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Problem Definition: We study a service setting where the provider has information about some customers’

future service needs and may initiate service for such customers proactively, if they agree to be flexible with

respect to the timing of service delivery.

Academic / Practical Relevance: Information about future customer service needs is becoming increas-

ingly available through remote monitoring systems and data analytics. However, the literature has not

systematically examined proactive service as a tool that can be used to better match demand to service

supply when customers are strategic.

Methodology: We combine i) queueing theory, and in particular a diffusion approximation developed

specifically for this problem that allows us to derive analytic approximations for customer waiting times,

with ii) game theory, which captures customer incentives to adopt proactive service.

Results: We show that proactive service can reduce customer waiting times, even if only a relatively small

proportion of customers agree to be flexible, the information lead time is limited, and the system makes

occasional errors in providing proactive service – in fact we show that the system’s ability to tolerate errors

increases with (nominal) utilization. Nevertheless, we show that these benefits may fail to materialize in

equilibrium because of economic frictions: customers will under-adopt proactive service (due to free-riding)

and over-join the system (due to negative congestion-based externalities). We also show that the service

provider can incentivize optimal customer behavior through appropriate pricing.

Managerial Implications: Our results suggest that proactive service may offer substantial operational

benefits, but caution that it may fail to fulfill its potential due to customer self-interested behavior.

Key words : Proactive Service, Flexible Customers, Queueing Theory, Game Theory, Service Operations.
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1. Introduction

In many service settings, demand is highly variable but capacity is relatively fixed over short periods

of time, leading to delays for customers. To reduce such delays, service providers often implement

mechanisms that aim to modulate customer demand. These include scheduling customer arrivals

(Cardoen et al. 2010, Cayirli and Veral 2003), providing delay information to discourage customers

from joining when congestion is high (Armony et al. 2009, Jouini et al. 2011, Ibrahim et al. 2016),

offering customers the option to wait off-line or receive a call back (Kostami and Ward 2009,

Armony and Maglaras 2004a,b), or offering customers priority if they arrive during pre-allotted
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times (De Lange et al. 2013). In this paper, we investigate an alternative demand-modulation

mechanism, proactive customer service, where the provider exploits information about customers’

future service needs to proactively initiate service when there is idle server capacity.

Proactive service models have found application in a number of settings. For example, Better-

Cloud, a tech company that was featured on the 2017 Forbes’ Next Billion Dollar Startups list

(Adams 2017), uses proactive service to address errors encountered by IT administrators as quickly

as possible. In their words: “instead of waiting for the customer to come to BetterCloud for help,

the customer service team contacts customers” (Hyken 2016, Stone 2015). Another application, in

the context of equipment repair, is General Electric’s (GE) OnWatch service (Roy et al. 2014). As

GE explains, OnWatch provides fully automated and continuous monitoring of critical healthcare

infrastructure systems such as computed tomography and magnetic resonance imaging scanners.

Any deviations alert GE engineers who work with customers to repair the equipment with mini-

mal disruption to operations. In addition to the examples above, which make use of technological

monitoring and advanced analytics to predict future customer service needs, proactive service may

be implemented by simpler methods. For example, a hospital the authors worked with considered

implementing proactive service to reduce delays for patients undergoing induction of labor (IOL),

a procedure where labor is pharmacologically induced in a hospital ward. (This procedure is indi-

cated for women whose gestation period exceeds 40 weeks.) Following a system integration, where

the hospital gained better visibility to women that would need the procedure in the future, the

hospital considered bringing forward women to start the procedure up to 24 hours early, should

there be empty induction beds.

In all of the examples described above the potential benefit of proactive service is clear: at least

some customers will be served at an opportune time for the server, e.g., when the server would have

otherwise been idle. Naturally, this eliminates waiting time for any proactively served customers.

Furthermore, even customers not served proactively could benefit; by serving some customers

proactively, the system reduces congestion and, through that, everyone else arriving to the system

would experience, on average, shorter waiting times. Nevertheless, for the benefits of proactive

service to materialize, two conditions need to be met. First, from the customers’ perspective,

enough of them need to be willing to accept being served proactively, that is, agree to be flexible

as to the timing of the service. Customers may be reluctant to be flexible if there is an associated

inconvenience cost (e.g., due to loss of autonomy in choosing when to receive service), as would be

the case in at least some of the examples described above. This last point is further complicated by

the fact that the benefit of proactive service depends on system congestion and on how many other

customers decide to be flexible. In other words, it is an equilibrium outcome. Second, from the

system’s perspective, the prediction as to which customers have a service need must be sufficiently



Delana, Savva & Tezcan: Proactive Customer Service
Article submitted to Manufacturing & Service Operations Management; manuscript no. MSOM-17-214 3

accurate. Otherwise, the server will be reaching out to provide service to customers who do not

need it – not only wasting resources but also increasing the system utilization and, through that,

potentially increasing customer waiting times.

To quantify the benefit of proactive service, and further investigate the two impediments asso-

ciated with its implementation described above, we begin by formulating a stylized Markovian

queueing model of proactive service. We first assume that customers’ arrival rate to the system

and whether they are flexible or not are exogenous, and that all customers are served by a single

server that, when reaching out to serve customers proactively, never makes errors (i.e., perfect

information.) We use this model to show that proactive service reduces congestion in the first-order

stochastic sense. Using a pathwise coupling argument, we establish useful monotonicity results

– the greater the proportion of flexible customers and the earlier the provider knows about the

customers’ service needs, the lower the average congestion and waiting time. Subsequently, to quan-

tify the benefit of proactive service we develop a novel diffusion approximation that allows us to

estimate average steady-state waiting times in closed form. The approximation suggests that the

reduction in delay associated with proactive service displays decreasing marginal returns in the

proportion of flexible customers. This is important from a managerial perspective as it suggests

that even a little customer flexibility may lead to substantial waiting-time reduction.

Having established the benefit of proactive service, we then relax the assumption that customer

behavior is exogenous. To do so we augment the standard “to queue or not to queue” dilemma

(Hassin and Haviv 2003) with the additional option to join the queueing system but to be flexible.

The game theoretic analysis identifies two economic frictions. First, customers will under-adopt

proactive service compared to the profit maximizing (or social) optimum. This result is driven by

a positive externality which gives rise to free-riding behavior: a customer who agrees to be flexible

will reduce the expected waiting time of everyone else, but this is a benefit that she does not take

into account when making her own decision. In fact, we find instances where this economic friction

can be extreme in the sense that a profit-maximizing provider (or a welfare-maximizing central

planner) would have wanted all of the customers to be flexible, but in equilibrium, no customer

chooses to be so. Second, we find that, given the option to be served proactively, customers will

over-join the system compared to both the profit-maximizing (or socially optimal) joining rate, as

well as compared to a system without proactive service. This is due to the well-known negative

congestion-based externalities (e.g., Naor 1969) that proactive service exacerbates, that is, for a

given level of arrivals, proactive service reduces waiting times and, as a result, more customers

would want to join compared to the case without proactive service. Interestingly, we show that

the positive and negative externalities interact, giving rise to surprising comparative statics. For

example, an increase in the cost per unit of waiting time may lead to more customers joining the
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system. This is because the higher cost of waiting in the queue induces more customers to be

flexible, which reduces waiting times, which in turn induces more customers to join the system. Our

research shows that, as a result of these economic frictions, even in cases where proactive service

can significantly reduce delays, it may fail to be adopted because of customers’ self-interested

behavior. Furthermore, our work suggests that, with the right financial incentives in place, such

economic frictions could be overcome.

We then focus on the problem where the system’s ability to predict customers’ future service

needs is imperfect. In this case, some of the customers served proactively will not have required

the service. These “errors” could occur if customers may have their service need resolved through

alternative channels (e.g., by visiting the company’s website or using internal resources), or because

of prediction errors. We show that the diffusion-limit approximation developed for the case without

errors can be adapted to derive closed-form approximations of system performance in the presence

of errors. Not surprisingly, the approximation suggests that there exists a threshold such that, if the

proportion of errors is no greater than this threshold, then proactive service will continue to reduce

waiting times. What is perhaps more surprising is that, in most cases, this threshold increases in

system utilization. This seems counterintuitive at first because in a more heavily utilized system

one would expect errors to increase delays more than in a less utilized system. However, this can be

explained by the fact that reduction in delays gained through proactive service grows as utilization

increases. From a practical perspective, this result suggests that predictive errors are not a serious

impediment to implementing proactive service, especially if the system is highly utilized.

We conclude with one piece of anecdotal evidence that supports the theoretical findings described

above. As reported in Roy et al. (2014), after GE implemented the OnWatch proactive service

system described earlier for 136 CT scanners, they observed an overall increase in service events

by 19% despite a decrease in user-initiated customer requests. This is likely due to a combination

of errors in identifying instances of proactive service and an increase in customer utilization due

to proactive service. However, despite this increase in utilization, the report finds that OnWatch

also reduced average time to service completion for user-initiated calls by 21%. This suggests

that OnWatch had a positive impact on GE’s customers despite the marked increase in system

utilization.

The rest of the paper is structured as follows. Section 2 presents a review of the related literature.

Section 3 presents the analysis of proactive customer service for the case of a single server with

exogenous demand and perfect information about future customer service needs. Section 4 presents

the economic analysis of endogenous customer demand and Section 5 relaxes the assumption of

perfect information. Section 6 concludes with a short discussion and directions for future work.

Sketches of all proofs are presented in the Appendix of this paper. Detailed proofs are presented in
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the electronic companion (EC). A detailed numerical investigation of the diffusion approximation

developed in Section 3, an extension of the model to multiple servers, and a simulation study using

parameters calibrated to the example of IOL are available from the authors.

2. Literature Review

The analysis of proactive service in this paper contributes to three streams of queueing literature

which are connected by the objective of better matching service supply and demand. The first

stream examines interventions that modulate service supply in response to an exogenous demand

process. The second stream focuses on interventions that seek to actively manage endogenous

demand by taking into account the economic incentives of strategic customers. The third stream

builds on the first two by incorporating future demand information.

The first stream of literature considers supply-side interventions, e.g,. optimizing the number

of servers, in response to exogenous changes in demand. The bulk of this literature is developed

for call centers (see Gans et al. 2003, Aksin et al. 2007 for overviews) and has focused on topics

ranging from long-term workforce-management planning (Gans and Zhou 2002), to medium-term

shift staffing (Whitt 2006), down to short-term call-routing policies (Gans and Zhou 2007), as well

as combinations of short- and medium-term solutions (Gurvich et al. 2010). Our work fits with the

short-term strategies but, unlike the above-mentioned work, we assume that both system capacity

and the routing policy are fixed. One supply-side strategy that is closely related to proactive

customer service is for idle servers to work on auxiliary tasks, such as emails in call centers (see, e.g.,

Gans and Zhou 2003 and Legros et al. 2015). In the case of proactive service, future customers can

be thought of as the auxiliary tasks, however, this substantially complicates the dynamic evolution

of the system.

The second stream considers demand-side interventions. Perhaps the simplest intervention is

to schedule customers’ arrivals. This is certainly possible in some service settings, for example,

operating rooms and outpatient doctor visits (Cardoen et al. 2010, Cayirli and Veral 2003). When

scheduling is not possible, providers may try to influence customers’ (endogenous) decisions on

whether or when to join the queue; see Hassin and Haviv (2003) and Hassin (2016) for a compre-

hensive review of the economics of queues and strategic customer decision-making. One important

intervention is the use of pricing to control the overall level of demand. What makes pricing

particularly important in service systems is a key observation, first made by Naor (1969), that

utility-maximizing customers tend to over-utilize queueing systems compared to the socially opti-

mal level. This is due to customers imposing a negative externality on each other in the form of

delays, and as a consequence, the service provider can increase welfare by charging customers a

toll for joining the system. This finding persists in multiple variants, e.g., when the queue is unob-

servable (Edelson and Hilderbrand 1975), and when customers are heterogenous or have multiple
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classes (Littlechild 1974, Mendelson and Whang 1990). Naturally, the negative externality and

over-joining persists in the presence of proactive service. However, in this setting there is also a

positive externality; customers who agree to be flexible reduce the waiting time for everyone else.

(We note that positive externalities are relatively rare in the literature of queueing games (Hassin

2016, §1.8). For notable exceptions see Engel and Hassin (2017), Nageswaran and Scheller-Wolf

(2016), Hassin and Roet-Green (2011), Cui et al. (2014).)

Beyond pricing, two other common demand-side interventions are delay announcements and

multiple service priorities. Delay announcements encourage balking (Allon and Bassamboo 2011,

Armony et al. 2009, Ibrahim et al. 2016, Jouini et al. 2011), especially when the system is congested.

Multiple service priorities encourage some customers to wait in low-priority queues (usually off-

line), thus reducing the waiting time of high-priority customers (Engel and Hassin 2017, Armony

and Maglaras 2004a,b, Kostami and Ward 2009). Our work is closer to the latter as one may think

of customers who may be served proactively as arriving to a “low-priority” queue. However, in

contrast to the extant work, customers in this “low-priority” queue may transition to the service

system at any time, thus complicating the system dynamics.

The third stream of literature to which our work is related focuses on the setting where the

provider has information about the future. The benefits of future (or advance) demand information

on production and inventory systems (often modeled using queues) has been recognized by many

(e.g., Gallego and Özer 2001, Özer and Wei 2004, Papier and Thonemann 2010). More relevant

is the work that considers customers who may accept product delivery early, that is, are flexible

to the timing of product delivery (Karaesmen et al. 2004, Wang and Toktay 2008). The study of

future information in the context of service as opposed to inventory systems is more limited and

has focused mainly on demand-side interventions in the form of admission control (e.g, Spencer

et al. 2014, Xu 2015, Xu and Chan 2016). As far as we are aware, the only other work that studies

proactive service is Zhang (2014). This work was motivated by computing applications (e.g., cache

pre-loading or command pre-fetching) and differs from ours in a number of dimensions. We present

a more detailed comparison once we introduce our model in §3.3.

3. Operational Analysis: Single-server Queueing Model

This section presents a stylized model of proactive service assuming there is a single server, demand

is exogenous, and the predictions of future customer service needs are perfect. The analysis has

two goals: (i) to show that proactive service improves system performance, and (ii) to provide

closed-form approximations that quantify the impact of proactive service on time-average measures

of system performance.
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3.1. Queueing Model

We assume that demand arrives to the system following a Poisson process with rate λ, and that

there exists two types of customers who require service – “flexible” and “inflexible.” The service

times for both types of customers are assumed to be independent and identically distributed (i.i.d.)

and exponential with parameter µ; note we assume λ < µ throughout for stability. Inflexible cus-

tomers make up a proportion (1−p) of total demand and arrive to the service queue according to a

Poisson process with rate (1−p)λ. Upon arrival they immediately begin service if the server is free,

or join the queue, which operates in a first-in, first-out manner. For flexible customers, we assume

that the service provider becomes aware of the customer’s service need some time before they actu-

ally arrive to the service queue and the provider has the option of serving them proactively at any

time after becoming aware of their service need. To capture this, we assume that flexible customers

do not arrive directly to the service queue, but instead arrive to a virtual queue, which we refer to

as “orbit.” We assume that arrivals to orbit follow a Poisson process with rate pλ. While in orbit

customers may be served proactively if the server becomes idle, or, after a random period of time,

which we assume to be i.i.d. and exponential with parameter γ > 0, they depart for the service

queue on their own. Once at the service queue, flexible customers are served as any other customer

who has arrived to the service queue directly. Together, these assumptions imply that the system

may be modeled as two Markovian queues in tandem linked by the proactive service mechanism,

as depicted in Figure 1. We note that some of our results hold for more general time-in-orbit and

service-time distributions. We indicate if this is the case when we state these results throughout

the paper.

We will refer to the parameter p as the proportion of flexible customers or, interchangeably, as the

proportion of customers who have adopted proactive service. The average time flexible customers

spend in orbit before transiting to the service queue on their own (i.e., 1/γ) can be interpreted as

the information lead time for flexible customers – this is the average time in advance the provider

knows of a customer’s service need before the customer arrives to the service queue.

We denote the occupancy of the orbit and the service queues at time t > 0 with Nr(t) and Ns(t),

respectively. Similarly, we denote the steady-state average occupancy and steady-state distribution

of the queue length processes (where they exist) with N̄r, N̄s, and π= (πr, πs), respectively. Finally,

we define the steady-state average time for each customer type a ∈ {r, s}, spent in each queue

b ∈ {r, s}, with T̄ab, if this exists. For example, T̄rs denotes the average time flexible customers

spend in the service queue. We use the convention that a customer is assumed to be in the service

queue while in service.

We note that the special case where customers never transition from orbit to the service queue

on their own ( i.e., γ = 0) has been recently studied in Engel and Hassin (2017). This assumption
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Figure 1 Queueing model
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simplifies the dynamic evolution of the system (effectively, the orbit becomes a low-priority queue)

and the steady-state performance of the system can be obtained in closed form using exact analysis.

This is not the case in general (i.e., when γ > 0).

3.2. Impact of Proactive Service

In order to assess the impact of proactive service, we compare the system with proactive service to

a benchmark system without this capability, all other things being equal. In the benchmark case,

the whole system can be modeled as a Jackson network where orbit is an M/M/∞ queue, the

service queue is an M/M/1 queue, and all customers in orbit transition to the service queue. The

steady-state distribution of queue lengths and waiting times for this system can easily be found

in closed form (Kleinrock 1976, see §3.2 & §4.4). The steady-state distribution of total number

of customers in the service queue follows the geometric distribution with parameter 1− ρ where

ρ := λ/µ< 1, and the steady-state distribution of the number of customers in orbit is Poisson with

parameter pλ/γ. To denote the time average performance measures associated with the benchmark

system, we append superscript B to all the terms defined above; for example, N̄B
s denotes the

expected number of customers in the service queue in steady state for the benchmark case.

Impact of proactive service on queue lengths. We begin with the following result.

Lemma 1. In steady state, the total number of customers in the system with proactive service

is equal in distribution to the number of customers in the service queue without proactive service,

that is, πr +πs
d
= πBs .

Lemma 1 shows that the steady-state distribution of the total number of customers in the system

with proactive service (i.e., the sum of customers in orbit and in the service queue) is equivalent to

the steady-state distribution of number of customers in the service queue when proactive service

is not possible. Interestingly, this implies that the distribution of the total number of customers in
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the system does not depend on the proportion of customers that is flexible (i.e., p) or the average

information lead time (i.e., 1/γ). This result immediately implies that the average total occupancy

in the system with proactive service equals the average occupancy of the service queue in the

benchmark case (i.e., N̄r + N̄s = N̄B
s = ρ/(1−ρ)). Furthermore, the non-negativity of the number of

customers in orbit suggests that there is a stochastic ordering in the number of customers in the

service queue, a result we present in Proposition 1. Throughout, we use � to denote stochastic

ordering.

Proposition 1. newline

(i) The steady-state distribution of the occupancy of orbit in the system with proactive service is

stochastically dominated by that of the system without proactive service: πr � πBr .
(ii) The steady-state distribution of the occupancy of the service queue in the system with proactive

service is stochastically dominated by that of the system without proactive service: πs � πBs .

The first part of the proposition establishes that the orbit is less occupied (in a stochastic sense)

in the system with proactive service. This is not surprising. Since some customers are pulled from

orbit to be served proactively, the time they spend in orbit is reduced and thus orbit becomes less

congested compared to the system where proactive service is not possible. The second part of the

proposition shows that the service queue is also less congested (in a stochastic sense) in the system

with proactive service. Obviously, each part further implies that the time-average occupancy in the

orbit and the service queue is reduced, that is, N̄r ≤ N̄B
r and N̄s ≤ N̄B

s . We note that Lemma 1 and

Proposition 1 can be extended to the cases when time in orbit and/or service times are generally

distributed.

Impact of proactive service on wait times. Turning to the impact of proactive service on

the expected time spent by each customer type in different parts of the system in steady state, we

use Proposition 1 and the mean value approach (MVA) (Adan and Resing 2002, §7.6) to derive

the following results.

Proposition 2. Proactive service reduces delays for all customers in expectation:

(i) T̄rr ≤ T̄Brr, (ii) T̄ss ≤ T̄Bss, (iii) T̄rs ≤ T̄Brs,

but more so for those customers who can be served proactively:

(iv) T̄Brs− T̄rs ≥ T̄Bss − T̄ss.

The difference in expected time spent by flexible vs. inflexible customers in the service queue is

proportional to the expected time spent in orbit:

T̄ss− T̄rs =
µ−λ
µ

T̄rr ≥ 0. (1)
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Table 1 Monotonic behavior of performance measures

N̄r N̄s T̄rr T̄rs T̄ss
γ ↓ ↑ ↓ ↑ ↑
p ↑ ↓ ? ? ↓

The arrow ↑ (↓) denotes that a given performance measure is increasing (decreasing) in p or γ.

Proposition 2 shows that proactive service benefits both flexible and inflexible customers. The

fact that proactive service benefits flexible customers is not surprising – since some of them will be

served proactively and receive service without having to wait in the service queue at all, proactive

service will reduce the average waiting time for this class of customers. What is perhaps a little

more surprising is that proactive service reduces waiting times for inflexible customers as well. This

occurs because proactive service smooths demand by utilizing idle time to serve some customers

early, thus, it reduces the likelihood that customers will arrive to a congested service queue. This

reduction in congestion benefits all customers. However, Proposition 2 further implies that the

benefit of proactive service is greater for flexible than inflexible customers.

Impact of flexibility and information lead time. So far we have shown that proactive

service decreases occupancy in both orbit and the service queue, as well as average delays for all

customers when compared to a benchmark system without proactive service. Next, we establish a

partial answer to the question of how the performance of a system with proactive service changes

as the proportion of flexible customers and the information lead time change in Proposition 3.

Proposition 3. newline

(i) The steady-state distribution of number of customers in orbit (i.e., πr) is, in a stochastic

ordering sense, increasing in p and decreasing in γ.

(ii) The steady-state distribution of number of customers in the service queue (i.e., πs) is, in a

stochastic ordering sense, decreasing in p and increasing in γ.

(iii) The performance measures exhibit the monotonic behaviors summarized in Table 1.

Proposition 3 relies on a pathwise coupling argument to show part (i), specifically that there are

more customers in orbit (in a stochastic sense) in steady state if a larger proportion of customers

are flexible, and fewer are in orbit if there is shorter information lead time. Combining this result

with Lemma 1 immediately implies the opposite impact on the service queue, which is given in

part (ii). Together these results imply the monotonicity of performance measures presented in part

(iii): that more information lead time (i.e., smaller γ) reduces time in the service queue for both

flexible and inflexible customers, and that a greater proportion of flexible customers (i.e., larger

p) leads to greater occupancy of orbit and lower occupancy of the service queue. We note that it

is not possible to use the MVA approach to derive monotonicity results for the waiting times of

flexible customers with respect to the proportion of flexible customers (p). Therefore, we defer this

to the next section where we develop diffusion limit approximations.
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3.3. Approximations Based on Diffusion Limits

In this section we present approximations based on diffusion limits for the performance measures

we discussed in the previous section. To provide some intuition, in the diffusion limit, the primitive

stochastic processes (e.g., arrivals and service completions) are replaced with appropriate limiting

versions that make the occupancy processes more amenable to analysis. This enables the study

of the macro-level behavior of the system over long periods of time and provides useful insights

that are helpful in developing closed-form approximations of steady-state behavior (Chen and Yao

2013).

To proceed we need to define some additional notation. We focus on the system with proactive

service (see Figure 1) and we define a sequence λn = µ − c√
n

for some c ≥ 0, and a sequence

of systems indexed by n with these arrival rates. We still assume that arrivals are flexible with

probability p and the departure rate from the service queue is µ, but we let the departure rate

of each customer from orbit to the service queue be γn = γ√
n

. We further denote the number of

customers in orbit and the service queue at time t as Nn
r (t) and Nn

s (t), respectively.

Asymptotic analysis. Observe that as n increases, the total arrival rate (λn) approaches the

service rate (µ), which in turn implies that utilization goes to one. The part that is exploited by a

diffusion limit is that utilization, and hence occupancy, grows at a specific rate. Knowing that the

average number of customers in the nth system is λn/(µ−λn) is O(
√
n) means that dividing through

by
√
n prevents the limit of the total occupancy process from going to infinity (and hence the

limits of both the orbit and service queue occupancy processes as well). We further scale time

by replacing t with nt; this can be interpreted as the occupancy processes being observed over

longer lengths of time as utilization approaches one to capture the macro-level behavior of the

system. This leads to scaled occupancy processes N̂r(t) = Nnr (nt)/√n and N̂s(t) = Nns (nt)/√n. Defining

Nn
Q(t) = (Nn

r (t) +Nn
s (t)−1)+ to be the total number of customers in the system but not in service

at time t, then the asymptotic behavior of the scaled queue processes N̂n
Q(t) = NnQ(nt)/√n is given by

Theorem 1 below.

Theorem 1. Assume that N̂n
r (0) =

(
N̂n
Q(0)∧ pλn

γ

)
. For any finite T > 0,

sup
0≤t≤T

∣∣∣∣N̂n
r (t)−

(
N̂n
Q(t)∧ pλ

n

γ

)∣∣∣∣→ 0 in probability as n→∞.

Theorem 1, which relies on the Functional Strong Law of Large Numbers and the Functional

Central Limit Theorem (Chen and Yao 2013), has a simple intuitive meaning. If the total scaled

number of customers in the system excluding those receiving service, N̂n
Q(t), is less than pλn/γ, then

there are almost no customers waiting to receive service in the service queue (more precisely it

is o (
√
n)); alternatively if the total is greater than pλn/γ, then the scaled number in orbit is pλn/γ
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and (almost) all others are in the service queue. More generally, Theorem 1 implies that, given the

total number of customers in the limiting system, we now know how they are distributed between

the orbit and the service queue. In other words, the state space collapses.

The state-space collapse result is similar to Proposition 3.1 in Armony and Maglaras (2004b),

where the service provider offers customers call backs with a service guarantee. In their setting,

customers who agree to receive a call back are also placed in a holding system akin to orbit in our

setting. However, the driving mechanism and the proof techniques are significantly different. In our

setting the orbit queue functions similarly to a low-priority queue in that if there are customers

in the service queue, they are served exclusively; therefore, the service queue empties out faster

than orbit. In contrast, in the setting of Armony and Maglaras (2004b), customers in orbit are

sometimes given priority over the customers in the service queue (this happens when the number

of customers in orbit exceeds the limit pλn

γ
) otherwise the system would not meet the call-back

guarantee. The diffusion limit presented above is also related to those developed in the queueing

literature with abandonments; see Ward and Glynn (2003) and Borst et al. (2004). The main

difference in our model is that customers do not abandon but transition from orbit to the service

queue. Therefore we need to use a different scaling to obtain meaningful diffusion approximations.

For instance, if we used the scaling in Theorem 1.1. in Ward and Glynn (2003), the service queue

would always be (asymptotically) empty, which does not lead to useful approximations. Hence we

use an alternative scaling where the transition rate from orbit to the service queue scales at a faster

rate; more specifically, it scales at the same rate as the utilization of the system. This scaling,

however, introduces a technical difficulty because the orbit occupancy can change rapidly even in

the limit. Nevertheless, we are able to prove that there is a state-space collapse in the limit, which

leads to the diffusion limit presented above.

Approximations. In order to develop closed-form approximations for system performance, the

next step is to apply the asymptotic result on the allocation of customers between the orbit and the

service queue to a finite system. Since the exact results show that the total number of customers

in the system is distributed geometrically, we apply the split of customers implied by Theorem

1 (assuming it holds for finite n). Computing the expected value of the occupancy of the service

queue yields the following approximations,

N̄s ≈ ρ+ ρb
pλ
γ +1c+1

(⌊pλ
γ

+ 1
⌋
− pλ

γ
+

ρ

1− ρ

)
≈ ρ

1− ρ
(

1− ρ
(

1− ρ pλγ
))

, (2)

where
⌊
x
⌋

denotes the floor function. The second approximation follows from
⌊
pλ
γ

⌋
≈ pλ

γ
. Utilizing

MVA (see also Proposition 2), the approximation given by (2) can be used to estimate all other

performance measures for queue lengths and wait times. By the Poisson Arrivals See Time Averages
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(PASTA) property, the memoryless property of service times, and (2), the average time spent in

the service queue for inflexible customers is

T̄ss =
N̄s + 1

µ
≈ 1

µ

(
ρ

1− ρ
(

1− ρ
(

1− ρ pλγ
))

+ 1

)
. (3)

By (2) and the implication of Lemma 1 that N̄s + N̄r = ρ
1−ρ , we have that,

N̄r =
ρ

1− ρ − N̄s ≈
ρ

1− ρρ
(

1− ρ pλγ
)
. (4)

By Little’s Law and (4), we have that the average time spent in orbit is

T̄rr =
N̄r

pλ
≈ 1

p(µ−λ)
ρ
(

1− ρ pλγ
)
, (5)

and finally by equation (1) and the approximations (3) and (5), we can find an approximation of

the average time spent in the service queue for flexible customers T̄rs.

The approximation given by equation (2) for the average number of customers in the service

queue has an intuitive appeal. It is equal to the average number of customers at the service queue

in the absence of proactive service (ρ/(1−ρ)), multiplied by a constant,
(
1− ρ(1− ρpλ/γ)

)
≤ 1, that

represents the benefit of proactive service. As expected, this benefit disappears (i.e., the constant

goes to one) if there are no flexible customers (i.e., p = 0) or the average information lead time

goes to zero (i.e., 1/γ→ 0).

Furthermore, the approximations above allow us to derive additional properties of performance

measures that could not be derived using exact analysis (see Table 1). For instance, using equation

(2), we can show that the service queue occupancy decreases exponentially with p/γ, which implies

there there are decreasing marginal benefits in the proportion of customers that are flexible and the

average information lead time. In addition, using equation (5) we can show that T̄rr is monotonic

decreasing in p. Also T̄rs is monotonic decreasing in p provided γ ≥ µ−λ and ρ> .2.

Although not essential for the rest of our analysis, we note two observations. First, with a

relatively small tweak to the scaling regime, the diffusion approximation developed in this section

for the single-server system can be readily extended to the multiserver case. The specific details

are available from the authors. Second, the case where time in orbit is deterministic (as opposed

to an exponentially distributed random variable) was studied in Zhang (2014). It is therefore

interesting to compare the waiting-time reduction associated with these two different assumptions.

The setting in Zhang (2014) has two additional differences. First, it assumes that a customer

does not have to be present for service. Hence, the waiting-time measure they consider does not

include service time, only time in queue. It is straightforward to modify their approach to include

service time as well. This is the approximation we present here. Second, Zhang (2014) assumes that
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inflexible customers have preemptive priority over flexible customers. This assumption is essential

for his analysis technique, however, it is not realistic for service systems. Hence, we only compare

our results to Zhang’s when p = 1, in which case preemptive priority does not matter. Let w

denote the time customers spent in orbit before they transition to the service queue. Under this

assumption, Zhang (2014) shows that the average amount of time customers spend in the service

queue (excluding time spend in service) when p= 1 is ¯̄T qss = ρ
µ−λe

−µ(1−ρ)w. Based on (2), with p= 1

and γ = 1/w, we arrive at the following approximation, T̄ qss = ρ
µ−λρ

λw. Let ∆(ρ) = ¯̄T qss/T̄
q
ss, then

we have ∆(ρ) = e−w
(
e
ρ

)ρw
. It can be shown that limρ→0 ∆(ρ) = 0, limρ→1 ∆(ρ) = 1, and that ∆ is

(strictly) increasing in ρ. Therefore, knowing exactly when customers would transition from the

orbit to the service queue (i.e., deterministic service time) helps further reduce average time spent

in service queue. However, this additional reduction in waiting time decreases as the system reaches

heavy traffic.

Accuracy of the approximations and managerial implications: Because the approxima-

tions presented above are based on an asymptotic result, in this section we examine their accuracy

in finite systems where utilization is less than one. For instance, Figure 2 depicts the comparison

of the diffusion approximations and simulated average delays for the case when λ= 0.875, γ = .2,

and µ= 1. A full sensitivity analysis of the accuracy of the approximations is available from the

authors. In general, the approximations perform remarkably well for all values of p when utiliza-

tion is high (i.e., ρ ∈ (.75,1)), and information lead time is not too large (i.e., (µ−λ)/γ ≤ 1). This is

not surprising given the asymptotic regime deployed to develop the approximations assumed that

µ−λn→ 0 at the same rate as γn→ 0. Because the diffusion limit presented above fails when the

information lead time increases (i.e., 1/γ→∞), it is not surprising that the approximation does

not collapse to the exact analysis presented in Engel and Hassin (2017) where the authors assume

that γ = 0. Therefore, the two results can be seen as applicable to different parameter regions.

From a managerial perspective, Figure 2 also serves to illustrate the substantial reduction in

delays derived from proactive service. For instance, if all customers are flexible (i.e., p = 1) the

total average delay in the service queue is reduced by 38.7% (from 8.0 to 4.90 time units). Even if

only half of customers are flexible (i.e., p= 0.5), the average time in the service queue is reduced by

22.2% (from 8.0 to 6.23 time units). This reduction in delays is achieved even though the average

information lead time is relatively short (only 62.5% of the expected delay in the benchmark case).

In other words, relatively little information lead time for a relatively small proportion of flexible

customers goes a long way when the system can serve customers proactively.

4. Economic Analysis: Endogenous Decision-Making and Welfare

The queueing analysis thus far has shown the significant potential of proactive service to improve

operational performance. However, it assumes exogenous customer arrival rates to both orbit and
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Figure 2 Customer delays in the proportion of flexible customers (p), where λ= .875, γ = .2, µ= 1.
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service queue. This is unlikely to be realistic in many service settings because it is customers who

choose to join the queue and/or to be flexible based on the costs and benefits of each option. For

example, in the case of OnWatch, at least some customers agreed to be served proactively (Roy

et al. 2014). This was not so easy in the case of IOL, where expectant mothers interviewed by the

hospital expressed reservations as to having the service brought forward. Therefore, to understand

the benefits of proactive service, we need to consider the decisions of customers in equilibrium. To

do so, we build off a standard queueing game (e.g., Hassin and Haviv 2003) where, in addition to

the option of joining or not, customers need to also choose if they accept to be flexible.

4.1. Customer Demand and Utility

To facilitate a game theoretic analysis, we assume that there exists a large population of potential

customers who are homogeneous, rational, and risk-neutral economic agents. We also assume that

customer waiting times are accurately approximated by the (smooth version of the) closed-form

diffusion approximations of §3.

Each customer has some small exogenous probability of requiring service such that, in aggregate,

customer service needs can be modeled by a Poisson process with rate Λ. Receiving service is valued

at v and each customer also has access to an outside service option whose value we normalize to

zero. Customers decide whether to join and, if they join, whether to be flexible, by examining the

expected cost of these choices which we assume is common knowledge. More specifically, we assume

that real-time waiting time information is not available, but customers have an accurate belief
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about average waiting times; see Chapter 3 of Hassin and Haviv (2003) for an extensive review of

the theory and applications of unobservable queues. The expected costs have three sources. First,

all customers are averse to waiting at the service queue and incur a waiting-time cost ws ≥ 0 per

unit of time spent there (waiting or receiving service). Second, flexible customers need to be ready

to “answer the call” from the idle service provider at any time and therefore incur i) an opportunity

cost 0 ≤ wr ≤ ws per unit time spent in orbit that reflects any inconvenience associated with

“waiting” to commence service early; ii) a fixed inconvenience cost h≥ 0, which can be interpreted

as the cost of giving up autonomy/spontaneity in the timing of joining the queue. Third, customers

may need to pay prices cr ≥ 0 and cs ≥ 0 set by the provider for flexible and inflexible customers,

respectively. Given the assumptions, the expected utility of customers who choose to join but

not to be flexible is v− cs −wsT̄ss, the expected utility of customers who join and are flexible is

v− cr−h−wrT̄rr−wsT̄rs, and the utility of customers who do not join is zero.

Customers choose to (1) not join, (2) join and be flexible, or (3) join and be inflexible, based on

the option with the greatest expected utility. For notational convenience, we let λ≤ Λ represent

the effective demand (i.e., arrival) rate to the system such that J = λ/Λ∈ [0,1] gives the proportion

of customers who join the system, and p∈ [0,1] represents the proportion of customers who choose

to be flexible conditional on joining. Because customers are homogeneous, we are interested in

symmetric Nash Equilibria where, given that all other customers play a mixed strategy represented

by (J, p), each customer’s best response is to also play strategy (J, p). For the rest of the analysis

we restrict our attention to λ rather than J as there is a one-to-one correspondence between the

two.

4.2. Unregulated Customer Equilibrium

To study the incentives introduced by proactive service, we examine the case where customers

make their own utility-maximizing decisions in an unregulated system, that is, where cs = cr = 0.

Under mild assumptions, Proposition 4 establishes the existence and uniqueness of equilibrium as

well as comparative statics.

Proposition 4. If Λ
µ
≥ .75, v≥ 4ws

µ
and γ ≥ ws

v
, then:

i. There exists a unique symmetric Nash Equilibrium (pe, λe) for customer flexibility and joining

behavior.

ii. The equilibrium strategy is such that:

(a) The proportion of flexible customers pe and the arrival rate λe are non-increasing in the

costs of flexibility h and wr.

(b) The proportion of flexible customers pe is non-increasing in customer valuation v, and the

arrival rate λe is non-decreasing in customer valuation v.
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(c) The proportion of flexible customers pe is non-decreasing in the waiting-time cost ws, but

the arrival rate λe can be decreasing or increasing in the waiting-time cost ws. Specifically,

if all strategies are played with positive probability so that λe <Λ and pe ∈ (0,1), then the

arrival rate λe is increasing in the waiting-time cost ws, otherwise λe is decreasing in the

waiting-time cost ws.

The conditions under which this proposition holds also ensure that utilization is relatively high

and information lead time is relatively low, therefore the diffusion approximations offer an accurate

representation of the system performance. Part iia shows that, as the costs of flexibility (h,wr)

increase, fewer customers agree to be flexible and fewer customers join, just as one might expect.

Part iib shows that, as customer valuation for service (v) increases, more customers join because

customers are willing to wait for longer, which is also as expected. More interestingly, part iib also

shows that, as customer valuation (v) increases, a smaller proportion of those who join choose to

be flexible. This happens because as congestion increases (i.e., more customers join due to their

valuations (v) being higher) the value of free riding (i.e., the value a customer gets when other

customers choose to be flexible) also increases. As a result, the proportion of customers who agree

to be flexible becomes smaller. Perhaps even more surprising is part iic, which shows that, as the

cost of time spent in the service queue (ws) increases, the arrival rate may actually increase. The

reason is that the increase in waiting-time cost (ws) induces more customers to be flexible, which

generates a positive externality (i.e., reduces average waiting time), and in turn induces more

customers to join. Clearly, in this case, the positive externality associated with flexibility interacts

with the negative externality associated with congestion.

4.3. Customer Suboptimal Behavior: Over-utilization and Free-Riding

Next, we seek to understand how a profit-maximizing service provider may seek to influence cus-

tomer behavior through the use of prices/tolls. More specifically, the provider seeks to maximize

the revenue rate from prices paid by customers subject to customers’ equilibrium behavior as shown

in (6) below. (We note that for this analysis we use revenues and profits interchangeably. We can

do this because we have assumed that there are no costs associated with implementing proactive

customer service. In reality, there may be fixed and variable costs associated with implementing

proactive service and monitoring customer service needs. Since it would be straightforward to

include these costs in the analysis, we do not model them explicitly.)

max
cr,cs≥0

λ(pcr + (1− p)cs) (6)

subject to: (p,λ) is an equilibrium given (cr, cs).
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Because customers are homogeneous, a profit-maximizing provider will not find it optimal to set

prices that leave customers with positive surplus in equilibrium; if this was the case, the provider

would be able to increase prices without impacting customer decisions (Hassin and Haviv 2003,

§3.1.3). Therefore, the profit maximizer will set prices such that cs = v − wsT̄ss(pe, λe) and cr =

v−h−wrT̄rr(pe, λe)−wsT̄rs(pe, λe). Given this, the provider’s objective can be rewritten as,

W (p,λ) = λ
[
p(v−h−wrT̄rr(p,λ)−wsT̄rs(p,λ)) + (1− p)(v−wsT̄ss(p,λ))

]
. (7)

Since customers are left with zero surplus, the provider’s objective, as given by (7), is also equal

to total welfare. (This is the case because the payments cs and cr are an internal transfer between

customers and the service provider.) Therefore, in this case, the objective of the provider happens

to coincide with that of a benevolent social planner who can dictate customers’ joining decisions.

This result, which follows from the assumption that customers are homogeneous, is well known in

the literature of queueing games (see (Hassin and Haviv 2003, §1.3)), and it implies that, in order

to understand whether customers’ autonomous joining decisions presented in §4.2 are suboptimal

for the profit maximizer, it would suffice to compare them to the actions chosen by a benevolent

social planner.

The existence of a solution to the optimization problem above is guaranteed by the fact that the

action space is compact and the objective function is continuous. However, we note that we are

unable to prove that W (p,λ) is concave. Nevertheless, in numerical experiments we find the first

order conditions are both necessary and sufficient. We compare the socially optimal customer (or

profit-maximizing) actions with the equilibrium customer decisions of Proposition of §4.2 in the

next result.

Proposition 5. If Λ
µ
≥ .75, v ≥ 16ws

µ
, γ ≥

√
µws/v, then for any socially optimal/profit-

maximizing solution (pso, λso),

i. Customers over-utilize the system compared to the socially optimal/profit-maximizing solution,

(λso ≤ λe).
ii. Customers under-adopt proactive service compared to the socially optimal/profit-maximizing

solution, (pso ≥ pe). In particular, there exist thresholds of the flexibility cost h denoted by
¯
h

and h̄, where 0<
¯
h< h̄, such that if h≥

¯
h then pe = 0 and if h≤ h̄ then pso = 1. This implies

that if
¯
h≤ h≤ h̄ then pe = 0 and pso = 1, that is, no customer would choose to be flexible in

equilibrium but the social planner (or profit maximizer) would designate all customers who join

to be flexible.

The conditions under which this proposition holds are a subset of the conditions of Proposition 4

and, as was the case there, they also ensure that the diffusion approximations are a good representa-

tion of system performance. Proposition 5 shows that customers will over-utilize the service system
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Figure 3 Comparison of Equilibrium Strategy and Socially Optimal: Λ = .95, γ = .25, µ= 1,ws = 1,wr = 0, v= 16.
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with proactive service and under-adopt proactive service (the option to be flexible) compared to

the socially optimal or the profit-maximizing solution. Figure 3 illustrates this point by showing

the equilibrium strategy and the socially optimal/profit-maximizing strategy as a function of the

fixed cost of flexibility (h) for a specific example. As can be seen in Figure 3a, the under-adoption

of proactive service can be substantial in the sense that there exists a region (0.3 < h < 1.4 in

Figure 3a), where the central planner would have dictated that all customers who join be flexible,

but in equilibrium flexibility is a strictly dominated strategy. Proposition 5 part ii shows that such

a region is not specific to this example but always exists. In this region, customers would be better

off if they collectively chose to be flexible, but because customers are individually better off by

free-riding, no one chooses to be flexible. Similarly, Figure 3b shows that customers over-utilize the

system in general, but when being flexible is optimal for at least some customers (i.e., h< 0.3), it

also exacerbates customer over-utilization through an increase in the equilibrium arrival rate.

As in the case where proactive service is not possible (e.g., Naor 1969), it would be possible

to incentivize optimal customer behavior by setting different prices/tolls cr and cs, for flexible

and inflexible customers, respectively. Figure 4a depicts the optimal prices cr and cs against the

fixed cost of flexibility (h) for the same example as Figure 3. (We note that, for some values of h

there exist multiple prices that are optimal and revenue equivalent. More specifically, when h< 1.4

(h> 2.6) any price cs (cr) greater than the one depicted in the figure would also be optimal. Since

no customer would choose to be inflexible (flexible) in this case, choosing any such price would not

make a difference to the revenue. For these cases, the figure depicts the lowest price.) Similarly,

Figure 4b shows the improvement in provider revenue against the fixed cost of flexibility h by



Delana, Savva & Tezcan: Proactive Customer Service
20 Article submitted to Manufacturing & Service Operations Management; manuscript no. MSOM-17-214

Figure 4 Optimal Pricing and Welfare: Λ = .95, γ = .25, µ= 1,ws = 1,wr = 0, v= 16
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showing the ratio of the optimal revenue in the case with proactive service over the benchmark

case without proactive service.

As illustrated in Figure 4a, for different regions of the fixed cost of flexibility (h) the price for

flexible customers (cr) and inflexible customers (cs) play different roles depending on the combi-

nation of economic frictions faced. For example, cr is lower than cs for all cases where h is high

enough such that not all customers would autonomously choose to be flexible (0.3<h< 2.6). This

must be the case in order to incentivize customers to be flexible despite their free-riding incentives.

Since the incentive to free-ride grows as h increases, so must the gap between cs and cr. Further-

more, in the regions where at least some customers choose to be flexible (i.e., 0 < h < 2.6) cr is

decreasing in h. This happens because, as the fixed cost of flexibility h increases, the toll that the

profit maximizer needs to impose to prevent customers from over-joining (while at the same time

extracting all rents) is lower. Similarly, in the regions where some (but not all) customers choose

to be inflexible (i.e., 1.3<h< 2.6) cs is also decreasing in h. This happens because, as h increases,

the provider will find it optimal to incentivize fewer customers to be flexible. Since fewer customers

are flexible, the waiting time of inflexible customers will increase and therefore the price that the

profit maximizer will need to impose to prevent over-joining (and extract all rents) will have to

decrease. Finally, what is important to take away from Figure 4b is: first, that proactive service can

substantially increase the revenue (or welfare) in a system that offers proactive customer service

compared to one that does not; and second, that the lower the costs of flexibility for customers,

the more valuable proactive service.

Managerial Implications: The analysis presented in this section has identified two inefficien-

cies associated with customer self-interested behavior: customers will under-adopt proactive service
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and will over-utilize the system compared to the social (or profit maximizing) optimal. There-

fore, the real-world benefits of proactive service are likely to be lower than those suggested by

the operational analysis of §3, which assumed exogenous arrival rates. Furthermore, this analysis

shows that there are instances where proactive service will not be adopted at all even though all

customers would be better off by doing so. Clearly, such negative results are not easy to verify

empirically, but may offer an explanation as to why proactive service is not more widely adopted

in practice. Nevertheless, our research suggests that in settings where the provider has the ability

to set differential prices for flexible/inflexible customers, such frictions may be overcome.

5. Imperfect Information about Customer Future Service Needs

Up to this point, we have assumed that the provider has perfect information about future customer

service needs. This assumption may not always be true. For example, in the case of OnWatch, the

service team may contact customers who did not actually have a service need (i.e., the prediction

that they needed service was erroneous), or serve customers who could have solved the problem

on their own. In the case of IOL, patients induced proactively may have otherwise gone into labor

spontaneously. By serving such customers proactively, the provider serves customers who, in the

absence of proactive service, would not have entered the service system, thus increasing utilization

and hence congestion and delays. This could erode the operational benefits of proactive service.

To investigate whether proactive service is still beneficial despite errors with an analytical model,

we assume that every time the server pulls a customer from orbit it makes an error with probability

1− q. That is, a proportion 1− q of customers served proactively would not have transitioned to

the service system had they not been pulled and, therefore, would not have been served at all.

By construction, under this additional assumption, the analysis of the benchmark case (where

there is no proactive service) does not change. The steady-state occupancies of the orbit and the ser-

vice queue follow the Poisson and Geometric distributions with parameters pλ
γ

and ρ, respectively.

However, the exact analysis of the system with proactive service is substantially more challenging.

Lemma 1 no longer holds because, unlike in the case with no errors, the total number of customers

in the system in steady state now depends on how frequently the server pulls from the orbit due to

errors. Therefore, there is no longer a guarantee that proactive service will lead to shorter waiting

times.

The asymptotic analysis, however, can be used to develop approximations of system performance.

Taking the case of a single server, it can be shown that Theorem 1 holds in this case as well

because the service rate for customers from orbit does not play a role in the proof. Assuming that

the asymptotic result of Theorem 1 also holds for finite systems as well, we can model the system

using a birth-death process as follows. Let NQ denote the total number of customers in the queue.
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Since this is a Markovian system, the birth rate (i.e., the rate of transition from NQ to NQ + 1) is

given by λ. If NQ ≥ pλ/γ, then orbit occupancy is pλ/γ customers and the rest of the customers

are waiting in the service queue (by Theorem 1). In this case, the departure rate from NQ to

NQ− 1 is given by the service rate µ – since the server picks customers from the service queue it

never makes mistakes. If 0<NQ < pλ/γ then all customers are in orbit. Hence, the departure rate

is µq, since there is a probability 1− q that the server will pull a customer in error. Therefore,

the total number of customers in the system (including those in service) can be modeled as the

birth-death process pictured in Figure 5 and the occupancy distribution can be estimated using

simple recursive equations.

Figure 5 Birth-Death Transition
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From this, we can estimate delays in the system as a whole. To estimate delays at the service

system and the orbit, we need to use Theorem 1 again. More specifically, for every state NQ of the

system described by Figure 5, Theorem 1 implies that the number of customers in orbit is NQ−1

if 0<NQ < pλ/γ and pλ/γ if NQ > pλ/γ and all other customers are in the service queue. With

this, we can then estimate the average occupancy of the service queue. If q 6= ρ, then

N̄s ≈
ρ

1− ρ
P0(n)

q− ρ

(
1− ρ+ (q− ρ)

(
ρ

q

)n(
n− pλ

γ
+
q− 1

q− ρ +
ρ

1− ρ

))
, (8)

≈ ρ

1− ρ
P0(pλ

γ
+ 1)

q− ρ

1− ρ+ (q− ρ)

(
ρ

q

)( pλγ +1)(
1 +

q− 1

q− ρ +
ρ

1− ρ

) , (9)

where n := bpλ
γ

+ 1c, P0(x) =

(
q
q−ρ

(
1−

(
ρ
q

)x+1
)

+ ρ
1−ρ

(
ρ
q

)x)−1

, and if q= ρ, then

N̄s ≈
ρ

1− ρ

(
1

n+ 1
1−ρ

)(
n(1− ρ)

ρ
+

(
n+ 1− pλ

γ
+

ρ

1− ρ

))
, (10)

≈ ρ

1− ρ

(
1

(pλ
γ

+ 1) + 1
1−ρ

)((
pλ

γ
+ 1

)
1− ρ
ρ

+

(
2 +

ρ

1− ρ

))
. (11)

The approximations given by (9) and (11), which are smooth in the proportion of flexible customers

p, follow from those of (8) and (10), respectively, by letting bpλ
γ
c= pλ

γ
.
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Estimates for delays of inflexible customers in the service queue can then be estimated as T̄ss =

(N̄s + 1)/µ, which follows from the PASTA property and the memorylessness of service times. To

get an approximation for the delays of flexible customers in the service queue T̄rs, we make the

assumption that the arrival process of flexible customers to the service queue can be approximated

by a Poisson process. Given this approximation, the delays for flexible customers in the service

queue are equal to those of inflexible customers. Naturally, this approximation becomes more

accurate as utilization increases and fewer customers are served proactively. We illustrate the

performance of these approximations with a specific example in Figure 6. This example, and a

more extensive numerical comparison available from the authors, suggest that the approximations

work well when ρ≥ 0.75 and (µ−λ)/γ ≤ 1. Using these approximations, one can prove the following

result.

Proposition 6. There exists a threshold 0< q̄ < 1 such that the system with proactive service

generates lower waiting times compared to the system without proactive service if, and only if, the

proportion of errors is less than 1− q̄. Furthermore,

(i) If ρ> 1
2

+ γ
2pλ

, then the maximum proportion of errors the system can tolerate (1− q̄) is greater

than the system’s idle time (1− ρ).

(ii) There exist combinations of parameters (p,λ, γ,µ) such that the threshold q̄ is decreasing in

utilization (i.e., as the service rate µ approaches the arrival rate λ).

The proposition establishes the intuitive result that proactive service reduces waiting times only

if the proportion of errors is below a critical threshold, 1− q̄. What is more interesting is that,

provided the system is relatively highly utilized (i.e., ρ > 1
2

+ γ
2pλ

), then proactive service may

reduce waiting times, even if the proportion of errors is greater than the system’s idle capacity.

Furthermore, the proposition shows that there exist cases such that, as the system utilization

increases (i.e., as µ approaches λ), the system is able to handle even more errors. (In fact, we

numerically observe that this is almost always the case.) The finding that a more heavily utilized

system is able to handle more errors and still benefit customers compared to the benchmark case is

illustrated in Figure 6. Figure 6 depicts the delays for flexible customers in the service queue when

p= 1 (i.e., when all customers are flexible) as a function of the error rate (1− q) and shows that

at a utilization of ρ= 85% the system can tolerate an error rate as high as 60% before the benefits

of proactive service are completely eliminated by errors, and when utilization increases to ρ= 95%

the system can handle an error rate of almost 70% before delays are greater than the benchmark

case. Furthermore, as Figure 6 also makes clear, this result is not an artifact of the approximation

as it is confirmed by the simulation study and holds true in almost all numerical experiments for

both flexible and inflexible customers. This finding may seem counterintuitive at first because in
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Figure 6 T̄rs vs Proportion of Errors (1− q), where p= 1, γ = .25, µ= 1, λ∈ {.85, .90, .95}.
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a more heavily utilized system, one would expect errors to increase delays more than in a system

at lower utilization. However, this can be explained by the fact that reduction in delays gained

through proactive service grows as utilization increases.

From a practical perspective, the results of this section suggest that, unless the error rate is

extreme (i.e., greater than the critical threshold (1− q̄)), proactive service continues to offer opera-

tional benefits, especially for systems that are highly utilized. Furthermore, provided the error rate

is below this critical threshold, the economic frictions associated with the adoption of proactive

service described in the previous section (i.e., over-joining the system and under-adopting proactive

service) will remain qualitatively unchanged in the presence of errors.

6. Discussion

This paper set out to explore two high-level questions: (i) What is the operational impact of proac-

tive service, and (ii) are there any practical impediments (e.g., economic frictions and prediction

errors) that limit its potential to make an impact in practice?

From an operational perspective, we find that proactive service can substantially reduce delays

for both flexible and inflexible customers. This is the case even if the proportion of flexible customers

is limited and the information lead time relatively short, and even if proactive service ends up

serving a moderate proportion of customers that would otherwise not have needed the service.

To derive these results, we develop a novel diffusion approximation that other researchers may

find useful. From an economic perspective, we show that proactive service is likely to be under-

adopted (due to a free-riding problem) and may also exacerbate customers’ tendency to over-join
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the system (due to congestion-based negative externalities). These economic frictions may provide

an explanation as to why proactive service has not been more widely adopted in practice and

suggest that, in order to realize the operational benefits of proactive service, providers will need

to offer incentives (e.g., in the form of differentiated prices) to alleviate the economic frictions of

free-riding and over-utilization.

We conclude by noting that there are several practically relevant directions where the study

of proactive service, using the tools developed in this paper, could be extended. One obvious

direction is the study of multiple customer priorities. Such a system will require us to appropriately

modify the heavy-traffic approximations developed by this paper. Furthermore, in such a system

the service provider may be in a position to offer higher priority as an additional incentive to induce

customers to adopt proactive service. This incentive may be more straightforward to implement

in settings where prices are exogenous (e.g., healthcare). Another promising direction is to extend

the economic analysis from homogeneous customers to the more realistic case of heterogeneous

customers. We leave these extensions to future work.

References

Adams, S. 2017. The next billion-dollar startups 2017. URL https://www.forbes.com/sites/susanadams/

2017/09/26/the-next-billion-dollar-startups-2017/#57259bd04447.

Adan, I., J. Resing. 2002. Queueing theory . Eindhoven University of Technology, Eindhoven NL.

Aksin, Z., M. Armony, V. Mehrotra. 2007. The modern call center: a multi-disciplinary perspective on

operations management research. Production and Operations Management 16(6) 665–688.

Allon, G., A. Bassamboo. 2011. The impact of delaying the delay announcements. Operations Research

59(5) 1198–1210.

Armony, M., C. Maglaras. 2004a. Contact centers with a call-back option and real-time delay information.

Operations Research 52(4) 527–545.

Armony, M., C. Maglaras. 2004b. On customer contact centers with a call-back option: customer decisions,

routing rules, and system design. Operations Research 52(2) 271–292.

Armony, M., N. Shimkin, W. Whitt. 2009. The impact of delay announcements in many-server queues with

abandonment. Operations Research 57(1) 66–81.

Borst, S., A. Mandelbaum, M. Reiman. 2004. Dimensioning large call centers. Operations Research 52(1)

17–34.

Cardoen, Brecht, Erik Demeulemeester, Jeroen Beliën. 2010. Operating room planning and scheduling: A
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A. Appendix
A.1. Proof of Lemma 1:

The result follows from the fact that the system without proactive service and the service queue

when proactive service is used can be modeled by Markov chains with identical transition rates. �

A.2. Proof of Proposition 1:

We prove part (i) of the proposition using a pathwise coupling of stochastic processes on a common

probability space. We provide the sketch of the proof since this approach is standard in queueing

literature (See Levin et al. 2009, Chapters 4,5 for an introduction). Fix a samplepath (i.e., the

sequence of customer interarrival times) to both locations, the sequence of information lead-times

(times in orbit), and the sequence of service times. Now, given this sample path, we compare the

resultant orbit occupancy processes in a system with proactive service to that without on the

same probability space (i.e., Nr(t) and NB
r (t)). By examining all possible events (e.g., arrivals,

customer departures from orbit, and customer departures from the service queue), one can show

that Nr(t)≤NB
r (t) in each such sample path. The result then follows by Shaked and Shanthikumar

2007, Theorem 1.A.1.

Part (ii) of the proposition is an immediate consequence of Lemma 1 and the non-negativity of

Nr(t). �

A.3. Proof of Proposition 2:

We first establish four equalities using Mean Value Approach (MVA) and then prove the desired

results using these equalities. Because external arrivals follow a Poisson process, by the Poisson

Arrivals See Time Averages (PASTA) property Tijms (2003) and the fact that service times are

exponential, we have (a), T̄ss = N̄s+1
µ

. By Little’s Law (Kleinrock 1976, eq.2.25 on pg.17) we have

the following identities, (b), N̄r = pλT̄rr and (c) N̄s = λ
(
(1− p)T̄ss + pT̄rs

)
. Finally Lemma 1 yields

(d), N̄r + N̄s = λ
µ−λ .

By Proposition 1(i) and (b), we have (i). Similarly (ii) follows from Proposition 1(ii) and (a).

Observing that, for the benchmark system with no proactive service that T̄Bss = T̄Brs, then equation

(1) implies (iv), and combining this with (ii) yields (iii). Next we prove (1) to conclude the proof.

By (c) and (a) we have (µ− λ)Tss − 1 =−λp(Tss − Trs), and plugging in (b) and (c) for Nr and

Ns in (d), respectively, we obtain (µ−λ)Tss−1 = (µ−λ)p(Tss−Trs)−p(µ−λ)Trr, combining this

with (µ−λ)Tss− 1 =−λp(Tss−Trs) yields (1). �

A.4. Sketch for Proof of Proposition 3:

We provide a sketch of the couplings used in the proof of part (i) which, when combined with

Lemma 1 implies part (ii), and from both parts (i) and (ii) the monotone results follow. Full details
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are provided in the electronic companion. We note that the exponential assumptions of inter-event

times are necessary for the coupling in this proof.

To show that πr is increasing in p (in a stochastic ordering sense), we couple the arrival and service

queue departure events (service completions) so that arrivals and departures are synchronized

across two versions of the Markov Chain, representing the state of the processes (note: this means

the number of customers in each version is identical also). We further couple the customer types

such that a flexible arrival in the first version implies a flexible arrival in the second, but an

inflexible customer arrival in the first may result in a flexible customer arrival in the second (this

captures the difference in p across versions). Lastly the epochs when a flexible customer in orbit

self-transitions to the service queue are also coupled such that when there are more people in orbit

in the second version (because more flexible customers have arrived there), then customers may

depart in the second version but not the first. However, if the number in orbit across versions is

identical then these events are synchronized across versions.

To show that πr is decreasing in γ (in a stochastic ordering sense) we couple arrivals, customer

types, and service queue departure events so that arrivals and departures are synchronized across

two versions of the Markov Chain representing the state of the processes. We then vary the rate

at which customers depart from orbit to the service queue on their own across versions so that

customers depart orbit faster in the second version. By coupling the self-transitions from orbit to

the service queue such that the common (minimum) self-transition rate across versions (at a given

point in time) is captured by one exponential variable, and the difference in transition rates across

versions is captured by another exponential variable, we couple the self-transition events such that

when the number in orbit is identical across systems it cannot be that the system with a slower

transition rate (smaller γ) has a departure when the faster version does not.

A.5. Sketch for proof of Theorem 1:

We provide a sketch of the proof; full details are provided in the electronic companion. We prove

the result in two steps, and in each step we use the approach in Reiman (1984). First we prove

that for any ε > 0

P

{
sup

0≤t<1

N̂n
r (t)>

pλn

γ
+ ε

}
→ 0, as n→∞. (12)

This result implies that the number of customers in the orbit is almost always less than pλn

γ
,

therefore bounded. We prove this result by showing that, whenever the number of customers in

the orbit is more than pλn

γ
, then the rate customers leave the orbit is much higher than the rate

that they arrive to the orbit, regardless of the number of customers in the service queue.



Delana, Savva & Tezcan: Proactive Customer Service
30 Article submitted to Manufacturing & Service Operations Management; manuscript no. MSOM-17-214

In the second step we focus on the service queue, assuming N̂n
r (t) ≤ pλn

γ
+ ε/4 for all t and

arbitrary ε > 0. We know from (12) that the probability that this assumption holds goes to 1 as

n→∞. Next we prove that, under this assumption, if∣∣∣∣N̂n
r (t)−

(
N̂n
Q(t)∧ pλ

n

γ

)∣∣∣∣> ε. (13)

that is, the claimed state-space collapse result does not hold, then

N̂n
r (t)< pλn/γ− ε/2, and N̂n

s (t)>
ε

2
. (14)

In other words, (14) implies that the number of customers in orbit is strictly less than the upper

bound pλn

γn
and the number of customers in the service queue is non-negative. Because the service

queue has priority, this implies that whenever (13) holds, the server will only serve the service queue.

We then show that the service queue must therefore reach zero quickly. But if the service queue is

empty, then
∣∣∣N̂n

r (t)−
(
N̂n
Q(t)∧ pλn

γ

)∣∣∣< ε/4 and so (13) cannot hold. Since ε > 0 is arbitrary, this

proves the desired result.

A.6. Sketch for Proof of Proposition 4:

There are six possible types of equilibrium strategies which are the combinations of λe < Λ or

λe = Λ with pe = 0 or 0 < pe < 1 or pe = 1. We show each type of equilibrium corresponds to a

given region of the parameter space in v and h which can be expressed in terms of the other model

primitives Λ, γ, µ, ws, and wr. To prove part (i.) on the uniqueness and existence of equilibrium,

we show that the regions are mutually exclusive and collectively exhaustive. The cases (unique

equilibrium solution and region) are:

Case 1:pe = 0 and λe = Λ, if Λ<µ, v≥ v̂0 := ws
µ−Λ

and h≥ ĥΛ :=
(
ws
µ
− wr

µ−Λ

)
Λ2

γµ
(− ln Λ

µ
).

Case 2: pe = 0 and λe = λ0 := µ− ws
v
<Λ, if either Λ ≥ µ or v < v̂0 and h ≥ ĥλ0

:=(
ws
µ
− wr

µ−λ0

)
λ2

0
γµ

(− ln λ0
µ

).

Case 3: pe = 1 and λe = Λ, if Λ< µ, v ≥ v̂1 := ws
µ−Λ

+ h− ws−wr
µ−Λ

Λ
µ

(
1− (Λ/µ)

Λ/γ
)

and h≤ ȟΛ :=(
ws
µ
− wr

µ−Λ

)
Λ
µ

(
1− (Λ/µ)

Λ/γ
)

.

Case 4: pe = 1 and λe = λ1 <Λ, if either Λ ≥ µ or v < v̂1 and h ≤ ȟλ1
:=(

ws
µ
− wr

µ−λ1

)
λ1
µ

(
1− (λ1/µ)

λ1/γ
)

, where λ1 is implicitly defined by v = ws
µ−λ1

+ h −
ws−wr
µ−λ1

λ1
µ

(
1− (λ1/µ)

λ1/γ
)

.

Case 5: 0< pe = p̃ < 1 and λe = Λ, if Λ<µ, v≥ v̂p := ws
µ−Λ

(
1− (Λ/µ)

2
(

1− (Λ/µ)
p̃Λ/γ
))

, and ȟΛ <

h< ĥΛ, where p̃ is implicitly defined by h=
(
ws
µ
− wr

µ−Λ

)
Λ
p̃µ

(
1− (Λ/µ)

p̃Λ/γ
)

.

Case 6: 0< pe = p̃ < 1 and λe = λ̃ <Λ, if either Λ>µ or v < v̂p, and ȟλ1
<h< ĥλ0

, where (p̃, λ̃)

solve,

v=
ws

µ− λ̃

1−
(
λ̃

µ

)2
1−

(
λ̃

µ

) p̃λ̃
γ


 , (15)
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h=

(
ws
µ
− wr

µ− λ̃

)
λ̃

p̃µ

1−
(
λ̃

µ

) pλ̃
γ

 . (16)

To prove part (ii.) we use the equilibrium condition equations defined in each case to derive the

comparative statics results by taking the full derivatives of the equations.

A.7. Sketch for Proof of Proposition 5:

To prove part (i.) we show that the partial derivative of the welfare function with respect to λ is

negative for all equilibrium arrival rates. To prove part (ii.) we show that, for a fixed exogenous

arrival rate, the result as stated holds, in particular for the case when λ= λso. Then we use the

fact that λe > λso from part (i.) to show that this extends to the case when the arrival rates are

different because, as more customers join in equilibrium, a smaller proportion agree to be flexible.

A.8. Proof of Proposition 6:

For the first part of the proof we start from the fact that, when proactive service makes no errors

(i.e., q = 1), the system with proactive service generates lower waiting times compared to the

system without proactive service (i.e., Ns(1)< ρ
1−ρ , where Ns(q) is given by the approximation of

(2)). If q = 0, one can use the birth-death process of Figure 5 to show that waiting times will be

approximately Ns(0) = ρ
1−ρ + (n− pλ/γ)> ρ

1−ρ . Therefore, to complete the first part of the proof,

we will need to show that dNs(q)

dq
< 0 for all 0 < q < 1. From the birth-death process depicted in

Figure 5, we have that

P0

(
n∑
i=0

(
ρ

q

)i
+

(
ρ

q

)n ∞∑
i=n+1

ρi−n

)
= 1,

and

Ns(q) = 1−P0 +P0

(
ρ

q

)n ∞∑
i=n+1

ρi−n(i− pλ
γ
− 1).

Therefore, q
P0

dP0
dq

= P0

(∑n

i=0 i
(
ρ
q

)i
+n

(
ρ
q

)n∑∞
i=n+1 ρ

i−n
)
> 0. Furthermore, with some algebraic

manipulation, q
P0

dP0
dq

= n−P0

∑n

i=0(n− i)
(
ρ
q

)i
.

dNs

dq
=−dP0

dq
+

(
q

P0

dP0

dq
−n
)
P0

q

(
ρ

q

)n ∞∑
i=n+1

ρi−n(i− pλ
γ
− 1)

=−dP0

dq
−
(
P0

n∑
i=0

(n− i)
(
ρ

q

)i)
P0

q

∞∑
i=n+1

ρi−n(i− pλ
γ
− 1)< 0.

Since Ns is monotonic decreasing in q, this implies that there exists a threshold 0< q̄ < 1 such that

Ns(q)<
ρ

1−ρ if and only if q > q̄.
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To show that if ρ> 1
2

+ γ
2pλ

then q̄ < ρ, we start from the approximation for Ns when q= ρ, given

by (10). Using this approximation, the system with proactive service reduces waiting time despite

errors if ρ> n
pλ/γ+n

. Since n := bpλ
γ

+ 1c, any ρ> 1
2

+ γ
2pλ

would satisfy this.

For the last part of the proposition, we use the approximation of Ns given by (8), which

implies that q̄ is the unique solution in the interval (0,1) of the following polynomial equa-

tion: qn+1 − qn(1− ρ)− qρn(n− pλ/γ + 1) + ρn(ρ(n− pλ/γ − 1) + 1) = 0. We know the solution

q̄ exists and is unique from the first part of the proposition. As µ approaches λ the system

utilization ρ increases but n and λ remain unchanged. Differentiating the polynomial equation

with respect to ρ gives dq̄
dρ

= − b(q̄,ρ)

a(q̄,ρ)
, where a(q, ρ) = qn

(
1 +n−n 1−ρ

q
− (2− δ)(ρ

q
)
n
)
, b(q, ρ) =

qn
(

1−
(
ρ
q

)n (
n q
ρ
(2− δ− 1/q) + δ(n+ 1)

))
, where δ := pλ/γ+1−n. Assume that no combination

of parameters (p,λ, γ,µ) exist such that dq̄
dρ
< 0, by counter example we arrive at a contradiction

– let p = 1, λ = .85, γ = .25, and µ = 1, then q̄ = .422959 and dq̄
dρ

= −0.3. Thus, combinations of

parameters (p,λ, γ,µ) exist such that the threshold q̄ is decreasing in utilization.
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