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We revisit the classical dynamic inventory management problem of Scarf (1959b) from the perspective of

a decision-maker who has n historical selling seasons of data and must make ordering decisions for the

upcoming season. We develop a nonparametric estimation procedure for the (S, s) policy that is consistent,

then characterize the finite-sample properties of the estimated (S, s) levels by deriving their asymptotic

confidence intervals. We also consider having at least some of the past selling seasons of data censored from

the absence of backlogging, and show that the intuitive procedure of first correcting for censoring in the

demand data yields inconsistent estimates. We then show how to correctly use the censored data to obtain

consistent estimates and derive asymptotic confidence intervals for this policy using Stein’s method. We

further show the confidence intervals can be used to effectively bound the difference between the expected

total cost of an estimated policy and that of the optimal policy. We validate our results with extensive

computations on simulated data. Our results extend to the repeated newsvendor problem and the base-stock

policy problem by appropriate parameter choices.
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1. Introduction

The stochastic dynamic inventory problem constitutes an important class of decision prob-

lems in operations management. In this paper, we revisit the classical problem of Scarf

(1959b) from the perspective of a decision-maker (DM) who does not know the demand

distribution but has historical data to base her decision on.

Specifically, the DM has observations of n independent, identically distributed (iid) selling

seasons of data, where the selling horizon is of length T . We consider three cases for the

available data. In Scenario (a), the demands for all n selling seasons are available, in Scenario

(b), only sales data are available for some (n1, 1≤ n1 ≤ n− 1) of the past selling seasons,

and in Scenario (c), only sales data are available for all n selling seasons.
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For these cases, we ask the following questions: (Q1) given the n seasons of data, how

should the DM order for the upcoming selling season? and (Q2) what finite-sample perfor-

mance bounds can she assign for the estimated ordering policy, and the total cost? In other

words, what is the precision of an inventory policy estimated from historical data? Note

the classical dynamic inventory problem we consider simplifies to the repeated newsvendor

problem and the base-stock policy problem by appropriate parameter choices, so answers

to the aforementioned questions apply to these problems as well.

While the first question has been addressed to varying degrees in the literature, the second

question, which is of significant practical value, has not yet been addressed. The main aim

of this paper is thus to characterize confidence intervals around sensible estimates of the

optimal (St, st)
T
t=1 policy of the classical dynamic inventory problem.

To address (Q1), we propose nonparametric estimation procedures that yield consistent

policies for all three scenarios of available data, in Sec. 3. For Scenario (a), an intuitive

use of the data to estimate the stochastic dynamic program yields consistent decisions. For

Scenario (b), we show that the DM must be careful in using the censored demand data. In

particular, we show that the intuitive procedure of correcting for censoring in the demand

data itself, then using the corrected data to solve the estimated dynamic programming (DP)

equations necessarily yields inconsistent estimates of the optimal inventory policy. We then

show how the DM can correctly use the censored data to yield consistent decisions. Finally,

we show that the estimation problem under Scenario (c) can be broken down into Scenario

(a) or Scenario (b) depending on the relative positions of the St’s to the censoring levels.

To address (Q2), we derive asymptotic confidence intervals for the estimates of (St, st)
T
t=1

using the asymptotic normality property of M-estimators (Van der Vaart 2000). This can

be found in Sec. 4. For Scenario (a), we can use the classical results with an inductive

argument, but for Scenario (b), we need an extension of the classical results using Stein’s

method (Stein 1972) as our proposed estimation procedure introduces correlations in the

estimation objective. The confidence intervals under under Scenario (c) equal to those under

Scenario (a) or Scenario (b) depending on the relative positions of the St’s to the censoring

levels.

In Sec. 5, we investigate how the confidence intervals of an estimated (St, st)
T
t=1 policy

can be used to bound its worst-case expected total cost. We then validate the theoretical

results via extensive computations on simulated data in Sec. 6.
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1.1. Summary of main contributions

We make three main contributions. First, we establish estimation procedures for finding

consistent estimators of the optimal (St, st)
T
t=1 policy, under both uncensored and censored

data scenarios. For the uncensored data Scenario (a), the intuitive Sample Average Approx-

imation (SAA; see Shapiro et al. 2009) procedure works. For the censored data Scenario

(b), however, we show that an intuitive approach of correcting for censoring in the demand

data first yields inconsistent estimates. We propose an alternative procedure which corrects

for the censoring by re-weighting the demand data indirectly through the estimating equa-

tions, and show this yields consistent estimators. This is a significant departure from much

of the demand censoring literature, which has focused on the correction of the estimation

of the demand distribution (Conrad 1976, Wecker 1978, Nahmias 1994, Agrawal and Smith

1996, Anupindi et al. 1998, Vulcano et al. 2012). While understanding the full demand

distribution is of inherent value, our results show that if the end goal is to estimate the

optimal reorder points and order-up-to levels, the correction for censoring must be done for

the objective function, rather than for the demand distribution.

Second, we analytically derive asymptotic confidence intervals of estimated (St, st)
T
t=1

policies, which, although asymptotic formulas, are accurate enough to be used in practice.

While the use of confidence intervals has been a key component of decision-making in other

arenas (e.g., evaluations of economic policies and drug trials), it has thus far been overlooked

by the operations literature. This work purports to fill the gap between what is now available

(data and statistical theory) and the classical operational problem. Furthermore, confidence

intervals for the censored data Scenario (b) adds new perspective to the literature on data-

driven inventory management with demand censoring, which we discuss in the literature

review below.

Third, we provide upper bounds on the estimated total cost. One implication of the

theoretical bound is that the expected total cost of an estimated policy can be bounded by

a linear combination of the confidence intervals of the estimated order-up-to levels, plus a

small error term. This means that, if the confidence intervals around the estimated order-

up-to levels are reduced by 10%, this would translate directly to a 10% reduction in upper

bounding the expected total cost as well. Thus, direct improvements to the precision of

estimating optimal order-up-to levels reduce uncertainty in the estimation of the total cost.
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1.2. Literature Review

The earliest papers on stochastic dynamic inventory management establish the structure of

the optimal inventory policy. The seminal work of Scarf (1959b) showed that the optimal

policy is of (S, s) type when the ordering cost consists of a fixed setup cost and a linear per-

unit cost. That is, at the beginning of period t, the DM observes the current inventory level

and orders up to S if this level is below the critical level s. Works showing the optimality of

the (S, s) structure for other settings followed (e.g. infinite horizon problem Iglehart 1963,

generalized cost structures Porteus 1971 and Markovian demand Sethi and Cheng 1997);

as well as efforts in efficient computations (see Federgruen and Zipkin 1984, Zheng and

Federgruen 1991 and references therein). We refer the reader to Zipkin (2000) and Porteus

(2002) for an overview.

In practice, however, the full distributional information of the demand is not available,

thus how one ought to make inventory decisions under uncertainty has formed a significant

line of inquiry. Two main approaches exist in the literature: the Bayesian approach, whereby

unknown parameters of the demand distribution are dynamically learned (Scarf 1959a,

Azoury 1985, Lovejoy 1990) and the nonparametric approach, whereby the DM has access to

samples of demand data from an unknown distribution. Our distribution-free, data-driven

setting thus falls under the nonparametric category.

One focus of nonparametric inventory management papers has been on the efficient com-

putation of data-driven (or, equivalently, sampling-based) policies. Burnetas and Smith

(2000), Huh and Rusmevichientong (2009) and Kunnumkal and Topaloglu (2008) consider

stochastic gradient algorithms, Godfrey and Powell (2001) and Powell et al. (2004) consider

the adaptive value estimation method, Levi et al. (2007) provide a customized method based

on weaving the actual DP through a shadow DP, Levi and Shi (2013) propose algorithms

based on randomized decision rules, and Ban and Rudin (2019) provide machine learning

algorithms for the repeated newsvendor problem. We make clear that this is not the focus

of the current paper; our focus is to derive finite-sample properties of data-driven policies,

which is distinct from existing works.

While there is no precedent for characterizations of confidence intervals for estimated

inventory policies, Levi et al. (2007) and Levi et al. (2015), which provide data-driven

inventory policies with probabilistic guarantees, could be considered the most similar to

this work. Levi et al. (2007) studies the single-period and dynamic inventory problems

with zero setup cost from a nonparametric perspective and provides algorithms inspired by
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approximating the SAA problem with convex counterparts to solve them. The paper then

provides probabilistic bounds on the minimal number of iid demand observations that are

needed for the algorithms to be near-optimal. Levi et al. (2015) improves upon this bound

for the single-period case.

However, the results in Levi et al. (2007) and Levi et al. (2015) are based on the Hoeffding

and Bernstein inequalities respectively, both of which are very loose. Hence one cannot

obtain confidence interval estimates from their probabilistic bounds. To illustrate, for the

examples considered in Sec. 6, one needs over 56,000–240,000 iid observations of the demand

to give bounds on the base stock policy within 50% accuracy and at 5% significance level

using the bounds of Levi et al. (2015) and Levi et al. (2007). In contrast, our asymptotic

confidence interval bounds can be used to quote confidence bounds for n as small as 50.

Recent works on the issue of demand censoring for the data-driven inventory problem

include Heese and Swaminathan (2010), Huh et al. (2011), Dai and Jerath (2013), Besbes

and Muharremoglu (2013), Jain et al. (2014), Chen and Mersereau (2015) (which gives

a comprehensive review), Shi et al. (2016), Chen et al. (2017) and Zhang et al. (2018).

Of these, the closest to our work are Huh et al. (2011) and Besbes and Muharremoglu

(2013), both of which study the simpler repeated newsvendor problem from a nonparametric

perspective. We discuss these two papers in more detail below.

Huh et al. (2011) proposes a consistent policy based on the Kaplan-Meier estimator

for general discrete demands; in contrast our work focuses on consistent estimation of the

dynamic inventory policy for continuous demands. Besbes and Muharremoglu (2013) shows

that there is no marked difference between demand censoring and full-information cases

when the underlying demand is continuous, in that the minimum worst-case regret in both

cases grow logarithmically in the number of periods (which in our setting is n, the number

of observations). In the current paper, we support this result through a different type of

analysis. Instead of the worst-case regret, we consider confidence bounds on the total cost,

and show that this shrinks at the same rate in the number of observations for both censored

and uncensored data.

Finally, we mention a recent work, Arlotto and Steele (2016), that derives Central Limit

Theorem (CLT) results for temporally non-homogenous Markov chains, with implications on

the infinite-horizon inventory problem. While the inventory example considered in Arlotto

and Steele (2016) is very different (infinite horizon, no demand censoring, no setup cost,

Markovian demands with identical distributions over time, and not data-driven), as far as

we are aware, it is the only other existing work to analyze an inventory problem via CLT.
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1.3. Preliminaries

We denote convergence in probability by P→ and convergence in distribution by ⇒. As

convention, we denote random variables in capital letters and their realizations in lower-case

letters. All proofs can be found in the supplementary online Appendix.

2. The Model

There are two key ingredients to our problem — the structure of the stochastic dynamic

program and the nature of the data available to the DM. Let us describe the problem

structure first, then detail the nature of the available data.

2.1. Dynamic Inventory Management Problem

The inventory problem we consider is the classical problem of Scarf (1959b), where unmet

demands are backlogged. The time-horizon is finite, with T planning periods. We use t

to denote the actual time period, starting at 1. At each period, the backordering cost is

denoted bt and the holding cost ht. There is also a fixed setup cost Kt ≥ 0 if an order is

made at time t; thus the total cost of ordering a quantity q at time t is denoted by:

Ot(q) =

{
Kt + ctq if q > 0

0 otherwise,

where ct is the per unit ordering cost. Denote the inventory level at the beginning of period

t by It; note this can be negative due to backlogging. The initial inventory level, I1, is

known to the DM. Lead time is zero, so any orders placed in period t arrive within the same

period. The random demand in period t, Dt, is realized after any orders made in period t

arrive. The value of future cash flows is discounted at the rate αt ∈ [0,1). Any remaining

inventory at the end of the selling horizon T has zero salvage value.

Let us introduce Ct(·, ·) :R+× [D,D̄]→R, the single-period newsvendor cost function:

Ct(y;d) := bt(d− y)+ +ht(y− d)+,

where the variable y denotes the stock level after deliveries in period t. Then the Bellman

equations for the dynamic inventory problem can be stated as follows:

VT+1(x)= 0 ∀ x≥ 0

Vt(It) = min
y≥It

Ot(y− It) +E[Ct(y,Dt) +αtVt+1(y−Dt)], 1≤ t≤ T. (1)
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Scarf (1959b) showed that the solution to (1) is of (St, st)
T
t=1-type— that is, if at period

t, It < st, it is optimal to order up to St. Using this insight, Scarf (1959b) shows that for

each t= 1, . . . , T , the optimal order-up-to level St is the global minimum of the function

Gt(y) := cty+Et[Ct(y,Dt)] +αtEt[V t+1(y−Dt)], (2)

over the domain [D,D̄], where αT = 0 and the cost-to-go function is given by

VT+1(x) := 0 ∀ x≥ 0

Vt+1(x) :=

{
Gt+1(St+1) +K − ctx if x< st+1

Gt+1(x)− ctx if x≥ st+1,
1≤ t≤ T − 1. (3)

The optimal reorder point st is the smallest s less than St such that:

Gt(s) =Gt(St) +K.

With (3) we can rewrite (2) as

GT (y) = cTy+ET [CT (y,DT )],

Gt(y) = (1−αt)cty+Et[Ct(y,Dt)] +αtctEt[Dt] +αtGt+1(st+1)Et[It(y− st+1)]

+αtEt[Gt+1(y−Dt)Ict(y− st+1)], t= 1, . . . , T − 1,

where It(x) := I(x<Dt) and Ict(x) is its complement.

Note if the setup cost K is zero, then the problem reduces to one for which the optimal

policy is the base-stock policy R1, . . . ,RT , where at each time period t it is optimal to order

Rt− It if the inventory level is below the critical level Rt. In this case, the optimal reorder

points and order-up-to levels coincide, and equal R1, . . . ,RT . While most recent works in

inventory management have focused on this case, we consider K ≥ 0 for completeness. If

for all t= 1, . . . , T , αt = 0 and the Dt’s have the same distribution, the problem reduces to

the repeated newsvendor problem; if T = 1, the problem is the single-period newsvendor

problem.

2.2. Problem Assumptions

We make the following assumptions throughout this paper.

1. Assumption on the stochastic demand : For each t= 1, . . . , T , the random demand at

time t, Dt, is a continuous random variable bounded on the interval [D,D̄], which
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is known to the DM. The demands are independent but not necessarily identically

distributed across time.

2. Identifiability : For each t= 1, . . . , T ,

∀ε > 0, inf
y∈[D,D̄]

{Gt(y) : ||y−St||2 ≥ ε}>Gt(St). (ID)

Assumption 1 pertains to the nature of the stochastic demand. The assumption on the

continuity of the demand random variable is needed for the differentiability of the objective

functions Gt(·), t= 1, . . . , T . The assumption that the DM knows a lower and upper bound

on the demand is realistic in practice because 0 is a universal lower bound on the demand

for any product, and an upper bound can be obtained from estimating the firm’s total

customer base. Finally, the assumption that the demands are independent across time

respects the original problem structure of Scarf (1959b). Relaxing this assumption would

require additional assumptions on the temporal evolution of the demand process, which we

leave for future work.

Assumption 2 is essential for statistical inference. One sufficient condition for (ID) to

be satisfied is if Gt(·) has a unique minimizer over [D,D̄]. Note we do not need a similar

assumption on st, t= 1, . . . , T , because by definition they are unique.

2.3. Description of the Available Data

The firm has collected n selling seasons of data, which are iid across the seasons. That

is, the T -dimensional demand vector [di1, . . . , d
i
T ] from season i is iid to the demand vector

[dj1, . . . , d
j
T ] from season j.

We consider three different cases. In Scenario (a), the DM has access to the actual demand

data, D = {[di1, . . . , diT ]ni=1} for all n seasons. In Scenario (b), the DM has access to n0,

1≤ n0 ≤ n−1 seasons of demand data and n1 := n−n0 seasons of censored demand data as

well as the past stocking levels for the censored seasons, {xi}i∈J = {[xi1, . . . , xiT ]}i∈J , where

J ⊆ {1, . . . , n} is the index set denoting the censored selling seasons, with |J |= n1. Finally,

in Scenario (c) the DM has access to only the sales data Z = {[zi1, . . . , ziT ]ni=1}, where zit is

the realization of the censored random variable Zit := min(Dt, x
i
t) for season i, and the past

stocking levels {xi}ni=1 = {[xi1, . . . , xiT ]}ni=1.

The three scenarios are illustrated in Fig. 1.
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d1
1 d1

2 . . . d1
T

...
...

...
...

dn0
1 dn0

2 . . . dn0
T

dn0+1
1 dn0+1

2 . . . dn0+1
T

...
...

...
...

dn1 dn2 . . . dnT

Selling horizon: T periods

n0 = (1− r)n

uncensored seasons

n1 = rn

censored seasons

Figure 1: A schematic for the available data. Under Scenario (a), the full information case,
n0 = n, under Scenario (b), the partially censored case, 1 ≤ n0 ≤ n − 1 and in the fully
censored case Scenario (c), n0 = 0. Note the uncensored and censored seasons do not have
to be in separable blocks as shown; what matters is the total number of uncensored versus
censored seasons.

3. Asymptotically consistent estimation of (St, st)Tt=1

In this section, we propose estimators for the optimal policy (St, st)
T
t=1 under the three

Scenarios (a)–(c) and show that they are consistent.

3.1. Asymptotically consistent estimation with fully uncensored data (n0 = n)

In the full information case of Scenario (a), we estimate (St, st)
T
t=1 with (Ŝt, ŝt)

T
t=1, where

for each t= T, . . . ,1,

Ŝt := argmin
y∈[D,D̄]

Ĝt(y), (4)

and

ŝt := min
s

{
D≤ s≤ Ŝt| Ĝt(s)− Ĝt(Ŝt)−K = 0

}
, (5)

where Ĝt(y) = 1
n

∑n

i=1 g(y, dit), with

gT (y, d) = cTy+CT (y, d),

gt(y, d) = (1−αt)cty+Ct(y, d) +αtctd+αtĜt+1(ŝt+1)I(y− ŝt+1 ≤ d)

+αtĜt+1(y− d)I(y− ŝt+1 >d), t= 1, . . . , T − 1. (6)

The asymptotic consistency of estimated quantities ŝt and Ŝt to their true respective

quantities st and St requires proving convergence of solutions of estimated optimization

problems. For this purpose, we utilize the theory of M-estimation from statistics (Van der
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Vaart 2000). M-estimation refers to estimation through optimizing an objective function

(the “M” stands for maximization or minimization); for example Maximum Likelihood

Estimation is a well-known example. This literature thus provides a basis for analyzing

estimators obtained through optimization.

Three conditions are needed to ensure the convergence of an estimated optimal solution

to the true value. They are: (i) near-optimality of the estimator for the estimated problem,

(ii) the true optimal solution is well-defined, and (iii) the estimated objective function

converges uniformly to the true objective function over the domain of the problem.

In our setting, the first condition is satisfied because we can compute the in-sample

critical values to an arbitrary accuracy because they are defined by a continuous function

on a finite domain [D,D̄]. The second condition is a condition on the true problem, and is

satisfied by the identifiability condition (ID). The third and final condition is the uniform

convergence of the estimated cost function Ĝt(·) to its true value Gt(·).

To get to the main result of asymptotic consistency, we piece together the key results in

an inductive argument, starting at t= T and working backwards in time.

Theorem 1 ((Ŝt, ŝt)
T
t=1 is consistent). The estimated reorder points and optimal order-

up-to levels (Ŝt, ŝt)
T
t=1 are consistent, i.e., for each t = 1, . . . , T , as n→∞, Ŝt

P→ St and

ŝt
P→ st.

3.2. Asymptotically consistent estimation with censored data (1≤ n0 ≤ n− 1)

In the classical problem setting, there is no demand censoring as back-ordering is allowed.

However, this may not not hold in practice if, for instance, customers refuse backlogging

their demand when there is no stock, or there are human or machine errors in recording

back-orders. Alternatively, a firm could initially have stocked a large amount of its product

for the first few selling seasons to learn about the demand, then subsequently introduce

back-ordering to reduce costs at a later season. Let us thus assume that for n0, 1≤ n0 ≤ n−1

selling seasons in the past, backlogging was allowed, but not so for n1 = 1 − n0 selling

seasons. Let r := n1/n denote the proportion of censored selling seasons to the total number

of selling seasons. We show in Sec. 4 that the analysis of this scenario informs decision-

making for the full demand censoring Scenario (c) as well (n0 = 0).

To simplify the analysis, we assume that in the selling seasons with no backlogging, the

DM had set the stocking levels at (x1, . . . , xT ) — i.e., the stocking levels during the n0 selling

seasons were the same across seasons. Note that the numbers (x1, . . . , xT ) are arbitrary and
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nonrandom, reflecting the stocking decisions that were made in the past, be they a result

of algorithmic or human decisions. Importantly, we note that this information is readily

available to the DM in practice. Generalizing this to allow for different stocking levels from

one selling season to the next (i.e., the stocking levels can differ from one season to the

next) is a straight-forward extension of the simpler case, but with much more notational

complexity, hence we forego the analysis in full generality.

Given the partially censored data, the DM may wish to discard observations that corre-

spond to selling seasons with no backlogging, i.e., discard all (di1, . . . , d
i
T )’s where i∈J . In

such a case, the effective size of the data set reduces to (1− r)n. The DM can still obtain

consistent policies by solving (4)–(5) on the reduced data set — however, this is not ideal

as this reduces the sample size. A natural question that follows is whether the DM could

use the censored data more effectively, rather than discard them.

A large part of the demand censoring literature has focused on the correction of the

estimation of the demand distribution (Conrad 1976, Wecker 1978, Nahmias 1994, Agrawal

and Smith 1996, Anupindi et al. 1998, Vulcano et al. 2012). However, we show in Sec. 3.3

below that in the context of an inventory problem, correcting for censoring in the demand

data directly can lead to inconsistent estimates of (St, st)
T
t=1. In Sec. 3.4 we show that

censoring needs to be corrected through estimates of the objective functions Gt(·) in order

to yield consistent estimates of (St, st)
T
t=1.

3.3. Inconsistent use of censored demand data

Consider correcting for the demand censoring in the following way. For i∈J , let

d̆it =


dit if dit <xt

d̄t :=

∑
i∈J c d

i
tI(dit ≥ xt)∑

i∈J c I(dit ≥ xt)
otherwise,

for all t= 1, . . . , T .

In other words, estimate the demand at points of possible lost sales by the conditional

average of the demands above the stock level from the uncensored data set J c. Thus d̆it is,

approximately, a realization of the following random variable:

D̆t =

{
Dt if Dt <xt
E[Dt|Dt ≥ xt] otherwise
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The DM can now use the transformed data set D̆ = {(d̆i1, . . . , d̆iT )ni=1}, where d̆it = dit for

i∈J c, to compute the optimal ordering policy. In other words, the DM estimates (St, st)
T
t=1

by (s̆t, S̆t)
T
t=1, where for each t= T, . . . ,1,

S̆t := argmin
y∈[D,D̄]

Ğt(y),

and

s̆t := min
s

{
D≤ s≤ S̆t| Ğt(s)− Ğt(S̆t)−K = 0

}
,

where Ğt(y) = 1
n

∑n

i=1 gt(y, d̆
i
t), and gt(·, ·) are as defined before, in (6).

We state below that (s̆t, S̆t)
T
t=1 is not a consistent estimator of (St, st)

T
t=1.

Theorem 2 ((s̆t, S̆t)
T
t=1 is not consistent). The estimated reorder points and optimal

order-up-to levels (s̆t, S̆t)
T
t=1 are not consistent, i.e., for each t= 1, . . . , T , as n→∞, s̆t

P

6→ st

and S̆t
P

6→ St.

3.4. A consistent use of censored demand data

We now show a consistent way to incorporate the censored demand data by adjusting for

the censoring in the objective function estimation. Instead of rescaling the demand data

directly, estimate Gt(y) by

G̃t(y) =
1

n

n∑
i=1

g̃t(y, d
i
t),

where

g̃t(y, d
i
t) :=

{
ḡt(y)I(dit ≥ xt) + gt(y, d

i
t)I(dit <xt) for i∈J

gt(y, d
i
t) for i∈J c

, (7)

where gt(·, ·) are as in (6) as before and

ḡt(y) :=

∑
j∈J c gt(y, d

j
t)I(d

j
t ≥ xt)∑

j∈J c I(d
j
t ≥ xt)

,

and solve the dynamic program with G̃t(·) instead of Ĝt(·). In other words, the DM can

estimate (St, st)
T
t=1 by (S̃t, s̃t)

T
t=1, where for each t= T, . . . ,1,

S̃t := argmin
y∈[D,D̄]

G̃t(y),
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and

s̃t := min
s

{
D≤ s≤ S̃t| G̃t(s)− G̃t(S̃t)−K = 0

}
.

The proposed estimation procedure above maintains the empirical estimation of the Gt(·)
function if the data comes from an uncensored season (i ∈ J c), or if the data comes from

a censored season (i ∈J ) but is the actual demand data (dit <xt). If the data comes from

a censored season and is censored (dit >xt), then we estimate gt(y, dit) by a sample average

estimator using the data from the uncensored seasons, which is what ḡt(y) stands for.

That is, when there is censoring this method uses ḡt(y), the sample average estimator of

E[gt(y,Dt)|Dt ≥ xt]. Note this is different from the inconsistent method discussed earlier,

where gt(y,Dt)I(Dt ≥ xt) is estimated by the sample average estimate of gt(y,E[Dt|Dt ≥
xt]).

We state below (S̃t, s̃t)
T
t=1 is consistent.

Theorem 3 ((S̃t, s̃t)
T
t=1 is consistent). The reorder points and optimal order-up-to levels

(S̃t, s̃t)
T
t=1 estimated under Scenario (b) are consistent, i.e., for each t= 1, . . . , T , as n→∞,

s̃t
P→ st and S̃t

P→ St.

3.5. Asymptotically consistent estimation with fully censored data (n0 = 0)

In this section, we consider the most realistic case for the past demand data available to

the decision-maker, Scenario (c).

If there was no backlogging for all past selling seasons, then we cannot identify Ĝt(y)

for all y ∈ [D,D̄]. However, as we shall show, the DM can still compute the consistent,

full information estimate (Ŝt, ŝt) of the optimal inventory policy as long as the functions

Ĝt(·) are identifiable up to at least St. This is a minimal requirement for any meaningful

estimation of the optimal policies, and can be satisfied by the following condition.

Condition (c1): For all t= 1, . . . , T , the past stocking levels xt were greater than or equal

to St.

Under Condition (c1), one can still compute the subgradients of Ĝt(·) on the domain

[D,St] because Ĝt(·) consists of a sum of multiple check-loss functions. Thus its gradient

is a sum of multiple indicator functions at points of differentiability and an interval on the

remaining non-differentiable points. To illustrate, for y ∈ [D,St]\{d1
T , . . . , d

n
T}, the gradient

of ĜT (·) is given by:

˙̂
GT (y) = cT +

1

n

n∑
i=1

[−bI(diT ≥ y) +hI(y≤ diT )],
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and for y ∈ {d1
T , . . . , d

n
T}, the set of subgradients of Ĝt(·) is the interval [cT − b, cT + h].

Clearly, the subgradients of ĜT (·) are computable for all y ∈ [D,ST ] with censored data

ziT := min(xT , d
i
T ), i = 1, . . . , n, by Condition (c1). We can recursively show the same for

t= T − 1, . . . ,1. Thus Ŝt, for all t= 1, . . . , T can still be found through subgradient meth-

ods, as in Kunnumkal and Topaloglu (2008), who find estimates of the optimal base-stock

policy with censored data via the same argument. We note that Huh and Rusmevichien-

tong (2009), Huh et al. (2011) and Besbes and Muharremoglu (2013) make identifiability

assumptions similar to Condition (c1) for the repeated newsvendor problem with censored

data (specifically, they assume the DM has knowledge of an upper bound to the critical

quantile, which is similar to assuming Ĝt(·) is observable on [D, S̄t] for some upper bound

S̄t on St, t= 1, . . . , T ).
Condition (c1) also ensures that st, which is strictly less than St, is identifiable with

the censored data. One can find ŝt even with censored data because the critical equation
|Ĝt(s) − Ĝt(Ŝt) − K| is still computable, because the difference between two check-loss
functions at different locations only depend on indicators at either extremes of the domain.
To illustrate, observe that

|ĜT (s)− ĜT (ŜT )−K|

=

∣∣∣∣cT (s− ŜT ) +
1

n

n∑
i=1

−b(s− ŜT )I(diT > s) +h(s− ŜT )I(diT < s) + (b+h)(ŜT − diT )I(s≤ diT ≤ ŜT )

∣∣∣∣,
which is clearly computable for s ∈ [0, St) even with censored data {ziT}ni=1. We can re-

cursively show the same for t = T − 1, . . . ,1. Thus, one can still compute the consistent

estimates (Ŝt, ŝt)
T
t=1 by searching over the restricted domains y ∈ [0, xt), t= 1, . . . , T .

We can relax Condition (c1) by allowing for some stocking decisions that were not nec-

essarily larger than St. At the minimum, however, we require the stocking levels to have

been greater than or equal to St for at least some of the time in the past, to allow for

identifiability. We state this minimal assumption formally below.

Condition (c2): For each t ∈ [1, . . . , T ], let x̄t denote the maximal stocking level over all

censored seasons. For all t∈ [1, . . . , T ], the maximal stocking levels x̄t were greater than or

equal to St.

Under Condition (c2), we can use the n seasons of data as follows. The seasons during

which the stocking level was at the maximal level can be treated as uncensored seasons of

data in the study of partially censored data Scenario (b). The remaining seasons of data

can be treated as the censored seasons in the same scenario. Then the DM can compute

(S̃t, s̃t)
T
t=1, which was proven to be consistent in Sec. 3.2.
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A limitation to operating under either Condition (c1) or (c2) is that the DM cannot

know a priori if either condition is satisfied or not, because both conditions require prior

knowledge of the relative position of past stocking levels to the optimal order-up-to levels,

{St}Tt=1. However, one can ensure either conditions are met by having the stocks set at the

maximum demand levels for at least some selling seasons in the past. Reasonable values for

the maximum demand levels can be found by market research and expert insight.

Alternatively, if this had not been the case, then the DM needs to first perform an

identifiability test to see if the data at hand are sufficient for estimation of the (St, st)
T
t=1

policy. One way to do this is to plot empirical estimates of the Gt(·) function on the

observable domain, and see if a pair of numbers satisfying optimality conditions for (St, st)

can be found on this domain. By K-convexity of the Gt(·) function, it is known that there

can be just one pair of numbers satisfying optimality (Scarf (1959b)). Thus if such a pair

of numbers cannot be found on the observable domain, then the DM can conclude St is not

identifiable with the available data.

4. Confidence intervals of the estimated policies

In this section, we derive formulas for the asymptotic confidence intervals of the estimated

policies introduced in Sec. 3. The formulas are necessarily asymptotic because the complex-

ity of the estimated policies is such that the confidence intervals cannot be characterized

analytically in finite-sample. The specific result we prove is asymptotic normality of the

estimated policies. (Note: this is distributional convergence, as opposed to probabilistic

convergence analysis of Sec. 3.) In other words, for reasonably large n, we show that the esti-

mated (Ŝt, ŝt)
T
t=1 and (S̃t, s̃t)

T
t=1 values are approximately normally distributed with centers

at the respective true values (st, St) with variances (ρ2
t , σ2

t ) and (ρ̃2
t , σ̃2

t ) respectively.

Confidence intervals are useful because they provide statistically meaningful error bars

for estimators. For instance, by taking the square root of the asymptotic variance formulas,

the DM can then quote approximate 90%, 95% or 99% confidence intervals for the estimates

of the (St, st)
T
t=1 policy.

4.1. Confidence intervals with fully uncensored data (n0 = n)

Theorem 4 (Asymptotic normality of (Ŝt, ŝt)
T
t=1). Assume Scenario (a). Then for all

t= 1, . . . , T ,
√
n(Ŝt−St)⇒N (0, σ2

t ) and
√
n(ŝt− st)⇒N (0, ρ2

t ) as n→∞, where

σ2
t =

Et[ġt(St,Dt)]
2

[Eg̈t(St,Dt)]2
, (8)
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and

ρ2
t =

E[gt(st,Dt)− gt(St,Dt)−K]2

[Etġt(st,Dt)]2
, (9)

where gt(·, ·) is defined in (6) and ġt(·, ·), g̈t(·, ·) are its first and second derivatives in the

first argument.

Remark. Theorem 4 also applies to Scenario (c), the fully censored data case under Condi-

tion (c1).

Observe that σ2
t depends on the second moment of ġt(·), i.e., depends on the variability of

the critical equation for St. Likewise, ρ2
t depends directly on the variability of [gt(st,Dt)−

gt(St,Dt) −K]. This is intuitive — the more variable the critical equation for St or st,

the more variable the estimates Ŝt and ŝt. Further, both σ2
t and ρ2

t are normalized by the

squared expected gradients of the respective critical equations. This is also intuitive because

zeros of equations are easier to find the larger the gradients of the equations at zero, hence

the inverse relationship between the squared expected gradients of the critical equations

and the asymptotic variances.

Theorem 4 is a statement about the asymptotic normality of estimated quantities ŝt and

Ŝt around their true respective quantities st and St. As with Theorem 1, we use the theory

of M-estimators to the dynamic inventory problem through an inductive argument to prove

Theorem 4.

4.2. Confidence intervals with censored data (1≤ n0 ≤ n)

Theorem 5 (Asymptotic normality of (S̃t, s̃t)
T
t=1). Assume Scenario (b). Then for all

t= 1, . . . , T ,
√
n(S̃t−St)⇒N (0, σ̃2

t ), and
√
n(s̃t− st)⇒N (0, ρ̃2

t ), where

σ̃2
t = σ2

t + rσct and ρ̃2
t = ρ2

t + rρct ,

where σ2
t and ρ2

t are as in (8)–(9), the variances of Ŝt and ŝt that correspond to Scenario

(a),

σct =

{
1+pt
pt

[Eġt(St,Dt)I(Dt ≥ xt)]2 + r
1−rV ar (ġt(St,Dt)I(Dt ≥ xt))

}
[Eg̈t(St,Dt)]2

and (10)

ρct =

{
1 + pt
pt

[E(gt(st,Dt)− gt(St,Dt)−K)I(Dt ≥ xt)]2 +

r

1− r
V ar ((gt(st,Dt)− gt(St,Dt)−K)I(Dt ≥ xt))

}/
[Eġt(st,Dt)]

2, (11)

where pt = P(Dt ≥ xt) and gt(·, ·) is defined in (6).
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Remark. Theorem 5 also applies to Scenario (c), the fully censored data case under

Condition (c2) by setting xt = x̄t.

Thus, the asymptotic variances of (S̃t, s̃t)
T
t=1 for the censored demand Scenario (b) are

equal to the variances of (Ŝt, ŝt)
T
t=1 plus rσct/n and rρct/n, respectively. As a sanity check,

observe that we retrieve the uncensored results when r, the proportion of the data that is

censored, is set to zero.

We also retrieve the uncensored case results when xt = D̄, the upper bound on the random

demand. This can be seen by taking the limit xt→ D̄ in Eqs. (10)–(11); the first terms are

zero by taking the limit using L’Hôpital’s rule and the second terms of the equations are

trivially zero because I(Dt ≥ D̄) = 0 (recall we assume Dt is continuous). Theorem 5 also

shows that the confidence intervals on the estimates with censoring scale at the same rate

n−1/2 as in the uncensored case.

4.3. Estimating the Asymptotic Confidence Interval Formulas

In practice, the quantities σ2
t , ρ

2
t , σ

c
t and ρct need to be estimated with data. One consistent

method of estimation is to estimate them via sample averages. To illustrate, one can estimate

σ2
t and ρ2

t , t= 1, . . . , T , with:

σ̂2
t =

n−1
∑n

i=1[ ˙̂gt(Ŝt, d
i
t)]

2

[n−1
∑n

i=1
¨̂gt(Ŝt, dit)]2

, (12)

ρ̂2
t =

n−1
∑n

i=1[ĝt(ŝt, d
i
t)− ĝt(Ŝt, dit)−K]2

[n−1
∑n

i=1
˙̂gt(ŝt, dit)]2

, (13)

where ĝT (·) = gT (·, ·), and

ĝt(y, d) = (1−αt)cy+ bt(d− y)+ +ht(y− d)+ +αtcd

+αtĜt+1(st+1)I(y− st+1 ≤ d) +αtĜt+1(y− d)I(y− st+1 >d),

where Ĝt+1(·) = n−1
∑n

i=1 ĝt+1(·, dit+1). The estimators ρ̂2
t and σ̂2

t are consistent by the

Strong Law of Large Numbers on the respective numerator and denominator, combined

with Slutsky’s lemma. Similar consistent, sample average estimators for σct and ρct can be

written down.

Note the above estimators are computable even under the fully censored Scenario (c) by

arguments similar to those outlined in Sec. 3.5. Under the Conditions (c1) and (c2), both

the numerators and denominators of ρ̂2
t and σ̂2

t are identifiable, with the estimates remaining
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unchanged when dit are replaced by the censored counterpart zit, for all i = 1, . . . , n and

t= 1, . . . , T . This is also the case for the sample average estimators for σct and ρct .

Finally, we remark that in practice, when the DM quotes confidence intervals around

the estimated optimal inventory policy, the confidence intervals are themselves subject to

estimation errors. We quantify such errors numerically in Sec. 6.

5. Implications on the Total Cost

In this section, we show how the errors associated with estimating the optimal policy

translate to errors in estimating the total cost.

Given a vector q = [q1, . . . , qT ] of ordering quantities, the corresponding expected total

cost is given by

V1(I1;q) =
T∑
t=1

(Πt−1
τ=1ατ )E[KI(It < st) + ctqt +Ct(qt + It,Dt)],

where I1 is the available inventory at the beginning of period 1 and It+1 = It + qt−Dt, 1≤

t≤ T −1. Denote the optimal ordering quantities by q∗ = [q∗1 , . . . , q
∗
T ] and the corresponding

inventory levels by I∗1 , . . . , I∗T . Then q∗t = (St − I∗t )I(I∗t < st) for 1≤ t≤ T and I∗t+1 = I∗t +

q∗t −Dt, 1≤ t≤ T − 1, with I∗1 = I1.

We now show that estimated ordering quantities are consistent if the corresponding order-

up-to levels are consistent.

Proposition 1. Suppose (S′t, s
′
t)
T
t=1 is a consistent estimate of the optimal (St, st)

T
t=1 pol-

icy. Denote the corresponding ordering quantities by q′ = [q′1, . . . , q
′
T ], where q′t = (S′t −

I ′t)I(I ′t < s′t), and where I ′t+1 = I ′t + q′t−Dt, 1≤ t≤ T , with I ′1 = I1 a known constant. Then

for each t= 1, . . . , T , q′t
P→ q∗t as n→∞.

We can also conclude that the expected total cost of a consistent estimated policy is

also consistent, which follows from applying the Continuous Mapping Theorem (CMT) to

Proposition 1:

Corollary 1. Let q′ and I ′1 be as in Proposition 1. Then V1(I ′1;q′)
P→ V1(I1;q∗) as n→∞.

Proposition 1 and Corollary 1 ensure that as the DM collects more data, she is able to

order quantities that are closer to the optimal ordering quantities (in a probabilistic sense),

and that the corresponding expected total cost of the estimated ordering quantities also

converge to that of the optimal ordering quantities.
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In practice, however, the DM only has access to a finite sample of data. As such, her

estimated inventory policy would not coincide exactly with the optimal policy. Suppose

that the DM estimates the optimal order-up-to-level St by S′t, and estimates the optimal

reorder point st by s′t. The corresponding ordering quantities are given by q′ = [q′1, . . . , q
′
T ],

where q′t = (S′t− I ′t)I(I ′t < s′t), and the corresponding inventories are I ′t+1 = I ′t + q′t−Dt for

1≤ t≤ T , with I ′1 = I1.

Let us investigate the expected total cost of such an estimated inventory policy. Observe

that an error with the critical level st affects the inventory policy only if the error is large

enough that the DM either orders when it is optimal not to, or not orders when it is optimal

to do so. Let I ⊂ {1, . . . , T} denote the time periods at which the DM makes such mistakes.

Consider first the event At := {t /∈ I} = {I(I∗t < st) = I(I ′t < s′t)}. If we also have Bt =

{I(I∗t < st) = 0}, the DM does not order so q′t = q∗t = 0, and the contribution to the expected

total cost difference at time t is given by

E{[Ct(I ′t,Dt)−Ct(I∗t ,Dt)]I(At ∩Bt)} .

If on the other hand we are in the event At ∩Bct = {I(I∗t < st) = I(I ′t < s′t) = 1}, the DM

does order and the inaccuracy in the order quantity results in an inaccuracy in the expected

total cost by the amount

E{[ct(q′t− q∗t ) +Ct(I
′
t + q′t,Dt)−Ct(I∗t + q∗t ,Dt)]I (At ∩Bct )}

=E{[ct(S′t−St)− ct(I ′t− I∗t ) +Ct(S
′
t,Dt)−Ct(St,Dt)]I (At ∩Bct )} .

Now consider the event Act = {t ∈ I} = {I(I∗t < st) 6= I(I ′t < s′t)}. The DM either orders

when it is optimal not to, or does not order when it is optimal to do so. In the former case,

the expected cost difference from the optimal policy at time t is

E{[K + ct(S
′
t− I ′t) +Ct(S

′
t,Dt)−Ct(I∗t ,Dt)]I(Act ∩Bt)} ,

and in the latter case, the cost difference is

E{[−K − ct(St− I∗t ) +Ct(I
′
t,Dt)−Ct(St,Dt)]I(Act ∩Bct )} .

Combining both t /∈ I and t ∈ I cases, we arrive at the following result, which holds for

any estimated policy (S′t, s
′
t)
T
t=1.
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Theorem 6. The difference between the expected total cost of an ordering policy (S′t, s
′
t)
T
t=1

and the expected total cost of the optimal policy (St, st)
T
t=1 can be bounded according to:

|V1(I1;q′)−V1(I1;q∗)|

≤
T∑
t=1

(Πt−1
τ=1ατ )

{
E

[
(ct + (bt ∨ht))Λ1

t |S′t−St|+
t−1∑
k=1

[ctΛ
1
t + (bt ∨ht)(1−Λ1

t )]Γk,t−1|S′k−Sk|

]

+E

[
[K + (ct + (bt ∨ht))|St− I∗t |]Λ2

t +

t−1∑
k=1

(1 + Γk,t−2)[ctΛ
1
t + (bt ∨ht)(1−Λ1

t )]Λ
2
k|Sk− I∗k |

]}
,

(14)

where

Λ1
t = I (At ∩Bct ) + I(Act ∩Bt),and

Λ2
t = I(Act)(I(Bt)− I(Bct )).

The only simplifications used to derive the upper bound in (14) are the triangle inequality

and the Lipschitz property of the single-period cost function Ct(y, ·). Inspecting inside the

large parentheses in (14), we see that the first expectation contains a linear combination

of |S′τ − Sτ |, τ = 1, . . . , t, which we can directly relate to a confidence interval on S′τ . The

second expectation contains terms that can be bounded by a constant times P(Act), which is

the chance that the estimated policy makes mistakes in the ordering epochs. For a sensible

policy such as (Ŝt, ŝt)
T
t=1 or (S̃t, s̃t)

T
t=1) which converges to the truth asymptotically normally,

we intuit that the chance of making such mistakes would be negligible compared to the first

term. We investigate these insights numerically in Sec. 6.

6. Computational results

In this section, we validate the consistency and asymptotic normality results of Secs. 3–4 on

simulated data, and investigate the tightness the bound on the expected total cost stated

in Theorem 6.

We estimate the optimal order-up-to levels, Ŝt and S̃t, t= 1, . . . , T , which are minimizers

of continuous functions over a bounded domain, by a grid-search, and the reorder points ŝt
and s̃t, t= 1, . . . , T , which are zeros of given equations, by the secant method. While this

approach can be computationally expensive, we can compute (Ŝt, ŝt)
T
t=1 and (S̃t, s̃t)

T
t=1 to

an arbitrary accuracy this way.

Faster algorithms are known for special cases of our problem, e.g. if the discount factors

αt are zero, the problem decouples into separate newsvendor problems, which are single-

period convex optimization problems; or if the setup cost K is zero, the problem is a
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convex stochastic dynamic program, which can be solved efficiently using the stochastic

approximation method, as shown by Kunnumkal and Topaloglu (2008). For brevity and

focus, we leave open the question of finding efficient algorithms for the general estimation

problem, noting that randomized decision rules of Levi and Shi (2013), heuristic-based

approaches for similar problems (Bollapragada and Morton 1999, Cheung and Simchi-Levi

2019) and fast algorithms for the infinite horizon case (Federgruen and Zipkin 1984, Zheng

and Federgruen 1991) could provide useful starting points.

For the following computational results, we consider a 3-period inventory problem (T =

3), where the demand in each period is independent from each other and have trun-

cated normal distributions. Specifically, [D,D̄] = [30,100], D1 ∼N (75,202)∩ [30,100], D1 ∼
N (70,302)∩ [30,100], D2 ∼N (55,202)∩ [30,100]. For simplicity, the discount factor, unit

ordering, backordering and holding costs are the same for all periods; i.e., αt = 0.1, ct = 0.2,

bt = 1 and ht = 0.5 for t= 1,2,3. The setup cost is K = 2.

To test the asymptotic theory, we simulate 100 iid demand data sets {di1, di2, di3}ni=1 of

size n, where we consider n = 50,100,200. For each data set, we compute the estimates

{(Ŝ1, ŝ1), (Ŝ2, ŝ2), (Ŝ3, ŝ3)} and {(S̃1, s̃1), (S̃2, s̃2), (S̃3, s̃3)} according to Secs. 3.1-3.2. We take

the average of 50 simulations for a dataset with n = 500 as the numerically converged

optimal values {(S1, s1), (S2, s2), (S3, s3)}.

6.1. Validation of Consistency

Figure 2a shows the convergence of the estimated levels (Ŝt, ŝt) to (St, st), t= 1,2,3 as the

number of observations n grows. Displayed are normalized values, i.e., (Ŝt − St)/St and

(ŝt− st)/st, t= 1,2,3, with error bars indicating 95% confidence intervals. We observe that

the estimates (Ŝt, ŝt), t= 1,2,3 are accurate even for n= 50, with the 95% error bars falling

within ±3% of the converged optimal levels (St, st).

Figure 2b shows the convergence of the estimated levels (S̃t, s̃t) to (St, st), t= 1,2,3 for

the censored data case, where r= 0.5 and x = [50,50,50], as the number of observations n

grows. That is, we consider the case where 50% of the time in the past, the stock level was

capped at 50 units, and the other 50% of the time there was no demand censoring. Here

we also observe that the accuracy of (S̃t, s̃t) is high even for n= 50.

6.2. Validation of Asymptotic Normality

Figure 3 shows the histograms for the uncensored data estimates (Ŝt, ŝt), t = 1,2,3 for

n = 50,100,200. Superimposed on the histograms are the theoretical asymptotic normal
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(a)

(b)

Figure 2: Convergence of estimated (St, st), t = 1,2,3 levels for (a) the uncensored data
case and (b) the censored data case where r = 0.5,x= [50,50,50]. The estimates are de-
meaned and normalized by the respective converged values, so the vertical axes correspond
to relative errors. The error bars correspond to 95% confidence intervals of the estimations.

distributions from Theorem 4. Visually, the histograms fit the theoretical normal distribu-

tions very well, with increasing accuracy as n increases. This observation is also supported

by the one-sample Kolmogorov-Smirnov test, which do not reject the null hypothesis that

the histograms are indistinguishable from the asymptotic normal distributions at the 1%

significance level.

Figure 4 shows the histograms for the censored estimates (S̃t, s̃t), t = 1,2,3 for n =

50,100,200, r= 0.5 and x= [50,50,50]. Superimposed on the histograms are the theoretical
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asymptotic normal distributions from Theorem 5. Again, the histograms fit the theoretical

normal distributions very well, with increasing accuracy as n increases, and the one-sample

Kolmogorov-Smirnov test does not reject the null hypothesis that the histograms are indis-

tinguishable from the asymptotic normal distributions at the 1% significance level.

In practice, the DM would not know σt, ρt, σ̃t and ρ̃t, t= 1,2,3 so would need to estimate

these values with the data she has, for instance by using the estimators in Eqs. (12)–

(13). To explore the additional errors associated with estimating the asymptotic variances,

we plot in Figure 5 the relative estimation errors for n = 50,100,200 with error bars to

indicate 95% confidence intervals. We observe that the error bars for σt and σ̃t are within

±3% of the converged value, and for ρt and ρ̃t are within ±8% of the converged value for

n= 50,100,200. Thus, estimating σt is associated with smaller errors than estimating ρt;

this we believe is due to the fact that estimating σt has one less source of error. Scanning

Eqs. (8)–(9), one can see that ρt depends on both St and st, which are sources of estimation

errors, whereas σt depends on St but not on st.

To gauge the relative importance of the estimation errors, we perform the one-sample

Kolmogorov-Smirnov test for the equality of the theoretical normal distributions of Theo-

rems 4–5 with estimated asymptotic variances and the empirical histograms of Figs. 3–4.

We find that all tests still do not reject the null hypothesis that the empirical histograms

are indistinguishable from the asymptotic normal distributions with estimated variances

at the 1% significance level. This means that while there are errors in estimating σt, ρt, σ̃t

and ρ̃t, t= 1,2,3, the errors are not so large as to invalidate the normal approximation of

(Ŝt, ŝt)
T
t=1 and (S̃t, s̃t)

T
t=1 using estimated values of σt, ρt, σ̃t and ρ̃t, t= 1,2,3.

6.3. Validation of Total Cost Analysis

In this subsection, we investigate the out-of-sample total cost of the estimated policies. In

Table 1, we display (i) the expected total cost of the estimated policies versus the expected

total cost of the optimal policy and (ii) 95th percentile of the differences between the total

costs of 100 iid estimated policies from the converged optimal, versus the theoretical upper

bound on the expected total cost difference from Theorem 6. The table displays results for

(a) uncensored data case and (b) a censored data case where r= 0.5 and x= [50,50,50]. For

the theoretical upper bounds, we set S′t−St = ∆t, where ∆t = 1.96σt/
√
n for the uncensored

case and ∆t = 1.96σ̃t/
√
n for the censored case, so that 95% of the estimates Ŝt will fall

within this range. As intuited in Sec. 5, we find that the second term in (14) is negligible
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(a)

(b)

Figure 3: Histograms of (a) Ŝt and (b) ŝt, t= 1,2,3 for n= 50,100,200 from 100 simulations.
The superimposed normal curves correspond to the asymptotic normal distribution from
Theorem 4.

compared to the first term, as it can be bounded by P(Act) which is zero to two decimal

places.

We make two important observations. The first point of interest is that the expected

total costs of the estimated policies, in both uncensored and censored data scenarios, are

remarkably close to those of the true optimal policy. The differences in the expected total

cost are just 0.6% and 1.1% respectively for (Ŝt, ŝt)
T
t=1 and (S̃t, s̃t)

T
t=1 for n= 50, and even

less for n = 100 and 200. This is very promising, as it shows that the estimated policies

are near-optimal in terms of the expected total cost, which is arguably the most important

metric.
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(a)

(b)

Figure 4: Histograms of (a) S̃t and (b) s̃t, t = 1,2,3 where r = 0.5,x = [50,50,50] for
n= 50,100,200 from 100 simulations. The superimposed normal curves correspond to the
asymptotic normal distribution from Theorem 5.

The second point of interest is that theoretical upper bounds from (14) are effective upper

bounds on the the empirical 95th percentile of the total cost differences. The theoretical

upper bounds are conservative, with the empirical percentiles being 46–58% of the theoret-

ical upper bounds, but this is expected as setting S′t − St = ∆t for all t= 1,2,3 in (14) is

equivalent to taking the supremum over S′t ∈ [St −∆t, St + ∆t], t = 1,2,3. The numerical

result here suggests that taking ∆t to just one asymptotic standard deviation, not two,

is sufficient to capture the 95th percentile of the total cost differences. From a practical

perspective, we can conclude that the theoretical upper bounds on the expected total costs

provide effective upper bounds and provide complimentary information to just the expected

value.
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(a)

(b)

Figure 5: Convergence of (a) estimated (σt, ρt), t = 1,2,3 and (b) estimated (σ̃t, ρ̃t), t =
1,2,3 where r = 0.5,x= [50,50,50]. The estimates are demeaned and normalized by the
respective converged values, so the vertical axes correspond to relative errors. The error
bars correspond to 95% confidence intervals of the estimations.

In Figure 6, we plot histograms of the normalized absolute differences in the expected

total cost of the 100 estimated policies and the converged optimal policy for (a) uncensored

and (b) censored data cases where r = 0.5, x = [50,50,50]. (Note: The normalization is

by the total cost of the converged optimal policy, and the expectation is computed by

taking the average of the total costs over 500 new, out-of-sample iid demand paths.) We

observe that estimated total costs are very accurate, as can be seen by the heavy weights

at zero for all histograms in Figure 6, as well as the limited total range. Even for n= 50,
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most total costs of the estimated policies fall within 10% of the total cost of the converged

optimal policy, with no cases off by more than 25%. Nevertheless, there is a non-negligible

distribution past zero, and this justifies the need for upper bounds on the expected total

cost (recall that in practice, the DM would not know the distributions in Figure 6, but can

compute the theoretical upper bounds using in-sample data).

(a) Uncensored data results

n Exp.
total
cost (est.
policy)

Exp. to-
tal cost
(opt.
policy)

% diff. 95th perc.
total cost
diff. (Diff)

Theoretical
Upper
Bound
(UB)

Diff/UB

50 31.04 30.86 0.6% 3.91 8.52 45.9%
100 30.98 30.86 0.4% 2.98 6.02 49.5%
200 30.91 30.86 0.2% 2.05 4.26 48.1%

(d) Censored data results (r= 0.5,x= [50,50,50])

n Exp.
total
cost (est.
policy)

Exp. to-
tal cost
(opt.
policy)

% diff. 95th perc.
total cost
diff. (Diff)

Theoretical
Upper
Bound
(UB)

Diff/UB

50 31.20 30.86 1.1% 5.46 10.30 53.0%
100 31.05 30.86 0.6% 4.29 7.28 58.9%
200 30.95 30.86 0.3% 2.97 5.15 57.7%

Table 1: Left: Expected total cost of the estimated policies versus the expected total cost
of the optimal policy. Right: 95th percentile of the total cost difference of 100 independent
estimated policies versus the theoretical upper bound on the expected total cost from The-
orem 6, using 95th percentile on estimated St, t= 1, . . . , T . See Sec. 6.3 for details on the
computations.

7. Conclusion

Confidence intervals provide important information for decision-makers, but has been

largely ignored in the operations management literature. In this paper, we address this

gap by investigating both finite-sample and asymptotic behaviors of data-driven dynamic

inventory policies, for both uncensored and censored demand data settings. We first show

that appropriate estimation procedures yield consistent estimators of the optimal (St, st)
T
t=1

policy. We then explore the finite-sample precision of the estimated policies by using CLT

analysis for M-estimators. We further derived an upper bound on the expected total cost



Ban: Confidence Intervals for Data-driven Inventory Policies

28 Article submitted to Operations Research; manuscript no.

(a)

(b)

Figure 6: Histograms of the 100 absolute relative differences in the total cost of the estimated
policy from the optimal policy, computed by averaging over 500 iid out-of-sample demand
paths for (a) uncensored data case and (b) censored data case, where r= 0.5,x= [50,50,50].

of an estimated policy, which can use the asymptotic confidence intervals as inputs. All our

theoretical results are numerically validated on simulated data.

A key direction for follow-up work is to relax the assumption that the demands are

independently distributed across time. This is clearly not the case in real-life as past sales

influence future sales through network effects. To analyze this setting, one would need to

combine CLT results for non-iid data with M-estimation.

Another direction for follow-up work is in developing efficient algorithms to solve the

estimation problems in full generality. As mentioned in the main text, we believe the algo-

rithms in Levi and Shi (2013), Bollapragada and Morton (1999), Cheung and Simchi-Levi

(2019), Federgruen and Zipkin (1984), Zheng and Federgruen (1991) could provide useful

starting points.

Finally, we mention that implementing decision-support tools that show confidence inter-

vals in practice, and evaluating the value of this extra information in real-life decison-making

would form an important study that bridges the gap between theory and practice.
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Electronic Companion to “Confidence Intervals for

Data-driven Inventory Policies with Demand Censoring”

Appendix A: Proofs of results in Section 3

A.1. Lemma EC.1

First, we need the following technical lemma on the uniform convergence of the Ĝt(·) function.

Lemma EC.1 (Uniform convergence of Ĝt(·)). As n→∞, sup
y∈[It,D̄]

|Ĝt(y)−Gt(y)| P→ 0 for all

t= 1, . . . , T .

Proof. We prove the statement inductively, starting at t= T and working backwards.

Step 1. For t= T , this is true because for all y1, y2 ∈ [D,D̄] we have

|gT (d;y1)− gT (d;y2)| ≤ (ct + (b∨h))|y1− y2|, (EC.1)

i.e., the function gT (d; ·) is Lipschitz with an integral coefficient. One can then show that the

class of functions GT = {gT (·;y)|y ∈ [D,D̄]} has a finite bracketing number N[ ](ε,GT ,L1(P )) for

every ε > 0. Then by Theorem 19.4 of Van der Vaart (2000), GT is PT -Glivenko-Cantelli, i.e.,

supy∈[D,D̄] |n−1
∑n

i=1 gT (diT ;y)−ET gT (DT ;y)| → 0 almost surely.

Step 2. Assume sup
y∈Y
|Ĝτ (y)−Gτ (y)| P→ 0 for some 1≤ τ ≤ T .

Step 3. For 1≤ t≤ τ − 1, let us first define

G̃t(y) = (1−αt)cty+ Êt[Ct(y,Dt)] +αtctÊt[Dt]

+αtGt+1(st+1)Êt[It(y− st+1)] +αtÊt[Gt+1(y−Dt)Ict(y− st+1)] (EC.2)

In other words, G̃t is the same as Ĝt, except that any portion that depends on data in the future

is replaced by the corresponding true value.

We have |Ĝt(y)−Gt(y)| ≤ |Ĝt(y)− G̃t(y)|
(A)

+ |G̃t(y)−Gt(y)|
(B)

, and we proceed to bound the two

terms on the RHS separately.

For term (A) we have the following:

|Ĝt(y)− G̃t(y)| ≤ αt|Ĝt+1(Ŝt+1)Êt [̂It(y− ŝt+1)]−Gt+1(St+1)Êt[It(y− st+1)]| (Aa)

+αtK|Êt [̂It(y− ŝt+1)]− Êt[It(y− st+1)]| (Ab)

+αt|Êt[Ĝt+1(y−Dt)Îct(y− ŝt+1)]− Êt[Gt+1(y−Dt)Ict(y− st+1)]| (Ac)

We can bound (Aa) by:

|Ĝt+1(Ŝt+1)Êt [̂It(y− ŝt+1)]−Gt+1(St+1)Êt[It(y− st+1)]|
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≤ |Ĝt+1(Ŝt+1)Êt [̂It(y− ŝt+1)]− Ĝt+1(Ŝt+1)Et [̂It(y− ŝt+1)]| (Aa-1)

+ |Ĝt+1(Ŝt+1)Et [̂It(y− ŝt+1)]−Gt+1(St+1)Et [̂It(y− ŝt+1)]| (Aa-2)

+ |Gt+1(St+1)Et [̂It(y− ŝt+1)]−Gt+1(St+1)Êt [̂It(y− ŝt+1)]| (Aa-3)

+ |Gt+1(St+1)Êt [̂It(y− ŝt+1)]−Gt+1(St+1)Êt[It(y− st+1)]|. (Aa-4)

The terms (Aa-1) and (Aa-3) converge uniformly on y ∈ [D,D̄] by the Glivenko-Cantelli Theorem;

the term (Aa-2) by CMT, the induction hypothesis that Ĝt+1→Gt+1 uniformly, and since Êt [̂It(y−

ŝt+1)] can be bounded by 1; and the term (Aa-4) converges uniformly on y ∈ [D,D̄] because

|Êt [̂It(y− ŝt+1)]− Êt[It(y− st+1)]|= 1

n

n∑
i=1

|I(y≤ dit + ŝt+1]− I(y≤ dit + st+1]|

=
1

n

n∑
i=1

I(y ∈ [dit + min(ŝt+1, st+1), dit + max(ŝt+1, st+1)]);

since ŝt+1 → st+1 as nt+1 →∞ by the induction hypothesis, ŝt+1 and st+1 can be made arbi-

trarily close; now assume nt+1 is large enough (nt+1 > Nt+1 = Nt+1(n)) such that the intervals

[dit + min(ŝt+1, st+1), dit + max(ŝt+1, st+1)], i= 1, . . . , n do not overlap; then, the above expression is

bounded by n−1, which converges to zero as n→∞.

We can bound (Ab) by the same argument as for (Aa-4), and for (Ac) we have:

|Êt[Ĝt+1(y−Dt)Îct(y− ŝt+1)]− Êt[Gt+1(y−Dt)Ict(y− st+1)]| (EC.4)

≤ |Êt[Ĝt+1(y−Dt)Îct(y− ŝt+1)]− Êt[Gt+1(y−Dt)Îct(y− ŝt+1)]| (EC.5)

+ |Êt[Gt+1(y−Dt)Îct(y− ŝt+1)]− Êt[Gt+1(y−Dt)Ict(y− st+1)]|, (EC.6)

where the first term converges to zero uniformly on y ∈ [D,D̄] by the induction hypothesis (and by

bounding the term Îct(y − st+1) by 1) and the second term by an argument similar to (Aa-4), by

first bounding the common term Gt+1(y −Dt) by an upper bound Ḡt+1 on Gt+1(·), which exists

because Gt+1 is continuous with a bounded domain.

For term (B) we have:

|G̃t(y)−Gt(y)| ≤ |Êt[Ct(y,Dt)]−Et[Ct(y,Dt)]| (Ba)

+αtct|Êt[Dt]−Et[Dt]|+αt(Gt+1(St+1 +K)|Êt[It(y− st+1)]−Et[It(y− st+1)]|

(Bb)

+αt|Êt[Gt+1(y−Dt)Ict(y− st+1)]−Et[Gt+1(y−Dt)Ict(y− st+1)])|. (Bc)

The term (Ba) converges uniformly on y ∈ [D,D̄] by the same argument as showing uniform conver-

gence of ĜT (·) in Step 1 of the induction; and for (Bb) and (Bc) we can apply the Glivenko-Cantelli

Theorem (for term (Bc) we bound the common term Gt+1(y−Dt) by Ḡt+1). �
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A.2. Proof of Theorem 1

The theory of M-estimation concerns the following scenario. Consider the parametric function mθ :

X 7→ R̄, where θ is a parameter chosen from Θ, and X is a subset of the Euclidean space. We

are interested in finding the parameter θ∗ that maximizes (for minimization, we can use −mθ

instead) the expected value of this functionM(θ) = Emθ(X), where X is drawn from the probability

space (Ω,F , P ). In the absence of the true distributional knowledge, but in the presence of iid

observations X1, . . . ,Xn, one can estimate θ∗ by minimizing instead the empirical functionMn(θ) =

n−1
∑n

i=1mθ(Xi). Of central importance is whether the solution (or, a near-optimal solution) to

the empirical problem is consistent, i.e., whether it converges to the true optimal as the number

of observations tend to infinity. Theorem 5.7 in Van der Vaart (2000) provides sufficient conditions

for asymptotic consistency, which we show are satisfied by our problem.

To prove the consistency of (ŝt)
T
t=1, we make use of Theorem 2 from Lecture 15 of Bartlett (2013)

for Z-estimators (“Z” meaning that the quantity of estimation interest is the zero of a function).

We now prove Theorem 1.

Step 1. Consistency of (ŝT , ŜT ):

1. ŜT
P→ ST : ŜT is the empirical quantile of P̂n at level (b− ct)/(b+ h) so ŜT

P→ ST follows from

the Glivenko-Cantelli Theorem (which is in fact a stronger, almost-sure consistency result).

2. ŝT
P→ sT : Let Ψ(y) =GT (y)−GT (ST )−K and Ψn(y) = ĜT (y)− ĜT (ŜT )−K. By definition,

the solution to Ψ(y) = 0, sT , is unique, so the second condition of Theorem 2 of Bartlett

(2013) Lecture 15 is satisfied. Also, the Algorithm solves for ŝT to an arbitrary accuracy, so

the near-zero assumption is also satisfied. For the first condition we have:

|Ψn(y)−Ψ(y)|= |ĜT (y)−GT (y)− (ĜT (ŜT )−GT (ST ))|

≤ |ĜT (y)−GT (y)|+ |ĜT (ŜT )−GT (ŜT )|+ |GT (ŜT )−GT (ST )|,

by adding and subtracting the term ĜT (ŜT ) and employing the triangle inequality. Now we

have already shown that the first two terms converge uniformly to zero in y. The last term

converges to zero (uniformly on Y) by CMT, since ŜT
P→ ST and GT (·) is continuous. Hence

we have ŝt→ sT by Theorem 2 of Bartlett (2013) Lecture 15.

Step 2. Induction hypothesis: assume supy∈Y |Ĝτ (y)−Gτ (y)| P→ 0 and (ŝτ , Ŝτ )
P→ (sτ , Sτ ) as

n→∞.

Step 3. Consistency of (Ŝt, ŝt)
T
t=1 for 1≤ t < τ :

1. Ŝt
P→ St: We can compute Ŝt to an arbitrary accuracy so it is a near-optimal minimizer of

Ĝt. Also, we have supy∈[D,D̄] |Ĝt(y)−Gt(y)| P→ 0 by Lemma EC.1, and by assumption (ID),

Theorem 5.7 in Van der Vaart (2000) applies and we can conclude Ŝt
P→ St.

2. ŝt
P→ st: Let Ψ(y) =Gt(y)−Gt(St)−K and Ψn(y) = Ĝt(y)− Ĝt(Ŝt)−K. By definition, the

solution to Ψ(y) = 0, st, is unique, so the second condition of Theorem 2 from Lecture 15
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of Bartlett (2013) is satisfied. Also, since we can solve for ŝt to an arbitrary accuracy, the

near-zero assumption is also satisfied. For the first condition we have:

|Ψn(y)−Ψ(y)| ≤ |Ĝt(y)−Gt(y)|+ |Ĝt(Ŝt)−Gt(Ŝt)|+ |Gt(Ŝt)−Gt(St)|,

by adding and subtracting the term ĜT (ŜT ) and employing the triangle inequality. Now by

Lemma EC.1, we have already shown that the first two terms converge uniformly to zero in

y. The last term converges to zero (uniformly on Yt) by CMT, since ŜT
P→ ST and Gt(·) is

continuous. Hence we have ŝt→ st by Theorem 2 from Lecture 15 of Bartlett (2013). �

A.3. Proof of Theorem 2

We have

1

n

∑
i∈J

gt(d̆
i
t;y) =

1

n

∑
i∈J

gt(d̄
1
t ;y)I(dit ≥ xt) +

1

n

∑
i∈J

gt(d
i
t;y)I(dit <xt)

P→ rgt(E[Dt|Dt ≥ xt];y)P(Dt ≥ xt) + rE[gt(Dt;y)I(Dt <xt)] 6= rE[gt(Dt;y)]

because in the first term of the third line, d̄1
t

P→E[Dt|Dt ≥ xt] by the Weak Law of Large Numbers

(WLLN), which means gt(d̄1
t ;y)

P→ gt(E[Dt|Dt ≥ xt];y) by CMT, and this together with Portman-

teau lemma and WLLN on the average of the indicators n−1
∑

i∈J I(Dt ≥ xt) gives the first limit,

and the second term of the third line tends to rE[gt(Dt;y)I(Dt ≥ xt)] in probability by WLLN.

Hence the objective function for S̆t and the governing equation for s̆t do not converge to the

objective function for St and the governing equation for st. Inconsistency then follows. �

A.4. Proof of Theorem 3

It suffices to show that Condition 1 of Theorem 5.7 in Van der Vaart (2000) is satisfied by G̃t(y),

i.e., supy∈Yt |G̃t(y)−Gt(y)| P→ 0.We have |G̃t(y)−Gt(y)| ≤ |G̃t(y)− Ĝt(y)|+ |Ĝt(y)−Gt(y)|, where

the second term goes to zero in probability by Lemma EC.1. The first term is

|G̃t(y)− Ĝt(y)| ≤

∣∣∣∣∣ 1n∑
i∈J

g̃t(y)I(dit ≥ xt)− |J |E[gt(y,Dt)I(Dt ≥ xt)]

∣∣∣∣∣
+

∣∣∣∣∣ 1n∑
i∈J

gt(y, d
i
t)− |J |E[gt(y,Dt)I(Dt ≥ xt)]I(dit ≥ xt)

∣∣∣∣∣ .
Now Yt is bounded, both Γ1(y, d) = g̃t(y)I(d≥ xt) and Γ2(y, d) = gt(y, d) are continuous at each y

for almost all d ∈ [D,D̄], and are measurable functions of d at each y. Furthermore, both Γ1(·, ·)

and Γ2(·, ·) are bounded, continuous functions over a bounded domain for both arguments, so can

be upper bounded by a constant. In all, this means that the Uniform Law of Large numbers applies

to both n−1
∑

i∈J g̃t(y)I(dit ≥ xt) and n−1
∑

i∈J gt(y, d
i
t), hence supy∈Yt |G̃t(y)− Ĝt(y)| P→ 0, and we

have the desired result. �
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Appendix B: Proofs of results in Section 4

B.1. Proof of Theorem 4

We make use of Theorem 5.23 of Van der Vaart (2000) and Theorem 2 from Lecture 17 of Bartlett

(2013). To apply Theorem 5.23 of Van der Vaart (2000) for the asymptotics of Ŝt, we need the

following technical lemma.

Lemma EC.2. For every y1, y2 in a neighborhood of St, there exists a measurable function ḣt :

[D,D̄] 7→R with Etḣ2
t (Dt)<∞ such that

|gt(y1, d)− gt(y2, d)| ≤ ḣt(d)|y1− y2| (EC.8)

for all t= 1, . . . , T , where gt(·, ·) is defined (6) for 1≤ t≤ T .

Proof of Lemma EC.2:

Step 1. t =T: For t= T , it is straight-forward to show that

|gT (y1, d)− gT (y2, d)| ≤ ct|y1− y2|+ (bT ∨hT )|y1− y2|,

hence the Lipschitz property (EC.8) holds with ḣT (d) = ct + (bT ∨hT ).

Step 2. Induction hypothesis: assume the Lipschitz property (EC.8) holds with ḣτ (d) = (1−

αt)ct + (bτ ∨hτ ) +αt|Eτ+1ḣτ+1(Dτ+1)|, for some 1≤ τ ≤ T − 1.

Step 3. t = τ −1: Observe

|gt(y1, d)− gt(y2, d)| ≤ (1−αt)ct|y1− y2|+ (bt ∨ht)|y1− y2|

+αtGt+1(st+1)|I(y1− st+1 ≤ d)− I(y2− st+1 ≤ d)|

+αt|Gt+1(y1− d)I(y1− st+1 >d)−Gt+1(y2− d)I(y2− st+1 >d)|.

Without loss of generality, assume y1 < y2. Then

|I(y1− st+1 ≤ d)− I(y2− st+1 ≤ d)|= I(y1 ≤ d+ st+1 ≤ y2).

We consider three cases: St <D+ st+1, D+ st+1 ≤ St ≤ D̄+ st+1, and St ≥ D̄+ st+1.

Case I: St <D+ st+1. In this case, there exists a neighbourhood Nt of St such that y <D+ st+1

for all y ∈Nt. If y1 and y2 are in this neighborhood, we have I(y1− st+1 ≤ d) = I(y2− st+1 ≤ d) = 1

and I(y1− st+1 >d) = I(y2− st+1 >d) = 0.

Case II: D+ st+1 ≤ St ≤ D̄+ st+1. In this case, for any y1, y2 ∈ [D+ st+1, D̄+ st+1],

sup
Dt∈[D,D̄]

I(y1 ≤ d+ st+1 ≤ y2) = 1.

and

sup
Dt∈[D,D̄]

|Gt+1(y1− d)I(y1 >d)−Gt+1(y2− d)I(y2 >d)|=Gt+1(y2−D∗),
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where D∗ is some number such that y1 − st+1 <D∗ < y2 − st+1. Thus for any neighborhood of St
in the same range,

αt|Gt+1(st+1)(I(y1− st+1 ≤ d)− I(y2− st+1 ≤ d))

+Gt+1(y1− d)I(y1− st+1 >d)−Gt+1(y2− d)I(y2− st+1 >d)| ≤ αt|Et+1ḣt+1(Dt+1)||y1− y2|

since y1−D∗ < st+1 in the neighborhood of consideration and because, by the K-convexity of the

Gt+1 function, any point to the left of the cutoff level st+1 is necessarily larger than Gt+1(st+1) by

Lemma 4.2.1 of Bertsekas (1995).

Case III: St ≥ D̄+ st+1. In this case, there exists a neighborhood Nt of St such that y > D̄+ st+1

for all y ∈Nt. In this neighborhood Nt, I(y1− st+1 ≤ d) = I(y2− st+1 ≤ d) = 0 for all y1, y2 ∈Nt and
we also have I(y1− st+1 >d) = I(y2− st+1 >d) = 1. Furthermore, noting that Gt(y) = Et[gt(y)], we

have

|Gt+1(S1− d)I(y1− st+1 >d)−Gt+1(y2− d)I(y2− st+1 >d)| ≤ |Et+1ḣt+1(Dt+1)||y1− y2|. �

We now prove the main result by induction.

Step 1. Asymptotic normality of (ŝT , ŜT ):

1. Asymptotic normality of ŜT : It is clear that d 7→ gT (S,d) is measurable for each S ∈YT and the

map S 7→ gT (S,DT ) differentiable at ST for P-a.s. DT (it is differentiable everywhere except

at ST =DT , which has mass zero since we assume the demand is continuous). The derivative

with respect to the first argument is given by:

d

dy
gT (y, d) = ġT (y, d) = ct− bT I(d− y > 0) +hT I(d− y < 0), (EC.9)

where dom(ġT ) =YT\{DT}. Condition 2 of Theorem 4 is satisfied due to (EC.1), Condition 3

by Theorem 1 and since ST is the exact minimizer of ĜT (·). Finally, let the pdf of the demand

at time T be fT . Then

d

dy
ET gT (y,DT ) = ctETDT − bT

∫ D̄T

y

fT (x)dx+hT

∫ y

DT

fT (x)dx

=⇒ d2

dy2
ET gT (y,DT ) = (bT +hT )fT (y).

We thus have
√
n(ŜT −ST )⇒N (0, σ2

T ), where

σ2
T =

ET [ct− bT I(DT >ST ) +hT I(DT <ST )]2

[(bT +hT )fT (ST )]2
. (EC.10)

2. Asymptotic normality of ŝT : Let Ψ(y) =GT (y)−GT (ST )−K and Ψn(y) = ĜT (y)− ĜT (ŜT )−
K as before, and ψ(y, d) = gT (y, d)−gT (ST , d)−K and ψn(y, d) = ĝT (y, d)− ĝT (ŜT , d)−K. We

have that ŝt is a near zero of Ψn(y) = n−1
∑n

i=1 ψ̂n(y, diT ), Eψ(sT ,DT )2 exists and Eψ̇(sT ,DT )

exists and is equal to

Eψ̇(sT ,DT ) = EġT (sT ,DT ) = ct− bTP(DT > sT ) +hTP(DT < sT ),
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which is non-zero by assumption. Finally, we have ψ̈(y, d) = g̈T (y, d) = (bT +hT )fT (y), and this

is bounded (in probability) for all y ∈ YT . Thus all conditions of Theorem 2 from Lecture 17

of Bartlett (2013) are satisfied and together with the consistency result Theorem 1, we have
√
n(ŝT − sT )⇒N (0, ρ2

T ) where

ρ2
T =

E[gT (sT ,DT )− gT (ST ,DT )−K]2

[ct− bTP(DT > sT ) +hTP(DT < sT )]2
. (EC.11)

Step 2. Induction hypothesis: assume
√
n(Ŝτ −Sτ )⇒N (0, σ2

τ ) and
√
n(ŝτ − st)⇒N (0, ρ2

τ ) as

n→∞ for some 1≤ τ ≤ T − 1.

Step 3. Asymptotic normality of (Ŝt, ŝt)
T
t=1, t≤ T − 1: Recall

gt(y, d) = (1−αt)cy+ bt(d− y)+ +ht(y− d)+ +αtcd+αtGt+1(st+1)It(y− st+1)

+αtGt+1(y− d)Ict(y− st+1).

1. Asymptotic normality of Ŝt: It is clear that for each y ∈Y, Dt 7→ gt(Dt;y) is measurable such

that y 7→ gt(Dt;y) is differentiable at St for Pt-a.s. Dt because the number of non-differentiable

points are finite. The derivative with respect to the first argument is given by

d

dy
gt(y, d) = (1−αt)ct− btI(d− y > 0) +htI(y− d> 0)−αtGt+1(st+1)δ(y− st+1− d)

+αtGt+1(y− d)δ(y− st+1− d) +αtĠt+1(y− d)Ict(y− st+1), (EC.12)

where δ(·) is the Dirac delta function, defined by

δ(z) =

+∞ if y= 0

0 otherwise.

Condition 2 of Theorem 5.23 of Van der Vaart (2000) is satisfied due to Proposition EC.2,

and Condition 3 is satisfied trivially. Hence

d

dy
Etgt(y,Dt) = (1−αt)ct− bt

∫ D̄t

y

ft(x)dx+ht

∫ y

Dt

ft(x)dx+αtEt[Ġt+1(y−Dt)Ict(y− st+1)]

=⇒ d2

dy2
Etgt(y,Dt) = (bt +ht)ft(y) +αtĠt+1(st+1) +αtEt[G̈t+1(y−Dt)Ict(y− st+1)],

and we conclude
√
n(Ŝt−St)⇒N (0, σ2

t ), where σ2
t is given by (8).

2. Asymptotic normality of ŝt: Let Ψ(y) =Gt(y)−Gt(St)−K and Ψn(y) = Ĝt(y)− Ĝt(Ŝt)−K
as before, and ψ(y) = gt(y)− gt(St)−K and ψn(y) = ĝt(y)− ĝt(Ŝt)−K. Then by Theorem 2

from Lecture 17 of Bartlett (2013) and Theorem 1 and arguments similar to the t= T case,
√
n(ŝt− st)⇒N (0, ρ2

t ), where ρ2
t is given by (9). �

B.2. Proof of Theorem 5

For the censored demand data case, we cannot use asymptotic results of M- and Z-estimators as

we did for Theorem 4 because M- and Z- estimators assume iid data. Specifically, the asymptotic
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normality result of M-estimators (stated as Theorem 5.23 of Van der Vaart (2000)), breaks down

for S̃t because the normalized sum in the statement

√
n(S̃t−St) =−V1(St)

−1 1√
n

n∑
i=1

η1
t (St, d

i
t) + oP (1) (EC.13)

where

η1
t (y, d) =

d

dy
g̃t(y, d) = ˙̃gt(y, d), (EC.14)

with g̃t(y, d) defined in (7), and

V1(y) =
d2

dy2
E[gt(y,Dt)], (EC.15)

consists of terms η1
t (St, d

i
t) that are correlated with each other, and Theorem 5.23 of Van der Vaart

(2000) relies on the standard CLT for normalized average of iid terms. Likewise, the asymptotic

normality result of Z-estimators (see Lecture 17 of Bartlett (2013)), breaks down for s̃t because the

normalized sum in the statement

√
n(s̃t− st) =

− 1√
n

∑n

i=1 η
2
t (st, d

i
t)

1
n

∑n

i=1 η̇
2
t (st, dit) + oP (1)

, (EC.16)

where η2
t (y, d) = g̃t(y, d)− g̃t(St, d)−K consists of terms η2

t (St, d
i
t) that are correlated with each

other.

Thus the key to proving Theorem 5 is in extending M- and Z-estimator results to handle correlated

data. In what follows, we rely on Stein’s method (Stein 1972) for establishing Guassian limit results.

In particular, we use one of the main theorems from Chatterjee (2014) to prove technical lemmas

Lemmas EC.3 and EC.4, which state asymptotic normality of normalized sums of dependent random

variables that arise in Eqs. (EC.13)-(EC.16). The proofs of Lemmas EC.3 and EC.4 can be found

in the following subsections.

Lemma EC.3. Let

W 1
t (y) =

√
n

1
n

∑n

i=1 η
1
t (y,Di

t)− µ̃t,1(y)

σ̃t,1(y)
, (EC.17)

where η1
t (·, ·) is as defined in (EC.14), µ̃t,1(y) = Eġt(y,Dt), and

σ̃2
t,1(y) = V ar(ġt(y,Dt)) +

r(1 + pt)

pt
[Eġt(y,Dt)I(Dt ≥ xt)]2 +

r2

(1− r)
V ar (ġt(y,Dt)I(Dt ≥ xt))

− 2r[Eġt(y,Dt)I(Dt ≥ xt)]Eġt(y,Dt)

Then W 1
t (y) converges in distribution to the standard normal as n tends to infinity.

Lemma EC.4. Let

W 2
t (y) =

√
n

1
n

∑n

i=1 η
2
t (y,Di

t)− µ̃t,2(y)

ρ̃t,1(y)
, (EC.18)
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where η2
t (y, d) = g̃t(y, d)− g̃t(St, d)−K, µ̃t,2(y) = E[gt(y,Dt)− gt(St,Dt)−K], and

ρ̃2
t,1(y) = V ar (gt(y,Dt)− gt(St,Dt)−K) +

r(1 + pt)

pt
[E(gt(y,Dt)− gt(St,Dt)−K)I(Dt ≥ xt)]2

+
r2

1− r
V ar ((gt(y,Dt)− gt(St,Dt)−K)I(Dt ≥ xt))

− 2rE [(gt(y,Dt)− gt(St,Dt)−K)I(Dt ≥ xt)]E [gt(y,Dt)− gt(St,Dt)−K] .

Then W 2
t (y) converges in distribution to the standard normal as n tends to infinity.

The statement of Theorem 5 follows from combining the results of Lemmas EC.3 and EC.4 with

the proof of Theorem 4 (asymptotic normality in the uncensored data case), and using the fact that

E[gt(st,Dt)− gt(St,Dt)−K] equals zero by definition of st. �

B.3. Proof of Lemma EC.3

Let

W̃ 1
t (y) =

√
n

1
n

∑n

i=1 η
1
t (y,Di

t)− µ̃t,n(y)

σ̃t,n(y)
, (EC.19)

where µ̃t,1 and σ̃t,1 in W 1
t have been replaced by finite-sample versions µ̃t,n and σ̃t,n.

Fix y ∈ Y and let Dt = {D1
t , . . . ,D

n
t } and f : [D,D̄]n → R be a measurable function such

that W̃ 1
t (y) = f(Dt). Note that in our setup, W̃ 1

t (y) has been standardized: EW̃ 1
t (y) = 0 and

V ar(W̃ 1
t (y)) = 1. Also let D′t = {D′1t , . . . ,D′nt } be an independent copy of Dt, [n] = {1, . . . , n} and

for each A⊂ [n], define the random vector DA
t as

DA
t,i =

D
′i
t if i∈A

Di
t if i /∈A.

For simplicity, if A is a singleton such as {i}, then we write Di
t. Similarly, write A ∪ i instead of

A∪{i}. Define ∆if := f(D)− f(Di) and for each A⊂ [n] and i /∈A, let ∆if
A := f(DA)− f(DA∪i).

Finally, let

T :=
1

2

n∑
i=1

∑
A⊂[n]\{i}

1

n
(
n−1
|A|

)∆if∆if
A.

Then Theorem 3.1 of Chatterjee (2014) states that

sup
t∈R
|P(W̃ 1

t (y)≤ t)−P(Z ≤ t)| ≤ 2

(√
V ar(E(T |W 1

t (y))) +
1

4

n∑
i=1

E|∆if |3
)1/2

.

In our setup, we have

σ̃t,n(y)√
n

∆if =
1

n
( ˙̃gt(y,D

i
t)− ˙̃gt(y, (D

′
t)
i)) =⇒ ∆if =

1

σ̃t,n(y)
√
n

( ˙̃gt(y,D
i
t)− ˙̃gt(y, (D

′
t)
i))

and for all subset A⊂ [1, . . . , n]\{i}, we can show ∆Af = ∆if . Hence

T =
1

2n

n∑
i=1

(∆if)2 =
1

2σ̃2
t,1(y)n2

n∑
i=1

[ ˙̃gt(y,D
i
t)− ˙̃gt(y,D(′t)

i)]2
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which gives

V ar[E(T |W̃ 1
t (y))]≤ V ar[E(T |Dt)]

≤ V ar

(
1

2σ̃2
t,n(y)n2

n∑
i=1

[ ˙̃gt(y,D
i
t)

2− 2 ˙̃gt(y,D
i
t)E ˙̃gt(y, (D

′
t)
i) +E[ ˙̃gt(y, (D

′
t)
i)2]]

)

=
1

4σ̃t,n(y)4n4
V ar

(
n∑
i=1

[ ˙̃gt(y,D
i
t)

2− 2 ˙̃gt(y,D
i
t)E ˙̃gt(y, (D

′
t)
i)]

)

=
1

4σ̃t,n(y)4n4
V ar

(
n∑
i=1

[ ˙̃gt(y,D
i
t)

2− 2 ˙̃gt(y,D
i
t)E ˙̃gt(y, (D

′
t)
i)]

)

=
1

4σ̃t,n(y)4n4
V ar

(∑
i∈J

ΓiI(Di
t ≥ xt) +

∑
i∈J

ΓiI(Di
t <xt) +

∑
i∈J c

Γi

)

=
1

4σ̃t,n(y)4n4

[∑
i∈J

V ar
(
ΓiI(Di

t ≥ xt)
)

+
∑
i∈J

V ar
(
ΓiI(Di

t <xt)
)

+
∑
i∈J c

V ar (Γi)

+2Cov

(∑
i∈J

V ar
(
ΓiI(Di

t ≥ xt)
)
,
∑
i∈J c

V ar (Γi)

)]

=
1

n2

(
C1,1

n
+C1,2

)
,

where Γi = ˙̃gt(y,D
i
t)

2 − 2 ˙̃gt(y,D
i
t)E ˙̃gt(y, (D

′
t)
i), and C1,1 and C1,2 are appropriately matched con-

stants. We also have

1

4

n∑
i=1

E|∆if |3 =
1

4σ̃t,n(y)3
√
n
E| ˙̃gt(y, dit)− ˙̃gt(y, (d

i
t)
′)|3 =

C2√
n
,

thus

sup
x∈R
|Pt(W̃ 1

t ≤ x)−P(Z ≤ x)| ≤

(
1

n

√
C1,1

n
+C1,2 +

C2√
n

)1/2

.

Furthermore, |W 1
t − W̃ 1

t |= oP (1) by construction, so the conclusion follows.

Variance computation:

σ̃2
t,n(y) = V ar

(
1√
n

n∑
i=1

˙̃gt(y,D
i
t)

)

=
1

n
V ar

(∑
i∈J

˙̄gt(y)I(Di
t ≥ xt) +

∑
i∈J

ġt(y,D
i
t)I(Di

t <xt) +
∑
i∈J c

ġt(y,D
i
t)

)

=
1

n
V ar

(∑
i∈J

[ ˙̄gt(y)− ġt(y,Di
t)]I(Di

t ≥ xt) +

n∑
i=1

ġt(y,D
i
t)

)

= V ar(ġt(y,Dt)) +
1

n
V ar

(∑
i∈J

[ ˙̄gt(y)− ġt(y,Di
t)]I(Di

t ≥ xt)

)

+
2

n
Cov

(∑
i∈J

[ ˙̄gt(y)− ġt(y,Di
t)]I(Di

t ≥ xt),
n∑
i=1

ġt(y,D
i
t)

)
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= V ar(ġt(y,Dt)) +
1

n
V ar

(∑
i∈J

˙̄gt(y)I(Di
t ≥ xt)

)
+

1

n
V ar

(∑
i∈J

ġt(y,D
i
t)I(Di

t ≥ xt)

)

− 2

n
Cov

(∑
i∈J

˙̄gt(y)I(Di
t ≥ xt),

∑
i∈J

ġt(y,D
i
t)I(Di

t ≥ xt)

)

+
2

n
Cov

(∑
i∈J

˙̄gt(y)I(Di
t ≥ xt),

n∑
i=1

ġt(y,D
i
t)

)
− 2

n
Cov

(∑
i∈J

ġt(y,D
i
t)I(Di

t ≥ xt),
n∑
i=1

ġt(y,D
i
t)

)

= V ar(ġt(y,Dt)) +
1

n
V ar

(∑
i∈J

˙̄gt(y)I(Di
t ≥ xt)

)
+

1

n
V ar

(∑
i∈J

ġt(y,D
i
t)I(Di

t ≥ xt)

)

− 2|J |
n

E[ ˙̄gt(y)]Cov (I(Dt ≥ xt), ġt(y,Dt)I(Dt ≥ xt))

+
2

n
Cov

(∑
i∈J

˙̄gt(y)I(Di
t ≥ xt),

∑
i∈J

ġt(y,D
i
t)

)
+

2

n
Cov

(∑
i∈J

˙̄gt(y)I(Di
t ≥ xt),

∑
i∈J c

ġt(y,D
i
t)

)

− 2

n
Cov

(∑
i∈J

ġt(y,D
i
t)I(Di

t ≥ xt),
∑
i∈J

ġt(y,D
i
t)

)

= V ar(ġt(y,Dt)) +
|J |pt(1− pt)

n
[E ˙̄gt(y)]2 +

|J |2p2
t

n
V ar ( ˙̄gt(y)) +

|J |pt(1− pt)
n

V ar ( ˙̄gt(y))

+
|J |
n
V ar (ġt(y,Dt)I(Dt ≥ xt))

− 2|J |
n

E[ ˙̄gt(y)]E[ġt(y,Dt)I(Dt ≥ xt)] +
2|J |pt
n

E[ ˙̄gt(y)]E[ġt(y,Dt)I(Dt ≥ xt)]

+
2|J |
n

E[ ˙̄gt(y)]Cov (I(Dt ≥ xt), ġt(y,Dt)) +
2|J |pt
n

Cov

(
˙̄gt(y),

∑
i∈J c

ġt(y,D
i
t)

)

− 2|J |
n

Cov (ġt(y,Dt)I(Dt ≥ xt), ġt(y,Dt))

= V ar(ġt(y,Dt)) + rpt(1− pt)[E ˙̄gt(y)]2 + rpt (rptn+ (1− pt))V ar ( ˙̄gt(y)) + rV ar (ġt(y,Dt)I(Dt ≥ xt))

+ 2rptE[ ˙̄gt(y)]E[ġt(y,Dt)I(Dt ≥ xt)]− 2rptE ˙̄gt(y)Eġt(y,Dt) + 2rptCov

(
˙̄gt(y),

∑
i∈J c

ġt(y,D
i
t)

)
− 2rE[ġt(y,Dt)

2I(Dt ≥ xt)] + 2rEġt(y,Dt)E[ġt(y,Dt)I(Dt ≥ xt)].

Now

˙̄gt(y) =

∑
j∈J c ġt(y,D

j
t )I(Dj

t ≥ xt)∑
j∈J c I(Dj

t ≥ xt)
=
Rn
pt

∑
j∈J c ġt(y,D

j
t )I(Dj

t ≥ xt)
(1− r)n

,

where

Rn :=
pt(1− r)n∑

j∈J c I(Dj
t ≥ xt)

.

The random variable Rn tends to 1 as n tends to infinity, so we have

lim
n→∞

˙̄gt(y) =
1

pt
E[ġt(y,Dt)I(Dt ≥ xt)],



ec12 e-companion to Ban: Confidence Intervals for Data-driven Inventory Policies

and

lim
n→∞

nV ar( ˙̄gt(y)) = lim
n→∞

1

(1− r)2p2
tn

E

(∑
j∈J c

ġt(y,D
j
t )I(Dj

t ≥ xt)−E[ġt(y,D
j
t )I(Dj

t ≥ xt)]

)2

=
1

(1− r)p2
t

V ar(ġt(y,Dt)I(Dt ≥ xt)).

We also have

lim
n→∞

Cov

(
˙̄gt(y),

∑
i∈J c

ġt(y,D
i
t)

)
= lim
n→∞

Cov

(
Rn
pt

∑
j∈J c ġt(y,D

j
t )I(Dj

t ≥ xt)
(1− r)n

,
∑
i∈J c

ġt(y,D
i
t)

)

=
1

pt
Cov (ġt(y,Dt)I(Dt ≥ xt), ġt(y,Dt)) .

Thus

σ̃2
t,1(y) := lim

n→∞
σ̃2
t,n(y)

= lim
n→∞

V ar(ġt(y,Dt)) + rpt(1− pt)[E ˙̄gt(y)]2 + rpt(rptn+ (1− pt))V ar ( ˙̄gt(y))

− rE
(
ġt(y,Dt)

2I(Dt ≥ xt)
)
− r[E (ġt(y,Dt)I(Dt ≥ xt))]2

+ 2rEġt(y,Dt)E (ġt(y,Dt)I(Dt ≥ xt))− 2rptE[ ˙̄gt(y)]E[ġt(y,Dt)]

+ 2rptE[ ˙̄gt(y)]E[ġt(y,Dt)I(Dt ≥ xt)] + 2rptCov

(
˙̄gt(y),

∑
i∈J c

ġt(y,D
i
t)

)

= V ar(ġt(y,Dt)) + r
(1− pt)
pt

[Eġt(y,Dt)I(Dt ≥ xt)]2 +
r2

(1− r)
V ar(ġt(y,Dt)I(Dt ≥ xt))

− rE
(
ġt(y,Dt)

2I(Dt ≥ xt)
)

+ r [E (ġt(y,Dt)I(Dt ≥ xt))]2

+ 2rCov (ġt(y,Dt)I(Dt ≥ xt), ġt(y,Dt))

= V ar(ġt(y,Dt)) +
r

pt
[Eġt(y,Dt)I(Dt ≥ xt)]2 +

r2

(1− r)
V ar (ġt(y,Dt)I(Dt ≥ xt))

+ rE
(
ġt(y,Dt)

2I(Dt ≥ xt)
)
− 2rE (ġt(y,Dt)I(Dt ≥ xt))Eġt(y,Dt)

= V ar(ġt(y,Dt)) +
r

pt
[Eġt(y,Di

t)I(Dt ≥ xt)]2 +
r2

(1− r)
V ar (ġt(y,Dt)I(Dt ≥ xt))

+ rV ar (ġt(y,Dt)I(Dt ≥ xt)) + r[Eġt(y,Dt)I(Dt ≥ xt)]2

− 2rE (ġt(y,Dt)I(Dt ≥ xt))Eġt(y,Dt)

= V ar(ġt(y,Dt)) +
r(1 + pt)

pt
[Eġt(y,Dt)I(Dt ≥ xt)]2 +

r

(1− r)
V ar (ġt(y,Dt)I(Dt ≥ xt))

− 2rE (ġt(y,Dt)I(Dt ≥ xt))Eġt(y,Dt). �

B.4. Proof of Lemma EC.4

The proof parallels the proof of Lemma EC.3. Below we show the variance computation explicitly.
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Variance computation:

ρ̃2
t,n(y) = V ar

(
1√
n

n∑
i=1

η2
t (y,Di

t)

)

=
1

n
V ar

(
n∑
i=1

g̃t(y,D
i
t)− g̃t(St,Di

t)−K

)

=
1

n
V ar

(∑
i∈J

(ḡt(y)− ḡt(St)−K)I(Di
t ≥ xt) +

∑
i∈J

(gt(y,D
i
t)− gt(St,Di

t)−K)I(Di
t <xt)

+
∑
i∈J c

gt(y,D
i
t)− gt(St,Di

t)−K

)

=
1

n
V ar

(∑
i∈J

[
ḡt(y)− ḡt(St)−K − (gt(y,D

i
t)− gt(St,Di

t)−K)
]
I(Di

t ≥ xt)

+
n∑
i=1

gt(y,D
i
t)− gt(St,Di

t)−K

)

=
1

n
V ar

(∑
i∈J

[
ḡt(y)− ḡt(St)−K − (gt(y,D

i
t)− gt(St,Di

t)−K)
]
I(Di

t ≥ xt)

)

+
1

n
V ar

(
n∑
i=1

gt(y,D
i
t)− gt(St,Di

t)−K

)

+
2

n
Cov

(∑
i∈J

[
ḡt(y)− ḡt(St)−K − (gt(y,D

i
t)− gt(St,Di

t)−K)
]
I(Di

t ≥ xt),

n∑
i=1

gt(y,D
i
t)− gt(St,Di

t)−K

)

= V ar (gt(y,Dt)− gt(St,Dt)−K) +
1

n
V ar

(∑
i∈J

[ḡt(y)− ḡt(St)−K] I(Di
t ≥ xt)

)

+
1

n
V ar

(∑
i∈J

[
gt(y,D

i
t)− gt(St,Di

t)−K
]
I(Di

t ≥ xt)

)

− 2

n
Cov

(∑
i∈J

[ḡt(y)− ḡt(St)−K] I(Di
t ≥ xt),

∑
i∈J

[
(gt(y,D

i
t)− gt(St,Di

t)−K)
]
I(dit ≥ xt)

)

+
2

n
Cov

(∑
i∈J

[ḡt(y)− ḡt(St)−K] I(Di
t ≥ xt),

∑
i∈J

gt(y,D
i
t)− gt(St,Di

t)−K

)

+
2

n
Cov

(∑
i∈J

[ḡt(y)− ḡt(St)−K)] I(Di
t ≥ xt),

∑
i∈J c

gt(y,D
i
t)− gt(St,Di

t)−K

)

− 2

n
Cov

(∑
i∈J

[
gt(y,D

i
t)− gt(St,Di

t)−K
]
I(Di

t ≥ xt),
∑
i∈J

gt(y,D
i
t)− gt(St,Di

t)−K

)

= V ar (gt(y,Dt)− gt(St,Dt)−K) +
|J |pt(1− pt)

n
[Eḡt(y)− ḡt(St)−K]

2

+
|J |2p2

t

n
V ar (ḡt(y)− ḡt(St)−K) +

|J |pt(1− pt)
n

V ar (ḡt(y)− ḡt(St)−K)
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+
|J |
n
V ar

([
gt(y,D

i
t)− gt(St,Dt)−K

]
I(Dt ≥ xt)

)
− 2|J |

n
E [ḡt(y)− ḡt(St)−K]Cov

(
I(Dt ≥ xt), [gt(y,Dt)− gt(St,Dt)−K] I(Di

t ≥ xt)
)

+
2|J |
n

E [ḡt(y)− ḡt(St)−K]Cov (I(Dt ≥ xt), gt(y,Dt)− gt(St,Dt)−K)

+
2|J |pt
n

Cov

(
ḡt(y)− ḡt(St)−K),

∑
i∈J c

gt(y,Dt)− gt(St,Dt)−K

)

− 2|J |
n

Cov ([gt(y,Dt)− gt(St,Dt)−K] I(Dt ≥ xt), gt(y,Dt)− gt(St,Dt)−K)

= V ar (gt(y,Dt)− gt(St,Dt)−K) + rpt(1− pt) [Eḡt(y)− ḡt(St)−K]
2

+ r2p2
tnV ar (ḡt(y)− ḡt(St)−K) + rpt(1− pt)V ar (ḡt(y)− ḡt(St)−K)

− rE
[
(gt(y,Dt)− gt(St,Dt)−K)

2 I(Dt ≥ xt)
]

+ 2rE [(gt(y,Dt)− gt(St,Dt)−K) I(Dt ≥ xt)]E[gt(y,Dt)− gt(St,Dt)−K]

+ 2rptE [ḡt(y)− ḡt(St)−K]E [(gt(y,Dt)− gt(St,Dt)−K) I(Dt ≥ xt)]

− 2rptE [ḡt(y)− ḡt(St)−K]E [gt(y,Dt)− gt(St,Dt)−K]

+ 2rptCov

(
ḡt(y)− ḡt(St)−K),

∑
i∈J c

gt(y,D
i
t)− gt(St,Di

t)−K

)
By similar arguments as for σ̃2

t,n(y) and σ̃2
t,1(y), we can show

ρ̃2
t,1(y) = lim

n→∞
ρ̃2
t,n(y)

= V ar (gt(y,Dt)− gt(St,Dt)−K) +
r(1 + pt)

pt
[E(gt(y,Dt)− gt(St,Dt)−K)I(Dt ≥ xt)]2

+
r

1− r
V ar ((gt(y,Dt)− gt(St,Dt)−K)I(Dt ≥ xt))

− 2r [E(gt(y,Dt)− gt(St,Dt)−K)I(Dt ≥ xt)] [E(gt(y,Dt)− gt(St,Dt)−K)] ,

and in particular,

ρ̃2
t,1(st) = V ar (gt(st,Dt)− gt(St,Dt)−K) +

r(1 + pt)

pt
[E(gt(st,Dt)− gt(St,Dt)−K)I(Dt ≥ xt)]2

+
r

1− r
V ar ((gt(st,Dt)− gt(St,Dt)−K)I(Dt ≥ xt)) . �

Appendix C: Proofs of results in Section 5

C.1. Proof of Proposition 1.

We prove by forward induction.

• t= 1: q̂1 = (Ŝ1− I1)I(I1 < ŝ1) converges to q1 = (S1− I1)I(I1 < s1) in probability since (ŝ1, Ŝ1)

are consistent by Theorem 1.

• t= τ : assume q̂τ
P→ qτ .

• t= τ + 1: Note we can rewrite It+1 as It+1 = I1 +
∑t

k=1(q∗k −Dk). Hence it is straight-forward

to see that Îτ+1
P→ Iτ+1, by the induction hypothesis. Together with Theorem 1 we then have
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Îτ+1 − ŝτ+1
P→ Iτ+1 − sτ+1, and by the Continuous Mapping Theorem (CMT) we can conclude

I(Îτ+1 − ŝτ+1 < 0)
P→ I(Iτ+1 − sτ+1 < 0), since P(Iτ+1 − sτ+1 = 0) = 0 by assumption that the

underlying demand is continuous. Since we also have Ŝτ+1− Îτ+1
P→ Sτ+1− Iτ+1, we can conclude

q̂τ+1 = (Ŝτ+1− Îτ+1)I(Îτ+1 < ŝτ+1) converges to qτ+1 in probability. �

C.2. Proof of Theorem 6.

We have

|V1(I1;q′)−V1(I1;q∗)|

=

∣∣∣∣ T∑
t=1

(Πt−1
τ=1ατ )E{[Ct(I ′t,Dt)−Ct(I∗t ,Dt)]I(At ∩Bt)

+ [ct(S
′
t−St)− ct(I ′t− I∗t ) +Ct(S

′
t,Dt)−Ct(St,Dt)]I (At ∩Bct )

+[K + ct(S
′
t− I ′t) +Ct(S

′
t,Dt)−Ct(I∗t ,Dt)]I(Act ∩Bt)

+ [−K − ct(St− I∗t ) +Ct(I
′
t,Dt)−Ct(St,Dt)]I(Act ∩Bct )

∣∣∣∣
=

∣∣∣∣ T∑
t=1

(Πt−1
τ=1ατ )E{[Ct(I ′t,Dt)−Ct(I∗t ,Dt)]I(At ∩Bt)

+ [ct(S
′
t−St)− ct(I ′t− I∗t ) +Ct(S

′
t,Dt)−Ct(St,Dt)]I (At ∩Bct )

+[K(I(Bt)− I(Bct ) + ct(S
′
tI(Bt)−StI(Bct ))− ct(I ′tI(Bt)− I∗t I(Bct ))

+Ct(S
′
t,Dt)I(Bt)−Ct(St,Dt)I(Bct )−Ct(I∗t ,Dt)I(Bt) +Ct(I

′
t,Dt)I(Bct )]I(Act)}

∣∣∣∣
=

∣∣∣∣ T∑
t=1

(Πt−1
τ=1ατ )E{(Ct(I ′t,Dt)−Ct(I∗t ,Dt))(I(At ∩Bt) + I(Act ∩Bct ))

+ [ct(S
′
t−St)− ct(I ′t− I∗t ) +Ct(S

′
t,Dt)−Ct(St,Dt)](I (At ∩Bct ) + I(Act ∩Bt))

+ [K + ct(St− I∗t ) +Ct(St,Dt)−Ct(I∗t ,Dt)] I(Act)(I(Bt)− I(Bct ))
∣∣∣∣

≤
T∑
t=1

(Πt−1
τ=1ατ )

{
E [|I ′t− I∗t |[ct− (ct− (bt ∨ht))(I(At ∩Bt) + I(Act ∩Bct ))]]

+(ct + (bt ∨ht))E [|S′t−St|(I (At ∩Bct ) + I(Act ∩Bt))]

+E [[K + (ct + (bt ∨ht))|St− I∗t |]I(Act)(I(Bt)− I(Bct ))]
}
, (EC.20)

where the inequality is due to the Lipschitz property of Ct(y, ·),

sup
Dt∈[D,D̄]

|Ct(y1,Dt)−Ct(y2,Dt)| ≤ (bt ∨ht)|y1− y2|.

We can make further simplifications to (EC.20) by observing that:

(I ′t− I∗t ) =

t−1∑
k=1

(q′k− q∗k) =

t−1∑
k=1

(S′k− I ′k)I(I ′k < s′k)− (Sk− I∗k)I(I∗k < s∗k),
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thus

(I ′t− I∗t ) =

t−1∑
k=1

[(S′k− I ′k)I(I ′k < s′k)− (Sk− I∗k)I(I∗k < s∗k)]I(Ak)

+ [(S′k− I ′k)I(I ′k < s′k)− (Sk− I∗k)I(I∗k < s∗k)]I(Ack)

=

t−1∑
k=1

[(S′k−Sk)− (I ′k− I∗k)]I(Ak) + (S′k− I ′k)I(Ack ∩Bk)− (Sk− I∗k)I(Ack ∩Bck)

=

t−1∑
k=1

[(S′k−Sk)− (I ′k− I∗k)][I(Ak) + I(Ack ∩Bk)] + (Sk− I∗k)I(Ack)(I(Bk)− I(Bck)),

and by induction we can show

I ′t− I∗t =

t−1∑
k=1

Γk,t−1(S′k−Sk) + (1 + Γk,t−2)(Sk− I∗k)I(Ack)(I(Bk)− I(Bck)), (EC.21)

where

Γk,τ =

τ∑
m=k

m∏
`=k

[I(Ak) + I(Ack ∩Bk)].

Combining (EC.20) and (EC.21), the difference in the expected total cost of the estimated policy

from the optimal policy can be bounded by (14). �
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