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ABSTRACT 

 

This study, carried out in vineyards of high quality wine production in Catalonia (Spain), aims 

to determine the suitability of very detailed soil surveys, based on Soil Taxonomy, for 

viticultural zoning purposes, and quantifies the effects of soil and climate on grape and wine 

quality in some representative soil map units. After an introductory chapter, this objective is 

developed in different chapters. Chapter 2 analyses the suitability of soil map units, 

determined at a 1:5,000 scale according to Soil Taxonomy classification, to determine 

important edaphic properties for vineyard growing. A k-means clustering analysis is proposed 

in order to group soils according to their potential for vine growing, since most of the 

variability of soil properties was not reflected exactly in the soil map unit classification. 

Chapter 3 discusses the implications of soil forming processes on very detailed soil surveys. 

The identified soil forming processes had significant effects on soil properties which are 

important for vineyard growing. However, soil forming processes were not always reflected 

in soil classification, especially in soils modified by man. Chapter 4 analyses the suitability of 

Soil Taxonomy to characterize the soil moisture regime for viticultural zoning purposes. A 

soil moisture regime classification based on cluster analysis was developed, since Soil 

Taxonomy did not adequately reflect the variability of soil moisture dynamics during 

vineyard growing. Chapter 5 focuses on the influence of soil and climate on vintage 

variability. Climate and soil moisture explained 70% of vintage variability and soil properties 

explained 28% of variability. Generally, climate was the most influential factor on must 

composition, while soil factor mostly affected yield. Chapter 6 determines the effects of 

climate and soil on grape ripening and wine quality of Cabernet Sauvignon. Climate and soil 

had overall a significant effect on grape ripening. These effects of soil and climate can be 

explained mainly by their influence on vine water availability status. Soil was determining in 

wine phenolic composition, and related wine tasting characteristics. As a final conclusion, 

very detailed soil surveys based on Soil Taxonomy are valuable sources of information for 

viticultural zoning studies, although their implementation can be improved with statistical 

analysis that considers the variability of soil properties related to grapevine growing. 

Moreover, although climate explains most of the vintage variability, soil type is decisive in 

determining the vineyard potential for wine quality.  
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  RESUM  

 

L’objectiu d’aquest estudi, dut a terme en vinyes destinades a la producció de vi de qualitat a 

Catalunya (Espanya), és determinar si un mapa de sòls molt detallat, basat en la Soil 

Taxonomy, és apte per estudis de zonificació vitícola i quantificar els efectes del sòl i el clima 

sobre la qualitat del raïm i del vi, en unitats cartogràfiques representatives. Després d’un 

capítol introductori, aquest objectiu es desenvolupa en diferents capítols. El capítol 2 analitza 

l’aptitud d’unitats cartogràfiques de sòls, classificades segons la Soil Taxonomy, per reflectir 

la variabilitat de propietats edàfiques importants per al cultiu de la vinya. Degut a què aquesta 

variabilitat no es reflectia exactament en la classificació de les unitats cartogràfiques, es va 

proposar una anàlisi clúster per agrupar els sòls segons el seu potencial vitícola. En el capítol 

3 es discuteixen les implicacions dels processos formadors del sòl en la cartografia de sòls 

molt detallada. Els processos formadors identificats tenien efectes significatius sobre 

propietats edàfiques importants per al cultiu de la vinya. Malgrat tot, aquests processos no 

sempre es reflectien en la classificació dels sòls, especialment en els sòls modificats per 

l'home. El capítol 4 analitza l’aptitud de la Soil Taxonomy per caracteritzar el règim d'humitat 

del sòl en estudis de zonificació vitícola. La Soil Taxonomy no reflectia adequadament la 

variabilitat de la dinàmica de la humitat del sòl durant el desenvolupament de la vinya, pel 

que es va proposar una classificació dels règims d’humitat del sòl a partir d’una anàlisi 

clúster. El capítol 5 se centra en la influència del sòl i del clima sobre la variabilitat de la 

verema. El clima i la humitat del sòl explicaven el 70% de la variabilitat mentre que les 

propietats del sòl n’explicaven un 28%. En general, el clima va ser el factor més influent en la 

composició del most, mentre que el sòl afectava sobretot en el rendiment. El capítol 6 

determina els efectes del clima i el sòl en la maduració del raïm i la qualitat del vi de Cabernet 

sauvignon. Tant el clima com el sòl presentaven un efecte significatiu sobre la maduració del 

raïm. Aquest efecte podria ser explicat per la influència del sòl i el clima sobre la 

disponibilitat d'aigua per a la vinya. El sòl va ser determinant en la composició fenòlica del vi, 

i conseqüentment en el tast de vins. Com a conclusió final, els mapes de sòls molt detallats 

basats en la Soil Taxonomy són una font valuosa d’informació per a estudis de zonificació 

vitícola, encara que la seva aplicació es pot millorar amb anàlisis estadístiques que considerin 

la variabilitat de propietats edàfiques determinants per al cultiu de la vinya. D'altra banda, 

encara que el clima explica la major part de la variabilitat de la verema, el tipus de sòl és 

decisiu en la determinació del potencial d’una vinya per a la producció de vi de qualitat. 
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RESUMEN 

 

El objetivo de este estudio, llevado a cabo en viñas destinadas a vino de calidad en Cataluña 

(España), es determinar si un mapa de suelos muy detallado, basado en la Soil Taxonomy, es 

apto para estudios de zonificación vitícola y cuantificar los efectos del suelo y el clima sobre 

la calidad de la uva y del vino, en unidades cartográficas representativas. Tras un capítulo 

introductorio, este objetivo se desarrolla en diferentes capítulos. El capítulo 2 analiza la 

aptitud de unidades cartográficas determinadas según la Soil Taxonomy, para reflejar la 

variabilidad de propiedades edáficas importantes para la vid. Debido a que esta variabilidad 

no se reflejaba exactamente en la clasificación de las unidades cartográficas, se propuso un 

análisis cluster para agrupar los suelos según su potencial vitícola. En el capítulo 3 se discuten 

las implicaciones de los procesos formadores del suelo en la cartografía de suelos. Los 

procesos formadores identificados tenían efectos significativos sobre propiedades edáficas 

importantes para la vid. Sin embargo, estos procesos no siempre se reflejaban en la 

clasificación de los suelos, especialmente en suelos antrópicos. El capítulo 4 analiza la aptitud 

de la Soil Taxonomy para caracterizar el régimen de humedad del suelo en estudios de 

zonificación vitícola. La Soil Taxonomy no reflejaba adecuadamente la variabilidad de la 

humedad del suelo durante el desarrollo de la vid, por lo que se propuso una clasificación de 

los regímenes de humedad del suelo a partir de un análisis cluster. El capítulo 5 se centra en la 

influencia del suelo y del clima sobre la variabilidad de la vendimia. El clima y la humedad 

del suelo explicaban el 70% de la variabilidad y las propiedades del suelo explicaban un 28%. 

En general, el clima fue el factor más influyente en la composición del mosto, mientras que el 

suelo afectaba sobretodo en el rendimiento. El capítulo 6 determina los efectos del clima y el 

suelo en la maduración de la uva y la calidad del vino de Cabernet Sauvignon. Tanto el clima 

como el suelo presentaban un efecto significativo sobre la maduración de la uva. Este efecto 

podría ser explicado por la influencia del suelo y el clima sobre la disponibilidad de agua para 

la viña. El suelo fue determinante en la composición fenólica del vino, y consecuentemente en 

la cata de vinos. Como conclusión final, los mapas de suelos muy detallados basados en la 

Soil Taxonomy son una fuente valiosa de información para estudios de zonificación vitícola, 

aunque su aplicación se puede mejorar con análisis estadísticos que consideren la variabilidad 

de propiedades edáficas determinantes para el cultivo de la vid. Por otra parte, aunque el 

clima explica la mayor parte de la variabilidad de la vendimia, el tipo de suelo es decisivo en 

la determinación del potencial de un viñedo para la producción de vino de calidad. 
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Chapter 1 

 

 GENERAL INTRODUCTION: WHAT IS VITICULTURAL ZONING?  

 

Viticultural zoning can be defined as the spatial characterization of zones that produce grapes 

or wines of similar composition, while enabling operational decisions to be implemented 

(Vaudour, 2003).  

 

Viticultural zoning studies have increased significantly over the past 10 years, in relation to 

the expansion of the international wine market (by 1,777 million litres from 1994 to 2005, 

according to The Global Wine Statistical Compendium, 1961-2005), especially in the New 

World countries (Australia and Chile almost tripled production between 1994 and 2005). This 

increase in wine production has led to a highly competitive market, and wine-producing areas 

have used product differentiation according to regional origin as a strategy to expand their 

wine markets. Thus, one of the main viticultural zoning objectives is related to the 

delimitation of protected viticultural areas. Moreover, the necessity of optimizing product 

quality and the development of new technologies in precision viticulture, have favoured 

viticultural zoning studies oriented to the delimitation of homogeneous areas to apply a 

differentiated management (fertilization, harvesting, diseases,…) or to select the best land for 

growing vines or a particular cultivar or rootstock (Vaudour and Shaw, 2005). 

 

The viticultural zoning delimitations are usually called ‘terroir’ units. Generally, ‘terroir’ is 

defined as an entity in space and time, characterized by an interaction between the 

environmental potential and viticultural and oenological practices, which is significant for 

grape and wine quality (Vaudour, 2003; Deloire et al., 2005). However, there is no agreement 

in the scientific community about the definition of the term ‘terroir’, and even now, a group of 

experts of the OIV (Office International de la Vigne et du Vin) are working on a definition 

which will be acceptable at international level (Fanet, 2007). This lack of agreement is due to 

the variability of applications, definitions and methodological approaches followed by 

different authors and viticultural regions, making international comparisons difficult 

(Vaudour and Shaw, 2005). Moreover, not all languages supported by the OIV can provide an 

accurate translation of the term ‘terroir’ and in some countries, particularly in the New World, 

this term is considered too complex and poorly defined to be useful (Fanet, 2007).  
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However, scientists from the INRA (Institut National de la Recherche Agronomique, France) 

and the INAO (Institut National des Appellations d’Origine, France) presented a definition in 

the 6
th

 International Terroir Congress in 2006 (Casabianca et al., 2006), which served as a 

draft resolution for the OIV. The definition proposed, known as the ‘Declaration of 

Montpellier’, says (Fanet, 2007): “The ‘terroir’ is a delimited geographical area in which a 

human community built along its history, a collective knowledge of production, based on an 

interaction between biological and physical environment, and a set of human factors. Thus, 

the technical routes used reveal an originality and result in a reputation for original products 

of this geographical area”. Jöel Rochard completed the proposed definition with the sentence: 

“Terroir also participates of specific landscape characteristics” (Fanet, 2007). The complete 

definition is close to the definition adopted by UNESCO in 2005.  

 

This definition reflects the importance of the human and historical aspects, as well as the 

empirical knowledge inherited from history and society. These aspects are accepted by the 

traditions of European viticulture, but the younger producing countries are not always ready 

to take account of this human side. As a consequence, they prefer the term ‘viticultural 

zones’, which is associated with a relatively simple viticultural characterization, compared to 

‘terroirs’, which require more features and a more cautious approach (Vaudour and Shaw, 

2005). These different concepts have led to a broad spectrum of scientific definitions of 

‘terroir’. The simplest methods only consider soil or climate (Morlat, 1989, 2001). Then, 

other factors can be added: variety and viticultural and oenological technology (Carbonneau, 

2001), and historical and sociological wine-growing factors (Vaudour, 2003).  

 

The environmental factors used in most viticultural zoning studies are climate (Coombe, 

1987; Hamilton, 1989) and soil (Rodríguez and García-Rodeja, 1995; Rodríguez, 1996; 

Fregoni, 1985; Falcetti et al., 1995; Rodríguez et al., 1996; Oliveira, 2001). Often, soil is 

studied together with climate, because its effects on wine quality are only consistent under the 

same climatic conditions (Saayman, 1977; Conradie, 1998). Other factors considered are 

cultivar and rootstock (Pouget, 1978), vine training system (Carbonneau, 1980), productivity 

(Huglin and Balthazard, 1976), geomorphology and topography (Dumas et al., 1997) and 

geology (Van Schoor, 2001). 

 

Among the permanent factors in viticultural production, climate is probably the factor with 

the greatest influence on the suitability of the environment for grapevine growing and wine 
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production (Hidalgo, 1999). The most important climatic variables are temperature, 

precipitation and solar radiation, but also mesoclimates and microclimates can be decisive.  

 

The temperature is probably the most important parameter, because it affects almost all 

aspects of vineyard functioning (Coombe, 1987). Temperatures have a fundamental, decisive 

influence in grape ripening and wine composition (Hidalgo, 1999). The cold limit for 

viticulture without winter protection can be considered -1ºC of mean temperature for the 

coldest month (Gladstones, 2000). Spring average minimum temperatures can be used in 

order to assess frost risk after budbreak (Gladstones, 1992). A minimum of cumulated 

temperatures during the growing season is necessary to ensure complete ripening for a certain 

cultivar (Winkler, 1962; Huglin, 1978). Also, cumulated temperatures determine pulp 

ripening speed and harvesting date (Branas et al., 1946; Huglin, 1978; Duteau, 1990). Night 

temperatures during the ripening period affect grape phenolic compounds’ accumulation and 

wine aroma and colour (Kliewer and Torres, 1972; Tonietto, 1999; Tonietto and Carbonneau, 

2002; Deloire et al., 2003; Deloire et al., 2005). Anthocyanin accumulation can be severely 

undermined by high diurnal temperatures during the ripening period (Van Leeuwen et al. 

2004).  

 

A precipitation between 350 and 600 mm is considered suitable for the production of high 

quality wine (Hidalgo, 1999). Excessive precipitation leads to a reduction in grape quality, 

since grape acidity increases, sugar content reduces and grape maturity is retarded, besides 

which it also favours the appearance of fungal diseases (e.g. mildew). Moreover, wine 

production and quality can also be damaged in case of insufficient rainfall (Luini et al., 1985). 

Even in areas with adequate rainfall, to provide additional water to maintain grape quality and 

production in dry years is necessary (Calame, 1984). Some indices for measuring risk of 

developing mildew are based on precipitation (Branas et al., 1946). 

 

The grapevines require a minimum between 1500 and 1600 sunshine hours per year, of which 

1200 hours must occur during the growing season, depending on latitude (Hidalgo, 1999). 

The solar radiation or photophase has an important physiological effect on grapevine growing 

and has a great influence on wine quality (Ribéreau-Gayon and Peynaud, 1960). Some indices 

based on solar radiation and temperature have been developed in order to assess the 

possibilities of grapevine cultivation (Branas et al., 1946; Huglin, 1978). 
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The relative humidity affects the photosynthetic rate when soil water supply is limited 

(Champagnol, 1984). Low values of relative humidity and high temperatures lead to 

increasing pH in berries and decrease grape production per unit of transpired water 

(Gladstones, 1992). Moreover, high values of relative humidity can increase the incidence of 

diseases.  

 

Strong winds during spring and early summer may affect flowering, reducing the number of 

grape clusters. Winds over 3-4 m·s
-1

 can cause closure of stomata, resulting in an inhibition of 

photosynthesis (Hamilton, 1989). However, adequate air circulation can prevent the effects on 

grapevine development of excessive relative humidities and temperatures.  

 

As mentioned above, the climatic variables most affecting wine production are precipitation, 

temperature and sunshine. These three variables are often used for viticultural zoning at the 

regional scale, by means of indices that allow the delimitation of viticultural regions 

(Constantinescu, 1967; Hidalgo, 1999; Tonietto and Carbonneau, 2000). These indices can be 

used to estimate grape properties, such as the theoretical grape sugar potential at maturity 

(Riou, 1998; Carbonneau, 2002), and wine properties, such as acidity and aromatic 

development (Tonietto and Carbonneau, 1999). 

 

This regional climate can be influenced by particular geographic conditions, resulting in local 

climates or mesoclimates. The factor that most influences the mesoclimate is topography, 

namely altitude, slope and aspect (Dumas et al., 1997). The effects of topography on climate 

can be indirect, due to water drainage and wind exposure, or direct, due to changes in the 

sunlight incidence on the earth surface (Crowe, 1971). The effect of topography on 

temperature variability is a major factor affecting grape quality (Gladstones, 1992). Convex 

slopes tend to have less variation in temperature between day and night, compared with 

concave slopes (Branas et al., 1946). Vineyard cultivation on slopes has usually been 

considered better for grape quality than cultivation on flat areas, since slopes are generally 

less fertile and less susceptible to over-production and the consequent reduction of grape 

quality (Hidalgo, 1999).  

 

For a specific mesoclimate and cultivar, soil is the most important factor in viticultural 

zoning, due to its direct effect on vine development and wine quality (Sotés and Gómez-
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Miguel, 2003). This fact explains why soil maps are usually used as the basic cartography for 

viticultural zoning studies at detailed scales. 

 

The viticultural suitability of a soil is marked initially by its geological origin. A priori, any 

geological formation may be better than others in terms of quality of production, although 

some authors prefer Oligocene and Miocene materials (Hidalgo, 1999). There is little 

literature on the relationship between geology and wine (Carey, 2001). However, geology is a 

factor considered in some viticultural zoning studies (Morlat, 1996), and some authors 

consider geology as the most important static component of ‘terroir’ affecting the character 

and quality of the final product (Dubos, 1984). The effect of rock mineralogy on the chemical 

composition of wine was studied by Van Schoor (2001). Nevertheless, the most significant 

effect of geology on wine quality appears through its contribution to the physical properties of 

soils (Seguin, 1986).  

 

The soil properties with the greatest influence on grapevine growing are soil depth and the 

physical properties which control soil water content (Seguin, 1986) and have a direct effect on 

the equilibrium between vegetative vigour and grape production (Van Leeuwen and Seguin, 

1994). This effect of soil moisture on vegetative and reproductive growth is mainly 

determined through the hormonal equilibrium. An unrestricted soil moisture regime may 

favour hormones responsible for vegetative growth (auxin, gibberellin, cytokinin) and 

disfavour hormones responsible for fruit ripening (abscisic acid) (Champagnol, 1984). As a 

result, total production and berry weight increase, but sugar, anthocyanin and phenolic 

content decrease (Esteban et al., 2001; Trégoat et al., 2002), diminishing wine quality 

(Gurovich and Páez, 2004). Generally, a moderately limited water regime has positive effects 

on berry composition and wine quality (Kounduras et al., 1999). In this case, stomatal 

regulation limits photosynthesis, favouring a growth shutdown of buds and berries (Van 

Leeuwen and Seguin, 1994) and causing an hormonal equilibrium more favourable for grape 

quality (Champagnol, 1984). The limitations on berry size, abscisic acid production and 

carbon competition between berries and shoots, associated with a moderate water stress 

situation, increase grape sugar, anthocyanin and tannin contents and also increase the grape 

ripening speed (Van Leeuwen and Seguin, 1994). 

 

The judgement of the availability of soil water for the vineyard crop can be made by means of 

soil moisture sensors, such as neutron probes (Lebon et al., 2003) or TDR probes (Sivilotti et 
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al., 2004); physiological parameters, such as leaf or stem water potential (Trégoat et al., 2002; 

Van Leeuwen et al., 2001) or carbon-13 discrimination (Gaudillère et al., 2002); or soil water 

balance models (Riou and Lebon, 2000; Oliveira, 2001). These data can be correlated with 

data of grape and wine composition, often to advise on cultivar selection, irrigation or 

fertilization purposes (Choné et al., 2001; Peyrot Des Gachons et al., 2005). 

 

In general, direct relationships between soil minerals and wine quality cannot be established 

(Seguin 1986), unless severe deficiencies affecting vineyard growing occur (Van Leeuwen et 

al., 2004). Nitrogen deficiency results in severe vine growing limitation and decrease in grape 

harvest. Excessive nitrogen contents can increase grape production, but grape quality can be 

severely diminished (Choné et al., 2001; Hilbert et al., 2003). A deficiency of phosphorus and 

potassium leads to a decrease of shoot length, weak flowering, a delayed veraison and small 

berries. An excess of active calcium carbonate can cause problems of iron chlorosis, with a 

large decrease in production (Hidalgo, 1999). Some studies have shown an effect of soil 

cations on grape composition, which can influence wine quality (Peña et al., 1999; Mackenzie 

and Christy, 2005).  

 

There are several approaches through soil studies which are oriented to viticultural zoning, 

depending on the number of variables taken into account and whether they are spatialized or 

not (Van Leeuwen et al., 2002). The methods that provide the most information for 

viticultural zoning are soil survey techniques, since they bring both the knowledge of spatial 

variability of soil properties and soil classification according to its viticultural potential (Van 

Leeuwen and Chery, 2001). There are a great variety of kinds of soil surveys, depending on 

the levels of information needed (SSS, 1993). These levels of information will condition the 

methods used for delineating soil map units. In Dutt et al. (1981), distinct viticultural regions, 

at reconnaissance scale, were determined by considering the soil temperature regime. Gómez-

Miguel and Sotés (2003) carried out the zoning of protected viticultural areas by means of soil 

surveys at 1:50,000 scale, which were based on the American Soil Taxonomy classification. 

Astruc et al. (1980) used a soil map at 1:25,000 scale, and considered as the most important 

factors the water availability, followed by the presence of carbonates and other chemical 

components. Many viticultural zoning studies note the importance of water availability, since 

this property integrates edaphoclimatic, biological and human factors (Duteau, 1981; Sotés 

and Gómez-Miguel, 1992; Van Leeuwen et al., 2002).  
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Trends in viticultural zoning refer mainly to an increase in spatial resolution of geographic 

information, thanks to the development of new technologies in precision viticulture. These 

technologies aim to georeference different variables important for vineyard management, in 

order to determine their spatial variability and to manage it properly according to production 

objectives. The variability of the harvest is monitored by means of sensors for grape 

harvesters, which allow the georeferencing of production (kg) and grape composition (sugar, 

pH, acidity, temperature) (Bramley and Hamilton, 2004; Arnó et al., 2005; Baguena et al., 

2009). The variability of vegetative vigour can be determined from high resolution 

multispectral aerial images recorded by satellites or airplanes (Hall et al., 2002; Martínez-

Casasnovas et al., 2005) or from terrestrial proximal sensors, such as GreenSeeker (Goutouly 

et al., 2006; Martínez-Casasnovas et al., 2008). The variability of vine water status can be 

measured with thermal infrared cameras that can capture canopy temperature (Roby et al., 

2004). Finally, the variability of soil can be characterized with sensors of electromagnetic 

induction or ground penetrating radar (Lunt et al., 2005). By means of these non-intrusive 

sensors, different soil properties can be mapped, for instance soil moisture, clay content, clay 

mineralogy, cation exchange capacity, bulk density or soil temperature (Corwin and Lesch, 

2005; Dabas et al., 2001). These soil maps are relatively faster to obtain than conventional 

soil surveys, and allow the representation of soil properties as a continuum. However, 

conventional soil surveys remain essential, because they are necessary for the proper 

calibration of these sensors and for the correct interpretation of these data (Van Leeuwen et 

al., 2002). 

 

This study was carried out in vineyards located in Catalonia (North-East Spain), which are 

oriented towards high quality wine production. These vineyards belong to Miguel Torres 

Winery, a fifth-generation family company whose main commitment is to offer high quality 

products. Approximately ten years ago, this company opted for soil survey techniques as the 

basic tool to optimize grape and wine quality through the implementation of viticultural 

practices that consider soil variability within the vineyard plots. The soil survey method 

selected is based on Soil Taxonomy classification, which is the system used by the official 

institutions of the study area. Soil Taxonomy is a worldwide hierarchical classification 

system, which is not intended for any particular crop. Thus, some questions arose: Is Soil 

Taxonomy adequate to sort out soils with important implications for wine growing? Can this 

soil classification system reflect the soil forming processes which occur in the study area? Are 

the soil moisture regimes of Soil Taxonomy suitable to characterize soil moisture dynamics in 
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vineyards? To what extent does soil affect the quality of grapes and wine? May the climate or 

other environmental factors have more influence than soil in grape and wine composition?  

 

The overall objective of this thesis is to determine the suitability of very detailed soil surveys, 

based on Soil Taxonomy, for viticultural zoning purposes and to quantify the effects of soil 

and climate on grape and wine quality in some representative soil map units.  

 

This objective can be divided into specific objectives: (1) to analyse the variability of 

physico-chemical properties of soil map units, which are determining in grape production, (2) 

to determine the suitability of the soil classification system for reflecting this variability, (3) 

to elucidate the implications of soil forming processes, which affect soil properties 

determining in grape production, on soil classification, (4) to determine the suitability of the 

soil classification system to characterize the soil moisture regime for viticultural zoning 

purposes, (5) to quantify the influence of edaphoclimatic parameters on grape harvest and (6) 

to quantify the effects of soil and climate on grape ripening and wine quality. 
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Chapter 2 

 

 APPLICATION OF A VERY DETAILED SOIL SURVEY METHOD IN 

VITICULTURAL ZONING AT PLOT LEVEL  

 

 

Abstract  

 

The aim of this study was to implement a very detailed soil survey methodology in 1,243 ha 

of vineyards in Catalonia (Spain) and analyse its suitability for viticultural zoning. The Soil 

Taxonomy at series level was used as the basis for classifying soils and delineating soil map 

units at 1:5,000 scale. A principal component analysis showed that most of the variability of 

soil properties, which was explained by factors related to water stress, iron chlorosis and 

vegetative growth, was not reflected exactly in the soil map unit classification. A k-means 

clustering analysis was proposed in order to group soils according to their potential for vine 

growing. As a conclusion, a very detailed soil survey method, based on Soil Taxonomy, could 

be used as a basic map for viticultural zoning, when was directed at the differentiation of 

zones of distinct suitability for vineyard growing, by means of cluster analysis. This study 

showed how very detailed soil maps, which can be difficult to interpret and put into practice, 

can be valorized as viticultural zoning maps by means of a simple methodology.  

 

Keywords: soil survey, soil classification, viticultural zoning, principal component analysis, 

cluster analysis.  
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Introduction 

 

During recent years, viticultural zoning studies have increased significantly in relation to the 

expansion of the international wine market. Viticultural zoning can be defined as the spatial 

characterization of zones that produce grapes or wines of similar composition, while enabling 

operational decisions to be implemented (Vaudour, 2003). The aims of viticultural zoning are 

related to the delimitation of protected viticultural areas, which serve to give added value to 

wines according to their origin, or the delimitation of homogeneous areas for vineyard 

management, which can be used to optimize grape quality (Vaudour and Shaw, 2005). There 

are different methods of viticultural zoning, depending on the factors considered. The 

simplest methods only consider soil, climate or the interaction between soil and climate 

(Morlat, 2001). Then, other factors can be added: variety and viticultural and oenological 

technology (Carbonneau, 2001), and historical and sociological wine-growing factors 

(Vaudour, 2003). Among the various environmental factors and for a specific mesoclimate, 

soil is the most important factor on viticultural zoning (Sotés and Gómez-Miguel, 2003), due 

to its direct effect on vine development and wine quality. The soil properties which have the 

most influence are the physical ones, namely the properties that control the soil water content 

(Seguin, 1986), due to their direct effect on equilibrium between vegetative vigour and grape 

production (Van Leeuwen and Seguin, 1994), and consequently on grape and wine quality 

(Esteban et al., 2001; Trégoat et al., 2002; Gurovich and Páez, 2004). 

 

There are several approaches through soil studies which are oriented to viticultural zoning, 

depending on the number of variables taken into account and whether they are spatialized or 

not (Van Leeuwen et al., 2002). The methods that provide the most information for 

viticultural zoning are soil survey techniques, since they bring both the knowledge of spatial 

variability of soil properties and soil classification according to its viticultural potential (Van 

Leeuwen and Chéry, 2001). Moreover, vineyard management maps can be derived from a soil 

map. Therefore, soil maps are usually used as the basic cartography for zoning studies. There 

are a great variety of kinds of soil surveys, depending on the levels of information needed 

(SSS, 1993). These levels of information will condition the methods used for delineating soil 

map units. In Dutt et al. (1981) distinct viticultural regions, at a reconnaissance scale, were 

determined by considering the soil temperature regime. Gómez-Miguel and Sotés (2003) 

carried out the zoning of protected viticultural areas by means of soil surveys at 1:50,000 
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scale, which were based on the American Soil Taxonomy classification. Astruc et al. (1980) 

used a soil map at 1:25,000 scale, and considered as the most important factors the water 

availability, followed by the presence of carbonates and other chemical components. Morlat et 

al. (1998) considered as the main property the effective soil depth, since this is directly related 

to water availability by the roots. Many viticultural zoning studies note the importance of 

water availability, since this property integrates edaphoclimatic, biological and human factors 

(Duteau, 1981; Sotés and Gómez-Miguel, 1992; Van Leeuwen et al., 2002). The use of 

polygon-based soil surveys has as its main limitations the size of the soil map unit that can be 

delineated as a polygon on a paper map, the representation of gradual changes in soil 

properties as abrupt changes and the manual map production process, which is time-

consuming and error-prone (Zhu et al., 2001).  

The increase in the power of information technology and tools such as DGPS and remote and 

proximal sensing, and an increase in the application of precision viticulture in recent years 

(Bramley and Lamb, 2003; Bramley and Janik, 2005), have promoted a great development of 

digital soil maps (McBratney et al., 2003; Taylor, 2004) to overcome the limitations of 

polygon-based soil maps. Digital maps are based on geographic information systems (GIS) 

data layers, which are relatively fast to obtain and allow the representation of soil properties 

as a continuum. Generally, the methodologies followed are based on the prediction of soil 

classes and/or attributes from independent variables (Scull et al., 2005). Digital soil maps 

derived from real-time on-the-go sensing technologies, such as electromagnetic induction 

sensors (Dabas et al., 2001; Corwin and Lesch, 2005) or ground-penetrating radar (Lunt et al., 

2005; Pracilio et al., 2006), are interesting in viticultural zoning, since they show a high 

correspondence with vineyard characteristics (Tisseyre et al.; 2006) and moreover, they allow 

the characterising of within-vineyard soil variability (Hall et al., 2002). Taylor and Minasny 

(2006) developed a methodology for converting very intensive soil survey data into 

continuous digital soil maps. These maps were coherent with vineyard knowledge and 

presented a strong and convincing spatial representation of soil variability within the 

vineyard. Gómez-Miguel and Sotés (2001), in order to minimise the cost of high resolution 

soil surveys, proposed a methodology of viticultural zoning at very detailed scale, which 

mixed polygon-based mapping techniques based on Soil Taxonomy with very intensive fixed 

grid soil surveys for some soil properties. The limitations of digital soil maps are the 

requirement for real soil observations to fit the prediction models, and also, the overfitted 

models, which predict poorly due to lack of observations and parsimony (McBratney et al., 
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2003). The use of new technologies can complement and facilitate the application of 

conventional soil surveys, but these methods remain essential (Van Leeuwen et al., 2002): 

they are necessary for the proper calibration of remote and proximal sensors, for the correct 

interpretation of sensing data and they are the basis of some technologies. 

 

In this study, the soil map units were delineated as polygons, following the criteria of the Soil 

Survey Manual (SSS, 1993) and Van Wambeke and Forbes (1986). A polygon-based method 

was chosen, because it was expected to pass from a farm level management to a block level 

management (a vineyard plot divided into more homogeneous parts), according to soil 

properties determined by laboratory analysis. The soil survey methods implemented are based 

on the Soil Taxonomy classification (SSS, 2006), which is the system used by the official 

institutions of the study area (Porta et al., 2009). Soil Taxonomy is a hierarchical 

classification system which can be used at different levels of information. For some scientists, 

the hierarchical approximation is conceptually unsatisfactory, since the resulting classes can 

sort out soils with differences that may not be important for some interpretations or uses 

(Young and Hammer, 2000). For instance, Young and Hammer (2000) found that some Soil 

Taxonomy classes had no relationship to distributional patterns of soil attributes. In those 

cases, multivariate statistical analysis can be used in order to find other classifications more 

adjusted to the natural distribution of soils (Areola, 1979; Young and Hammer, 2000). In this 

study, similar statistical analyses have been used in order to evaluate whether soil map units 

defined by Soil Taxonomy sorted out soils with important differences for vine growing.  

 

The aim of this study was to implement a very detailed soil survey methodology in 1,243 ha 

of vineyards and analyse its suitability for viticultural zoning. More concrete objectives were 

to (i) carry out a soil survey method at 1:5,000 scale based on Soil Taxonomy classification, 

(ii) analyse the variability of physicochemical properties of the resulting soil map units by 

means of Principal Component Analysis, (iii) realise a viticultural zoning proposal, applying 

to soil map units a k-means clustering method and (iv) analyse the correspondence between 

cluster classes and Soil Taxonomy classes. 
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Materials and methods 

 

Setting 

 

This study was carried out approximately in 1,243 ha of vineyards in Catalonia (Spain), which 

are oriented at high quality wine production. These vineyards are located on three distinct 

main geological units of Catalonia, concretely on the Catalan Coastal Range, the Ebro Basin 

and the Prepyrenees, approximately between 41º 8’ N and 42º13’N and between 0º 38’ E and 

1º 43’ E. The altitude ranges between 200 m and 1000 m.   

 

The climate type is Mediterranean, characterized by a dry warm season during summer, even 

though there are differences in temperatures and precipitation according to the altitude and 

distance to the sea. The mean annual precipitation varies from 520 mm to 650 mm. The 

annual precipitation has a high interannual variability (from 305 mm to 1110 mm). The mean 

annual temperature ranges between 12.7 and 14.9 ºC. In terms of viticultural indices, the 

thermal index of Winkler (Winkler, 1962) varies from 1441 ºC (zone II) to 2382 ºC (zone V), 

and the heliothermal index of Huglin (Huglin, 1978) ranges from 1877 ºC to 2500 ºC. The 

viticultural climate (Tonietto and Carbonneau, 2004) ranges between subhumid and 

moderately dry, between temperate and warm, and between very cold nights and temperate 

nights. Finally, the soil climate is characterized by a xeric soil moisture regime and a mesic or 

thermic soil temperature regime (SSS, 1999). 

 

Soil survey procedure 

 

The soil survey implemented applied most of the criteria of the Soil Survey Manual of the 

Department of Agriculture of United States (SSS, 1993) at 1:5,000 scale. When working at 

agricultural plot level, a very detailed level of information is recommended, with scales 

higher than 1:15,840 (SSS, 1993) or 1:5,000 (FAO, 1979). Goulet and Rioux (2006) used a 

soil survey at 1:10,000 scale, which was capable of differentiating soils and viticultural 

potential at vine plot level. In France, there are other many works on soil surveys at 1:5,000 

scale, for a zoning orientated towards differentiating viticultural potential (for example, 

Cohen, 1986; Guilly, 1990). Gómez-Miguel and Sotés (2001) demonstrated the suitability of 

the 1:5,000 scale for very detailed viticultural zoning proposals. The method applied in this 
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study delineates soil map units as polygons from soil observations which are selected 

according to different landforms and lithologies (Fig. 1). The density of soil observations was 

1 observation by cm
2
 of map, of which a sixth part corresponded to soil pits and the rest to 

soil auger holes. The depth of soil profiles was the shallowest of a root-limiting layer or 200 

cm. One observation by cm
2
 of map was adopted, doubling the density recommended by FAO 

(1979) and Gunn et al. (1988). At 1:5,000 scale, this density resulted in 4 observations by 

hectare. When applying a ratio of soil pit:soil auger hole 1:5, 0.7 soil pits by hectare were 

dug. This density of soil pits is higher than that recommended in several works (FAO, 1979; 

Porta et al. 1999; Legros, 1996; Van Leeuwen et al., 2002).  

 

For each profile, a detailed field description included site description (location, soil 

temperature and moisture regime, drainage class, depth to water table, geomorphic 

information, parent material and surface stoniness) and profile description (horizon depth and 

genetic denomination (SSS, 1999), soil colour (Munsell charts), mottles, coarse fragments, 

structure, consistence, cementations, effervescence (hydrochloric acid), roots, pores, cracks, 

biological and human activity, accumulation of materials and ped and void surface features) 

(CBDSA, 1983; Schoeneberger et al., 2002; Porta and López-Acevedo, 2005). Moreover, for 

each horizon, physical and chemical properties were analysed, according to the Soil Survey 

Laboratory Methods Manual of the Department of Agriculture of United States (USDA, 

1996). The selected physical properties were texture (pipette method) and moistures at -33 

kPa and -1500 kPa (pressure-plate extraction from disturbed samples). The selected chemical 

properties were pH (suspension of 1:2.5 soil:water), electrical conductivity (suspension of 1:5 

soil:water), organic matter (Walkley-Black), nitrogen (Kjeldahl), calcium carbonate 

equivalent (Bernard calcimeter), active calcium carbonate equivalent (Nijelsohn), gypsum 

(extracted by acetone), iron (extracted by EDTA), phosphorous (Olsen), cation exchange 

capacity and exchangeable bases (extracted by ammonium acetate). In some cases, a 

micromorphological study was undertaken in order to clarify or identify pedogenic processes 

which were difficult to detect with the naked eye (Ubalde et al., 2005). 
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Figure 1. Flow chart of the vineyard soil mapping methodology (Ubalde et al., 2008). 

 

When soil profiles were fully characterized, they were classified according to Soil Taxonomy 

(SSS, 2006). This method of classification is organised at different levels: Order, Suborder, 

Great Group, Subgroup, Family and Series. The order and suborder levels are defined by soil 

forming processes and factors. The great groups and subgroups are determined by similarities 

in kind, arrangement, and degree of expression of pedogenic horizons, soil moisture and 

temperature regimes, and base status. Conceptually, the Reference Soil Groups of the World 

Reference Base (FAO/ISSS/ISRIC, 2006) and the ‘Grands Ensembles de Références’ of the 

‘Référentiel Pédologique Français’ (INRA, 1995), could fit at an intermediate level between 

order and group level. Family level is defined by chemical and physical properties which 

affect management. Finally, soil series is the most detailed level, and they are soils that are 

grouped together because of their similar pedogenesis, soil chemistry and physical properties. 

Each series consists of soil layers that are similar in colour, texture, structure, pH, 

consistence, mineral and chemical composition, and arrangement in the profile.  

 

The soil series were used to delineate the soil map units (SMU), following the criteria of Van 

Wambeke and Forbes (1986). The soil survey party plotted the map unit boundaries onto 

orthophotographs. These boundaries were determined by means of soil observations, looking 

for differences in slope gradient, landform, colour, stoniness… When all SMU were 

delineated, they were listed and codified and the soil map legend could be designed. The 

http://en.wikipedia.org/wiki/Soil_color
http://en.wikipedia.org/wiki/Soil_texture
http://en.wikipedia.org/wiki/Soil_structure
http://en.wikipedia.org/wiki/Soil_pH
http://en.wikipedia.org/wiki/Soil_profile
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resulting soil map was digitised and introduced within a Geographic Information System 

(GIS). The selected GIS software was ArcGIS (ESRI
®

). 

 

Statistical analysis 

 

As a first step for evaluating whether SMU, which are defined by the Soil Taxonomy 

classification, differentiated soils with important differences for vineyard growing, an analysis 

of the variability of physicochemical properties of SMU was carried out. The statistical 

method selected was a Principal Component Analysis (PCA), which considered the average 

physicochemical properties of soil series as variables and the SMU as cases. This PCA was 

performed in STATISTICA
®
. The soil properties considered were those of the surface 

horizons (0 – 15/60 cm depth), because in the majority of soils, most of the root system was 

found within this depth, due to the presence of lithic and paralithic contacts, indurated layers, 

compacted layers or skeletal layers. Moreover, in the deepest soils, the soil preparation before 

plantation and ploughing created a change of compactness at 50/60 cm depth, which favoured 

horizontal root growth over vertical growth. 

 

The following step was focused on exploring the suitability of the SMU (soil map units) for 

viticultural zoning purposes. The method selected was cluster analysis, which has previously 

been used in other studies, in order to find out which soil classifications are best adjusted for 

concrete uses (Areola, 1979; Young and Hammer, 2000). Cluster analysis has been also used 

in the zoning of digital soil maps (Taylor and Minasy, 2006). The cluster analysis was 

realised from average physicochemical data of soil series, using the k-means method in 

STATISTICA
®
. This method groups data in k clusters of greatest possible distinction. Initial 

cluster centres were determined by sorting distances and taking observations at constant 

intervals. Cases with missing values were deleted. The number of clusters for the final k-

means clustering solution was selected by analysing the average distance among clusters. The 

most appropriate number of clusters was considered to be found when by increasing the 

cluster number, the average distance among clusters was not substantially reduced. As a result 

of this analysis, the average of each variable (edaphic property) was presented by each cluster, 

as well as the p-level of the ANOVA carried out for each variable. It was considered that 

there were significant differences among variables when p-level < 0.05. We also calculated 

the percentage of SMU that belonged to a determinate cluster.  
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Finally, classes formed by cluster analysis were compared with different levels of Soil 

Taxonomy (order, suborder, group, subgroup and different families), by the Pearson’s chi-

square test in STATISTICA
®
. In this analysis, the null hypothesis was the independence (no 

association) between variables. 

 

Results and discussion 

 

Soil classification and mapping 

 

The soil series determined during the soil survey belonged to Entisol, Inceptisol, Alfisol and 

Mollisol orders (SSS, 2006) and 12 different groups, according to a wide variety of soil 

forming processes and their resulting diagnostic horizons (Table 1). Table 1 also shows the 

approximate correspondence between Soil Taxonomy and the World Reference Base 

(FAO/ISSS/ISRIC, 2006) and the ‘Référentiel Pédologique’ (INRA, 1995). 

 

Table 1. Soil classification at subgroup level, with their diagnostic horizons.  

Soil Taxonomy 

(SSS, 2006) 

DIAGNOSTIC 

HORIZONS 

World Reference Base 

(FAO/ISSS/ISRIC, 2006) 

Référentiel Pédologique 

(INRA, 1995) 

Orders Groups  Reference Soil Groups Grands Ensembles de Références 

Entisols Xerorthents Ochric Leptosols, Regosols Lithosols, Régosols, Rendosols 

 Xerofluvents Ochric Fluvisols Fluviosols, Colluviosols 

 Xeropsamments Ochric Arenosols Arénosols 

 Xerarents Ochric, argillic fragments  Anthrosols Anthroposols 

Inceptisols Haploxerepts Ochric, calcic, gypsic Cambisols, Gypsisols Calcosols, Calcisols 

 Calcixerepts Ochric, calcic, petrocalcic Calcisols Calcarisols 

Alfisols Haploxeralfs Ochric, argillic Luvisols Luvisols 

 Palexeralfs Ochric, argillic, calcic Luvisols Luvisols 

 Rhodoxeralfs Ochric, argillic, calcic Luvisols  Luvisols 

Mollisols Haploxerolls Mollic Phaeozems Phaeosols 

 Calcixerolls Mollic, calcic Kastanozems Phaeosols 

 Palexerolls Mollic, petrocalcic Phaeozems Phaeosols 

 

The most frequent soil order was Entisols, which are characterized by little or no evidence of 

soil formation. The groups described were Xerorthents (shallow soils with a root-limiting 

layer), Xerofluvents (deep soils, rich in organic matter in depth), Xeropsamments (sandy 

soils) and Xerarents (soils deeply mixed by earthworks). The second largest order was 

Inceptisols, which are characterized by being in early stages of soil formation. The groups 

described were Haploxerepts (soils with incipient accumulations of calcium carbonate and 

soils with gypsum accumulation) and Calcixerepts (soils with accumulations of calcium 

carbonate). The next largest order was Alfisols, which are characterized by silicate clay 

accumulation and a base saturation greater than 50 %. The groups identified were 
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Haploxeralfs (soils with clay accumulation), Palexeralfs (soils with accumulation of clay and 

calcium carbonate) and Rhodoxeralfs (very rubefacted soils). The last order in importance 

was Mollisols, which are base-rich soils with a dark coloured surface horizon, due to organic 

matter accumulation. The groups identified were Haploxerolls (soils with high organic matter 

content), Calcixerolls (soils with high organic matter content and accumulations of calcium 

carbonate) and Palexerolls (soils with high organic matter content and cementations of 

calcium carbonate). 

 

Although soil forming processes were determinant when describing classification between 

order and subgroup level, the family level was determined by physical and chemical 

properties which affect soil responses to management and manipulation for use. The 

properties used were the grain-size composition of the whole soil (including the fine earth and 

coarse fragments) for particle-size classes, the calcium carbonate content for mineralogy 

classes, the soil temperature regime for soil temperature classes and thickness of rooting zone 

for soil depth classes. Families, together with other criteria (differences in texture, 

arrangement of horizons), give rise to soil series, which are the most detailed level of soil 

classification. The consideration of all these variables allowed the differentiation of a high 

number of soil types, so that in the study area every 3 to 4 soil profiles belonged to one soil 

series, by average.  

 

Finally, the SMU were delineated from soil series and other properties with influences on soil 

management (slope, surface stoniness and surface texture). The final number of SMU was 

approximately double that of the number of soil series. The mean surface of the delineated 

SMU was 1.4 hectares. This area allowed the use of this soil survey as the base map for block 

management at vineyard plot level, in spite of not knowing the intrablock variability. This 

inconvenience can be mitigated by combining this cartography with more intensive sampling 

for some variables (Gómez-Miguel and Sotés, 2001; Sort and Ubalde, 2005). 

  

Variability of soil properties  

 

Figure 2 shows a Principal Component Analysis (PCA) where variables are mean 

physicochemical properties of surface horizons (0 – 15/60 cm depth) and cases are soil series. 

Cases are labelled at subgroup level, in order to see any trend at this level. Factor 1, which 

explains 28 % of variability, separates sandy soils and gravelly soils from clayey soils and 
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soils with a high capacity for water retention. This factor can be considered the factor of 

potential for water stress, because it separates soils with low water holding capacity (high 

contents of sand and gravel) from soils with high contents of clay and high capacity of water 

retention. The only different subgroup is Xeropsamments, which are characterized by high 

contents of sand. Factor 2, which explains 15 % of variability, separates soils with high 

contents of carbonates from soils with high contents of iron. This factor can be considered the 

factor of potential for iron chlorosis occurrence, because it separates soils with high contents 

of active calcium carbonate and high iron chlorosis occurrence index from soils with high 

contents of iron. The only different subgroup is Calcixerepts, which are characterized by 

carbonate accumulation. The last factor considered, which explains 10 % of variability, 

separates soils with high contents of organic matter and nitrogen. This factor can be 

considered the factor of potential for vegetative growth, which is very influenced by N 

fertility (Choné et al., 2001). The only different subgroup is Xerolls (Haploxerolls and 

Palexerolls), which are characterized by important organic matter accumulation. This analysis 

highlights that physical and chemical properties are not determinant at subgroup level, except 

to subgroups which are characterized by undergoing soil forming processes with strong 

consequences on physicochemical properties.  

 

In short, most of the data variability is explained by soil properties which are very important 

for vineyard growth, because these properties determine soil potential for water stress, iron 

chlorosis and vegetative growth. When grouping series, it is expected that these properties 

will be the ones most differentiated within each group. As a result, a zoning realized by 

grouping series would be useful in viticulture.  
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Figure 2. PCA of physical and chemical surface properties for soil series of the study area. In the first 

column there is the projection of variables and in the second column there is the projection of cases. In 

the first row there is represented factor 1 x factor 2, and the second row represents factor 1 x factor 3.  

Legend for variables: OM, organic matter; CEC, cation exchange capacity; EC, electrical conductivity; W1500 

and W33, water content at -1500 and -33 kPa, respectively; BD, bulk density; CF, coarse fragments; WHC, 

water holding capacity; IPC, potential for iron chlorosis occurrence index; Lime, active calcium carbonate 

equivalent; Depth, thickness of rooting zone; Temperature, soil temperature regime. 

Legend for cases: 1, Xerorthents; 2, Xerofluvents; 3, Xeropsamments; 4, Xerarents; 5, Haploxerepts; 6, 

Calcixerepts; 7, Haploxeralfs; 8, Palexeralfs; 9, Rhodoxeralfs; 10, Haploxerolls; 11, Calcixerolls; 12, 

Palexerolls. 

 

Viticultural zoning 

 

As shown in previous sections, very detailed soil survey methods give rise to a large number 

of SMU and, moreover, PCA suggests that Soil Taxonomy series would not be the most 

suitable classification to shape important edaphic properties for vineyard growing (water 
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stress, iron chlorosis, vegetative growth). In order to reduce SMU number and find a soil 

classification more adjusted to viticultural zoning proposals, cluster analysis was selected 

among different statistical analyses, which are used in soil study (Courtney and Nortcliff, 

1977), because this method allows the grouping of data, minimizing within-group variability 

while maximizing among-group variability (Young and Hammer, 2000). That is why this 

methodology is useful not only to simplify SMU, but to maintain most of the data variability. 

As highlighted in the PCA, this data variability was useful for sorting out soils which are 

characterized by having very distinct main edaphic properties for vine growing.  

 

Figure 3 represents the inverse relationship between the number of clusters and the average 

distance among them. The most appropriate number of clusters can be determined by the 

slope change, which indicates the point where an increase of the number of clusters does not 

result in a substantial reduction of the distance between clusters. In our case, 8 clusters were 

selected.  
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Figure 3. Estimation of final cluster number according to average distance between clusters. 

 

Averages of soil properties for each cluster are shown in Table 2. The significance (p-level) of 

among-cluster variability is also shown, and almost all variables present significant 

differences to 95 % (exceptions are pH, phosphorus, sodium and electrical conductivity). 

Finally, the importance of each cluster is illustrated with the percentage of SMU included 

within them. Cluster 4 is the one which encloses the largest number of SMU and cluster 8 the 

least. 

 



 22 

Table 2. Cluster means for soil properties considered, and significance of clusters variability.
 

Soil 

properties* 

Cluster 

No. 1 

Cluster 

No. 2 

Cluster 

No. 3 

Cluster 

No. 4 

Cluster 

No. 5 

Cluster 

No. 6 

Cluster 

No. 7 

Cluster 

No. 8 

ANOVA 

signif. p 

pH 8.3 8.5 8.3 8.4 8.5 8.3 8.4 8.5 0.460 

OM 1.4 1.2 1.7 1.3 1.3 0.8 1.0 0.8 0.024 

N 0.09 0.07 0.11 0.07 0.07 0.05 0.06 0.06 0.003 

CaCO3 20 35 34 41 44 15 29 25 0.000 

Lime 5.5 7.9 6.6 9.5 11.1 4.1 6.9 7.3 0.017 

Fe 228.5 99.5 190.7 91.1 80.8 257.7 179.6 247.0 0.000 

P 27.1 13.1 18.1 26.7 22.2 21.3 26.9 23.7 0.230 

K 272.1 206.1 209.4 240.0 221.0 95.2 179.1 229.1 0.000 

Sand 33.9 32.3 35.7 35.2 43.3 56.3 44.1 53.4 0.000 

Silt 38.2 41.6 31.9 41.3 37.7 30.0 38.0 31.5 0.025 

Clay 26.4 26.1 31.1 22.1 18.0 13.7 17.9 15.1 0.000 

CEC 14.7 12.2 18.5 10.3 8.6 9.3 8.0 5.3 0.000 

Mg 271.1 281.6 211.2 186.0 178.1 134.0 249.3 234.7 0.016 

Na 58.0 60.4 61.3 58.5 48.2 52.2 46.9 53.4 0.105 

EC 0.20 0.17 0.21 0.21 0.22 0.19 0.21 0.29 0.522 

W33 23.3 22.9 25.3 21.1 19.1 17.2 19.1 16.0 0.000 

W1500 11.2 10.6 12.5 9.5 7.8 6.9 7.6 6.3 0.000 

WHC 17.7 18.0 18.7 15.9 13.9 11.5 14.9 12.9 0.003 

IPC 3 28 16 26 35 3 10 50 0.002 

Percent 11.9 12.8 4.6 22.0 14.7 12.8 17.4 3.7 - 
* 

Legend: OM, organic matter (%); Lime, active calcium carbonate equivalent (%); CEC, cation exchange 

capacity (cmolc/kg); EC, electrical conductivity (dS/m); W1500 and W33, water content at -1500 and -33 kPa, 

respectively (%); WHC, water holding capacity (mm/10cm); IPC, iron-chlorosis occurrence index; Percent: 

Frequency of SMU into each cluster in percentage. 

 

In Table 3, soils with properties next to the average of the cluster have been described and an 

interpretation of implications for vineyard management has been carried out. Obviously, 

there are soils in the clusters that would be outside of this description. However, most of the 

soils which come out separately in clusters present properties with different implications for 

vineyard growing, and consequently for viticultural zoning. For example, an optimal 

rootstock for each cluster could be suggested according to the different potentials for water 

stress, iron chlorosis and vegetative growth. Clusters 4 and 5 have been joined in this 

interpretation, because they do not differ substantially in the soil properties that had more 

weight in the factors considered in the PCA.  

 

The results of the chi-squared test of independence, which determine if a significant 

association exists between clusters and different levels of Soil Taxonomy, are shown in Table 

4. It was ascertained that there were no associations between clusters and the highest levels of 

Soil Taxonomy (from order to subgroup). However, there is a significant association at family 

level. The significance is 99% for particle-size class and cation-exchange activity class and 

90% for mineralogy class. This association can be explained because physicochemical 
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properties are important when gauging the families, and basically these properties are the ones 

that were used for cluster determination.   

 

Table 3. Interpretation of clusters for viticultural zoning. 

Cluster General vineyard soil description Implications for viticulture 

6 

 

Shallow and moderately deep soils, coarse or 

moderately coarse textures, low or moderate water 

holding capacity, low calcium carbonate content and 

very low organic matter content.  

 

High potential for water stress and low potential 

for iron chlorosis and vegetative growth. 

8 

 

Shallow and moderately deep soils, coarse or 

moderately coarse textures, low or moderate water 

holding capacity, high calcium carbonate content and 

very low organic matter content. 

 

High potential for water stress, medium 

potential for iron chlorosis and low potential for 

vegetative growth. 

7 

 

Moderately deep and deep soils, medium textures, 

high water holding capacity, high calcium carbonate 

content and low organic matter content. 

 

Medium potential for water stress, iron chlorosis 

and vegetative growth. 

4 – 5 

 

Moderately deep and deep soils, medium textures, 

high water holding capacity, very high calcium 

carbonate content and low organic matter content. 

 

Medium potential for water stress and vegetative 

growth, high potential for iron chlorosis (cluster 

5 > 4). 

1 

 

Deep and very deep soils, medium or finer textures, 

very high water holding capacity, low calcium 

carbonate content and low organic matter content. 

 

Low potential for water stress and iron chlorosis 

and high potential for vegetative growth. 

2 

 

Deep and very deep soils, medium or finer textures, 

very high water holding capacity, high calcium 

carbonate content and low organic matter content. 

 

Low potential for water stress, medium potential 

for iron chlorosis and high potential for 

vegetative growth. 

3 

 

Deep and very deep soils, medium or finer textures, 

very high water holding capacity, high calcium 

carbonate content and medium organic matter content. 

Low potential for water stress, medium potential 

for iron chlorosis and very high potential for 

vegetative growth. 

 

Table 4. Pearson’s chi-square test of independence between different taxonomy levels and clusters. 

Taxonomy level Chi-square df p-level 

Order 26.9 21 0.176 

Suborder 40.4 35 0.245 

Group 69.1 63 0.279 

Subgroup 29.6 35 0.727 

Particle-size class 96.8 63 0.004 

Mineralogy class 12.7 7 0.080 

Cation-Exchange Activity class  39.0 21 0.010 

 

In order to analyse the relationship between different Soil Taxonomy classes and cluster 

classes, the frequency in which taxa distribute in clusters is shown in Figure 4. It is selected a 

non-significant case (group level), a significant case at 99% (particle-size class) and a 

significant case at 90% (mineralogy class). Agreeing with the results of PCA, trends are 

observed at group level for Xeropsamments, Calcixerepts and Xerolls, which present higher 
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frequencies in clusters with higher content of sands (cluster 6), carbonates (cluster 4 and 5) 

and organic matter (cluster 1 and 3), respectively. On the other hand, clearer trends are 

observed at family level, consistent with the results of the chi-squared test. With respect to 

particle-size class family, the sandy and skeletal families are most frequent in clusters with the 

highest sand contents and the lowest water holding capacity (cluster 5, 6 and 8), loamy 

families predominate in clusters of medium textures (cluster 4, 5 and 7), silty families are 

most frequent in the cluster with the highest silt content (cluster 4) and fine and clayey 

families predominate in clusters with the highest clay contents (cluster 1 and 3). With respect 

to the mineralogy class family, the carbonatic class presents the highest frequencies in clusters 

with the most carbonates (cluster 4 and 5) and the mixed class in the clusters with the least 

carbonates (cluster 1, 6 and 7). So, as in previous studies (Young and Hammer, 2000), there 

are some statistically significant associations among cluster groups and Soil Taxonomy 

families. However, this association is not strong enough to predict accurately the taxonomic 

classes from cluster memberships, or vice versa. 
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Figure 4. Frequency of each taxa into each cluster in percentage. 

 

In Figure 5, it is shown a detail of the soil map and other maps related to vineyard crop. As 

seen before, the use of Soil Taxonomy at series level and 1:5000 scale (Figure 5-A) resulted 

in a high number of SMU, due to a high sampling density and a high variability of soil 

forming processes and physicochemical soil properties. Consequently, the SMU average size 

was 1.4 ha, allowing the use of this information for land management in blocks, for example 
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for fertilization (Figure 5-C).  However, this large number of SMU difficulted the 

interpretation of the legend and did not accurately shape the variability of important 

properties for vineyard growing. The map of cluster classes (Figure 5-B) led to a drastic 

reduction in the number of SMU, while keeping much of the data variability and obtaining a 

classification closer to soil viticultural potential. This cluster map has a legend that 

distinguishes polygons according to the potential of water stress, iron chlorosis (Figure 5-D) 

and excess of vigour, and with simple reclassifications, maps of suitability for varieties or 

root-stocks, sectors of irrigation and other viticultural treatments can be obtained. The main 

advantages of this viticultural zoning proposal are its simplicity when carrying out statistical 

calculations, as well as when transforming these results in georeferenced information. With 

STATISTICA®, a Table in dbf format with the SMU codes and the corresponding clusters 

can be extracted, and can be attached through ARCGIS® to the soil map. Finally, for 

obtaining the cluster map, an operation of dissolution of polygons, considering the cluster 

number as variable, is carried out. On the other hand, this method presents different 

limitations. One limitation is the consideration only of surface horizons since, although most 

of the root system is found near the surface, the deep roots can have a great importance when 

facing water stress in the very dry and warm summers, which are common in the study area. 

Another limitation is that new soil map units cannot be assigned automatically to the existing 

cluster classes, since belonging to a cluster class cannot be predicted accurately from 

taxonomic classes. It should be also remarked that this level of study is merely descriptive, so 

that with this information the relationships between the soil type and the quality of the wine 

and the grape cannot be determined. To know these relationships, ecophysiological studies 

have to be carried out. However, it seems interesting to us to be able to transform, by means 

of a simple methodology, conventional soil maps which can be difficult to interpret, into 

viticultural zoning maps, whose map units are determined maximizing the difference in soil 

properties, which are determining for vineyard production.  

 



 26 

 

Figure 5. Detail of (A) the soil map according to Soil Taxonomy, (B) the cluster classes map, (C) the 

map for block management, concretely for mineral fertilization, and (D) the map of potential for 

vineyard growing, concretely for iron chlorosis. 

 

Conclusions 

 

In this study, we present a simple methodology that allows us to get the maximum value from 

conventional soil maps as base maps for viticultural zoning, directed at the differentiation of 

zones according their potential for vine development. The chosen scale, 1:5,000, allowed us 

to divide vine plots into blocks, which could be used for a differentiated viticultural 

management. On the other hand, the soil classification used, Soil Taxonomy at series level, 

allowed us to differentiate a great number of soil map units, but in return it showed certain 

deficiencies when reflecting the variability of important properties for vineyard cropping. As 

up to 50% of the variability was explained by three factors related to vine development 

(potential for water stress, iron chlorosis and vegetative growth), we proposed a cluster 

analysis for facilitating a viticultural interpretation of the soil map, since this analysis allowed 

us to reduce the number of soil map units and to group soils maximizing the variability 

among the groups. As a result, this method was suitable to separate soils according their 

distinct potential for vine growing, in relation to water stress, iron chlorosis and vegetative 

growth. A limitation of this method was that the relationship between cluster groups and Soil 

Taxonomy groups was not strong enough to predict accurately cluster membership from 
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taxonomic classes. So new soil map units could not be assigned to existing soil cluster 

classes.  

 

In short, as a main conclusion of this study, a very detailed polygon-based soil survey method, 

based on Soil Taxonomy, can be used at very detailed scale as a basic map for block 

management and also at a smaller scale, by means of cluster analysis, when viticultural 

zoning is directed at the differentiation of zones of distinct potential for vineyard growing.  
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Chapter 3 

 

 HOW SOIL FORMING PROCESSES DETERMINE A VITICULTURAL 

ZONING BASED ON VERY DETAILED SOIL SURVEYS  

 

 

Abstract  

 

The aim of this study was to elucidate the soil forming processes of representative vineyard 

soils, and discuss about the implications on a soil-based viticultural zoning at very detailed 

scale. The study area is located in Priorat, Penedès and Conca de Barberà viticultural areas 

(Catalonia, North-eastern Spain). The studied soils belong to representative soil map units 

determined at 1:5,000 scale. The soil forming processes, identified through morphological and 

micromorphological analyses, have significant effects on some soil properties (clay content, 

cation exchange capacity, available water capacity and calcium carbonate content). These 

properties, especially those related to soil moisture regime, have a direct influence on 

vineyard management and grape quality. However, soil forming processes are not always 

reflected on soil classification, especially in soils modified by man. We show that climate or 

geology alone cannot be used in viticultural zoning, unless soil forming processes are taken 

into account. 

 

Keywords: Soil formation, soil micromorphology, Soil Taxonomy, vineyard soil, terroir 
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Introduction 

 

During recent years, viticultural zoning studies have increased significantly in relation to the 

expansion of the international wine market. Viticultural zoning can be defined as the spatial 

characterization of zones that produce grapes or wines of similar composition, while enabling 

operational decisions to be implemented (Vaudour, 2003). Among the various environmental 

factors and for a specific climate, soil is the most important factor on viticultural zoning, due 

to its direct effect on vine development and wine quality (Sotés and Gómez-Miguel, 2003). 

The soil properties which have the most influence are the physical ones, namely the properties 

that control the soil water content (Seguin, 1986), due to their direct effect on equilibrium 

between vegetative vigour and grape production (Van Leeuwen and Seguin, 1994), and 

consequently on grape and wine quality (Esteban et al., 2001; Trégoat et al., 2002; Gurovich 

and Páez, 2004). In general, relationships between soil minerals and wine quality cannot be 

established (Seguin, 1986), except for nitrogen (Choné et al., 2001; Hilbert et al., 2003), 

unless severe deficiencies affecting vineyard growing occur (Van Leeuwen et al., 2004). For 

example, a calcium excess may be responsible of iron deficiencies (iron chlorosis), which can 

greatly affect grape production. However, some studies have shown an effect of soil cations 

on grapes and wine quality (Peña et al., 1999; Mackenzie and Christy, 2005). The 

physicochemical properties of soils are determined by the soil forming processes under which 

they form (Ritter, 2006). Some soil forming processes, such as clay accumulation or mineral 

weathering, may have a great influence on soil physical properties, which are the most 

important for grapevine cultivation. 

 

There are several approaches through soil studies which are oriented to viticultural zoning 

(Van Leeuwen et al., 2002), but the methods that provide more information are soil survey 

techniques, since they bring both the knowledge of spatial variability of soil properties and 

soil classification according to its viticultural potential (Van Leeuwen and Chéry, 2001). 

Therefore, soil maps are usually used as the basic maps for zoning studies. In Dutt et al. 

(1981) distinct viticultural regions were determined by considering the soil temperature 

regime. Astruc et al. (1980) considered the water availability as the most important factor, 

followed by carbonates and other chemical components. Morlat et al. (1998) considered the 

effective soil depth as the main property, since this is directly related to water availability by 

the roots. Many viticultural zoning studies note the importance of water availability, since this 
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property integrates edaphoclimatic, biological and human factors (Duteau, 1981; Sotés and 

Gómez-Miguel, 1992; Van Leeuwen et al., 2002). Soil survey methods based on Soil 

Taxonomy classification (SSS, 1999) were useful for viticultural zoning studies at different 

detail levels (Gómez-Miguel and Sotés, 2001; Gómez-Miguel and Sotés, 2003, Ubalde et al., 

2009). Soil forming processes are determining most of the diagnostic horizons and 

characteristics for the higher categories of Soil Taxonomy, thus the soil genesis is 

fundamental to soil taxonomy and soil survey.  

 

In this way, soil forming processes, through their effects on edaphic properties and their 

implications on Soil Taxonomy, may have a great importance on a viticultural zoning based 

on soil surveys. However, as mentioned above, many viticultural zoning studies are based on 

the relationships between grape and wine quality and certain soil properties or different soil 

forming factors, namely climate (Coombe, 1987; Hamilton, 1989), geology (Van Schoor, 

2001) and topography (Dumas et al., 1997), but there are no studies that consider possible 

relationships with soil forming processes. This fact may be due to difficulties in determining 

some of these processes, because soil genesis cannot be observed or measured directly and 

pedologists could differ about it (SSS, 1999). Evidences of some soil forming processes can 

be detected only by microscopic studies, which require a specific training. Furthermore, some 

soil forming processes are not adequately addressed by the taxonomic system, especially 

those related to human activity (SSS, 1999). The International Committee on Anthropogenic 

Soils (ICOMANTH) was created to improve anthropogenic soil classification in Soil 

Taxonomy. These last years, soils deeply affected by men have greatly increased in many 

viticultural areas, related to the expansion of global wine market (Cots-Folch et al., 2005; 

Ramos et al., 2007; Dazzi et al., 2009).  

 

In this study, representative soils of a very detailed soil survey, which was carried out for 

viticultural zoning purposes, were selected. The study area is composed of high quality 

producing vineyards of Catalonia, namely the viticultural regions of Priorat, Conca de 

Barberà and Penedès. The relationship between soils and grape and wine quality in the study 

area is discussed elsewhere (Andrés-de-Prado et al., 2007, Ubalde et al., 2007, 2009). In this 

paper we want to analyse whether the soil forming processes, through their effects on soil 

properties and classification, deserve to be considered in a viticultural zoning based on soil 

surveys. At our knowledge, this approach has never been addressed before. In short, the aim 
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of this study was to elucidate the soil forming processes of representative vineyard soils, and 

discuss about the implications on soil classification and viticultural zoning. 

 

Materials and methods 

 

The study area is high quality producing vineyards, located in different protected viticultural 

areas of Catalonia: Conca de Barberà, Priorat and Penedès. The area is enclosed 

approximately between 41º 3’ N and 41º 48’ N and between 0º 40’ E and 1º 53’ E. The 

altitude ranges approximately between 220 m and 550 m. The study area has an old 

viticultural history, which started in some cases during the 4th century BC. Since the 1980s - 

1990s, the systems of grapevine cultivation have evolved to highly mechanized farms, which 

seek to obtain maximum profitability but maintaining high quality products. Thus, a 

widespread practice was the removal of old stone walls, in order to obtain larger plots. In 

these cases, land levelling usually involved a change in the arrangement of soil horizons, 

sometimes leading to a decline of soil fertility. 

 

The vineyards are situated on the Catalan Coastal Range and the Ebro Basin. The Catalan 

Coastal Range is an alpine folding chain formed by both massifs and tectonic trenches 

(Anadón et al., 1979). The Conca de Barberà soils are located in the footslope of the massif, 

named ‘Serra de Prades’ in this region. The soils are developed from gravel deposits of 

different ages, which are composed of siliceous Paleozoic materials (Silurian and 

Carboniferous slates and granites) (IGME, 1975a). The Priorat soils are located in the 

hillslope of the Priorat Massif, which is composed of Carboniferous slates and granodiorites 

(IGME, 1978). The slates are named ‘llicorella’ in this region, and they are considered the 

main responsible for grape quality. The selected Penedès soils are located in 2 subdivisions, 

which can be called Upper Penedès and Middle Penedès. The Middle Penedès soils are 

located in a tectonic trench named Penedès Basin, where calcareous Miocene materials 

(marls, conglomerates, limes) outcrop (IGME, 1982). The Upper Penedès soils are located in 

the Ebro basin margin, next to the Alt Gaià Massif. Calcareous materials from Oligocene and 

Eocene predominate in this region (IGME, 1975b). 

 

The climate type is Mediterranean, characterized by a dry warm season during summer, even 

though there are differences in temperatures and precipitation according to the altitude and 
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distance to the sea. The mean annual precipitation ranges from 520 mm in Penedès to 589 mm 

in Priorat, showing seasonal variations (Fig. 1). In all regions, the precipitation has a bimodal 

distribution (peaks in spring and autumn) and a minimum of precipitation in summer, 

particularly in July. The highest temperatures occur in summer, particularly in July or August, 

while the lowest temperatures occur in winter (January). Comparing different regions, the 

warmest one is Penedès, with an average annual temperature of 14.9 ºC, and the coolest one is 

Priorat, with an average annual temperature of 12.7 ºC. The soil moisture regime is xeric and 

the soil temperature regime is mesic (Priorat and Conca de Barberà) or thermic (Penedès) 

(SSS, 1999). 
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Fig. 1. Average climatic data of the viticultural areas of Priorat, Conca de Barberà and Penedès. 

 

The studied soils belong to soil map units determined according to the Soil Survey Manual of 

the Department of Agriculture of United States (SSS, 1993), at very detailed scale (1:5,000). 

Soil map units were delineated as polygons from soil observations, which were selected 

according to different landforms and lithologies. The density of soil observations was 1 

observation by cm
2
 of map, of which a sixth part corresponded to soil pits and the rest to soil 

auger holes. The depth of soil profiles was the shallowest of a root-limiting layer or 200 cm. 

When applying a ratio of soil pit:soil auger hole 1:5, 0.7 soil pits by hectare were dug. For 

each profile, a detailed field description included site description (location, soil temperature 

and moisture regime, drainage class, depth to water table, geomorphic information, parent 

material and surface stoniness) and profile description (horizon depth and genetic 

denomination (SSS, 1999), soil colour (Munsell charts), mottles, coarse fragments, structure, 

consistence, cementations, effervescence (hydrochloric acid), roots, pores, cracks, biological 
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and human activity, accumulation of materials and ped and void surface features) (CBDSA, 

1983; Schoeneberger et al., 2002; Porta and López-Acevedo, 2005). Moreover, for each 

horizon, physical and chemical properties were analysed, according to the Soil Survey 

Laboratory Methods Manual of the Department of Agriculture of United States (USDA, 

1996). The selected physical properties were texture (pipette method) and moistures at -33 

kPa and -1500 kPa (pressure-plate extraction from disturbed samples). The selected chemical 

properties were pH (suspension of 1:2.5 soil:water), electrical conductivity (suspension of 1:5 

soil:water), organic matter (Walkley-Black), nitrogen (Kjeldahl), total calcium carbonate 

equivalent (Bernard calcimeter), active calcium carbonate equivalent (Nijelsohn), gypsum 

(extracted by acetone), iron (extracted by EDTA), phosphorous (Olsen), cation exchange 

capacity and exchangeable bases (extracted by ammonium acetate).  

 

In some cases, a micromorphological study was undertaken in order to clarify or identify 

pedogenic processes which were difficult to detect with the naked eye. For the 

micromorphological study, thin sections were elaborated from undisturbed soil material 

according to Benyarku and Stoops (2005). Samples were taken of deep horizons, since 

surface horizons were disturbed by ploughing. One to two samples were collected for each 

selected profile. We described a total of 23 thin sections from 19 different profiles and 8 soil 

map units. The criteria of Stoops (2003) were used in thin section description.  

 

When soil profiles were fully characterized, they were classified according to Soil Taxonomy 

(SSS, 2006) at series level. Each series consists of soil layers that are similar in colour, 

texture, structure, pH, consistence, mineral and chemical composition, and arrangement in the 

profile. In the study area every 3 to 4 soil profiles belonged to one soil series, by average.  

 

The soil series were used to delineate the soil map units (SMU), following the criteria of Van 

Wambeke and Forbes (1986). The soil survey party plotted the map unit boundaries onto 

orthophotographs. These boundaries were determined by means of soil observations, looking 

for differences in slope gradient, landform, colour and stoniness. When all SMU were 

delineated, they were listed and codified and the soil map legend could be designed. The final 

number of SMU was approximately twice the number of soil series. The mean surface of the 

delineated SMU was 1.4 hectares. 

 

http://en.wikipedia.org/wiki/Soil_color
http://en.wikipedia.org/wiki/Soil_texture
http://en.wikipedia.org/wiki/Soil_structure
http://en.wikipedia.org/wiki/Soil_pH
http://en.wikipedia.org/wiki/Soil_profile
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Significant differences among soil series were analysed by ANOVA, considering the 

analytical properties of soil series as dependent variables and soil series as categorical factors. 

This analysis was done for each horizon separately. Means were separated by Newman-Keuls 

post-hoc analysis (p < 0.05). The software used was STATISTICA (StatSoft, Inc.).  

 

Results and discussion  

 

In this study, a wide range of soil forming processes was identified in vineyard soils of 

Catalonia, which is reflected in their classification. The studied soils belong to Entisol, 

Inceptisol and Alfisol orders (SSS, 2006), according to a wide variety of soil forming 

processes and their resulting diagnostic horizons and characteristics (Table 1). Entisols are 

characterized by little or no evidence of soil formation, so that any diagnostic horizons are not 

developed, except to an ochric horizon. Within that order, the suborders found are Orthents, 

Fluvents, Psamments and Arents. Orthents are formed on recent erosional surfaces, and most 

of them are shallow soils with a root-limiting layer (lithic or paralithic contact). Fluvents are 

formed in alluvial and colluvial parent materials, and are characterized by being deep soils, 

which are rich in organic matter in depth. Psamments are characterized by being sandy. 

Arents are anthropogenic soils, deeply mixed by methods of moving by humans. Arents 

should present diagnostic horizons not arranged in any discernible order. With regard to 

Inceptisols, these soils are characterized by being in early stages of soil formation. These soils 

could undergo distinct accumulation processes of carbonates and gypsum or simply evidences 

of physicochemical transformations or removals. Soils with well-developed carbonate 

accumulations (calcic horizon) or cementations (petrocalcic horizon) are classified as 

Calcixerepts and soils with gypsum accumulations (gypsic horizon) are classified as Gypsic 

Haploxerepts. The Haploxerept group is also used when accumulations processes are too 

incipient to form calcic or gypsic horizons, or when a change of colour occurred. In this case, 

the diagnostic horizon described is cambic. Finally, Alfisols are characterized by silicate clay 

illuviation (argillic horizon) and a base saturation greater than 50 %. In the study area, these 

soils could present carbonate accumulations (calcic horizon), covering clay accumulations. 

 

The presence of carbonates in parent material determines the carbonate accumulation 

processes identified in Penedès area, much more intense than those of Priorat and Conca de 

Barberà. Calcium carbonate accumulations in soils are possible thanks to a Mediterranean 

climate, which are responsible of seasonal soil water deficits. However, some processes, such 
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as clay illuviation in calcareous soils, can only be explained by a wetter relict climate, which 

would allow a substantial base leaching and a slight acidification. The time effect can be 

observed in Conca de Barberà soils, which are developed from colluvial deposits of different 

ages but same origin. In modern colluvial deposits, the most developed soil forming process is 

in situ clay neoformation. However, a process of clay illuviation and then a process of 

secondary carbonate accumulation could take place in the old colluvial deposits. Obviously, 

the variations in climate over time had strongly influenced these processes. Regarding the 

relief factor, Priorat soils on hillslopes or Penedès soils on valley bottoms were more exposed 

to processes of soil rejuvenation than Conca de Barberà soils on more stable positions. The 

main effects of biological activity are related to bioturbation. However, biogenic carbonate 

accumulations are described in Penedès region. Finally, human activity has a strong influence 

on the formation of some soils of the study area. The most aggressive activities are related to 

land levelling and terracing. Soil tillage and the application of fertilizers and manures also 

affect surface horizons.  

 
Table 1. Classification and main characteristics of vineyard soils in the Catalan Coastal Range. 

Order Suborder Group Subgroups 
Diagnostic 

horizons 
Main characteristics 

Entisols Orthents Xerorthents Typic Ochric Paralithic contact  

   Lithic Ochric Lithic contact 

 Fluvents Xerofluvents Typic Ochric High content of organic carbon in  

deep horizons 

 Psamments Xeropsamments Typic Ochric Texture coarser than sandy loam 

 Arents Xerarents Alfic Ochric, argillic Diagnostic horizons not arranged in 

any discernible order 

Inceptisols Xerepts Haploxerepts Typic Ochric, cambic Evidences of the removal of 

carbonates or rubefaction 

   Fluventic Ochric, cambic Rubefaction and high content of 

organic carbon in deep horizons 

   Gypsic Ochric, gypsic Significant secondary gypsum 

accumulations 

  Calcixerepts Typic Ochric, calcic Significant secondary carbonate 

accumulations 

   Petrocalcic Ochric, petrocalcic Horizons indurated by secondary 

carbonates 

Alfisols Xeralfs Palexeralfs Calcic Ochric, argillic, 

calcic 

Evidence of clay illuviation and 

significant secondary carbonate 

accumulations  
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Soil forming processes in Priorat  

 

The selected Priorat soils are developed in the Priorat Massif, which is composed mainly of 

Paleozoic slates, which are intruded by granodiorite veins in some areas. Generally, these 

soils are poorly developed, that is, they show little evidence of soil formation. This is because 

these soils are formed on recent erosional surfaces (hillslopes), with shallow parent materials, 

which are greatly affecting soil properties. Moreover, the properties of the parent materials are 

not particularly favourable for the development of soil structure. Slates are highly exfoliated, 

favouring high rock fragment contents, and the weathering product of granodiorites is granitic 

sands, named ‘sauló’ in the study area, which greatly hinder the aggregation of particles (soil 

structure formation). 

 

As mentioned above, soils developed from granodiorites are characterized by being shallow 

and with very high sand content, in relation to the parent material composition. The parent 

material is a granitic regolith up to 2-5 m, which is a product of in situ alteration of the 

granodiorite, and it correspond to a sandstone formation with a small proportion of clay and 

silt. This sand could be broken up with a shovel, but it is too compact to permit root 

development. The parent material is composed of eye-visible crystals of quartz, feldspar 

(plagioclase and orthose) and mica (biotite) (Fig. 1). These minerals are generally unaltered, 

but locally some biotite crystals are transformed to chlorite and vermiculite. Generally, this 

regolith is light-coloured, but in some cases is strongly rubefacted. This red colour is related 

to clay accumulations, whose origin is mainly biotite alteration, which resulted in 

pseudomorphic units of oriented clay (Fig. 2). However, some clay could have an illuvial 

origin, as suggested by McKeague (1983) in similar soils. The clay pedofeatures are pure 

microlaminated coatings on sand grains (0.05 - 0.1 mm width).  

 

On the other hand, soils developed from slates are shallow and with high rock fragment 

contents, representing a strong limitation to root development. However, the parent material, 

composed of iron and magnesium silicates, present a planar exfoliation that roots can use for 

their development. In addition, clay accumulation processes are found in some cracks, 

creating intercalations of clayey material in the rock (Fig. 3). These intercalations could 

suppose until 15% in total slate volume. The described pedofeatures are coatings and 

infillings of clay in pores and cracks of coarse components. In all these types of 

accumulations, clay is pure, that is, it do not present other particles sizes (silt). Accumulations 
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show a microlaminated internal contexture, sometimes hard to see. The origin of clay is 

probably illuvial, as it meets the characteristics of an ideal argillic horizon (McKeague, 1983): 

continuous coatings on both sides of the pores, strongly oriented, with microlamination, 

without sand grains and clearly different from the matrix which does not contain any fragment 

of oriented clay. 

  

In all soils, redoximorphic mottles of iron and manganese are described related to clay 

accumulations. The pedofeatures are impregnative nodules, associated to pores and coarse 

components. These nodules are dark, with a gradual boundary, an irregular shape and a 

diameter between 0.1 and 0.4 mm. These nodules indicate an incipient hydromorphy, caused 

by perched water tables, of limited influence area, which would be possible thanks to high 

clay content.   

 

   

Figure 1. Mineral composition of 

granitic regolith (quartz in pure 

white, feldspars in impure white, 

mica in dark), with mica alteration 

in the centre of the picture (6.4 mm 

width, PPL). 

Figure 2. In situ clay neoformation in 

rubefacted granitic regolith: 

microlaminated coatings on sand 

grains (1.5 mm width, XPL). 

Figure 3. Clay illuviation in slates: 

clay infillings in cracks and clay 

coatings in pores (1.5 mm width, 

XPL). 

 

The Priorat soils are classified as Entisols, since the soil forming processes are not enough 

developed to determine any diagnostic horizon, except an ochric horizon. In general, soils 

developed from granodiorites are classified as Xeropsamments, which are characterized by a 

texture coarser than loamy fine sand and less than 35 % of rock fragments (Table 3). 

However, soils developed from rubefacted granitic regolith, are classified as Typic 

Xerorthents. These soils cannot be classified as Alfisols, since evidences of illuvial clay is 

required for an argillic horizon, and in this case, the clay origin is biotite alteration. Moreover, 

these soils cannot be classified as inceptisols because the deep horizons maintain the rock 

structure, and consequently the criteria for cambic horizon are not accomplished. With respect 

to soils developed from slates, they are classified as Lithic Xerorthents, in spite of presenting 

an exfoliated rock with intercalations of material enriched in illuvial clay. There is a subgroup 

in the Alfisols, named Lithic ruptic-inceptic Haploxeralfs, which is defined by presenting a 
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lithic contact and an argillic horizon discontinuous horizontally. However, in the studied soils, 

the thickness of material with illuvial clay is generally lower than 7.5 cm, so the criteria for 

argillic horizon are not accomplished.  

 

In Priorat soils, the clay formation supposes an improvement of the soil water reservoir for the 

vineyard, a fact which is specially important in a very stressful environment, related to a 

Mediterranean climate with a dry season with high temperatures, soil shallowness and high 

content of gravels or sands, which confer a very quick internal drainage of soil. In soils 

developed from slates, the available water capacity (AWC) of plough horizons is moderate 

(42.4 mm between 0 and 45 cm depth), so the water retained by the clay-rich materials among 

the rock cracks is worth considering (23.3 mm between 45 and 138 cm depth) (Table 3). 

Moreover, the presence of redoximorphic features related to clay features would indicate that 

clay accumulation is causing an alteration in the soil moisture regime. In soils formed from 

granodiorites, processes with major implications for grapevine cultivation are also identified. 

These soils, in addition to shallowness, are composed practically by sand (Table 3), so that 

there are not particles of silt or clay to retain water. As a result, these soils produce a higher 

water stress than soils formed from slates, because they have a very low AWC (12.4 mm 

between 0 and 42 cm depth). In order to obtain a high quality production, irrigation with low 

doses applied frequently is needed. The existence of rubefacted granodiorites with neoformed 

clay (Typic Xerorthents) result in soils with finer textures, with a significant increase of the 

AWC (45.8 mm between 0 and 37 cm depth) in comparison with the non-rubified 

Xeropsamment. Although irrigation is still necessary, water losses may be smaller. Another 

soil property improved with clay accumulations is the cation exchange capacity (CEC) of 

surface and deep horizons. In surface horizons, CEC significantly increases from 4.4 to 9.9 

cmolc/kg. This increase represents a substantial improvement of nutrient availability for the 

vine and the possibilities of development of soil structure and stability of soil aggregates, 

which is especially important in these soils that are poor in organic matter (contents lower 

than 0.5%). In short, clay accumulations improve the AWC and CEC, although not always 

involve major changes in soil classification.  
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Table 3. Analytical properties of representative vineyard soils in Priorat region *. 

Properties Horizon 

Sandy, mixed, mesic, 

shallow, Typic 

Xeropsamments 

Loamy, mixed, active, mesic, 

shallow, Typic Xerorthents 

Loamy-skeletal, mixed, 

semiactive, mesic, Lythic 

Xerorthents 

Soil Forming 

Processes 
 

Mineral weathering, incipient 

mica alteration 

Clay neoformation and 
rubefaction, generalized clay 

coatings on sand grains 

Clay illuviation, clay coatings 

limited on rock cracks 

Genetic horizon 

(SSS, 2006) 

1 Ap1 Ap1 Ap1 

2 Ap2 Ap2 Ap2 

3 C C R/Bt (15% volume) 

Lower depth 

(cm) 

1 22.8 (1.18) a 14.5 (0.50) b 20.4 (2.06) ns 

2 42.1 (3.06) ns 37.0 (3.00) ns 45.0 (1.83) ns 

3 123.7 (8.85) ns 140.0 (10.00) ns 138.3 (18.90) ns 

Munsell Colour 

1 10YR5/4 5YR4/5 10YR4/4 

2 10YR5/5 5YR4/6 10YR4/4 

3 10YR5/6 5YR5/7 2.5Y5/4 

pH 

(H2O 1:2.5) 

1 8.4 (0.07) a 8.4 (0.05) a 7.4 (0.19) b 

2 8.3 (0.11) a 8.4 (0.05) a 7.3 (0.17) b 

3 8.4 (0.08) a 8.4 (0.25) a 7.1 (0.31) b 

Electrical 

Conductivity  

(1:5, dS/m) 

1 0.20 (0.03) ns 0.16 (0.02) ns 0.41 (0.16) ns 

2 0.23 (0.03) ns 0.15 (0.01) ns 0.26 (0.04) ns 

3 0.21 (0.03) ns 0.23 (0.05) ns 0.38 (0.14) ns 

Organic matter 

(%) 

1 0.1 (0.03) ns 0.4 (0.10) ns 1.6 (0.99) ns 

2 0.3 (0.07) b 0.2 (0.10) b 1.4 (0.27) a 

3 trace trace trace 

CaCO3 equivalent 

(%) 

1 trace trace trace 

2 trace trace trace 

3 trace trace trace 

Cation Exchange 

Capacity 

(cmolc/kg) 

1 4.4 (1.02) b 9.9 (0.80) a 12.7 (0.46) a 

2 5.3 (0.13) c 9.0 (0.20) b 12.0 (0.80) a 

3 5.3 (0.65) b 8.9 (0.28) b 15.0 (0.00) a 

Sand 

(%) 

1 92.1 (0.64) a 62.9 (8.85) b 70.4 (2.98) b 

2 91.0 (0.52) a 72.1 (6.50) b 73.0 (4.54) b 

3 94.8 (0.51) a 89.4 (3.50) a 53.6 (0.00) b 

Silt 

(%) 

1 5.6 (0.46) b 22.3 (6.35) a 19.5 (3.24) a 

2 6.8 (0.45) b 16.4 (3.75) a 18.4 (3.87) a 

3 4.2 (0.32) b 7.4 (1.25) b 27.8 (0.00) a 

Clay 

(%) 

1 2.4 (0.56) b 14.9 (2.50) a 10.1 (0.42) a 

2 2.2 (0.50) b 11.6 (2.75) a 8.6 (1.15) a 

3 1.0 (0.41) b 3.3 (2.25) b 18.6 (0.00) a 

Textural class 

(SSS, 2006) 

1 Sand Sandy loam Sandy loam 

2 Sand Loamy sand Sandy loam 

3 Sand Loamy sand Sandy loam 

Bulk density 

(kg/m3) 

1 1507.9 (10.25) b 1373.5 (10.42) b 1764.3 (97.75) a 

2 1545.1 (32.46) b 1665.9 (27.93) b 1931.0 (89.51) a 

3 1963.6 (16.42) a 1888.0 (0.74) b 1918.2 (20.86) ns 

Coarse fragments 

(%) 

1 trace trace 53.3 (2.90) 

2 trace trace 59.3 (2.73) 

3 - - 22.0 (4.00) 

Water retention 

at -33 kPa 

(%) 

1 4.7 (0.33) b 16.0 (1.00) a 21.4 (1.75) a 

2 5.7 (0.67) b 14.2 (2.00) a 18.3 (2.25) a 

3 - - 22.0 (1.50) 

Water retention 

at -1500 kPa 

(%) 

1 3.2 (0.00) b 7.5 (0.50) a 8.0 (0.73) a 

2 3.3 (0.33) b 6.5 (0.50) a 8.0 (0.89) a 

3 - - 11.0 (2.50) 

Available Water 

Capacity 

(mm/10 cm) 

1 2.3 (0.02) b 11.7 (0.09) a 11.0 (0.31) a 

2 3.7 (0.08) c 12.8 (0.22) a 8.1 (0.49) b 

3 - - 2.5 (0.35) 

*Numbers between brackets correspond to standard errors and different letters indicate significant differences (p<0.05) among the same 

horizons of different soil series, according to Newman-Keuls test (n=3). 
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Soil forming processes in Penedès  

 

The Penedès soils differ from the soils in the other areas by their parent materials which are 

richer in calcium carbonate, so that carbonate-related soil forming processes are better 

represented. Much of the carbonate accumulations are due to the precipitation of calcite from 

saturated solutions, which is leached from upper horizons or from lateral water flow caused 

by an impervious horizon. However, some carbonate accumulations come from biological 

activity, which cause a carbonate microdistribution around biopores (Boixadera et al., 2000). 

The features of biological accumulations are infillings of citomorphic calcite (quesparite) in 

pores (Fig. 4). The features of carbonate illuviation are representative of different degrees of 

calcification. First, a process of crystallization produced acicular crystals and few 

hypocoatings of micrite and microsparite (Fig. 5). Then, a process of recrystallization 

produced abundant coatings and well-developed hypocoatings, pendants, nodules and 

infillings of sparite and microsparite (Fig. 6). Later, carbonates (micrite) began to occupy the 

micromass. In this stage, processes of displacement and replacement of grains or clay 

coatings by carbonates could occur. The most evolved stage correspond to carbonate 

cementation (petrocalcic horizons).  

 

Besides carbonate accumulation, processes of gypsum accumulation are found in the Upper 

Penedès soils. The gypsum-related features are coatings of lenticular crystals. In addition, 

mixed silt and clay hypocoatings around pores and coarse components, poorly oriented, are 

very common in clayey soils. These features corresponded to whole-soil hypocoatings 

(Fitzpatrick, 1990, 1993), originated by the downward flow of a suspension of fine material, 

which may disperse after a single rain. It is a characteristic feature of clayey, continuously 

cultivated soils, which loose their structure, crack and form wide planar vertical pores.  

 

   
Figure 4. Biological carbonate 

accumulation in Typic Xerofluvents: 

pore infillings of citomorphic calcite. 

(1.5 mm width, PPL). 

Figure 5. Carbonate redistribution in 

Typic Xerofluvents: acicular crystals 

infillings and microsparite 

hypocoating. (1.5 mm width, XPL). 

Figure 6. Carbonate redistribution in 

Typic Calcixerepts: well-developed 

microsparite hypocoating. (1.5 mm 

width, PPL). 
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Most of the Penedès soils are classified as Inceptisols, because carbonate or gypsum 

accumulations are expressed enough to identify calcic, petrocalcic or gypsic horizons. 

Generally, they are classified as Typic Calcixerepts, Petrocalcic Calcixerepts and Gypsic 

Haploxerepts, respectively. However, not all soils with carbonate accumulations can be 

classified as Calcixerepts, since they do not meet the criteria for a calcic horizon. A calcic 

horizon requires a minimum thickness of 15 cm, a minimum CaCO3 content of 15 % and 

identifiable secondary calcium carbonate, with some exceptions. Some described soils show 

incipient accumulations or present too low CaCO3 content. Generally, these accumulations 

lead to cambic horizons, and soils are classified as Typic Haploxerepts. Even in some cases, 

where carbonate accumulations are not visible at the naked eye, a cambic horizon cannot be 

determined, and soils are classified as Entisols. Moreover, accumulations of mixed silt and 

clay (whole-soil hypocoatings) do not have any connotation in soil classification. Table 4 

shows the analytical properties and the description of accumulations in a soil with a well-

developed calcic horizon (Typic Calcixerept), a soil with incipient accumulations of 

carbonates and accumulations of mixed silt and clay (Typic Xerofluvent), as well as a soil 

with a gypsic horizon (Gypsic Haploxerept).   

 

The soil forming processes in Penedès are marked by the accumulation of secondary 

carbonates, which can be highly evolved, as it is indicate by the types of accumulations and 

their morphology This evolution is reflected with the calcium carbonate content, with mean 

values near 60 % (Table 4), and with carbonate cementations. The evolution of carbonates in 

these soils may be a limiting factor for grapevine cultivation. High contents in calcium 

carbonate can cause a weakening in non-resistant vines, due to iron chlorosis. The carbonates 

increase the concentration of the HCO3
-
 anion in the soil solution, and this blocks the 

absorption of iron by plants. The main consequences are the rickets, the foliage destruction, a 

reduced production and even the death of the plant. These problems may be mitigated by the 

choice of resistant rootstocks, such as 41B and 140R. Furthermore, very intense processes of 

carbonate accumulation, which leads to a micromass cementation, may constitute a limitation 

for the development of the root system. Moreover, carbonate accumulations in the form of 

nodules increase the coarse fragment content, and thus reduce the available water capacity 

(AWC). In deep horizons of a Typic Calcixerept, a loss of 11 mm of AWC can be quantified 

(between 50 and 100 cm depth), considering a volume of 20% of carbonate accumulations. 

However, the main implications of carbonate accumulations on vineyard management are 
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related to rootstock selection and ploughing, which should not be too deep to prevent mixing 

of calcic horizons with surface horizons.  

 

Table 4. Analytical properties of representative vineyard soils in Penedès region *. 

Properties Horizon 
Fine, mixed, semiactive, 

thermic, Typic Xerofluvents 

Coarse-loamy, carbonatic, 

thermic, Typic Calcixerepts 

Coarse-loamy, mixed, active, 

thermic, Gypsic 

Haploxerepts 

Soil Forming 

Processes 

 

Incipient carbonate 

accumulations: microscopic 
nodules, infillings and 

hypocoatings. 

Silt and clay accumulations. 

Well-developed carbonate 

accumulations: macroscopic 
coatings on pores, geopetal 

cement and nodules; slight 

cementation. 

Gypsum accumulations, 

crystals and coatings on pores. 

Genetic horizon 

(SSS, 2006) 

1 Ap1 Ap1 Ap1 

2 Ap2 Ap2 Ap2 

3 Bw Bkn By 

Lower depth 

(cm) 

1 13.0 (1.00) ns 17.0 (1.91) ns 13.3 (3.33) ns 

2 41.7 (1.67) ns 49.7 (4.63) ns 40.3 (1.45) ns 

3 98.3 (1.67) ns 99.2 (13.31) ns 78.3 (9.28) ns 

pH 

(H2O 1:2.5) 

1 8.2 (0.09) a 8.5 (0.09) a 7.9 (0.00) b 

2 8.3 (0.10) a 8.5 (0.06) a 7.9 (0.00) b 

3 8.2 (0.15) ns 8.4 (0.05) a 8.0 (0.06) b 

Electrical 

Conductivity  

(1:5, dS/m) 

1 0.19 (0.01) b 0.19 (0.01) b 2.29 (0.01) a 

2 0.20 (0.03) b 0.21 (0.02) b 2.42 (0.08) a 

3 0.37 (0.15) b 0.32 (0.06) b 2.39 (0.04) a 

Organic matter 

(%) 

1 1.6 (0.17) ns 1.4 (0.12) ns 1.5 (0.13) ns 

2 1.2 (0.12) ns 1.1 (0.20) ns 1.2 (0.15) ns 

3 1.0 (0.23) ns 0.8 (0.16) ns 0.4 (0.10) ns 

CaCO3 equivalent 

(%) 

1 33.0 (3.01) b 55.5 (8.41) a 26.3 (2.40) b 

2 35.7 (3.18) b 57.7 (9.96) a 25.0 (2.52) b 

3 28.3 (7.62) b 56.8 (6.54) a 22.0 (6.81) b 

Gypsum 

(%) 

1 trace trace 32.7 (3.53) 

2 trace trace 34.3 (3.53) 

3 trace trace 44.0 (5.51) 

Cation Exchange 

Capacity 

(cmolc/kg) 

1 14.0 (1.76) a 6.5 (1.06) b 10.9 (0.65) ns 

2 13.3 (1.82) a 6.4 (1.03) b 10.0 (0.75)ns 

3 16.5 (0.94) a 5.1 (0.58) b 7.8 (0.25) b 

Sand 

(%) 

1 31.9 (6.87) b 51.8 (3.82) a 42.2 (3.03) ns 

2 30.9 (7.75) b 50.1 (3.46) a 42.0 (1.91) ns 

3 19.3 (4.99) b 54.0 (4.83) a 59.5 (11.45) a 

Silt 

(%) 

1 35.4 (2.84) b 33.7 (2.67) b 50.5 (3.77) a 

2 38.6 (3.69) b 33.9 (2.19) b 53.2 (3.23) a 

3 36.2 (7.61) ns 31.5 (3.42) ns 34.3 (11.70) ns 

Clay 

(%) 

1 32.7 (4.43) a 14.5 (1.42) b 7.2 (0.91) b 

2 30.5 (5.50) a 16.1 (1.60) b 4.8 (1.32) c 

3 44.5 (4.42) a 14.5 (1.94) b 6.3 (0.25) b 

Textural class 

(SSS, 2006) 

1  Silty clay Sandy loam   Silty loam 

2   Silty clay Sandy loam  Silty loam  

3   Silty clay  Sandy loam   Sandy loam 

Bulk density 

(kg/m3) 

1 1488.0 (120.00) ns 1383.8 (73.26) ns 1481.0 (42.00) ns 

2 1802.0 (29.00) ns 1517.3 (114.19)ns 1869.0 (46.00) ns 

3 1766.0 (12.00) ns 1502.5 (62.98) ns 1735.0 (40.00) ns 

Coarse fragments 

(%) 

1 trace 14.3 (10.65) trace 
2 trace 12.0 (8.55) trace 
3 trace 28.0 (7.40) trace 

Water retention 

at -33 kPa 

(%) 

1 23.3 (1.86) a 14.8 (0.75) b 26.7 (0.88) a 

2 23.0 (2.08) a 15.8 (0.95) b 26.7 (0.33) a 

3 26.7 (0.88) a 13.3 (1.65) c 22.0 (1.00) b 

Water retention 

at -1500 kPa 

(%) 

1 12.0 (1.53) a 6.0 (0.41) b 13.3 (0.67) a 

2 12.3 (1.45) b 7.0 (0.58) c 15.3 (0.33) a 

3 15.0 (0.58) a 5.8 (0.63) b 13.3 (0.67) a 

Available Water 

Capacity 

(mm/10 cm) 

1 15.0 (1.40) ns 10.5 (1.84) ns 19.3 (0.55) ns 

2 18.7 (2.58) ns 11.8 (1.89) ns 21.5 (1.46) ns 

3 20.7 (1.16) a 8.1 (1.82) b 14.8 (1.21) ns 

*Numbers between brackets correspond to standard errors and different letters indicate significant differences (p<0.05) among the same 

horizons of different soil series, according to Newman-Keuls test (n=3). 
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Soil forming processes in Conca de Barberà  

 

The selected Conca de Barberà soils are developed on deposits of gravels coming from the 

massif of ‘Serra de Prades’, mainly Carboniferous slates and sandstones, with granodiorite 

intrusions. During the Quaternary, these deposits covered the Ebro basin margin in the form 

of alluvial fans, which left two types of gravel deposits. There are ancient deposits, hanged at 

a considerable height over the current river bed, and other modern deposits, at a little height 

about the current river bed and connected with the fluvial terraces.  

 

The modern deposits correspond to extensive, flattened alluvial cones, merged with each 

other, which are formed by Paleozoic materials (mainly slates) and with little matrix. In soils 

developed from these deposits, a process of clay accumulation is identified, in the form of 

coatings (<0.05 mm) and infillings (<0.25 mm) of clay, covering the pores and sides of coarse 

components (Fig. 7). These coatings are quite impure, showing silt and clay embedded. The 

clay origin is probably the neoformation from mica alteration, since many coatings with 

embedded altered mica crystals could be observed. Many of these coatings are fragmented 

and incorporated into the micromass. Other authors found that in these conditions the clay 

origin is probably clay neoformation from mica (Mermut and Jongerius, 1980; McKeague, 

1983).  

 

The old deposits were much more extensive before, so that now some vestiges are only 

preserved. These deposits have a thickness of 3-4 m and are formed by very weathered 

polygenic gravels (granodiorites, sandstones and slates) and a reddish cement composed of 

clay and sand. In these soils, which are more developed that modern deposits, processes of 

clay and carbonate illuviation are identified. The textural features are coatings and infillings 

of microlaminated pure clay, up to 0.8 mm width, covering the cracks and sides of coarse 

components and pores (Fig. 8). Many of these coatings are fragmented and incorporated to 

micromass, so few of them are related to present pores. The carbonate-related features 

described in the field are carbonate pendants (up to 15 mm width), and microscopically the 

described features are microsparite coatings and infillings in pores, and sometimes on clay 

coatings, sparite pendants (Fig. 9), micritic nodules and fragments of laminar petrocalcic 

horizons. 
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Both soils presented redoximorphic features, in the form of suborthic manganese nodules, 

between 0.1 and 1 mm of diameter, with rounded shapes and clear limits (not impregnative). 

The nodules in old deposits are more frequent and more altered than nodules in modern 

deposits. In general, the presence of these nodules indicates an incipient hydromorphy. 

However, in old deposits a paleohidromorphy seems more probable. 

 

The soils of modern deposits are classified as Inceptisols, since the rubefaction process 

associated with the clay accumulation is enough developed to identify a cambic horizon. The 

soils of old deposits are classified as Alfisols, which are characterized by illuvial clay 

accumulation and a base saturation greater than 50 %. The classification at subgroup level is 

Calcic Palexeralfs, since carbonate accumulations were enough to define a calcic horizon. 

Thus, it is evident how a longer time of soil formation allowed in these deposits a higher 

number of soil forming processes. Comparing the two soils, the soils of old deposits are 

redder, with significant higher content of clay, a significant higher available water capacity (in 

deep horizons) and cation exchange capacity (Table 5). However, their deep horizons are 

significantly more compacted, which meant a major limitation to root development.  

 

   
Figure 7. Clay neoformation from 

mica alteration in Fluventic 

Haploxerepts: clay coatings on pores 

and infillings (1.5 mm width, PPL). 

Figure 8 . Clay illuviation in Calcic 

Palexeralfs: rubefacted clay coatings 

on pores (6.4 mm width, XPL). 

Figure 9. Carbonate accumulation by 

illuviation in Calcic Palexeralfs: 

sparitic calcite pendent (6.4 mm 

width, PPL). 

 

The soil forming processes of these soils have a direct influence on their physical properties. 

In the modern gravel deposits, which a priori could have a very quick drainage because of 

gravels, the clay neoformation made possible the existence of more balanced textures, 

allowing a moderate to high available water capacity (AWC). These soils have very 

favourable properties for grapevine cultivation, as the balanced textures assure a minimal 

water retention and the gravels facilitate the drainage of water surplus. In addition, these soils 

favour the development of a deep root system, so that in years of drought the roots could take 

water from deep water tables. In the old gravel deposits, the properties are more unfavourable 

than other soils, because the roots have more difficulties to explore deep horizons. This is due 
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to a greater compactness, related to higher clay content. Moreover, the presence of fragments 

of laminar petrocalcic and other forms of accumulations, which are representative of a long 

genetic process, are indicative of possible problems related to micromass cementation. 

However, these soils have a moderate to high AWC, inferred by the clayey matrix and the 

relatively porous rock fragments, which are capable to retain water.   

 

Table 5. Analytical properties of representative vineyard soils in Conca de Barberà region *. 

Properties Horizon 
Fine loamy, mixed, active, mesic, Fluventic 

Haploxerepts 

Loamy-skeletal, mixed, active, mesic, Calcic 

Palexeralfs 

Soil Forming 

Processes 
 

Clay neoformation from mica weathering, clay 

coatings on pores. Incipient hydromorphy. 

Clay illuviation and recarbonation, clay 

coatings and sparite pendants on coarse 
components. Palaeohydromorphy. 

Genetic horizon 

(SSS, 2006) 

1 Ap1 Ap1 

2 Ap2 Ap2 

3 Bw Btk 

Lower depth 

(cm) 

1 20.5 (0.96) a 13.4 (0.99) b 

2 45.8 (1.54) a 40.8 (0.93) b 

3 107.1 (2.23) ns 92.8 (7.94) ns 

Munsell Colour 

1 7.5YR3/3 5YR4/6 

2 7.5YR4/3 5YR4/7 

3 7.5YR3/4 5YR4/8 

pH 

(H2O 1:2.5) 

1 8.4 (0.05) ns 8.5 (0.04) ns 

2 8.4 (0.08) ns 8.5 (0.04) ns 

3 8.4 (0.03) ns 8.5 (0.07) ns 

Electrical 

Conductivity  

(1:5, dS/m) 

1 0.17 (0.01) ns 0.18 (0.01) ns 

2 0.18 (0.01) ns 0.19 (0.01) ns 

3 0.19 (0.01) ns 0.19 (0.01) ns 

Organic matter 

(%) 

1 2.1 (0.55) a 1.1 (0.10) b 

2 1.8 (0.44) a 0.7 (0.14) b 

3 1.4 (0.45)  ns 0.6 (0.11) ns 

CaCO3 equivalent 

(%) 

1 10.2 (2.15) ns 13.7 (4.24) ns 

2 9.2 (1.49) ns 11.8 (3.13) ns 

3 7.4 (2.20) b 17.6 (3.39) a 

Cation Exchange 

Capacity 

(cmolc/kg) 

1 11.1 (0.55) b 13.8 (0.23) a 

2 12.2 (0.65) ns 14.2 (0.35) ns 

3 10.5 (1.08) b 13.3 (0.26) a 

Sand 

(%) 

1 50.4 (2.12) ns 49.8 (1.89) ns 

2 46.9 (0.84) ns 51.1 (2.19) ns 

3 46.5 (2.20) b 52.6 (0.38) a 

Silt 

(%) 

1 31.8 (1.70) a 23.9 (0.31) b 

2 33.7 (0.64) a 21.2 (0.95) b 

3 35.1 (1.00) a 17.8 (1.09) b 

Clay 

(%) 

1 17.7 (0.83) b 26.3 (1.60) a 

2 19.4 (0.23) b 27.7 (1.40) a 

3 18.4 (1.20) b 29.6 (0.99) a 

Textural class 

(SSS, 2006) 

1 Loam Sandy clay loam 

2 Loam Sandy clay loam 

3 Loam Sandy clay loam 

Bulk density 

(kg/m3) 

1 1299.6 (44.59) ns 1312.0 (18.15) ns 

2 1514.3 (33.76) ns 1525.3 (15.17) ns 

3 1453.1 (11.45) b 1787.0 (45.35) a 

Coarse fragments 

(%) 

1 11.9 (3.51) ns 9.0 (1.73) ns 

2 12.7 (1.48) ns 6.7 (1.76) ns 

3 26.2 (3.58) a 12.4 (0.49) b 

Water retention 

at -33 kPa 

(%) 

1 20.3 (0.33) a 18.0 (0.58) b 

2 21.7 (0.88) ns 20.7 (0.67) ns 

3 20.0 (0.37) ns 20.3 (0.33) ns 

Water retention 

at -1500 kPa 

(%) 

1 8.3 (0.33) ns 7.3 (0.33) ns 

2 9.7 (0.88) ns 9.0 (0.58) ns 

3 9.5 (0.34) b 11.7 (0.33) a 

Available Water 

Capacity 

(mm/10 cm) 

1 13.8 (1.01) ns  12.7 (0.78) ns 

2 15.9 (0.55) ns 16.6 (1.82) ns 

3 11.3 (0.64) b 13.5 (0.21) a 

*Numbers between brackets correspond to standard errors and different letters indicate significant differences (p<0.05) among the same 

horizons of different soil series, according to Newman-Keuls test (n=3). 
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Soils affected by human activities 

 

In the study area, some soils where human activity caused major changes in soil composition 

are found. The main changes are related to topography and horizon arrangement. The main 

effects described as a result of these changes are the buried of fertile surface horizons, and 

horizons not arranged in any discernible order. One of the features used to determine human 

activity is the presence of very abrupt limits between horizons. 

 

Properties of two soils deeply affected by men are shown in Table 6. Both profiles are 

classified as Entisols. One soil present an argillic horizon inserted among other horizons that 

have no relation with its formation. This soil is classified into the suborder Arents, because 

there are fragments of diagnostic horizons. When this diagnostic horizon is an argillic, in a 

xeric regime, soils can be classified as Alfic Xerarents. The other profile, which corresponds 

to a soil with a buried horizon, does not contain any diagnostic horizon. So, this soil cannot be 

classified as Arents. In this particular case, the soil is classified as Fluvents, since an irregular 

decrease in content of organic carbon occurs. Thus, despite the drastic change in profile 

composition, the anthropic soil origin is not reflected in its classification. 

 
Table 6. Analytical properties of 2 soil profiles affected by anthropogenic activities *. 

Horizon 

Lower 

depth 

(cm) 

Munsell 

colour 

(moist) 

pH 

(H2O   

1:2.5) 

EC 

(1:5 

dS/m) 

Organic 

matter 

(%) 

CaCO3 

eq. 

(%) 

CEC 

(cmol/kg) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Textural 

class 

(SSS, 

2006) 

Bulk 

density 

(kg/m3) 

Coarse 

fragment 

(%) 

Water 

retention 

-33 kPa 

(%) 

Water 

retention     

-1500 kPa 

(%) 

AWC 

(mm) 

Fine loamy, mixed, active, mesic, Alfic Xerarents. 

Accumulations (55/60-80 cm depth): Illuvial clay coatings. 

Ap 40/45 7.5YR4/6 8.4 0.16 0.7 12 14.7 45.2 28.4 26.4 L 1228 20 22 11 45 

Ab 55/60 7.5YR4/4 8.3 0.23 1.1 6 10.3 57.3 25.9 16.8 SaL 1360 20 18 8 17 

2Bt 80 5YR4/4 8.3 0.22 1.3 trace 16.2 39.5 27.7 32.8 CL 1350 20 24 13 25 

3Bw 120 7.5YR4/6 8.3 0.23 1.3 15 12.8 47.3 29.8 22.9 L 1319 20 20 10 42 

 

Loamy-skeletal mixed, superactive, mesic, Typic Xerofluvents 

Ap 15 7.5YR4/6 8.1 0.19 0.76 24 9.8 37.6 47.5 14.9 L 1435 5 22 8 29 

Bw 60 7.5YR4/6 8.5 0.19 0.29 16 7.7 38.8 48.7 12.5 L 1580 10 14 7 45 

2Ab 100 10YR3/2 8.4 0.16 1.81 trace 10.0 56.6 33.1 10.3 SaL 1250 40 17 8 27 

* EC: electrical conductivity; CEC: cation exchange capacity; Textural classes: SaL: sandy loam, L: loam, CL: clay loam; AWC: available 
water capacity. 

 

The soils formed by land levelling may have serious problems of soil erosion and often 

produce a negative effect on productivity and vigour of vines, and also on grape quality, 

especially in white varieties, due to a decrease in acidity and aromatic potential (Bazzofi et 

al., 2009). However, soils deeply affected by men cannot always be considered worse than 

unaltered soils, because sometimes grape quality is better in less fertile soils, especially in red 
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varieties. Bazzofi et al. (2009) found a significant increase in the content of anthocyanins and 

total polyphenols of grape berries on soils affected by land levelling, improving grape quality 

for red wines. Moreover, in table grape production areas of Sicily (Italy) strong earthworks 

are conducted to bury fertile surface horizons with calcareous materials, in order to improve 

grape quality (Dazzi, 2008).  

 

Conclusions 

 

In the region of the Catalan Coastal Range (Catalonia, Spain), a high variety of soil forming 

processes has been identified, in relation to the existing differences in soil forming factors. In 

this study, we found that the soil forming processes, identified through morphological and 

micromorphological analyses, have significant effects on soil properties. The different 

processes of clay accumulation in soils developed from granodiorites in Priorat or gravel 

deposits in Conca de Barberà, are primarily responsible for significant differences in clay 

content, available water capacity and cation exchange capacity. Similarly, carbonate 

accumulation in Penedès soils have significant effects on calcium carbonate content and also 

on available water capacity. These soil properties, especially those related to soil moisture 

regime, available water capacity and calcium carbonate content, have a direct influence on the 

type of management and quality of grapevine production according to different authors. 

Specially important are the effects that have drastic earthworks on profile characteristics. 

However, soil classification does not always reflect these important pedogenic processes 

which have remarkable implications on vineyard soil management. For instance, clay 

accumulations in soils developed from slates in Priorat, incipient carbonate accumulations in 

Penedès, or drastic changes in the arrangement of horizons, with a decrease in soil fertility, in 

the case of soils modified by man. The main conclusion of this study is that parent material or 

climate alone cannot be used in viticultural zoning, unless soil forming processes are taken 

into account.  
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Chapter 4 

 

 CHARACTERIZATION OF THE SOIL MOISTURE REGIME FOR 

VITICULTURAL ZONING PURPOSES  

 

 

Abstract  

 

This paper aims to analyse the suitability of Soil Taxonomy to characterize the soil moisture 

regime for viticultural zoning studies, comparing the soil moisture parameters used in the Soil 

Taxonomy classification with soil moisture parameters relevant to the grapevine phenological 

stages. The results show that Soil Taxonomy does not adequately reflect the variability of soil 

moisture dynamics during vineyard growing. Then, a proposal for soil moisture regime 

classification is realised by means of a cluster analysis. This classification is based on 

determining dry days, as indicated by Soil Taxonomy, in different vine phenological periods, 

and grouping the cases according to their variability. The soil moisture regime classes, 

resulting from cluster analysis, show significant differences in soil moisture status in all 

phenological periods, and therefore present different implications for viticulture, related to 

potential for vegetative growth, grape production and the grape ripening process. 

 

Keywords: Soil Taxonomy, soil survey, soil classification, cluster analysis, viticultural 

potential 
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Introduction 

 

During recent years, viticultural zoning studies have increased significantly in relation to the 

expansion of the international wine market. Viticultural zoning can be defined as the spatial 

characterization of zones that produce grapes or wines of similar composition, while enabling 

operational decisions to be implemented (Vaudour, 2003). There are different methods of 

viticultural zoning, depending on the factors considered. The simplest methods only consider 

soil, climate or the interaction between soil and climate (Morlat, 2001). Then, other factors 

can be added: variety and viticultural and oenological technology (Carbonneau, 2001), and 

historical and sociological wine-growing factors (Vaudour, 2003). Among the various 

environmental factors and for a specific climate, soil is the most important factor in 

viticultural zoning (Sotés and Gómez-Miguel, 2003), due to its direct effect on vine 

development and wine quality. There are several approaches through soil studies which are 

oriented to viticultural zoning (Van Leeuwen et al., 2002), but the methods that provide the 

most information are soil survey techniques, since they bring both the knowledge of spatial 

variability of soil properties and soil classification according to its viticultural potential (Van 

Leeuwen and Chéry, 2001). Soil survey methods based on Soil Taxonomy classification 

(SSS, 1999) are useful for viticultural zoning studies at different levels of detail (Gómez-

Miguel and Sotés, 2001; Gómez-Miguel and Sotés, 2003; Ubalde et al., 2009).  

 

The soil properties which have the most influence on viticultural zoning are the ones related 

to soil moisture regime (Seguin, 1986), which is determining in the equilibrium between 

vegetative vigour and grape production (Van Leeuwen and Seguin, 1994), and consequently 

on grape and wine quality (Trégoat et al., 2002; Esteban et al., 2001; Gurovich and Páez, 

2004). Generally, a moderately limited soil moisture regime induces positive effects on berry 

composition and wine quality (Kounduras et al., 1999), with an increase of berry sugar (Jones 

and Davis, 2000), anthocyanin and tannin contents and also an increase of grape ripening 

speed (Van Leeuwen and Seguin, 1994). After flowering, water limitation reduces potential 

berry size by reducing the number of cells per berry (Ojeda et al., 2002). After veraison, a 

reduced water regime involves an earlier growth shutdown, reduces berry weight and yield 

(Van Leeuwen et al., 2003), and increases sugar content, since berry weight has a strong 

negative linear correlation with sugar content (Hunter and Deloire, 2005). Moreover, an 

earlier growth shutdown limits the development of secondary leaf area, improving grape 
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microclimate conditions, with higher exposure to solar radiation (Trégoat et al., 2002). With 

regard to phenolic compounds, soil water availability controls skin/pulp ratio, affecting 

polyphenol biosynthesis (Matthews and Anderson, 1988; Ginestar et al., 1998; Sipiora and 

Gutiérrez-Granda, 1998; Esteban et al., 2001; Gurovich and Páez, 2004; Sivilotti et al., 2005). 

Other studies attribute the positive effect on polyphenol synthesis to an improvement of the 

microclimate, related to the decrease of leaf area and a better berry exposure (Dry et al., 2001; 

Trégoat et al., 2002), but not all studies can demonstrate this effect (Hilbert et al., 2003). 

Thus, the knowledge of the soil moisture regime, considered as the evolution over time of the 

soil moisture status, is indispensable to appraise the vineyard potential for grape and wine 

production.  

 

There are different methods to characterize the seasonal soil moisture dynamics. Soil 

Taxonomy (SSS, 2006) is the only worldwide classification system which considers the soil 

moisture regime (SMR). The Soil Taxonomy SMR, which can be defined as the distribution 

of periods of dryness and wetness during a normal year, is determined by cumulative and 

consecutive days of dryness (soil water potential < -1500 kPa) and moistness (soil water 

potential > -1500 kPa) in the soil moisture control section (SMCS), which corresponds to the 

depth to which a dry soil will be moistened by 25 mm (upper limit) and 75 mm (lower limit). 

The periods considered by Soil Taxonomy are the four months following the winter and 

summer solstice, and the period when soil temperatures are higher than 5 and 8 ºC. At 

European level, the Georeferenced Soil Database of Europe (Finke et al., 2001) defines the 

annual SMR from cumulative periods of moistness (water potential > -1 kPa) within 40 and 

80 cm soil depth. Kamara and Jackson (1997) proposed a rain-soil moisture index 

classification for tropical regions, which considers the frequency of rainy days (daily rain > 

0.25 mm) and the daily percentage of the soil moisture storage capacity. All these studies 

show that, despite the existence of few methods to characterize SMR, the soil moisture 

parameters and the periods considered are very variable. Furthermore, the variables 

considered do not take into account the vine phenological stages, so probably these methods 

are not the most suitable to separate SMRs according their potential effects on viticulture. 

Some studies of soil moisture orientated to vineyard crops are Payan and Salançon (2002), 

who characterized the evolution of soil moisture in vineyards for irrigation purposes, using 

hydric itineraries, which represent the soil water deficit (fraction of transpirable soil water) in 

the different vine phenological stages, or Tonietto and Carbonneau (2004), who proposed a 
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worldwide multicriteria climatic classification, which defined climatic classes according to a 

dryness index, calculated from the potential soil water reserve at grape maturity.  

 

As said before, soil moisture regime is determining in grape and wine quality, and is also 

necessary to implement Soil Taxonomy classification. In this study, soil water content is 

monitored in 10 representative soil map units, belonging to a Soil Taxonomy-based 

viticultural zoning (Ubalde et al., 2009), in order to characterize the soil moisture regime. 

This paper aims to analyse the suitability of Soil Taxonomy to characterize the soil moisture 

regime for viticultural zoning purposes and also to compare Soil Taxonomy classification 

with a classification based on the variability of soil moisture during the grapevine 

phenological stages. 

 

Materials and Methods 

 

Setting 

 

The study area was located in high quality producing vineyards, in different counties of 

Catalonia (North-Eastern Spain): Priorat, Anoia, Pallars Jussà, Alt Penedès and Conca de 

Barberà (Table 1). The altitude ranges between 196 m and 902 m. The studied plots were 

vines of different cultivars (Cabernet sauvignon, Pinot noir, Grenache noir and Tempranillo) 

and rootstocks (R110, SO4, 1103, 41B and 140R), ages (8 - 35 years old) and vine densities 

(3,300 - 4,500 vines per hectare). All vineyards followed similar management: vines were 

trained to an espalier-type canopy system and were double cordon Royat pruned (12 buds per 

vine), vineyards were dry-land farmed and weeds were controlled by ploughing. 

 

Table 1. Location and viticultural characteristics of the studied plots. 

County Plot name Location 
Altitude 

(m) 
Cultivar Rootstock 

Age 

(years) 
Vines/hectare 

Priorat Arenal 0º 49’ E, 41º 7’ N 313 Tempranillo R110 10 4,500 

Solana 1 0º 52’ E, 41º 12’ N 493 Grenache noir R110 12 3,300 

Solana 2 0º 52’ E, 41º 12’ N 493 Grenache noir R110 12 3,300 

Anoia Ca l’Atzet 1º 30’ E, 41º 30’ N 542 Pinot noir SO4 23 4,500 

Pallars Jussà St. Miquel 0º 50’ E, 42º 12’ N 902 Pinot noir 1103 8 4,500 

Alt Penedès Plana 1º 40’ E, 41º 21’ N 196 Cabernet sauvignon 41B 35 3,700 

Sivill 1º 39’ E, 41º 21’ N 237 Cabernet sauvignon 140R 30 4,500 

Conca de 

Barberà 

Llarga 1º 4’ E, 41º 23’ N 450 Cabernet sauvignon 140R 20 3,700 

Solar 1º 4’ E, 41º 23’ N 459 Cabernet sauvignon SO4 20 3,700 

Peu del bosc 1º 5’ E, 41º 22’ N 532 Grenache noir R110 15 4,500 
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These vineyards are located on three distinct main geological units of Catalonia, more 

specifically on the Catalan Coastal Range, the Ebro Basin and the Prepyrenees (Figure 1). The 

Catalan Coastal Range is an alpine folded chain formed by both massifs and tectonic trenches 

(Anadón et al., 1979). The Priorat vineyards are located in the hillslope of the massif, on 

Carboniferous slates (‘Solana 1 and 2’) and granodiorites (‘Arenal’). ‘Peu del bosc’ vineyard 

is located in the footslope of the massif, on siliceous gravel deposits (slates and granites). The 

Alt Penedès plots are located in a tectonic trench, where calcareous materials from Miocene 

predominate. In particular, ‘Plana’ is located in a bottom valley and ‘Sivill’ is located in a 

residual platform. The vineyards of the Ebro basin margin are ‘Ca l’Atzet’ (Anoia) and 

‘Llarga’ (Conca de Barberà), where calcareous materials from Eocene and Oligocene 

predominate, respectively. Finally, ‘Sant Miquel’ is located in the Prepyrenees, on glacis 

formed by calcareous gravel deposits.  

 

 

Figure 1. Location map of the studied plots. 
 

 

A high variability of physicochemical soil properties can be identified (Table 2), in relation to 

the existing differences in lithologies and landforms. The selected soils are classified as 

Entisol, Inceptisol and Mollisol orders (SSS, 2006) (Table 3). Entisols are characterized by 

little or no evidence of soil formation. The groups described were Xerorthents (‘Solana 1, 2’), 

characterized by being shallow soils with a root-limiting layer, Xerofluvents (‘Ca l’Atzet’, 

‘Plana’ and ‘Llarga’), which are deep soils, rich in organic matter in depth, and 

Xeropsamments (‘Arenal’), which are sandy soils. Inceptisols are characterized by being in 
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the early stages of soil formation. The groups described were Haploxerepts, which showed 

evidences of carbonate removals (‘Solar’) or clay neoformation (‘Peu del bosc’), and 

Calcixerepts (‘Sivill’), characterized by calcium carbonate accumulations. Mollisols are base-

rich soils with a dark coloured surface horizon, due to organic matter accumulation. The 

group identified was Palexerolls (‘St. Miquel’), which was characterized by high organic 

matter content and calcium carbonate cementations. 

 

Table 2. Physicochemical properties of the selected soils. 

Soil 
Depth 

(cm) 
pH 

EC 

(1:5, 

dS/m) 

Organic 

matter 

(%) 

CaCO3 

eq. 
(%) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Textural 

class* 

(SSS, 

2003) 

Rock 

fragments 

(%) 

Moisture 

at            

-33kPa 

(%) 

Moisture 

at -1500 

kPa  (%) 

Water 

holding 

capacity 

(mm/10cm) 

Arenal 20 8.6 0.12 0.1 trace 91.5 4.9 3.6 Sa trace 5 3 3.0 

40 8.6 0.11 0.1 trace 91.8 6.9 1.3 Sa trace 5 3 3.1 

Solana 1 15 7.6 0.31 3.9 trace 66.4 20.8 12.8 SaL 58 20 8 8.5 

Solana 2 15 7.6 0.26 3.5 trace 69.5 19.8 10.7 SaL 48 21 8 10.6 

45 7.7 0.22 1.9 trace 71.1 18.3 10.6 SaL 37 18 8 13.2 

Ca 

l’Atzet 

9 8.3 0.22 1.8 43 23.7 44.0 32.3 CL trace 24 12 19.1 

52 8.5 0.28 1.1 43 28.2 38.4 33.4 CL trace 22 12 17.8 

86 8.5 0.25 0.5 49 36.4 36.6 27.0 CL trace 21 10 19.8 

120 8.4 0.33 0.5 51 42.2 33.0 24.8 L trace 20 10 18.0 

St. 

Miquel 

12 8.6 0.20 4.3 29 35.8 50.7 13.5 SiL 28 24 13 11.9 

32 8.5 0.19 3.9 34 37.8 47.6 14.6 L 29 25 14 12.6 

120 8.9 0.14 0.4 78 73.7 20.7 5.6 SaL 50 17 4 12.3 

Plana 14 8.4 0.17 1.7 28 28.1 50.1 21.8 SiL trace 23 10 18.2 

50 8.4 0.20 1.2 28 27.8 49.5 22.7 SiL trace 22 11 17.4 

93 8.4 0.22 0.8 27 30.1 45.5 24.4 L trace 22 12 16.3 

135 8.4 0.19 1.0 34 32.9 40.5 26.6 L trace 23 12 19.7 

Sivill 10 8.5 0.18 2.2 37 37.7 36.7 25.6 L 37 25 13 9.3 

50 8.6 0.20 1.6 72 63.3 25.3 11.4 SaL 36 20 9 10.1 

Llarga 19 8.4 0.23 1.1 45 23.0 55.5 21.5 SiL trace 21 8 17.7 

40 8.4 0.22 0.9 46 21.8 56.4 21.8 SiL trace 21 8 21.6 

80 8.4 0.30 1.3 47 20.8 56.1 23.1 SiL trace 23 9 20.3 

110 8.0 1.42 1.2 45 15.5 58.0 26.5 SiL trace 19 7 17.1 

Solar 15 8.3 0.40 2.0 17 43.8 39.9 16.3 L 22 21 8 11.3 

38 8.5 0.19 1.0 9 71.1 18.8 10.1 SaL 54 12 5 4.7 

70 8.5 0.22 0.5 trace 89.6 4.7 5.7 Sa 65 5 2 1.2 

130 8.5 0.19 0.4 trace 89.1 3.3 7.6 Sa 50 4 2 0.6 

Peu del 

bosc 

20 8.4 0.17 1.4 4 54.6 28.5 16.9 SaL 28 20 8 14.1 

50 8.4 0.19 1.1 5 46.2 34.4 19.4 L 30 22 10 13.6 

85 8.4 0.19 0.7 4 45.1 37.4 17.5 L 31 21 9 13.2 

120 8.3 0.17 1.1 4 52.3 30.8 16.9 L 48 19 9 10.6 

* CL: clay loam, SiL: silt loam, L: loam; SaL: sandy loam, Sa: sand. 

 

The climate type is Mediterranean, characterized by a dry warm season during summer, even 

though there are differences in temperatures and precipitation according to the altitude and 

distance to the sea. The mean annual precipitation varies from 520 mm (Penedès) to 650 mm 

(Pallars Jussà), showing seasonal variations. In all regions, the precipitation has a bimodal 

distribution (peaks in spring and autumn) and a minimum of precipitation in summer, 
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particularly in July. Moreover, the annual precipitation has a high interannual variability 

(from 305 mm to 1110 mm in Priorat). The mean annual temperature ranges between 12.7 

(Priorat) and 16.4ºC (Anoia). The highest temperatures occur in summer, particularly in July 

or August, while the lowest temperatures occur in winter (January). The viticultural climate 

(Tonietto and Carbonneau, 2004) ranges between subhumid and moderately dry, between 

temperate and warm, and between very cold nights and temperate nights.  

 

Priorat

0

20

40

60

80

1 2 3 4 5 6 7 8 9101112

Month

P
re

c
ip

it
a
ti

o
n

 (
m

m
)

0

5

10

15

20

25

30

35

40

Mean precipitation

Average year:

12.7 (7.6 - 17.8) ºC

589 mm 

Conca de Barberà

0

20

40

60

80

1 2 3 4 5 6 7 8 9101112
Month

0

5

10

15

20

25

30

35

40

High mean temperature

Penedès

0

20

40

60

80

1 2 3 4 5 6 7 8 9101112

Month

0

5

10

15

20

25

30

35

40

T
e
m

p
e
ra

tu
re

 (ºC
)

Mean temperature

Average year:

14.9 (9.6 - 20.2) ºC

520 mm

Average year:

13.6 (8.4 - 18.8) ºC

546 mm

Anoia

0

20

40

60

80

1 2 3 4 5 6 7 8 9101112

Month

0

5

10

15

20

25

30

35

40

45

T
e
m

p
e
ra

tu
re

 (ºC
)

Low mean temperature

Average year:

16.4 (12.3 - 21.4) ºC

618 mm

Pallars Jussà

0

20

40

60

80

1 2 3 4 5 6 7 8 9101112

Month

-5

0

5

10

15

20

25

30

35

40

T
e
m

p
e
ra

tu
re

 (ºC
)

Average year:

13.3 (5.8 - 20.7) ºC

650 mm

 

Figure 2. Average climate data in the study area.  

 

Soil moisture and climate monitoring 

 

The soil water content was monitored by capacitance sensors (ECHO EC20, Decagon 

Devices Inc.), continuously (every 30 min) and at different depths, in 10 soil series (SSS, 

2006) located in 5 viticultural climates (Tonietto and Carbonneau, 2004) (Table 3). In order to 

minimize the effect of internal soil variability, 3 capacitance sensors at 20 m of distance 

(forming a triangle) were installed for each depth. A calibration was performed in order to 

convert capacitance data (mV) to volumetric moisture data (%). This calibration was made by 

means of linear regressions between capacitance data and soil moisture data, registered at 

different seasons of the year. Field capacity (FC) was determined by capacitance sensors after 

48 hours of soil saturation during periods of continuous, heavy rains. Similar methods were 

used in previous studies (Lebon et al., 2003). Permanent wilting point (PWP) was estimated 

as soil moisture to -1500 kPa, determined by pressure-plate extraction from disturbed samples 

(sieved to 2 mm). 
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Daily climatic data were recorded in automatic weather stations of the Meteorological 

Service of Catalonia or Miguel Torres Winery, which were close the monitored plots. Data 

of rainfall, air temperature, solar radiation, wind, relative humidity, atmospheric pressure 

and reference evapotranspiration were available. Moreover, one rain gauge was installed 

for each soil type. Soil temperature data were estimated from air temperature, according to 

Jarauta (1989).  

 

Table 3. Capacitance sensors distribution. 

Climatic zone Soil series Plot name Depths (cm)   Years  

Subhumid, 

temperate, cool 

nights 

Sandy, mixed, mesic, shallow, Typic 

Xeropsamments 

 

Arenal 15 – 30 2004 a 2006 

Loamy-skeletal, mixed, semiactive, mesic, 

Lythic Xerorthents (very shallow) 

 

Solana 1 15 2005 a 2007 

Loamy-skeletal, mixed, semiactive, mesic, 

Lythic Xerorthents (shallow) 

 

Solana 2 15 – 30 2005 a 2006 

Subhumid, warm, 

temperate nights 

Fine, mixed, semiactive, thermic, Typic 

Xerofluvents 

 

Ca l’Atzet 15 – 30 – 60 – 90 2005 a 2007 

Subhumid, warm, 

very cool nights 

Loamy, carbonatic, mesic, shallow, 

Petrocalcic Palexerolls 

 

St. Miquel 15 – 30 2005 a 2007 

Moderately dry, 

temperate warm, 

temperate nights 

Fine-loamy, mixed, active, thermic, Typic 

Xerofluvents 

 

Plana 15 – 30 – 60 – 90 2005 a 2007 

Loamy, carbonatic, thermic, Petrocalcic 

Calcixerepts  

 

Sivill 15 – 30 2005 a 2007 

Moderately dry, 

temperate warm, 

cool nights 

Fine-loamy, carbonatic, mesic, Typic 

Xerofluvents 

 

Llarga 15 – 30 – 60 – 90 2004 a 2006 

Sandy-skeletal, mixed, mesic, Typic 

Haploxerepts 

 

Solar 15 – 30 2004 a 2006 

Fine-loamy, mixed, active, mesic, 

Fluventic Haploxerepts 

Peu del bosc 15 – 30 – 60 – 90 2004 a 2006 

 

Soil moisture regime characterization 

 

As said before, Soil Taxonomy is the only worldwide classification of soil moisture regimes 

(SMRs). The Soil Taxonomy SMRs are defined in terms of presence or absence of water held 

at a tension of less than 1500 kPa during certain periods (SSS, 2006). The periods considered 

by Soil Taxonomy do not correspond to grapevine phenological stages, so the suitability of 

Soil Taxonomy SMR to characterize soil moisture dynamics in vineyards is not clear. In order 

to analyse this suitability, soil moisture status in the soil moisture control section (SMCS) was 
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determined for the periods which dictate Soil Taxonomy and the phenological stages of vines. 

In this study, 3 soil moisture statuses were considered: (1) dry in all parts when all 

capacitance sensors within the SMCS were below the PWP, (2) moist in some parts when 

some capacitance sensors within the SMCS were above the PWP and (3) moist in all parts 

when all capacitance sensors within the SMCS were above the PWP.  

 

The periods considered by Soil Taxonomy are the four months following the winter and 

summer solstice, and the period when soil temperatures are higher than 5 and 8ºC. The 

variables which determine the Soil Taxonomy SMR are defined by the number of cumulative 

and consecutive days or the percentage of days during these periods in which the SMCS 

presents a particular soil moisture status (Table 4). The values that achieve these variables 

define the soil moisture regimes in Soil Taxonomy (Table 5): aridic, xeric, ustic and udic.  

 
Table 4. Variables determining the soil moisture regime in Soil Taxonomy (SSS, 2006; Loaiza, 2007). 

Variable Description 

ST1 Percentage of days per year when the soil temperature is > 5ºC where the soil moisture 

control section is dry in all parts. 

ST2 Consecutive days when the soil temperature is > 8ºC where the soil moisture control section 

is moist in some or all parts.  

ST3 Cumulative days per year where the soil moisture control section is moist in all parts.  

 

ST4 Consecutive days in the 4 months following the summer solstice where the soil moisture 

control section is dry in all parts.  

ST5 Consecutive days in the 4 months following the winter solstice where the soil moisture 

control section is moist in all parts.  

 

Table 5. Criteria for determining the soil moisture regime in Soil Taxonomy (Gascó-Ibañez, 1978; 

Jarauta, 1989). 

ST1 < 50 ST2 >= 90 ST3 < 275 ST4 >= 45 ST5 >= 45 SMR 

False False - - - Aridic 

- - False False - Udic 

True - True False True Ustic (1) 

True - True - False Ustic (2) 

True False - True True Xeric (1) 

False True - True True Xeric (2) 

True True - True True Xeric (3) 

 

The soil moisture variables related to grapevine phenological stages are consecutive days and 

percentage of days per year where the SMCS presents a particular soil moisture status, for the 

following periods: dormant season (October-March), growing season (April -September), 

period between budbreak and flowering (April-May), period between flowering and veraison 
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(June-July) and period between veraison and maturity (August-September). These months are 

representative of grapevine phenological stages in Mediterranean climates of the Northern 

Hemisphere (Martínez de Toda, 1991; Hidalgo, 1999), and are also representative for the 

climates and cultivars considered in this study. Moreover, the period with air temperatures 

above 10°C, which is the thermal threshold for grapevine vegetative activity (Hidalgo, 1999), 

was considered. 

 

Soil Taxonomy SMR classification is meant for “normal years”, defined as years that have 

plus or minus one standard deviation of the long-term mean annual precipitation. However, in 

this study, in order to have more data availability, the Soil Taxonomy SMR was determined 

for every year, assuming that certain annual weather conditions may correspond to “normal 

years” of different climates. This approach was possible because we were not analyzing the 

effect of climate or soil on soil moisture conditions, but we wanted to compare Soil 

Taxonomy variables with variables related to grapevine phenological stages. 

 

Statistics 

 

At first, a Pearson correlation analysis was performed for the variables related to soil moisture 

regime characterization, in order to simplify the number of dependent variables. Then, the 

variability of parameters related to grapevine phenological stages was compared with the Soil 

Taxonomy SMRs, by means of variance analysis (ANOVA). Means were separated by 

Newman-Keuls post-hoc analysis (p < 0.05). Moreover, a proposal of SMR classification in 

vineyard soils was realised by means of a cluster analysis (k-means method). This method 

groups data in k clusters of greatest possible distinction. Initial cluster centres were 

determined by sorting distances and taking observations at constant intervals. Finally, classes 

formed by cluster analysis were compared with SMR of Soil Taxonomy, by the Pearson’s chi-

square test. In this analysis, the null hypothesis was the independence (no association) 

between variables. All statistical analyses were performed in STATISTICA
®
. 

 

Results and Discussion 

 

During this study, the climatic conditions did not show remarkable trends for years or 

counties (Table 6). For example, the rainiest or warmest year in a county was not necessarily 
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the same for other counties, and no particular county was always the rainiest or the warmest. 

The rainiest year was 2004 in Priorat (554 mm) and the driest year was 2005 in Anoia (318 

mm). Different trends were observed for the growing season and the ripening period. The 

rainiest growing season was 2007 in Pallars Jussà (325 mm) and the driest one was 2006 in 

Alt Penedès (173 mm). The rainiest ripening season was 2006 in Conca de Barberà (166 mm) 

and the driest one was 2004 in Priorat (12 mm). Regarding the temperatures, 2006 in Priorat 

was the warmest year during the year (16.1ºC), the growing season (21.6 ºC) and the ripening 

period (23.2ºC). The coolest year was 2007 in Pallars Jussà (12.8 ºC), but during the growing 

season was 2004 in Conca de Barberà (17.8ºC) and during the ripening season 2006 in Conca 

de Barberà (19.3ºC). 

 

Table 6. Meteorological data for the growing season (Apr-Oct), the ripening period (Aug-Sep) and 

year in the study area (2004-2007).  

County Year 

Total rainfall 

(mm) 

Mean Temperature 

(ºC) 

Average maximum 

Temperature (ºC) 

Average minimum 

Temperature (ºC) 
Aug-

Sep 

Apr-

Oct 
Year 

Aug-

Sep 

Apr-

Oct 
Year 

Aug-

Sep 

Apr-

Oct 
Annual 

Aug-

Sep 

Apr-

Oct 
Year 

Priorat 2004 12 252 554 22.7 19.1 14.2 30.0 26.1 20.5 17.3 13.6 9.3 

2005 145 272 465 22.6 20.7 14.8 29.9 27.6 21.4 16.1 14.5 9.3 

2006 145 225 350 23.2 21.6 16.1 30.4 28.9 22.9 16.6 14.8 10.1 

2007 28 287 407 21.5 19.2 14.8 28.7 26.0 21.1 15.8 13.8 9.8 

Anoia 2005 105 204 318 19.8 18.3 13.3 26.6 25.5 19.8 13.0 11.2 6.8 

2006 119 257 453 20.2 18.8 13.9 29.2 28.0 22.3 12.9 10.6 6.8 

2007 84 303 421 19.7 17.8 13.0 28.5 26.4 21.5 12.0 9.9 5.7 

Pallars 

Jussà 

2005 153 325 353 21 19.9 13.1 29.5 28.4 21.3 13.7 12.3 6.2 

2006 71 246 361 20.4 20.0 13.9 29.6 29.1 21.9 13.6 12.5 7.4 

2007 30 364 429 20.8 18.5 12.8 29.3 26.9 21.0 13.0 11.0 6.0 

Alt 

Penedès 

2005 144 286 480 21.3 19.8 14.6 28.7 27.1 22.0 15.2 13.5 8.6 

2006 122 173 357 22.0 20.5 15.9 29.1 27.8 22.9 16.1 14.1 10.0 

2007 85 308 399 20.8 19.0 14.9 26.8 25.2 21.6 15.5 13.3 9.3 

Conca 

de 

Barberà 

2004 35 283 495 21.8 17.8 13.2 28.1 24.0 18.8 16.2 12.1 8.2 

2005 73 192 366 20.4 19.0 13.5 26.8 25.4 19.4 14.6 12.9 8.2 

2006 166 256 380 19.3 18.7 14.1 27.7 26.2 20.5 15.3 13.3 9.2 

 

The predominant SMR was xeric (50% of cases), which agrees with the Mediterranean 

climate of the study area (Table 7). The second most important SMR was ustic (28% of 

cases). Those cases could not be classified as xeric because they do not accomplish the 

criteria of either at least 45 consecutive dry days in the 4 months following the summer 

solstice or at least 45 consecutive humid days in the 4 months following the winter solstice. 

The SMR was aridic in 3 cases (Plana and Sivill in 2005 and Llarga in 2004), since they 

presented more than 50% of dry days when the soil temperature was > 5ºC and less than 90 
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consecutive humid days when the soil temperature was > 8ºC. Finally, the SMR was udic in 3 

cases (Arenal in 2004 and 2005 and Peu del Bosc in 2006), since they presented less than 90 

consecutive dry days per year and less than 45 consecutive dry days in the 4 months following 

the summer solstice.  

 

Table 7. Characterization of soil moisture dynamics using variables from Soil Taxonomy SMR for 

each plot and year (Description of variables in table 3). 

Plot name Year ST1 ST2 ST3 ST4 ST5 Regime 

Arenal 2004 23 115 291 33 51 Udic 

2005 0 255 365 0 122 Udic 

2006 36 100 260 58 123 Xeric (3) 

Solana 1 2005 48 59 179 51 26 Ustic (2) 

2006 43 81 238 83 105 Xeric (1) 

2007 45 99 246 94 122 Xeric (2) 

Solana 2 2005 43 134 198 68 25 Ustic (2) 

2006 26 99 234 74 122 Xeric (3) 

Ca l'Atzet 2005 25 117 218 56 121 Xeric (3) 

2006 21 118 278 59 121 Xeric (3) 

2007 38 104 211 76 121 Xeric (3) 

St. Miquel 2005 32 63 184 24 0 Ustic (1) 

2006 31 96 275 83 105 Xeric (3) 

2007 53 116 183 82 123 Xeric (2) 

Plana 2005 65 89 116 78 0 Aridic 

2006 14 140 167 39 100 Ustic (1) 

2007 46 81 0 48 0 Ustic (2) 

Sivill 2005 65 89 116 78 0 Aridic 

2006 16 130 316 49 123 Xeric (3) 

2007 5 89 248 15 123 Ustic (1) 

Llarga 2004 57 67 188 113 61 Aridic 

2005 33 95 243 75 113 Xeric (3) 

2006 26 87 220 26 104 Ustic (1) 

Solar 2004 39 75 252 67 123 Xeric (1) 

2005 32 84 284 79 122 Xeric (1) 

2006 28 92 252 30 112 Ustic (1) 

Peu del bosc 2004 47 98 197 87 61 Xeric (3) 

2005 19 119 282 50 122 Xeric (3) 

2006 12 111 277 35 122 Udic 

 

Regarding the variables related to phenological stages, a significant high correlation between 

consecutive dry days and percentage of dry days was determined by means of a Pearson 

analysis (r = 0.87 - 1.00, p < 0.05, n = 29). So, from now, the statistical analyses only consider 

the variables calculated as percentage of dry days, which are easier to determine. Moreover, a 

significant correlation was determined between the percentage of dry days between April and 



 61 

September and the months with temperature exceeding 10 °C (r = 0.74, p < 0.05, n = 29), so 

this last variable is also removed. Thus, the variables related to vineyard phenology 

considered in the statistical analysis are the percentage of dry days during the dormant season, 

growing season, budbreak-flowering, flowering-veraison and veraison-harvest. 

 

Table 8 shows the results of the analysis of variance (ANOVA), considering as independent 

variables the percentage of dry days in different phenological periods and as dependent 

(categorical) variable the Soil Taxonomy SMR. Mean values for each SMR and significant 

differences (p < 0.05) between means are shown. In general, significant differences were 

found between the Soil Taxonomy SMRs in all phenological periods, except for flowering-

veraison period. However, the separation of means was poor, since no more than 2 groups of 

SMR with significant differences could be distinguished. The aridic and ustic (2) SMR were 

separated from the remainder SMR during the dormant season, aridic was separated from 

ustic (1) and udic during the growing season, aridic was separated from xeric (2, 3) and udic 

during the budbreak-flowering period and xeric (2) was separated from ustic and udic during 

the veraison-harvest period. As mentioned above, no significant differences between the 

SMRs were found during the flowering-veraison period. Soil moisture during this period is 

very important to grape production, since it determines the number of cells per berry and 

consequently the potential berry size (Ojeda et al., 2002). Thus, the Soil Taxonomy SMR does 

not adequately reflect differences in the soil moisture status during the grapevine phenological 

periods.  

 
Table 8. Comparison of the percentage of dry days during every grapevine phenological stage 

between the different Soil Taxonomy SMR (N: number of observations). 

 Percentage of dry days  

SMR 
Dormant 

season 

Growing 

season 

Budbreak-

Flowering 

Flowering-

Veraison 

Veraison-

Harvest 
N 

Aridic 66.7 a 75.3 a 66.7 a 85.3 ns 73.7 ab 3 

Xeric (1) 12.3 b 49.3 ab 25.7 ab 53.3 ns 68.0 ab 3 

Xeric (2) 0.0 b 42.0 ab 0.0 b 64.0 ns 94.0 a 2 

Xeric (3) 9.2 b 38.7 ab 1.5 b 43.7 ns 62.2 ab 10 

Ustic (1) 11.0 b 31.6 b 17.4 ab 52.6 ns 39.8 b 5 

Ustic (2) 60.0 a 49.7 ab 28.0 ab 77.0 ns 29.3 b 3 

Udic  6.3 b 15.7 b 0.0 b 4.0 ns 27.7 b 3 

Different letters indicate significant differences at p ≤ 0.05 within one column using Newman-Keuls test. 

 

When the ANOVA is performed without xeric and ustic subdivisions (Table 9), significant 

differences are also found in the flowering-veraison season. However, the separation of means 
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was still poor. During the growing season, the aridic regime was significantly drier than the 

rest and the udic regime was significantly wetter than the rest. Xeric and ustic regimes 

represented intermediate regimes between aridic and udic, but they showed significant 

differences during the phenological stages. The xeric regime was grouped with udic regime 

during budbreak-flowering and with aridic regime during flowering-harvest. Moreover, the 

ustic regime was grouped with udic in all stages, except during flowering-veraison, which 

would be as dry as aridic.  

 
Table 9. Comparison of the percentage of dry days during every grapevine phenological stage 

between the different Soil Taxonomy SMR without subdivisions (N: number of observations). 

 Percentage of dry days  

SMR 
Dormant 

season 

Growing 

season 

Budbreak-

Flowering 

Flowering-

Veraison 

Veraison-

Harvest 
N 

Aridic 66.7 a 75.3 a 66.7 a 85.3 a 73.7 a 3 

Xeric  8.6 b 41.3 ab 6.1 b 48.3 a 67.6 a 15 

Ustic 29.4 b 38.4 ab 21.4 b 61.8 a 35.9 b 8 

Udic  6.3 b 15.7 b 0.0 b 4.0 b 27.7 b 3 

Different letters indicate significant differences at p ≤ 0.05 within one column using Newman-Keuls test. 

 

A cluster analysis was performed in order to find a classification of SMR that could better 

reflect the variability of soil moisture with implications for vineyard growing. The k-means 

algorithm was applied to data of percentage of dry days during the grapevine phenological 

periods. This method was selected because it allows grouping data, minimizing within-group 

variability while maximizing among-group variability (Young and Hammer, 2000). Six 

clusters were obtained in this way. Averages of percentage of dry days in different 

phenological stages for each cluster are shown in Table 10. In this classification, the cluster 

classes showed significant differences in all phenological periods, even for flowering-

veraison period, and therefore present different implications for viticulture, related to potential 

for vegetative growth, the grape ripening process and grape production (Table 11). Cluster 5 

represents a very dry soil moisture regime, with 100% of dry days until veraison and 60% 

during ripening in average, which may imply low grape production, with excessive sugar 

content and insufficient phenolic compounds (Van Leeuwen and Seguin, 1994; Van Leeuwen 

et al., 2003; Hunter and Deloire, 2005). At the other extreme, cluster 4 represents a humid soil 

moisture regime, with approximately 10% of dry days during the dormant season and growing 

season until veraison and 25% of dry days during grape ripening. In this case, soil moisture 

can favour an imbalance between vegetative vigour and grape production, at the expense of 

grape quality (Van Leeuwen and Seguin, 1994). Cluster 2 is similar to cluster 4, except for 
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presenting a dry ripening period (75% of dry days in average), which may relatively favour 

the grape ripening process. The remaining clusters represent intermediate situations, which 

are characterized by a moderately dry growing season, with approximately 50% of dry days. 

A moderately limited water regime induces generally positive effects on berry composition 

and wine quality (Kounduras et al., 1999), with an increase of berry sugar, anthocyanin and 

tannin content and also an increase of the grape ripening speed (Van Leeuwen and Seguin, 

1994).  

 

Table 10. Comparison of the percentage of dry days during every grapevine phenological stage 

between cluster classes, determined by means of the k-means clustering algorithm (N: number of 

observations). 

 Percentage of dry days  

Cluster 

classes 

Dormant 

season 

Growing 

season 

Budbreak-

Flowering 

Flowering-

Veraison 

Veraison-

Harvest 
N 

1 13.7 c 48.3 b 19 c 86.7 b 17 b 3 

2 1.4 c 29.6 c 0 d 18.5 d 75.8 a 8 

3 49.3 b 54.5 b 51.5 b 86.3 b 52.5 a 4 

4 10.6 c 16.6 c 0 d 11 d 24.6 b 5 

5 100 a 87 a 100 a 100 a 60.5 a 2 

6 11.6 c 48.9 b 0 d 68.4 c 70.6 a 7 

Different letters indicate significant differences at p≤ 0.05 within one column using Newman-Keuls test. 

 

Table 11. Interpretation of cluster classes for viticulture. 

Cluster SMR description Implications for viticulture 

5 

 

Dry dormant and growing season. Low potential for vegetative growth, 

limited production, early grape ripening, 

possible excess of grape sugar content.   

3 

 

Moderately dry dormant and growing 

season. 

Moderate potential for vegetative growth, 

possible early grape ripening, possible 

balanced grape ripening. 

6 Humid dormant season and moderately dry 

growing season, but dry veraison-harvest 

period. 

High potential for vegetative growth, 

balanced grape ripening respect to the 

phenolics and sugar content. 

1 Humid dormant season and moderately dry 

growing season, but humid veraison-

harvest period. 

High potential for vegetative growth, 

possible balanced grape ripening respect to 

the phenolics and sugar content. 

2 

 

Humid dormant and growing season, but 

dry veraison-harvest period. 

 

Very high potential for vegetative growth, 

possible delay of the grape ripening 

process. 

4 

 

Humid dormant and growing season. Very high potential for vegetative growth, 

delay and/or difficulties to reach grape 

ripeness. 

 

The chi-squared test of independence showed a significant association between cluster classes 

and Soil Taxonomy classification (χ
2
 = 51.3, df = 30, p = 0.009). In order to analyse this 

association, the frequency in which SMR distribute in cluster classes is shown in Figure 3. All 
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cases belonging to cluster 5, which represents the most limited soil moisture regime during 

grapevine growing, are classified as aridic. Nevertheless, aridic SMR was also found in other 

clusters (16 % of cluster 6). Moreover, all udic cases belong to cluster 4, which represents the 

most humid soil moisture regime. However, udic cases only represent the 60% of cases in 

cluster 4. Thus, there is a significant association but it is not strong enough to predict 

accurately the Soil Taxonomy SMR from cluster memberships, or vice versa.  
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Figure 3. Frequency (%) of each soil moisture regime according to Soil Taxonomy into each cluster. 

 

These results demonstrate that Soil Taxonomy SMRs are able to characterize differences in 

soil moisture dynamics that have implications in vineyard cultivation only in the most 

extreme cases (aridic and udic), but have limitations when xeric and ustic regimes are 

considered. In addition, Soil Taxonomy SMRs present other limitations in relation to the 

difficulty of determination of some variables, which require the calculation of consecutive 

days and periods with a given soil temperature. Furthermore, the control section for 

calculating the SMR is apparently a good approximation to estimate where the root system 

develops, but often some roots can explore very deep soil horizons in vineyards. This aspect 

should be taken into account when interpreting the results. In some cases, the SMCS is dry 

during the whole vegetative cycle, and vines would not survive if roots could not explore very 

deep horizons. The proposal of this study is based on applying the k-means cluster method to 

the percentage of dry days in the control section during different grapevine phenological 

stages. This method has the same limitations about the control section, but the variables are 

easier to determine, since consecutive days and soil temperatures are not considered. In 

addition, the statistical analysis groups the soil moisture regimes so that they reflect the 
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maximum variability of water availabilities for the vineyard at different stages of 

development.  

 

Conclusions 

 

The SMR determination is an important requirement in viticultural zoning studies based on 

soil surveys, because of the effects of SMR in both wine production and soil classification. 

Soil Taxonomy classification is the most widely used, but this system shows some limitations 

when applied in viticultural zoning. The most important limitation refers to ustic and xeric 

SMR, which do not adequately reflect differences in the soil moisture dynamics during the 

grapevine phenological stages. This study proposes a classification based on determining dry 

days, as indicated by Soil Taxonomy, in different grapevine phenological periods and 

grouping the cases according to their variability, by means of a cluster analysis. Annual SMR 

resulting from cluster analysis show significant differences in percentage of dry days in all 

phenological periods, and therefore present different implications for viticulture, related to 

potential for vegetative growth, grape production and the grape ripening process that may 

determine wine quality for a given year. 
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Chapter 5 

 

 INFLUENCE OF SOIL AND CLIMATE ON GRAPE HARVEST 

QUALITY AT PLOT LEVEL  

 

 

Abstract  

 

Soil and climate of 3 vineyards located in Catalonia (Spain) have been characterized in order 

to determine their influence on grape quality (yield and berry composition). All 3 plots are 

very close, so only interannual climatic data of the nearest meteorological station have been 

considered. Besides determining chemical and physical properties of soils, the soil water 

availability has been characterized using capacitance sensors for the period from 2003 to 

2005. Both yield and berry composition data were available from Miguel Torres Winery. 

Climatic data and water availability explained 70% of vintage variability and soil data 

explained 28% of vintage variability. The edaphoclimatic factors had generally a high power 

of estimation of yield and quality of grapes (R
2 

> 0.75). Climate appeared to be the most 

influencing factor, followed by water availability, in particular for models referring to must 

data. Generally, soil data had influence on yield and some must data. The edaphoclimatic data 

explain most of the vintage variability and have a high power of estimation on grape quality. 

This study remarks the importance of a global approach which takes into account at least 

climate and soil water availability to understand the functioning of vines and evolution of 

berry composition.  

 

Key words: vineyard soil, Mediterranean climate, terroir, soil moisture, grape quality. 
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Introduction 

The main objective of modern oenology is to elaborate wines of recognised quality and 

typicality. This quality is often associated to very especial conditions of soil, climate, cultural 

practices, training system, in interaction with a variety, which form the concept of terroir 

(Falcetti, 1994; Vaudour, 2003; Deloire et al., 2005). This terroir generally is defined as a 

spatial and temporal entity, which is characterized by an interaction between the 

environmental potentialities and viticultural and oenological technologies, significant for 

grapes and/or wine (Vaudour, 2003; Deloire et al., 2005). There are few studies that consider 

all the factors of the ecosystem as a whole (Van Leeuwen et al., 2004), however some 

investigators have identified units of terroir considering different factors (Carey, 2001; 

Morlat, 2001). Probably, climate is the factor that determines with more intensity the 

suitability of the environment for vineyard growing (Hidalgo, 1999).  Soil has an important 

weight, but often it is studied together with climate, because its effects on wine quality are 

only consistent under the same climatic conditions (Saayman, 1977; Conradie, 1998). The soil 

properties which have the most influence on grape quality are the physical ones, namely the 

properties that control the soil water content (Seguin, 1986), due to its direct effect on 

equilibrium between vegetative vigour and grape production (Van Leeuwen and Seguin, 

1994). 

 

The aim of this study was to establish the influence of edaphoclimatic parameters on grape 

quality, in particular on both grape yield and berry composition. 

Materials and methods 

Setting 

 

This study was developed from 2003 to 2005 in three vineyards (Milmanda, Riu Sec and 

Muralles) situated in Conca de Barberà region (NE Spain), near the Catalan Coastal Range. 

The sites are located between latitudes 41º 22’ 7’’N and 41º 24’ 8’’N and between longitudes 

1º 3’ 53’’E and 1º 5’’ 24’’E. The altitudes are 450 m (Milmanda), 459 m (Riu Sec) and 515 m 

(Muralles).  
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Climate data 

 

All three plots have a homogeneous climate, since they are located less than 1.2 km apart. The 

climate type is Mediterranean with a continental influence, with a mean annual precipitation 

of 550 mm and a mean annual temperature of 13.6ºC. The viticultural climate (Tonietto and 

Carbonneau, 2004) is moderately dry, temperate warm and cool nights.  

 

No differences are expected in mesoclimate between Milmanda and Riu Sec, because both 

plots have similar topographic characteristics (similar altitude, flat landform). However, 

Muralles plot differs in topography (higher altitude, north-faced landform), having slightly 

lower temperatures and solar radiation. In this study, only interannual climatic data of the 

nearest meteorological station have been used, without considering the slight differences of 

Muralles mesoclimate.  

 

Climatic data were recorded in an automatic weather station (Espluga de Francolí) of the 

Meteorological Service of Catalonia, located at 41º 23’ 39’’N, 1º 6’ 1’’E and 441 m of 

altitude. This station is located less than 2 km from all plots, having the same topographic 

position than Milmanda and Riu Sec. Hourly, daily and monthly data of rainfall, temperature, 

solar radiation, wind, relative humidity, atmospheric pressure and ETo were available.  

 

Different climatic indices have been calculated for each year of the study: Thermal Index of 

Winkler (Winkler, 1962), Heliothermal Index of Huglin (Huglin, 1978), Heliothermal Index 

of Branas (Branas et al., 1946), Bioclimatic Index of Hidalgo (Hidalgo, 1980), Bioclimatic 

Index of Constantinescu (Constantinescu, 1967), August-September daily temperature range 

(Tonietto and Carbonneau, 2002), dryness index (Tonietto and Carbonneau, 2004) and  cool 

night index (Tonietto and Carbonneau, 2004). 

 

Soil data 

 

The chosen plots belong to three representative soil mapping units of the region determined in 

a very detailed (1:5000) soil map made by Miguel Torres Winery. The soil mapping followed 

the criteria of the Soil Inventory of Catalonia (Boixadera et al., 1989, Herrero et al., 1993) and 

the Soil Survey Manual (SSS, 1993).  
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The Milmanda soil (Table 1), classified as Typic Xerofluvent, fine-loamy, carbonatic, mesic 

(SSS, 2003), is a very deep soil, rich in silt (56.5 %) and carbonates (45.8 %), without stones, 

moderately well drained and with a high water holding capacity (1,541 m
3
·ha

-1
). The Riu Sec 

soil, classified as Typic Haploxerept, sandy-skeletal, mixed, mesic (SSS, 2003), is a 

moderately deep soil, rich in sand (89.4 %) and gravels (60 %) in deep horizons, somewhat 

excessively drained and with a low water holding capacity (384 m
3
·ha

-1
). The Muralles soil, 

classified as Fluventic Haploxerept, loamy-skeletal, mixed, active, mesic (SSS, 2003), is a 

deep loam soil, stony, well drained and with a high water holding capacity (1,522 m
3
·ha

-1
).   

 

The soil water content was determined by capacitance sensors (ECHO EC20, Decagon 

Devices Inc.), continuously (every 30 min) and at different depths (15, 30, 60 and 90 cm). In 

order to minimise the effect of the internal variability of the soil mapping unit, 3 sensors at 20 

m of distance were installed for each depth. To make sensors comparable in different soils, 

without calibration, a water availability index (WA) was calculated. This WA takes the 100 

value when the soil moisture content is at field capacity and the 0 value at the minimum soil 

moisture observed during the study. Field capacity was determined with the capacitance 

sensors following heavy rainfall periods. Similar methods were used in different previous 

studies (Lebon et al., 2003).  

 

Table 1. Main analytical data of studied soils at different depths. 

Soil 
Depth 

(cm) 
pH 

CE 

(1:5, 

dS/m) 

Organic 

matter 

(%) 

CaCO3 

eq. 

 (%) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Textural 

class* 

(SSS, 

2003) 

Bulk 

density 

(kg/m3) 

Rock 

fragments 

(%) 

Moisture 

at            

-33 kPa 

(%) 

Moisture 

at -1500 

kPa  (%) 

Water 

holding 

capacity 

(mm/10cm) 

Milmanda 

20 8.4 0.23 1.1 45 23.0 55.5 21.5 SiL 1360 0 21 8 17.7 

40 8.4 0.22 0.9 46 21.8 56.4 21.8 SiL 1659 0 21 8 21.6 

80 8.4 0.30 1.3 47 20.8 56.1 23.1 SiL 1450 0 23 9 20.3 

120 8.0 1.42 1.2 45 15.5 58.0 26.5 SiL 1429 0 19 7 17.1 

Riu Sec 

20 8.3 0.40 2.0 17 43.8 39.9 16.3 L 1110 22 21 8 11.3 

40 8.5 0.19 1.0 9 71.1 18.8 10.1 SaL 1449 54 12 5 4.7 

80 8.5 0.22 0.5 < 2 89.6 4.7 5.7 Sa 1143 65 5 2 1.2 

120 8.5 0.19 0.4 < 2 89.1 3.3 7.6 Sa 572 50 4 2 0.6 

Muralles 

20 8.4 0.17 1.4 4 54.6 28.5 16.9 SaL 1128 28 20 8 14.1 

40 8.4 0.19 1.1 5 46.2 34.4 19.4 L 1463 30 22 10 13.6 

80 8.4 0.19 0.7 4 45.1 37.4 17.5 L 1070 31 21 9 13.2 

120 8.3 0.17 1.1 4 52.3 30.8 16.9 L 1038 48 19 9 10.6 

* SiL: silt loam, L: loam; SaL: sandy loam; Sa: sand 
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Grape quality data 

 

The Milmanda and Riu sec plots are formed of 20-year-old vines of Cabernet Sauvignon 

cultivar, grafted onto 140R (Milmanda) and SO4 (Riu Sec) rootstock. The Muralles plot is 

formed of 13-year-old vines of Grenache noir cultivar, grafted onto R110 rootstock. Vine 

density is 2,800 (Milmanda) and 3,700 (Riu Sec and Muralles) vines per hectare with vines at 

1.2 x 2.8 m (Milmanda) and 1 x 2.2 m (Riu Sec and Muralles) (vine x row spacing). All plots 

followed similar management: vines were trained to an espalier-type canopy system and were 

double cordon de Royat pruned, vineyards were dry-land farmed, weeds were controlled by 

ploughing and there was no subtraction of grape to limit yield. 

 

Data of grape quality were measured directly from containers at the winery entrance, between 

25
th

 September and 5
th

 October.  Yield (kg·vine
-1

) was determined at the weight bridge and 

alcoholic degree, pH and total acidity (g tartaric acid/L) were analysed by the Maselli SM-03 

Winery Grape Must Analyser. Both anthocyanins (extracted at pH 3.2, in mg/L) and grape 

seed ripening (difference between absorbance at 280nm and anthocyanins at pH 3.2) were 

measured in laboratory, for Cabernet Sauvignon plots, following the method of Saint-Cricq de 

Gaulejac et al. (1998). 

 

Statistical analysis 

 

Data analysis was done by multiple regression, considering data of quality of grapes as 

dependent variables (DV) and considering edaphoclimatic data as independent variables (IV). 

Correlation matrices and Principal Components Analysis were performed to explore data and 

make a first selection of variables. The procedure « All possible regressions » was used to 

select the most representative models (higher R
2
) with selected variables. Then, assumptions 

of multiple regression were checked. Independent variables were changed until most of the 

assumptions were accomplished and, if possible, model was significant (confidence level of 

0.05 %). The software used was NCSS (Hintze, 2004). 
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Results and discussion 

 

During the study period, a great interannual variability of rain (from 366 mm to 756 mm) and 

mean temperature (from 13.2 ºC to 14.9 ºC) is remarkable (Table 2). The wettest year was 

2003 (756 mm·year
-1

), with rains concentrated in the beginning and at the end of the 

vegetative cycle. This year was the warmest (annual mean of 14.9 ºC), so thermal indexes 

were the highest too (Huglin Index = 2672) (Table 3). In 2004, rainfall was lower (495 mm) 

than in 2003, but during the growing season was higher, so rainfall April-august was the 

highest of the period (211 mm). Temperatures were the lowest of the period (annual mean of 

13.2 ºC), except for maturation period, as reflected in a high cool-night index (14.6 ºC). In 

2005, rain was low during the whole year and very low during the growing season (rainfall 

April-August = 76.8 mm). Temperatures were intermediate, except for maturation period, 

where temperatures were the lowest (cool-night index = 13 ºC). In 2003, solar radiation was 

fairly higher than other years, and in 2004 was slightly higher than in 2005. 

 

Figure 1 shows water availability (WA) evolution from June 2003 to October 2005. 

Generally, summer WA seems inversely proportional to annual rainfall, and spring WA too. 

The lowest summer WA (< 20 %) occurred in 2003 (Riu Sec) and 2004 (Milmanda and 

Muralles), when rain and spring WA were the highest (generally, higher than 80 %). The high 

rain and WA could have favoured vegetative development, and vines would be most water 

demanding in summer. On the contrary, WA values during 2005 were low (< 60 %) in the 

first months of the growing season, and summer WA were high (> 20 % in Milmanda and > 

40 % in Muralles). Some differences between soil types can be observed. In Riu Sec soil, WA 

usually is lower than in other soils, probably due to quick drainage and low water holding 

capacity. In Muralles, WA is slightly higher than in Milmanda. Between these soils, important 

differences occur at different depths. During 2005, the horizon at 90 cm depth recovered the 

WA in Muralles, but not in Milmanda: the rain in Milmanda was not enough to reach field 

capacity in superficial horizon, so deep horizons did not increase their WA. In Muralles, 

where water holding capacity is lower, the WA increases at all depths. 
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Table 2. Monthly and annual meteorological data from 2003 to 2005 of Espluga de Francolí automatic 

weather station. 

Variable Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

Rain (mm) 

2003 9.2 130 38.4 21.4 92.2 11.2 4.0 53 48.8 190 114 43.4 756 

2004 2.0 68.8 68.2 88.6 60.4 10.4 50.8 1.2 34.2 37.6 1.4 71.8 495 

2005 0.0 27.2 12.4 2.6 46.6 7.2 1.4 19 54.2 61.2 130 3.6 366 

Mean high 

temperatures 

(ºC) 

2003 10.7 10.2 17.2 19.3 23.6 31.7 31.8 33.5 25.7 18.3 13.7 9.9 20.5 

2004 11.4 10.1 12.8 15.4 19.6 27.5 26.9 29.7 26.4 22.2 13.2 10.5 18.8 

2005 9.0 9.2 14.8 19 24.3 29.6 30.9 28.5 25.1 20.3 13.4 8.9 19.4 

Mean 

temperatures 

(ºC) 

2003 6.8 6.3 11.0 13.2 17.3 24.3 25.1 26.2 19.7 13.9 9.5 5.9 14.9 

2004 7.4 4.8 7.3 10.3 13.8 20.2 20.6 23.5 20.1 16.0 7.9 6.6 13.2 

2005 3.5 4.0 8.3 12.7 17.4 22.4 24.1 22.0 18.8 15.3 9.1 4.0 13.5 

Mean low 

temperatures 

(ºC) 

2003 3.2 2.7 5.2 7.8 11.6 17.4 18.3 19.1 14.2 9.9 5.7 2.2 9.8 

2004 3.8 0.6 2.4 5.3 8.4 13.4 14.9 17.7 14.6 10.7 3.5 3.0 8.2 

2005 -0.5 -0.6 2.8 6.7 10.9 15.3 17.6 16.1 13 11 5.4 0.6 8.2 

Solar radiation 

(MJ·m-2·day-1) 

2003 7.0 7.7 15.1 17.7 22.3 24.4 24.3 21.5 15.5 9.7 6.6 5.6 14.8 

2004 7.1 9.5 13.2 16.9 20.6 23.7 17.6 19.2 15.4 11.1 7.6 4.8 13.9 

2005 7.6 9.6 14.1 17.1 20.3 21.0 21.8 19.0 13.1 8.7 6.0 5.8 13.7 

 

Table 3. Viticulture climatic indices from 2003 to 2005 

Index 2003 2004 2005 

Period of vegetative activity (PVA) (Mean T > 10ºC) March - October April - October April - October 

Mean temperature during PVA (ºC) 18.8 17.8 19 

Sum of degree-day during PVA  4612 3809 4060 

Thermal index of Winkler 2162 1669 1920 

Heliothermal index of Branas 7.08 4.86 5.59 

Bioclimatic index of Hidalgo 9.4 9.8 15.3 

Bioclimatic index of Constantinescu 12.0 18.3 28.8 

August-September daily temperature range  12.9 11.9 12.3 

Rainfall April-August 182 211 76.8 

Dryness index - DI (Geoviticulture CCM System) -21 71.8 56.5 

Huglin index - HI (Geoviticulture CCM System) 2672 2088 2413 

Cool night index - CI (Geoviticulture CCM System) 14.2 14.6 13 
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Figure 1. Water availability index, in continuum and at different depths, for Milmanda, Riu Sec and 

Muralles plots. 

 

The most productive vintage was 2003 in Milmanda and Riu Sec, except for Muralles which 

suffered an abnormal yield in 2004 (Table 4). The vintage least productive was 2005 except 

for Milmanda (2004): the great development of vegetation could have broken the equilibrium 

between vegetative activity and fruit production. The highest grape alcoholic degree was in 

2004, except for Muralles (2003). The highest pH of must took place in 2003. The highest 

total acidity took place in 2004. Grape seed ripening had the highest value in 2003, but the 

minimum value was in 2005 for Milmanda and 2004 for Riu Sec. Anthocyanins had the 

highest value in 2004, but the minimum value was in 2005 for Milmanda and 2003 for Riu 

Sec.  

 

Matrix correlations and PCA were done in order to explore data and select the best explicative 

factors. Figure 2 shows a PCA considering only the selected variables, which is more 

understandable. Factor 1, which explains 35.98 % of variability, separates 2004 vintage from 
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2003 and 2005 vintages. 2004 vintage has higher rainfall during October-September (R oct-

sep), meanwhile 2003 and 2005 vintages are both characterized by a higher mean daily 

temperature range for vineyard growing season (TR act). Factor 2, which explains 33.72 % of 

variability, distinguishes between 2003 and 2005 vintages. The 2003 vintage is situated in an 

area with high thermal indexes (sum of degree-day for vineyard growing season (DD act), 

Winkler index, Huglin index). On the other side, 2005 is characterized by a high water 

availability index (WA); year 2004 shows the same trend than 2005. Factor 3, which explains 

17.85 % of variability, clearly separates Muralles soil from Milmanda soil, mainly by CaCO3  

content and ratio absorption sodium (RAS). Factor 4, explaining 9.74 % of variability, 

separates each vineyard by its Cation Exchange Capacity (CEC), having Muralles the highest 

CEC and Riu Sec the lowest one. In conclusion, climatic data and water availability explain 

70 % of variability (factors 1 and 2). For this reason, climate and water availability are the 

main factors allowing to distinguish vintages, with climate having probably more influence 

than water availability. Finally, soil data explain 28 % of variability (factors 3 and 4).  

 

Table 4. Data of grape quality for Cabernet Sauvignon (Milmanda and Riu Sec) and Grenache Noir 

(Muralles) 

Plot Milmanda Riu Sec Muralles 

Year 2003 2004 2005 2003 2004 2005 2003 2004 2005 

Yield (kg·vine-1) 1.78 1.34 1.65 1.42 1.07 1.01 2.15 3.91 1.60 

Alcoholic degree 15.3 16.1 13.3 14.5 15.5 14.4 15.8 13.7 15.6 

pH 3.64 3.26 3.57 3.58 3.30 3.47 3.45 3.4 3.27 

Total acidity (g/L) 8.81 10.67 7.13 6.21 11.1 7.26 6.02 6.55 6.38 

Grape seed ripening  10.13 8.56 7.20 17.03 3.57 7.71 - - - 

Anthocyanins (mg/L) 387 424 318 442 666 540 - - - 

 

Models for grape quality were performed by Multiple Regression Analysis (Table 5). These 

models have a high estimation capacity, with R
2
 higher than 0.75 (except for pH and grape 

seed ripening). The models are significant (p < 0.05) for yield, total acidity and anthocyanins; 

and slightly non significant (0.05 < p < 0.07) for alcoholic degree, pH and grape seed 

ripening. Yield is highly correlated with edaphoclimatic data (R
2 

= 0.88). The chosen 

independent variables are CEC and Winkler Index, with a similar importance (similar 

standardized regression coefficient). The properties of must can be highly estimated, except 

for pH and grape seed ripening (R
2
 = 0.63). Anthocyanins is the most correlated variable (R

2
 

= 0.9). In models for must properties, a climatic index (SR september, R oct-sep, Huglin 

index and DD act) and a water availability index (WA summer) is always present, except for 
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grape seed ripening, where there is only a climatic index (DD act). Climatic indices have 

higher influence than WA indices, except for anthocyanins, where WA summer has the 

greatest weight. Soil data appear in alcoholic degree model, having few importance (CEC); 

and total acidity model, having high importance (RAS).  

 

Climatic data have the highest influence on regression models, as it is shown by the PCA, 

particularly the climatic indices which estimate must data. These results agree with the 

conclusions obtained in previous studies (Van Leeuwen et al., 2004), where climate appears 

as the most influencing factor on must quality. It is known the effect of climate, mainly 

temperatures and solar radiation, on grape maturation and accumulation of phenolic 

compounds (Coombe, 1987; Jackson and  Lombard, 1993; Tonietto and Carbonneau, 2002). 

 

Water availability is the second important predictor, specially in must data. Water supply to 

vines strongly influences the quantity and quality of their grape production (Oliveira, 1995; 

Van Leeuwen et al., 2003; Hunter and Deloire, 2005). This can be explained by the effect of 

water supply on the balance between vegetative and reproductive growth (Matthews et al., 

1987; Van Leeuwen and Seguin, 1994). Grape maturation can improve in case of moderate 

water limitation, increasing the content of sugars and phenolic compounds, and decreasing 

malic acid content (Trégoat et al., 2002; Ojeda et al., 2002). 

 

On the other hand, soil characteristics are important to predict yield and total acidity. 

Generally, it is difficult to establish a direct correlation between soil characteristics and wine 

quality (Seguin, 1986). However, soil properties, mainly nitrogen status and soil depth, can 

affect grape and wine quality, even more than water supply (Choné et al., 2001).  

 

All the studied parameters have an influence on grapevine functioning in relation with the 

grape berry development, composition and the evolution of the fruit maturation (Brenon et al., 

2005). A global approach which takes into account at least edaphoclimatic data is necessary to 

understand the functioning of vines and evolution of berry composition (Deloire et al., 2005). 
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Figure 2. Projection of cases and variables on the factor-planes of the PCA performed with selected variables. 

(WA sum: mean WA in summer, WA sep: mean WA in September, CEC: Cation Exchange Capacity, RAS: 

ratio absorption sodium, SR set: mean daily solar radiation in September, TR act: mean daily temperature range 

for vineyard growing season, DD act: sum of degree-day for vineyard growing season, R oct-sep: Rain during 

October-September, Winkler: Winkler index, Huglin: Huglin index, Const: Constantinescu index)  
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Table 5. Results of Multiple Regression Analysis for grape quality variables. 

Dependent variable Independent variables1 Regression coefficient  (b) Model quality 

Yield 

CEC 0.6795 ** R2 0.8795 

Winkler index 0.5566 * n 8 

  Significance (p level) 0.005 

Alcoholic degree 

CEC 0.3619 ns R2 0.8128 

SR september 1.1050 * n 8 

WA summer 0.8318 * Significance (p level) 0.062 

Total acidity  

R oct-sep 0.6736 * R2 0.7663 

RAS 0.8190 * n 9 

WA summer 0.4280 ns Significance (p level) 0.049 

pH 

Huglin index 0.6092 ns R2 0.6256 

WA summer -0.3406 ns n 9 

  Significance (p level) 0.052 

Anthocyanins 

R oct-sep 0.5594 * R2 0.9040 

WA summer 0.8623 * n 6 

  Significance (p level) 0.030 

Grape seed ripening 

DD act 0.791 ns R2 0.6257 

  n 6 

  Significance (p level) 0.061 

*, **, ns indicate significance at p < 0.05, p < 0.01 and no significant, respectively. 

1 CEC: Cation Exchange Capacity,  SR september: mean daily solar radiation in September, WA summer: mean water 

availability index in summer, R oct-sep: Rain during October-September, RAS: ratio absorption sodium, DD act: sum of 

degree-day for vineyard growing season. 

 

Conclusion 

 

The effect of both soil and interannual climate parameters on grape quality were studied, 

without considering cultivar effect and considering the same climate for all plots. As cultivar 

has an influence on wine typicality, this study is focused on yield and some parameters of 

berry composition, without analysing implications on wine quality. A water availability index 

was calculated from soil moisture data measured by capacitance sensors. The water 

availability index resulted a useful tool to predict grape must quality. However, the style of 

the wine can not be predicted from this study, since it does not consider cultivar differences. 

According to the performed PCA, climatic data and water availability explained 70 % of 

vintage variability and soil data explained 28 % of vintage variability. Climatic data seemed 

slightly more explicative than water availability. The Multiple Regression Analysis showed 

that edaphoclimatic factors had generally a high power of estimation of yield and quality of 
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grapes, with R
2
 higher than 0.75. All models were significant at 90 % probability (p < 0.07). 

Climate appeared to be the most influencing factor, followed by water availability, in 

particular for models referring to must data. Climatic data used in models were climatic 

indices, as Huglin index or Winkler index. The selected water availability index was the mean 

water availability in summer. Generally, soil data had influence on yield and some must data.  

 

Acknowledgements: We would like to thank Núria Llop from the University of Lleida and 

Alicia Zayas, Anna Mata and other people from Miguel Torres Winery, for their collaboration 
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Chapter 6 

 

 EFFECTS OF SOIL AND CLIMATE ON GRAPE RIPENING AND 

WINE QUALITY OF CABERNET SAUVIGNON  

 

 

Abstract  

 

The effects of climatic conditions and soil type on grape ripening and wine quality were 

studied for the period 2003-2005, in two Cabernet Sauvignon vineyards under the same 

climate but on very distinct soils. Climate effect was estimated by studying annual variations. 

Climatic conditions and soil had overall a significant effect on grape ripening. The effects of 

soil and climate could be explained mainly by their influence on plant water availability 

status. Soil type appeared to be determining wine phenolic composition, and related wine 

tasting characteristics. 
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Introduction 

 

Grape and wine quality are often associated with specific conditions of soil, climate, cultural 

practices, training system, all of which interact with the grape variety and form the concept of 

‘terroir’ (Falcetti, 1994; Vaudour, 2003; Deloire et al., 2005). This ‘terroir’ generally is 

defined as a spatial and temporal entity, which is characterized by an interaction between the 

environmental potentialities and viticultural and oenological technologies, significant for 

grapes and/or wine (Vaudour, 2003; Deloire et al., 2005). A wide range of methods is used for 

the determination of ‘terroir’ (Vaudour and Shaw, 2005). The simplest methods only consider 

soil, climate or the interaction between soil and climate (Morlat, 2001). But other factors can 

be added, such as cultivar and viticultural and oenological technology (Carbonneau, 2001), as 

well as historical and sociological wine-growing factors (Vaudour, 2003).  

 

Climate is the factor that has the greatest influence on the suitability of the environment for 

grapevine growing and wine production (Hidalgo, 1999). The cold limit for viticulture 

without winter protection can be considered as -1ºC of mean temperature for the coldest 

month (Gladstones 2000). Spring average minimum temperatures can be used in order to 

assess frost risk after budbreak (Gladstones, 1992). A minimum of cumulated temperatures 

during the growing season is necessary to ensure complete ripening for a certain cultivar 

(Winkler, 1962; Huglin, 1978). Also, cumulated temperatures determine pulp ripening speed 

and harvesting date (Duteau, 1990). Night temperatures during the ripening period affect the 

accumulation of grape phenolic compounds and wine aroma and colour (Kliewer and Torres, 

1972; Tonietto and Carbonneau, 2002; Deloire et al., 2005). Anthocyanin accumulation can 

be severely undermined by high diurnal temperatures during the ripening period (Van 

Leeuwen et al., 2004). Water balance, calculated from precipitation and evapotranspiration 

(Riou, 1998; Carbonneau, 2002), has implications on the potential for grape sugar and 

secondary metabolites (polyphenols and aromas) at maturity, and also on wine characteristics 

(acidity, aroma).  

 

Within a specific climate, soil is the most important environmental factor affecting vine 

development and wine quality (Sotés and Gómez-Miguel, 2003). The soil properties which 

have the greater influence on grapevine growing are soil depth and physical properties, the 

properties which control soil water content (Seguin, 1986), and have a direct effect on the 
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equilibrium between vegetative vigour and grape production (Van Leeuwen and Seguin, 

1994), and consequently on grape and wine quality (Esteban et al., 2001; Trégoat et al., 2002; 

Gurovich and Páez, 2004). A moderately reduced water regime induces generally positive 

effects on berry composition and wine quality (Kounduras et al., 1999), with an increase of 

berry sugar, anthocyanin and tannin content and also an increase of the grape ripening speed 

(Van Leeuwen and Seguin, 1994). In general, relationships between soil minerals and wine 

quality cannot be established (Seguin, 1986), unless severe deficiencies affecting vineyard 

growing occur (Van Leeuwen et al., 2004). However, some studies have shown an effect of 

soil cations on grape composition, which can influence wine quality (Peña et al., 1999; 

Mackenzie and Christy, 2005). One mineral component that can be correlated with grape and 

wine quality is nitrogen, which in excess can affect the sugar and phenolic compounds 

content of grapes (Choné et al., 2001; Hilbert et al., 2003). 

 

There are many studies to determine the effects on grape production and composition of a 

single ‘terroir’ factor, whether the climate (Jones and Davis, 2000; Tonietto and Carbonneau, 

2004), soil (Trégoat et al., 2002; Sivilotti et al., 2005) or other factors (Murisier and Zufferey, 

1997). However, there are few studies that examine the joint effects of more than one factor, 

whether climate and soil or soil and cultivar (Van Leeuwen, 1995). Van Leeuwen et al. (2004) 

analysed simultaneously the effects of three factors (climate, soil and cultivar) on grape 

quality. Moreover, studies that consider ‘terroir’ effects on wine quality are even more limited 

(Choné et al., 2001; Andrés-de-Prado et al., 2007). In this study, we focused on the effects of 

the main environmental factors of ‘terroir’, climate and soil, on grape ripening and wine 

quality. Two vineyards on distinct soil types were used to study soil effect, and climate effect 

was studied through interannual climatic conditions. 

 

The objective of this study was to establish the effect of soil and climatic conditions on grape 

ripening and wine quality of Cabernet sauvignon, using the following steps: (i) 

characterization of edaphoclimatic factors, (ii) determination of grape composition during 

ripening (grape yield, pulp and phenolic composition) and speed of ripening, (iii) 

determination of wine quality (wine composition and organoleptic properties) and (iv) 

analysis of the effects of soil and climate on grape composition at harvest and wine quality. 
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Materials and Methods 

 

Setting 

 

This study was carried out from 2003 to 2005 in two vineyards (‘Solar’ and ‘Llarga’) situated 

in the Conca de Barberà viticultural area (Catalonia, Spain). ‘Llarga’ is located at 41º 23’ 43’’ 

North, 1º 4’ 23’’ East and 450 m of altitude; and ‘Solar’ is located at 41º 23’ 21’’ North, 1º 4’ 

44’’ East and 459 m of altitude. The studied plots were 20-year-old vines of the Cabernet 

Sauvignon cultivar (3,700 vines per hectare), which followed similar management: vines were 

trained to an espalier-type canopy system and were double cordon Royat pruned (12 buds per 

vine), vineyards were dry-land farmed and weeds were controlled by ploughing. 

 

Climate 

 

Both studied plots had a similar mesoclimate, since they are located next to each other (600 m 

apart) and they had similar topographic characteristics (altitude, slope and orientation). The 

climate type is Mediterranean but with some continental features due to the barrier effect of 

the Catalan Coastal Range. The mean annual precipitation is 550 mm and mean annual 

temperature 13.6ºC. The viticultural climate (Tonietto and Carbonneau, 2004) is moderately 

dry, temperate warm and with cool nights. 

 

Daily meteorological data were recorded in an automatic weather station (Espluga de 

Francolí) of the Meteorological Service of Catalonia (Government of Catalonia), located at 

41º 23’ 39’’ North, 1º 6’ 1’’ East and 441 m of altitude. This station is located less than 2 km 

from both plots, and has the same topographic position.  

 

Soils 

 

The chosen soils belonged to two representative soil map units of the region, identified in a 

very detailed (1:5000 scale) soil map prepared by the Miguel Torres Winery. The soil survey 

method followed the criteria of the Soil Inventory of Catalonia (Porta et al., 2009) and the 

Soil Survey Manual (SSS, 1993).  
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The selected soils presented very different chemical (Table 1) and physical properties (Table 

2). The ‘Llarga’ soil, classified as Typic Xerofluvent, fine-loamy, carbonatic, mesic (SSS, 

2006), was a soil rich in silt and carbonates, without stones, moderately well drained and with 

a high water holding capacity. The ‘Solar’ soil, classified as Typic Haploxerept, sandy-

skeletal, mixed, mesic (SSS, 2006), is a soil rich in sand and stones in the deep horizons, 

somewhat excessively drained and with a low water holding capacity. 

 

Table 1. Chemical properties of the selected soils at different depths. 

Plot 
Depth    

(cm) 

pH 

(H2O   

1:2.5) 

EC
a
 

(1:5, 

dS/m) 

Organic 

matter  

(%) 

N 

(%) 
C/N 

CaCO3 

equivalent 

(%) 

Active 

CaCO3 

eq. 
(%) 

Fe       

(mg/ 

kg) 

CEC
b
 

(cmol(+)/ 

kg) 

Llarga 

0 – 20 8.4 0.23 1.1 0.09 7.1 45 9 70 10.1 

20 – 40 8.4 0.22 0.9 0.08 6.5 46 10 63 9.9 

40 – 80 8.4 0.30 1.3 0.06 12.6 47 8 68 9.7 

80 – 120 8.0 1.42 1.2 0.05 14.0 45 9 65 10.9 

Solar 

0 – 20 8.3 0.40 2.0 0.10 11.6 17 2 151 9.8 

20 – 40 8.5 0.19 1.0 0.05 11.6 9 trace 104 6.5 

40 – 80 8.5 0.22 0.5 0.02 14.5 trace trace 76 3.6 

80 – 120 8.5 0.19 0.4 0.02 11.6 trace trace 93 3.7 
a Electrical conductivity, b Cation Exchange Capacity 

 
Table 2. Physical properties of the selected soils at different depths. 

Plot 
Depth     

(cm) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Textural 

class 

(SSS, 

2003) 

Bulk 

density 

(kg/m3) 

Coarse 

fragments 

(%) 

Moisture 

at             

-33kPa 

(%) 

Moisture 

at -1500 

kPa      

(%) 

Water 

Holding 

Capacity 

(mm/10 

cm) 

Llarga 

0 – 20 23.0 55.5 21.5 SiL
a 

1360 trace 21 8 17.7 

20 – 40 21.8 56.4 21.8 SiL
a 

1659 trace 21 8 21.6 

40 – 80 20.8 56.1 23.1 SiL
a 

1450 trace 23 9 20.3 

80 – 120 15.5 58.0 26.5 SiL
a 

1429 trace 19 7 17.1 

Solar 

0 – 20 43.8 39.9 16.3 L
b 

1110 22 21 8 11.3 

20 – 40 71.1 18.8 10.1 SaL
c 

1449 54 12 5 4.7 

40 – 80 89.6 4.7 5.7 Sa
d 

1143 65 5 2 1.2 

80 – 120 89.1 3.3 7.6 Sa
d 

572 50 4 2 0.6 
a silt loam, b loam, c sandy loam, d sand 

 

In each soil type, soil water content was monitored by capacitance sensors (ECHO EC20, 

Decagon Devices Inc.), obtaining values continuously (every 30 minutes) and at different 

depths (15, 30, 60 and 90 cm for ‘Llarga’ and 15 and 30 cm for “Solar”). Deep soil horizons 

of ‘Solar’ were not monitored, because of very low water holding capacity and high gravel 

content, which strongly limited root development. The fraction of transpirable soil water 

(FTSW) was estimated for each depth as the amount of water between the soil moisture 

content at field capacity and the minimum soil moisture observed during the study (Ritchie, 

1981). Field capacity was determined with the capacitance sensors following heavy rainfall 

periods. Lebon et al. (2003) estimated that soil water shortage, with stomatal closure, 

occurred when FTSW was lower than 0.4.   
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Grape Ripening 

 

During grape ripening, different parameters of berry composition were measured 

approximately twice a week according to a completely randomized design with three 

replications. In every plot and each replication, 200 berries from 25 vines located at five 

different rows, were randomly sampled, as much at vine level as at berry bunch level. From 

this sample, 100 berries were used for must analysis and the other 100 berries were used for 

the analysis of phenolic maturation. The data of pulp maturation selected for the statistical 

analysis was weight of 100 berries (g), sugar content (g/L), acidity (g/L of tartaric acid) and 

pH. Sugar content was calculated with a conversion table (Blouin and Guimberteau, 2004) 

from Brix degrees determined with the hand refractometer Zuzi 0-32 Brix and total acidity 

was determined with an acid-base reaction. For the phenolic maturation measurements 

included anthocyanins (mg/L, extracted at pH 3.2) and grape seed tannins, calculated as 

(absorbance at 280 nm) – (anthocyanins extracted at pH 3.2 / 1000 x 40), according to Saint-

Cricq De Gaulejac et al. (1998). 

 

Moreover, pulp ripening speed was calculated for each soil and climatic condition, according 

to Duteau (1990). In this method, ripening speed is represented by the slope of the linear 

regression between a climatic index and a ripening index. The climatic index (Ci) is 

calculated by the cumulative sum of mean and average maximum temperatures, from 1st 

August. The ripening index (Ij) is calculated by dividing sugar concentration (g/L) by total 

acidity (g/L of sulphuric acid).  

 

Microvinification 

 

For every year and soil, a microvinification was carried out in triplicate, following similar 

methods. The grapes were picked when values of around 23 - 24 ºBrix were recorded (3rd 

October, 2003 and 30th September, 2004 and 2005, at both plots) and after being crushed and 

their stems removed, 30 kg of the resulting whole grapes were put into a stainless steel tank. 

Alcoholic fermentation was enhanced with L-2056 yeast (Lalvin
®
 yeast by Lallemand

®
, 

Canada), at a rate of 0.2 g/L. During alcoholic fermentation, there was a pumping over twice a 

day and maceration lasted 8-10 days. The fermentation and maceration temperature was at 

26ºC. After alcoholic fermentation, there followed malolactic fermentation. 
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Different variables of the resulting wines were analysed (for each replication): degree of 

alcohol, sugar concentration (g/L), volatile acidity (g/L of acetic acid), total acidity (g/L of 

tartaric acid), pH, absorbance at 420 nm, 520 nm and 620 nm, colour intensity (sum of 

absorbance at 420 and 520 nm), total polyphenols (absorbance at 280 nm), tannins (g/L) and 

anthocyanins (mg/L). Degree of alcohol was measured with Alcolyzer Wine (Anton Paar). 

Volatile acidity and sugar were determined with a continuous-flow autoanalyser (TDI). 

Tannins and anthocyanins were determined with spectrophotometry (Spectrophotometer 

EλIOS β UV-Vis), according to Ribéreau-Gayon and Stonestreet (1965, 1966).  

 

An experienced wine tasting panel judged the wines resulting from mixing the 3 replications 

of every year and soil. A blind tasting was performed in order to ensure an impartial judgment 

at ambient temperature. The panel was composed of 4 people, 2 men and 2 women aged 

between 30 and 60 years, who scored the wines for colour (red, blue, brown), aroma 

(aromatic intensity) and taste (total intensity, unctuosness) between 0 and 5, as well as for 

some descriptive terms concerning aroma and taste. Finally, they were asked for an overall 

judgement, with a score between 0 and 10. All these appraisals were carried out individually.   

 

Statistics 

 

The statistical analysis used in order to find significant differences was done by ANOVA, 

considering grape and wine properties as dependent variables and both soil and climate as 

categorical factors. Means were separated by Newman-Keuls post-hoc analysis (p ≤ 0.05). 

Moreover, the percentages of variance attributable to each factor were calculated, from the 

division between the sum of squares of each factor and the total, multiplied by 100. Linear 

regression analysis was used for ripening speed modelling. The software used was 

STATISTICA (StatSoft, Inc.).  
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Results  

 

Edaphoclimatic conditions 

 

Precipitation and temperature showed a high interannual variability (Table 3). The annual 

precipitation ranged between 756 mm in 2003 and 366 mm in 2005. 2003 was also the 

rainiest year during the growing season (421 mm), doubling the lowest precipitation, which 

was 192 mm in 2005. 2003 was also the rainiest year during the ripening period (102 mm), 

tripling the lowest, which was 35 mm in 2004. With respect to temperatures, 2003 was 

significantly warmer than other years, with an annual average of 14.9ºC, with more than 1.5ºC 

of difference from the coldest year, 13.2ºC in 2004. 2005 presented intermediate values, but 

was closer to 2004 than to 2003. The annual maximum and minimum mean temperatures had 

a similar trend, showing the highest values in 2003 (maximum of 20.5ºC and minimum of 

9.8ºC), and the lowest ones in 2004 (maximum 13.2ºC and minimum 8.2ºC). 2005 presented 

maximum temperatures slightly above and minimum temperatures equal to 2004. Regarding 

temperatures during the growing season, 2003 was the warmest year, with 2ºC more than 

2004 and 1°C more than 2005, for average maximum and minimum temperatures. This fact is 

reflected in cumulated growing degree days for 2003 (2135ºC), considerably higher than 2004 

(1622ºC). 2005 presented intermediate temperatures during the growing season. Regarding 

ripening temperatures, 2003 was the warmest year, with an average of 22.9ºC, and 2005 the 

coldest with a mean of 20.4ºC. 2004 presented intermediate values. Maximum and minimum 

temperatures showed a similar trend to the average, although the minimum in 2005 (14.6ºC) 

were lower than the other two years (16.7ºC in 2003 and 16.2ºC in 2004). 

 

Table 3. Temperature and precipitation parameters for the growing season (Apr-Oct) and the ripening 

period (Aug-Sep) in the study area (2003-2005). 

Period 

Rain  

(mm) 

Mean Temperature 

(ºC) 

Average 

maximum 

Temperature (ºC) 

Average minimum 

Temperature (ºC) 

Growing Degree 

Days (ºC) 

Aug-

Sep 

Apr-

Oct 
Year 

Aug-

Sep 

Apr-

Oct 
Year 

Aug-

Sep 

Apr-

Oct 
Year 

Aug-

Sep 

Apr-

Oct 
Year 

Aug-

Sep 

Apr-

Oct 
Year 

2003 102 421 756 22.9 20.0 14.9 29.6 26.3 20.5 16.7 14.1 9.8 791 2135 2208 

2004 35 283 495 21.8 17.8 13.2 28.1 24.0 18.8 16.2 12.1 8.2 711 1622 1654 

2005 73 192 366 20.4 19.0 13.5 26.8 25.4 19.4 14.6 12.9 8.2 609 1897 1960 

 

Regarding the seasonal evolution of temperature and precipitation (Fig. 1), 2003 presented 

most of the rain from veraison. Moreover, temperatures until veraison were very warm, 
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reaching over 35 ºC, and also during ripening, with days around 30 °C. 2004 and 2005 did not 

differ much in terms of total precipitation and average temperature between flowering and 

harvest, although the period between veraison and harvest was driest in 2004 and coolest in 

2005. 
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Figure 1. Evolution of mean, maximum and minimum daily temperature and precipitation from 

flowering through harvest in the study area (2003-2005). 

 

 

The fraction of transpirable soil water (FTSW) was used in order to assess soil moisture 

dynamics after flowering (Fig. 2). In 2003, soil water limitation occurred until 14 days before 

veraison, being less important on ‘Llarga’ than on ’Solar’, since on ‘Llarga’ FTSW remained 

above 0.4 from 60 cm soil depth. During ripening, soil water content decreased until FTSW 

was slightly below 0.4. However, just 3 days before harvest, soil water content recovered due 

to a rain event. 2004 had the highest FTSW over the soil profile between flowering and 

veraison. From veraison until harvest, soil water limitation appeared in ‘Solar’, but not in 

‘Llarga’, where FTSW remained above 0.4 approximately from 40 to 60 cm soil depth. 2005 

was the driest year, having the lowest values of FTSW over the soil profile between flowering 

and veraison and the first half of the days between veraison and harvest. During this period, 

‘Llarga’ soil had FTSW higher than 0.4 at approximately 40-60 cm soil depth. However, 

during the second half of the days between veraison and harvest soil water limitations did not 

appear, because of the rain.   
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Figure 2. Evolution of Fraction of Transpirable Soil Water after flowering (%) at different depths, for 

each plot (‘Solar’ and ‘Llarga’) and year (2003-2005). 

 

Grape Ripening 

 

100-berry weight presented higher values on ‘Llarga’ than on ‘Solar’ for all the years of the 

trial, although it seems that differences are minor at the beginning and at the end of the 

maturation process (Fig. 3). However, sugar content was higher on ‘Solar’ than on ‘Llarga’ in 

all years. Acidity values were lower on ‘Solar’ than on ‘Llarga’ at the beginning of grape 

ripening period in 2003 and 2005, but there were no differences between soils at the end of 

grape ripening period and during 2004. pH values were higher on ‘Solar’ in 2003, but lower 

in 2004 and 2005. However, these differences were not significant, either between soils or 

between years. 
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Figure 3. Evolution of pulp maturation of Cabernet Sauvignon grapes (2003-2005). 

Bars represent the standard error of the mean. 

 

Anthocyanin content showed no differences between ‘Solar’ and ‘Llarga’ in 2003 and 2005, 

and in 2004 it only differed in the final value, which was lower on ‘Solar’ than in ‘Llarga’ 

(Fig. 4). Regarding grape seed tannins, there were no differences between soils in 2005, and 

in 2003 they differed only at the end of the maturity period, with a lower value on ‘Solar’ than 

on ‘Llarga’. ‘Solar’ had no available data in 2004. With regard to interannual differences, as a 

general trend, 2003 was characterized by the lowest anthocyanins and the highest tannins, 

2005 presented the highest anthocyanins and lowest grape seed tannins and 2004 presented 

intermediate values. 
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Figure 4. Evolution of phenolic maturation of Cabernet Sauvignon grapes (2003-2005).  

Bars represent the standard error of the mean. 

 

Regarding the ripening speed index (Duteau, 1990), there were no differences between sites 

in 2003, whereas ‘Solar’ had higher ripening speed in 2004, but lower in 2005.  
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Figure 5. Calculation of speed ripening (slope of the regression) according to Duteau (1990), using 

data from all plots per site.  

 

Table 4 presents the 2x3 factorial (soil x year) analysis of variance for pulp and phenolic 

maturity at harvest (sampling of the maturation period) and for ripening speed. Table 5 

contains the percentages of variance attributable to each factor (soil, climate and soil x climate 

interaction). 100-berry weight was only significantly affected by soil, which explained 55% of 

the total variance. ‘Llarga’ presented higher values than ‘Solar’. Soil and climatic conditions 

explained 30% and 40%, respectively, of the total variance of sugar content. ‘Solar’ presented 
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higher values than ‘Llarga’. With respect to climatic conditions, the highest sugar content was 

reached in 2005 and the lowest in 2003 and 2004. Sugar was negatively correlated with berry 

weight (r = -0.47, n = 18, p< 0.05). Acidity and pH were determined only by climatic 

conditions, which explained 65% of variability for acidity and 33% for pH. The highest value 

for acidity was in 2004, and the lowest in 2003 and 2005. The highest value for pH was in 

2005 and the lowest in 2004. Acidity was negatively correlated with sugar content (r = -0.48, 

n = 18, p < 0.05), but not with berry weight (r = -0.01, n = 18, ns). pH was not correlated 

either with sugar (r = 0. 05, n = 18, p < 0.05) or with berry weight (r = 0.02, n = 18, p < 0.05). 

Anthocyanin content was mostly dependent on climatic conditions (92% of the total 

variance), having the highest value in 2005, and the lowest in 2003. Grape seed tannins were 

mainly affected by climate (65% of the total variance), but they were also significantly 

affected by soil (9% of the total variance). The values were higher on ‘Llarga’ than on ‘Solar’, 

and were higher in 2003 than in 2005. Grape seed tannins were negatively correlated to 

anthocyanin content (r = -0.75, n = 15, p < 0.05). This negative correlation might be explained 

by the different dynamics followed by grape seed tannins and anthocyanins during ripening. 

During maturation, anthocyanins increase regularly, unlike grape seed tannins, which reach a 

maximum before veraison and decrease until maturity (Blouin and Guimberteau, 2004). 

Finally, soil x climate interaction, climate and soil explained 56%, 14% and 12%, 

respectively, of the total variance in speed of ripening. The speed of ripening was higher in 

‘Llarga’ than in ‘Solar’, and was higher in 2005 than in 2003 and 2004. Grape ripening speed 

was positively correlated with sugar (r = 0.61, n = 15, p < 0.05) and negatively correlated with 

acidity (r = -0.58, n = 15, p < 0.05). 

 

Table  4. Effects of soil and climate on grape composition at harvest and speed of ripening. 

 Soil Climate 

 Llarga Solar 2003 2004 2005 

100-berry weight (g) 120.1 a 108.2 b 115.5 ns 116.1 ns 110.9 ns 

Sugar (g/L) 215.2 b 229.2 a 215.2 b 217.9 b 233.6 a 

Acidity (g/L tartaric) 6.8 ns 6.8 ns 6.46 b 7.75 a 6.31 b 

pH 3.23 ns 3.17 ns 3.2 ab 3.15 b 3.26 a 

Anthocyanins (mg/L) 48.20 ns 45.46 ns 28.11 b 50.31 a 62.06 a 

Grape seed tannins 11.47 a 9.28 b 13.30 a - 7.45 b 

Ripening speed index 0.48 b 0.66 a 0.49 b 0.52 b 0.71 a 

Different letters indicate significant differences at p≤ 0.05 using Newman-Keuls test (n = 9 for soil, n=6 for 

year). 
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Table 5. Percentage of variance attributable to soil, climate and soil x climate interaction.  

 Soil (%) Climate (%) Soil x climate (%) Error (%) 

100-berry weight 55.3 *** 8.5 ns 11.1 ns 25.1 

Sugar 29.5 ** 39.7 ** 2.2 ns 28.6 

Acidity 0.0 ns 64.6 *** 7.8 ns 27.6 

pH 14.5 ns 32.6 * 3.5 ns 49.4 

Anthocyanins 0.9 ns 91.9 *** 2.4 ns 4.8 

Grape seed tannins 9.1 * 64.5 *** 13.8 * 12.6 

Ripening speed index 12.4 * 13.7 * 56.4 *** 16.8 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, ns p > 0.05. 

 

Wine Quality 

 

Table 6 shows the 2x2 factorial (soil x year) analysis of variance for wine properties. Table 7 

contains the percentages of variance attributable to each factor (soil, climate and soil x climate 

interaction). 2003 data were not considered due to oxidation of ‘Llarga’ wine. All parameters 

were significantly affected by soil and climate, except for pH, which was only significantly 

affected by climate. Degree of alcohol and total acidity were more influenced by climate than 

soil type. However, soil had a greater effect than climate in wine properties related to colour 

and polyphenols (absorption at 420, 520 and 620 nm, colour intensity, total polyphenols, 

tannins and anthocyanins). Degree of alcohol was high in 2005 and low in 2004, whereas total 

acidity and pH were high in 2004 and low in 2005.  The remaining wine properties were also 

high in 2004 and low in 2005. Regarding soil effect, all wine parameters were higher on 

‘Solar’ than on ‘Llarga’, except for pH.  

 

Table 6. Effects of soil and climate on wine quality. 

 Soil Climate 

 Llarga Solar 2004 2005 

Degree of alcohol 13.1 b 13.7 a 12.7 b 14.0 a 

Total acidity (g/L) 5.1 b 5.4 a 5.4 a 5.1 b 

pH 3.3 ns 3.4 ns 3.4 a 3.3 b 

A420a 3.3 b 5.2 a 4.7 a 3.8 b 

A520a 6.1 b 10.1 a 9.8 a 6.4 b 

A620a 1.0 b 2.0 a 1.7 a 1.3 b 

Colour intensity 9.4 b 15.4 a 14.7 a 10.2 b 

Total polyphenols (A280) 47.8 b 65.2 a 61.7 a 51.2 b 

Tannins (g/L) 2.7 b 4.2 a 3.9 a 3.0 b 

Anthocyanins (mg/L) 601.2 b 831.5 a 770.0 a 662.7 b 

Different letters indicate significant differences at p≤ 0.05 using Newman-Keuls test (n = 6). 
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Table 7. Percentage of wine parameter variance attributable to soil, climate and soil x climate 

interaction.  

 Soil (%) Climate (%) Soil x climate (%) Error (%) 

Degree of alcohol 11.3 * 56.1 *** 17.0 * 15.5 

Total acidity (g/L) 19.5 * 56.0 ** 0.0 ns 24.4 

pH 12.4 ns 52.7 ** 15.5 * 19.4 

A420a 73.7 *** 18.3 ** 1.1 ns 6.8 

A520a 54.6 *** 39.1 *** 0.2 ns 6.1 

A620a 77.7 *** 13.9 ** 2.9 ns 5.5 

Colour intensity 59.9 *** 33.0 *** 0.7 ns 6.4 

Total polyphenols (A280) 63.8 *** 23.5 *** 6.2 * 6.5 

Tannins (g/L) 64.6 *** 22.4 ** 2.6 ns 10.4 

Anthocyanins (mg/L) 75.5 *** 16.4 ** 0.3 ns 7.8 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, ns p > 0.05. 

 

Regarding wine tasting, comparisons between wines in 2003 were not possible because of 

oxidation signs of ‘Llarga’ wine (Table 8). In 2004, no significant differences were found 

between the global notes of the two wines, although the wine from ‘Solar’ had a slightly 

higher rating, which could be due to a more intense colouration in the red and blue tones, 

more ripe fruit on the nose and a mouth-feel with more complexity and tannin sensation. In 

2005, ‘Solar’ wine scored significantly higher than ‘Llarga’ wine. The wine ‘Solar’ was 

appreciated more, possibly because it was more intense, with more mature fruit on the nose, a 

more intense colour and more concentrated and tannin feeling (round) in the mouth. In 

general, there was a trend in which ‘Solar’ wine was preferable to ‘Llarga’ wine, since ‘Solar’ 

wine presented a more intense colour, more ripe fruit and intensity on the nose and more 

tannin sensation and concentration in the mouth. 

 

Table 8. Sensory analysis of Cabernet Sauvignon wines (2003-2005). 

YEAR Plot 
TASTING COMMENTS GLOBAL 

NOTE Colour Aroma Taste 

2003 Llarga 
r-2 

m-1 

I-2, varietal, skins, cherry 

jam, oxidation, evolution. 

Ethanol, skins, dry stem, vegetal, 

light, thin. 
- 

2003 Solar 
r-3 

b-2 

I-3, ft-2, pyrazine:2-3, 

leather, vegetal, spicy, 

compote. 

U-2, Ft-2, ti:2-3, green-1, 

astringent, vegetal touch,  

concentration. 

7.4 

2004 Llarga 
r:2-3 

b-2 
I-3, fruit, pyrazine. 

U-2, ti:2-3, dry, simple, short, light, 

acid. 
7.6 ns 

2004 Solar 
r:3-4 

b:2-3 

I-3, ripe fruit, raisin, 

pyrazine, tobacco. 

U:2-3, ti-3, dry , green, vegetal, 

pyrazine, concentration, acid. 
7.7 ns 

2005 Llarga 
r-2 

b:1-2 

I:2-3, jam, leather, 

bitumen, green, thin. 

U:1-2, ti-3, dry, green, 

monothematic, simple, light, 

tobacco leaf, bitter:0-1. 

6.4 b 

2005 Solar 
r-3 

b:2-3 

I-3, ripe fruit, jam, 

pyrazine, vegetal, leather. 

U:2-3, ti:2-3, round, soft, VL:2-3, 

sweet, fine grain, concentration. 
7.6 a 

r: red colour, b: blue colour, m: brown colour, I: aromatic intensity, ft: fruity aromas, U: unctuosness; ti: total 

aromatic intensity; VL: varietal aroma, In global note: Different letters indicate significant differences at p ≤  

0.05 (n = 4). 
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Discussion 

 

Berry weight was only influenced by soil type. Van Leeuwen et al. (2004) also found that 

berry weight was significantly influenced by soil type but not by climatic differences. Berry 

weight was high in the soil with the higher water holding capacity, consistent with the view 

that low water supply causes a reduction in berry weight and yield (Peyrot des Gachons et al., 

2005; Van Leeuwen et al., 2003). Sugar content showed differences with regard to climatic 

conditions and soil type, the soil factor having a minor influence. The soil effect on sugar 

content might be explained partially by the existing negative correlation between sugar and 

berry weight, also reported by other authors (Hunter and Deloire, 2005). Highest sugar 

content was found in the driest year during the growing season, while the lowest was in the 

rainiest one. These results could be explained by the effect of water limitation on plant 

hormonal equilibrium and berry weight, which are responsible for directing sugar 

accumulation in grapes (Champagnol, 1984; Blouin and Guimberteau, 2004).  

 

Regarding phenolic maturation, anthocyanin content was only affected by climate, contrary 

to the findings of Van Leeuwen et al. (2004), who also found a soil effect. The highest 

anthocyanin content was recorded in the driest year, possibly as a result of water limitation 

on skin/pulp ratio and consequently on anthocyanin content (Esteban et al., 2001; Trégoat et 

al., 2002; Gurovich and Páez, 2004). However, air temperatures might also have had an 

influence on anthocyanin accumulation. The lowest anthocyanin content occurred during the 

hotter year (2003) and the highest in 2005. Previous studies demonstrated the negative effect 

of high temperatures (Buttrose et al., 1971; Kliewer and Torres, 1972), and the positive effect 

of low minimum temperatures during ripening (Tonietto and Carbonneau, 2002) on 

anthocyanin accumulation. In terms of grape seed tannins, the highest content was in the 

wettest year and the lowest in the driest. Moreover, grape seed tannins showed significant 

differences between soils, being the highest on the soil with the highest water holding 

capacity. Thus, water limitation was associated with better phenolic ripening (higher 

anthocyanin content and lower grape seed tannins).  

 

Grape ripening speed was significantly higher on the soil with lower water holding capacity. 

It was also higher in the driest year and lower in the wettest year. This result agrees with 

previous observations that grape ripening speed is determined largely by the soil water 
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regime and soil temperature (Van Leeuwen and Seguin, 1994). According to Van Leeuwen et 

al. (2003), the wettest soils are also the coolest, causing delay and deceleration in the 

maturation process. Soil and climate affected grape ripening speed, but soil x climate 

interaction had the highest effect. This means that for a certain year, the speed was higher in 

one soil and in another year the opposite. In 2004, speed ripening on ‘Solar’ was noticeably 

higher than on ‘Llarga’, probably related to higher soil water limitation on ‘Solar’. However, 

ripening speed on ‘Llarga’ was higher than on ‘Solar’ in 2005, when soil moisture during 

grape ripening was higher on ‘Solar’ than on ‘Llarga’. During 2003, both soils showed 

similar grape ripening speed, perhaps due to both soils followed similar soil water dynamics. 

 

As shown before, more alcoholic wines were obtained on the soil with a more limited water 

regime and that was drier and warmer during the growing season. All variables related to the 

phenolic compounds were significantly higher on the soil with the more limited water 

regime. Andres-de-Prado et al. (2007) compared wines of the Grenache cultivar on two soils, 

and they also found that wines produced on the soil with higher water holding capacity 

presented significantly lower colour intensity and phenolic composition. As for interannual 

differences, the highest values occurred in the year with the lowest temperatures during the 

growing season, and the lowest rainfall between veraison and harvest. Wines produced on the 

soil with the more limited water regime achieved better scores for colour intensity, aroma 

intensity and unctuosness, with more ripe fruit aromatic notes, and were more concentrated 

and structured in the mouth. These differences in tasting notes could be due to a higher 

content in phenolic compounds, as found by Choné et al. (2001) in Cabernet Sauvignon wine. 

 

Conclusions 

 

This study determined the effects of soil and climate on grape ripening and wine quality. The 

climate factor affected almost all variables of grape composition, except for berry weight, as 

well as on grape ripening speed and wine composition. In addition, the soil factor affected 

berry weight, grape ripening speed and wine composition. The effects of soil on wine 

composition were not negligible: these effects were even greater than those of climate in wine 

properties related to colour and polyphenols. The effects of soil and climate could be 

explained mainly by their influence on plant water availability, although temperatures could 

be important, for example in the synthesis of phenolic compounds. Top-rated wines in the 
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tasting were from the soil with a more limited water regime, probably due to its effect on the 

accumulation of phenolic compounds, which are responsible for wine colour and taste. Thus, 

despite the variability of grape and wine composition associated with climatic conditions, soil 

type could be decisive when it comes to differentiating wines of different qualities, depending 

on the intensity of colours and flavours and structure and concentration in the mouth. 
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Chapter 7 

 

GLOBAL DISCUSSION 
 

This study determines the suitability of very detailed soil surveys, based on Soil Taxonomy, 

for viticultural zoning studies, which are directed at the delimitation of homogeneous areas 

with distinct potential for viticulture. Soil Taxonomy is a worldwide hierarchical 

classification system, which is not intended for any particular crop. Previous studies show 

that this classification system may not be entirely satisfactory, since the resulting 

classification of soil map units can separate soils with differences that may not be important 

for some interpretations or uses. For instance, Young and Hammer (2000) found that some 

Soil Taxonomy classes had no relationship to distributional patterns of some soil properties. 

Chapter 2 shows that the classification of soil map units does not reflect the variability of 

important soil properties for vineyard cropping, such as texture, available water capacity and 

contents of coarse fragments, carbonate, iron, organic matter and nitrogen. In addition, 

Chapter 4 shows that the classification of soil moisture regimes of Soil Taxonomy reflects 

differences in the soil moisture dynamics during the stages of grapevine development only in 

the cases of very humid (udic) or very dry (aridic) moisture regimes.  

 

Multivariate statistical analysis can be used to address these limitations. Previous studies used 

these analyses in order to find other classifications more adjusted to the natural distribution of 

soils (Areola, 1979; Young and Hammer, 2000). In this thesis, cluster analysis was selected, 

among different statistical analyses used in soil science (Courtney and Nortcliff, 1977), 

because this method allows the grouping of data, minimizing within-group variability while 

maximizing among-group variability. The application of cluster analysis on properties of soil 

map units allowed us to differentiate soils according their viticultural potential, in relation to 

water stress, iron chlorosis and vegetative growth. In addition, the application of cluster 

analysis on soil moisture data during grapevine development allowed us to differentiate soil 

moisture regimes according their viticultural implications, referring to vegetative growth and 

grape ripening.  

 

Moreover, chapter 3 determines the effect of soil forming processes on soil properties and 

soil classification. The results show significant effects on soil properties important for 
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vineyard production. For instance, clay accumulation processes increased significantly the 

available water capacity and cation exchange capacity. These soil properties, especially those 

related to vine water availability status, have direct influences on grape and wine quality 

(Esteban et al., 2001; Trégoat et al., 2002; Gurovich and Páez, 2004). Some identified soil 

forming processes were not reflected in soil classification, especially in soils modified by 

man. Land levelling and terracing by earthmoving equipment can dramatically change soil 

horizon arrangement and decrease soil fertility, with effects on productivity and vigour of 

vines (Bazzofi et al., 2009). However, the anthropic soil origin was not always reflected in 

soil classification. This fact highlights the limitations of Soil Taxonomy to classify 

anthropogenic soils. In fact, an international committee, named ICOMANTH, was created to 

improve anthropogenic soil classification in Soil Taxonomy. It should be noted that Dazzi et 

al. (2009) propose a new diagnostic horizon for anthrosols of the WRB classification 

(FAO/ISSS/ISRIC, 2006), named geomiscic, which can be applied in cases of land levelling 

by heavy machinery.  

 

Chapter 5 establishes the influence of edaphoclimatic parameters on grape harvest quality at 

plot level, in particular on both yield and berry composition variability. Climate and water 

availability explained 70% of variability and soil explained 28% of variability. These results 

agree with other studies, where climate appears as the most influencing factor on must quality 

(Van Leeuwen et al., 2004). Water availability also strongly influences the quantity and 

quality of grape production (Oliveira, 1995; Van Leeuwen et al., 2003; Hunter and Deloire, 

2005), due to the effect of water supply on the balance between vegetative and reproductive 

growth (Matthews et al., 1987; Van Leeuwen and Seguin, 1994). Generally, it is difficult to 

establish a direct correlation between soil characteristics and wine quality (Seguin, 1986). 

Some soil properties, such as nitrogen status and soil depth, can affect grape and wine 

quality, even more than water supply (Choné et al., 2001). In our study, we found that soil 

had influence on yield and some must data.  

 

There are many studies to determine the effect of a single factor on grape quality, whether the 

climate (Jones and Davis, 2000; Tonietto and Carbonneau, 2004), soil (Trégoat et al., 2002, 

Sivilotti et al., 2005) or other factors, but few studies consider the joint effects of more than 

one factor (Van Leeuwen et al., 2004). Moreover, studies that consider the effects on wine 

quality are even more limited (Choné et al., 2001; Andrés-de-Prado et al., 2007). The joint 
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effect of soil and climate on grape ripening and wine quality is determined in chapter 6. The 

results referring to grape ripening show that soil was the only factor determining berry 

weight, sugar content was affected by soil and climate, the soil factor having a minor 

influence, and anthocyanin content was only affected by climate. These results can be 

explained by the effect of vine water availability status on berry weight (Peyrot des Gachons 

et al., 2005; Van Leeuwen et al., 2003) and the plant hormonal equilibrium, which are 

responsible for directing sugar accumulation in grapes (Champagnol, 1984; Blouin and 

Guimberterau, 2004), and also on skin/pulp ratio, which determines anthocyanin content 

(Esteban et al., 2001; Trégoat et al., 2002; Gurovich and Páez, 2004). Regarding wine 

quality, climate and soil had significant effects on wine composition, the soil having more 

influence than climate on wine phenolic composition. The soil also affected wine sensory 

analysis, probably due to the relationship between the phenolic compounds and colour and 

taste of wine (Choné et al., 2001). Wines produced on the soil with more limited water 

regime achieved better scores for colour intensity, aroma intensity and unctuosity, and more 

ripe fruit aromatic notes and were more concentrated and structured in the mouth. Similar 

results were found in Andrés-de-Prado et al. (2007). 
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Chapter 8 

 

FINAL CONCLUSIONS 

 
 

A very detailed soil survey method, based on Soil Taxonomy, allows us to differentiate a 

great number of soil map units, but in return it shows certain deficiencies when reflecting the 

variability of important soil properties for vineyard cropping. Thus, very detailed soil surveys 

are suitable for a viticultural zoning oriented to a differentiated viticultural management, but 

not when viticultural zoning is directed at the differentiation of zones of distinct potential for 

vineyard growing. In this case, we propose a methodology based on cluster analysis, which 

allow us to group soil map units according their distinct potential for vine growing, in 

relation to water stress, iron chlorosis and vegetative growth.  

 

This methodology was developed from soil surveys at plot level in Catalan vineyards, but 

according to the zoning objective it can also be applied at different scales, performing the 

cluster analysis at level of vineyard estate, county or country. The groups resulting from 

cluster analysis are also conditioned by the variability of soil properties, which is 

characteristic or predominant in the study area. Thus, the soil properties involved in the 

viticultural zoning can vary from one area to another. In the study area, and for a zoning 

aimed to determine the viticultural potential, soil properties that at least should be considered 

in cluster analysis are texture, available water capacity and contents of coarse fragments, total 

calcium carbonate, active calcium carbonate, iron, organic matter and nitrogen.   

  

In the study area, a high variety of soil forming processes can be determined by means of 

morphological and micromorphological analysis. These soil forming processes have 

significant effects on soil properties, which are important for vineyard growing, namely clay 

content, available water capacity, calcium carbonate content and cation exchange capacity. 

However, soil classification does not always reflect these pedogenic processes. This fact 

highlights the importance of considering soil forming processes when performing a 

viticultural zoning based on very detailed soil surveys.   

 

According to soil moisture data monitored by capacitance sensors, continuously and at 

different depths, in different representative soil map units, the soil moisture regimes of Soil 
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Taxonomy do not adequately reflect differences in the soil moisture dynamics of xeric and 

ustic soil moisture regimes during the grapevine phenological stages. We propose a 

methodology based on determining dry days, as indicated by Soil Taxonomy, in different 

grapevine phenological periods and grouping the cases by means of a cluster analysis. The 

soil moisture regimes resulting from this method show significant differences in percentage of 

dry days in all phenological periods, and therefore present different implications for 

viticulture, related to vegetative growth, grape production and the grape ripening process. 

 

The determination of annual soil moisture regime in a vineyard soil, considering the 

phenological stages, can be useful as a decision tool for vineyard management, as well as for 

grape harvest prediction. To this purpose, studies to correlate annual soil moisture regimes 

with parameters related to vineyard cropping (such as yield, alcoholic degree, pruning weight) 

should be performed. The cluster analysis can be also applied over the long term, when the 

zoning objective is to differentiate soils according to their potential for vineyard growing. In 

this case, soil moisture data for many years should be considered, in order to determine the 

most frequent soil moisture regime. For this purpose, modelling studies to predict soil 

moisture data from crop and climate data can be also useful. 

 

Based on the characterization of soil properties and interannual climatic indices in three 

representative soil map units located in the same viticultural area, climate and soil water 

availability explain 70 % of vintage variability and soil properties explain 28 % of vintage 

variability. The models performed to predict grape harvest parameters from soil and climate 

parameters show that edaphoclimatic factors have generally a high power of estimation of 

yield and must composition of the grape harvest. Climate appears to be the most influential 

factor on must composition, followed by water availability. Generally, soil properties are the 

most influential factor on yield. These results show that viticultural zoning studies should 

have a global approach, which considers soil and at least climate, if it is intended to 

understand the functioning of vines and vintage composition. Further studies could be carried 

out to improve the proposed soil-based viticultural zoning, by considering climate variability. 

According to this study, climate parameters that could be considered are cumulative degree 

days and precipitation during the growing season and solar radiation during ripening. 

Moreover, average soil moisture regimes during the grapevine growing season could 

complete the characterization of viticultural zoning units.  
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The determination of the effects of soil and climate on grape ripening and wine composition 

shows that climate affects grape composition, except for berry weight, as well as grape 

ripening speed and wine composition. In addition, soil factors affect berry weight, grape 

ripening speed and phenolic composition of wines. The effect of soil on wine composition is 

not negligible, since these effects are even greater than those of climate in wine properties 

related to colour and polyphenols. Significant differences between soil types are found in the 

wine tasting, related to the intensity of colours and flavours and structure and concentration in 

the mouth. Thus, despite the variability of grape and wine composition associated with 

climate, soil type is decisive when it comes to differentiating wine quality. This study only 

considers the vintages of two soil types for three years, so it would be advisable to extend this 

study to more soils and climates, to somehow validate that the viticultural zoning units reflect 

the maximum variability of grape and wine composition.  

 

As a main conclusion of this thesis, very detailed soil surveys based on Soil Taxonomy are a 

valuable source of information for viticultural zoning studies, although its implementation can 

be improved with statistical analysis that considers the variability of soil properties related to 

grapevine growing. Moreover, although climate explains most of the vintage variability, soil 

type is decisive in determining the vineyard potential for wine quality.  
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