), DPO4 (DNA 
polymerase kappa, repair), LON protease (mitochondrial DNA replication), NTH 
(endonuclease III-like protein 1, oxidative damage and spontaneous mutagenic 
lesions), and UNG (Uracil DNA glycosylase, repairs misincorporation of dUMP 
residues by DNA polymerase). 
For the 118 proteins involved in DDR in human, a total of 2656 orthologs were 
identified when gathering the orthologous sequences retrieved with the four different 
seeds, which overall constitutes the Ortho-DDR set. 
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4.3.4 Clustering of protein profiles   (Figure 8, Panel B) 
 
As a result of the clustering sorted according to the phylogeny (Figure 10), blocks of 
stable proteins were obtained (Figure 17).  
The most conserved and widely distributed proteins among the organisms are the HR 
proteins RAD51, BLM and TOP3A, the post-replicative DNA mismatch repair proteins 
MSH3 and MLH1, and the NER helicase ERCC3 (Figure 17, lightest orange box, at the 
bottom). 
While these proteins are homogeneously distributed along the three kingdoms of life, 
others appear to be specific to particular lineages. For example, PCNA (an auxiliary 
protein of DNA polymerase delta involved in the control of DNA replication) and RAD50 
(MRN complex unit that binds to DNA ends at DSBs holding them in close proximity) 
are common to the Archaea and Eukarya kingdoms while SMC1A (involved in 
chromosome cohesion during cell cycle and in DNA repair) is detected in Bacteria and 
Eukaryotes. RFA (a ssDNA binding protein complex) is found only in eukaryotes, and 
other proteins like RNF168 (an E3 ubiquitin-protein ligase required for accumulation of 
repair proteins to sites of DNA damage) are specific of Chordata. 
 
An important step in our evolutionary timeline is represented by the Opisthokonta, 
which points to the evolutionary split of animals and fungi. Generally speaking, the 
fungal species have incorporated novel lineage specific proteins and have suffered 
extensive gene losses [227]. In this regard, our analyses confirm this trend, where 
extensive losses (blue boxes in Figure 17) are found for important proteins, with only 
65 orthologs detected in S. cerevisiae and 75 orthologs in S. pombe, out of the 118 
human proteins studied here. Overall, S. pombe contains more identified orthologs 
than S. cerevisiae. 
 
 
It should be noted that the use of parasites and pathogens with small genomes, as well 
as the simplified nucleomorph genomes of G. theta and B. natans, has expectedly 
produced large absences in the taxonomic distribution of some proteins in the cluster, 
most likely due to their particular biological requirements (parasitic lifestyle, etc). Also, 
there are few scattered dots that might be caused by noise in the experiment due to 
false positives in the detection of orthologs, and some missing proteins that will surely 
be false negatives, especially in O. anatinus and M. domestica, due to the 
incompleteness of their proteomes. 
 
See section 4.5.2 a) for more explanations on the results. 
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Figure 17. Cluster of the 118 Human DDR proteins orthologs according to the phylogeny of the 47 species analyzed in 
this study ordered by the evolutionary tree. Horizontal axis: species, being B, Bacteria; A, Archaea and E, Eukaryota. 
Vertical axis: DDR proteins with their family codes (see Table ST1) and PTMs (coloured triangles) they produce. 
Squares have been coloured from light orange to brown showing different blocks of orthologs conservation. Squares 
corresponding to model species (blue triangles) have slightly darker colours. For species whose genomes have been 
completely sequenced, gene losses are represented as blue squares, while grey squares indicate absences (due to 
proteome incompleteness or gene loss, which are indistinguishable). 
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4.4 DDR PROTEINS DOMAIN ANALYSIS   (Figure 8, Panel C) 
 

4.4.1 Domain identification 
 
In our domain detection analyses we used an independent e-value (which shows the 
significance of the sequence in the whole database search, if this was the only domain 
that had been identified) threshold of 0.05, a total of 163 non-overlapping different 
domain families were detected in the 2656 human DDR orthologous proteins, being the 
most abundant the BRCT repeats, Helicase_C, Pkinase and AAA domains (data not 
shown).  On the contrary, for 6 of the Hsa-118 proteins (ATRIP, CLSPN, F175A, 
FACD2, MRI40 and PALB2), no Pfam domains were detected. 
Alternative thresholds were tested, but those more restrictive than 0.05 produced the 
loss of true positives, while a more relaxed threshold resulted in the identification of 
numerous overlapping domains and many false positives (data not shown).  
 
 

4.4.2 Domain conservation and protein domain architectures 
 
The protein domain content is consistent for the Hsa-118 orthologs of most families 
(Table ST4 Annex), since 90 proteins (76.3 % of the 118) (1433E, BRCA1**, BRCC3, 
BRE, CDT1, CHK1, CHK2, CUL1, CUL4, DCR1B, DCR1C, DDB1*, DNA2L, DTL, 
EME1, ERCC1, ERCC2, ERCC3, ERCC5, ERCC6, ERCC8, EXO1, FBX31, H2AX, 
HERC2, HUS1, KAT5, MAPK2, MDC1, MDM2, MDM4, MK03, MRE11, MSH2, MSH3, 
MTA2, MUS81, MYST1, NBN, NR4A2, NSE2, PAXI1, PCNA, PIAS4, PMS2, PRKDC, 
RAD1, RAD17, RAD18, RAD9, RBBP8, RBX1, RD23B, RFA1, RFA2, RFA3, RMI1, 
RN168, RNF8, SIRT1, SKP1, SLX1, SLX4, SMC1A, SMC5, SMC6, SOX4, TAOK1, 
TDP1*, TERF2, TIF1B, TIM, TOP3A*, TOPB1, TP53B, TRIPC*, UBE2N, UBE2T, 
UBP11*, UBR5, UIMC1, WEE1, XLF, XPA, XPC, XPF, XRCC1, XRCC4, XRCC5 and 
XRCC6) had a conserved domain architecture in all orthologs (*see Figure 18 for more 
information). However, we observed lineage specific domain insertions and/or losses in 
some orthologs of 20 families (Figure 19, Table ST4 Annex). In this regard, plants have 
suffered extensive domain shuffling in Lineage-Specific Expansions (LSEs), where 
orthologs have additional domains (see Discussion). Examples are the PHD domain in 
PIAS1, the SAP domains in PARP2, the zf-CCHC domain in TIPIN, or the zf-RanBP 
domain in TPD2, a tyrosyl-DNA phosphodiesterase that can remove a variety of 
covalent adducts from DNA through hydrolysis of a 5'-phosphodiester bond. Most of 
these domain combinations seem to be specific of plants since we have not detected 
these architectures in other species. 
 
For those proteins that contained different domain distributions in certain orthologs, an 
in-silico synthetic architecture was built to facilitate comparisons. 
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Figure 18. Schematic representation of Hsa-118 DDR proteins with conserved domain architecture in all orthologs. The 
exact position of the domains in the sequence and the relative length of the proteins have not been taken into account 
for this representation. Note: *Some orthologs presented slightly different domain architecture, most probably due to 
incorrect gene prediction or domains with bad scores. **The number of BRCT repeats varies in different species. 
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Interesting examples of domain variation among orthologs are the cases of two highly 
conserved HR proteins, BLM and RAD51. 
For instance, beyond the DEAD-Helicase_C-RQC-HRDC core architecture of domains, 
the BLM protein in upper eukaryotes has a BDHCT domain (found in Bloom's 
syndrome DEAD helicase subfamily) in the N-terminal region of the sequences. In the 
S. cerevisiae ortholog, a Helicase_Sgs1 domain is found instead of the conserved 
HRDC, and these domains may have an equivalent role because they are homologous 
domains belonging to the same HRDC-like domain clan (CL0426). The C-terminal is 
the region with more variations in BLM; for example, in D. radiodurans the sequence 
has evolved to confront the types and amounts of DNA damage, having three HRDC 
repeats that increase the efficiency of the helicase activity, and in A. variabilis a GerE 
domain was identified. This DNA-binding, helix-turn-helix domain, present in 
transcription regulators of LuxR family of response regulators, is involved in quorum-
sensing control of luminescence. 
 
 
The particular case of BLM illustrates fairly well the acquisition of novel functions due 
to diverse protein domain architectures reflecting substantial differences at the species 
level likely due to divergence. 
 
In spite of the apparent enormous variation of domain architecture in the Rad51 
orthologs, a deeper analysis indicates the differences are not so large. The RecA 
domain found in the bacterial proteins is a homolog of the Rad51 domain found in the 
archaea and eukaryotes orthologs, being both domains members of the AAA clan 
(CL0023); and the Cdd1 domain (expressed as part of the pathogenicity locus operon 
in some bacteria) present in the archaeal sequences is homologous to the Helix-
hairpin-helix motif (HHH) found in the eukaryotic orthologs, being these two domains 
part of the HHH clan (CL0198). These results might point towards an emergence of the 
eukaryotic Rad51 caused by a combined evolution of bacterial and archaeal 
sequences. 
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Figure 19. Schematic representation of Hsa-118 DDR proteins with variations in domain architecture in the orthologs. The 
exact position of the domains in the sequence and the relative length of the proteins have not been taken into account for 
this representation. Shadowed shapes indicate shuffling, and the || pipe indicates that both domains belong to the same clan. 
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4.4.3 Clustering of protein domain profiles 
 
Protein domain phylogenetic profiles were clustered and six distinguishable blocks 
were obtained (figures 20a and b). Domains widely distributed and found in the three 
kingdoms of life have been coloured in magenta (bottom); those detected in archaea 
and eukaryotes, and in few bacteria are in the red block; while in the dark orange block 
are clustered the domains found in eukaryotes and in few prokaryotes. Both in the red 
and dark orange blocks, there are a series of domains in bold and highlighted in black 
boxes, which are those found in eukaryotic proteins but that have also been detected in 
the Planctomycetes representatives included in this study. Interestingly, the 
DNA_ligase_A_C and DNA_ligase_A_N (domains found in the eukaryotic DNA ligase 
4 (LIG4), involved in NHEJ) have been detected in G. obscuriglobus, while in P. staleyi, 
the domains detected have been the UQ_con (UBE2N/T), PI3_PI4_kinase (found in 
PIKK kinases), 14-3-3 (in 14-3-3 proteins, involved in multiple signaling pathways) and 
PHD finger motif (found in Transcription intermediary factor 1-beta TIF1B (KAP1/ 
TRIM28) and plants PIAS1, and many proteins involved in chromatin-mediated gene 
regulation). 
The light orange block contains domains present in few prokaryotes and scattered 
among eukaryotic species with some absences in whole phyla (i.e. PADR1 (a domain 
of unknown function found in PARP1) in fungi, or Replication fork protection 
component Swi3 (TIPIN) and Timeless (TIM) in Apicomplexa) (figure 20b). The yellow 
block includes domains detected mainly in bacteria but absent in most of the other 
organisms; this absence is likely due to the existence in eukaryotes of homologous 
domains performing similar functions (domains in green font colour). Finally, the 
domains found only in modern organisms, and those scattered among few ancient 
eukaryotes, and some plants and fungi, are coloured in blue (top). In this blue block, 
important absences of domains in C. elegans and arthropoda can be seen, such as the 
example of Telomere-length maintenance and DNA damage repair (TAN), a motif 
found in PIKK kinases which is essential for telomere length maintenance and ATM 
action in response to DNA damage. Other important missing domains in C. elegans, 
most arthropoda and C. intestinalis, are Nbs1_C from NBN, 53-BP1_Tudor (TP53B) 
and DNA_ligase_IV (DNLI4) (see red coloured fonts in figure 20b). 
 
 
The results show that there are domains widely distributed among all organisms, while 
others seem to be specific of phyla or restricted to certain groups of species.  
Examples of conserved domains are DEAD, Helicase_C, HATPase_C (which have 
been detected in all 47 species), or MutS and MutL_C domains, SMC_N and Pkinase. 
On the other hand, the BDHCT and ROKNT domains are specific of chraniata (from D. 
rerio to H. sapiens) and there are other domains such as RecA, Cdd1, GerE or 
Topo_zn_Ribbon, which are present in prokaryotes and very few eukaryotes. Table 4 
contains information about these domains and the DDR proteins where they are found. 
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Widely distributed 
domains 

Function Protein 

DEAD DEAD/DEADH bocx helicase. Unwinds nucleic acids. BLM, FANCM 
Helicase_C Helicase conserved C-terminal domain BLM, ERCC3, ERCC6, FANCM, 

SMAL1  
HTPAse Found in several ATP-binding proteins, like histidine 

kinase, DNA girase B, topoisomerases or heat shock 
protein SHP90. 

MLH1, PMS2 

MutS Found in proteins of the MutS family MSH2, MSH3, MSH6 
MutL_C Found in proteins of the MutL familiy. The domain is 

involved in proteins dimerisation. 
MLH1, PMS2 

SMC_N Found at the N terminus of SMC (structural 
maintenance of chromosomes) proteins, which are 
essential for successful chromosome transmission 
during replication and segregation of the genome. 

Rad50, SMC1A, SMC5, SMC6 

Pkinase Contains the catalytic function of protein kinases. CHK1, CHK2, MAPK2, MK03, 
TAOK1, PLK1, WEE1 

 

Narrowly 
distributed 

domains 

Function Protein 

BDHCT C-terminal domain in Bloom's syndrome DEAD 
helicase subfamily 

BLM (chordata) 

ROKNT Found at the N-terminus of RNP K-like proteins that 
also contains KH domains 

HNRPK (chordata) 

RecA Catalyses an ATP-dependent DNA strand-exchange 
reaction that is the central step in the repair of dsDNA 
breaks by homologous recombination 

Rad51 (Bacteria) 

Cdd1 Cdd1 protein is expressed as part of the pathogenity 
locus operon in different orders of bacteria 

Rad51 (Archaea) 

GerE DNA-binding, present in transcription regulators of the 
LuxR family of response regulators, involved in 
quorum-sensing control of luminescence. 

BLM (A. variabilis) 

Topo_zn_Ribbon C-terminal zinc-ribbon-like domain found in bacterial 
topoisomerase I (type IA) enzymes. This domain is 
still considered to be a member of the zinc-ribbon 
superfamily despite not being able to bind zinc. 
 

TOP3A (B. aphidicola) 

 
Table 4. Examples of widely and narrowly distributed DDR domains, their functions and proteins 
containing these domains. 
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Figure 20a. Cluster of the 163 different domains detected in the 118 Human DDR proteins orthologs according to the 
phylogeny of the 47 species analyzed in this study ordered by the evolutionary tree. Horizontal axis: species, being B, 
Bacteria; A, Archaea and E, Eukaryota. Vertical axis: DDR domains. Six distinguishable blocks were obtained, from magenta 
(bottom) to blue (top). In this figure, the magenta, red and dark orange blocks have been zoomed in. The domains in green 
font colour with the = symbol are domains belonging to the same clan, and the domains in bold and highlighted in black 
boxes are those typical of eukaryotic proteins but that have been detected in the Planctomycetes representatives.  
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Figure 20b. Cluster of the 163 different domains detected in the 118 Human DDR proteins orthologs according to the 
phylogeny of the 47 species analyzed in this study ordered by the evolutionary tree. Horizontal axis: species, being B, 
Bacteria; A, Archaea and E, Eukaryota. Vertical axis: DDR domains. Six distinguishable blocks were obtained, from 
magenta (bottom) to blue (top). In this figure, the light orange, yellow and blue blocks have been zoomed in. The 
domains in green font colour with the = symbol are domains belonging to the same clan, and the domains in red font 
which have also been highlighted with red boxes are those with important functions and present in essential proteins but 
that are missing in some organisms (C. elegans, C. intestinalis, etc) and in certain phyla, mainly arthropoda.  
 
 

4.4.4 Identification of conserved uncharacterized regions 
 
From the human 118 DDR proteins, there are 6 (ATRIP, CLSPN, F175A, FACD2, 
MRI40 and PALB2) where no Pfam domains were detected using our methodology 
(see Methods 3.5.2 and Results 4.4.1). 
From the remaining 112 proteins, 5 had equal or less than 10% of their length covered 
by Pfam domains, while 18 had equal or more than 80% of their sequence length 
covered by detected domains (see Table 5 below). 
 

Protein length coverage by Pfam domains 

10% =< 
 

>= 80% 

MDC1 1433E PCNA SMC5 

RN168 BRE RAD1 SMC6 

SLX4 CUL1 RAD51 UBE2N 

UIMC1 CUL4A RFA3 XRCC4 

XPF HUS1 SKP1 XRCC5 

 MSH2 SMC1A XRCC6 

Table 5. Human DDR proteins length coverage by Pfam domains. Those proteins where the domain 
coverage was equal or below 10% of the sequence, and those where the coverage was equal or over 80% 
are shown. 
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For those 6 proteins where no Pfam domains were detected, we analyzed the MSA of 
the corresponding orthologs to detect conserved regions in the sequences and further 
run profile-profile methods (HHPRED) to detect distant similarities. Hits with probability 
over 75% and e-value below 0.05 were found for all proteins but FACD2 (see Table 6).  
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 Table 6. HHPred results for the human DDR proteins where Pfam domains had not been detected. 
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In the ATRIP protein, a fragment similar to the LCD1 domain found in the S. cerevisiae 
and S. pombe checkpoint kinases is detected. In yeast, LCD1 is necessary for CHK1p 
activation in response to DNA damage and is also required for efficient DNA damage-
induced phosphorylation of Rad9p and activation of Rad53p in response to DNA 
damage or DNA replication blocks [310]. This results show this region is highly 
conserved among different organisms and is involved in ATRIP’s function. 
In Claspin, there is a hit to a MRC1-like domain. This putative domain is the most 
conserved region in mediator of replication checkpoint protein 1, which is required for 
Rad3-dependent activation of the checkpoint kinase Cds1 in response to replication 
fork arrest. This domain is detected in the Claspin yeast orthologs in our study. 
In F175A/Abraxas, which is a central scaffold protein that assembles the various 
components of the BRCA1-A complex and mediates the recruitment of BRCA1, there 
is a region similar to the MPN (JAB1/Mov34) domain. This domain is a widespread 
protein module found in archaea, bacteria, and eukaryotes. In the latter, the domain is 
found in subunits of various multiprotein complexes, including the proteasome, and 
might be involved in the removal of the polyubiquitin chain from substrate proteins [311]. 
Another component of the BRCA1-A complex, the MRI40/BABAM1/NBA1 protein, 
which is required for the complex integrity, has a region similar to the VWA domain 
(found in proteins involved in transcription, DNA repair, ribosomal and membrane 
transport, and the proteasome). The presence of these hits reveals similarities between 
the structure of the 26S proteasome (responsible for ubiquitin-dependent protein 
degradation) and the BRCA1-A complex. Curiously, in MERIT40, the same region has 
a hit with high probability and low e-value to the N-terminal domain of the Ku80 protein. 
Finally, in PALB2/FANCN, the most conserved fragment is the region involved in the 
interaction with RAD51 and BRCA2. 
 
Our results show that, though no Pfam domains have been detected in few proteins, 
these have conserved regions with hits to domains known to be involved in DDR 
processes. 
 
 

4.4.5 Domain enrichment 
 
The enrichment analysis shows that, for the 168 human proteins analysed (see 
Methods 3.5 and Box3), the BRCT repeats (involved in protein-protein interaction, and 
in DNA and Poly(ADP-ribose) binding), and the Rad51, Helicase_C and AAA (ATPase 
family Associated with diverse cellular Activities) domains are highly enriched in human 
DDR proteins (see Table 7). 
 
 

Species 
Number of proteins 
(filtered proteome) 

DDR proteins 
analyzed 

Ath 35744 153 

Cel 23507 108 

Dme 13728 121 

Eco 4149 52 

Hsa 19984 168 

Sce 5880 125 

Spo 5003 121 

Box3: model species used for 
the domain enrichment analysis, 
number of proteins in the 
proteomes (after being filtered) 
and number of DDR proteins 
analyzed. 
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Domain Pfam ID 
DDR proteins 
with domain  

Proteins with 
domain in 
proteome 

Fisher  
p-value 

Bonferroni 
adjusted  
p-value 

BRCT PF00533 11 21 3.49E-18 7.50E-16 
Rad51 PF08423 4 7 1.65E-07 3.56E-05 
Helicase_C PF00271 9 107 3.00E-07 6.44E-05 

AAA PF00004 7 56 4.29E-07 9.23E-05 
DRMBL PF07522 3 3 5.84E-07 1.25E-04 
MutS_I PF01624 3 3 5.84E-07 1.25E-04 
Rep_fac_C PF08542 3 3 5.84E-07 1.25E-04 
RQC PF09382 3 3 5.84E-07 1.25E-04 
UQ_con PF00179 6 39 8.37E-07 1.80E-04 

ERCC4 PF02732 3 4 2.32E-06 4.99E-04 
HHH PF00633 3 4 2.32E-06 4.99E-04 
MutS_II PF05188 3 4 2.32E-06 4.99E-04 
MutS_III PF05192 3 5 5.76E-06 1.24E-03 
MutS_V PF00488 3 5 5.76E-06 1.24E-03 
FAT PF02259 3 6 1.15E-05 2.46E-03 

FATC PF02260 3 7 1.99E-05 4.28E-03 
SMC_N PF02463 3 8 3.17E-05 6.81E-03 

 

Table 7. DDR domains enriched in H. sapiens (only those with a Bonferroni adjusted p-value  
< 0.01 are shown). Though the DDR proteins figures are low, the numbers were Bonferroni  
corrected to normalize the data. 
 
 
 
Figure 21 shows the overlap among enriched domains in the four seed organisms. 
Interestingly, the number of enriched domains shared considering a Bonferroni 
adjusted p-value < 0.05 is higher between A. thaliana and human than between the 
latter and S. cerevisiae (even though yeast and H. sapiens are phylogenetically more 
related), which could be due to gene losses. 
 
 

 
 
 
The domain enrichment analysis was also performed in other model species: E. coli, A. 
thaliana, S. cerevisiae, S. pombe, C. elegans and D. melanogaster (see tables ST5a-f, 
Annex). A. thaliana seems to be the species with more enriched domains when 
considering a Bonferroni adjusted p-value below 0.05 (see table ST5a, Annex), 
followed by human. 

Figure 21. Overlap of DDR 
domains enriched in the four 
seed datasets in this study: E. 
coli, S. cerevisiae, A. thaliana 
and H. sapiens (only those 
domains with a Bonferroni 
adjusted p-value < 0.05 were 
considered). The only domain 
enriched in the four species is 
the SMC_N domain.   
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Considering a Bonferroni adjusted p-value below 0.05, the only domain enriched in all 
the seven species is the SMC_N, which is an ancient domain found in the SMC family 
of proteins and in some RAD50 orthologs, and is widely distributed among the 
proteomes analyzed.  
 
In the eukaryotic species, the AAA domain, which is found in proteins involved in DNA 
replication, signal transduction, regulation of gene expression and many other 
processes, is enriched. This domain is not enriched in E. coli but it is found in the Lon 
protease, a protein that binds DNA and is required for cellular homeostasis and for 
survival from DNA damage and developmental changes induced by stress. 
The BRCT domain is highly enriched in all species, as well as the Rad51 (RecA in E. 
coli), MutS (I to V) domains, the RAD17 from the Cell cycle checkpoint protein RAD17 
(but in E. coli), the Helicase_C, the HhH-GPD superfamily base excision DNA repair 
protein, which contains a diverse range of structurally related DNA repair proteins, etc. 
 
In general terms, most of the domains found to be enriched in the DDR proteins bind 
DNA, are from ancient origin, and are widely distributed in all the 47 organisms in this 
study. 
 
 

4.4.6 Domain distribution in functional categories 
 
As explained in Methods 3.9 b), the Pfam domains identified in the Hsa-118 DDR 
proteins were grouped according to a 4 tier-classification of sensors, mediators, 
transducers and effectors. 
The results show that sensors and effectors are the tiers with more specific domains, 
even though sensors are the third most populated class (see Results 4.8). Examples of 
domains found only in sensors are the MutS, the MutL and DNA_mis_repair found in 
the MMR proteins MLH1 and PMS2, and the Ku and PARP related domains. Domains 
specific of mediators are the Histone, UIM (Ubiquitin interaction motif) from Rap80, 
Tower (which is essential for appropriate binding of BRCA2 to DNA [312]), BRE from 
BRCC45 o Swi3 from Tipin. Transducers are the functional class with less exclusive 
domains, being some examples the POLO_box, or the UQ_con from the Ubiquitin-
conjugating enzymes UBE2N and UBE2T. Finally, effectors were the tier including the 
biggest number of specific domains, such as the XRCC4 found in EME1, MUS81 and 
XPF, or the SWIB domain contained in the MDM2 and MDM4 checkpoint proteins. 
No age trend was found for the distribution of domains in the different functional 
classes. 
 
On the other hand, two domains were found in all four tiers: BRCT and zf-C3HC4, 
which are among the most abundant domains in the DDR proteins, and are also 
enriched domains in the H. sapiens DDR proteins. Both domains are of ancient origin, 
since the BRCT was present in bacteria, and zf-C3HC4 seemed to emerge in ancient 
eukaryotes for it was detected in the hypothetical protein GTHECHR2167 from the G. 
theta nucleomorph.  
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4.5 EMERGENCE OF THE DDR PATHWAY USING GENE-CONTENT 
BASED METHODS (Figure 8, Panel D) 

 
Homo sapiens is the most extensively studied species in terms of DDR functional data. 
Moreover, as it is the “youngest” species in our species-tree (Figure 10), the Hsa-118 
dataset has been used as the reference to address how these components have 
emerged along evolution. Although this strategy presents certain issues (see 
discussion), it is a plausible approach to our purposes. 
 

4.5.1 Classification of DDR components into protein families 
  
We have classified the Hsa-118 set in protein families since some of them are 
homologous and have the same domain architecture (or arrangement of protein 
domain content). Thus, we have divided the 118 proteins in 95 subfamilies (Table ST1 
Annex, right columns), where each family can either be single (79 families) or 
multigene (16 families, Table 8), containing the latter genes that are homologs between 
each other (i.e. PIAS1 and PIAS4).  
 
 
 

Family 
number 

Multi-
gene 

Proteins Function 

1 55 PIAS1, PIAS4 E3 SUMO-protein ligases 

2 
 

88 MDM2, MDM4 
Both proteins inhibit p53-mediated cell cycle arrest. 
MDM4 inhibits degradation of MDM2 

3 43 PARP1, PARP2 Poly [ADP-ribose] polymerases 

4 78 CDC25A (MPIP1), CDC25C (MPIP3) M-phase inducer phosphatases 

5 
 

20 UBE2N (UBC13), UBE2T Ubiquitin-conjugating enzyme E2 proteins 

6 

 
 

 
21 CUL1, CUL4 

Core components of cullin-RING-based E3 ubiquitin-
protein ligase complexes that mediate ubiquitination 
and subsequent proteasomal degradation of target 
proteins. 

7* 89, 58 MDC1, PAXIP1 (PTIP)  

8 41 KAT5, MYST1 Histone acetyltransferases 

9 40 DCR1B (Apollo), DCR1C (Artemis) 5'-3' exonucleases 

10 

 
 

24 ERCC5, EXO1 

ERCC5 is a single-stranded DNA endonuclease 
involved in DNA excision repair, while EXO1 is a 5'-
>3' double-stranded DNA exonuclease 

11 
 

12 XPF, MUS81, EME1 
Endonucleases, XPF involved in NER, and MUS81 and 
EME1 in cleavage of Holliday junctions 

12 
 

08 SMC5, SMC6, SMC1 Structural maintenance of chromosomes proteins 

13 06 MLH1, PMS2 Mismatch repair proteins 

14 
 

45 
CHK1, MAPK2, TAOK1, WEE1, 
MK03, CHK2 (+ FHA domain) 

Kinases involved in cell-cycle checkpoints  

15 02 MSH2, MSH3, MSH6 Mismatch repair proteins 

16 
 

35 ATM, ATR, PRKDC PIK-related kinases involved in DNA damage sensing 

17 03 ERCC3, FANCM ATP-dependent helicases  
 

Tale 8. Multigene families, proteins that comprise them and their function. *: Family7: although because of auomatic 
detection Ensemble COMPARA assigns PTIP (PAXI1) and MDC1 to the same family, besides sharing the 
promiscuous BRCT domain, there is no detectable sequence similarity between these two proteins, and therefore we 
do not consider them as members of the same family. 
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We also manually checked for consistency in the protein domain content to identify 
variations and common domain architectures as a quality check to assess or not the 
orthology relationship (Figures 18 and 19, Table ST4 Annex). 
 
Also, although three groups of proteins (PARP1/PARP2, ATM-ATR-PRKDC, and 
CHK1/CHK2) have different domain architectures, they are usually considered 
homologous sequences because they share homology at certain domains and regions, 
in particular in the domain involved in the function (i.e.: kinase). 
 
For the gene content-based analyses, each protein was considered as an independent 
hit to build the presence/absence matrix, therefore sequence similarities within the 
dataset were not taken into account. 
 
 

4.5.2 Phylogenetic profiles 
 
The Ortho-DDR set was used to build a phylogenetic profile indicating whether a 
protein is either present or absent in the 47 proteomes screened.  
 
a) Hierarchical clustering 
 
The hierarchical clustering of the Hsa-118 profile (ordered according to our given 
species-tree) produced five distinguishable and stable blocks of proteins (sequential 
scale of oranges from ancient to modern species, Figure 17) indicating the presence or 
absence of proteins in all the screened species. The most represented core of proteins 
is located at the base of the clustered profile (Figure 17, lightest orange box). These 
proteins are RAD51, RAD50, MSH3, PCNA, XPB, TOP3A, MLH1, BLM, SMC1A, and 
MSH6, all involved mainly in repair. The next block includes presences in ancient 
single celled eukaryotes. Expected absences are those corresponding to 
endosymbionts (Guillardia theta and Bigelowiella natans, pink names Figure 17) where 
the genomic sequences correspond to the nucleomorph (the remains of the 
prokaryotic-based engulfment in the first event of endosymbiosis). In this block, 
absences of orthologs (Blue boxes, Figure 17) start to appear more frequently, 
especially in C. elegans, D. melanogaster and fungi. This indicates potential rewiring of 
unrelated proteins in these lineages may accomplish the functional requirements for a 
proper DNA response. In the next block losses are prevalent and significant in plants, 
fungi, C. elegans, and D. melanogaster. The next block includes proteins mostly lost in 
fungi and plants, where the last block points to Chordate proteins. 
To delineate the pace of growth, we next plotted the aggregated frequency of the 
orthologs present at least in one representative species of each age group (Figure 22). 
Around 10% of the Hsa-118 proteins are traceable to the prokaryotic group including 
Archaea and Bacteria. At the eukaryotic split represented by the free-life planktonic 
organism Emiliania huxleyi (Hacrobia), there was a large expansion of genes where 
most of the DDR components were acquired (around 60-70%). From this point, the 
incorporation of novel components was less remarkable being completely established 
at the Vertebrata group. No further innovations are detected after that evolutionary 
point.  
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b) Ancestral reconstruction algorithms 
 
We also calculated the emergence of the different components of the DDR using two 
alternative algorithms (Wagner and Dollo parsimony) and plotted the results, where the 
same trend is maintained (Figure 22) with some expected differences in the relative 
numbers at the ancient Eukaryota stages (see Discussion).  
 
 

 
 
Figure 22. Relative presence of DDR proteins according to age groups. To represent the pace of growth according to 
the relative contribution of each age group on DDR components, we plotted the aggregated frequencies (normalized by 
group size) for each of three methods: hierarchical clustering, Dollo parsimony and Wagner parsimony. Red dotted 
arrows represent Horizontal Gene Transfer (HGT) events between phylogenetic groups. 
 
 
 

4.6 GENE AGES (Figure 8, Panel D) 
 
In agreement with our results, alternative gene age enrichments using different 
methods and databases, showed that the Hsa-118 set was significantly enriched in 
genes corresponding to the Eukaryotic age and the Opisthokonta split, while being 
significantly underrepresented in mammalian ages (Table 9). 
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Table 9. Ages enrichment analysis for the Hsa-118 set of proteins. Wagner and Dollo algorithms were used to 
calculate age enrichment in different databases. In most cases genes corresponding to the Eukaryotic age and the 
Opisthokonta split are enriched, while being significantly underrepresented in bilaterians, mammalian and human 
ages. 

 
 

4.7 GENE-TREES AND SPECIES-TREES   (Figure 8, Panel E) 
 
Due to the polytomies at deep branches in our species phylogeny, we devised a 
phylogenetic pipeline that conducted phylogenetic gene trees to identify family-specific 
evolutionary trends. Not unexpectedly, some gene trees were statistically unsupported 
at deep branches, where discrepancies with the species-tree were largely found. The 
overall results of the phylogenetic pipeline indicate that the evolutionary history of most 
families may be more complex than expected, and also extensive HGT must have 
occurred, as it is very frequent to observe arthropod, fungal, and worm sequences 
grouping along ancient eukaryotes instead of their assumed more related lineages. 
This might indicate that certain genes in these organisms may be older due to HGT 
events.  
 
We generated a total of 65 trees, of which 49 were single gene trees and 16 were 
multigene trees (i.e. that included homologous genes).  
Eight trees were unreliable or insufficiently supported at deep branches due to the 
complexity of the MSA because of the high divergence of certain regions of specific 
proteins (10-RBX1, 14-USP11, 17-H2AX, 20-UBE2N/T, 23-RFA3, 25-TPYD1, 38-
HUS1 and 52-MMS21). A deeper sampling of these trees would be required to obtain 
more reliable results, but his was not done due to computational constraints.  
On the other hand, out of 90 genes, 24 were in agreement with the species-tree. From 
these, only in 4 cases the species where perfectly sorted (MK03, ERCC3, RNF8, 
XRCC1) according to the species-tree, and 20 followed the species-tree with minor 
variations likely due to the quality of specific sequences (ERCC8, EXO1, PIAS1/4, 
TDP2, PARP1, PLK1, etc).  
In general, large misplacements were observed for arthropods and worms (in 36 
cases, from which C. elegans is misplaced in 26 trees) and to a lesser extent (17 trees) 
fungi and plants (ERCC2 example, figure 23), indicating that most of the families have 
suffered complex evolutionary histories. 

Regarding the 16 multigene trees, in 7 trees while certain members of the family 
followed the taxonomic tree, the other members did not (for instance Family 17, where 
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ERCC3 follows the species order while FANCM does not, Family 11 where EME1 
follows while MUS81 and XPF do not; or Family 6 where CUL1 follows while CUL4 
does not). 
In 6 multigene trees none of the members followed the species tree (Families 
MSH2/3/6, and ATR/ATM/ PRKDC, SF17)), while in 2 multigene trees: 55-Family 1 
(PIAS1/4) and 88-Family 2 (MDM2/4) both proteins follow the species tree.   

In all cases, when different domain architectures were found, phylogenies were 
conducted with the common domains only. 
 
 

          
 
Figure 23. Phylogenetic tree of the DNA excision repair protein ERCC2. In this well supported tree at all 
levels, the sequences are sorted according to the species-tree, but for plants, which are grouped with the 
phytoplankton E. huxleyi (used for rooting the tree); and S. japonicum and C.teleta, which cluster closer to 
chordata than arthropoda. Species are coloured according to their phylogenetic group. The dots in the tree 
branches mean clades with probability value > 80%. 
 
 
One of the most conflicting phylogenetic placements corresponds to C. elegans, which 
does not group with worms in most trees (many with probability value > 80% or 0.08), 
like in the cases of BLM, ERCC1, MSH2, MUS81, PCNA, RAD50, RFA1, SKP1, or in 
Family13 consisting of MLH1 and PMS2 (see figure 24). According to this family tree, 
both MLH1 and PMS2 from C. elegans group near ancient eukaryotes, which might be 
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the result of HGT from ancestral organisms. Other unexpected placements of orthologs 
are PMS2 from C. reinhardtii, likely due to its partial sequence, or E. cuniculi near the 
PMS2 root, and C. intestinalis close to basal eukaryotes. Besides, fungi are positioned 
closer to ancient eukaryotes than plants, and both the phytoplankton E. huxleyi and the 
diatom P. tricornutum cluster with plants. According to the domain architecture, the 
MLH1 orthologs detected in prokaryotes might actually be the ancestral gene that gave 
rise to the duplication of MLH1, and are most likely PMS2. 
 
 

 
 

Figure 24. Phylogenetic tree of Family13, comprising MLH1 and PMS2. The sequences of PMS1, other 
member of this family (which includes additional domains), have also been included to clarify the correct 
position of in-paralogs. In this tree, C. elegans is located with ancient eukaryotes. Other unexpectedly 
positioned orthologs are PMS2 from C. reinhardtii, E. cuniculi and C. intestinalis. According to the domain 
architecture, the MLH1 orthologs detected in prokaryotes might actually be the ancestral gene that gave 
rise to the duplication of MLH1, and are most likely PMS2. 
Species are coloured according to their phylogenetic group. The dots in the tree branches mean clades 
with probability value > 80%. The differential domain architecture of the orthologs is represented. 
Sequences are depicted showing their relative length, being the N-terminal region the closest displayed to 
the centre of the tree. 
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In certain cases such as in the proteins MSH3 and MSH6 (figure 25), FANCM (figure 
26), 14-3-3, or SMC1A, plants orthologs group closer to animals than fungi.  
In the example of Family15, comprising MSH2, MSH3 and MSH6, besides the 
positioning of the fungi in an older clade than plants are, other sequences are located 
in a position that differs with the species phylogenetic tree. For instance, in MSH2, 
though the gene tree follows almost perfectly the species-tree, the E. cuniculi protein is 
at the base of the tree (maybe due to the sequence being incomplete or to a 
contamination), and C. elegans is also found by ancient eukaryotes. 
In the MSH3 tree, the E. huxleyi protein clusters with the prokaryotic sequences (mean 
probability values > 80%), which could be due to HGT events or an artifact. Finally, in 
the case of MSH6, the basal organism M. brevicollis groups with fungi, which in the 
tree are closer to ancient eukaryotes than plants; and N. vectensis and C. teleta are 
found next to chordata, probably due to the fact that all these sequences present a 
PWWP domain (red rhombus in figure 25) in the N-terminal region of the protein. 
 
 
 

 
 
 

Figure 25. Phylogenetic tree of Family15, comprising MSH2, MSH3 and MSH6. Species are coloured 
according to their phylogenetic group. The dots in the tree branches mean clades with probability value > 
80%. The differential domain architecture of the orthologs is represented. Sequences are depicted 
showing their relative length, being the N-terminal region the closest displayed to the centre of the tree. 
The PWWP domain is detected in chordata plus C. teleta (polychaete) and N. vectensis (sea anemone). 
Also a tudor-like domain is detected in plants.  
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As explained previously, the accuracy of the existing methods to predict domain 
boundaries is not entirely satisfactory, as can be observed in figure 25, where the 
different domains (MutS I to V) are not always well defined: in most cases the MutS IV 
domain is identified within domain III, while in other occasions, domain III is detected 
as two repeats.  
 
 
Besides the inversion fungi-plants, arthropods are also found closer to fungi than basal 
eukaryotes and annelidae in several trees. One of them is the case of Family17 (figure 
26), comprised by ERCC3 and FANCM. The ERCC3 part of the tree is well supported 
and reflects almost perfectly the species-tree order. Interestingly, the sequence of the 
planctomycete G. obscuriglobus is found among the ancient eukaryotes (mean 
probability values > 80%), instead of being with the rest of bacterial sequences, which 
could indicate a eukaryotic inference (HGT event). On the other hand, the FANCM tree 
presents an inversion fungi-plants and other arthropods-basal eukaryote.  
 

 
 
Figure 26. Phylogenetic tree of Family17, comprising ERCC3/XPB and FANCM. Species are coloured 
according to their phylogenetic group. The dots in the tree branches mean clades with probability value > 
80%. The G. obscuriglobus ERCC3 clusters among the ancient eukaryotes and the FANCM tree presents 
one inversion fungi-plants and other arthropods-basal eukaryotes. 
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Other cases where arthropods or worms are found closer to fungi than basal 
eukaryotes are RFA3, ERCC5, RAD1 or MUS81 (however, it seems that C. teleta 
(annelida) tends to escape this trend). In some other trees the same result is obtained 
but for M. brevicollis, which is found generally after fungi (TOP3A, XPF, TIM) or with 
ancient eukaryotes (MRE11). Also in the TIM tree C. elegans clusters by fungi, which 
happens with the RAD9 tree as well.  
 
Within the 65 trees, at least three trees showed the same inconsistencies common to 
proteins being part of the same protein complex, like the case of XRCC5 and XRCC6, 
where C. elegans groups within arthropods instead of with other worms. 
Another interesting example of trees, are the cases of RAD17 and TOPB1, both 
proteins that are part of a complex in the ATR pathway. These two replication stress 
proteins, which are grouped together in the protein cluster (figure 17, Results 4.3.4), 
show the same inconsistencies in the gene-tree (see figures STt24 and STt24 in 
Annex), maybe pointing towards a co-evolution process, where proteins are transferred 
in blocks. 
Other example is the case of 06-Family13 (see figure 24), comprised by PMS2 and 
MLH1 –which dimerize to form MutL alpha in the MMR pathway–, where the 
sequences from C. elegans group close to ancient eukaryotes. 

 
In 52 out of 65 trees the Chordata members followed the taxonomic-tree, with few 
exceptions probably due to artifacts given the incompleteness of certain sequences. 
One such example is the case of RAD51, whose tree is very problematic but well 
supported (mean probability values > 80%) (figure 27). In this tree the O. anatinus 
ortholog is remarkably out of place since it clusters with the T. adhaerens sequence, 
and both are located by ancient eukaryotes. Moreover, the C. intestinalis sequence is 
placed between Bacteria and Archaea. Nevertheless, this topology is well supported. 
One of the most extreme cases is the gene-tree from XRCC5 where the genes of fungi, 
arthropods and worms are grouping with ancient eukaryotes (see figure STt29, Annex).  
 
 
Regardless of the differences observed between some taxonomic and gene-trees 
(particularly in the cases of arthropods and worms), the reconstruction of phylogenetic 
trees helps detect wrongly assigned orthology. In addition to Family13 explained above 
(Figure 24), in Family8, the MYST1 and KAT5 orthologs seem to have been incorrectly 
identified, since according to the tree MYST1 from N. gruberi, C. parvum, C. 
falciparium, plants and D. discoideum could be KAT5 instead, having emerged in 
ancient eukaryotes, where the P. tricornutum ortholog has been correctly detected 
(Figure 28). Analogously, Family 9 with Artemis/Apollo, also shows some 
inconsistencies produced by automatic orthology assignations, whereby DCR1B of P. 
patens, fungi and M. brevicollis are DCR1A instead, another protein of the same family 
of Artemis/Apollo. 
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Figure 27. Phylogenetic tree of DNA repair protein RAD51. The O. anatinus ortholog strangely clusters 
with the T. adhaerens sequence, and both are located by ancient eukaryotes. Species are coloured 
according to their phylogenetic group. The dots in the tree branches mean clades with probability value > 
80%. The differential domain architecture of the orthologs is represented. Sequences are depicted 
showing their relative length, being the N-terminal region the closest displayed to the centre of the tree. 

 
 
 
Regarding the age of the proteins and as expected, those more ancient (see figure 
SF1 in Annex, protein blocks 0, I and II), have more variations between the gene- and 
the species-tree, compared to the blocks comprised by more modern proteins (blocks 
III and IV). Considering the protein complexes, in some gene-trees we have seen the 
same variations in species order in proteins forming part of the same complex (such as 
the abovementioned case of RAD17 and TopBP1, or in XRCC5 and XRCC6 (Ku80 and 
Ku70 respectively), in which fungi are located prior to plants and where C. elegans 
clusters among arthropods, and all are before basal eukaryotes (see figures STt29 and 
STt30, Annex). 
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Figure 28. Phylogenetic tree showing Family8, including MYST1 and KAT5. The MYST1 orthologs in N. 
gruberi, C. parvum, P. falciparum, plants and D. discoideum (right half of the tree, in light green) were 
probably misidentified by InParanoid, and are KAT5 instead. Species are coloured according to their 
phylogenetic group. The dots in the tree branches mean clades with probability value > 80%. 

 
 
 
A brief summary of results is included in Table 10, which shows examples of different 
cases found when comparing the species- and gene-trees built for the selected DDR 
proteins. 
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Table 10. Examples of different cases found when comparing the taxonomic- and the gene-trees of DDR 
proteins. 
 
The rest of the gene-trees generated in this study can be found in the Annex (figures 
SFt1 to 59).  
 
 
 

4.8 EMERGENCE OF POTENTIAL FUNCTIONS OF DDR PROTEINS  (Figure 
8, Panels F / G) (Panel F)  (Panel G) 

 
a) GO assignment 
 
The functional enrichment of the Hsa-118 based on GO analyses indicated strong 
associations with DNA repair and response, as all the proteins were enriched in terms 
related these processes (ST6, Annex).  
 
 
b) A broader classification 
 
To have a more general view of the functions, we classified the Hsa-118 set in 
“Sensors”, “Mediators”, “Transducers” and “Effectors”, as described in the literature. 
The most populated classes for H. sapiens are, the effectors (48 proteins) followed by 
mediators (with 40), sensors (with 32), and finally transducers (with 24) (ST7, Annex, 
figure 29). There is functional overlapping in the DDR set (figure 29) where the largest 
isthe one created by sensors (followed by mediators) with the rest of the classes.  

 
 

 

Comparison between taxonomic- and gene trees 

 

Gene tree 
follows 

taxonomy 

E. huxleyi and 
plants at the 
base of the 

tree 

Fungi near 
the base of 

the tree 

Plants closer 
to basal 

eukaryotes 
than fungi 

Worms closer 
to metazoa 

than  

arthropoda 

Basal 
eukaryotes 

close to 
metazoa 

03-ERCC3 15-SKP1 08-SMC5 02-MSH3 00-RAD51 25-TDP1  

12-XPF 19-XPC 32-XRCC6 02-MSH6 01-RAD50 28-RAD1 

29-TIM 22-ERCC1 45-WEE1 23-RFA3 45-MAPK2 43-PARP2 

45-MK03    69-XPA  

47-XRCC1      
51-ERCC8      

82-RNF8      

Figure 29. Venn diagram of the human 
118 DDR proteins grouped in a four-tier 
functional classification: sensors, 
mediators, transducers and effectors. 
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When we plotted the incorporation of functions of the Hsa-118 along the evolutionary 
scale in our age groups, the ancestral core at the prokaryotic level was comprised of 
sensors and effectors (blue and purple lines, Figures 30a and 30b) with one mediator 
(PCNA).  
 
 

 
 
Figure 30a. Relative presence of DDR proteins according to a four-tier classification (sensors, mediators, transducers 
and effectors) considering the aggregated frequencies obtained by hierarchical clustering. Dotted arrows represent 
Horizontal Gene Transfer (HGT) events between phylogenetic groups. 
 
 
Interestingly, two bacterial species from the Planctomycetes phylum contain homologs 
of transducers (green dashed line, Figure 30a), as well as E. coli containing an 
ortholog to MSH6 (Figure 17), though the regulatory function of this protein has likely 
specialized towards modern eukaryotes, due to the incorporation of a PWWP domain. 
At the eukaryotic age, most of the proteins are still effectors and sensors, although a 
large expansion of mediators and transducers are incorporated. 
 
From this point on, sensors, effectors and, to a lesser extent, mediators, are 
incorporated at a steady pace, while transducers expand largely reaching convergence 
at the Metazoa group. Mediators are the last to reach this convergence, which takes 
place in vertebrata. 
 
The different methods used for the emergence of functions of the Hsa-118 along the 
evolutionary scale in our age groups provide similar trends. The slight variations 
observed are due to the distinct evolutionary assumptions on which the algorithms are 
based. 
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Figure 30b. Relative presence of DDR proteins according to a four-tier classification: sensors, mediators, transducers 
and effectors; considering the aggregated frequencies obtained by Dollo and Wagner parsimony. Red dotted arrows 
represent Horizontal Gene Transfer (HGT) events between phylogenetic groups. 
 
 
Many genes were acquired in animals. By means of orthologs identified, novel 
incorporations such as the effectors MDM2 and hnRPK took place when animals 
emerged. MDM2 controls degradation of hnRPK, a p53 cofactor that plays key roles in 
coordinating transcriptional responses to DNA damage [117]. At the same age emerged 
MTA2, which forms a complex with the NURD protein in the repair of stalled forks 
(Figure 33), and the transducer UBR5, that interacts with TopBP1 [313]. 
In the Bilateria, the effector RBBP8 (CTIP), KAP1 (mediator and transducer) and the 
mediator NR4A2 were integrated in the network. RBBP8 is ubiquitinated in a BRCA1-
dependent manner so CTIP, instead of being targeted for degradation, associates to 
chromatin and participates in the G2/M checkpoint control [314], while the NR4A nuclear 
orphan receptor has an essential role for DNA-PK-mediated phosphorylation in DBS 
repair [315].  
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Within bilaterians, similarly to fungi, extensive gene losses (blue boxes, Figure 17) 
have taken place as observed by the absence of orthologs in C. elegans and D. 
melanogaster, while they are present in ancestral relatives like annelids (segmented 
worms) or basal species as N. vectensis (Cnidaria) or even Placozoa (T. adhaerens -
Tad- the most primitive animal).  
 
The newest incorporations occurred in the chordates, where the urochordate C. 
intestinalis, incorporated two proteins, RNF168 (mediator and transducer) and SOX4 
(an effector). The transcription factor SOX4 is required for the activation of p53 since it 
enhances its acetylation by interacting with and stabilizing p53, thus blocking its 
MDM2-mediated ubiquitination and degradation [116] (Figure 33). RNF168 is recruited 
by RNF8 to amplify the ubiquitination and recruit other proteins into the foci [99]. This 
way, the most recent evolutionary time incorporating functions is the vertebrate split, 
where sensors, mediators and effectors were added (as transducers got settled in the 
previous phylogenetic age (Figure 30a)). Vertebrate-specific genes are the effector 
MDM4, mediators Abraxas, MDC1 (also a sensor), RAP80, and PALB2, being central 
proteins to the different foci complexes occurring at damaged chromatin (Figure 32). 
On the other hand, TERF2 is involved in telomere maintenance [316] and interacts with 
Apollo and other proteins to protect telomeres from replicative damage [317]. 
 
Although most of the sensors emerged in ancient eukaryotes (Figure 30a, Table 6, ST7 
in Annex), important proteins from all classes have been identified along eukaryotic 
evolution in different age groups. Thus, novel proteins in plants were the effectors 
EME1, DNA2L, PIAS1, the mediators BARD1, MRI40, TIPIN and XRCC4, and proteins 
showing overlapping functions like NBN (having assigned the four classes) ATRIP 
(sensor and mediator), ATM (sensor and transducer), and RMI1 (mediator and 
transducer). Other shared functions are represented by SLX4 (mediator and effector), 
a component of a complex involved in the resolution of Holliday junctions [318] in 
homologous recombination pathways, and by 53BP1 (sensor and mediator) a hallmark 
protein for foci formation [319] lately involved in end-resection [320] and which plays a 
fundamental role in DBS sensing and repair. HERC2 (mediator and transducer) is a 
crucial protein of the foci, where ATM phosphorylates this protein, thus stimulating its 
interaction with RNF8. HERC2 is also needed for RNF8 to promote UBC13-dependent 
poly-ubiquitylation of H2A-type histones [98] (Figure 32). 
 
In summary, at the ancient eukaryotic stage, most of the proteins are orthologs of 
effectors and sensors, although a large expansion of mediators and transducers are 
also incorporated at younger ages. From this point on, sensors, effectors and 
mediators are getting incorporated at a steady pace, while transducers expand largely 
reaching convergence at the Metazoa group. 
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4.9 DDR AND POSTTRANSLATIONAL MODIFICATIONS   (Figure 8, Panel G) 
 
In addition to the fast Poly (ADP-Ribosyl)-ation of histone tails conducted by PARPs 
[321], various post-translational modifications such as sumoylation, phosphorylation, 
ubiquitination, acetylation or neddylation occur on DDR. Considering that conservation 
of a given protein performing a particular PTM does not necessarily indicate a 
conservation of the PTM, the “conservation” concept here should be taken as a proxy 
for potential existence. Keeping this in mind, we have analyzed the target-modifier 
pairs involved in PTM in the human set. 
 
From the DDR human proteins, 53 are known targets of 24 modifiers (within set) 
(Figure 17: coloured triangles by the protein names, ST8, Annex) where some 
modifiers can be also targets (i.e.: UBE2T, CHK1/2, and PRKDC). If we plot the 
presence of modifiers by age and by the modification they exert it is noticeable that the 
potential to assemble the four PTMs were already on place very early on evolution. 
The incorporation of the remaining genes follows a step-wise manner, with the 
exception of phosphorylations (Figure 31). 
 

 
 
Figure 31. Relative presence of DDR proteins according to the PTMs they exert (acetylation, phosphorylation, 
SUMOylation, ubiquitination, deubiquitination and deacetylation) considering the aggregated frequencies obtained by 
hierarchical clustering. Red dotted arrows represent Horizontal Gene Transfer (HGT) events between phylogenetic 
groups.  
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a) Modifiers are traceable to early eukaryotes 
 
The oldest group where orthologs of human proteins known to have modification 
activity have been identified (with ubiquitinase UBE2T) is Bacteria. In contrast, the 
newest ubiquitination potential activity probably acquired in evolution belongs to the 
Chordata taxonomic group (MDM2). Phosphorylations are by far the largest of the 
groups containing proteins, but since Opisthokonta, no potential phosphorylation 
capabilities have been identified. Within the human dataset (Hsa-118), 10 proteins are 
known to phosphorylate: the kinases ATM, ATR, CHK1, CHK2, MK03, PLK1, PRKDC, 
TAOK1, WEE1, and MK2. Interestingly, homologues for PLK1, TAOK1 have been 
found in bacterial Planctomycetes. Most of the kinases emerged at the ancient 
eukaryotic time, except ATM and CHK1/2 (but never after the metazoan split) 
indicating that phosphorylations were likely settled early on evolution, especially when 
no further proteins with phosphorylation capabilities were included after fungi in DDR 
(Figure 31). Ubiquitination is also old and it is widely represented in our dataset by 
BRCA1, CUL1, CUL4, HERC2, MDM2, RAD18, RBX1, RN168, RNF8, TRIPC, UBC13, 
UBE2T, KAP1 and UBR5 (ST8, Annex). Proteins with this function have been 
incorporated along the evolution of ancient eukaryotes till chordates. Homologs of 
UBE2T and UBE2N (also known as UBC13) have been identified in the 
Planctomycetes representatives, indicating that this function is very ancient. 
Deubiquitinating enzymes are represented only by BRCC36, which was present in 
early eukaryotes. 
Although less studied, sumoylation has become an important process regulating 
networks. In DDR, orthologs with this potential function have also been incorporated 
until bilaterians. Proteins from Hsa-118 known to sumoylate substrates are MMS21, 
PIAS1, PIAS4, and KAP1. While MMS21 is detected in ancient eukaryotes, PIAS1 
appeared on plants, and PIAS4 and KAP1 in Bilaterians. Thus, in general terms, this 
PTM has appeared late on evolution. 
On the other hand, acetylations and deacetylations seem to be of old origin. The two 
acetyltransferases in this study, MYST1 (histone acetyltransferase which may be 
involved in transcriptional activation) and KAT5, both emerged in ancient eukaryotes. 
Regarding deacetylations, the deacetylase SIR1 appeared in amoebozoans.  
 
b) Proteins representing target-modifier pairs for PTMs were present in ancient 
eukaryotes 
 
In total, we compiled 99 target-modifier pairs (including auto-modifications) with 
experimental evidence in our dataset as registered by the literature (ST8, Annex).  
 
Twenty-five pairs are “ancient pairs” as they appeared at this particular age, from which 
eleven pairs appeared simultaneously in the same species (being all of them 
phosphorylations by ATR and PRKDC). Within the same age group but in different 
species, in eight cases the target is older than the modifier (phosphorylations by 
PRKDC, ubiquitnation by RNF8, acetylation by KAT5, and sumoylation by MMS21) 
while in six cases the modifier is older than the target (phosphorylations by ATR, and 
ubiquitinations by CUL1/4 and RBX1). 
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At the time of the plants split, the phosphorylation repertoire produced by ATM was 
already on place, and later in Amoebozoa, phosphorylation regulating cell-cycle 
checkpoints was established (by the presence of the CDC25A-CHK2 pair). In fungal 
species additional phosphorylations were included, represented by CDC25C with 
CHK1/2 and MAPK2, and the youngest age where a potential pair was acquired is at 
Bilateria, with the acquisition of KAP1 (described to sumoylate and ubiquitinate). 
The remaining pairs include cases where targets are older than modifiers and vice-
versa spanning different ages, sometimes really distant, such as the cases of the ATR-
PALB2 or ATR-Abraxas, being the kinase from ancient eukaryotes and the other two 
proteins from vertebrata, or the pair UBR5-TOPB1, where the E3 ubiquitin-protein 
ligase from metazoa ubiquitinates the DNA topoisomerase TOPB1, that was already 
present in ancient eukaryotes. 
 
Overall, at the end of the ancient eukaryotes age, pairs of interactors that could 
potentially interact for phosphorylations, ubiquitinations, sumoylations, and acetylations 
were already on place. 
 
Regarding the age of appearance of a given PTM, out of the 99 target-modifier pairs, in 
32 cases the target is more ancient than the modifier, while in 33 pairs the modifier 
emerged before the target. In the remaining 34 pairs, both proteins appeared in the 
same age (see Table 11 below and ST9, Annex). If we analyze the pairs considering 
the species phylogeny, in 41 cases the target is present in a species more ancient than 
the modifier is, in 40 pairs the modifier is older than the target, and in 18 cases, both 
target and modifier emerged in the same species. These results show that for the DDR 
interacting pairs analyzed, there is no particular trend for the modifier to appear in 
evolution before the target, nor vice-versa. Interestingly the age group differences 
showed by the members of the pair are larger when modifiers are older than targets 
(Table 11). 
Besides, for those interacting pairs emerging in the same species or in very distant 
ages, we have not detected any clear relationship with the results obtained in the gene-
trees of these proteins. 
 
 

 
 

Table 11. Summary of PTMs. There are a total of 99 pairs of target-modifiers in the Hsa-118 set (5 pairs are 
automodifications so they have been excluded from the table). ‘Age group differences’ indicates jumps of distances 
among the proteins: s is small (one age group of difference), m is medium (two age groups of difference) and b is big 
(more than 2 age groups of difference). ‘Age group’ 2 is Ancient Eukaryotes, 3 is Plants, 4 is Unikonta (Amoeba), and 5 
is Opisthokonta (Fungi and M.  brevicollis). Regarding the pairs from the same age group, phosphorylations are the 
most frequent PTM and nearly all of them were already present in ancient eukaryotes, though the last incorporation was 
in Opisthokonta. 
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c) Conservation of modified residues 
 
Regarding the modified residues, for some targets, there is precise information 
available in the human DDR proteins (ST8, Annex). In total we have compiled 114 
residues (in 58 target proteins) where 85 are phosphorylations, 13 are ubiquitinations 
and 10 sumoylation sites (although for both modifications half of the residues are not 
precisely identified), 4 acetylations, and 2 deacetylations. The most modified protein in 
the dataset is BRCA1, which is phosphorylated, sumoylated and ubiquitinated. H2AX is 
also heavily and widely modified, although some specific residues that are 
ubiquitinated are not precisely identified. 
 
When we checked the potential conservation of a particular residue in multiple 
alignments, the overall conservation of the sites was usually poor and in addition the 
neighbouring residues were also poorly conserved. In many cases, the regions were 
poorly aligned, especially in serine-rich regions, and frequently clusters of serines were 
found. Therefore, there are potentially many sites that could be phosphorylated.  
 
 

4.10 CONSERVATION OF PROTEIN COMPLEXES IN DDR AND MAPPING 
TO THE HUMAN NETWORK (Figure 8, Panel G) 

 
Next, we mapped the evolutionary conservation of known protein complexes into the 
human network (Figure 32-34). For illustrative purposes we have distinguished three 
sub-networks:  the general repair (Figure 34), the replicative stress (Figure 33), and the 
DSB (Figure 32), although many components play roles in alternative pathways. For 
instance, BLM, H2AX, FACD2 participate in the three schemes. There is also an 
overlap among proteins involved in mismatch repair and replicative stress (Figure 33).  
 
Overall, the most conserved pathways are those involved in DNA repair and replicative 
stress. For instance, the NER pathway in both flavours (global and transcription 
coupled, Figure 34), since all of its components were present at least in ancient 
eukaryotes, while some of them were present even in prokaryotes (XPB/ERCC3, 
XPD/ERCC2).   
Noticeably, there are extensive losses of genes in fungi and invertebrates (fly and 
worm) within the whole network (Table 12) despite the high degree of conservation. 
For example, in the BER pathway, PARP1 and PARP2 are lost in several lineages, 
being the former missing in all fungi, while the latter is missing in all fungi except B. 
dendrobatidis, and also in nematodes and arthropods. XRCC1 is also missing in all 
fungi, as well as in C. elegans. This suggests that the BER pathway, as we understand 
it from the remaining species, must either be accomplished by a different set of genes 
in these particular organisms, or alternative pathways are fulfilling the role of these 
components. 
 
In the case of NER, the protein CUL4 is absent from S. cerevisiae while present in S. 
pombe. It should be mentioned that both fungi are very divergent. XPA is missing in 
plants, and the regulation of XPC by SIR1 [322] should have appeared later in evolution, 
as SIR1 appeared in the Amoebozoa.  
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The NHEJ pathway senses damage by DBS (Figure 34). The core components are 
Ku70, Ku80, PRKDC, and LIG4, which are present in ancient eukaryotes.  Later 
additions to the complex appeared in evolution, for instance, XRCC4 was incorporated 
in plants and XLF late in fungi. XLF is missing in C. elegans, and XRCC4 is missing in 
all fungi and in our nematoda/arthropoda representatives, while present in early 
bilaterians.  
 
Regarding the regulation of these core components (Figure 32-34), MYST1, ATR, 
ATM, SIR1 and MTA2 appeared sequentially in evolution and at different phylogenetic 
ages, suggesting an increase of the complexity in the regulation of core components.  
RMI1/2 appeared in plants, while TOP3A and BLM are ancient from prokaryotes. This 
suggests that the assembly of complexes involving the RMI1 protein, like 
RMI1/TOP3A/BLM [323] or RMI1/RMI2/TOP3A [324] may have occurred at the plants 
stage. Thus, maybe in ancient eukaryotes the dissolution of Holliday junctions could be 
achieved without the RMI proteins or additional proteins could accomplish that function. 
Other proteins important for Holliday junction resolution are SLX1 and SLX4 [57]. While 
the former is ancient but missing in plants, the latter has been acquired in animals but 
has been lost in nematodes and arthropods. At telomeres, HR is performed by a 
complex that includes SMC4/5 and MMS21 [55], all of them form ancient eukaryote 
origin, while its regulation via TERF2 is recent in vertebrates [316]. 
Besides its known involvement in telomere maintenance and protection [325], novel roles 
have been assigned to the exonuclease Apollo, which interacts with MUS81, MRE11 
and FACD2, all proteins of ancient origin. Therefore a potential regulation of the core 
proteins is conserved.  
 
The DDR in replicative stress is also quite conserved, and it is noticeable that most of 
the core components assembling at the fork were already present in eukaryotic times. 
Additional components involved in dynamic properties controlling the cell cycle were 
incorporated at the Opisthokonta split (Figure 33), so these functions regulating cell 
cycle dynamic events are old but not ancient. 
 
The damage response to DSB is initially mediated by the action of Ku70/80 and 
PRKDC (Figure 34). In the event this fails, an alternative way mediated by ATM takes 
over (Figure 32) exerting a complete variety of actions at the breaks. This constitutes 
the less conserved and more recent incorporation in the network, and is by far the less 
conserved module, where many of the proteins involved in protein complexes are of 
metazoan origin (i.e.: HERC2, 53BP1), chordate origin (RNF168) and vertebrate origin 
(MDC1, F175A/Abraxas, RAP80).  Moreover, a substantial part of the less recent 
components have been lost (Figure 32) in invertebrate and fungal species indicating 
that the particular function accomplished by the BRCA1-A complex should be 
conducted by another set of proteins in these organisms. Most probably, the proteins in 
this alternative set are quite different in domain architecture to the ones detected in the 
other species, since in the case of BRCC45 (one the most ancient proteins in this 
complex), the BRE domain contained has not been detected in any of the five fungi in 
our study; and regarding BRCC36, the JAB1/Mov34/MPN/PAD-1 ubiquitin protease 
domain, though identified in all the fungi, it is found in DDR-unrelated proteins, such as 
in some 26S proteasome regulatory subunits in yeast. 
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Table 12. Summary of protein complexes and losses in lineages. Complexes are depicted in Figures 32-34. 
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Figure 32. DDR by ages: General repair pathways: BER, NHEJ and HR. Colours refer to the evolutionary point where 
the different proteins in the human pathway emerged in evolution according to our results. Red dots represent 
phosphorylations. Proteins with bold margins represent losses or absences in specific taxa. *RPA: complex formed by 
three proteins RPA1, 2 and 3. 
Bibliographic references: (1)[326]; (2)[315] (3)[327]; (4)[328]; (5)[329]; (6)[330]; (7)[322]; (8)[323]; (9)[61]; (10)[331]; (11)[332]; (12)[317]; 
(13)[325]; (14)[57]; (15)[58]; (16)[324]; (17)[333]; (18)[55]; (19)[316] 
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Figure 33. DDR by ages: damage at replication forks. Colours refer to the evolutionary point where the different proteins 
in the human pathway emerged in evolution according to our results. Red dots represent phosphorylations and green 
ones are ubiquitinations. Proteins with bold margins represent losses or absences in specific taxa.  
Bibliographic references: (1)[120]; (2)[121] (3)[7]; (4)[122] (5)[7]; (6)[123]; (7)[124]; (8)[126]; (9)[129]; (10)[313] (11)[37]; (12)[334]. 
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Figure 34. DDR by ages: Double Strand Breaks. Colours refer to the evolutionary point where the different proteins in 
the human pathway emerged in evolution according to our results. Coloured dots represent various PTMS: 
phosphorylations, ubiquitinations, sumoylations and acetylations. Proteins with bold margins represent losses or 
absences in specific taxa.  
Bibliographic references: (1)[91]; (2) [90]; (3)[93]; (4) [96]; (5) [97]; 6)[98]; (7) [99]; (8) [100]; (9)[100]; (10) [101]; (11)[102] (12) [103]; 
(13)[104,105]; (14)[112]; (16) [107-109]; (15)[113] ; (17) [114]; (18)[115]; (19)[116]; (20)[117]; (21)[119]; (22)[110]; (23)[111]; (24)[128]; (25)[314]; 
(26)[335]; (27)[330]; (28)[336]; (29)[337]; (30)[59]; (31) [338]; (32)[339]. 
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The emergence and conservation of the DNA Damage Response (DDR) network is still 
an open issue [48] receiving wide attention.  
In terms of evolutionary inference no systematic analyses of the network as a whole 
have been so far conducted, with the exception of particular parts of the pathway (i.e. 
chromatin modifiers [263]). Reasons for this rely on the difficulty to establish a consensus 
set of DDR components, and more importantly, due to the fact that the DDR network 
involves the concerted action of different sub-networks in a dynamic context [5] driven 
by post-translational modifications (reviewed in [83]), which adds another layer of 
complexity to identify crucial role members. Therefore, while consensus genes involved 
in well-defined sub-networks such as repair are relatively straightforward, a consensus 
set of the remaining DDR proteins has not been defined yet, probably due to the fact 
that some components exert different functions in alternative sub-networks. 

 
Due to large diversity in the Biology of the different species, it is expected to find gross 
variations in the assembly of this concerted summa of pathways. Nevertheless, given 
that a proper DDR is crucial for cell viability, it is likely that the core network 
components should have appeared early in evolution and may have suffered a tight 
evolutionary control regarding expansions or losses.  
 
However, network analysis along the evolutionary timeline is often difficult due to the 
underlying limitations of ancestral reconstruction in highly divergent organisms, where 
some knowledge regarding general evolutionary rules is required. In this regard, recent 
work conducting large-scale and organism-wide analyses has provided a useful 
framework to understand particular evolutionary features along the evolutionary time 
using the concept of gene ages [227]. This work provides evidence that the distribution of 
evolutionary rates of protein coding genes is universal and uses a model whereby the 
distributions of loss rates are the same for genes gained and lost over a long time 
interval [227], making amenable to screen the DDR pathway along a wide evolutionary 
scale regardless the large evolutionary distance.  
 
Thus, in the context of fixed “age” groups, we can draft the evolution of the whole 
network, to further analyze the acquisition of certain genes in particular organisms. 

 
 
The use of sequence homology to extend the DDR pathways is informative 
 
When studying networks, the usual procedure is to focus in a particular model 
organism. This approach presents several issues for evolutionary inference. For 
instance, the use of single species does not provide a comprehensive view of the 
evolutionary process because species-based bias is likely to have an effect. So, to 
transcend the restrictions of using a single species, it is desirable to analyze a given 
network in different organisms covering as much as possible the amplitude of the tree 
of life. In this spirit, we have compiled “seed” datasets of DDR components of four 
model organisms from different taxa, including genes that are well described in 
literature (Table ST1 Annex). Literature-mining approaches, despite being trustable, 
are sometimes limited to conduct large-scale analyses, and as expected, the overlap 
among our collected DDR literature-generated datasets from different organisms is low 
(Figure 12a).  
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To circumvent this, we have used one of the most useful approaches to extend 
pathways in organisms with available genomic sequences -but unknown functional 
data-, which is the use of homology-based annotation transfer [164,340,341]. This helps in 
discriminating between universal and non-universal components of a system [342]. 
 
It should be noted that even when orthology does not necessarily correspond to equal 
function, it is widely accepted that orthologous proteins likely retain function along 
evolution as compared to paralogs [343], and this is the assumption we are using here. 
This limitation have likely a minor impact as most of the Hsa-118 proteins lack 
paralogs; therefore, neo-functionalizations or sub-functionalizations due to species-
specific gene duplications is expected to be low in the DDR framework of protein 
families as opposed to other families that suffered extensive gene duplication events, 
like the RAS superfamily of proteins [157].   
On the other hand, both LSEs and gene losses, pinpoint to aspects of the network that 
are likely to be critical in organism-specific functions [344,345].  
 
As we focus on evolution towards H. sapiens, we have neglected particular LSEs that 
may indicate particularities in other important lineages, especially Viridiplantae. This 
point, although deserving much attention is not the primary focus of this study. 
Nonetheless, our preliminary findings identified some proteins (in principle not widely 
acknowledged in recent literature to be DDR involved in human, but described as 
DDR-related for other species) in model species that showed significant homology to 
those from other species having annotations related to DDR (Table ST3 Annex), 
increasing the final overlap among the four species (from 4 to 13 proteins, Figure 
Figure 12b), while as expected, lineage-specific proteins decreased in all the groups. 
These findings indicate the presence of proteins in all four organisms that have 
potentially more importance than expected in DDR processes. This awaits 
experimental confirmation. 
 
 
Inferring orthology is still a challenge 
 
The most accurate manner to assess orthology is by careful phylogenetic [193,194] 
inference. This usually involves the reconstruction of a phylogenetic tree using a given 
model to describe the evolutionary relationships among the sequences and species 
involved. However, the large demands of time and computing power needed to 
generate reliable trees have limited their use to single gene families or datasets of 
moderate size. Moreover, phylogenetic trees are difficult to automate for genome scale 
data, and the topology of the tree is strongly dependent on the tree building method 
chosen. Besides, in some occasions pair-wise comparison approaches have 
outperformed more complex algorithms that use sophisticated tree reconstruction and 
reconciliation approaches [198].  
Because of all these drawbacks and considering the relative size of our data set, we 
decided to use a pair-wise automatic clustering method for orthology detection and 
further phylogeny for selected proteins. 
In this regard, this study has some limitations derived from the quality of the available 
data, since most of the chosen organisms have only draft assemblies (see table ST2, 
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Annex), and while some of them are in the first versions, the proteomes are still 
incomplete.  
This fact has various implications: first, in absence of well-annotated sequences, is it 
very difficult to identify the truly characterized proteins, so a conservative orthology 
detection strategy seems to be adequate to minimize obtaining false positives, with the 
caveat that most likely we will be missing true proteins. On the other hand, this strategy 
also is affected by missing data, which may result in false negatives. 
Secondly, some orthologs may not be detected since in most cases data are protein 
predictions. And finally, we should consider that as any automatic method, the 
computational pipeline devised here might yield false positives. Despite these caveats, 
we decided to include all these species to have the widest range available set of deep 
branching organisms.  
 
As mentioned in Results 4.3 and as shown in Table 3, several proteins detected as 
orthologs were excluded from the study since they misaligned in the MSA of orthologs 
and lacked the characteristic domains of a given DDR protein. The majority of these 
discarded sequences shared sequence similarity with the human protein only in certain 
regions where promiscuous domains were usually found. Though many of these 
discarded sequences are likely to be protein fragments (due to the use of draft 
genomes in this work), few of them might be evolutionarily related to the human protein 
and although sharing a common origin, might have diverged enormously and now 
perform different functions. 
 
Our data indicate that our strategy has worked reasonably well as we have detected 
more than 50% of the Hsa-118 orthologs in 52% of the organisms (24 species out of 
the 46 used in this study), while the number of organisms in which more than 75% of 
the Hsa-118 orthologs were detected are 9 (representing 20% of the total 46 species): 
N. vectensis (a basal eukaryote, where 90 DDR proteins were detected using human 
as seed), C. teleta, B. floridae, D. rerio, X. tropicalis, G. gallus, O. anatinus, M. 
domestica and M. musculus.  
 
 
Age groups do not necessarily reflect the DDR proteins evolutionary history 
 
Genome evolution involves extensive loss and gain of genes, and therefore the 
propensity of gene loss values of individual genes differ widely [346,347]. These events 
have a strong influence in the evolutionary history of different families, and we can find 
different properties for diverse genes within the same species. Within the Hsa-118 
genes, we have identified 16 protein families containing homologous proteins (see 
Results 4.5.1) that could be affected by different evolution rates and could have very 
different and complex evolutionary histories. Assuming the universality of the model 
proposed by Wolf et al. [227], we have approached the emergence of the network in a 
broader –cruder– sense in a gene content framework spanning several species that 
can be formalized as a phylogenetic profile (Figure 17). This points to the appearance 
of DDR components in evolution and when these components acquired the potential to 
get assembled, without making any assumptions about the underlying evolutionary 
process. For this particular purpose, phylogenetic profiles (widely used in alternative 
contexts like the study of protein correlated evolution [148], physical interactions of 
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proteins [348] and protein annotation [349]) are amenable tools to analyze the evolution of 
gene content to delineate protein families evolution [301]. Besides, phylogenetic profiling 
is a well established method for predicting domain associations and functional relations 
and physical interactions between proteins [348]. Moreover, this method has been used 
to annotate genes and infer gene and protein networks [349]. 
 
Subsequently, DDR orthologs were assigned to particular gene age groups (Figure 10) 
that have been also established previously [227], where each gene age group indicates 
the maximum phylogenetic depth where a particular gene can be found using 
sequence similarity as a proxy of homology (see methods).  Although the concept of 
age group has been widely explored [227,302], a general concern is that there is not a 
single optimal method to define the age of a particular gene [227,302]. In fact, different 
estimation strategies may produce different ages for the same proteins due to the 
complex evolutionary histories of proteins and to constraints of the methods [302].  
 
Our analyses of gene content indicates a general good agreement using the three 
methods, where around 10% of the proteins of the Hsa-118 is of ancient origin 
traceable to prokaryotic organisms and present in the three supra-Phyla (Figure 22). 
From this point on, the largest expansion of DDR is also of ancient origin and likely 
happened at the time of the Eukaryotic split (about 1628 MYA), where the DDR 
network grew to about 50-70% of its current components. So, beyond the Metazoa 
group, both hierarchical clustering and Dollo algorithm provide very similar patterns 
(Figure 22) while the Wagner’s method estimates a smaller number of proteins by age. 
Our results are in agreement with previous work where it’s been reported that Dollo 
parsimony produces overall older protein age estimates that Wagner parsimony [302] 
(Figure 22). As this method assumes that each protein family was only gained once, 
false positives and horizontal gene transfers (HGT) can inflate protein ages. Wagner 
however produces younger ages on average [302]. This is an effect of how each method 
accounts for gene losses and gains as in Cluster and Dollo a family's origin is the most 
recent common ancestor of all species in which it is observed, regardless gene losses, 
whereas Wagner’s parsimony allows multiple gain and loss events in an ancestral 
family reconstruction. Therefore, gene losses greatly influence the outcomes of the 
method.  
 
To complicate things further, there is unavailability of functional data for most of the 
selected species that are in draft state. Besides, The use of organisms with particular 
life-styles such as parasites and pathogens, as well as the nucleomorphs of G. theta 
and B. natans, has expectedly produced large absences in the taxonomic distribution 
of some proteins. Thus, there is a combined effect of genome incompleteness 
(overestimation of gene loss), the difficulty to identify the nature of a gain 
(overestimation inflated by HGT) coupled to the inaccuracy in protein annotations for 
most of the draft genomes, and the difficulty to identify highly divergent proteins using 
conservative assumptions as the ones used in this work, which could explain the 
differences in the methods obtained in the content of proteins from early eukaryotes 
(Figure 22). These effects decrease after the Metazoa split (~940 MYA)) where the 
trend follows a steady pace for all the three methods showing minimal differences that 
can be disregarded.  
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Taxonomy- and gene-trees in DDR are difficult to reconcile 
 
In addition to gene gains and losses, gene transfers have played an important role 
throughout evolution. This has been particularly true for the prokaryotes [350], although 
recent work revisits the impact of HGTs in eukaryotes and how particular life-styles can 
enhance them [351]. Given the fact that most of the DDR genes are of ancient or very 
old origin (Figure 22), they may likely have been gained by this mechanism, and in fact 
this may reflect the large discrepancies observed between the species and genes 
trees. Other possible explanation is the incorrect placement of given species in the 
taxonomic tree, and then, certain studies (for instance the one by Wolf et al. [227]) based 
on this taxonomical distribution should be revised to account for the evolutionary model 
of particular gene families. 
 
The “gene ages” approach is particularly relevant to identify the discrepancies 
observed between the species and gene trees, alleviating the uncertainty on the 
evolutionary model that shaped some of the DDR protein families (i.e. gains and 
loses). This is especially important when deep phylogenies are particularly prone to 
poor resolution due to large sequence divergence where it is frequent to find cases 
where a set of homologous genes or proteins may be quite useful in resolving species 
or genus-level relationships, but it might be quite poor at resolving phylum-level 
relationships due to poor conservation or short sequence length. In this regard, 
considering that the species tree used here shows an extensive degree of polytomies 
at deep nodes [268] (Figure 10) we have not attempted to reconcile the estimated gene 
trees and rather have used the concept of gene ages to infer the timeline of 
evolutionary emergence of DDR proteins. 
 
Nonetheless, we have conducted pylogenetic analyses in selected proteins, and the 
overall results of the phylogenetic analysis indicate that the evolutionary history of most 
families may be more complex than expected (Table 10), as it is very frequent to 
observe arthropod, fungal, and worm sequences grouping close to ancient eukaryotes 
instead of their assumed more related lineages, which indicates that maybe certain 
genes in these organisms are older due to HGT events and have been later acquired 
by these organisms. 
 
Despite the discrepancies observed (especially regarding arthropods and worms), the 
reconstruction of a phylogenetic tree describing the evolutionary relationships among 
the sequences and species involved is very useful since it allows a better assessment 
of gene orthology than Blast-based methods. Also, they help detect wrongly assigned 
orthology. In addition to Family13 explained in results (Figure 24), in Family8, the 
MYST1 and KAT5 orthologs detected by the computational pipeline seem to be 
wrongly identified, since according to the tree, which is generally well supported, 
MYST1 from N. gruberi, C. parvum, C. falciparium, plants and D. discoideum could be 
KAT5 instead, having its emergence in ancient eukaryotes, where the P. tricornutum 
ortholog has been correctly detected (Figure 28). Other example of errors in the 
orthology detection can be seen in the case of Family9, comprised by DCR1A, DCR1B 
and DCR1C (see figure STt38 in Annex). 
In those cases where information about in-paralogs was available, these were included 
in the initial trees to help clarify the position of paralogs and orthologs, which is 
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especially useful when running phylogenies of multigene families. Examples of these 
trees are Family13, comprising MLH1 and PMS2 (Figure 24); Family6, comprising 
Cullin-1 and 4 (STt19); or Family 9 (STt38). 
 
A widely used repository of evolutionary relationships is ENSEMBL COMPARA.  
Although COMPARA considered PTIP (PAXI1) and MDC1 as being part of the same 
family, we finally did not regard Family7 as such because these sequences only share 
the promiscuous BRCT domain and beyond this, there is no detectable sequence 
similarity between these proteins. As seen in the domain analyses (Figures 18 and 19), 
the BRCT domain is shared by many protein families, so it is not a good candidate to 
infer homologous relationships. 
 
Regarding gene-trees order, interacting or functionally related proteins have been 
frequently shown to have similar phylogenetic trees [352] because of co-adaptation 
processes (compensatory changes between the two proteins) or due to similar 
evolutionary pressure on the sequences [353], and such seems to be the case of RAD17 
and TOPB1. The two proteins are part of a complex involved in ATR-dependent 
checkpoint activation at stalled replication forks. 
However, beyond the aforesaid example and others mentioned in Results 4.7, we have 
not detected a clear trend in the origin and taxonomical distribution of the modifiers-
target pairs analyzed in this work (see results 4.9), likely due to the fact that those 
modifiers interact with many other proteins, the same as the targets, and also probably 
due to those proteins also having a role in other pathways. 
 
 
Protein domain content and functional analogy: common misinterpretations  
 
Another important contributors to genome evolution are the protein domains 
(structurally defined modules within the protein, arranged in a particular order) that 
usually point to precise functions. These modules are believed to constitute major 
evolutionary units, as phylogenetic analysis based on protein domain content has 
shown to be comparable to standard phylogenetic methods based on molecular 
markers (such as rRNA [354]). Moreover, domain shuffling is a great source of functional 
variability and has been extensive in the evolution of protein families [355], where 
different arrangements of the same protein domains can achieve alternative functions 
[356]. Aravind et al. [342] showed an increase in the complexity of domain architectures in 
proteins involved in chromatin structure, suggesting that this will have an effect in the 
number of interactions between proteins, as combining multiple domains in a 
polypeptide allows for more combinatorial interactions. 
Also regarding protein modules, presence of common domains in evolutionary 
unrelated proteins likely points to functional analogy and is frequently misinterpreted as 
orthology.  
An example is illustrated by the proteins 53BP1 (human) and Crb2 (fission yeast) 
generally considered as orthologs because they exert the same function [240]. However, 
besides the BRCT domain (spanning a short stretch of length in both sequences), 
these proteins are evolutionary unrelated (therefore cannot be referred as orthologs). 
Moreover, no identifiable orthologs for 53BP1 are found for fungal species in our 
analyses (Figure 17). Another example of proteins evolutionary unrelated but 
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considered as orthologs because they exert the same function is illustrated by XRCC4 
(modern eukaryotes) and LIF1 (S. cerevisiae) [357], however these proteins are not 
similar at all at the sequence level. Interestingly, XRCC4 has been completely lost in 
plants, fungi, fly and worms, although it is present in basal animals (T. adhaerens) 
(Figure 17). Similarly, RAD50 is often related to the SMC family [30], although in H. 
sapiens RAD50 lacks the SMC domain that is partially present in other species (O. 
sativa, S. pombe, etc) (Table ST4 Annex).  
 
It is widely accepted that the acquisition of additional domains may confer novel 
capabilities to a protein [358] and that the balance of losses/gains of domains affects the 
functional repertoire of species [359]. Different domain content in orthologs has 
functional effects. For instance, the XRCC1 protein is well conserved in eukaryotes 
(although completely lost in fungi and C. elegans). However, in plants, the XRCC1 
orthologs lack the N-terminal domain (required for DNA polymerase β binding) and the 
C-terminal BRCTII domain (necessary for DNA ligase III interaction) (Figure 19). 
Interestingly, they do retain the BRCTI domain that mediates interaction with PARP1 
and PARP2 [360]. We could then speculate that as plants do not contain DNA 
polymerase β and DNA ligase III genes [258] the BER pathway must be remarkably 
different in this lineage, probably a simplified version.  
 
Our results indicate that in the DDR framework is quite usual to find the same domain 
scattered in evolutionary unrelated proteins, examples are BRCT repeats (present in 
MDC1, PARP1, TOPBP1), the FHA domain (CHK2, RNF8, MDC1 and NBN), and the 
PWWP domain (MSH6, ATM - only in A. thaliana) (Figure 19, Table ST4 Annex). 
These could have implications when inferring functions.  
It is possible however that the same domain appears in evolutionary unrelated proteins 
belonging to the same protein complex, that brings us back to the aforementioned 
example of LIF1 and XRCC4. LIF1 contains a “XLF” domain, which is present in a 
different protein of the same complex, the NHEJ1 protein. However, LIF1 does not 
have the common domain shared by all XRCC4 orthologs. 
Another interesting example is the case of DNA-PK that contains four domains 
(NUC194, FAT, PI3_PI4_kinase, and FATC). Although an ortholog was detected in a 
non-model plant (Figure 17, Ppa - P. patens), no equivalent proteins were detected in 
in the remaining species of the lineage, therefore a deep analysis should be done in 
this genome to discard any contamination or artifacts. Similarly, in Arthropoda an 
ortholog was detected in T. castaneum, but seems to be missing in the remaining 
species, including model species. The fact that no ortholog has been detected in either 
C. elegans or fungi has questioned the dispensability of this protein in the NHEJ 
pathway [361]. However, it is likely that unrelated proteins containing the same domains 
in different arrangements would perform the same function when a canonical ortholog 
is missing in one of the species, such as the aforementioned case of XLF.  
 
Therefore, in absence of clear orthologous relationships, a sensible way to detect 
suitable candidates to fulfill a functional role is to screen for the presence of common 
domains in different proteins belonging to the same complex. 
 
When obvious domains are not detected, a possible way of inferring function is by 
searching for distant homology based on conserved regions. In this regard, we did not 
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identify Pfam domains in few sequences within our Hsa-118 set of DDR orthologs, but 
these had conserved regions with hits to domains known to be involved in DNA repair, 
replication fork arrest or checkpoint processes (Table 6). Interestingly, certain hits 
revealed similarities between the structure of the 26S proteasome and the BRCA1-A 
complex. A further characterization of these domains will elucidate their potential role in 
DDR events. 
 
 
Regarding the enrichment analysis of domains involved in DDR, the results obtained 
suggest that most of these domains bind DNA, are from ancient origin, and are shared 
among the analyzed species. Interestingly, the number of statistically significant 
enriched domains shared between H. sapiens and A. thaliana was higher than the 
ones shared by H. sapiens and S. cerevisiae (Figure 21), even though yeast are more 
closely related to human than plants. 
 
 
The majority of DDR components of the network are traceable to ancient 
Eukaryotes 
 
Overall, our results indicate that the core components of the network are of ancient 
origin traceable to prokaryotes, that big expansion of DDR components is also ancient 
and traceable to Eukaryotic origin (1628 MYA) as indicated by the presence of DDR 
components in Emiliania huxleyi (Haptophyceae) the oldest eukaryote with a planktonic 
free life-style. This is in agreement with age enrichment analyses for the human DDR 
set of genes [302], were the Hsa-118 set was significantly enriched at the Eukaryotic age 
regardless of the algorithm, age group classification or the database screened. In 
contrast, the Hsa-118 set is significantly underrepresented in mammalian genes and 
do not follow the general trend of the rest of the protein families for human proteins 
(Table 9).  
Therefore, most of the DDR components were available at the Metazoa split (~940 
MYA) with little incorporation afterwards. The youngest age where a DDR-related 
protein was incoporated corresponds to Vertebrata (~438 MYA) group. 
 
 
We next interrogated if the incorporation of functions followed the path of the general 
components. Due to the unfeasibility of experimentally characterizing all the proteins, 
computational methods are suitable alternatives although not exempt of problems [184]. 
Then we extended known functions from well-described species to orthologous 
proteins from the remaining genomes. However, the definition of “function” should 
be taken cautiously here. If we understand the DDR network as a dynamic 
framework where many components and pathways are largely regulated [5,74] by a 
concerted action of many different proteins, from enzymes to regulators, then there is a 
wide plethora of functions making functional assignments very difficult to define. In 
cases like this, standard GO analyses, useful in different contexts, provide very little 
information (ST6, Annex) (enrichments for DNA repair, DNA metabolic process, and 
response to DNA damage stimulus, which are expected).  
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Subsequently, for consistency purposes, we have used a broader classification widely 
used in the field of DDR where proteins are assigned to four main supra-functional 
classes: “Sensors” (S), “Mediators” (M), “Transducers” (T) and “Effectors” (E) (ST7, 
Annex) [5]. In this schema, sensors and effectors would represent the extremes of a 
directed pathway, and the addition of mediators and transducers would incorporate 
functions to increase the complexity of the network and would allow its cross-talk with 
other pathways.  
 
 
Most of the ancestral components represent the extremes of a directed pathway 
 
In our dataset, the most populated class is Effectors followed by Sensors, Mediators 
and finally Transducers (Figure 29, ST7, Annex), and before the eukaryotic split, most 
of the identified orthologs correspond to Sensors and Effectors represented by about 
10-20% of the proteins, so there is potential for the ancestral pathway to be enriched in 
the two extreme parts of the network (Figure 30a and b). Interestingly enough, the 
members of the bacterial phylum Planctomycetes are the only prokaryotic members 
sharing homologous sequences of Transducers typical of the eukaryotic kingdom 
(Figure 30a, dashed green line). More precisely, homologous sequences to the 
ubiquitinases UBC13 (UBE2N) and UBE2T, and the kinase domain of both PLK1 and 
TAO kinases. These results could provide some lights to recent work published for 
these particular organisms that revisit the evolutionary origins of this particular phylum 
in the context of eukaryotic evolution [362-364], that is a subject of intense scientific 
debate [365].  
Still in ancient groups (at the Eukarya time of split), orthologs of the intermediate 
classes were incorporated, although most of the functions were Sensors and Effectors. 
At the Metazoa split all the classes represented by orthologs where steadily 
incorporated. 
 
 
The incorporation of components with PTMs potential to the DDR network is 
traceable to prokaryotes and early eukaryotes 
 
Post-translational modifications [5] are essential regulators of the dynamics of the DDR. 
Regarding the emergence of these potential functions, proteins with phosphorylation 
capability were settled early on evolution, as well as orthologs of proteins showing 
ubiquitination activities (Figure 31, ST9, Annex) and this activity has been incorporated 
since ancient eukaryotes towards Chordata. Accordingly, orthologs for deubiquitinating 
enzymes (BRCC36) are also present in early eukaryotes, and as pointed out 
previously, interestingly enough it has been lost in fungi and invertebrates (Figure 17, 
Figures 32-34, Annex). Although less studied, sumoylation is also present in ancient 
eukaryotes (MMS21) and has also been incorporated several times in evolution (PIAS1 
in plants and posterior duplications in bilaterians, PIAS4). Finally, acetylations and 
deacetylations are ancient as well. MYST1 and KAT5, the two acetyltransferases in 
this study, appeared in ancient eukaryotes, while the deacetylase SIR1 appeared in 
amoebozoans. While estimating the evolutionary timeline for individual components is 
feasible, a complete different matter is to infer whether these components acquired 
capabilities to exert precise functions. Although orthology [366]  (a phylogenetic term) is 
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widely used as a surrogate for functional equivalence, in the case of post-translational 
modifications this correspondence has to be taken more cautiously. Besides, the lack 
of comprehensive data for many organisms makes this assumption general [367-370] 
where the sequence conservation of a given site correlates to functional conservation. 
In our hands, this approach, at least for the DDR genes was unfeasible given the high 
disorder present in the particular regions where modifications take place (using as 
reference the human sequences (ST8, Annex)) being poorly conserved in the identified 
orthologs. This lack of conservation does not preclude the function, as additional 
regions of the proteins could be also modified. An interesting feature of the human 
DDR modifications is that various modifiers can act upon the same DDR proteins in 
different contexts, in agreement with previous work addressing the co-evolution of 
various PTMs in several eukaryotic species (from fungi to human) where it is described 
that proteins that are regulated by one kind of PTM are likely to be regulated by a 
different one, but not necessarily at the same time and not essentially effecting the 
same behaviours of the protein [370]. 
 
In our analyses of 99 target-modifier pairs (Table 11), the numbers of cases where the 
target is more ancient than the modifier and viceversa, are nearly identical. Intuitively, it 
should be expected otherwise, where modifiers appear later to modify existing targets. 
Moreover, in cases of interacting pairs, where the modifiers are older than their targets, 
the age distances within the members of the pair are way larger (Table 11, 14 cases 
where there are more than three ages of distance) than distances observed when 
targets are older than modifiers (only 3 cases).  
This could be due to the fact that these modifiers have alternative targets (not 
considered here) of older origin or because originally these modifiers exerted different 
functions more related to metabolism (most of the PTMs in the DDR pairs are 
phosphorylations, which are also the most common proteome-wide PTMs identified 
experimentally [371] and are highly linked to metabolism), and along evolution their 
function varied and diversified through the modification of their sequences and the 
addition of domains [372]. These modifications might have led to a function more related 
to regulatory and signaling processes, and to the capability to interact with new targets. 
It would be interesting to make a global genome analysis of targets-modifiers to check 
whether the differences observed in their ages of origin are DDR specific or is 
something common in the PTMs. 
 
As discussed above, regarding the appearance of novel components along 
evolutionary lineages, our data suggest that general post-translational regulatory 
mechanisms such as phosphorylation and ubiquitination may have been incorporated 
in evolution before sumoylation. Thus, proteins involved in phosphorylation (ATM, ATR, 
check point kinases, etc.) and those proteins involved in ubiquitination (UBE2N, CUL1, 
TRIPC, etc) are mainly in blocks II and III of the cluster (Figure 17). In the case of 
sumoylation (PIAS1 and PIAS4), up to date the core machinery does not contain any 
proteins with such functionality.  
The distribution of these PTM proteins along the pathways suggests that metabolic 
reactions are previous to the regulation activities, which would be expected since the 
former are simpler in terms of components and can be modeled easily. 
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Reconstructing the pace of DDR pathways from cellular organisms to modern 
eukaryotes, where gene losses shaped the network 
 
How do the aforementioned findings fit within the different sub-networks (pathways)? 
Our careful literature-based compilation of the human network (Figures 32-34) serves 
as a comprehensive framework to map evolutionary relationships. When evolutionary 
conservation is mapped into the human DDR network, it is noticeable that there are 
proteins of ancient origin traceable to Prokarya present in all the sub-networks: general 
repair (mismatch, HR, NER, yellow Figure 34), replication stress (kinase domain of 
PLK1 and TAO, yellow Figure 33) and DBS (ubiquitinases, SMC1A, and kinase domain 
of PLK1, yellow Figures 32). The general repair and replicative stress pathways are the 
oldest ones (yellow and light green colours in Figures 32-34), although in the case of 
replicative stress essential components important for regulatory processes have been 
added to the pathway at different evolutionary splits (in plants, fungi, bilaterians and 
metazoans (Figure 33). In the case of general repair, the most conserved sub-networks 
are BER, NER, and HR (in order of conservation, Figure 34). The less conserved 
pathway is the DSB. Even if the core sensing components in this particular module are 
quite conserved, it is noticeable that most components involved in regulation are young 
proteins (i.e.: the cell cycle arrest components are mostly of animal origin), while at the 
foci RAP80, MDC1, and Abraxas are exclusively of vertebrates (Figure 32). 
 
There are also striking losses of key parts of the network, especially in plants, fungi 
and invertebrates (fly and worms, blue boxes Figure 17) where fundamental proteins in 
complexes have been lost in several species. Examples of this in particular pathways 
like BER, HR or NHEJ (Figure 34) are the PARP proteins, PRKDC, or Artemis. PLK1 is 
missing in plants and MSH3 in invertebrates (Figure 33). As we focus on H. sapiens 
genes, we are surely neglecting specific lineage expansions that could accommodate 
the same functional roles. In this regard, it is known that in certain species the loss of a 
single important gene can dramatically affect entire sub-modules of regulatory 
networks (i.e., yeast) [373]. In metazoans, the availability of genomic sequences of basal 
animals (cnidarians and placozoans included in this study) shows that nematodes have 
lost several modules of regulatory networks [374]. An illustrative example is the RNAi 
system; while it is highly developed in plants (and in some fungi and animals), it has 
been lost in other lineages (entirely lost in S. cerevisiae, but present in S. pombe) [375]. 
In animals, this system has suffered multiple partial losses; although nematodes have it 
complete, some insects and vertebrates lack different parts of the network (i.e.: the 
siRNA replicating encompassing the RNA-dependent RNA polymerases, that is 
however present in the basal Branchiostoma [375]).  
 
Analogously, in the case of the DSB complexes at the foci, S. pombe contains more 
orthologs of DDR than S. cerevisiae (Figure 17), and there are losses of DDR 
complexes in both fungi and invertebrates, being the most striking case the absence of 
almost half of the components of complexes forming at DSB (Figure 32), where 5 
proteins of the same complex (MERIT40, BARD1, BRCC36, BRCC45, and BRCA1) 
are missing in invertebrates and/or fungi (Table 12). This suggests the existence of at 
least two independent losses of this sub-network, one in the line leading to fungi, and 
one to invertebrates. As these proteins participate in extensive post-translational 
modifications, it is possible that these functions have an indirect back-up mechanism 
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from alternative functionally comparable systems (like in the case of the RNAi, where 
chromatin-level gene silencing [376] and post-transcriptional protein degradation 
systems [377] perform functions that are related, like modulating the levels of gene 
products). 
 
Another plausible explanation to these apparent losses could be the existence of LSE 
in protein families [344], where estimations indicate that 20% (yeast) to 80% (plants and 
vertebrates) are comprised of families of lineage-specifically expanded families. 
Examples are proteins exerting their functions at the termini of signaling cascades (i.e.: 
E3s and MAP kinases) [342], the Ub/ubiquitin-like proteins conjugation network [358] and 
phosphorylation networks on yeast [378] although most of these processes are 
development related.  
Therefore, this suggests again that functions are not necessarily linked to orthology, as 
functional analogs (genes with different evolutionary origin but performing the same 
function) can compensate this. An example is the NHEJ protein XRCC4, without 
identifiable orthologs in yeast, but where functional analogues have been identified: 
LIF1 in S. cerevisiae and Nej1 in S. pombe. In this regard, the use of traditional model 
systems in comparative genomic studies to target function may not be desirable. 
 
D. discoideum is an intriguing species. Although its phylogenetic placement is still 
unresolved, recent proteome-based phylogeny suggests that amoebozoa diverged 
from the animal–fungal lineage after the plant–animal split [379]. The very important 
kinase CHK2 and the deacetylase SIR1 have orthologs in this species. The kinase 
CHK2 is central to the induction of cell cycle arrest and apoptosis by DNA damage [114] 
and interestingly, the amoebozoan lacks CHK1, whose function may be performed 
instead by the expanded RAD53 family in this organism [380]. 
Another interesting feature detected in this species is the fact that out of the 65 DDR 
orthologs detected in this species, 27 proteins are markedly longer than their human 
counterparts, suggesting this organism might have longer genes than the majority of 
the other species. 
 
It is important to notice that the absence of orthologs in certain organisms does not 
mean that these do not have the corresponding DNA damage repair systems; for 
example, NHEJ has been reported in certain bacteria [233], though we have not detected 
orthologs of proteins in this pathway in the chosen organisms from that kingdom. Even 
so, there is emerging evidence of functional crosstalk between bacterial NHEJ proteins 
and components of other DNA-repair pathways [381]. 
 
 
The shape of the human DDR network as inferred from evolution 

 
So far there is a lack of a formal representation of the human DDR network. In the 
pathways repositories, only partial networks can be found, especially the repair fraction 
(Reactome, Kegg, etc). However, as we have explained in this work, there are intricate 
relationships among the different sub-networks. One of the most known canonical DDR 
pathway representation is the one described by Harper and Elledge [74]. As there is 
certain overlapping of components involved in related pathways, it is important to 
incorporate these elements into a more comprehensive way. For instance, it is 
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desirable to illustrate how components of the sensing part are also participating in 
related pathways like cell cycle checkpoints and DNA repair. 
 
We have manually reconstructed the DDR network to account for the data available in 
the literature (Figure 32-34). A description by pathway follows: 
 
 
Mismatch repair 
 
Our results agree with previous studies showing the MutS and MutLα  components of 
the MMR system are widely conserved among the species studied [382]. The MSH3 and 
MLH1 sequences appear to have varied less along evolution since orthologs for these 
proteins have been identified in the three kingdoms of life, while MSH6 is detected in 
Bacteria and Eukaryotes and orthologs of MSH2 and PMS2 have been detected only in 
Eukaryotes. It is noticeable that, though highly conserved, several species in our set 
lack some of the MMR proteins, like the apixomplexa and arthropoda representatives 
or Caenorhabditis elegans where the MSH3 protein is missing [47,383]. 
 
MSH2, MSH3 and MSH6 mismatch repair proteins are all highly similar to the bacterial 
MutS protein, and their domain composition seem to be well conserved along 
evolution. However, the MSH6 orthologs in higher eukaryotes possess an additional N-
terminal region comprising a PCNA binding motif, a large region of unknown function 
with a globular PWWP domain and a nonspecific DNA binding fragment. This PWWP 
domain binds double-stranded DNA, without any preference for mismatches or nicks, 
whereas its apparent affinity for single-stranded DNA is about 20 times lower [384]. 
 
Interestingly, while the fungi and arthropoda representatives and the C. elegans MSH6 
orthologs do not exhibit an N-terminal PWWP domain, A. thaliana and O. sativa MSH6 
present an N-terminal Tudor domain which probably share functional properties with 
the PWWP domain of human MSH6. 
 
 
Base excision repair 
 
Eukaryotes have several functional analogs of bacterial BER enzymes, and the 
mechanism of BER is similar to that of prokaryotes. However, eukaryotes have 
additional specific BER enzymes. To date, poly(ADP-ribose) polymerases (PARP) and 
XRCC1 have been identified as eukaryotic-specific enzymes [245]. 
PARP1 and PARP2 are activated by SSBs and catalyze poly(ADP-ribose) (PAR) 
synthesis at DNA breaks triggering local chromatin relaxation and recruitment to the 
damaged site of repair factors with strong affinity for PAR, such as XRCC1, where this 
protein operates as a scaffold that interacts with and stimulates the enzymatic activity 
of other components of the BER machinery [326,385]. 
 
Both PARP1 and PARP2 are involved in DNA damage sensing and signaling when 
single strand break repair or BER pathways operate. PARP1 uses NAD to add 
branched ADP-ribose chains to proteins and functions as a DNA nick-sensor in DNA 
repair and as a negative regulator of the activity of DNA polymerase β in LP-BER [386] 
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while a functional role of PARP2 has been found in the maintenance of telomere 
integrity [387]. Recently, both PARP1 and PARP2 were found to intervene in DSB repair 
since it binds to stalled replication forks that contain small gaps, where they mediate 
Mre11-dependent replication restart [388].  
 
The members of the PARP superfamily present a modular architecture characterized 
by a conserved core responsible for the catalytic activity to which a variety of targeting 
and regulatory modules have been added. Although PARP1 and PARP2 C-terminal 
catalytic domains have the strongest resemblance among all the other family 
members, their N-terminal parts differ completely. The PARP1 DNA binding domain 
contains two zinc fingers while PARP2 presents a nuclear location signal and a 
functional DNA binding domain that targets DNA gaps but not nicks like PARP1. Also, 
PARP1 has a central BRCT motif, which is a protein–protein interacting interface found 
predominantly in proteins involved in the maintenance of genomic integrity and cell 
cycle checkpoint functions responsive to DNA damage [389]. Due to these differences it 
is argued that PARP2 is involved in a later step of the BER process than PARP1 and 
that they may have distinct DNA targets [390]. 
 
According to our results and to previous studies [391] both PARP1 and PARP2 are 
highly conserved from simple eukaryotes to human, but are absent in yeast and some 
fungi, as well as in our apicomplexa representatives. PARP2 seems to be less 
conserved than PARP1 since it was not detected in Gallus gallus (probably because 
this organism was in a draft genome state) and our selected arthropoda.  
 
PARP domain composition appears to be well conserved along evolution, though in the 
case of PARP2 there are two N-terminal SAP domains in the plants orthologs not 
present in the other groups analyzed.  Experiments have shown that in Arabidopsis 
thaliana both PARP1 and PARP2 genes are induced by DNA strand breaks and 
ionizing radiation. However, expression of the AtPARP2 gene was found to be induced 
by different types of environmental stress, which suggests an additional role for 
AtPARP2 that would be independent of DNA damage [360]. 
 
XRCC1 does no have any known enzymatic activity, but it can physically interact with 
other proteins involved in the SSB repair and BER pathways. XRCC1 interacts with 
DNA polymerase β through its N-terminal domain, and the central section of the protein 
is involved in the interaction with other proteins involved in the repair of SSBs. Also, 
XRCC1 contains two BRCT domains, BRCTI and BRCTII, located centrally and at the 
C-terminal part of the protein, respectively. The BRCTI domain is responsible for the 
physical interaction with PARP1 and PARP2 and is indispensable for their recruitment 
at SSB sites, while the BRCTII domain specifically interacts with DNA ligase III [41]. 
 
The XRCC1 protein seems to be well conserved in eukaryotes, with the exception of 
fungi and simpler organisms, though there are important differences between the plant 
orthologs and those found in other species. Plants XRCC1 orthologs lack the N-
terminal domain required for DNA polymerase β binding and the C-terminal BRCTII 
domain necessary for DNA ligase III interaction, but retain the BRCTI domain that 
mediates interaction with PARP1 and PARP2. [360]. As in plants there are no DNA 
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polymerase β and DNA ligase III genes [258], the plant SP-BER pathway must differ 
notably from that in other eukaryotes.  
O. sativa XRCC1 protein binds ssDNA as well as dsDNA and also interacts with PCNA 
forming a complex, suggesting a different contribution of XRCC1 to DNA repair 
pathways compared to the mammalian BER system [392]. 
 
In fungi, this repair mechanism may be different to that in higher eukaryotes since no 
orthologs of PARP1/2 or XRCC1 have been detected in our fungal representatives (but 
for PARP2 in B. dendrobatidis). Previous works have described a role of several DNA 
N-glycosylase/AP lyases in in BER in S. cerevisiae [393], and of other genes such as the 
OGG1 in C. albicans [394]. 
 
 
Nucleotide excision repair 
 
Though there is a conserved NER mechanism in all domains of life, there are notable 
differences between the eukaryotic and prokaryotic systems. In human, more than 20 
proteins are known to be involved in NER [395], while bacterial cells require only three 
proteins (UvrA, B and C) to accomplish a similar effect in the much simpler prokaryotic 
NER [396]. In spite of the clear functional parallels between the bacterial and eukaryal 
NER pathways, an independent evolution of these two systems has been postulated 
due to the lack of sequence homology between the bacterial Uvr proteins and the 
eukaryotic XP proteins. 
In archaea, the scenario is intriguing since the NER system varies depending on the 
species. Most possess orthologs of the eukaryotic nucleases XPB and XPD, like S. 
solfataricus and Candidatus Korarchaeum cryptofilum; in addition, homologs of XPF 
and XPG have been detected in other archaeal species. Nevertheless, there are a few 
species of archaea with a NER machinery similar to the UvrABC system from bacteria, 
which could be explained by horizontal gene transfer events. Besides, there are also 
archaea with a mixture of eukaryotic and bacterial NER orthologs [397]. 
The presence of detectable orthologs of eukaryotic NER proteins in the archaea has 
led to the hypothesis that the archaeal NER machinery is a simpler version of the 
eukaryal one, however some studies suggest this idea should be accepted with caution 
[398]. 
 
NER proteins are in general terms well conserved among eukaryotes, though there are 
some significant differences regarding particular phylogenetic groups. The fact that 
orthologs of certain NER proteins have not been detected in some lower phyla of the 
Eukarya suggests that this repair pathway may have acquired proteins and gained 
complexity relatively late in evolution.  
 
Orthologs of CSA (ERCC8) have not been detected in T. brucei, N. gruberi, some 
fungi, C. elegans and in our apicomplexa and arthropoda representatives, which has 
made this protein to cluster in a different group than the other proteins in this pathway. 
Also, no orthologs of XPA have been detected in plants, thus these organisms may 
have other divergent unknown proteins playing this function. 
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In P. falciparum, besides XPA, the global repair XPC protein is also missing, 
suggesting that this organism may have a different mechanism for DNA damage 
detection in GG-NER (global genome repair). 
 
In the other proteins analyzed in the NER pathway: ERCC1, XPA, XPB (ERCC3), XPC, 
XPD (ERCC2), XPF, XPG (ERCC5), RAD23B, CSA (ERCC8) and CSB (ERCC6), the 
domain composition of the orthologous sequences detected is practically identical in all 
the species analyzed.   
 
 
Non-homologous end-joining 
 
Originally, NHEJ was thought to be limited to eukaryotes since E. coli, the most and 
best studied prokaryote, is unable to ligate DNA ends. However, bioinformatics 
analyses lead to the discovery of a distantly diverged Ku-like gene and an ATP-
dependent ligase (LigD) gene in the same operon in various prokaryotic genomes 
[399,400]. Later, a pathway similar to NHEJ was shown to function in some bacterial 
species (mainly those that form endospores) [401], indicating that this repair mechanism 
has been conserved in the course of evolution.  
 
Apart from the scarce homology between the prokaryotic and eukaryotic Ku proteins, 
and the fact that the bacterial Ku homologue forms a stable homodimer similar in 
structure to the ring-shaped eukaryotic Ku heterodimer [401], the other essential agent of 
the bacterial NHEJ repair pathway, LigD, presents clear differences between 
prokaryotes and eukaryotes; unlike the eukaryotic DNA Ligase IV, the bacterial LigD is 
a single polypeptide that contains three domains: polymerase, phosphoesterase and 
ligase [381]. Besides, bacterial genomes do not encode an obvious DNA-PKcs 
homologue, thus, though the end-joining machinery in bacteria seems to be a direct 
ancestor of the NHEJ pathway in higher organisms, there are elements of end-joining 
in eukaryotic cells which either have arisen independently or have developed later in 
evolution [233,402].  
 
In the case of archaea, even though LigD 3’ phosphoesterase DNA repair homologs 
have been identified in some species (among them Candidatus K. cryptofilum and M. 
acetivorans) and were found to catalyze the same reactions of ribonucleoside resection 
and 3’-phosphate removal as the bacterial phosphoesterase domains [403], the DNA 
repair pathway in which they are involved (if any) must differ from that of bacteria since 
so far no homolog of Ku has been detected in the archaeal kingdom. 
 
As mentioned above, though Ku70 and Ku80 homologs have been described in certain 
bacteria. In contrast, with our pipeline we have not detected any ortholog of the human 
proteins in our prokaryotic species, though a Ku domain is detected in the B. subtilis 
ykoV protein. 
 
All the NHEJ orthologous proteins analyzed have a conserved domain composition and 
the slight differences found are probably caused by misannotated sequences and due 
to the proteins being predictions. 
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Given their critical role, one would expect NHEJ proteins to be evolutionarily conserved 
with relatively few sequence changes. However, while crucial domains are conserved, 
in certain proteins and species the sequence variations seem to be high enough not to 
allow us to detect more orthology relationships. For example, though we have detected 
few orthologs of the XRCC4 protein (which has made it cluster in a more modern group 
of proteins and thus appears as the latest addition to the NHEJ pathway), homologs of 
this protein seem to be present in most species among the Eukarya. In this regard, we 
have found the XRCC4 Pfam domain in proteins of A. mellifera, D. melanogaster, S. 
japonicum, N. vectensis, C. neoformans, B. dendrobatidis, P. patens, C. reinhardtii, N. 
gruberi, C. parvum, P. tricornutum and E. huxleyi.   
Another example regarding XRCC4 is the case of S. cerevisiae, where Lif1 (Ligase-
interacting factor 1) was identified as the homolog of human Xrcc4. Though the yeast 
protein has a XLF domain instead of the XRCC4 domain present in the XRCC4 
orthologs, and despite the apparent low level of sequence identity, it highly conserves 
the primary binding site to DNA ligase IV [357]. 
 
Curiously, a XLF domain is present in the higher eukaryotes NHEJ1 protein, and also 
in the S. cerevisiae homolog of this protein [404], showing there is a limited repertoire of 
conserved domains involved in DNA repair. In this regard, we have identified NHEJ1 
orthologs only from Trichoplax adhaerens to higher eukaryotes, though we have 
detected XFL domains in some lower eukaryotes as well as in bacteria and archaea.  
 
Another protein showing differences among species is DNA-PK. Interestingly, an 
ortholog having the same domain composition as higher eukaryotes (NUC194-FAT-
PI3_PI4_kinase-FATC) was detected in the moss P. patens, but no equivalent proteins 
were detected in the other plants representatives, and the same occurs in the case of 
arthropoda, where an ortholog of DNA-PK is detected in T. castaneum but seems to be 
missing in D. melanogaster and A. mellifera. Also, DNA-PKcs orthologs have not been 
found in yeast or C. elegans suggesting that the function of DNA-PKcs is not 
evolutionarily conserved and might be dispensable for NHEJ [361]. Some authors have 
suggested that the Mre11-Rad50-XRS1 (homolog of human NBS1) complex might act 
as a nuclease and play an equivalent role to Artemis-DNA-PK in organisms lacking 
these proteins, like yeast, and some plants and invertebrates [405]. This would be a 
system compensating for other mechanisms. 
 
 
Homologous recombination 
 
Few HR proteins are clearly conserved at the amino acid sequence level between 
prokaryotes and eukaryotes. Some examples are the recombinase, named RecA in 
prokaryotes and Rad51 in eukaryotes, and the RecQ helicase in prokaryotes and its 
eukaryotic counterpart BLM (Bloom syndrome protein). 
While other eukaryotic proteins involved in this pathway have no clear homologs in 
bacteria and archaea, a number of them do have similar biochemical activities. In this 
regard, the MRN complex, consisting of the Mre11, Rad50 and NBS1 proteins, is in 
part equivalent to the RecBCD complex in prokaryotes, which, apart from acting in the 
repair of DSBs, is involved in bacterial conjugation and transduction, and thus in the 
horizontal transfer of genes [406]. 
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Regarding Rad51, homology searches have shown that most eubacteria possess only 
one recA gene, while many archaeal species contain two recA/Rad51 homologs (radA 
and radB) (though it seems none of the three archaeal species analyzed in our set of 
organisms have a radB gene), and eukaryotes have multiple members (Rad51, 
Rad51B, Rad51C, Rad51D, DMC1, XRCC2, XRCC3, and recA) [407] 
 
Nevertheless, the domain composition among orthologs of these two widely conserved 
HR proteins (Rad51 and BLM) is dissimilar (see Results 4.4.2, Figure 19, Table ST4 
Annex). The results obtained point towards an hypothetical emergence of the 
eukaryotic Rad51 caused by a combined evolution of bacterial and archaeal 
sequences, while the particular case of BLM represents fairly well the acquisition of 
novel functions due to diverse protein domain architectures reflecting substantial 
differences at the species level. 
 
Regarding HJs resolution, the bibliography [57] describes an ortholog of human SLX4 in 
fungi. However, or pipeline has not detected any ortholog of this protein in fungi since 
the sequence in common between the human SLX4 and the proposed fungi ortholog is 
quite short, and there are no shared domains; thus, the fungi protein is probably a 
functional analog and was wrongly named as ortholog in the bibliography. 
 
 
The ATM/ATR pathway 
 
Regarding the MRN complex, homologs of Mre11 and Rad50 have been found in most 
organisms studied to date, and form as a stable complex, even in prokaryotes [408]. In 
eukaryotes, the Mre11/Rad50 (MR) complex also contains Nbs1 in plants and most 
modern eukaryotes, while in yeast, functional homologs of Nbs1 were identified in S. 
pombe [409] and in S. cerevisiae, where the protein was named Xrs2, to form MRX [410]. 
 
As aforementioned, the IRIF forming proteins such as HERC2, 53BP1, MDC1 and the 
BRCA1-A complex RAP80 and Abraxas, or others involved in regulatory processes 
such as MDM2/4, Sox4, FBXO31, etc. were acquired recently in evolution and no 
orthologs of these proteins have been detected in ancient eukaryotes.  
 
Interestingly, lower eukaryotes such as yeast do not contain obvious MDC1 orthologs. 
Instead, other conserved IRIF-forming factors such as the PAXI1/PTIP ortholog in S. 
pombe or the fungi orthologs of RAD18 are known to aggregate in regions with 
phosphorylated H2A [411], which is exclusively present at sites of DNA damage [412].  
 
 
In regard to the structural components of the replication fork, no 9-1-1 complex (Rad9, 
Rad1 and Hus1) orthologs have been detected for the apicomplexa representatives (C. 
parvum and P. falciparum) and T. brucei. Besides, the RFA2 subunit of the RPA 
complex has not been detected by our pipeline in P. falciparum, where this protein is 
encoded by an unusual transcript that lacks the RAD52 interacting domain  [413]. 
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The presence of homologs of TIPIN, TIM and CLASPIN with similar functions in yeast 
indicates that the overall process of fork stabilization is conserved between complex 
and simple eukaryotes [48], though we have not detected these proteins in some of the 
fungal proteomes included in this study. 
 
 
Concerning the regulatory activities, sumoylation was incorporated to the pathway by 
PIAS1, which seems to have emerged in plants and poses an interesting case of 
domain variation among orthologs from different phylogenetic groups. The PIAS family 
of proteins has a conserved zf-MIZ domain found in many ubiquitin E3 ligases and able 
to interact with the E2 enzyme, and a SAP (from SAF/ACINUS/PIAS) domain, which 
associates to DNA sequences of matrix attachment regions. Besides these two 
domains, the PIAS1 orthologs detected in plants have a PHD domain, which binds 
bromodomain proteins and thus contributes to the SUMO ligase function of the PIAS1 
in plants [414]. Curiously, the same PIAS plant domain architecture is found in a putative 
SUMO ligase (GI: 296005550) in P. falciparum, which is the only case detected in an 
organism that is not a plant.  
 
 
Control of DNA integrity: cell-cycle checkpoints 
 
Fungi and animals have evolved cell cycle checkpoints to maintain genome integrity. 
Plants should also have surveillance mechanisms to enable them to arrest their cell 
cycle on DNA aggression or stress conditions, especially when, because of their 
immobile life style, these organisms are constantly exposed to putative DNA-damaging 
conditions (for example UV-B light).   
The pathways through which ATM and ATR signal DNA damage to the cell-cycle 
machinery must be different to that in fungi and animals since orthologs of p53 and 
CDC25 are absent in plants according to our results and to previous works [415]. Also, 
plant homologues of CHK1/CHK2 have not been identified so far. However, in plants 
the replication checkpoint functions through phosphorylation of B-type CDKs, and it 
has been proposed that the CDC25-controlled onset of mitosis might have been 
evolutionarily replaced by a B-type CDK-dominated pathway, eventually resulting in the 
loss of the CDC25 gene [415] 
On the other hand, an ortholog of the CDC25-counteracting WEE1 kinase has been 
detected in plants, and was shown to have an important role in arresting the cell cycle 
under DNA-damaging conditions [416]. Interestingly, PLK1 seems to be absent in plants, 
even though this kinase phosphorylates WEE1 in higher eukaryotes. Maybe no 
homolog of PLK1 exists in plants, though insignificant Pfam-A matches to a POLO_box 
domain have been obtained in a hypothetical protein in each of our four plants 
representatives (A. thaliana, O. sativa, P. patens and C. reinhardtii). 
 
 
Examples of selected proteins: domain architecture and function 
 
Here follow some selected examples of proteins where the variations in their domain 
composition lead to differences in protein function: 
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o When the addition of a domain involves a gain of function: 
 

As explained in this work, the helicase BLM presents variations in its domain 
architecture in different organisms, for instance in D. radiodurans, where the C-terminal 
region of the sequence has three HRDC repeats that increase the effectiveness of the 
helicase activity [417], instead of the single copy found in the other orthologs. 

 
o When the loss of a domain involves a differentiation of the function: 

 

In modern eukaryotes the MMR MSH6 protein has an additional N-terminal region 
consisting of a PCNA binding motif, a globular PWWP domain and a nonspecific DNA 
binding fragment. This extra region most likely confers MSH6 a regulatory function in 
the NHEJ repair pathway [38].  However, this domain seems to have been lost in fungi, 
arthropoda and C. elegans, suggesting that these organisms may have other 
regulatory elements playing this role or other mechanisms of cross-talk between the 
MMR and NHEJ pathways. 
 

o When domains are present in different proteins of the same complex in one 
organism, while being in the same protein in another species: 

 

LigD, a fundamental component of the bacterial NHEJ repair pathway, presents clear 
dissimilarities with its eukaryotic counterparts; while the eukaryotic DNA Ligase IV has 
only ligation activity, the bacterial LigD is a single polypeptide that contains three 
domains: polymerase, phosphoesterase and ligase [381], which could play the role of 
other proteins in the NHEJ pathway in eukaryotes. 
 
 
 
Summary of findings 

 
As mentioned in the Introduction (section 5.1), evolution of organisms and DNA repair 
are highly interconnected because of the influence that repair mechanisms and 
pathways have in evolutionary patterns and mutation rates. Thus, there is a complex 
interplay between the need for evolvability and the need for fidelity of transmission of 
genetic information to the offspring.  
Throughout evolution, those organisms with high levels of genetic variation had better 
chances to survive sudden environmental changes, but as organisms evolved more 
complex genomes, genomic instability became mostly detrimental and systems 
safeguarding the integrity of DNA increased. 
 
The added complexity of the DDR in eukaryotes may reflect the requirement of a 
variety of mechanisms and pathways specialized for different conditions, such as the 
ability to signal and repair damage in DNA densely packaged into chromatin, the 
necessity to perform repair in distinct specialized cell types, the need for tight control to 
avoid ectopic recombination of repetitive DNA sequences, or to perfectly tune 
multifunctional components that are also used in other facets of genome and cell 
metabolism. 
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We have provided an extensive repository of human DDR proteins, carefully mined 
from literature and we have analyzed its evolutionary properties. 
We have found that most of these genes are traceable to early eukaryots and some of 
the core components were already in prokaryotes. 
Most of the ancestral components of the network are sensors and effectors, 
representing the two extremes of the pathway, which seems to have increased its 
complexity in between them including recruiting and signaling activities. 
Our comparisons of gene trees versus species trees indicate that the evolutionary 
processes that have shaped the DDR network are way more complex than originally 
expected, likely involving massive HGT events.  
Interestingly, most of the components have been lost at least more than twice during 
evolution, especially in fungi, nematodes and arthropods, where fundamental proteins 
in complexes have been lost in several species.  
In certain cases of losses, we have found that functional analogs could compensate 
the absences, or alternative systems might intervene. 
Protein domain shuffling has incorporated novel functions in various organisms, with 
impact in certain lineages, especially in plants. 
 
A notable aspect of the distribution of repair systems in different life forms is that, 
although certain domains, such as helicases and nucleases, are largely conserved in 
all organisms, the number of orthologous proteins shared by bacteria, archaea and 
eukaryotes is very small [400]. 
 
 
According to our results, different proteins and modules have been added to the DDR 
system (Figures 32-34), which may have increased its complexity in terms of fine-
tuning and cross-talk to other pathways, as seems to have occurred in other systems, 
like the chromatin modification machinery [263]. The addition of proteins could have, for 
instance, increased the efficiency of the process or system. In this regard, NBN may 
have joined the MRN complex to facilitate the linking of ATM in sites of DSBs, and 
ATRIP could have evolved to link the ATR kinase to SSB sites. Another example is the 
RNF168 protein, which interacts with ubiquitylated H2A, assembles at DSBs in an 
RNF8-dependent manner and, by targeting H2AX, amplifies local concentration of 
lysine 63-linked ubiquitin conjugates to the threshold required for retention of 53BP1 
and BRCA1 [99]. 
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• The literature-based overlap of DDR sets is unexpectedly low, indicating large 
differences in the trends and research conducted in DDR by different scientific 
communities. 

 
• Most of the DDR genes are of old origin, being some of the core components 

traceable to prokaryotes. The DDR pathways seem to have grown around 
these ancient modules. 
 

• All the sub-pathways contain at least one member traceable to ancient 
prokaryotes and DNA repair is the most ancient module with remarkable 
variations to accommodate different life-styles. 

 
• The ancestral network is mainly metabolic. The majority of the initial 

components are sensors and effectors, representing the two extremes of the 
pathway. Further additions of components, in particular regulatory elements, 
have increased the complexity of the network. 	
  

 
• The evolutionary history of DDR protein families is more complex than 

expected. A plausible explanation is the massive HGT events coupled to gene 
loses. Therefore, the gene age framework should be revisited. 

 
• Most of the DDR components have been lost at least more than twice during 

evolution, especially in fungi, nematodes and arthropods, where essential 
proteins in complexes have been lost in several species.  
In specific cases of losses, functional analogs could compensate the absences, 
or alternative systems might intervene. 

 
• Lineage-specific and domain rearrangement events may have included novel 

functions in various organisms, principally in plants. 
 

• Human DDR proteins are enriched in specific domains such as the BRCT 
repeats, Rad51, Helicase_C or AAA domains. Besides, certain domains are 
specifically found in determined functional tiers, such as MutS, MutL, Ku and 
PARP related domains in Sensors; Histone, UIM and Tower in Mediators; 
POLO_box and UQ_con in Transducers, and finally, the XRCC4 and SWIB 
domains in Effectors. 

 
• The enlargement of the network has occurred through the addition of new 

components that have evolved to interact and work together with the ancient 
ones, which may have increased the complexity of the DDR network in terms of 
fine-tuning and cross-talk to other pathways. 
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• The DDR components should be studied in the frameworks of additional 
systems, like i.e.: replisome or proteosome. 
 

• These analyses should be extended to alternative model species to identify 
precise lineage specific expansions. 

 
• The genomic regulation of these components could shed some light into the 

evolutionary process of the pathway. 
 

• A detailed and comprehensive analysIs of uncharacterized regions of DDR 
proteins could provide useful hints regarding potential functions. 

 
• The identification of sequence/structure specific signatures in relevant domains 

and/or uncharacterized regions could help to spot sub and neo-functionalization 
processes. 

 
• A detailed analysIs of post-translational modifications in the DDR system 

compared to genome-wide could help to evaluate the evolutionary trends 
observed for DDR modifiers in this study. 
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GLOSSARY 
 
 

 
List of abbreviations (in alphabetical order) 
 
9-1-1 RAD9, RAD1 and HUS1 complex 
A-NHEJ Alternative non-homologous end-joining  
AP site Apurinic or apyrimidinic site 
BBH Best bidirectional hit 
BER Base excision repair  
C-NHEJ Classic non-homologous end-joining  
CPDs Cyclobutane pyrimidine dimers  
DDR DNA damage response  
DNA-PKcs DNA-dependent protein kinase catalytic subunit 
DSBs Double-strand breaks 
GG-NER Global genome nucleotide excision repair  
GO  Gene Ontology 
HGT  Horizontal gene transfer 
HJs Holliday junctions  
HMM Hidden Markov model  
HR Homologous recombination  
ICLR Interstrand crosslink repair 
IR Ionizing radiation 
IRIF Ionizing radiation-induced foci  
LP-BER  Long-patch base excision repair 
LSEs Lineage-Specific Expansions 
MMR Mismatch repair  
MPI Message Passing Interface 
MRN  Mre11–Rad50–Nbs1 complex 
MSA Multiple sequence alignment 
MYA Millions of years ago 
ncRNAs Non-coding RNAs  
NER Nucleotide excision repair  
NHEJ Non-homologous end-joining 
PIKKs Phosphatidylinositol 3-kinase-related kinases 
PTMs Post-translational modifications  
RBPs RNA-binding proteins  
ROS Reactive oxigen species 
SCF  SKP1-cullin-F-box protein ligase complex  
SP-BER  Short-patch base excision repair  
SSBs Single-strand breaks  
SUMO Small ubiquitin-like modifier  
TC-NER Transcription-coupled nucleotide excision repair 
TFIIH Transcription factor IIH  
TLS Translesion synthesis  
UV Ultraviolet 
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Concepts 
 
 
Clade: A group of taxa that forms a monophyletic unit. It is applicable to any level of 
the taxonomical hierarchy. 
 
Differential gene loss: The loss of opposite copies in a pair of paralogs between two 
cells that inherited the orthologs from a common genome duplication. 
 
Holliday junction (HR): mobile junction between four strands of homologous DNA 
sequences. These highly conserved structures (from prokaryotes to mammals) are an 
intermediate in genetic recombination with an important role in maintaining genomic 
integrity. 
 
Horizontal gene transfer (HGT): A process by which an organism incorporates 
genetic material from another organism that does not belong to its line of ancestry. This 
process is also called lateral gene transfer. 
 
Ionizing radiation (IR): radiation composed of particles that carry enough kinetic 
energy to liberate an electron from an atom or molecule, ionizing it. Such an event can 
alter and break chemical bonds causing enormous biological damage. 
 
Multiple sequence alignment (MSA): alignment of three or more DNA, RNA or 
protein sequences. Generally, from the resulting alignment, sequence homology can 
be inferred and phylogenetic analysis can be conducted to assess the sequences' 
shared evolutionary origin. 
 
Neo-functionalization: The acquisition of a novel function by a gene after mutational 
changes. This usually applies to one of the two paralogues that are produced from 
gene duplication. 
 
Nucleomorph: A reduced eukaryotic nuclei found in certain plastids from 
cryptomonads and chlorarachniophytes. They are thought to be vestiges of primitive 
red and green algal nuclei and seem to be evidence of the evolutionary origin of 
plastids by endosymbiosis. 
 
Phylum: taxonomic rank below kingdom and above class. 
 
Post-translational modifications (PTMs): After translation, a protein can be modified 
to vary its range of functions by attaching biochemical functional groups (for example, a 
phosphate or acetyl group) to it, adding other proteins or peptides (e.g. SUMOylation or 
ubiquitination), changing the chemical nature of an amino acid (e.g. deamination), or 
making structural changes (e.g. formation of disulfide bridges). 
PTMs modulate the function of most eukaryotic proteins by altering their activity state, 
localization, turnover, and interactions with other proteins. 

Sub-functionalization: Functional specialization after mutational changes of the 
paralogues that are produced from a gene duplication. 
 
Taxon: group of one or more populations of organisms that reflects evolutionary 
(phylogenetic) relationships. 
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Gene-trees  
 

Only proteins with representatives in early eukaryotes have been selected to conduct 
phylogenetic analyses. The figure below is a modification of Figure 17, where only 
selected trees are shown. Trees are classified by blocks.  
 

 
 
 Figure SF1. Illustration indicating genes selected to conduct phylgenies.  
 Red names are genes/proteins explained and described in the main text. 
 

 
The dots in the tree branches indicate clades with probability value higher than 80% or 
0.8. In the case of differential domain architecture among orthologs, sequences are 
depicted showing their relative length, being the N-terminal region the closest 
displayed to the centre of the tree. 
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To easily distinguish the different organisms by taxonomic range, 
species are coloured using the following schema depicted at the left. 
 
 
 
 
 
 
 

 
 
 
BLOCK 0:   
 
01-RAD50 

 
 
Figure STt1: phylogenetic tree of DNA repair protein RAD50 (01). The C. elegans ortholog is misplaced 
according to its phylogenetic group, close to the base of the tree. Chordata miss the SMC_N termimal 
domain. In some cases domain boundaries are unclear as in the case of Prokaryotes. 
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04-PCNA 

 
 
Figure STt2: phylogenetic tree of Proliferating cell nuclear antigen (PCNA) (04). C. elegans is found 
outside its phylogenetic group, among the ancient eukaryotes sequences. O. anatinus is unexpectedly 
placed prior to basal animals, probably due to the sequence having been incorrectly predicted. 
 
05-BLM 

 
 
Figure STt3: phylogenetic tree of Bloom syndrome protein BLM (05). The T. castaneum sequence clusters 
before plants, probably due to the fact that the sequence is incomplete since it missing some domains. As 
in other trees, the problematic C. elegans is found before basal animals. 
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07-TOP3A 

 
 

Figure STt4: phylogenetic tree of DNA topoisomerase 3-alpha TOP3A (07). N. vectensis and T. adhaerens 
cluster closer to chordata than with the other basal eukaryote M. brevicollis. 
 
08-Family 12: SMC1A, SMC5 and SMC6 
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Figure STt5: phylogenetic tree of Family12 (08), comprising Structural maintenance of chromosomes 
proteins SMC1A, SMC5 and SMC6. In SMC1A fungi cluster before plants, and C. elegans appears before 
basal animals. In SMC5, T. adhaerens and C. teleta group with chordata after arthropoda. In SMC6, C. 
elegans and arthropoda cluster between plants and fungi. These results suggest this family has likely 
suffered HGTs. 
  
 
BLOCK I:   
 
10-RBX1 

 
 
Figure STt6: phylogenetic tree of E3 ubiquitin-protein ligase RBX1 (10). This tree is erroneous; most 
branches are unsupported and phylogenetic group are mixed. Either the orthologs have been incorrectly 
detected by InParanoid, or the MSA should be redone as well as the phylogenetic tree, which might need 
more sampling generations.  

 
11-RAD23B 

 
 
Figure STt7: phylogenetic tree of UV excision repair protein RAD23 homolog B (11). The M. brevicollis 
ortholog is surprisingly placed at the base of the tree, which is well supported at the main taxa (plants, 
animals), but not at splits. Consequently, the data should be checked and more sampling is required. 
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12- Family11: XPF, MUS81 and EME1. 
A tree with the orthologs of the three proteins in this family was constructed (data not shown), but despite 
being strongly supported, long branches in XPF were very different from the ones in the other two proteins, 
so we split the genes into individual trees. EME1 and MUS81 are more similar, and it seems that XPF is 
the most ancient sequence.  
  
12-XPF 

 
 
Figure STt8: phylogenetic tree of DNA repair endonuclease XPF (12). The tree is not well supported at 
split points. The N. vectensis and T. adhaerens sequences cluster with chordata instead of with M. 
brevicollis (like in the TOP3A tree), and the C. intestinalis ortholog groups with worms.  

 
12-MUS81  
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Figure STt9: phylogenetic tree of Crossover junction endonuclease MUS81 (12). Though most branches 
are well supported, this tree shows several differences with the species-tree: S. japonicum and M. 
brevicollis are placed before some ancient eukaryotes, C. elegans clusters with fungi, arthropods appear 
before basal animals, and N. vectensis and C. teleta cluster among chordata. 
 
12-EME1 

 
 
Figure STt10: phylogenetic tree of Crossover junction endonuclease EME1 (12). This tree is well 
supported and follows the species-tree order. 
 
13-MRE11 

 
 
Figure STt11: phylogenetic tree of Double-strand break repair protein MRE11A (13).  As in previous trees, 
the M. brevicollis sequence is placed with ancient eukaryotes, and arthropods cluster prior to worms and 
basal metazoa. 
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14-USP11 

 
 
Figure STt12: phylogenetic tree of Ubiquitin carboxyl-terminal hydrolase 11 (USP11) (14). Though well 
supported in most branches, this tree is messy since phylogenetic group are mixed. Either the orthologs 
have been incorrectly detected by InParanoid, or the MSA should be redone as well as the phylogenetic 
tree, which might need more sampling generations.  
 
 
15-SKP1 

 
 
Figure STt13: phylogenetic tree of S-phase kinase-associated protein 1 (SKP1) (15). In this tree, the M. 
brevicollis sequence is placed again away from the rest of basal eukaryotes, and all plants but A. thaliana 
cluster prior to most ancient eukaryotes. 
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16-RFA1 

 
 
Figure STt14: phylogenetic tree of Replication protein A 70 kDa DNA-binding subunit (RFA1) (16). In this 
highly supported tree, the C. elegans and the E. cuniculi orthologs are placed with ancient eukayrotes, and 
the C. intestinalis sequence appears before basal eukaryotes. As in previous trees, N. vectensis and T. 
adhaerens cluster closer to chordata than to M. brevicollis.  
 
 
17-H2AX 

 
 
Figure STt15: phylogenetic tree of Histone H2AX (17). This tree is not supported but in few branches.  
Sequences should be revised and maybe more sampling is needed. 
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18- 14-3-3E 

 
 
Figure STt16: phylogenetic tree of 14-3-3 protein epsilon (18). The only worm cladding as expected in this 
tree is the annelid C. teleta. The other worms, N. vectensis and M. brevicollis group with ancient 
eukaryotes. This might be due to HGT events or to the erroneus identification by InParanoid of proteins 
from the 14-3-3 family.  
 

 
19-XPC 

 
 
Figure STt17: phylogenetic tree of Xeroderma pigmentosum group C-complementing protein (XPC) (19). 
In this well supported tree, the M. brevicollis sequence is once more found away from the other basal 
eukaryotes, and C. intestinalis is found between T. adhaerens and arthropoda.  
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20- Family 5: UBE2N/T 
 

 
 
Figure STt18: phylogenetic tree of Family5 (20), comprising Ubiquitin-conjugating enzyme E2 proteins N 
(UBC13) and T. This tree is not well supported, and many phylogenetic groups are mixed in the clades. 
UBE2N from P. staleyi and M. brevicollis group with the UBE2T sequences instead of with the other 
UBE2N orthologs, which could be caused by this family having its origin in bacteria, from which the gene 
was transferred to other organisms by HGT.  
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21- Family 6: CUL1/4 
 

 
 
Figure STt19: phylogenetic tree of Family6 (21), comprising Cullin-1 and 4. Besides CUL1 and 4, this 
strongly supported tree includes in-paralogs from the Cullin family of proteins. CUL4 seems to be the 
ancient sequence, and CUL5 appears to be a duplication from CUL1. S. japonicum CUL1 groups with the 
CUL2 sequences, so this ortholog has probably been incorrectly detected by InParanoid. The CUL1 
sequences follow almost perfectly the species-tree order. 
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22- ERCC1 

 
 
Figure STt20: phylogenetic tree of DNA excision repair protein ERCC1 (22). This tree follows quite well the 
species-tree order, but for C. elegans, found cladding with fungi and ancient eukaryotes. Also, plants 
cluster at the base of the tree. 
 
23-RFA3 

 
 
Figure STt21: phylogenetic tree of Replication protein A 14 kDa subunit (RFA3) (23). This tree is poorly 
supported and would need more sampling since the fungi and ancient eukaryotes sequences are mixed. 
Also, the D. melanogaster sequence wrongly clusters with plants. 
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24-ERCC5 

 
 
Figure STt22: phylogenetic tree of DNA excision repair protein ERCC5 (24). In this well supported tree 
plants are cladding before most ancient eukaryotes, and worms and arthropoda prior to basal animals. 
 
25-TYDP1 

 
 
Figure STt23: phylogenetic tree of Tyrosyl-DNA phosphodiesterase 1 (TYDP1) (25). This tree is well 
supported at deep branches, but plants clade between fungi and yeast, the worms N. vectensis and T. 
adhaerens cluster among chordata (as in some previous trees), and C. teleta is placed also with chordata, 
instead of with C. elegans. 
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26-RAD17 

 
 
Figure STt24: phylogenetic tree of Cell cycle checkpoint protein RAD17 (26). This tree is poorly supported 
at deep branches and might need more sampling since basal metazoa group after arthropoda. Besides, 
the S. japonicum sequence clades with ancient eukaryotes. Nevertheless, this gene-tree is similar to the 
one obtained for Topb1, being both proteins part of the same complex at stalled replication forks, which 
might have evolutionary significance. 
 
27-TOPB1 

 
 
Figure STt25: phylogenetic tree of DNA topoisomerase 2-binding protein 1 (Topb1) (27). As in the 
previous tree, deep branches are poorly supported, and plant and fungi sequences are mixed. Besides, 
like in the case of RAD17, the S. japonicum sequence clades with ancient eukaryotes, and the distribution 
of basal animals to chordata is alike in both trees. That both trees show similar inconsistencies might show 
correlated evolution or common evolutionary pressure. 
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28-RAD1 

 
 
Figure STt26: phylogenetic tree of Cell cycle checkpoint protein RAD1 (28). In this well supported tree, the 
arthropods clade prior to worms, and basal animals group with chordata. Also, the N. gruberi sequence 
clusters after fungi, and the worms N. vectensis and T. adhaerens cluster among chordata. 
 
 
29-TIM 

 
 
Figure STt27: phylogenetic tree of Protein timeless homolog (TIM) (29). The C. intestinalis sequence is 
placed before arthropoda, and as in previous cases, the worms N. vectensis and T. adhaerens cluster with 
chordata. 
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30-RAD9 

 
 
Figure STt28: phylogenetic tree of Cell cycle checkpoint control protein RAD9A (30). In this tree, the C. 
elegans and the S. cerevisiae sequences clade with ancient eukaryotes (though deep branches are not 
well supported), and arthropods are placed prior to basal eukaryotes. 
 
 
31-XRCC5 

 
 
Figure STt29: phylogenetic tree of X-ray repair cross-complementing protein 5 (XRCC5) (31). In this tree, 
plants and fungi have inverted positions, and arthropods and C. elegans clade between them, though this 
invertebrates’ branch is not well supported.  
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32-XRCC6 

 
 
Figure STt30: phylogenetic tree of X-ray repair cross-complementing protein 6 (XRCC6) (32). As in the 
previous case, in this tree deep branches are not supported, and fungi and plants have their location 
inverted. Besides, arthropods and C. elegans clade together before basal eukaryotes. Both XRCC5 and 
XRCC6 are part of the same protein complex, and share some inconsistencies in their gene-trees, which 
might point towards correlated evolution or common evolutionary pressure. 
 
 
33-DDB1 

 
 
Figure STt31: phylogenetic tree of DNA damage-binding protein 1 (DDB1) (33). As in previous cases, The 
M. brevicollis and S. japonicum sequences clade with ancient eukaryotes, fungi and plants have their 
positions inverted, and C. elegans is positioned before basal metazoa. Also, C. teleta clusters with 
chordata. 
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34-RFA2 

 
 
Figure STt32: phylogenetic tree of 
Replication protein A 32 kDa subunit (RFA2) 
(34). In this poorly supported tree, the E. 
cuniculi ortholog clades with plants, and all of 
them among ancient eukaryotes. Also, C 
elegans groups with fungi, and arthropods 
are located prior to T. adhaerens, the only 
basal animal in this tree. 
 
 
 
 
 
 
 
 
 
 
 

35-Family 16: ATM/ATR/PKRCD 
 

 
 
Figure STt33: phylogenetic tree of Family 16 (35), comprising PIK-related kinases ATM, ATR and PKRCD. 
ATR seems to be the most ancient sequence, in both PKRDC and ATM, the worms N. vectensis and T. 
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adhaerens cluster with chordata; and in the three proteins, fungi and plants have inverted positions. The C. 
elegans ATR clades at the base of the PRKDC and ATM sequences, which may be because the sequence 
is actually not ATR, or might also be that the sequence has not been correctly predicted.  
 
36-TRIPC 

 
 
Figure STt34: phylogenetic tree of E3 
ubiquitin-protein ligase TRIP12 (TRIPC) 
(36). In this well supported tree, the S. 
japonicum sequence clades prior to 
basal metazoa, and the C. intestinalis 
ortholog groups with arthropoda, while 
C. teleta clusters with chordata. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
37-DNLI4 

 
 
Figure STt35: phylogenetic tree of DNA ligase 4 (DNLI4) (37). In this tree, basal eukaryotes (among which 
clusters the chordate C. intestinalis) clade after worms (but C. teleta) and arthropoda. 
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38-HUS1 

 
 
Figure STt36: phylogenetic tree of Checkpoint protein HUS1 (38). This tree is not supported and shows 
strong inconsistencies, being the C. elegans, S. cerevisiae and D. melanogaster sequences after 
chordata. Thus, more sampling is needed. 
 
39-ERCC6 

 
 
Figure STt37: phylogenetic tree of DNA excision repair protein ERCC6 (39). In this tree, the sequences of 
three inparalogs (ERCC6L from mouse and human, and maybe the equivalent in A. thaliana) were 
included. Most proteins follow the phylogenetic tree order, with few exceptions like the E. cuniculi 
sequence clustering with ancient eukaryotes, or the B. floridae cladding with worms. 
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40-Family 9: Artemis-Apollo 

 
 
Figure STt38: phylogenetic tree of Family 9 (40), comprising the DNA cross-link repair 1C protein Artemis 
(DCR1C) and the 5' exonuclease Apollo (DCR1B). This family also includes DCR1A, which is involved in 
DDR too. The phylogeny establishes that the DCR1B in fungi, M. brevicollis, D. melanogaster and some 
plants (top of the tree) are probably in fact DCR1A, and have been erroneously detected as DCR1B by 
InParanoid. Also according to the tree, DCR1B was lost in fungi and invertebrates but C. teleta and C. 
elegans, while DCR1C is present in all lineages.  
 
42-FACD2 

 
 
Figure STt39: phylogenetic tree of 
Fanconi anemia group D2 protein 
(FACD2) (42). As in previous trees, C. 
elegans groups with M. brevicollis and 
the basal metazoa cluster closer to 
chordata than arthropods.  
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43-Family 3: PARPs 

 
 
Figure STt40: phylogenetic tree of Family 3 (43), comprising Poly [ADP-ribose] polymerases PARP1 and 
PARP2. This well supported tree indicates that PARPs duplication is an old event occurring in ancient 
eukaryotes. The tree also includes PARP3, other member of the PARPs family. According to the 
phylogeny, S. japonicum PARP2 is actually PARP1. As in other trees, PARP1 in basal metazoa cluster 
closer to chordata than arthropods. 
 
44-SMAL1 

 
Figure STt41: phylogenetic tree of 
SWI/SNF-related matrix-associated 
actin-dependent regulator of  
chromatin subfamily A-like protein 1 
(SMARCAL1) (44). M. brevicollis, as in 
other trees, clades with ancient 
eukaryotes (maybe due to the domain 
composition of the protein), and worms 
(but C. elegans) and arthropods have 
inverted their position. Also, the B. 
floridae sequence groups with 
invertebrates. 
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45-Family 14: Kinases 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure STt42: phylogenetic tree of Family15 (45), comprising kinases CHK1, CHK2, MK2, MK03, Tao and 
WEE1. 
This well supported tree shows the most recent kinases are CHK1 and MAPK2, while the most ancient is 
TAOK1, which was already present in some Planctomycetes. Regarding this kinase, the only fungus 
containing it in our study is S. cerevisiae, and it is also remarkable that the C. intestinalis sequence groups 
with basal eukaryotes. In the case of WEE1, fungi and plants have their positions inverted and the C. 
elegans ortholog clades between them. Also, ancient eukaryotes cluster with plants or prior to basal 
eukaryotes. As with TAOK1, the C. intestinalis WEE1 sequence groups with basal eukaryotes. Regarding 
MK03, the S. japonicum ortholog clades between worms. The sequences of this parasite seems to 
frequently clade away from the other worms in this study, since in CHK2 it clusters among fungi. Also in 
CHK2, the B. floridae sequence groups between worms and arthropoda, instead of with the other 
chordates. The D. dictiostellum CHK2 sequence groups at the base of the MAPK2 branch, suggesting the 
orthology inference by InParanoid might be erroneous. Again in MAPK2, the S. japonicum sequence 
clades before basal metazoa, which also happens in the case of CHK1, this time also with the C. elegans 
ortholog. 
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BLOCK II:   
 
 

46-RAD18 

 
 
Figure STt43: phylogenetic tree of E3 ubiquitin-protein ligase RAD18 (46). In this tree, fungi clade among 
ancient eukaryotes, and N. vectensis groups closer to chordata than to basal eukaryotes. 
 
 
47-XRCC1 

 
 
Figure STt44: phylogenetic tree of DNA repair protein XRCC1 (47). This tree represents quite well the 
species phylogenetic order. 
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48-TDP2 

 
 
Figure STt45: phylogenetic tree of Tyrosyl-DNA phosphodiesterase 2 (TDP2) (48). This tree represents 
quite well the species phylogenetic order, but for the N. vectensis sequence, that as in previous trees, 
clades closer to chordata than to basal eukaryotes. 
 

49-BRCA1 
 
 
Figure STt46: phylogenetic tree of 
Breast cancer type 1 susceptibility 
protein (BRCA1) (49). This tree is 
poorly supported, and shows the B. 
floridae sequence cladding away 
from the other chordata.  
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51-ERCC8 

 
 
Figure STt47: phylogenetic tree of DNA excision repair protein ERCC8 (51). But for the C. intestinalis 
sequence cladding with basal eukaryotes, this tree follows the species phylogenetic order. 
 
52-NSE2 (MMS21) 

 
 
Figure STt48: phylogenetic tree of E3 SUMO-protein ligase NSE2 (52). This poorly supported tree shows 
some inconsistencies, like the D. melanogaster sequence cladding at the base of the tree, or the B. 
floridae and C intestinalis orthologs clustering among basal eukaryotes. 
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53-BRCC3 
 
 
Figure STt49: phylogenetic tree of Lys-63-
specific deubiquitinase BRCC36 (53). This 
tree, follows the species phylogenetic order 
but for A. mellifera cladding prior to basal 
metazoa. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
55-Family 1: PIAS 
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Figure STt50: phylogenetic tree of Family 1 (55), comprising E3 SUMO-protein ligases PIAS1 to PIAS4. 
This well supported tree shows that N. vectensis PIAS1 might actually be PIAS2 (though it does not 
contain the PINIT domain), and that S. cerevisiae PIAS4 might be in fact PIAS1, being both incorrect 
predictions by InParanoid.  
 
56-DTL 

 
 
Figure STt51: phylogenetic tree of 
Denticleless protein homolog (DTL) (56). 
As in other trees, the N. vectensis ortholog 
clusters with chordata and the C. 
intestinalis sequence groups away from 
these. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
58-PAXI1 – MDC1 
 

 
 
Figure STt52: phylogenetic tree of PAX-interacting protein 1 (PAXI1/PTIP) and Mediator of DNA damage 
checkpoint protein 1 (MDC1). In this tree, the PAXI1 orthologs follow the taxonomic order except for C. 
intestinalis, which is close to basal eukaryotes. On the other hand, the MDC1 sequences group among the 
plant and fungal PAXI1 orthologs. PAXI1 and MDC1 were initially grouped as a family because Ensemble 
COMPARA considered them as related, but given the MSA obtained with these sequences, the 
differences in their domain composition (they only share the promiscuous BRCT domain) and the 
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clustering in the phylogenetic tree, we finally decided not to consider PAXI1 and MDC1 as members of the 
same family.  
 
 
65-PLK1 

 
 
 
Figure STt53: phylogenetic tree of Serine/threonine-protein kinase PLK1 (65). In this well supported tree, 
other sequences from the Polo kinase family have been included. According to the phylogeny, PLK1 seem 
to be the ancient sequence, and then generated PLK4, and finally PLK2 and 3. The N. vectensis sequence 
clades close to chordata instead of with basal eukaryotes, and worms and arthropoda have inverted 
positions compared to the species-tree. 
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66-SLX1 

 
 
Figure STt54: phylogenetic tree of Structure-specific endonuclease subunit SLX1 (66). This tree is poorly 
supported and species from different phylogenetic groups are mixed. M. brevicollis clades among 
chordata, and C. intestinalis groups with S. japonicum and close to N. vectensis. More sampling is 
requiered for this tree. 
 
 
69-XPA 

 
 
Figure STt55: phylogenetic tree of DNA repair protein complementing XPA cells (69). The C. elegans 
sequence clades among chordata, while C. intestinalis is placed before C. teleta and T. adhaerens, which 
does not cluster with the other basal eukaryotes. 
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BLOCK III:   
 
76-BRCA2 

 
 
Figure STt56: phylogenetic tree of Breast cancer type 2 susceptibility protein (BRCA2) (76).  
S. japonicum and A. mellifera clade at the base of the tree instead of closer to chordata, which may be due 
to high divergence in these sequences or to an incorrect prediction of these protein sequences.  
 
77-CDT1 

 
 
 
Figure STt57: phylogenetic tree of DNA 
replication factor Cdt1 (77). This tree 
follows the species-tree order but for E. 
cuniculi, that clades after M. brevicollis, a 
basal eukaryote. 
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78-Family 4: MPIPs 

 
 
Figure STt58: phylogenetic tree of Family 4 (78), comprising M-phase inducer phosphatases 1 and 3 
(MPIP1 /CDC25A and MPIP3/ CDC25C). As C. elegans seems to have both MPIP1 and 3, it is unclear if 
duplications were transmitted ancestrally or not, since basal eukaryotes have only one MPIP (N. vectensis 
MPIP3 will probably be MPIP1 instead). Fungi seem to have MPIP3 (unless this is an incorrect detection 
by InParanoid). Either both basal eukaryotes and arthropods lost one MPIP (as C. elegans has two), or C. 
elegans acquired one copy by HGT. 
 
 
82-RNF8 

 
 
Figure STt59: phylogenetic tree of E3 ubiquitin-
protein ligase RNF8 (82). This tree represents 
quite well the species phylogenetic order. 

 

 
 
 
 
 



ST1a. E. coli DDR proteins extracted from bibliography  
 

DDR 
protein 

UniProt 
ID Entrez_ID Annotation 

References (PMID) 

CHO P76213 16129695  Excinuclease cho  11818552  

CLPX P0A6H1 16128423 
 ATP-dependent Clp protease ATP-binding subunit 
ClpX  16630889 

21576225 

DINF P28303 162135919  DNA-damage-inducible protein F  22523558  

DINI P0ABR1 16129024  DNA-damage-inducible protein I  15954802  

DNAA P03004 16131570  Chromosomal replication initiator protein DnaA  1779750 16132081 

DNLJ P15042 16130337  DNA ligase  17938628  

DPO1 P00582 16131704  DNA polymerase I  11352575 21622737 

DPO2 P21189 16128054  DNA polymerase II  16000023  

DPO3A P10443 16128177  DNA polymerase III subunit alpha  12215643  

DPO3B P0A988 16131569  DNA polymerase III subunit beta  16132081  

DPO3E P03007 16128202  DNA polymerase III subunit epsilon  1575709 21576225 

DPO4 Q47155 16128217  DNA polymerase IV  16000023  

EX5A P04993 16130723  Exodeoxyribonuclease V alpha chain  19052323  

EX5B P08394 16130724  Exodeoxyribonuclease V beta chain  19052323  

EX5C P07648 16130726  Exodeoxyribonuclease V gamma chain  19052323  

FPG P05523 16131506  Formamidopyrimidine-DNA glycosylase  1689309 14607836 

HELD P15038 16128929  Helicase IV  19451222  

HOLE P0ABS8 16129795  DNA polymerase III subunit theta  8505306  

LEXA P0A7C2 16131869  LexA repressor  21576225  

LON P0A9M0 16128424  Lon protease  8995294  

MUTH P06722 16130735  DNA mismatch repair protein mutH  7859291  

MUTL P23367 16131992  DNA mismatch repair protein mutL  7859291 16132081 

MUTS P23909 16130640  DNA mismatch repair protein MutS  7859291 16132081 

RECA P0A7G6 16130606  Protein RecA  19052323  

RECF P0A7H0 16131568  DNA replication and repair protein RecF  19052323  

RECG P24230 16131523  ATP-dependent DNA helicase recG  19052323  

RECJ P21893 16130794  Single-stranded-DNA-specific exonuclease recJ  19052323  

RECN P05824 49176247  DNA repair protein recN  19451222  

RECO P0A7H3 16130490  DNA repair protein RecO  19451222  

RECQ P15043 162135918  ATP-dependent DNA helicase recQ  19052323  

RECR P0A7H6 16128456  Recombination protein RecR  19451222  

RECX P33596 16130605  Regulatory protein RecX  16000023  

RUVA P0A809 16129814 
 Holliday junction ATP-dependent DNA helicase 
RuvA  9442895 

 

RUVB P0A812 16129813 
 Holliday junction ATP-dependent DNA helicase 
RuvB  9442895 

 

RUVC P0A814 16129816  Crossover junction endodeoxyribonuclease RuvC  9442895  

SBCC P13458 16128382  Nuclease sbcCD subunit C  9927737  

SBCD P0AG76 16128383  Nuclease sbcCD subunit D  9927737  

SSB P0AGE0 16131885  Single-stranded DNA-binding protein  19052323  

SULA P0AFZ5 16128925  Cell division inhibitor SulA  16630889  

UMUC P04152 16129147  Protein umuC  16000023  

UMUD P0AG11 16129146  Protein umuD  16000023  

UVRA P0A698 16131884  UvrABC system protein A  16000023  

UVRB P0A8F8 16128747  UvrABC system protein B  16000023  

UVRC P0A8G0 90111354  UvrABC system protein C  16000023  

UVRD P03018 16131665  DNA helicase II  16000023  

YOAA P76257 16129762  Probable ATP-dependent helicase yoaA  
 

InParanoid: hERCC2 homolog  
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ST1b. A. thaliana DDR proteins extracted from bibliography   
DDR protein UniProt ID Annotation References (PMID) 
1433E Q01525 14-3-3-like protein GF14 omega InParanoid: h1433E ortholog   
3MG Q39147 DNA-3-methyladenine glycosylase 20646326  
ALKBH Q9SA98 Alpha-ketoglutarate-dependent dioxygenase alkB 20646326  
APE1L Q9STM2 Putative uncharacterized protein T29H11_60 20646326  
APE2 Q8W4I0 Endonuclease 2 20646326  
ATM Q9M3G7 Serine/threonine-protein kinase ATM 20646326  
ATR Q9FKS4 Serine/threonine-protein kinase ATR 20646326  
ATRIP C8KI33 ATR interacting protein 19619159  
BARD1 Q3E7F4 Putative uncharacterized protein At1g04020.2 20646326  
BH140 Q9M041 Transcription factor bHLH140 20646326  
BLM 
(RecQl4) Q8L840 ATP-dependent DNA helicase Q-like 4A 20646326  
BRCA1 Q8RXD4 Protein BREAST CANCER SUSCEPTIBILITY 1 homolog 20646326  
BRCA2 Q7Y1C4 Breast cancer 2 susceptibility protein 20646326  
BRCC3 Q8RW94 At1g80210/F18B13_28 InParanoid: hBRCC3 ortholog   
BRE Q5XF81 At5g42470 InParanoid: hBRE ortholog   
CCH11 Q8W5S1 Cyclin-H1-1 20646326  
CDKD1 Q9C9U2 Cyclin-dependent kinase D-1 20646326  
CDPKL Q9ZSA2 Calcium-dependent protein kinase 21 20646326  
CDT1 Q9M1S9 CDT1-like protein b 15928083  
CIPK3 Q2V452 CBL-interacting serine/threonine-protein kinase 3 20646326  
CRY1 Q43125 Cryptochrome-1 20646326  
CRY2 Q96524 Cryptochrome-2 20646326  
CRYD Q84KJ5 Cryptochrome DASH, chloroplastic/mitochondrial 20646326  
CUL4 Q8LGH4 Cullin-4 20646326  
DDB1A Q9M0V3 DNA damage-binding protein 1a 20646326  
DDB2 Q6NQ88 Protein DAMAGED DNA-BINDING 2 20646326  
DET1 P48732 Light-mediated development protein DET1 20646326  
DMC1 Q39009 Meiotic recombination protein DMC1 homolog 20646326  
DNLI1 Q42572 DNA ligase 1 20646326  
DNLI4 Q9LL84 DNA ligase 4 20646326  
DPOLA Q9FHA3 DNA polymerase alpha catalytic subunit 21867786  
DR100 Q00874 DNA-damage-repair/toleration protein DRT100 21867786  
DTL Q94C55 Protein denticleless InParanoid: hDTL ortholog   
EME1 Q9SJ19 Putative uncharacterized protein At2g21800 20646326  
ERCC1 Q9MA98 DNA excision repair protein ERCC-1 20646326  
ERCC2 Q8W4M7 DNA repair helicase UVH6 20646326  
ERCC6 
(CSB) Q9ZV43 DNA excision repair protein E 20646326  
ERCC8 
(CSA) Q93ZG3 At1g27840/F28L5_15 20646326  
EXO1 Q8L6Z7 Exonuclease 1 20646326  
FACD2 O23351 Putative uncharacterized protein InParanoid: hFACD2 ortholog   
FPG O80358 At1g52500 20646326  
GR1 Q9ZRT1 Protein gamma response 1 21867786  

GTF2H1 Q3ECP0 
Probable RNA polymerase II transcription factor B subunit 1-
1 20646326  

GTF2H2 Q9ZVN9 P44/SSL1-like protein 20646326  
H2AX Q8GUH3 Histone H2A InParanoid: hH2AX ortholog   
HMGB1 O49595 High mobility group B protein 1 20646326  
HUS1 Q9SSQ5 F6D8.25 20646326  
KU70 Q9FQ08 ATP-dependent DNA helicase 2 subunit KU70 20646326  
KU80 Q9FQ09 ATP-dependent DNA helicase 2 subunit KU80 20646326  
MAGLP Q9C5J2 DNA-3-methyladenine glycosylase II 20646326  
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MBD4 Q0IGK1 At3g07930 20646326  
MLH1 Q9ZRV4 DNA mismatch repair protein MLH1 (Fragment) 20646326  
MND1 Q8GYD2 Meiotic nuclear division protein 1 homolog 20646326  
MRE11 Q9XGM2 Double-strand break repair protein MRE11 20646326  
MRI40 O82638 At4g32960 InParanoid: hMRI40 ortholog   
MSH2 O24617 DNA mismatch repair protein Msh2 20646326  
MSH3 O65607 DNA mismatch repair protein Msh3 20646326  
MSH6 O04716 DNA mismatch repair protein Msh6-1 20646326  
MUS81 O65562 Putative uncharacterized protein AT4g30870 20646326  
MUTY Q9SU12 Adenine DNA glycosylase like protein 20646326  
MYST1 Q9LXD7 MYST-like histone acetyltransferase 2 InParanoid: hMYST1 ortholog   
NBS1 Q0H8D7 NBS1 20646326  
NTH Q94EJ4 At1g05900/T20M3_15 20646326  
PARP1 Q9ZP54 Poly [ADP-ribose] polymerase 1 20646326  
PARP2 Q11207 Poly [ADP-ribose] polymerase 2 20646326  
PARP3 Q9FK91 Poly [ADP-ribose] polymerase 3 20646326  
PCNA Q9M7Q7 Proliferating cellular nuclear antigen 1 20646326  
PHR2 Q8LB72 Blue-light photoreceptor PHR2 20646326  
PMS1 Q941I6 DNA mismatch repair protein 20646326  
PNKP Q9LKB5 Putative uncharacterized protein 20646326  
PR19A Q94BR4 Pre-mRNA-processing factor 19 homolog 1 20646326  
PRD1 O23277 Protein PRD1 20646326  
RAD1 Q8L7G8 At4g17760 20646326  
RAD17 Q9MBA3 Cell cycle checkpoint protein RAD17 20646326  
RAD50 Q9SL02 DNA repair protein RAD50 20646326  
RAD51 P94102 DNA repair protein RAD51 homolog 1 20646326  
RAD54L Q0PCS3 RAD54-like protein 20646326  
RAD9 Q058K5 At3g05480 20646326  
RBX1A Q940X7 RING-box protein 1a 12381738  
RD23B Q84L32 Putative DNA repair protein RAD23-2 20646326  
RecG Q9ZVG0 Putative ATP-dependent DNA helicase RECG 20646326  
RFA1 Q9FHJ6 Replication factor-A protein 1-like protein 20646326  
RFC1 Q9C587 At5g22010 20646326  
RFC2 Q9CAM7 At1g63160 20646326  
RFC3 Q8VXX4 Putative replication factor C 20646326  
RFC4 Q93ZX1 At1g21690 20646326  
RFC5 Q9CAQ8 Putative replication factor C 20646326  
RPA1 Q9SKI4 Replication factor A1 20646326  
RPA2 Q9ZQ19 DNA replication protein A2 subunit 20646326  
RPA3 Q9LXK1 Nucleic acid-binding, OB-fold-like protein 20646326  
SCC12 Q9FQ20 Sister chromatid cohesion 1 protein 2 21867786  
SIZ1 Q680Q4 E3 SUMO-protein ligase SIZ1 17905899  
SKP1 Q9C5T5 SKP1-like protein ASK10 (Fragment) 12381738  

SM3L2 Q9FNI6 

Putative SWI/SNF-related matrix-associated actin-
dependent regulator of chromatin subfamily A member 3-like 
2 20646326  

SMAL1 Q9SX64 F11A17.14 protein InParanoid: hSMAL1 ortholog   
SMC1A Q6Q1P4 Structural maintenance of chromosomes 1 protein 20646326  
SNM1 Q38961 DNA cross-link repair protein SNM1 20646326  
SPO11 Q9M4A2 Meiotic recombination protein SPO11-1 20646326  
SSBP Q84J78 Single-stranded DNA-binding protein, mitochondrial 20646326  
SSRP1 Q05153 FACT complex subunit SSRP1 20646326  
TIM Q9FLX0 Timeless family protein InParanoid: hTIM ortholog   
TIPIN Q8GW91 At3g02820 InParanoid: hTIPIN ortholog   
TOP3 Q9LVP1 DNA topoisomerase 20646326  

TOPB1 Q70X85 MEI1 protein 
InParanoid: hTOPBP1 
ortholog   

200



UBC1 P25865 Ubiquitin-conjugating enzyme E2 1 20646326  
UBC36 Q9FZ48 Ubiquitin-conjugating enzyme E2 36 20646326  
UBP11 Q9MAQ3 Putative ubiquitin carboxyl-terminal hydrolase 11 InParanoid: hUBP11 ortholog   
UEV1B Q9CAB6 Ubiquitin-conjugating enzyme E2 variant 1B 20646326  
ULA1 P42744 NEDD8-activating enzyme E1 regulatory subunit 20646326  
UNG Q9LIH6 At3g18630 20646326  
UVH3 Q9ATY5 DNA repair protein UVH3 20646326  
UVR3 O48652 (6-4)DNA photolyase 20646326  
WEE1 Q8L4H0 Wee1-like protein kinase 17209125  
WEX Q84LH3 Werner Syndrome-like exonuclease 20646326  
XPB1 Q38861 DNA repair helicase XPB1 20646326  
XPC Q8W489 At5g16630 20646326  
XPF Q9LKI5 DNA repair endonuclease UVH1 20646326  
XRCC1 Q24JK4 At1g80420 20646326  
XRCC2 Q682D3 DNA repair protein XRCC2 homolog 20646326  
XRCC3 Q9FKM5 DNA repair protein XRCC3 homolog 20646326  
XRCC4 Q682V0 DNA repair protein XRCC4 20646326  
XRI1 Q6NLW5 Protein XRI1 21867786  
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ST1c. S. cerevisiae DDR proteins extracted from bibliography   
DDR 
protein 

UniProt 
ID Entrez_ID Annotation References (PMID) 

1433E P34730 6320304  Protein BMH2 Inparanoid: h1433E ortholog 
ATM P38110 6319383  Serine/threonine-protein kinase TEL1 19464966  
ATR P38111 6319612  Serine/threonine-protein kinase MEC1 19464966  
CHK1 P38147 6319751  Serine/threonine-protein kinase CHK1 19464966  
COM1 P46946 6321263  DNA endonuclease SAE2 9215887  
CSM3 Q04659 6323692  Chromosome segregation in meiosis protein 3 21127252  
CTF18 P49956 6323724  Chromosome transmission fidelity protein 18 21127252  
CTF8 P38877 6321985  Chromosome transmission fidelity protein 8 21127252  
CUL1 Q12018 6320070  Cell division control protein 53 Inparanoid: hCUL1 ortholog 
CUL8 P47050 6322414  Regulator of Ty1 transposition protein 101 22353182  
DCC1 P25559 10383774  Sister chromatid cohesion protein DCC1 21127252  
Ddc1 Q08949 6325062  DNA damage checkpoint protein 1 19464966  
DMA2 P53924 6324213  E3 ubiquitin-protein ligase DMA2 15146058  
DNLI4 Q08387 6324578  DNA ligase 4 16388993  
DPO4 P25615 10383782  DNA polymerase IV 12235149  
DUN1 P39009 6320102  DNA damage response protein kinase DUN1 10357828  
H2AX P04912 6319470  Histone H2A.2 11140636  
KAT5 Q08649 6324818  Histone acetyltransferase ESA1 12353039  
KU70 P32807 6323940  ATP-dependent DNA helicase II subunit 1 21127252  
KU80 Q04437 6323753  ATP-dependent DNA helicase II subunit 2 21127252  
LCD1 Q04377 6320707  DNA damage checkpoint protein LCD1 11060031  
LIF1 P53150 6321348  Ligase-interacting factor 1 16388993  
MEC3 Q02574 6323319  DNA damage checkpoint control protein MEC3 19464966  

MEK1 P24719 6324927 
 Meiosis-specific serine/threonine-protein kinase 
MEK1 1741279  

MET18 P40469 6322063  DNA repair/transcription protein MET18/MMS19 8943333  
MLH1 P38920 6323819  DNA mismatch repair protein MLH1 9368761  
MMS1 Q06211 6325422  Methyl methanesulfonate-sensitivity protein 1 21127252  
MMS2 P53152 6321351  Ubiquitin-conjugating enzyme variant MMS2 11440714  
MMS22 Q06164 6323352  Methyl methanesulfonate-sensitivity protein 22 15718301  
MPH1 P40562 6322192  ATP-dependent DNA helicase MPH1 15126389  
MPIP3 P23748 6323679  M-phase inducer phosphatase Inparanoid: hMPIP3 ortholog 
MRC1 P25588 10383754  Mediator of replication checkpoint protein 1 21127252  
MRE11 P32829 6323880  Double-strand break repair protein MRE11 20348017  
MSH2 P25847 6324482  DNA mismatch repair protein MSH2 9368761  
MSH3 P25336 157285763  DNA mismatch repair protein MSH3 9368761  
MSH6 Q03834 6320302  DNA mismatch repair protein MSH6 8723353  
NEJ1 Q06148 6323295  Non-homologous end-joining protein 1 16388993  
PCNA P15873 6319564  Proliferating cell nuclear antigen 20981145  
PIAS4 Q12216 6324730  E3 SUMO-protein ligase SIZ2 Inparanoid: hPIAS4 ortholog 

PLK1 P32562 6323643 
 Cell cycle serine/threonine-protein kinase 
CDC5/MSD2 15920482  

PMS2 P14242 46562124  DNA mismatch repair protein PMS1 20981145  

PP4R2 P38193 6319425 
 Serine/threonine-protein phosphatase 4 
regulatory subunit 2 21127252  

PP4R3 P40164 6324128 
 Serine/threonine-protein phosphatase 4 
regulatory subunit 3 16299494  

PSY3 Q12318 6323408  Platinum sensitivity protein 3 21127252  
RAD1 P06777 6325235  DNA repair protein RAD1 8479526  
RAD10 P06838 6323543  DNA repair protein RAD10 20981145  
RAD14 P28519 6323857  DNA repair protein RAD14 20981145  
RAD16 P31244 6319590  DNA repair protein RAD16 20348017  
RAD17 P48581 6324944  DNA damage checkpoint control protein RAD17 19464966  

202



RAD18 P10862 6319911 
 Postreplication repair E3 ubiquitin-protein ligase 
RAD18 15388802  

RAD2 P07276 6321697  DNA repair protein RAD2 20981145  
RAD23 P32628 6320798  UV excision repair protein RAD23 20981145  
RAD24 P32641 6321021  Checkpoint protein RAD24 15369670 19464966 
RAD25 Q00578 6322048  DNA repair helicase RAD25 20981145  
RAD26 P40352 6322495  DNA repair and recombination protein RAD26 12024048  
RAD3 P06839 6321019  DNA repair helicase RAD3 8631896  
RAD4 P14736 6321010  DNA repair protein RAD4 9837874  
RAD5 P32849 6323060  DNA repair protein RAD5 16224103  
RAD50 P12753 6324079  DNA repair protein RAD50 20981145  
RAD51 P25454 6320942  DNA repair protein RAD51 12235149  
RAD52 P06778 27808713  DNA repair and recombination protein RAD52 21127252  
RAD53 P22216 6325104  Serine/threonine-protein kinase RAD53 12724400 19464966 
RAD54 P32863 6321275  DNA repair and recombination protein RAD54 15369670  
RAD55 P38953 6320281  DNA repair protein RAD55 15369670  
RAD57 P25301 6320207  DNA repair protein RAD57 15369670  
RAD59 Q12223 6320144  DNA repair protein RAD59 15369670  
RAD7 P06779 6322512  DNA repair protein RAD7 15177043  
RAD9A P14737 6320423  DNA repair protein RAD9 19464966  
RBX1 Q08273 6324438  RING-box protein HRT1 10579999  
RCK1 P38622 6321280  Serine/threonine-protein kinase RCK1 10778743 19230643 
RCK2 P38623 6323277  Serine/threonine-protein kinase RCK2 10778743 19230643 
RFA1 P22336 6319321  Replication factor A protein 1 20981145  
RFA2 P26754 6324017  Replication factor A protein 2 20981145  
RFA3 P26755 6322288  Replication factor A protein 3 20981145  
RFX1 P48743 6323205  RFX-like DNA-binding protein RFX1 16107689  
RT109 Q07794 6323027  Histone acetyltransferase RTT109 17272722  
SGS1 P35187 6323844  ATP-dependent helicase SGS1 20981145  
SKP1 P52286 6320535  Suppressor of kinetochore protein 1 8706132  

SLX5 P32828 6320191 
 E3 ubiquitin-protein ligase complex SLX5-SLX8 
subunit SLX5 17591698 21127252 

SLX8 P40072 6320962 
 E3 ubiquitin-protein ligase complex SLX5-SLX8 
subunit SLX8 17591698  

SMC1A P32908 14318514 
 Structural maintenance of chromosomes protein 
1 11983169  

SMC5 Q08204 6324539 
 Structural maintenance of chromosomes protein 
5 15738391  

SMC6 Q12749 6323415 
 Structural maintenance of chromosomes protein 
6 15738391  

SWE1 P32944 6322274  Mitosis inhibitor protein kinase SWE1 15920482  
SWI4 P25302 6320957  Regulatory protein SWI4 12724400  
TAOK1 P38692 6321894  Serine/threonine-protein kinase KIC1 Inparanoid: hTAOK1 ortholog 
TOF1 P53840 6324056  Topoisomerase 1-associated factor 1 21127252  
UBE2N P52490 6320297  Ubiquitin-conjugating enzyme E2 13 21127252  
UBC4 P15731 6319556  Ubiquitin-conjugating enzyme E2 4 18202552  
UBP11 P39538 6322264  Ubiquitin carboxyl-terminal hydrolase 12 Inparanoid: hUBP11 ortholog 
XRS2 P33301 6320577  DNA repair protein XRS2 20981145  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

203



ST1d. H. sapiens DDR proteins extracted from bibliography    

DDR 
protein UniProt ID Annotation References (PMID) 

Uni/multi-
gene family  

1433E P62258 14-3-3 protein epsilon 18082599 20413225 18 
ATM Q13315 Serine-protein kinase ATM [2.7.1.11] 17525332 18082599 35 / Fam16 
ATR Q13535 Serine/threonine-protein kinase ATR [2.7.1.11] 18082599 20947357 35 / Fam16 
ATRIP Q8WXE1 ATR-interacting protein 18082599 18594563 64 
BARD1 Q99728 BRCA1-associated RING domain protein 1 [6.3.2.-] 18082599 20029420 50 
BLM P54132 Bloom syndrome protein [3.6.1.-] 15257300 19843584 5 

BRCA1 P38398 Breast cancer type 1 susceptibility protein [6.3.2.-] 20029420 21203981 49 
BRCA2 P51587 Breast cancer type 2 susceptibility protein 19268590 21203981 76 

BRCC3 
(BRCC36) P46736 Lys-63-specific deubiquitinase BRCC36 [3.1.2.15] 18082599  53 

BRE 
(BRCC45) Q9NXR7 BRCA1-A complex subunit BRE 19261748  62 
CDT1 Q9H211 DNA replication factor Cdt1 18082599  77 

CHK1 O14757 Serine/threonine-protein kinase Chk1 [2.7.11.1] 19230643 

  
21088254-

-- 45 / Fam14 
CHK2 O96017 Serine/threonine-protein kinase Chk2 [2.7.11.1] 19230643 19473886 45 / Fam14 
CLSPN Q9HAW4 Claspin 18082599  70 
CUL1 Q13616 Cullin-1 19903939  21 / Fam6 
CUL4 Q13619 Cullin-4 18082599  21 / Fam6 

DCR1B 
(Apollo) Q9H816 5' exonuclease Apollo 18469862 19411856 40 / Fam9 

DCR1C 
(Artemis) Q96SD1 Protein artemis [3.1.-.-] 20543526  40 / Fam9 

DDB1 Q16531 
DNA damage-binding protein 1, UV-damaged DNA-
binding factor, DDB p127 subunit 18082599  33 

DNA2L 
(DNA2) P51530 DNA2-like helicase 19487465 21325134 63 

DNLI4 
(LIG4) P49917 DNA ligase 4 [6.5.1.1] 11357144 21329706 37 

DTL (CDT2) Q9NZJ0 Denticleless protein homolog 18082599  56 

EME1 
(MMS4) Q96AY2 Crossover junction endonuclease EME1 (MMS4) 12686547  59 
ERCC1 P07992 DNA excision repair protein ERCC-1 16855787 18166977 22 

ERCC2 
(XPD) P18074 

TFIIH basal transcription factor complex helicase 
XPD subunit [3.6.4.12] 16855787 18166977 9 

ERCC3 
(XPB) P19447 

TFIIH basal transcription factor complex helicase 
XPB subunit [3.6.4.12] 16855787 18166977 3 / Fam17 

ERCC5 
(XPG) P28715 DNA repair protein complementing XP-G cells 16855787 18166977 24 / Fam10 

ERCC6 
(CSB) Q03468 DNA excision repair protein ERCC-6 [3.6.4.-] 16855787 18166977 39 

ERCC8 
(CSA) Q13216 DNA excision repair protein ERCC-8 16855787 18166977 51 
EXO1 Q9UQ84 Exonuclease 1 14676842 18048416 24 / Fam10 

F175A 
(Abraxas) Q6UWZ7 BRCA1-A complex subunit Abraxas 18082599  94 
FACD2 Q9BXW9 Fanconi anemia group D2 protein; Protein FACD2 18082599  42 
FANCM Q8IYD8 Fanconi anemia group M protein 22615860  3 / Fam17 

FBW1A 
(BTRCP) Q9Y297 

F-box/WD repeat-containing protein 1A, F-box and 
WD repeats protein beta-TrCP 18082599  67 
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FBX31 Q5XUX0 F-box only protein 31 18082599 19412162 86 
H2AX P16104 Histone H2A.x; H2a/x 18082599  17 
HERC2 O95714 E3 ubiquitin-protein ligase HERC2 [6.3.2.-] 20023648 20406985 72 
HNRPK P61978 Heterogeneous nuclear ribonucleoprotein K 19579069  75 
HUS1 O60921 Checkpoint protein HUS1 18082599  38 

KAT5  
(Tip60) Q92993 Histone acetyltransferase KAT5 [2.3.1.48] 18082599 20160506 41 / Fam8 
MAPK2 P49137 MAP kinase-activated protein kinase 2 [2.7.11.1] 18082599 19230643 45 / Fam14 
MDC1 Q14676 Mediator of DNA damage checkpoint protein 1 18082599 21482717 89 / Fam7* 

MDM2 Q00987 
E3 ubiquitin-protein ligase Mdm2 [6.3.2.-]; p53-
binding protein Mdm2 18082599  88 / Fam2 

MDM4 O15151 Protein Mdm4 18082599  88 / Fam2 

MK03 
(ERK1) P27361 

Extracellular signal-regulated kinase 1 (Mitogen-
activated protein kinase 3) 22576881  45 / Fam14 

MLH1 P40692 DNA mismatch repair protein Mlh1 16464007 16612326 6 / Fam13 

MMS21 
(NSMCE2) Q96MF7 E3 SUMO-protein ligase NSE2 (NSMCE2) 16055714  52 

MPIP1 
(Cdc25A) P30304 M-phase inducer phosphatase 1 [3.1.3.48] 18082599  78 / Fam4 

MPIP3 
(Cdc25C) P30307 M-phase inducer phosphatase 3 [3.1.3.48] 18082599  78 / Fam4 
MRE11 P49959 Double-strand break repair protein MRE11A 18082599 21252998 13 
MRI40 Q9NWV8 BRCA1-A complex subunit MERIT40 19261746 20029420 54 
MSH2 P43246 DNA mismatch repair protein Msh2; hMSH2 16464007 16612326 2 / Fam15 
MSH3 P20585 DNA mismatch repair protein Msh3; hMSH3 16464007 16612326 2 / Fam15 
MSH6 P52701 DNA mismatch repair protein Msh6; hMSH6 16464007 16612326 2 / Fam15 

MTA2 O94776 Metastasis-associated protein MTA2 12920132 

IRB DDR 
Meeting, 
2012. V. 
Costanzo 79 

MUS81 Q96NY9 Crossover junction endonuclease MUS81 12686547  12 / Fam11 

MYST1 Q9H7Z6 
Probable histone acetyltransferase MYST1 
[2.3.1.48] 20479123  41 / Fam8 

NBN 
(NBS1) O60934 Nibrin 18082599 21252998 61 
NR4A2 Q6NXU0 Nuclear receptor subfamily 4 group A member 2 21979916  73 
PALB2 Q86YC2 Partner and localizer of BRCA2 19268590 21203981 93 

PARP1 P09874 Poly [ADP-ribose] polymerase 1, PARP-1 [2.4.2.30] 18082599  43 / Fam3 

PARP2 Q9UGN5 Poly [ADP-ribose] polymerase 2, PARP-2 [2.4.2.30] 19847258  43 / Fam3 

PAXI1 
(PTIP) Q6ZW49 PAX-interacting protein 1 21035408  58 / Fam7* 
PCNA P12004 Proliferating cell nuclear antigen 18082599 20074041 4 
PIAS1 B3KSY9 E3 SUMO-protein ligase PIAS1 20016603 20074042 55 / Fam1 
PIAS4 Q8N2W9 E3 SUMO-protein ligase PIAS4 20016603 20074042 55 / Fam1 
PLK1 P53350 Serine/threonine-protein kinase PLK1 [2.7.11.21] 18082599 20126263 65 
PMS2 P54278 Mismatch repair endonuclease PMS2 [3.1.-.-] 16464007 16612326 6 / Fam13 

PRKDC 
(DNA-PK) P78527 

DNA-dependent protein kinase catalytic subunit, 
DNA-PKcs [2.7.11.1] 11357144 21487018 35 / Fam16 

RAD1 O60671 
Cell cycle checkpoint protein RAD1; hRAD1 
[3.1.11.2] 18082599  28 

RAD17 O75943 Cell cycle checkpoint protein RAD17 18082599  26 
RAD18 Q9NS91 E3 ubiquitin-protein ligase RAD18 [6.3.2.-] 18082599 20971043 46 
RAD23B P54727 UV excision repair protein RAD23 homolog B 16855787 18166977 11 
RAD50 Q92878 DNA repair protein RAD50; hRAD50 [3.6.-.-] 18082599 21252998 1 
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RAD51 Q06609 DNA repair protein RAD51 homolog 1 18082599  0 

RAD9A Q99638 
Cell cycle checkpoint control protein RAD9A, 
hRAD9 [3.1.11.2] 18082599  30 

RBBP8 
(CTIP) Q99708 Retinoblastoma-binding protein 8 17965729  83 
RBX1 P62877 RING-box protein 1 18082599 21115485 10 
RMI1 Q9H9A7 RecQ-mediated genome instability protein 1 15775963 16595695 80 
RNF168 Q8IYW5 E3 ubiquitin-protein ligase RNF168 [6.3.2.-] 19203579  90 
RNF8 O76064 E3 ubiquitin-protein ligase RNF8 [6.3.2.-] 18082599  82 

RPA1 P27694 
Replication protein A 70 kDa DNA-binding subunit, 
RP-A p70 18082599 18166977 16 

RPA2 P15927 Replication protein A 32 kDa subunit; RP-A p32 18082599 18166977 34 
RPA3 P35244 Replication protein A 14 kDa subunit; RP-A p14 18082599 18166977 23 

SIR1 
(SIRT1) Q96EB6 

NAD-dependent protein deacetylase sirtuin-1 
(Regulatory protein SIR2 homolog 1) 22586264  68 

SKP1 P63208 

S-phase kinase-associated protein 1; Cyclin-
A/CDK2-associated protein p19; Transcription 
elongation factor B 19903939  15 

SLX1 Q9BQ83 Structure-specific endonuclease subunit SLX1 19596236  66 
SLX4 Q8IY92 Structure-specific endonuclease subunit SLX4 19596235 19596236 85 

SMAL1 Q9NZC9 

SWI/SNF-related matrix-associated actin-dependent 
regulator of chromatin subfamily A-like protein 1 
[3.6.1.-] 19793861 19841479 44 

SMC1A Q14683 Structural maintenance of chromosomes protein 1A 19842212 21139141 8 / Fam12 
SMC5 Q8IY18 Structural maintenance of chromosomes protein 5 17589526  8 / Fam12 
SMC6 Q96SB8 Structural maintenance of chromosomes protein 6 17589526  8 / Fam12 
SOX4 Q06945 Transcription factor SOX-4 19234109  87 
TAOK1 Q7L7X3 Serine/threonine-protein kinase TAO1 [2.7.11.1] 18082599  45 / Fam14 

TDP1 
(TYDP1) Q9NUW8 Tyrosyl-DNA phosphodiesterase 1 [3.1.4.-] 16141202  25 

TDP2 
(TYDP2) O95551 Tyrosyl-DNA phosphodiesterase 2 [3.1.4.-] 19794497  48 

TERF2 
(TRF2) Q15554 Telomeric repeat-binding factor 2 20655466  92 

TIF1B 
(KAP1) Q13263 

Transcription intermediary factor 1-beta (KRAB-
associated protein 1) 17056014 17178852 81 

TIMELESS Q9UNS1 Protein timeless 20233725  29 
TIPIN Q9BVW5 TIMELESS-interacting protein 20233725  57 
TOP3A Q13472 DNA topoisomerase 3-alpha 16595695  7 
TOPB1 Q92547 DNA topoisomerase 2-binding protein 1 18082599 19464966 27 
TP53B Q12888 Tumor suppressor p53-binding protein 1 18082599  84 

TRIPC 
(TRIP12) Q14669 Probable E3 ubiquitin-protein ligase TRIP12 17525332 22884692 36 

UBE2N 
(UBC13) P61088 Ubiquitin-conjugating enzyme E2 N [6.3.2.19] 18082599  20 / Fam5 
UBE2T Q9NPD8 Ubiquitin-conjugating enzyme E2 T [6.3.2.19] 22615860  20 / Fam5 

UBP11 
(USP11) P51784 Ubiquitin carboxyl-terminal hydrolase 11 [3.1.2.15] 20233726  14 
UBR5 O95071 E3 ubiquitin-protein ligase UBR5 11714696 22884692 74 

UIMC1 
(RAP80) Q96RL1 BRCA1-A complex subunit RAP80 17525341 18082599 91 
WEE1 P30291 Wee1-like protein kinase, WEE1hu [2.7.10.2] 18082599  45 / Fam14 

XLF 
(NHEJ1) Q9H9Q4 

Non-homologous end-joining factor 1; Protein 
cernunnos; XRCC4-like factor 17038309 21329706 71 
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XPA P23025 

DNA repair protein complementing XP-A cells; 
Xeroderma pigmentosum group A-complementing 
protein  16855787 18166977 69 

XPC Q01831 DNA repair protein complementing XP-C cells 16855787 18166977 19 

XPF 
(ERCC4) Q92889 

DNA repair endonuclease XPF; DNA excision repair 
protein ERCC-4 16855787 18166977 12 / Fam11 

XRCC1 P18887 DNA repair protein XRCC1 18971944  47 
XRCC4 Q13426 DNA repair protein XRCC4 11357144 21329706 60 

XRCC5 
(Ku80) P13010 ATP-dependent DNA helicase 2 subunit 1 [3.6.1.-] 19260023  31 

XRCC6 
(Ku70) P12956 ATP-dependent DNA helicase 2 subunit 2 [3.6.1.-] 19260023  32 
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ST2. Organisms and databases

ORGANISM DATABASE No. of PROTEINS
Organism ID Species Kingdom Phylum Observation Status/Seq. version Source Download date
Ame Apis mellifera Eukaryota Metazoa draft assembly NCBI Feb 5, 2010 9257
Ath Arabidopsis thaliana Eukaryota Viridiplantae complete EBI May 1, 2010 36628
Ava Anabaena variabilis ATCC 29413 Bacteria Cyanobacteria complete NCBI Feb 3, 2010 5661
Bap Buchnera aphidicola strain 5A Bacteria Proteobacteria Endosymbiont complete NCBI Apr 19, 2010 555
Bde Batrachochytrium dendrobatidis Eukaryota Fungi Pathogen draft assembly 1.0 Broad Institute Feb 9, 2010 8818
Bfl Branchiostoma floridae Eukaryota Metazoa draft assembly 1.0 JGI Feb 9, 2010 50817
Bna Bigelowiella natans Eukaryota Rhizaria Secondary endosymbiosis draft assembly NCBI Feb 9, 2010 344
Bsu Bacillus subtilis Bacteria Firmicutes complete NCBI Feb 3, 2010 4176
Cel Caenorhabditis elegans Eukaryota Metazoa complete EBI May 1, 2010 24243
Cin Ciona intestinalis Eukaryota Metazoa draft assembly 2.0 JGI Feb 3, 2010 14002
Cko Candidatus Korarchaeum cryptofilum OPF8 Archaea Korarchaeota complete NCBI Feb 3, 2010 1602
Cne Cryptococcus neoformans Eukaryota Fungi Pathogen complete NCBI Feb 4, 2010 6475
Cpa Cryptosporidium parvum Eukaryota Alveolata Parasite draft assembly NCBI Feb 4, 2010 3805
Cre Chlamydomonas reinhardtii Eukaryota Viridiplantae draft assembly 4.0 JGI Feb 5, 2010 16709
Cte Capitella teleta Eukaryota Metazoa draft assembly 1.0 JGI Feb 8, 2010 32415
Ddi Dictyostelium discoideum Eukaryota Amoebozoa draft assembly NCBI Feb 4, 2010 13377
Dme Drosophila melanogaster Eukaryota Metazoa complete NCBI Feb 5, 2010 21603
Dra Deinococcus radiodurans R1 Bacteria Deinococcus-Thermus complete NCBI Feb 3, 2010 3167
Dre Danio rerio Eukaryota Metazoa draft assembly NCBI Feb 5, 2010 26709
Eco Escherichia coli K12 Bacteria Proteobacteria complete NCBI Feb 3, 2010 4149
Ecu Encephalitozoon cuniculi Eukaryota Fungi Parasite complete NCBI Feb 4, 2010 1996
Ehu Emiliania huxleyi 1516 Eukaryota Haptophyceae draft assembly 1.0 JGI Feb 3, 2010 39125
Gga Gallus gallus Eukaryota Metazoa draft assembly EBI May 1, 2010 22194
Gob Gemmata obscuriglobus UQM 2246 Bacteria Planctomycetes draft assembly NCBI Feb 3, 2010 7989
Gth Guillardia theta Eukaryota Cryptophyta Secondary endosymbiosis draft assembly NCBI Feb 5, 2010 632
Hsa Homo sapiens Eukaryota Metazoa complete EBI May 1, 2010 64611
Mac Methanosarcina acetivorans C2A Archaea Euryarchaeota complete NCBI Feb 3, 2010 4540
Mbr Monosiga brevicollis Eukaryota Choanoflagellida draft assembly 1.0 JGI Feb 3, 2010 9196
Mdo Monodelphis domestica Eukaryota Metazoa draft assembly EBI Feb 5, 2010 32541
Mge Mycoplasma genitalium G37 Bacteria Tenericutes Parasite complete NCBI Feb 3, 2010 475
Mus Mus musculus Eukaryota Metazoa complete EBI Feb 5, 2010 43905
Ngr Naegleria gruberi Eukaryota Heterolobosea draft assembly 1.0 JGI Feb 3, 2010 15753
Nve Nematostella vectensis Eukaryota Metazoa draft assembly 1.0 JGI Feb 8, 2010 27273
Oan Ornithorhynchus anatinus Eukaryota Metazoa draft assembly EBI Feb 5, 2010 26836
Osa Oryza sativa Eukaryota Viridiplantae complete NCBI Feb 5, 2010 26777
Pfa Plasmodium falciparum Eukaryota Alveolata Parasite complete NCBI Feb 4, 2010 5265
Ppa Physcomitrella patens subsp patens Eukaryota Viridiplantae draft assembly 1.1 JGI Feb 9, 2010 35938
Pst Pirellula staleyi DSM 6068 Bacteria Planctomycetes draft assembly NCBI Feb 3, 2010 4717
Ptr Phaeodactylum tricornutum Eukaryota Stramenopiles draft assembly 2.0 JGI Feb 5, 2010 10402
Sce Saccharomyces cerevisiae Eukaryota Fungi complete NCBI Feb 4, 2010 5880
Sja Schistosoma japonicum Eukaryota Metazoa Parasite draft assembly CHGC Feb 8, 2010 13469
Spo Schizosaccharomyces pombe Eukaryota Fungi complete NCBI Feb 4, 2010 5003
Sso Sulfolobus solfataricus P2 Archaea Crenarchaeota complete NCBI Feb 3, 2010 2977
Tad Trichoplax adhaerens Eukaryota Metazoa draft assembly 1.0 JGI Jan 26, 2010 11520
Tbr Trypanosoma brucei Eukaryota Euglenozoa Parasite draft assembly NCBI Feb 4, 2010 9279
Tca Tribolium castaneum Eukaryota Metazoa draft assembly NCBI Feb 5, 2010 9833
Xtr Xenopus tropicalis Eukaryota Metazoa draft assembly 4.1 NCBI Feb 3, 2010 27916
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ST3. Human DDR orthologs obtained using other seed organisms
UniProt ID Gene Name Protein Name Seed organism
P29372 3MG DNA-3-methyladenine glycosylase A. thaliana
Q13686 ALKB1 Alkylated DNA repair protein alkB homolog 1 A. thaliana
Q9UBZ4 APEX2 DNA-(apurinic or apyrimidinic site) lyase 2 A. thaliana
P51946 CCNH Cyclin-H A. thaliana
P50613 CDK7 Cyclin-dependent kinase 7 A. thaliana
O76031 CLPX ATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial E. coli
Q16526 CRY1 Cryptochrome-1 A. thaliana
P0CG13 CTF8 Chromosome transmission fidelity protein 8 homolog S. cerevisiae
Q9BVC3 DCC1 Sister chromatid cohesion protein DCC1 S. cerevisiae
Q6PJP8 DCR1A DNA cross-link repair 1A protein A. thaliana
Q92466 DDB2 DNA damage-binding protein 2 A. thaliana
Q7L5Y6 DET1 DET1 homolog A. thaliana
Q14565 DMC1 Meiotic recombination protein DMC1/LIM15 homolog E. coli / A. thaliana
P28340 DPOD1 DNA polymerase delta catalytic subunit E. coli
P09884 DPOLA DNA polymerase alpha catalytic subunit A. thaliana
Q9UGP5 DPOLL DNA polymerase lambda S. cerevisiae
Q9UKC9 FBXL2 F-box/LRR-repeat protein 2 S. cerevisiae
Q14527 HLTF Helicase-like transcription factor S. cerevisiae
P09429 HMGB1 High mobility group protein B1 A. thaliana
P36776 LONM Lon protease homolog, mitochondrial E. coli
Q96T76 MMS19 MMS19 nucleotide excision repair protein homolog S. cerevisiae
Q9BWT6 MND1 Meiotic nuclear division protein 1 homolog A. thaliana
Q9UIF7 MUTYH A/G-specific adenine DNA glycosylase A. thaliana
Q96FI4 NEIL1 Endonuclease 8-like 1 A. thaliana
P78549 NTHL1 Endonuclease III-like protein 1 A. thaliana
Q6IN85 P4R3A Serine/threonine-protein phosphatase 4 regulatory subunit 3A S. cerevisiae
Q9UBT6 POLK DNA polymerase kappa E. coli
Q9NY27 PP4R2 Serine/threonine-protein phosphatase 4 regulatory subunit 2 S. cerevisiae
Q9UMS4 PRP19 Pre-mRNA-processing factor 19 A. thaliana
P43351 RAD52 DNA repair protein RAD52 homolog S. cerevisiae
Q92698 RAD54 DNA repair and recombination protein RAD54-like A. thaliana / S. cerevisiae
P46063 RECQ1 ATP-dependent DNA helicase Q1 S. cerevisiae
Q9UBZ9 REV1 DNA repair protein REV1 A. thaliana
P35251 RFC1 Replication factor C subunit 1 A. thaliana
P35250 RFC2 Replication factor C subunit 2 A. thaliana
P40938 RFC3 Replication factor C subunit 3 A. thaliana
P35249 RFC4 Replication factor C subunit 4 A. thaliana
P40937 RFC5 Replication factor C subunit 5 A. thaliana
P48378 RFX2 DNA-binding protein RFX2 S. cerevisiae
Q04837 SSBP Single-stranded DNA-binding protein, mitochondrial E. coli / A. thaliana
Q08945 SSRP1 FACT complex subunit SSRP1 A. thaliana
Q6P1K8 T2H2L General transcription factor IIH subunit 2-like protein A. thaliana
P32780 TF2H1 General transcription factor IIH subunit 1 A. thaliana
Q9Y2X8 UB2D4 Ubiquitin-conjugating enzyme E2 D4 S. cerevisiae
Q13404 UB2V1 Ubiquitin-conjugating enzyme E2 variant 1 A. thaliana
Q15819 UB2V2 Ubiquitin-conjugating enzyme E2 variant 2 S. cerevisiae
P49459 UBE2A Ubiquitin-conjugating enzyme E2 A A. thaliana
Q13564 ULA1 NEDD8-activating enzyme E1 regulatory subunit A. thaliana
P13051 UNG Uracil-DNA glycosylase A. thaliana
Q14191 WRN Werner syndrome ATP-dependent helicase E. coli
O43543 XRCC2 DNA repair protein XRCC2 A. thaliana
O43542 XRCC3 DNA repair protein XRCC3 A. thaliana
B4DM52 B4DM52 DNA ligase A. thaliana
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ST4. Orthologs domain composition
Protein 
name Domain architecture Conservation Variations

Species/phylogenetic group 
with variation

1433E 14-3-3 Yes
ATM PI3_PI4_kinase - FATC No PWWP - PI3_PI4_kinase - FATC A. thaliana
ATM PI3_PI4_kinase - FATC No * TAN - PI3_PI4_kinase - FATC C. neoformans and S. cerevisiae
ATM PI3_PI4_kinase - FATC No * FAT - PI3_PI4_kinase - FATC Most species

ATM PI3_PI4_kinase - FATC No * TAN -  FAT - PI3_PI4_kinase - FATC
S. pombe, B. floridae and from X. 
tropicalis

ATR PI3_PI4_kinase - FATC Yes
BARD1 Ank - BRCT No zf-C3HC4 - Ank - BRCT No phylogenetic trend

BLM DEAD - Helicase_C - RQC - HRDC No DEAD - Helicase_C - RQC - Helicase_Sgs1

S. cerevsiae (Note: HRDC and 
Helicase_Sgs1 are members of the 
HRDC-like (CL0426) clan)

BLM DEAD - Helicase_C - RQC - HRDC No DEAD - Helicase_C - RQC - HRDC - HRDC - HRDC D. radiodurans 
BLM DEAD - Helicase_C - RQC - HRDC No DEAD - Helicase_C - RQC - HRDC - GerE A. variabilis
BLM DEAD - Helicase_C - RQC - HRDC No BDHCT - DEAD - Helicase_C - RQC - HRDC Vertebrata
BRCA1 zf-C3HC4 - BRCT Yes
BRCA2 BRCA2 - BRCA-2_helical - BRCA-2_OB1 - BRCA-2_OB3 No ** BRCA2 - BRCA-2_helical - BRCA-2_OB1 - Tower - BRCA-2_OB3 Vertebrata
BRCC3 Mov34 Yes
BRE BRE Yes
CDT1 CDT1 Yes
CHK1 Pkinase Yes
CHK2 FHA - Pkinase Yes
CUL1 Cullin - Cullin_Nedd8 Yes
CUL4 Cullin - Cullin_Nedd8 Yes
DCR1B Lactamase_B - DRMBL Yes
DCR1C Lactamase_B - DRMBL Yes
DDB1 CPSF_A Yes *
DNA2L Dna2 Yes

DNLI4
DNA_ligase_A_N - DNA_ligase_A_M - DNA_ligase_A_C - BRCT - 
BRCT No

DNA_ligase_A_N - DNA_ligase_A_M - DNA_ligase_A_C - BRCT - 
DNA_ligase_IV - BRCT

D. discoideum and Metazoa (except 
S. japonicum)

DTL WD40 Yes **
EME1 ERCC4 Yes
ERCC1 Rad10 - HHH Yes
ERCC2 DEAD_2 - DUF1227 Yes
ERCC3 ResIII - Helicase_C Yes
ERCC5 XPG_N - XPG_I Yes
ERCC6 SNF2_N - Helicase_C Yes
ERCC8 WD40 Yes
EXO1 XPG_N - XPG_I Yes

FANCM ResIII - Helicase_C No DEAD - Helicase_C

No phylogenetic trend (Note: ResIII 
and DEAD are members of the  P-
loop_NTPase (CL0023) clan)

FBW1A F-box - WD40 - WD40 - WD40 - WD40 - WD40 - WD40 - WD40 No
Beta-TrCP_D - F-box - WD40 - WD40 - WD40 - WD40 - WD40 - WD40 - 
WD40 Metazoa

FBX31 F-box - DUF3506 Yes
H2AX Histone Yes

HERC2 RCC1 - Cyt-b5 - MIB_HERC2 - Cul7 - ZZ - APC10 - RCC1 - HECT Yes **
In human 5 N-terminal y 14 C-
terminal RCC1 repeats

HNRPK KH_1 - KH_1 - KH_1 No ROKNT - KH_1 - KH_1 - KH_1 Vertebrata
HUS1 Hus1 Yes
KAT5 Tudor-knot - MOZ_SAS Yes
MAPK2 Pkinase Yes
MDC1 FHA - BRCT - BRCT Yes
MDM2 SWIB - zf-RanBP Yes
MDM4 SWIB - zf-RanBP Yes
MK03 Pkinase Yes
MLH1 HATPase_c - DNA_mis_repair - MutL_C No HATPase_c - DNA_mis_repair - MutL_C Prokaryotes
MPIP1 Rhodanese No M-inducer_phosp -  Rhodanese From X. tropicalis
MPIP3 Rhodanese No M-inducer_phosp -  Rhodanese From X. tropicalis
MRE11 Metallophos - Mre11_DNA_bind Yes
MSH2 MutS_I - MutS_II - MutS_III - MutS_IV - MutS_V Yes
MSH3 MutS_I - MutS_II - MutS_III - MutS_IV - MutS_V Yes

MSH6 MutS_I - MutS_II - MutS_III - MutS_IV - MutS_V No PWWP - MutS_I - MutS_II - MutS_III - MutS_IV - MutS_V

O. sativa, and  from N. vectensis to 
human, but not in fungi, arthropoda 
and C. elegans

MTA2 BAH - ELM2 - Myb_DNA-binding - GATA Yes
MUS81 ERCC4 Yes
MYST1 Tudor-knot - MOZ_SAS Yes
NBN FHA - BRCT - Nbs1_C Yes
NR4A2 zf-C4 - Hormone_recep Yes
NSE2 zf-Nse Yes
PARP1 zf-PARP - PADR1 - BRCT - WGR - PARP_reg - PARP No zf-PARP - zf-PARP - PADR1 - BRCT - WGR - PARP_reg - PARP Plants and Metazoa
PARP2 WGR - PARP_reg - PARP No SAP - SAP - WGR - PARP_reg - PARP Plants
PAXI1 BRCT Yes
PCNA PCNA_N - PCNA_C Yes
PIAS1 SAP - zf-MIZ No SAP - PHD - zf-MIZ Plants
PIAS4 SAP - zf-MIZ Yes
PLK1 Pkinase No Pkinase - POLO_box - POLO_box Eukaryotes
PMS2 HATPase_c - DNA_mis_repair - MutL_C Yes
PRKDC NUC194 - FAT - PI3_PI4_kinase - FATC Yes
RAD1 Rad1 Yes
RAD17 Rad17 Yes
RAD18 zf-C3HC4 - SAP Yes

RAD50 SMC_N - Rad50_zn_hook - SMC_N No Rad50_zn_hook

From S. japonicum to human, 
except arthopoda, the SMC_N 
domains were not identified

RAD51 Rad51 No RecA Bacteria
RAD51 Rad51 No Cdd1 - Rad51 Archaea
RAD51 Rad51 No Rad51 - Lon_C B. subtilis
RAD51 Rad51 No HHH - Rad51 From T. brucei to human
RAD9 Rad9 Yes
RBBP8 CtIP_N - SAE2 Yes
RBX1 zf-C3HC4 Yes
RD23B ubiquitin - UBA - XPC-binding - UBA Yes
RFA1 Rep-A_N - tRNA_anti - Rep_fac-A_C Yes
RFA2 tRNA_anti - RPA_C Yes
RFA3 Rep_fac-A_3 Yes
RMI1 DUF1767 Yes
RN168 zf-C3HC4 Yes
RNF8 FHA - zf-C3HC4 Yes
SIRT1 DUF592 - SIR2 Yes
SKP1 Skp1_POZ - Skp1 Yes
SLX1 GIY-YIG (FANCL_C / zf-RING-like) Yes
SLX4 BTB Yes
SMAL1 SNF2_N - Helicase_C No HARP -  SNF2_N - Helicase_C From N. vectensis
SMC1A SMC_N Yes
SMC5 SMC_N Yes
SMC6 SMC_N Yes
SOX4 HMG_box Yes
TAOK1 Pkinase Yes
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TDP1 Tyr-DNA_phospho Yes *
TDP2 Exo_endo_phos No zf-RanBP - Exo_endo_phos O. sativa and P. patens
TERF2 TRF - Myb_DNA-binding Yes
TIF1B zf-B_box - zf-B_box - PHD Yes
TIM TIMELESS - TIMELESS_C Yes
TIPIN Swi3 No zf-CCHC - Swi3 Plants
TOP3A Toprim - Topoisom_bac - zf-C4_Topoisom - zf-GRF - zf-GRF Yes *
TOPB1 BRCT Yes **
TP53B 53-BP1_Tudor - BRCT - BRCT Yes
TRIPC WWE - HECT Yes *
UBE2N UQ_con Yes
UBE2T UQ_con Yes
UBP11 DUSP - UCH Yes *
UBR5 E3_UbLigase_EDD - zf-UBR - PABP - HECT Yes
UIMC1 UIM Yes
WEE1 Pkinase Yes
XLF XLF Yes
XPA XPA_N -  XPA_C Yes
XPC Rad4 - BHD_1 - BHD_2 - BHD_3 Yes
XPF ERCC4 Yes
XRCC1 XRCC1_N - BRCT - BRCT Yes
XRCC4 XRCC4 Yes
XRCC5 Ku_N - Ku - Ku_C -  Ku_PK_bind Yes
XRCC6 Ku_N - Ku - Ku_C - SAP Yes

*

Some orthologs with slightly different domain architecture, 
most probably due to incorrect gene prediction or domains 
with bad scores.

** The number of repeats varies in different species
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ST5: Domain enrichment (Results 4.4.5) 
 

Domain Pfam ID 
DDR proteins 
with domain  

Proteins with 
domain in 
proteome 

Fisher  
p-value 

Bonferroni 
adjusted  
p-value 

BRCT PF00533 9 29 3.54E-15 6.16E-13 
DNA_photolyase PF00875 5 9 1.67E-10 2.91E-08 
FAD_binding_7 PF03441 5 9 1.67E-10 2.91E-08 
Helicase_C PF00271 9 174 6.81E-08 1.19E-05 
PARP_reg PF02877 3 3 7.69E-08 1.34E-05 
WGR PF05406 3 3 7.69E-08 1.34E-05 
UQ_con PF00179 6 52 9.64E-08 1.68E-05 
MutS_I PF01624 3 5 7.64E-07 1.33E-04 
Rep_fac_C PF08542 3 5 7.64E-07 1.33E-04 
HhH-GPD PF00730 4 20 1.48E-06 2.58E-04 
ResIII PF04851 4 20 1.48E-06 2.58E-04 
SNF2_N PF00176 5 50 2.44E-06 4.25E-04 
MutS_II PF05188 3 7 2.66E-06 4.62E-04 
MutS_III PF05192 3 7 2.66E-06 4.62E-04 
Rad51 PF08423 3 7 2.66E-06 4.62E-04 
AAA PF00004 7 151 4.23E-06 7.35E-04 
HHH PF00633 3 8 4.24E-06 7.38E-04 
ERCC4 PF02732 3 9 6.34E-06 1.10E-03 
SMC_N PF02463 3 9 6.34E-06 1.10E-03 
MutS_V PF00488 3 10 9.03E-06 1.57E-03 
PARP PF00644 3 10 9.03E-06 1.57E-03 
SAP PF02037 3 11 1.24E-05 2.15E-03 
Ku PF02735 2 2 1.82E-05 3.17E-03 
Ku_C PF03730 2 2 1.82E-05 3.17E-03 
Ku_N PF03731 2 2 1.82E-05 3.17E-03 
PADR1 PF08063 2 2 1.82E-05 3.17E-03 
zf-PARP PF00645 2 3 5.45E-05 9.48E-03 

 

Table ST5a: DDR domains enriched in A. thaliana (only those with a Bonferroni adjusted p-value  
< 0.01 are shown) 
 
 

Domain Pfam ID 
DDR proteins 
with domain  

Proteins with 
domain in 
proteome 

Fisher  
p-value 

Bonferroni 
adjusted  
p-value 

AAA PF00004 7 34 5.54E-06 7.81E-04 
SMC_N PF02463 4 7 6.49E-06 9.15E-04 
Rad51 PF08423 3 3 9.38E-06 1.32E-03 
Rep_fac_C PF08542 3 3 9.38E-06 1.32E-03 
FHA PF00498 5 15 1.01E-05 1.43E-03 
zf-C3HC4 PF00097 6 27 1.68E-05 2.37E-03 
Pkinase PF00069 11 116 3.06E-05 4.31E-03 
MutS_I PF01624 3 4 3.69E-05 5.21E-03 
MutS_II PF05188 3 5 9.09E-05 1.28E-02 
UQ_con PF00179 4 14 1.65E-04 2.33E-02 
MutS_III PF05192 3 6 1.79E-04 2.52E-02 
MutS_V PF00488 3 6 1.79E-04 2.52E-02 

 

Table ST5b: DDR domains enriched in S. cerevisiae (only those with a Bonferroni adjusted p-value  
< 0.05 are shown) 
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Domain Pfam ID 
DDR proteins 
with domain  

Proteins with 
domain in 
proteome 

Fisher  
p-value 

Bonferroni 
adjusted  
p-value 

HHH PF00633 3 3 1.86E-06 1.47E-04 
HhH-GPD PF00730 3 3 1.86E-06 1.47E-04 
SMC_N PF02463 3 4 7.37E-06 5.82E-04 
UvrD-helicase PF00580 3 4 7.37E-06 5.82E-04 
EndIII_4Fe-2S PF10576 2 2 1.54E-04 1.22E-02 
IMS PF00817 2 2 1.54E-04 1.22E-02 
IMS_C PF11799 2 2 1.54E-04 1.22E-02 
IMS_HHH PF11798 2 2 1.54E-04 1.22E-02 
UVR PF02151 2 2 1.54E-04 1.22E-02 
GIY-YIG PF01541 2 3 4.59E-04 3.62E-02 

 

Table ST5c: DDR domains enriched in E. coli (only those with a Bonferroni adjusted p-value < 0.05  
are shown) 
 
 

Domain Pfam ID 
DDR proteins 
with domain  

Proteins with 
domain in 
proteome 

Fisher  
p-value 

Bonferroni 
adjusted  
p-value 

AAA PF00004 7 49 2.60E-09 3.64E-07 
Rad17 PF03215 3 3 9.43E-08 1.32E-05 
BRCT PF00533 4 27 6.82E-06 9.54E-04 
UQ_con PF00179 4 28 7.92E-06 1.11E-03 
DNA_ligase_A_M PF01068 2 2 2.09E-05 2.93E-03 
DNA_mis_repair PF01119 2 2 2.09E-05 2.93E-03 
Ku PF02735 2 2 2.09E-05 2.93E-03 
Ku_N PF03731 2 2 2.09E-05 2.93E-03 
MutS_I PF01624 2 2 2.09E-05 2.93E-03 
Rep_fac_C PF08542 2 2 2.09E-05 2.93E-03 
SMC_N PF02463 3 13 2.61E-05 3.65E-03 
HHH PF00633 2 3 6.26E-05 8.76E-03 

 

Table ST5d: DDR domains enriched in C. elegans (only those with a Bonferroni adjusted p-value  
< 0.01 are shown) 
 
 
 
 

Domain Pfam ID 
DDR proteins 
with domain  

Proteins 
with domain 
in proteome 

Fisher  
p-value 

Bonferroni 
adjusted  
p-value 

BRCT PF00533 6 13 6.75E-10 1.10E-07 
SMC_N PF02463 4 7 1.97E-07 3.21E-05 
ERCC4 PF02732 3 3 6.68E-07 1.09E-04 
Rep_fac_C PF08542 3 3 6.68E-07 1.09E-04 
Rad17 PF03215 3 4 2.65E-06 4.33E-04 
Pkinase PF00069 10 174 3.11E-06 5.07E-04 
AAA PF00004 6 49 4.25E-06 6.92E-04 
tRNA_anti PF01336 3 8 3.62E-05 5.90E-03 
ResIII PF04851 3 10 7.66E-05 1.25E-02 
DNA_mis_repair PF01119 2 2 7.71E-05 1.26E-02 
Ku PF02735 2 2 7.71E-05 1.26E-02 
Ku_N PF03731 2 2 7.71E-05 1.26E-02 
MutS_I PF01624 2 2 7.71E-05 1.26E-02 
MutS_II PF05188 2 2 7.71E-05 1.26E-02 
MutS_III PF05192 2 2 7.71E-05 1.26E-02 
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MutS_V PF00488 2 2 7.71E-05 1.26E-02 
zf-MIZ PF02891 2 2 7.71E-05 1.26E-02 
UQ_con PF00179 4 32 1.71E-04 2.78E-02 
HECT PF00632 3 14 2.26E-04 3.69E-02 
DNA_ligase_A_C PF04679 2 3 2.30E-04 3.75E-02 
DNA_ligase_A_M PF01068 2 3 2.30E-04 3.75E-02 
DNA_ligase_A_N PF04675 2 3 2.30E-04 3.75E-02 
HHH PF00633 2 3 2.30E-04 3.75E-02 

 

Table ST5e: DDR domains enriched in D. melanogaster (only those with a Bonferroni adjusted  
p-value < 0.05 are shown) 
 
 
 

Domain Pfam ID 
DDR proteins 
with domain  

Proteins with 
domain in 
proteome 

Fisher  
p-value 

Bonferroni 
adjusted  
p-value 

Rad51 PF08423 3 3 1.38E-05 1.99E-03 
Rep_fac_C PF08542 3 3 1.38E-05 1.99E-03 
AAA PF00004 7 35 1.56E-05 2.25E-03 
zf-C3HC4 PF00097 7 38 2.76E-05 3.97E-03 
HhH-GPD PF00730 3 4 5.42E-05 7.81E-03 
MutS_I PF01624 3 4 5.42E-05 7.81E-03 
MutS_II PF05188 3 4 5.42E-05 7.81E-03 
MutS_III PF05192 3 4 5.42E-05 7.81E-03 
MutS_V PF00488 3 4 5.42E-05 7.81E-03 
SAP PF02037 3 6 2.62E-04 3.77E-02 
SMC_N PF02463 3 6 2.62E-04 3.77E-02 
UQ_con PF00179 4 14 2.70E-04 3.89E-02 

 

Table ST5f: DDR domains enriched in S. pombe (only those with a Bonferroni adjusted p-value  
< 0.05 are shown) 
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ST6. GO functional enrichment of 118 human DDR proteins
Category: BiologicalProcess (GOTERM_BP_FAT)

Term Count % PValue Genes Pop Hits Pop Total
Fold 
Enrichment Bonferroni

GO:0006974~response to DNA damage stimulus 88 73.95 1.88E-113

DDB1, DNA2L, SLX1, FACD2, MRE11, MSH6, LIG4, RFA3, XPC, TDP2, SLX4, ATRIP, MRI40, FANCM, XRCC4, 
UBP11, CUL4, CHK1, RAD50, PARP2, EXO1, MDM2, SMC6, BARD1, RFA2, ERCC3, RAD23B, FBX31, MUS81, 
RAD9A, SMC5, ERCC5, SMC1A, XLF, CLSPN, RAD18, PMS2, XPF, TERF2, XRCC6, BLM, MLH1, NBN, PARP1, 
F175A, PRKDC, MSH3, TOPB1, ATM, BRCC3, BRCA1, RBX1, ERCC1, XPA, RAD1, ERCC8, MMS21, PCNA, TIPIN, 
DCR1C, H2AX, RFA1, SIR1, BRE, TP53B, RN168, RBBP8, TDP1, UBE2N, XRCC5, TIM, CHK2, UBR5, KAT5, 
DCR1B, RNF8, ATR, DTL, HUS1, ERCC2, ERCC6, XRCC1, BRCA2, MSH2, EME1, RAD51, RAD17 373 13528 27.047394 1.77E-110

GO:0006281~DNA repair 81 68.067 7.39E-110

DDB1, DNA2L, SLX1, MRE11, FACD2, MSH6, LIG4, RFA3, XPC, TDP2, SLX4, ATRIP, MRI40, FANCM, XRCC4, 
CUL4, CHK1, RAD50, PARP2, EXO1, MDM2, SMC6, BARD1, RFA2, ERCC3, RAD23B, MUS81, RAD9A, SMC5, 
ERCC5, SMC1A, XLF, CLSPN, RAD18, PMS2, XPF, XRCC6, BLM, MLH1, NBN, PARP1, F175A, PRKDC, MSH3, 
TOPB1, ATM, BRCC3, BRCA1, RBX1, ERCC1, XPA, RAD1, ERCC8, MMS21, PCNA, DCR1C, H2AX, RFA1, SIR1, 
BRE, TP53B, RN168, RBBP8, TDP1, UBE2N, XRCC5, UBR5, KAT5, DCR1B, RNF8, ATR, HUS1, ERCC2, ERCC6, 
XRCC1, BRCA2, MSH2, EME1, RAD51, RAD17 284 13528 32.69778 6.97E-107

GO:0006259~DNA metabolic process 90 75.63 1.13E-104

DDB1, DNA2L, SLX1, FACD2, MRE11, MSH6, LIG4, TOP3A, RFA3, XPC, TDP2, SLX4, ATRIP, MRI40, FANCM, 
XRCC4, MPIP1, CUL4, MPIP3, CHK1, RAD50, PARP2, EXO1, MDM2, SMC6, BARD1, RFA2, SMAL1, ERCC3, 
RAD23B, MUS81, RAD9A, SMC5, ERCC5, SMC1A, XLF, CLSPN, RAD18, PMS2, XPF, TERF2, XRCC6, BLM, MLH1, 
NBN, PARP1, F175A, PRKDC, MSH3, TOPB1, ATM, RMI1, BRCC3, BRCA1, RBX1, ERCC1, XPA, RAD1, ERCC8, 
MMS21, PCNA, TIPIN, DCR1C, H2AX, RFA1, SIR1, BRE, TP53B, RN168, RBBP8, TDP1, UBE2N, XRCC5, UBR5, 
KAT5, DCR1B, RNF8, ATR, CDT1, DTL, HUS1, ERCC2, ERCC6, XRCC1, BRCA2, MSH2, EME1, RAD51, RAD17 506 13528 20.391237 1.06E-101

GO:0033554~cellular response to stress 88 73.95 3.52E-96

DDB1, DNA2L, SLX1, FACD2, MRE11, MSH6, LIG4, RFA3, XPC, TDP2, SLX4, ATRIP, MRI40, FANCM, XRCC4, 
UBP11, CUL4, CHK1, RAD50, PARP2, EXO1, MDM2, SMC6, BARD1, RFA2, ERCC3, RAD23B, FBX31, MUS81, 
RAD9A, SMC5, ERCC5, SMC1A, XLF, CLSPN, RAD18, PMS2, XPF, TERF2, XRCC6, BLM, MLH1, NBN, PARP1, 
F175A, PRKDC, MSH3, TOPB1, ATM, BRCC3, BRCA1, RBX1, ERCC1, XPA, RAD1, ERCC8, MMS21, PCNA, TIPIN, 
DCR1C, H2AX, RFA1, SIR1, BRE, TP53B, RN168, RBBP8, TDP1, UBE2N, XRCC5, TIM, CHK2, UBR5, KAT5, 
DCR1B, RNF8, ATR, DTL, HUS1, ERCC2, ERCC6, XRCC1, BRCA2, MSH2, EME1, RAD51, RAD17 566 13528 17.824519 3.32E-93

GO:0006302~double-strand break repair 34 28.571 1.99E-53

SLX1, XPF, MRE11, XRCC6, LIG4, BLM, NBN, MLH1, TDP2, F175A, PRKDC, SLX4, BRCC3, MRI40, BRCA1, 
ERCC1, XRCC4, DCR1C, H2AX, RFA1, BRE, RAD50, TDP1, RN168, UBE2N, XRCC5, KAT5, UBR5, RNF8, HUS1, 
XLF, BRCA2, MSH2, RAD51 62 13528 62.869328 1.88E-50

GO:0006310~DNA recombination 34 28.571 7.54E-44

PMS2, SLX1, XPF, MRE11, MSH6, XRCC6, LIG4, BLM, NBN, MLH1, PRKDC, SLX4, MSH3, ATM, BRCA1, ERCC1, 
XRCC4, MMS21, DCR1C, H2AX, RFA1, CHK1, RAD50, EXO1, UBE2N, XRCC5, SMC6, HUS1, MUS81, SMC5, 
BRCA2, EME1, MSH2, RAD51 105 13528 37.122841 7.11E-41

GO:0042770~DNA damage response, signal 
transduction 30 25.21 1.29E-40

MSH6, BLM, NBN, MLH1, XPC, F175A, ATRIP, ATM, BRCC3, MRI40, BRCA1, RAD1, XPA, TIPIN, H2AX, CHK1, 
BRE, MDM2, CHK2, KAT5, UBR5, ATR, FBX31, ERCC6, HUS1, RAD9A, SMC1A, BRCA2, MSH2, RAD17 80 13528 42.991525 1.22E-37

GO:0051052~regulation of DNA metabolic process 32 26.891 6.67E-39

DNA2L, TERF2, XPF, MRE11, MSH6, BLM, NBN, MLH1, F175A, MSH3, BRCC3, MRI40, BRCA1, ERCC1, ERCC8, 
TIPIN, PCNA, H2AX, BRE, RAD50, RN168, UBE2N, UBR5, RNF8, CDT1, ATR, HUS1, RAD9A, BRCA2, MSH2, 
RAD51, RAD17 114 13528 32.180791 6.29E-36

GO:0000075~cell cycle checkpoint 30 25.21 1.12E-38
DDB1, BLM, NBN, XPC, F175A, ATRIP, ATM, BRCC3, MRI40, BRCA1, RAD1, TIPIN, H2AX, CHK1, BRE, RBBP8, 
MDM2, CHK2, UBR5, ERCC3, FBX31, CDT1, ATR, HUS1, ERCC2, RAD9A, SMC1A, MSH2, RAD17 91 13528 37.794748 1.05E-35

GO:0031570~DNA integrity checkpoint 24 20.168 1.03E-34
CHK1, BRE, BLM, NBN, MDM2, CHK2, UBR5, XPC, F175A, ATRIP, ATM, ATR, FBX31, BRCC3, CDT1, HUS1, 
MRI40, BRCA1, RAD9A, RAD1, MSH2, TIPIN, RAD17, H2AX 52 13528 52.912647 9.69E-32

GO:0000077~DNA damage checkpoint 23 19.328 1.16E-33
CHK1, BRE, BLM, NBN, MDM2, CHK2, UBR5, XPC, F175A, ATRIP, ATM, ATR, FBX31, BRCC3, HUS1, MRI40, 
BRCA1, RAD9A, RAD1, MSH2, TIPIN, RAD17, H2AX 48 13528 54.933616 1.09E-30

GO:0010212~response to ionizing radiation 24 20.168 6.44E-33
BRE, FACD2, XRCC6, LIG4, BLM, RN168, UBR5, F175A, PRKDC, TOPB1, ATM, RNF8, BRCC3, ERCC6, MRI40, 
BRCA1, XRCC4, ERCC1, XLF, BRCA2, MSH2, ERCC8, DCR1C, H2AX 60 13528 45.857627 6.07E-30

GO:0009314~response to radiation 33 27.731 3.77E-32

FACD2, XPF, MSH6, XRCC6, LIG4, BLM, XPC, F175A, PRKDC, ATM, TOPB1, BRCC3, MRI40, BRCA1, ERCC1, 
XRCC4, XPA, ERCC8, DCR1C, H2AX, BRE, RN168, UBR5, ERCC3, RNF8, ERCC6, HUS1, ERCC2, ERCC5, SMC1A, 
XLF, BRCA2, MSH2 200 13528 18.916271 3.55E-29

GO:0051726~regulation of cell cycle 36 30.252 8.43E-29

DDB1, BLM, NBN, XPC, F175A, ATRIP, ATM, BRCC3, MDM4, MRI40, BRCA1, RAD1, MPIP1, HERC2, TIPIN, MPIP3, 
H2AX, CHK1, BRE, RBBP8, TIM, CHK2, MDM2, UBR5, ERCC3, CDT1, FBX31, ATR, HUS1, ERCC2, RAD9A, 
SMC1A, BRCA2, MSH2, RAD17 331 13528 12.468841 7.95E-26

GO:0006260~DNA replication 29 24.37 4.60E-27
DNA2L, MRE11, TERF2, LIG4, BLM, RFA3, TOP3A, ATRIP, RMI1, BRCA1, RAD1, MPIP1, TIPIN, PCNA, MPIP3, 
RFA1, SIR1, CHK1, RAD50, RFA2, ATR, CDT1, DTL, HUS1, RAD9A, CLSPN, BRCA2, RAD51, RAD17 190 13528 17.498305 4.33E-24
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ST6. GO functional enrichment of 118 human DDR proteins
Category: CellularComponent (GOTERM_CC_FAT)

Term Count % PValue Genes Pop Hits Pop Total
Fold 
Enrichment Bonferroni

GO:0005654~nucleoplasm 59 49.58 2.54E-42

DDB1, DNA2L, MRE11, FACD2, TOP3A, RFA3, PAXI1, XPC, TDP2, ATRIP, PLK1, MDM4, CUL1, MPIP1, HNRPK, 
MPIP3, CHK1, PARP2, MDM2, RFA2, ERCC3, RAD23B, ERCC5, CLSPN, PIAS1, TERF2, XPF, XRCC6, BLM, NBN, 
PARP1, PRKDC, ATM, TOPB1, BRCA1, SKP1, ERCC1, XPA, ERCC8, PCNA, TIF1B, H2AX, SIR1, RFA1, TP53B, 
XRCC5, CHK2, MDC1, KAT5, CDT1, ATR, ERCC6, ERCC2, MTA2, BRCA2, XRCC1, RAD51, WEE1 882 12782 8.6366843 4.14E-40

GO:0031981~nuclear lumen 64 53.782 6.74E-36

DDB1, DNA2L, MRE11, FACD2, TOP3A, PAXI1, RFA3, XPC, TDP2, ATRIP, PLK1, MDM4, CUL1, MPIP1, HNRPK, 
MPIP3, CHK1, PARP2, PIAS4, MDM2, RFA2, ERCC3, RAD23B, RAD9A, MUS81, ERCC5, CLSPN, PIAS1, TERF2, 
XPF, XRCC6, BLM, NBN, PARP1, PRKDC, TOPB1, ATM, BRCA1, SKP1, ERCC1, XPA, ERCC8, PCNA, TIF1B, H2AX, 
RFA1, SIR1, TP53B, XRCC5, CHK2, MDC1, KAT5, CDT1, ATR, ERCC6, ERCC2, MTA2, XRCC1, BRCA2, EME1, 
RAD51, WEE1, RAD17 1450 12782 5.6986973 1.10E-33

GO:0070013~intracellular organelle lumen 64 53.782 1.22E-30

DDB1, DNA2L, MRE11, FACD2, TOP3A, PAXI1, RFA3, XPC, TDP2, ATRIP, PLK1, MDM4, CUL1, MPIP1, HNRPK, 
MPIP3, CHK1, PARP2, PIAS4, MDM2, RFA2, ERCC3, RAD23B, RAD9A, MUS81, ERCC5, CLSPN, PIAS1, TERF2, 
XPF, XRCC6, BLM, NBN, PARP1, PRKDC, TOPB1, ATM, BRCA1, SKP1, ERCC1, XPA, ERCC8, PCNA, TIF1B, H2AX, 
RFA1, SIR1, TP53B, XRCC5, CHK2, MDC1, KAT5, CDT1, ATR, ERCC6, ERCC2, MTA2, XRCC1, BRCA2, EME1, 
RAD51, WEE1, RAD17 1779 12782 4.6448067 1.99E-28

GO:0043233~organelle lumen 64 53.782 4.61E-30

DDB1, DNA2L, MRE11, FACD2, TOP3A, PAXI1, RFA3, XPC, TDP2, ATRIP, PLK1, MDM4, CUL1, MPIP1, HNRPK, 
MPIP3, CHK1, PARP2, PIAS4, MDM2, RFA2, ERCC3, RAD23B, RAD9A, MUS81, ERCC5, CLSPN, PIAS1, TERF2, 
XPF, XRCC6, BLM, NBN, PARP1, PRKDC, TOPB1, ATM, BRCA1, SKP1, ERCC1, XPA, ERCC8, PCNA, TIF1B, H2AX, 
RFA1, SIR1, TP53B, XRCC5, CHK2, MDC1, KAT5, CDT1, ATR, ERCC6, ERCC2, MTA2, XRCC1, BRCA2, EME1, 
RAD51, WEE1, RAD17 1820 12782 4.5401709 7.51E-28

GO:0005694~chromosome 39 32.773 8.54E-30

SLX1, TERF2, XPF, FACD2, MSH6, XRCC6, BLM, LIG4, NBN, RFA3, MLH1, TOP3A, SLX4, MYST1, TOPB1, BRCA1, 
ERCC1, XRCC4, TIPIN, PCNA, TIF1B, H2AX, RFA1, CHK1, RAD50, TP53B, RN168, XRCC5, TIM, KAT5, SMC6, 
RFA2, RNF8, ATR, SMC5, SMC1A, CLSPN, RAD51, RAD18 460 12782 10.946377 1.39E-27

GO:0031974~membrane-enclosed lumen 64 53.782 1.44E-29

DDB1, DNA2L, MRE11, FACD2, TOP3A, PAXI1, RFA3, XPC, TDP2, ATRIP, PLK1, MDM4, CUL1, MPIP1, HNRPK, 
MPIP3, CHK1, PARP2, PIAS4, MDM2, RFA2, ERCC3, RAD23B, RAD9A, MUS81, ERCC5, CLSPN, PIAS1, TERF2, 
XPF, XRCC6, BLM, NBN, PARP1, PRKDC, TOPB1, ATM, BRCA1, SKP1, ERCC1, XPA, ERCC8, PCNA, TIF1B, H2AX, 
RFA1, SIR1, TP53B, XRCC5, CHK2, MDC1, KAT5, CDT1, ATR, ERCC6, ERCC2, MTA2, XRCC1, BRCA2, EME1, 
RAD51, WEE1, RAD17 1856 12782 4.4521073 2.35E-27

GO:0000228~nuclear chromosome 24 20.168 2.97E-23
RFA1, CHK1, SLX1, TERF2, XPF, MSH6, RAD50, XRCC6, BLM, MLH1, TIM, XRCC5, RFA3, NBN, RFA2, SLX4, 
TOPB1, ATR, SMC1A, ERCC1, RAD51, TIPIN, TIF1B, H2AX 162 12782 19.127572 4.84E-21

GO:0044454~nuclear chromosome part 20 16.807 4.34E-20
RFA1, SLX1, XPF, TERF2, MSH6, RAD50, XRCC6, BLM, MLH1, TIM, RFA3, NBN, XRCC5, RFA2, SLX4, ATR, 
ERCC1, TIPIN, TIF1B, H2AX 122 12782 21.165756 7.08E-18

GO:0044427~chromosomal part 27 22.689 6.32E-18
SLX1, XPF, TERF2, MSH6, XRCC6, BLM, NBN, RFA3, MLH1, SLX4, MYST1, ERCC1, TIPIN, PCNA, TIF1B, H2AX, 
RFA1, CHK1, RAD50, TP53B, TIM, XRCC5, KAT5, RFA2, ATR, SMC1A, RAD18 386 12782 9.0310881 1.03E-15

GO:0043232~intracellular non-membrane-bounded 
organelle 56 47.059 5.43E-15

SLX1, MRE11, FACD2, MSH6, LIG4, RFA3, TOP3A, SLX4, MYST1, PLK1, MDM4, XRCC4, HNRPK, CHK1, RAD50, 
PARP2, MDM2, SMC6, RFA2, RAD9A, MUS81, SMC5, SMC1A, CLSPN, RAD18, TERF2, XPF, XRCC6, BLM, MLH1, 
NBN, PARP1, TOPB1, ATM, BRCA1, ERCC1, PCNA, TIPIN, TIF1B, H2AX, SIR1, RFA1, TP53B, RN168, XRCC5, TIM, 
MDC1, KAT5, ATR, RNF8, ERCC6, MTA2, BRCA2, EME1, RAD51, RAD17 2596 12782 2.7851395 8.87E-13

GO:0043228~non-membrane-bounded organelle 56 47.059 5.43E-15

SLX1, MRE11, FACD2, MSH6, LIG4, RFA3, TOP3A, SLX4, MYST1, PLK1, MDM4, XRCC4, HNRPK, CHK1, RAD50, 
PARP2, MDM2, SMC6, RFA2, RAD9A, MUS81, SMC5, SMC1A, CLSPN, RAD18, TERF2, XPF, XRCC6, BLM, MLH1, 
NBN, PARP1, TOPB1, ATM, BRCA1, ERCC1, PCNA, TIPIN, TIF1B, H2AX, SIR1, RFA1, TP53B, RN168, XRCC5, TIM, 
MDC1, KAT5, ATR, RNF8, ERCC6, MTA2, BRCA2, EME1, RAD51, RAD17 2596 12782 2.7851395 8.87E-13

GO:0070531~BRCA1-A complex 7 5.8824 1.21E-12 BRE, BRCC3, MRI40, BRCA1, UBR5, F175A, BARD1 7 12782 129.11111 1.97E-10
GO:0005657~replication fork 10 8.4034 1.53E-12 RFA1, CHK1, TP53B, BLM, NBN, RFA3, PCNA, RFA2, RAD18, H2AX 32 12782 40.347222 2.49E-10
GO:0000781~chromosome, telomeric region 9 7.563 3.36E-11 XPF, TERF2, RAD50, XRCC6, BLM, ERCC1, NBN, XRCC5, SLX4 29 12782 40.068966 5.47E-09
GO:0000151~ubiquitin ligase complex 12 10.084 7.65E-11 BRE, BRCC3, FBX31, RNF8, BRCA1, SKP1, RBX1, RN168, CUL1, CUL4, HERC2, BARD1 90 12782 17.214815 1.25E-08
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ST6. GO functional enrichment of 118 human DDR proteins
Category: MolecularFunction (GOTERM_MF_FAT)

Term Count % PValue Genes Pop Hits Pop Total
Fold 
Enrichment Bonferroni

GO:0003684~damaged DNA binding 19 15.966 9.91E-26
DDB1, XPF, MSH6, TP53B, NBN, XPC, MSH3, ERCC3, RAD23B, BRCA1, ERCC1, RAD1, XPA, XRCC1, MSH2, 
RAD51, RAD18, H2AX 50 12983 45.680926 2.30E-23

GO:0043566~structure-specific DNA binding 24 20.168 1.32E-23
RFA1, PMS2, TERF2, MRE11, XPF, MSH6, XRCC6, EXO1, TDP1, BLM, MLH1, XRCC5, RFA3, XPC, RFA2, MSH3, 
RAD23B, ERCC5, ERCC1, BRCA2, MSH2, RAD51, PCNA, RAD18 145 12983 19.897318 3.07E-21

GO:0003697~single-stranded DNA binding 16 13.445 1.77E-19 RFA1, PMS2, XPF, BLM, TDP1, MLH1, RFA3, XPC, RFA2, MSH3, RAD23B, ERCC5, ERCC1, BRCA2, MSH2, RAD51 55 12983 34.971044 4.11E-17

GO:0003677~DNA binding 61 51.261 6.03E-19

DDB1, DNA2L, MRE11, MSH6, LIG4, RFA3, TOP3A, XPC, FANCM, XRCC4, HNRPK, RAD50, PARP2, EXO1, PIAS4, 
RFA2, SMAL1, ERCC3, RAD23B, MUS81, ERCC5, CLSPN, XLF, PIAS1, RAD18, PMS2, TERF2, XPF, XRCC6, BLM, 
NR4A2, MLH1, NBN, PARP1, PRKDC, MSH3, ATM, TOPB1, BRCA1, ERCC1, XPA, RAD1, SOX4, PCNA, TIF1B, 
H2AX, RFA1, TP53B, TDP1, XRCC5, CDT1, ATR, ERCC6, ERCC2, MTA2, BRCA2, XRCC1, EME1, MSH2, RAD51 2331 12983 3.1458562 1.40E-16

GO:0004536~deoxyribonuclease activity 12 10.084 1.70E-15 DNA2L, SLX1, XPF, MRE11, MUS81, RAD50, RAD9A, ERCC5, EXO1, ERCC1, RAD1, SLX4 34 12983 42.428105 3.86E-13
GO:0004520~endodeoxyribonuclease activity 10 8.4034 5.67E-14 DNA2L, SLX1, XPF, MRE11, MUS81, RAD50, ERCC5, EXO1, ERCC1, SLX4 22 12983 54.642256 1.31E-11

GO:0004518~nuclease activity 17 14.286 1.80E-13
DNA2L, SLX1, PMS2, MRE11, XPF, RAD50, EXO1, TDP1, SLX4, RAD9A, MUS81, ERCC5, FANCM, ERCC1, RAD1, 
EME1, DCR1C 158 12983 12.934306 4.17E-11

GO:0008022~protein C-terminus binding 16 13.445 5.22E-13
SIR1, MRE11, XPF, TERF2, XRCC6, LIG4, XRCC5, MDM2, ERCC3, TOPB1, ERCC6, ERCC2, XRCC4, ERCC1, MSH2, 
RAD51 141 12983 13.641187 1.21E-10

GO:0003690~double-stranded DNA binding 14 11.765 1.01E-12 PMS2, MRE11, TERF2, MSH6, XRCC6, BLM, TDP1, MLH1, XRCC5, MSH3, ERCC5, MSH2, RAD51, PCNA 97 12983 17.350325 2.33E-10
GO:0004519~endonuclease activity 13 10.924 3.01E-11 DNA2L, SLX1, PMS2, MRE11, XPF, RAD50, EXO1, SLX4, MUS81, ERCC5, ERCC1, EME1, DCR1C 100 12983 15.627685 6.97E-09
GO:0008094~DNA-dependent ATPase activity 10 8.4034 8.07E-10 DNA2L, ERCC6, ERCC2, XRCC6, BLM, XRCC5, RAD51, ERCC8, SMAL1, ERCC3 57 12983 21.089994 1.87E-07
GO:0019787~small conjugating protein ligase 
activity 14 11.765 9.75E-10 UBE2T, RN168, UBE2N, PIAS4, TRIPC, BARD1, RNF8, MDM4, BRCA1, RBX1, UBP11, HERC2, ERCC8, PIAS1 166 12983 10.138443 2.26E-07
GO:0003678~DNA helicase activity 9 7.563 1.01E-09 DNA2L, ERCC6, ERCC2, XRCC6, BLM, XRCC5, ERCC8, SMAL1, ERCC3 40 12983 27.047917 2.34E-07
GO:0032404~mismatch repair complex binding 6 5.042 1.90E-09 PMS2, ATR, MSH6, MLH1, MSH2, PCNA 8 12983 90.159722 4.41E-07
GO:0016881~acid-amino acid ligase activity 14 11.765 1.01E-08 UBE2T, RN168, UBE2N, PIAS4, TRIPC, BARD1, RNF8, MDM4, BRCA1, RBX1, UBP11, HERC2, ERCC8, PIAS1 201 12983 8.3730422 2.34E-06
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ST7. Classification of DDR proteins according to their role
Protein UniProt ID Ensemble Gene ID Category Pathway Emergence in evolution PMID reference

1433E P62258 ENSG00000108953 Mediator Checkpoint Ancient Eukaryotes 21945648
1433E P62258 ENSG00000108953 Effector Checkpoint Ancient Eukaryotes 21945648
ATM Q13315 ENSG00000149311 Sensor DSB repair Plants 20674189
ATM Q13315 ENSG00000149311 Transducer DSB repair Plants 21363960
ATR Q13535 ENSG00000175054 Sensor Replication stress Ancient Eukaryotes 20674189
ATR Q13535 ENSG00000175054 Transducer Replication stress Ancient Eukaryotes 21363960
ATRIP Q8WXE1 ENSG00000164053 Sensor Replication stress Plants 21211780
ATRIP Q8WXE1 ENSG00000164053 Mediator Replication stress Plants 20947357
BARD1 Q99728 ENSG00000138376 Mediator DSB repair Plants 19261746
BLM P54132 ENSG00000197299 Effector HR Bacteria 21325134
BRCA1 P38398 ENSG00000012048 Sensor DSB repair Ancient Eukaryotes 21203981
BRCA1 P38398 ENSG00000012048 Mediator DSB repair Ancient Eukaryotes 21363960
BRCA2 P51587 ENSG00000139618 Mediator DSB repair Ancient Eukaryotes 21203981
BRCC3/BRCC36 P46736 ENSG00000185515 Mediator DSB repair Ancient Eukaryotes 19261746
BRE/BRCC45 Q9NXR7 ENSG00000158019 Mediator DSB repair Ancient Eukaryotes 19261746
CDT1 Q9H211 ENSG00000167513 Effector Checkpoint Ancient Eukaryotes 18082599
CHK1 O14757 ENSG00000149554 Transducer Checkpoint Fungi 12781359
CHK2 O96017 ENSG00000183765 Transducer Checkpoint Unikonta 12781359
CLSPN Q9HAW4 ENSG00000092853 Sensor Replication stress Fungi 21633183
CLSPN Q9HAW4 ENSG00000092853 Mediator Replication stress Fungi 21363960
CUL1 Q13616 ENSG00000055130 Effector Checkpoint Ancient Eukaryotes 19231300
CUL4 Q13619 ENSG00000139842 Effector Checkpoint, NER Ancient Eukaryotes 19231300
DCR1B/Apollo Q9H816 ENSG00000118655 Effector ICL, checkpoint Ancient Eukaryotes 18469862
DCR1C/Artemis Q96SD1 ENSG00000152457 Effector NHEJ Ancient Eukaryotes 20543526
DDB1 Q16531 ENSG00000167986 Mediator Checkpoint, NER Ancient Eukaryotes 18082599
DNA2L P51530 ENSG00000138346 Effector HR Plants 21325134
DTL/CDT2 Q9NZJ0 ENSG00000143476 Mediator Checkpoint Ancient Eukaryotes 18082599
EME1 Q96AY2 ENSG00000154920 Effector HR Plants 21859861
ERCC1 P07992 ENSG00000012061 Effector NER Ancient Eukaryotes 18166977
ERCC2/XPD P18074 ENSG00000104884 Effector NER Ancient Eukaryotes 18166977
ERCC3/XPB P19447 ENSG00000163161 Effector NER Bacteria 18166977
ERCC5/XPG P28715 ENSG00000134899 Effector NER Ancient Eukaryotes 18166977
ERCC6/CSB Q03468 ENSG00000032514 Sensor NER Ancient Eukaryotes 18166977
ERCC6/CSB Q03468 ENSG00000032514 Mediator NER Ancient Eukaryotes 18166977
ERCC8/CSA Q13216 ENSG00000049167 Effector NER Ancient Eukaryotes 18166977
EXO1 Q9UQ84 ENSG00000174371 Effector HR, MMR, NER Ancient Eukaryotes 14676842, 21808022, 22326273
F175A/Abraxas Q6UWZ7 ENSG00000163322 Mediator DSB repair Vertebrata 19261746
FACD2 Q9BXW9 ENSG00000144554 Mediator DSB repair Ancient Eukaryotes 20676667
FACD2 Q9BXW9 ENSG00000144554 Effector DSB repair Ancient Eukaryotes 20676667
FANCM Q8IYD8 ENSG00000187790 Sensor FA pathway, NER Archaea 21975120, 22615860
FBW1A/BTRCP Q9Y297 ENSG00000166167 Effector DSB repair Fungi 22099186
FBX31 Q5XUX0 ENSG00000103264 Effector Checkpoint Metazoa 19412162
H2AX P16104 ENSG00000188486 Mediator DSB repair Ancient Eukaryotes 20860841
HERC2 O95714 ENSG00000128731 Transducer DSB repair Metazoa 20023648
HERC2 O95714 ENSG00000128731 Mediator DSB repair Metazoa 20023648
HNRPK P61978 ENSG00000165119 Effector Checkpoint Metazoa 19579069
HUS1 O60921 ENSG00000136273 Sensor Replication stress Ancient Eukaryotes 20860841
KAT5/TIP60 Q92993 ENSG00000172977 Effector Checkpoint, DSB repair Ancient Eukaryotes 17923702
LIG4 P49917 ENSG00000174405 Effector NHEJ Ancient Eukaryotes 21329706
MAPK2 P49137 ENSG00000162889 Transducer Checkpoint Fungi 19230643
MDC1 Q14676 ENSG00000206481 Sensor DSB repair Vertebrata 21326949
MDC1 Q14676 ENSG00000206481 Mediator DSB repair Vertebrata 21363960
MDM2 Q00987 ENSG00000135679 Effector Checkpoint Metazoa 21541195
MDM4/MDMX O15151 ENSG00000198625 Effector Checkpoint Vertebrata 21541195
MK03/ERK1 P27361 ENSG00000102882 Transducer Checkpoint Ancient Eukaryotes 16186792
MLH1 P40692 ENSG00000076242 Sensor MMR Bacteria 16612326
MMS21 Q96MF7 ENSG00000156831 Transducer HR Ancient Eukaryotes 22369641
MPIP1/CDC25A P30304 ENSG00000164045 Effector Checkpoint Ancient Eukaryotes 20860841
MPIP3/CDC25C P30307 ENSG00000158402 Effector Checkpoint Fungi 20860841
MRE11 P49959 ENSG00000020922 Sensor DSB repair Ancient Eukaryotes 21363960
MRI40/BABAM1 Q9NWV8 ENSG00000105393 Mediator DSB repair Plants 19261748
MSH2 P43246 ENSG00000095002 Sensor MMR, FA pathway Ancient Eukaryotes 16612326, 21975120
MSH3 P20585 ENSG00000113318 Sensor MMR, FA pathway Bacteria 16612326, 21975120
MSH6 P52701 ENSG00000116062 Sensor MMR, FA pathway Bacteria 16612326, 21975120
MSH6 P52701 ENSG00000116062 Transducer NHEJ Bacteria 21075794
MTA2 O94776 ENSG00000149480 Sensor Replication stress Metazoa 20805320
MUS81 Q96NY9 ENSG00000172732 Effector HR Ancient Eukaryotes 21859861
MYST1 Q9H7Z6 ENSG00000103510 Effector NHEJ Ancient Eukaryotes 20479123
NBN/NBS1 O60934 ENSG00000104320 Transducer DSB repair Plants 18082599
NBN/NBS1 O60934 ENSG00000104320 Sensor DSB repair Plants 18082599
NBN/NBS1 O60934 ENSG00000104320 Mediator DSB repair Plants 21252998
NBN/NBS1 O60934 ENSG00000104320 Effector DSB repair Plants 21252998
NR4A2 P43354 ENSG00000153234 Mediator Replication stress Bilateria 21979916
PALB2 Q86YC2 ENSG00000083093 Mediator BSB repair Vertebrata 21203981
PARP1 P09874 ENSG00000143799 Sensor BER Ancient Eukaryotes 20965415
PARP2 Q9UGN5 ENSG00000129484 Sensor BER Ancient Eukaryotes 20965415
PAXI1/PTIP Q6ZW49 ENSG00000157212 Mediator DSB repair Ancient Eukaryotes 21363960
PCNA P12004 ENSG00000132646 Mediator Replication stress, NER, BER Archaea 17512402
PCNA P12004 ENSG00000132646 Effector Replication stress, NER, BER Archaea 20068082
PIAS1 O75925 ENSG00000033800 Effector DSB repair Plants 20016603
PIAS4 Q8N2W9 ENSG00000105229 Effector DSB repair Fungi 20016603
PLK1 P53350 ENSG00000166851 Transducer Checkpoint Bacteria 20126263
PMS2 P54278 ENSG00000122512 Sensor MMR Ancient Eukaryotes 16612326
PMS2 P54278 ENSG00000122512 Mediator MMR Ancient Eukaryotes 16612326
PRKDC P78527 ENSG00000121031 Transducer NHEJ Ancient Eukaryotes 21211780
RAD1 O60671 ENSG00000113456 Sensor Replication stress Ancient Eukaryotes 21363960
RAD17 O75943 ENSG00000152942 Sensor Replication stress Ancient Eukaryotes 20068082
RAD18 Q9NS91 ENSG00000070950 Transducer DSB repair Ancient Eukaryotes 19396164
RAD23B P54727 ENSG00000119318 Sensor NER Ancient Eukaryotes 18166977
RAD50 Q92878 ENSG00000113522 Sensor DSB repair Archaea 20860841
RAD51 Q06609 ENSG00000051180 Sensor DSB repair Bacteria 21252998
RAD9A Q99638 ENSG00000172613 Sensor Replication stress Ancient Eukaryotes 20860841
RBBP8/CTIP Q99708 ENSG00000101773 Effector DSB repair Bilateria 20029420
RBX1 P62877 ENSG00000100387 Effector Checkpoint Ancient Eukaryotes 19231300
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RFA1 P27694 ENSG00000132383 Sensor Replication stress, DSB repair, NER Ancient Eukaryotes 12791985
RFA2 P15927 ENSG00000117748 Sensor Replication stress, DSB repair, NER Ancient Eukaryotes 12791985
RFA2 P15927 ENSG00000117748 Mediator Replication stress, DSB repair, NER Ancient Eukaryotes 17531546
RFA3 P35244 ENSG00000106399 Sensor Replication stress, DSB repair, NER Ancient Eukaryotes 12791985
RFA3 P35244 ENSG00000106399 Mediator Replication stress, DSB repair, NER Ancient Eukaryotes 19843584
RMI1 Q9H9A7 ENSG00000178966 Transducer HR Plants 15775963
RMI1 Q9H9A7 ENSG00000178966 Mediator HR Plants 15775963
RN168 Q8IYW5 ENSG00000163961 Transducer DSB repair Chordata 19875294
RN168 Q8IYW5 ENSG00000163961 Mediator DSB repair Chordata 19203579
RNF8 O76064 ENSG00000112130 Transducer DSB repair Ancient Eukaryotes 18550271
RNF8 O76064 ENSG00000112130 Mediator DSB repair Ancient Eukaryotes 18001825
SIR1 Q96EB6 ENSG00000096717 Transducer NHEJ, NER Unikonta 20097625, 20670893
SKP1 P63208 ENSG00000113558 Effector Checkpoint Ancient Eukaryotes 22099186
SLX1 Q9BQ83 ENSG00000181625 Effector HR,MMR Ancient Eukaryotes 19596236
SLX4 Q8IY92 ENSG00000188827 Mediator DSB repair Metazoa 19596236
SLX4 Q8IY92 ENSG00000188827 Effector DSB repair,  ICL Metazoa 19596236
SMAL1 Q9NZC9 ENSG00000138375 Effector Replication stress Ancient Eukaryotes 19841479
SMC1A Q14683 ENSG00000072501 Effector DSB repair Bacteria 19842212
SMC5 Q8IY18 ENSG00000198887 Mediator HR Ancient Eukaryotes 16810316
SMC6 Q96SB8 ENSG00000163029 Mediator HR Ancient Eukaryotes 16810316
SOX4 Q06945 ENSG00000124766 Effector Checkpoint Chordata 19234109
TAOK1 Q7L7X3 ENSG00000160551 Transducer Checkpoint Bacteria 18082599
TDP1 Q9NUW8 ENSG00000042088 Effector Adducts removal Ancient Eukaryotes 16141202
TDP2 O95551 ENSG00000111802 Effector Adducts removal Ancient Eukaryotes 22740648
TERF2 Q15554 ENSG00000132604 Mediator Telomere maintenance Vertebrata 19287395
TIF1B/KAP1 Q13263 ENSG00000130726 Transducer DSB repair Bilateria 18082607
TIF1B/KAP1 Q13263 ENSG00000130726 Mediator DSB repair, Checkpoint Bilateria 17056014
TIM Q9UNS1 ENSG00000111602 Mediator Replication stress, DSB repair, Circadian Clock Ancient Eukaryotes 20068082
TIM Q9UNS1 ENSG00000111602 Effector Replication stress, DSB repair, Circadian Clock Ancient Eukaryotes 17296725
TIPIN Q9BVW5 ENSG00000075131 Mediator Replication stress Plants 20068082
TOP3A Q13472 ENSG00000177302 Effector HR Bacteria 16595695
TOPB1 Q92547 ENSG00000163781 Mediator Replication stress Ancient Eukaryotes 21363960
TP53B Q12888 ENSG00000067369 Sensor DSB repair Metazoa 21633183
TP53B Q12888 ENSG00000067369 Mediator DSB repair Metazoa 20724228
TRIPC Q14669 ENSG00000153827 Transducer DSB repair Ancient Eukaryotes 17525332
UBE2N/UBC13 P61088 ENSG00000177889 Transducer DSB repair Bacteria 18082599
UBE2T Q9NPD8 ENSG00000077152 Transducer FA pathway, NER Bacteria 22615860
UBP11/USP11 P51784 ENSG00000102226 Effector DSB repair Ancient Eukaryotes 15314155
UBR5 O95071 ENSG00000104517 Transducer Replication stress Metazoa 11714696
UIMC1/Rap80 Q96RL1 ENSG00000087206 Mediator DSB repair Vertebrata 19261746
WEE1 P30291 ENSG00000166483 Transducer Checkpoint Ancient Eukaryotes 21859861
WEE1 P30291 ENSG00000166483 Effector Checkpoint Ancient Eukaryotes 19230643
XLF/NHEJ1 Q9H9Q4 ENSG00000187736 Effector NHEJ Fungi 16439205
XPA P23025 ENSG00000136936 Effector NER Ancient Eukaryotes 18166977
XPC Q01831 ENSG00000154767 Sensor NER Ancient Eukaryotes 18166977
XPF Q92889 ENSG00000175595 Effector NER Ancient Eukaryotes 18166977
XRCC1 P18887 ENSG00000073050 Mediator BER Ancient Eukaryotes 19497792
XRCC4 Q13426 ENSG00000152422 Mediator NHEJ Plants 17241822
XRCC5/Ku80 P13010 ENSG00000079246 Sensor NHEJ Ancient Eukaryotes 21211780
XRCC6/Ku70 P12956 ENSG00000196419 Sensor NHEJ Ancient Eukaryotes 21211780
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ST8. PTMs emergence
Name ID PTM in Hsa Residue PTM by PMID From
ATM Q13315 phosphorylation S367 ATM (auto) 16858402 Mdo
ATM Q13316 phosphorylation S1893 ATM (auto) 16858402 Xtr
ATM Q13317 phosphorylation S1981 ATM (auto) 16858402 Ppa (plants)/Nve
ATM Q13317 acetylation K3016 KAT5 17923702 Ppa
BRCA1 P38398 phosphorylation S1524 ATM 17525332 Ddi/Nve/Mdo
BRCA1 P38398 phosphorylation S1387 ATM and ATR 11114888 Osa/Tad/Cin
BRCA1 P38398 phosphorylation S1423 ATM and ATR 11114888 Gga
BRCA1 P38398 phosphorylation S1143 ATR 11114888 Hsa
BRCA1 P38398 phosphorylation S1280 ATR 11114888 Gga
BRCA1 P38398 phosphorylation T1394 ATR 11114888 Ddi/Xtr
BRCA1 P38398 phosphorylation S1457 ATR 11114888 Mus
BRCA1 P38398 phosphorylation S988 CHK2 20364141 Xtr
BRCA1 P38398 sumoylation K109 PIAS1 20016594 Gga
BRCA1 P38398 sumoylation K119 PIAS1 20016594 Cin
BRCA1 P38398 ubiquitination N/A UBE2T 19887602 N/A
BRCA2 P51587 phosphorylation T3387 CHK1 and CHK2 18317453 Hsa
BRCA2 P51587 phosphorylation S683 ATM or ATR 17525332 Mdo
BRCA2 P51587 phosphorylation S755 ATM or ATR 17525332 Oan
CDT1 Q9H211 ubiquitination QXRVTDF-motif CUL4 16482215 Xtr
CHK1 O14757 phosphorylation S317 ATR 11390642 Ecu
CHK1 O14757 phosphorylation S345 ATR 11390642 Spo/Tad
CHK2 O96017 phosphorylation T68 ATM 16481012 Ddi/Spo/Cte
CLSPN Q9HAW4 phosphorylation T916 CHK1 ? (1) 16963448/19556879 Mdo
CLSPN Q9HAW4 phosphorylation S945 ATR ? (1) 18331829/19556879 Tca
CLSPN Q9HAW4 phosphorylation S30 PLK1 (2) 16885022 Cel
CLSPN Q9HAW4 ubiquitination N/A CUL1 - RBX1 19231300 N/A
DCR1B (Apollo) Q9H816 phosphorylation S444 ATM or ATR 17525332 Hsa
DCR1C (Artemis) Q96SD1 phosphorylation S645 ATM 15723659 Ngr/Bde/Bfl
DCR1C (Artemis) Q96SD1 phosphorylation N/A PRKDC 15456891 N/A
EXO1 Q9UQ84 phosphorylation S714 ATR 18048416 Hsa
F175A (Abraxas) Q6UWZ7 phosphorylation S406 ATM or ATR 17525340 Dre
FACD2 Q9BXW9 phosphorylation S222 ATM 12086603 Ngr/Mbr/Tca
FACD2 Q9BXW9 phosphorylation S1404 ATM 12086603 Osa/Cin/Mdo
FACD2 Q9BXW9 ubiquitination K561 FANCL+UBE2T 11239454 Ehu
FBX31 Q5XUX0 phosphorylation S278 ATM 19412162 Dre
H2AX P16104 phosphorylation S140 ATM and PRKDC 9488723/14627815 Ath
H2AX P16104 ubiquitination K119 UBE2N (UBC13) 19230794 Ehu
H2AX P16104 ubiquitination K120 RN168 ? (3) 19230794 Ehu
H2AX P16104 ubiquitination K120 RNF8 ? (3) 19230794 Ehu
H2AX P16104 acetylation K6 KAT5 (Tip60) ? 20703100 Ptr
H2AX P16104 acetylation K10 KAT5 (Tip60) ? 20703100 Ath
HERC2 O95715 phosphorylation T4827 After IR (ATM ?) 20023648 Dre
HNRPK P61978 ubiquitination K422 MDM2 ? 18655026 N/A
MDM2 Q00987 phosphorylation S395 ATM 11331603 Xtr
MDM4 O15151 phosphorylation S367 CHK1 and CHK2 16163388 Dre
MDM4 O15151 phosphorylation S342 CHK2 16163388 Dre
MDM4 O15152 phosphorylation S403 ATM 16163388 Dre
MK03 (ERK1) P27361 phosphorylation T202 MAP2K1 and MAP2K2 17081983 Pfa
MK03 (ERK1) P27361 phosphorylation Y204 MAP2K1 and MAP2K2 17081983 Tbr
MPIP1 (Cdc25A) P30304 phosphorylation S76 CHK1 14681206 Ngr/Ddi/Xtr
MPIP1 (Cdc25A) P30304 phosphorylation S178 CHK1 12676583 Ddi/Tad/Xtr
MPIP1 (Cdc25A) P30304 phosphorylation T507 CHK1 14559997 Spo/Tad/Tca/Xtr
MPIP1 (Cdc25A) P30304 phosphorylation S124 CHK1 and CHK2 12676583 Ddi/Xtr
MPIP1 (Cdc25A) P30304 phosphorylation S279 CHK1 and CHK2 12676583 Gga
MPIP1 (Cdc25A) P30304 phosphorylation S293 CHK1 and CHK2 12676583 Ddi
MPIP3 (Cdc25C) P30307 phosphorylation S216 CHK1 and CHK2 15629715 Hsa
MPIP3 (Cdc25C) P30307 phosphorylation S216 MAP2K2 15629715 Hsa
MSH2 P43246 phosphorylation S860 ATM or ATR 17525332 Ath/Cin
MSH3 P20585 phosphorylation S201 ATM or ATR 17525332 Mus
MSH6 P52701 phosphorylation S348 ATR ? 17525332 Ame
MYST1 Q9H7Z6 acetylation K274 MYST1 (auto) 22020126 Ehu
NBN O60934 phosphorylation S343 ATM 10839545 Ppa
NBN O60934 phosphorylation S397 ATM 10839545 Dre
NBN O60934 phosphorylation S615 ATM 10839545 Hsa
NR4A2 P43354 phosphorylation S181 PRKDC ? 17081983 Cte
NR4A2 P43354 phosphorylation S337 PRKDC 21979916 Cte
PALB2 Q86YC2 phosphorylation S59 ATM or ATR 17525332 Hsa
PALB2 Q86YC2 phosphorylation S64 ATM or ATR 17525332 Mdo
PALB2 Q86YC2 phosphorylation S157 ATM or ATR 17525332 Mdo
PALB2 Q86YC2 phosphorylation S376 ATM or ATR 17525332 Oan
PRKDC P78527 phosphorylation T2609 auto 12186630 Tad
RAD17 O75943 phosphorylation S656 ATM and ATR 11418864 Cpa/Bfl
RAD17 O75943 phosphorylation S646 ATM and ATR 11418864 Cpa/Dre
RAD50 Q92878 phosphorylation S635 ATM or ATR 17525332 Osa/Ecu/Dme
RAD51 Q06609 phosphorylation T309 CHK1 15665856 Bna,Cpa/Ecu/Sja
RAD9A Q99638 phosphorylation S272 ATM and ATR 22453082 Tad
RBBP8 (CTIP) Q99708 phosphorylation S664 ATM 10910365 Cte
RBBP8 (CTIP) Q99708 phosphorylation S745 ATM 10910365 Xtr
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RBBP8 (CTIP) Q99708 ubiquitination N/A BRCA1 (4) 16818604 N/A
RFA1 P27694 phosphorylation T180 ATM or ATR 17525332 Mus
RFA2 P15927 phosphorylation S12 PRKDC 9139719 Bde/Xtr
RFA2 P15927 phosphorylation S33 PRKDC 9139719 Ptr/Ath/Cel/Bfl
RN168 Q8IYW5 sumoylation N/A PIAS4 20016603 N/A
RNF8 O76064 sumoylation N/A PIAS4 20016603 N/A
SMC1A Q14683 phosphorylation S957 ATM 11877377 Spo/Nve, Cte/Cin
SMC1A Q14683 phosphorylation S966 ATM and ATR 11877377 Tbr/Osa/Nve
SMC5 Q8IY18 sumoylation N/A MMS21 18086888 N/A
SMC6 Q96SB8 sumoylation N/A MMS21 16055714 N/A
TIF1B (KAP1) Q13263 phosphorylation S824 ATM 17942393 Sja/Xtr
TIF1B (KAP1) Q13263 phosphorylation S473 CHK1 and CHK2 21851590 Xtr
TIF1B (KAP1) Q13263 sumoylation K554 auto 17079232/18082607 Xtr
TIF1B (KAP1) Q13263 sumoylation K779 auto 17079232/18082607 Xtr
TIF1B (KAP1) Q13263 sumoylation K804 auto 17079232/18082607 Xtr
TIPIN Q9BVW5 phosphorylation S222 ATM or ATR 17525332 Tca
TOPB1 Q92547 ubiquitination N/A UBR5 11714696 N/A
TRIPC Q14669 phosphorylation S1577 ATM or ATR 17525332 Ehu/Ath/Spo/Tad/Tca
UBE2T Q9NPD8 ubiquitination K91 auto 19111657 Ddi
UBE2T Q9NPD8 ubiquitination K182 auto 19111657 Xtr
UIMC1 (RAP80) Q96RL1 phosphorylation S140 ATM or ATR 17525332 Gga
UIMC1 (RAP80) Q96RL1 phosphorylation S402 ATM or ATR 17525332/17525340 Gga
UIMC1 (RAP80) Q96RL1 phosphorylation S419 ATM or ATR 17525332/17525340 Hsa
UIMC1 (RAP80) Q96RL1 sumoylation N/A PIAS1 20016594 N/A
WEE1 P30291 phosphorylation S53 PLK1 15070733 Spo/Dme/Dre
WEE1 P30291 ubiquitination N/A CUL1 - RBX1 15070733 N/A
XPA P23025 phosphorylation S196 ATM or ATR 17525332 Ehu
XPA P23025 deacetylation K63 SIR1 20670893 Cte
XPA P23025 deacetylation K67 SIR1 20670893 Cpa
XRCC1 P18887 phosphorylation S371 PRKDC 16397295 Dre
XRCC4 Q13426 phosphorylation S260 PRKDC 15177042 Gga
XRCC4 Q13426 phosphorylation S320 PRKDC 15177042 Mdo
XRCC5 (Ku80) P13010 phosphorylation S577 PRKDC 10026262 Ppa/Ddi/Tad,Nve/Gga
XRCC5 (Ku80) P13010 phosphorylation S580 PRKDC 10026262 Ppa/Tad/Mdo
XRCC6 (Ku70) P12956 phosphorylation S6 PRKDC 10026262 Sja
XRCC6 (Ku70) P12956 phosphorylation S51 PRKDC 9362500 Ath/Mbr/Xtr

Observations
(1) Probably the phosphorylation is carried by other kinase not yet identified
(2) DSGxxS degron sequence (D29-S34) conserved from Xtr
(3) By similarity with ubiquitination sites in other histones
(4) It appears that CtIP can be ubiquitinated by BRCA1 interchangeably at multiple lysine residues.
? No certainty of PTM actually being exterted by the modifier
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ST9. PTMs ages emergence analysis

Target
Target     

age code Modifier
Modifier age 

code
Conservation 

code
Pair 

conservation Ages
ATM 3 ATM (auto) 3 C Ppa-Ppa Plants
ATM 3 KAT5 2 B Ppa-Ptr Plants-Early Euks
BRCA1 2 ATM 3 A Ngr-Ppa Early Euks-Plants
BRCA1 2 ATR 2 B Ngr-Ehu Early Euks
BRCA1 2 CHK2 4 A Ngr-Ddi Early Euks-Unikonta
BRCA1 2 PIAS1 3 A Ngr-Cre Early Euks-Plants
BRCA1 2 UBE2T 1 B Ngr-Pst Early Euks-Bacteria
BRCA2 2 CHK1 5 A Cpa-Ecu Early Euks-Opisthokonta
BRCA2 2 CHK2 4 A Cpa-Ddi Early Euks-Unikonta
BRCA2 2 ATM 3 A Cpa-Ppa Early Euks-Plants
BRCA2 2 ATR 2 B Cpa-Ehu Early Euks
CDT1 2 CUL4 2 B Cpa-Ehu Early Euks
CHK1 5 ATR 2 B Ecu-Ehu Opisthokonta-Early Euks
CHK2 2 ATM 3 A Cpa-Ppa Early Euks-Plants
CLSPN 5 CHK1 ? (1) 5 B Spo-Ecu Opisthokonta
CLSPN 5 ATR ? (1) 2 B Spo-Ehu Opisthokonta-Early Euks
CLSPN 5 PLK1 (2) 1 B Spo-Pst Opisthokonta-Bacteria
CLSPN 5 CUL1 2 B Spo-Cpa Opisthokonta-Early Euks
CLSPN 5 RBX1 2 B Spo-Gth Opisthokonta-Early Euks
DCR1B (Apollo) 2 ATM 3 A Ehu-Ppa Early Euks-Plants
DCR1B (Apollo) 2 ATR 2 C Ehu-Ehu Early Euks
DCR1C (Artemis) 2 ATM 3 A Ngr-Ppa Early Euks-Plants
DCR1C (Artemis) 2 PRKDC 2 C Ngr-Ngr Early Euks
EXO1 2 ATR 2 B Cpa-Ehu Early Euks
F175A (Abraxas) 10 ATM 3 B Dre-Ppa Vertebrata-Plants
F175A (Abraxas) 10 ATR 2 B Dre-Ehu Vertebrata-Early Euks
FACD2 2 ATM 3 A Ehu-Ppa Early Euks-Plants
FACD2 2 UBE2T 1 B Ehu-Pst Early Euks-Bacteria
FBX31 6 ATM 3 B Tad-Ppa Metazoa-Plants
H2AX 2 ATM 3 A Ehu-Ppa Early Euks-Plants
H2AX 2 PRKDC 2 A Ehu-Ngr Early Euks
H2AX 2 UBE2N (UBC13) 1 B Ehu-Pst Early Euks-Bacteria
H2AX 2 RN168 ? (3) 9 A Ehu-Cin Early Euks-Chordata
H2AX 2 RNF8 ? (3) 2 A Ehu-Ngr Early Euks
H2AX 2 KAT5 (Tip60) ? 2 A Ehu-Ptr Early Euks
HERC2 6 After IR (ATM ?) 3 B Tad-Ppa Metazoa-Plants
HNRPK 5 MDM2 ? 6 A Mbr-Tad Opisthokonta-Metazoa
MDM2 6 ATM 3 B Tad-Ppa Metazoa-Plants
MDM4 10 CHK1 5 B Dre-Ecu Vertebrata-Opisthokonta
MDM4 10 CHK2 4 B Dre-Ddi Vertebrata-Unikonta
MDM4 10 ATM 3 B Dre-Ppa Vertebrata-Plants
MK03 (ERK1) 2 MAP2K2 5 A Pfa-Spo Early Euks-Opisthokonta
MPIP1 (Cdc25A) 4 CHK1 5 A Ddi-Ecu Unikonta-Opisthokonta
MPIP1 (Cdc25A) 4 CHK2 4 C Ddi-Ddi Unikonta
MPIP3 (Cdc25C) 5 CHK1 5 C Ecu-Ecu Opisthokonta
MPIP3 (Cdc25C) 5 CHK2 4 B Ecu-Ddi Opisthokonta-Unikonta
MPIP3 (Cdc25C) 5 MAP2K2 5 A Ecu-Spo Opisthokonta
MSH2 2 ATM 3 A Ehu-Ppa Early Euks-Plants
MSH2 2 ATR 2 C Ehu-Ehu Early Euks
MSH3 1 ATM 3 A Bap-Ppa Bacteria-Plants
MSH3 1 ATR 2 A Bap-Ehu Bacteria-Early Euks
MSH6 1 ATR ? 2 A Eco-Ehu Bacteria-Early Euks
MYST1 2 MYST1 (auto) 2 C Ehu-Ehu Early Euks
NBN 3 ATM 3 C Ppa-Ppa Plants
NR4A2 8 PRKDC 2 B Cte-Ngr Bilateria-Early Euks
PALB2 10 ATM 3 B Dre-Ppa Vertebrata-Plants
PALB2 10 ATR 2 B Dre-Ehu Vertebrata-Early Euks
PRKDC 2 PRKDC (auto) 2 C Ngr-Ngr Early Euks
RAD17 2 ATM 3 A Ehu-Ppa Early Euks-Plants
RAD17 2 ATR 2 C Ehu-Ehu Early Euks
RAD50 1 ATM 3 A Eco-Ppa Bacteria-Plants
RAD50 1 ATR 2 A Eco-Ehu Bacteria-Early Euks
RAD51 1 CHK1 5 A Eco-Ecu Bacteria-Opisthokonta
RAD9A 2 ATM 3 A Ehu-Ppa Early Euks-Plants
RAD9A 2 ATR 2 C Ehu-Ehu Early Euks
RBBP8 (CTIP) 8 ATM 3 B Cte-Ppa Bilateria-Plants
RBBP8 (CTIP) 8 BRCA1 (4) 2 B Cte-Ngr Bilateria-Early Euks
RFA1 2 ATM 3 A Ehu-Ppa Early Euks-Plants
RFA1 2 ATR 2 C Ehu-Ehu Early Euks
RFA2 2 PRKDC 2 A Ehu-Ngr Early Euks
RN168 9 PIAS4 5 B Cin-Sce Chordata-Opisthokonta
RNF8 2 PIAS4 5 A Ngr-Sce Early Euks-Opisthokonta
SMC1A 1 ATM 3 A Eco-Ppa Bacteria-Plants
SMC1A 1 ATR 2 A Eco-Ehu Bacteria-Early Euks
SMC5 2 MMS21 2 A Ehu-Ptr Early Euks
SMC6 2 MMS21 2 A Ehu-Ptr Early Euks
TIF1B (KAP1) 8 ATM 3 B Cte-Ppa Bilateria-Plants
TIF1B (KAP1) 8 CHK1 5 B Cte-Ecu Bilateria-Opisthokonta
TIF1B (KAP1) 8 CHK2 4 B Cte-Ddi Bilateria-Unikonta
TIF1B (KAP1) 8 TIF1B (auto) 8 C Cte-Cte Bilateria
TIPIN 3 ATM 3 C Ppa-Ppa Plants
TIPIN 3 ATR 2 B Ppa-Ehu Plants-Early Euks
TOPB1 2 UBR5 6 A Ehu-Tad Early Euks-Metazoa
TRIPC 2 ATM 3 A Ehu-Ppa Early Euks-Plants
TRIPC 2 ATR 2 C Ehu-Ehu Early Euks
UBE2T 1 UBE2T (auto) 1 C Pst-Pst Bacteria
UIMC1 (RAP80) 10 ATM 3 B Dre-Ppa Vertebrata-Plants
UIMC1 (RAP80) 10 ATR 2 B Dre-Ehu Vertebrata-Early Euks
UIMC1 (RAP80) 10 PIAS1 3 B Dre-Cre Vertebrata-Plants
WEE1 2 PLK1 1 B Tbr-Pst Early Euks-Bacteria
WEE1 2 CUL1 2 B Tbr-Cpa Early Euks
WEE1 2 RBX1 2 B Tbr-Gth Early Euks
XPA 2 ATM 3 A Ehu-Ppa Early Euks-Plants
XPA 2 ATR 2 C Ehu-Ehu Early Euks
XPA 2 SIR1 4 A Ehu-Ddi Early Euks-Unikonta
XRCC1 2 PRKDC 2 C Ngr-Ngr Early Euks
XRCC4 3 PRKDC 2 B Osa-Ngr Plants-Early Euks
XRCC5 (Ku80) 2 PRKDC 2 A Ehu-Ngr Early Euks
XRCC6 (Ku70) 2 PRKDC 2 A Ehu-Ngr Early Euks

Age codes are referred to Figure 10 (see Methods 3.3).
Conservation codes: A, target older than modifier; B, modifier older than target; C, target and modifier from the same age.

Observations
(1) Probably the phosphorylation is carried by other kinase not yet identified
(2) DSGxxS degron sequence (D29-S34) conserved from Xtr
(3) By similarity with ubiquitination sites in other histones
(4) It appears that CtIP can be ubiquitinated by BRCA1 interchangeably at multiple lysine residues.
? No certainty of PTM actually being exterted by the modifier
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Protein Disease OMIM Subcellular location
ATM Ataxia telangiectasia (AT) 208900 Nucleus. Cytoplasmic vesicle.
ATR Seckel syndrome type 1 (SCKL1) 210600 Nucleus. 
BLM Bloom syndrome (BLM) 210900 Nucleus.
BRCA1 Breast cancer (BC) 114480 Nucleus

BRCA2

Breast cancer (BC);
Pancreatic cancer type 2 (PNCA2);
Breast-ovarian cancer familial type 2 (BROVCA2);
Fanconi anemia complementation group D type 1 (FANCD1);
Glioma type 3 (GLM3)

114480; 613347; 612555; 
605724; 613029 

Nucleus.

CDT1 Meier-Gorlin syndrome type 4 (MGORS4) 613804 Nucleus
CHK2 Li-Fraumeni syndrome 2 (LFS2) 609265 Nucleus

DCR1B (Apollo) Hoyeraal-Hreidarsson syndrome (HHS) 300240
Chromosome › telomere. Nucleus. 
Cytoplasm › cytoskeleton › centrosome.

DCR1C (Artemis)
Omenn syndrome (OS);                                                                                                                           
Severe combined immunodeficiency autosomal recessive T-cell-negative/B-cell-negative/NK-
cell-positive with sensitivity to ionizing radiation (RS-SCID)

603554; 602450 Nucleus.

ERCC1 Cerebro-oculo-facio-skeletal syndrome type 4 (COFS4) 610758 Nucleus

ERCC2 (XPD)
Xeroderma pigmentosum complementation group D (XP-D); 
Trichothiodystrophy photosensitive (TTDP); 
Cerebro-oculo-facio-skeletal syndrome type 2 (COFS2)

278730; 601675; 610756 Nucleus. Cytoplasm (spindle)

ERCC3 (XPB) Xeroderma pigmentosum complementation group B (XP-B);                                                      
Trichothiodystrophy photosensitive (TTDP)

610651; 601675 Nucleus

ERCC5 (XPG) Xeroderma pigmentosum complementation group G (XP-G) 278780 Nucleus

ERCC6 (CSB)

Cockayne syndrome type B (CSB); 
Cerebro-oculo-facio-skeletal syndrome type 1 (COFS1); 
De Sanctis-Cacchione syndrome (DSC); 
Susceptibility to age-related macular degeneration type 5 (ARMD5); 
UV-sensitive syndrome (UVS)

133540; 214150;  278800; 
613761; 600630 

Nucleus

ERCC8 (CSA) Cockayne syndrome type A (CSA) 216400 Nucleus
FACD2 Fanconi anemia complementation group D type 2 (FANCD2) 227646 Nucleus
FANCM Fanconi anemia complementation group M (FANCM) 614087 Nucleus
HERC2 Associated with skin/hair/eye pigmentation variability type 1 (SHEP1) 227220 Cytoplasm. Nucleus.

LIG4
LIG4 syndrome (LIG4S);                                                                                           
Severe combined immunodeficiency autosomal recessive T-cell-negative/B-cell-negative/NK-
cell-positive with sensitivity to ionizing radiation (RS-SCID)

606593; 602450 Nucleus

MLH1

Hereditary non-polyposis colorectal cancer type 2 (HNPCC2)/Lynch syndrome; 
Mismatch repair cancer syndrome (MMRCS)/Turcot syndrome/Brain tumor-polyposis 
syndrome 1 (BTPS1); 
Muir-Torre syndrome (MuToS/MTS); 
Susceptibility to endometrial cancer (ENDMC) 

609310; 276300; 158320; 
608089

Nucleus

MRE11 Ataxia telangiectasia-like disorder (ATLD) 604391 Nucleus

MSH2

Hereditary non-polyposis colorectal cancer type 1 (HNPCC1); 
Hereditary non-polyposis colorectal cancer type 8 (HNPCC8); 
Muir-Torre syndrome (MuToS/MTS); 
Susceptibility to endometrial cancer (ENDMC)

120435; 613244; 158320; 
608089

Nucleus

MSH3 Susceptibility to endometrial cancer (ENDMC) 608089 Nucleus

MSH6 Hereditary non-polyposis colorectal cancer type 5 (HNPCC5);                                                         
Susceptibility to endometrial cancer (ENDMC)

600678; 608089 Nucleus

NBN Nijmegen breakage syndrome (NBS);                                                                                              
Susceptibility to breast cancer (BC) 

251260; 114480 Nucleus

PALB2 Fanconi anemia complementation group N (FANCN);                                                                         
Pancreatic cancer type 3 (PNCA3)

610832; 613348 Nucleus

PMS2 Hereditary non-polyposis colorectal cancer type 4 (HNPCC4);                                                           
Mismatch repair cancer syndrome (MMRCS)

600259; 276300 Nucleus

RAD50 Nijmegen breakage syndrome-like disorder (NBSLD) 613078 Nucleus. Chromosome › telomere.
RAD51 Susceptibility to breast cancer (BC) 114480 Nucleus. Cytoplasm. Mitochondrion matrix. 
RN168 Riddle syndrome (RIDDLES) 611943 Nucleus. 
SLX4 Fanconi anemia complementation group P (FANCP) 613951 Nucleus
SMAL1 Schimke immuno-osseous dysplasia (SIOD) 242900 Nucleus. 
SMC1A Cornelia de Lange syndrome type 2 (CDLS2) 300590 Nucleus. Chromosome › kinetochore
TDP1 Spinocerebellar ataxia autosomal recessive with axonal neuropathy (SCAN1) 607250 Nucleus. Cytoplasm
XLF Severe combined immunodeficiency due to NHEJ1 deficiency (NHEJ1-SCID) 611291 Nucleus
XPA Xeroderma pigmentosum complementation group A (XP-A) 278700 Nucleus
XPC Xeroderma pigmentosum complementation group C 278720 Nucleus. Cytoplasm
XPF Xeroderma pigmentosum complementation group F (XP-F) 610965 Nucleus
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