
 
 

UPCommons 
Portal del coneixement obert de la UPC 

http://upcommons.upc.edu/e-prints 

 

 

This is a post-peer-review, pre-copy edit version of an article 
published in Zeitschrift für angewandte Mathematik und Physik. The 
final authenticated version is available online at: 
https://doi.org/10.1007/s00033-019-1127-x. 

 

Published paper: 

Quintanilla, R. Some remarks on the fast spatial growth/decay in 
exterior regions. "Zeitschrift für angewandte Mathematik und Physik", 
2019, vol. 70, núm. 3, art. 83. doi:10.1007/s00033-019-1127-x 
 
 

URL d'aquest document a UPCommons E-prints:  

https://upcommons.upc.edu/handle/2117/132926 

 

 

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
https://doi.org/10.1007/s00033-019-1127-x
https://doi.org/10.1007/s00033-019-1127-x
https://upcommons.upc.edu/handle/2117/132926


SOME REMARKS ON THE FAST SPATIAL GROWTH/DECAY IN

EXTERIOR REGIONS

RAMÓN QUINTANILLA

Departament de Matemàtiques

Universitat Politècnica de Catalunya

C. Colom 11, 08222 Terrassa, Barcelona, Spain

e-mail: ramon.quintanilla@upc.edu

Abstract: In this paper we investigate the spatial behavior of the solutions to
several partial di�erential equations/systems for exterior or cone-like regions. Un-
der certain conditions for the equations we prove that the growth/decay estimates
are faster than any exponential depending linearly on the distance to the origin.
This kind of spatial behavior has not been noticed previously for parabolic prob-
lems and exterior or cone-like regions. The results obtained in this work apply in
particular for the linear case.

Keywords: Fast growth/decay estimates, Phragmen-Lindelof alternative, Exte-
rior regions, Saint-Venant principle.

MSC(2010): 35B53, 35Q74, 35Q79.

1. Introduction

Determining the spatial damping of the solutions to a partial di�erential equation (or a system
of PDEs) has become a topic of much interest in a lot of contexts. Probably, the main reason of
that interest lies in the attempt to clarify and better understand the Saint-Venant principle in
elasticity [31, 32] and in the heat conduction [1] as well as in other thermomechanical situations.
The �rst approaches and contributions to this problem considered the study of equations/systems
in a semi-in�nite cylinder. The challenge is to obtain the rate of growth/decay of the solutions
when the axial variable tends to in�nity. It is accepted that for elliptic equations this rate is
given by an exponential depending linearly on the distance from the cross-section to the �nite
end of the cylinder [6]. However, in the linear hyperbolic case, the solutions satisfy a certain
domain of in�uence property, i. e. after a �nite period of time the solutions cease to exist for a
�nite distance with respect to the �nite end of the cylinder [7, 4]. For linear parabolic problems
the rate of decay is faster than for the elliptic problems, but slower than for the hyperbolic ones
[12, 13].

In this work we intend to make a step forward in these studies considering exterior or cone-like
regions. That is, one would like to see how the solutions growth/decay when the problem is
de�ned on a region which is determined by the exterior of a bounded domain and the distance to
the origin increases. It is worth recalling that the �rst contributions in this line were proposed
by Horgan and Payne [10, 11] and Knops, Rionero and Payne [16] who restricted their attention
to the elasticity (see also [24, 26]). Recently Knops and Quintanilla [14] obtained estimates for
the static thermoelasticity in a class of problems where the cross-section becomes unbounded,

Date: May 10, 2019.
1



2 RAMÓN QUINTANILLA

that is, they considered elliptic systems. Bo�ll and Quintanilla [2] extended the results for the
linear hyperbolic problem to exterior or cone-like regions and they proved that the behavior of
the solutions is similar to the one obtained for cylinders. In other words: the decay is extremely
fast. As far as we know few attention has been paid to this problem in the parabolic case [15, 25].

In this contribution we study the spatial behavior of the solutions to a class of parabolic problems
in exterior (or cone-like) regions. Our main purpose is to give growth/decay estimates for these
solutions. To this end we mainly use the weighted energy method. The use of this method is not
a novelty: it has been used by many authors for continuum thermomechanics problems [8, 9, 3].
However, we consider the possibility that the usual ω parameter introduced in this approach
tends toward in�nity.

As a consequence, we obtain that the rate of growth/decay of the solutions is faster than any
exponential depending on the distance to the origin in a linear way. This is a fact that is worth
underlying.

2. Preliminaries

In this section we describe the basic elements that we need to propose our problems.

Here, and from now on, we use the usual summation convention, that is summation over repeated
indices is assumed. We also use the standard notation in which a colon followed by a subscript
means the partial derivation with respect to the corresponding coordinate.

We consider an exterior region Ω ⊂ R3. We recall here that such a region can be seen as the
complementary of a ball of radius R0 > 0 centred at the origin. We intend to study the spatial
evolution of the solutions as the distance to the origin r = (xixi)

1/2 increases.

First, we study the problem determined by the equation

(2.1) c(x)ut = (ρ(x, t, u, u,i)u,i),i,

with the initial data

(2.2) u(x, 0) = 0, x ∈ Ω,

and the boundary data

(2.3) u(x, t) = f(x, t), when xixi = R2
0.

In this note we develop the analysis for exterior regions, but it is worth noting that the analysis
and results can be adapted without di�culties to cone-like regions or even cylinder regions
whenever we impose homogeneous Dirichlet boundary conditions on the lateral face of the region.

Although it is usual the use of the Poincaré inequality on the cross-sections in the studies of the
spatial behavior, we note that our approach does not make use of this inequality.

The problem proposed here and the ones we will study later are ill-posed in the sense of Hadamard.
It is clear that uniqueness of solutions cannot be guaranteed. In general it is possible to obtain
solutions to our problem with di�erent behavior at the in�nity to the same initial-boundary
problem. Nevertheless, we here are looking for Phragmen-Lindelof alternatives for the solutions
whenever the existence is assumed.

In some cases, adding appropriate constrains to the solutions a well posed problem can be set.
It is what happens, for instance, if we impose that the solutions tend to zero at the in�nity.
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Therefore, the existence and uniqueness of solutions can be easily obtained (at least) in the
linear cases (see for example [5, 29]).

We consider the problem in the three-dimensional case, but in fact our analysis is independent
of the dimension and it can be conveniently adapted to one or two dimensions.

We will distinguish several situations. In the next section we will work with the previously
stated problem in a general way. In Section 4 we will restrict our attention to a subclass of
equations and, using a quite di�erent argument, an alternative measure is proposed. In Section
5 we consider another class of equations related with viscoelastic problems (also type III heat
conduction). A parabolic phase-lag equation is also considered in a remark. Finally, in Section 6
we deal with a system of equations that arises from the thermoelasticity. It is worth noting that
even in this case, where the system is a combination of parabolic and hyperbolic equations, our
arguments can still be used. A remark concerning phase-lag thermoelasticity is also included.
We �nish the contribution by giving some conclusions.

3. First case

Consider the problem determined by equation (2.1), with initial condition (2.2) and boundary
conditions (2.3). We will suppose that the thermal capacity and the thermal conductivity satisfy
the following conditions:

(a) 0 < c0 ≤ c(x).

(b) 0 < ρ ≤M <∞,

for some positive real numbers c0 and M .

Lin and Payne [20] imposed also condition (b). They also studied the two dimensional problem
at [19]. They restricted their attention to cylinders or strips. We will see that our approach
allows to improve the rate of growth/decay.

To illustrate the fact that these two conditions are by no means exceptional, we give a couple of
examples.

Example 3.1. In the �rst example we consider the linear problem, meanwhile the second cor-
responds to a nonlinear situation.

• If c(x) and ρ are both positive constants, therefore we are facing the well known Fourier
heat equation

cut = ρ4 u.

Of course, conditions (a) and (b) are satis�ed in this case.
• If c(x) is a positive constant and

ρ =
ν√

1 + ν∗|5uu |2

where ν and ν∗ are two positive constants, therefore we obtain the so-called relativistic
heat equation. As in the previous example, it is clear that conditions (a) and (b) are
satis�ed.
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We start the process of giving an estimate for the spatial behavior of the solutions to the problem
(2.1), (2.2) and (2.3) by considering for each positive constant ω, the function

(3.1) Fω(r, t) =

∫ t

0

∫
D(r)

exp(−2ωs)ρuu,i
xi
r
dads.

Here, and from now on, D(r) = {x, xixi = r2} is the exterior surface to the sphere of radius r
centred at the origin.

If we apply the Divergence theorem and take into account the di�erential equation and the initial
data we obtain

(3.2) Fω(r + h, t)− Fω(r, t) =
exp(−2ωt)

2

∫
B(r+h,r)

c(x)u2dv

+

∫ t

0

∫
B(r+h,r)

exp(−2ωs)(ρ| 5 u|2 + ωc(x)u2)dvds,

where B(r + h, r) = {x, r < (xixi)
1/2 < r + h}.

Therefore, we obtain that

(3.3)
∂Fω
∂r

=
exp(−2ωt)

2

∫
D(r)

c(x)u2da+

∫ t

0

∫
D(r)

exp(−2ωs)(ρ| 5 u|2 + ωc(x)u2)dads.

We now want to estimate the absolute value of Fω in terms of the spatial derivative of the
function.

To this end, we use the Holder inequality, the arithmetic-geometric mean inequality and the
assumptions on the constitutive functions to obtain the following inequalities:

(3.4) |Fω(r, t)| ≤

(∫ t

0

∫
D(r)

exp(−2ωs)ρ2| 5 u|2dads

)1/2(∫ t

0

∫
D(r)

exp(−2ωs)u2dads

)1/2

≤
(
M

ωc0

)1/2
(∫ t

0

∫
D(r)

exp(−2ωs)ρ| 5 u|2dads

)1/2(∫ t

0

∫
D(r)

exp(−2ωs)ωcu2dads

)1/2

≤
(

M

4ωc0

)1/2
(∫ t

0

∫
D(r)

exp(−2ωs)(ρ| 5 u|2 + ωcu2)dads

)

≤
(

M

4ωc0

)1/2 ∂Fω
∂r

.

This kind of inequality is well known in the study of spatial estimates. In particular it implies
that

(3.5) Fω(r, t) ≤
(

M

4ωc0

)1/2 ∂Fω
∂r

,

and

(3.6) −Fω(r, t) ≤
(

M

4ωc0

)1/2 ∂Fω
∂r

.
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The consequences of these two inequalities are also known (see [6]). If there exists a value r0
such that Fω(r0, t) > 0, then the function Fω(r, t) is increasing from r0 in the spatial variable.
Hence, it can be proved that the function

(3.7) F ∗ω(r, t) =
exp(−2ωt)

2

∫
B(r,R0)

cu2dv +

∫ t

0

∫
B(r,R0)

exp(−2ωs)(ρ| 5 u|2 + ωcu2)dvds

blows up as

(3.8) exp

[(
4ωc0
M

)1/2

r

]
.

On the contrary, if Fω(r, t) ≤ 0 for every r ≥ R0, we obtain that

(3.9) −Fω(r, t) ≤ −Fω(R0, t) exp

[(
−4ωc0

M

)1/2

(r −R0)

]
.

These two results represent a classical alternative of Phragmen-Lindelof type.

It is worth recalling that Fω(r, t) tends to zero when r tends to in�nity, then if we introduce the
function

(3.10) Eω(r, t) =
exp(−2ωt)

2

∫
B(r)

cu2dv +

∫ t

0

∫
B(r)

exp(−2ωs)(ρ| 5 u|2 + ωcu2)dvds,

where B(r) = {x, xixi > r2}, the estimate (3.9) can be written as

(3.11) Eω(r, t) ≤ Eω(R0, t) exp

[(
−4ωc0

M

)1/2

(r −R0)

]
.

We summarize the above analysis in the following statement.

Theorem 3.2. Let u(x, t) be a solution to the problem determined by equation (2.1), the initial
conditions (2.2) and the boundary condition (2.3). Let us also assume that conditions (a) and
(b) hold. Therefore u(x, t) either blows up as (3.8) for the expression (3.7) or the decay estimate
(3.11) holds.

As a consequence, whenever the estimate (3.11) holds the function

(3.12) E(r, t) =
1

2

∫
B(r)

cu2dv +

∫ t

0

∫
B(r)

ρ| 5 u|2dvds,

satis�es the estimate

(3.13) E(r, t) ≤ Eω(R0, t) exp(2ωt) exp

[(
−4ωc0

M

)1/2

(r −R0)

]
.

Notice that this estimate works for a �xed time. We can see that the term exp(2ωt) only a�ects
the amplitude term. The spatial decay is determined by the exponential depending on the
variable r. A similar comment applies for the decay estimates obtained later in this paper.

Remark 3.3. Notice also that when R0 → 0 and that we are considering bounded solutions,
therefore it must be u(x, t) ≡ 0.
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Remark 3.4. We note that the rate of growth/decay obtained previously depends on the square
root of ω. But as ω is an arbitrary positive constant we have that the rate will be bigger than
every exponential depending linearly on the distance to the origin. This is a striking fact because
what it is usual in many problems de�ned in exterior regions is that the rate of growth/decay
should be of polynomial type. The result about growth is new in the linear case for cylinders.
The rate of decay is not new in the case of cylinders (see [12, 13]), but as far as the author knows
there were no results concerning the fact that the rate of growth is faster than every exponential
depending linearly on the distance to the origin.

We note that when the solution blows-up we see that

(3.14) F ∗1 (r, t) ≥ ω−1F ∗ω(r, t),

assuming that ω ≥ 1, which implies that

(3.15) lim
r→∞

exp(−λr)F ∗1 (r, t) > 0,

for every positive λ. At the same time inequality (3.13) implies that when the solution converges
to zero the asymptotic behavior satis�es

(3.16) lim
r→∞

exp(λr)E(r, t) = 0,

for every positive λ. These two limits show that the asymptotic behavior of the solutions cannot
be controlled by any linear expression of the exponential of the distance with respect to the
origin, but the rate of growth/decay should be faster.

Remark 3.5. The analysis proposed in this section can be adapted to study the equation

(3.17) c(x)ut = (ρij(x, t, u, u,i)u,i),j ,

whenever c(x) satis�es the condition (a) and the function ρij satisfy the inequality

ρijρkju,iu,k ≤Mρiju,iu,j ,

where M is a positive constant.

In this case we may de�ne

(3.18) Fω(r, t) =

∫ t

0

∫
D(r)

exp(−2ωs)ρijuu,i
xj
r
dads.

We see that

(3.19)
∂Fω
∂r

=
exp(−2ωt)

2

∫
D(r)

c(x)u2da+

∫ t

0

∫
D(r)

exp(−2ωs)(ρiju,iu,j + ωc(x)u2)dads.

If we note that
(3.20)

|Fω(r, t)| ≤

(∫ t

0

∫
D(r)

exp(−2ωs)ρijρkju,iu,kdads

)1/2(∫ t

0

∫
D(r)

exp(−2ωs)u2dads

)1/2

,

it is clear that we can adapt the previous analysis to this case.

An easy example of equation satisfying the conditions proposed in Remark 3.5 is the linear heat
equation

c(x)ut = (kij(x)u,i),j ,

where kij is a symmetric, upper bounded and positive de�nite tensor.
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4. Second case

In this section we consider a particular subclass of equation (2.1). We still assume condition (a),
but now we suppose that ρ only depends on the variables x and | 5 u|2. That is, our equation
can be written as

(4.1) c(x)ut = (ρ(x, | 5 u|2)u,i),i.

Instead of assumption (b) we need to impose:

(b∗) 0 < ρ and ρ2| 5 u|2 ≤MW (| 5 u|2), where M is a positive constant and

W (| 5 u|2) =

∫ |5u|2
0

ρ(ς)dς.

As before, there are interesting examples in the literature of functions satisfying condition (b∗).

Example 4.1. Let us give a couple of them.

• If ρ is de�ned as

ρ(| 5 u|2) =
1√

1 + | 5 u|2
,

it is not di�cult to see that

W (| 5 u|2) ≥ ρ2| 5 u|2,

and condition (b∗) is satis�ed with M = 1.
• Let us consider

ρ =
(
1 +

b

n
| 5 u|2

)n−1
,

where b > 0 and 0 < n ≤ 1. The interested reader can see that the condition (b∗) is
satis�ed (see [27]).

In this case the analysis starts by considering the function

(4.2) Gω(r, t) =

∫ t

0

∫
D(r)

exp(−2ωs)ρusu,i
xi
r
dads.

It is worth noting that
d

dt
W (x, | 5 u|2) = 2ρ(x, | 5 u|2)u,iu,it,

Therefore, we have that

(4.3) Gω(r + h, t)−Gω(r, t) =
exp(−2ωt)

2

∫
B(r+h,r)

W (| 5 u|2)dv

+

∫ t

0

∫
B(r+h,r)

exp(−2ωs)(ωW (| 5 u|2) + c(x)u2s)dvds.

Therefore

(4.4)
∂Gω
∂r

=
exp(−2ωt)

2

∫
D(r)

W (|5u|2)da+

∫ t

0

∫
D(r)

exp(−2ωs)(ωW (|5u|2) + c(x)u2s)dads.
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As in the previous section we can see that

(4.5) |Gω(r, t)| ≤

(∫ t

0

∫
D(r)

exp(−2ωs)ρ2| 5 u|2dads

)1/2(∫ t

0

∫
D(r)

exp(−2ωs)u2sdads

)1/2

≤
(
M

ωc0

)1/2
(∫ t

0

∫
D(r)

exp(−2ωs)ωW (| 5 u|2)dads

)1/2(∫ t

0

∫
D(r)

exp(−2ωs)c(x)u2sdads

)1/2

≤
(

M

4ωc0

)1/2 ∂Gω
∂r

.

We can follow, mutatis mutandis, the same argument given in Section 3 to obtain a Phragmen-
Lindelof alternative.

In fact, in this case we obtain that the solutions satisfy the asymptotic behavior

(4.6) lim
r→∞

exp(−λr)

(∫
B(r,R0)

W (| 5 u|2)dv +

∫ t

0

∫
B(r,R0)

(W (| 5 u|2) + c(x)u2s)dvds

)
> 0,

for every positive λ, or the decay estimate

(4.7) E∗(r, t) ≤ E∗(R0, t) exp(2ωt) exp

[(
−4ωc0

M

)1/2

(r −R0)

]
,

for every positive ω, where

(4.8) E∗(r, t) =
1

2

∫
B(r)

W (| 5 u|2)dv +

∫ t

0

∫
B(r)

(ωW (| 5 u|2) + c(x)u2s)dvds.

Hence we have proved the following result.

Theorem 4.2. Let u(x, t) be a solution to the problem determined by equation (4.1), the initial
conditions (2.2) and the boundary condition (2.3). Let us also assume that conditions (a) and
(b*) hold. Therefore u(x, t) either satis�es the asymptotic condition (4.6) or the decay estimate
(4.7) holds.

It is worth noting that the decay estimate also implies that

(4.9) lim
r→∞

exp(λr)

(
1

2

∫
B(r)

W (| 5 u|2)dv +

∫ t

0

∫
B(r)

(W (| 5 u|2) + c(x)u2s)dvds

)
= 0,

for every positive λ.

Remark 4.3. The equation
c(x)ut = (kij(x)u,i),j ,

where kij is a symmetric, upper bounded and positive de�nite tensor also admits a similar
treatment.

If we de�ne

(4.10) Gω(r, t) =

∫ t

0

∫
D(r)

exp(−2ωs)kijusu,i
xj
r
dads,

we have that

(4.11)
∂Gω
∂r

=
exp(2ωt)

2

∫
D(r)

kiju,iu,jda+

∫ t

0

∫
D(r)

exp(−2ωs)(ωkiju,iu,j + c(x)u2s)dads.
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Therefore we can adapt the previous analysis to this situation.

5. Viscoelastic type

In this section we extend the previous results to equations coming from viscoelastic problems.
To be precise, we consider equations of the type

(5.1) c(x)utt = (ρ(x, | 5 u|2)u,i),i + γu,jjt,

where c(x) satis�es condition (a), ρ(x, |5u|2) satis�es condition (b∗) and γ is a positive constant.
We note that this kind of equations are also present in the study of the type III heat conduction.
The linear version of the type III heat conduction satis�es our assumptions. We also note that in
the two-dimensional case, if ρ is the second function proposed in the example 4.1, then equation
(5.1) corresponds to the anti-plane shear dynamics deformations for a subclass of power-law
materials.

To study equation (5.1) we impose the initial condition (2.1) and also

(5.2) ut(x, 0) = 0, x ∈ Ω.

The analysis starts with the function

(5.3) Mω(r, t) =

∫ t

0

∫
D(r)

exp(−2ωs)(ρu,i + γu,it)us
xi
r
dads.

We see that

(5.4) Mω(r + h, t)−Mω(r, t) =
exp(−2ωt)

2

∫
B(r+h,r)

(c(x)u2t +W (| 5 u|2))dv

+

∫ t

0

∫
B(r+h,r)

exp(−2ωs)(ωW (| 5 u|2) + ωc(x)u2s + γ| 5 u|2)dvds,

and

(5.5)
∂Mω

∂r
=

exp(−2ωt)

2

∫
D(r)

(c(x)u2t +W (| 5 u|2))da

+

∫ t

0

∫
D(r)

exp(−2ωs)(ωW (| 5 u|2) + ωc(x)u2s + γ| 5 us|2)dads.

We have

(5.6) |Mω(r, t)| ≤

(∫ t

0

∫
D(r)

exp(−2ωs)ρ2| 5 u|2dads

)1/2(∫ t

0

∫
D(r)

exp(−2ωs)u2sdads

)1/2

+

(∫ t

0

∫
D(r)

exp(−2ωs)γ2| 5 us|2dads

)1/2(∫ t

0

∫
D(r)

exp(−2ωs)u2sdads

)1/2

≤
(

2M

ω2c0

)1/2
(∫ t

0

∫
D(r)

exp(−2ωs)ωW (| 5 u|2)dads

)1/2(∫ t

0

∫
D(r)

ω

2
exp(−2ωs)c(x)u2sdads

)1/2

+

(
2γ

ωc0

)1/2
(∫ t

0

∫
D(r)

exp(−2ωs)γ| 5 us|2dads

)1/2(∫ t

0

∫
D(r)

ω

2
exp(−2ωs)c(x)u2sdads

)1/2



10 RAMÓN QUINTANILLA

≤ f(ω)
∂Mω

∂r
,

where

(5.7) f(ω) = max

((
M

2ω2c0

)1/2

,

(
γ

2ωc0

)1/2
)
.

As ω can be selected as large as we want, we see that f(ω)−1 becomes unbounded when ω
increases. Therefore we obtain another alternative of the type

(5.8)

lim
r→∞

exp(−λr)
(∫

B(r,R0)
(c(x)u2t+W (|5u|2))dv+

∫ t

0

∫
B(r,R0)

(W (|5u|2)+c(x)u2s+γ|5us|2)dvds
)
> 0,

for every positive λ, or the decay estimate

(5.9) E∗∗(r, t) ≤ E∗∗(R0, t) exp(2ωt) exp
(
−f(ω)−1(r −R0)

)
,

for every positive ω, where
(5.10)

E∗∗(r, t) =
1

2

∫
B(r)

(c(x)u2t +W (| 5 u|2))dv +

∫ t

0

∫
B(r)

(ωW (| 5 u|2) + ωc(x)u2s + γ| 5 us|2)dvds.

In this case, we have obtained the following theorem.

Theorem 5.1. Let u(x, t) be a solution to the problem determined by equation (5.1), the initial
conditions (2.2) and (5.2) and the boundary condition (2.3). Let us also assume that conditions
(a) and (b*) hold. Therefore u(x, t) either satis�es the assymptotic condition (5.8) or the decay
estimate (5.9) holds.

Remark 5.2. If R0 → 0, the only bounded solution is u(x, t) ≡ 0.

Remark 5.3. Again the rate of growth/decay obtained in this case is arbitrarily large. We see
that the rate will be faster than any exponential depending linearly on the distance to the origin.
To be precise we can see that

lim
r→∞

exp(λr)
(1

2

∫
B(r)

(c(x)u2t+W (|5u|2))dv+

∫ t

0

∫
B(r)

(W (|5u|2)+c(x)u2s+γ|5us|2)dvds
)

= 0,

for every positive λ.

Remark 5.4. It is clear that the above analysis can be adapted without di�culties to the
equation

aut + butt = c4 u+4ut
for any positive constants a, b and c. This equation models heat conduction at low temperatures
[22].

Remark 5.5. The spatial behavior of the equation

utt + τquttt = k∗ 4 u+ τ∗ν 4 ut + kτu 4 utt

has been studied for a cylinder whenever k, k∗, τq, τu and τ∗ν are positive constants and certain
conditions among them are satis�ed. We can apply our arguments to this equation by assuming
null initial conditions for u, ut and utt for every point of the region [28].

In this case the analysis starts by considering the function
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(5.11) Mω(r, t) =

∫ t

0

∫
D(r)

exp(−2ωs)û,iũ
xi
r
dads

where

ũ = us + τquss and û = k∗u+ τ∗νus + kτuuss.

We have
(5.12)

∂Mω

∂r
=

exp(−2ωt)

2

∫
D(r)

(
(ũ)2 + k∗| 5 (u+ τqut)|2 + (τq(τν∗ − k∗τq) + kτT )| 5 ut|2

)
da

+

∫ t

0

∫
D(r)

exp(−2ωs)(ωΞ1 + Ξ2)dads

where

Ξ1 = (ũ)2 + k∗| 5 (u+ τqus)|2 + (τq(τν∗ − k∗τq) + kτT )| 5 us|2,
and

Ξ2 = (τ∗ν − k∗τq)| 5 us|2 + kτT τq| 5 uss|2.
It is clear that the analysis can be adapted here, if τq(τν∗ − k∗τq) + kτT is stricitly positive.

Remark 5.6. The equation

c(x)utt = (k∗ij(x)u,i),j + (kij(x)u,i),jt,

where kij and k∗ij are two symmetric, upper bounded and positive de�nite tensors admits an
analogous analysis.

In fact, by following the ideas proposed in [30] it is possible to extend this argument to equations
of the form1

(5.13) c0(x)u+c1(x)u(1)+ ...+cn+1(x)u(n+1) = (k0ij(x)u,i),j+(k1ij(x)u
(1)
,i ),j+ ...+(knij(x)u

(n)
,i ),j ,

where cn(x) ≥ c0 > 0, knij is positive de�nite and k
l
ij are symmetric and upper bounded for every

l. In this case we need to assume that the initial conditions for u, u(1), ...u(n) are homogeneous.

If we de�ne

(5.14) Mω(r, t) =

∫ t

0

∫
D(r)

exp(−2ωs)
(
k0iju,i + k1iju

(1)
,i + ...+ kniju

(n)
,i

)
u(n)

xj
r
dads,

we see that

(5.15)
∂Mω

∂r
(r, t) =

1

2

∫
D(r)

exp(−2ωt)cn+1|u(n)|2da

+

∫ t

0

∫
D(r)

exp(−2ωs)
(
Q+ ωcn+1|u(n)|2 + kniju

(n)
,i u

(n)
,j

)
dads

where

Q = (k0iju,i + k1iju
(1)
,i + ...+ kn−1ij u

(n−1)
,i )u

(n)
,i + (c0(x)u+ c1(x)u(1) + ...+ cn(x)u(n))u(n).

1Here and from now on u(i) = ∂iu/∂ti.
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By taking ω large enough and making use of the weigthed Poincaré inequality (see [17]) we can
obtain that (see also [30])

(5.16)
∂Mω

∂r
(r, t) ≥ 1

2

∫
D(r)

exp(−2ωt)cn+1|u(n)|2da

+
1

2

∫ t

0

∫
D(r)

exp(−2ωs)
(
ωcn+1|u(n)|2 + k

(n)
ij u

(n)
,i u

(n)
,j

)
dads.

An inequality of the type (5.6) can be obtained, where f(ω) is again a function which tends to
zero when ω tends to in�nity. Therefore we can see that the rate of growth/decay is faster than
any exponential depending linearly on the distance to the origin.

6. Thermoelasticity

We consider now a classical system of equations that appear in the thermoelasticity context. We
want to determine the spatial behavior of the solutions to the system of equations given by

(6.1) c(x)ui,tt = (
∂Ξ

∂eij
),j , −

d

dt

∂Ξ

∂θ
= (kij(x)θ,i),j .

Here ui is the displacement vector, θ is the relative temperature, eij = (ui,j +uj,i)/2 is the strain
tensor, kij is the thermal conductivity and Ξ plays the role of the free energy and it depends on
the material point x, the thermal variable and the strain tensor.

To this system of equations we adjoin the initial conditions:

(6.2) ui(x, 0) = ui,t(x, 0) = θ(x, 0) = 0.

We also assume boundary conditions

(6.3) ui(x, t) = fi(x, t), θ(x, t) = ϑ(x, t), when xixi = R2
0.

Let us consider the function

(6.4) Ψ(eij , θ) = Ξ(eij , θ)− θ
∂Ξ

∂θ
,

which corresponds to the internal energy in the case of linear thermoelasticity.

Through this section we assume again condition (a), that is 0 < c0 ≤ c(x). We also assume the
symmetry, upper bound and positivity of the thermal conductivity. This last condition says that
there exists a positive constant K such that

(6.5) kijξiξj ≥ Kξiξi,
for every vector (ξi). Therefore, we can guarantee the existence of C∗ > 0 such that

kijξikljξl ≤ C∗kijξiξj .

We also assume that there exists a positive constant C such that

(6.6)
∂Ξ

∂eij

∂Ξ

∂eij
+ θ2 ≤ CΨ.

This condition is the natural extension to the thermoelastic context of the one proposed in [7] for
the isothermal case. In the linear case it guarantees that the internal energy is positive de�nite
with respect to the strain tensor and the temperature.
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In this situation the analysis starts by considering the function

(6.7) Lω(r, t) =

∫ t

0

∫
D(r)

exp(−2ωs)

(
∂Ξ

∂eij
ui,s + kijθ,iθ

)
njdads.

We see that

(6.8) Lω(r + h, t)− Lω(r, t) =
exp(2ωt)

2

∫
B(r+h,r)

(c(x)ui,tui,t + Ψ(eij , θ))dv

+

∫ t

0

∫
B(r+h,r)

exp(−2ωs)(ωc(x)ui,sui,s + ωΨ(eij , θ) + kijθ,iθ,j)dvds,

and

(6.9)
∂Lω
∂r

=
exp(2ωt)

2

∫
D(r)

(c(x)ui,tui,t + Ψ(eij , θ))da

+

∫ t

0

∫
D(r)

exp(−2ωs)(ωc(x)ui,sui,s + ωΨ(eij , θ) + kijθ,iθ,j)dads.

We have that
(6.10)

|Lω(r, t)| ≤

(∫ t

0

∫
D(r)

exp(−2ωs)
∂Ξ

∂eij

∂Ξ

∂eij
dads

)1/2(∫ t

0

∫
D(r)

exp(−2ωs)ui,tui,tdads

)1/2

+

(∫ t

0

∫
D(r)

exp(−2ωs)kijθ,ikljθ,ldads

)1/2(∫ t

0

∫
D(r)

exp(−2ωs)θ2dads

)1/2

.

≤
(

2C

c0ω2

)1/2
(∫ t

0

∫
D(r)

exp(−2ωs)
ω

2
Ψdads

)1/2(∫ t

0

∫
D(r)

exp(−2ωs)ωcui,tui,tdads

)1/2

+

(
2CC∗

ω

)1/2
(∫ t

0

∫
D(r)

exp(−2ωs)kijθ,iθ,jdads

)1/2(∫ t

0

∫
D(r)

exp(−2ωs)
ω

2
Ψdads

)1/2

.

If we denote by

g(ω) = max

((
C

2c0ω2

)1/2

,

(
CC∗

2ω

)1/2
)
,

we obtain that

(6.11) |Lω| ≤ g(ω)
∂Lω
∂r

,

ω can be selected as large as we want. Therefore, we have that g(ω)−1 becomes unbounded when
ω increases. We then obtain the alternative

(6.12) lim
r→∞

exp(−λr)
(∫

B(r,R0)
(c(x)ui,tui,t + Ψ(eij , θ))dv

+

∫ t

0

∫
B(r,R0)

(c(x)ui,sui,s + Ψ(eij , θ) + kijθ,iθ,j)dvds
)
> 0.

for every λ > 0, or the decay estimate
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(6.13) E∗∗∗(r, t) ≤ E∗∗∗(R0, t) exp(2ωt) exp
(
−g(ω)−1(r −R0)

)
,

is satis�ed for every positive ω , where
(6.14)

E∗∗∗(r, t) =
1

2

∫
B(r)

(c(x)ui,tui,t+Ψ(eij , θ))dv+

∫ t

0

∫
B(r)

(ωc(x)ui,sui,s+ωΨ(eij , θ)+kijθ,iθ,j)dvds.

Theorem 6.1. Let (ui(x, t), θ(x, t)) be a solution to the problem determined by the system (6.1),
the initial conditions (6.2) and the boundary condition (6.3). Therefore (ui(x, t), θ(x, t)) either
satis�es the assymptotic condition (6.12) or the decay estimate (6.13) holds.

Again as ω can be selected as large as we want we see that

lim
r→∞

exp(λr)
(1

2

∫
B(r)

(c(x)ui,tui,t+Ψ(eij , θ))dv+

∫ t

0

∫
B(r)

(c(x)ui,sui,s+Ψ(eij , θ)+kijθ,iθ,j)dvds
)

= 0,

for every positive λ.

Remark 6.2. Again, when R0 → 0 the only bounded solution de�ned in the whole space is the
null solution. On the other hand, the rate of growth/decay of the solutions is also faster than
any exponential of a linear expression of the distance to the origin.

Remark 6.3. The system determined by the equations

(6.15) c(x)ui,tt = (Cijkl(x)uk,l − βij(x)θ),j

(6.16) c0(x)
d

dt
(a0θ + a1θ

(1) + ...+ anθ
(n)) + βij(x)(a0vi,j + a1v

(1)
i,j + ...+ anv

(n)
i,j )

= (k0ij(x)θ,i),j + (k1ij(x)θ
(1)
,i ),j + ...+ (knij(x)θ

(n)
,i ),j ,

can also be treated in a similar way if Cijkl = Cklij is a positive de�nite tensor, an is stricly

positive, knij is a symmetric positive de�nite tensor and klij are symmetric for every l. We assume

that (6.2) holds and that θ(1), ..., θ(n) also vanish at t = 02.

For that case the analysis starts by de�nining

(6.17) Lω(r, t) =

∫ t

0

∫
D(r)

exp(−2ωs)(Lja + Ljb)
xj
r
dads,

where
Lja = (Cijklũk,l − βij θ̃)ũi, Ljb = (k0ij(x)θ,i + k1ij(x)θ

(1)
,i + ...+ knij(x)θ

(n)
,i )θ̃,

and
g̃ = (a0g + a1g

(1) + ...+ ang
(n)).

It is not di�cult to see that

(6.18)
∂Lω
∂r

=
exp(−2ωt)

2

∫
D(r)

(
c0(x)|θ̃|2 + c(x) ˙̃ui ˙̃ui + Cijklũi,j ũk,l

)
da

+ω

∫ t

0

∫
D(r)

exp(−2ωs)
(
c0(x)|θ̃|2 + c(x) ˙̃ui ˙̃ui + Cijklũi,j ũk,l

)
dads

2An existence result for the solutions of this problem can be obtained by adapting the semigroup arguments
proposed in [21].
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+

∫ t

0

∫
D(r)

exp(−2ωs)
(
Q∗ + knijanθ

(n)
,i θ

(n)
,j

)
dads,

where
Q∗ = k0ij(a0θ,iθ,j + a1θ,iθ

(1)
,j + ...+ anθ,iθ

(n)
,j )+

+k1ij(a0θ
(1)
,i θ,j + a1θ

(1)
,i θ

(1)
,j + ...+ anθ

(1)
,i θ

(n)
,j )

+...+

+knij(a0θ
(n)
,i θ,j + a1θ

(n)
,i θ

(1)
,j + ...+ anθ

(n)
,i θ

(n−1)
,j ).

Using again the weigthed Poincaré inequality (see [18]) we obtain

(6.19)
∂Lω
∂r
≥ exp(−2ωt)

2

∫
D(r)

(
c0(x)|θ̃|2 + c(x) ˙̃ui ˙̃ui + Cijklũi,j ũk,l

)
da

+ω

∫ t

0

∫
D(r)

exp(−2ωs)
(
c0(x)|θ̃|2 + c(x) ˙̃ui ˙̃ui + Cijklũi,j ũk,l

)
dads

+
1

2

∫ t

0

∫
D(r)

exp(−2ωs)knijanθ
(n)
,i θ

(n)
,j dads,

for ω large enough. From this point we can obtain again that the growth/decay behavior is faster
than any exponential depending linearly on the distance to the origin.

In fact, we can prove the following instability result

lim
r→∞

exp(−λr)
(1

2

∫
B(r,R0)

(
c0(x)|θ̃|2 + c(x) ˙̃ui ˙̃ui + Cijklũi,j ũk,l

)
da

+

∫ t

0

∫
B(r,R0)

(
c0(x)|θ̃|2 + c(x) ˙̃ui ˙̃ui + Cijklũi,j ũk,l

)
dads+

3

2

∫ t

0

∫
B(r,R0)

knijanθ
(n)
,i θ

(n)
,j dads

)
> 0.

However to prove the decay result, we need to explain a little bit the analysis. It is clear that

lim
r→∞

exp(λ(ω)r)
(exp(−2ωt)

2

∫
B(r)

(
c0(x)|θ̃|2 + c(x) ˙̃ui ˙̃ui + Cijklũi,j ũk,l

)
da

+

∫ t

0

∫
B(r)

exp(−2ωs)
(
c0(x)|θ̃|2 + c(x) ˙̃ui ˙̃ui + Cijklũi,j ũk,l

)
dads

+
1

2

∫ t

0

∫
B(r)

exp(−2ωs)knijanθ
(n)
,i θ

(n)
,j dads

)
= 0,

where λ(ω) becomes unbounded when ω increases. In particular we can obtain that

lim
r→∞

exp(λr)

∫ t

0

∫
B(r)

knijanθ
(n)
,i θ

(n)
,j dads = 0,

for every positive λ and then we see that this measure for the temperature tends very fast to
zero. We want to see a similar e�ect for the mechanical part. To this end it is important to note
that ∫ t

0

∫
B(r)

exp(−2ωs)c(x) ˙̃ui ˙̃uidvds ≥ a2n(1− ε)
∫ t

0

∫
B(r)

exp(−2ωs)c(x)u̇
(n)
i u̇

(n)
i dvds,
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after the use of the weighted Poincaré inequality whenever ω is large enough and ε is a positive
parameter as small as we want. Even more, when ω increases ε becomes smaller. We can take
for every ω large enough ε = 1/2, then we will obtain that

lim
r→∞

exp(λr)

∫ t

0

∫
B(r)

c(x)u̇
(n)
i u̇

(n)
i dvds = 0,

for every positive λ. In a similar way we can prove that

lim
r→∞

exp(λr)

∫ t

0

∫
B(r)

Cijklu
(n)
i,j u

(n)
k,l dvds = 0,

and hence we obtain the alternative of Phragmen-Lindelof type which is again faster than any
exponential depending linearly on the distance to the origin.

7. Conclusions

In this paper we have presented several situations where the spatial growth/decay of the solutions
is faster than any exponential depending linearly on the distance to the origin. In particular
we have shown this e�ect for several parabolic equations including the Fourier heat conduction,
anti-plane shear dynamic deformations for power-law materials and the type III heat conduction,
phase-lag heat conduction as well as for the classical system of linear thermoelasticity and the
phase-lag thermoelasticity. We emphasize that this behavior di�ers from the behavior obtained
for elliptic equations in exterior regions. We have presented our results and analysis for exterior
regions, but the extension to cone-like regions or even cylinder regions is direct whenever we
assume homogeneous Dirichlet or Neumann boundary conditions on the lateral side of the cone
or cylinder.

It is worth noting that the approach that we propose here has been done other times in the study
of linear thermoelastic solids. However it is suitable to say that in our approach the parameter
ω is considered as a variable which can be unbounded and then the asymptotic behavior of the
solutions becomes faster than any exponential depending linearly on the spatial variable. We
want to �nish these conclusions by underlying that fact that our results apply (in particular) for
linear problems.
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