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Abstract—recently we are seeing a considerable effort from
both academy and industry in proposing new technologies for
storage devices. Often these devices are not readily available
for evaluation and methods to allow performing their tests just
from their performance parameters are an important tool for
system administrators. Simulators are a traditional approach
for carrying out such evaluations, however, they are more
suitable for evaluating the storage device as an isolate component,
mostly due to time constraints. In this paper, we propose an
approach based on virtual machine technology that is capable of
emulate storage devices transparently for the operating system
allowing evaluation of simulating devices within a real system
using any synthetic or real workload. To emulate devices in
real environments it is necessary to use the currently available
devices as a storage medium which creates a difficulty when the
device to be emulated is faster than this storage medium. To
circumvent this limitation we introduce a new technique called
Freezing Time, which takes advantage of virtual machine pausing
mechanism to manipulate the virtual machine clock and hide
the real I/O completion time. Our approach can be implemented
just requiring the hypervisor to be modified, providing a high
degree of compatibility and flexibility since it is not necessary
to modify neither the operating system nor the application. We
evaluate our tool under a real system using old magnetic disks to
emulate faster storage devices. Experiments using our technique
presented an average latency error of 6.08% for read operations
and 6.78% for write operations when comparing a real to device.

I. INTRODUCTION

Datacenter storage requirements have become increasingly
complex due to the recent demands imposed by big data
processing. These demands have motivated many scientists
and companies to propose new ways to store and retrieve
data, such as: read ahead operation using an intelligent storage
adapter [1], adaptive intelligent storage controller and associ-
ated methods [2] and also new storage technologies like NVMe
are becoming available, although not widely accessible due
to its high cost. Thus, evaluating the impact of these new
technologies on data centers by considering the entire stack
of operating system storage, workload and real applications is
a challenge.

Simulators are important tools for the evaluation of new
storage systems. However, due to its time consumption, they
are more appropriate for the evaluation of the storage device
as an isolated component than a storage system considering all
the machine and software layers. In the standard usage case,
simulators receive a trace obtained from a system executing

a given workload, and deliver a set of performance metrics.
This approach can hardly capture the several interactions of a
storage system with the various components, such as the core
of the operating system. Rarely, the results of a simulation can
be extrapolated to the results that could be obtained with a set
of workloads.

Running a large number of programs or benchmarks is
unfeasible using an offline simulator, an alternative is to use an
emulator to make an online simulation. The approach of this
paper, is to use such an emulator, based on a virtual machine
and dilate the time during IOs. With this emulator, it is neither
required to generate a trace nor make changes to programs or
benchmarks, since the applications in the guest environment
are not aware that devices are not real. An emulator takes
time to process the emulated device, and it affects directly
the minimum latency and maximum throughput that can be
achieved, because for every access the IO has to wait for the
emulator and then for the real device. A possible approach is
to store the virtual disk entirely in RAM (or external DRAM
like device) due to its fast access time. Another approach is to
dilate time, meaning that, the time spent inside the guest is not
the same as outside of it. We can dilate time linearly for the
whole guest e.g. with a factor of ten, the guest would notice
one second elapsed for every ten seconds of “real time”, this
method would distort the time of the overall components.

Inspired by the concept of time dilation, we propose a new
technique called Freezing Time, that employs the mechanisms
of stopping the virtual machine, on which the emulated device
can be faster than the storage available or even devices that
do not exist yet, all transparently to the application and almost
without any performance limitations. In this paper we present
the following main contributions:

• Flexible emulator tool for storage simulation which re-
quires no trace or changes in user space applications or
either changes in kernel.

• Whole stack approach enabling analysis from the storage
backend device up to the application running inside the
guest.

• High precision emulation with an average latency error
of less than 7% considering read and write operations.

• Low overhead tool with less than 25% increase on
emulation time, for fast evaluation of new and future
storage devices.



• Open source software that is available at [3], under GPL
license.

All experiments performed in this paper were made in
a reproducible manner (using open-source software and a
standard x86 architecture machinery). Our experiments show
that we were able to emulate disks with RAM like speeds
with an overhead of less than 20% in IO request time while
keeping precision as high as 94% on average.

II. RELATED WORK

Lee and Kuo [4] used a RAM disk as a faster storage
backend, in this manner they could emulate any device that
is slower than the system RAM. The disadvantage of this
approach is that RAM is often small and expensive, which
makes it impractical for simulating large devices. In our work,
we can use any backend to simulate any other storage device
of up to RAM speed.

Gu and Zhao [5] addressed this problem disabling all the
interruptions and disabling the hardware clocks on the host
kernel so that it was partially frozen. This method required to
have another machine to emulate the device and process the
IOs. Another problem was that the kernel’s network driver
used an interrupt based system, so they had to develop a
new driver using a busy-wait system to communicate with
the storage emulator. The option to implement in host’s
kernel made it extremely dependent on the hardware used to
implement.

Gupta et al. [6] explored network time dilation, but it could
be used on any other part of the system. The idea was to
linearly distort the time seen by the guest by a user defined
factor e.g. with a factor of ten the guest would notice one
second elapsed for every ten seconds on real time, this method
distorted the time of all the components, effectively making
every operation take ten times longer. The drawback of this
approach is that every component of the virtual machine will
have its time distorted and the faster the emulated device the
more distortion is required on the whole system, affecting not
only the emulated device but every other device. This im-
plementation also makes modifications to the virtual machine
monitor (Xen) and the guest’s kernel.

III. BACKGROUND

In this section we are going to present the Virtio which is
the standard kernel module used by our proposal, explaining
its internal architecture. We also present the clock managing
for the QEMU used by Freezing Time.

A. Virtual interface for IOs

Emulating a real hardware device costs many CPU cycles,
because every behavior of the device has to be emulated. For
each access on the emulated device each request must be
interpreted and act according to the real device, causing an
increased load on the host machine and lowering throughput
and consequently, IOPS (Input/Output Per Second) [7]. Virtio
(Virtual Input/Output) was created in a way that the guest and
host could communicate without having to simulate a device

or having to kick the guest, therefore lowering the load on
the host and increasing throughput and IOPS [8]. It was also
designed with compatibility in mind so that it would not be
necessary to make big changes on the guest and the VMM.
Virtio presents itself to the guest as a PCI device, this way the
guest only needs to implement a new PCI driver, and VMM
need only add vring (Virtual Ring) support to the devices they
implement [7].

The target to reach with Virtio (Virtual Input/Output)
is to unify how the probe in the Linux Kernel occurs,
so different implementations can be developed, to be
supported by hypervisor A or B. So the step to reach
this target, is to guide towards uniformity to provide
a common ABI (Application Binary Interface) for
general publication and use of buffers. Deliberately,
our Virtio ring implementation is not at all revolu-
tionary: developers should look at this code and see
nothing to dislike [9].

The Virtio driver is implemented as a stack, transport and
configuration. The desired goal is to reduce the duplication
code in virtual device drivers, so abstraction is mandatory.
To achieve the abstraction, Virtio is provided with a set of
common helpers which virtual drivers can use. The task is to
create a transport abstraction for all virtual devices which is
simple and close to optimal for efficient transport.

The probe function from the driver is called when suitable
Virtio device is found. The configuration happens in four
steps: reading and writing feature bits, reading and writing
the configuration space, reading and writing the status bits
and device reset. The device looks for device-type-specific
feature bits corresponding to features it wants to use, such
as the VIRTIO NET F CSUM feature bit indicating whether
a network device supports checksum offload. Feature bits are
explicitly acknowledged: the host knows which feature bits
are acknowledged by the guest, and hence which features
that driver understands. The second step is the configuration
space, a structure associated with the virtual device containing
device-specific information. This structure can be both read
and written by the guest. These mechanisms give us room to
grow in future, and for hosts to add features to devices with the
only requirement being that the feature bit numbers and con-
figuration space layout be agreed upon. There is also a status
word (8 bits) which the guest uses to indicate the status of the
device probe; when the VIRTIO CONFIG S DRIVER OK
is set, it shows that the guest driver has completed feature
probing. Finally, reset operation is expected to reset the device
configuration and status bits [9].

The virqueue has an API find vq that populates the structure
for the queue, giving the Virtio device an index number. A
virtqueue is simply a queue into which buffers are posted by
the guest for consumption by the host, and multiple buffers
can be added for batching, improving performance since the
cost to notify the host is expensive.

The Virtio ring is the transport for Linux Virtio, consists
of three parts: the descriptor array where the guest chain
contains length/address pairs, the available ring that indicates



which descriptor chains are ready for use and the used ring
where the host indicates which descriptor chains were used.
The size of the ring is variable but must be a power of two.
Each descriptor contains the guest’s physical address of the
buffer, its length, an optional next buffer for chaining and two
flags: one indicates if it is valid and another if it is writable or
readable. The available ring consists of a free-running index,
an interrupt suppression flag, and an array of indices into
the descriptor table (representing the heads of buffers). The
separation of the descriptors from the available ring is due to
the asynchronous nature of the virtqueue: the available ring
may circle many times with fast-serviced descriptors while
slow descriptors might still await completion. Used ring and
available ring are similar; they are written by the host as
descriptor chains are consumed. The flags that indicate if it
is a used or available buffer are used for optimization since
notification forces the guest to exit from the guest mode, those
flags are also used by the guest driver to advise that further
interrupts are not required.

Fig. 1. IO path in the Virtio-queue, from VCPU until the device block [10].

Figure 1 represents the path the IO take in the system
from the VCPU to the device. Virtio block is a part of the
Virtio system responsible for integrating those parts described
above and exporting a block-like interface to the kernel. Other
modules do the same thing for other peripherals like Virtio-net,
Virtio-gpu, etc.

B. Timekeeping: choosing a clock source

Emulating a clock source decreases performance but it
increases the guest compatibility, so most, if not all, of the
VMMs have an option to do so. Common options are HPET
(High Precision Event Timer) [11] and TSC (Time Stamp
Counter) [11]. TSC is a good clock source to use on the
host because there is independent hardware in the CPU with
its dedicated circuitry which is not affected by CPU clock

changes. However, there are some drawbacks when sharing it
with a VM, since it is the same clock as the host, the guest
would see time pass faster because the clock would still be
running even when the VMM’s process is not running on the
host, making precise timing and interruptions inaccurate.

Another problem is live migration; some VMM have an
option to migrate a running guest to a different host without
powering the guest off. During the migration, the guest needs
to disable interruptions and, during this period, time may need
to be caught up. After live migration, timers based on the TSC
or HPET (if it is not emulated) may be running at different
rates requiring some adjustment by the VMM. Additionally,
if the destination host has a faster TSC it cannot be exposed
to the guest without the potential of time running faster than
normal, a slower TSC is less of a problem as the VMM can
make adjustments to make it catch up with the source host
TSC [11].

Kvmclock was explicitly designed to solve those problems,
the guests can register a memory page to contain the kvmclock
data and the VMM will write to it until explicitly disabled
or the guest is turned off. Since it is neither emulated nor
the host’s TSC the VMM will write multipliers and offsets
compared to the host’s TSC so the guest can convert those
values back into nanosecond resolution seeing only the time
it was running with a small overhead. QEMU wraps those
features as functions by the name KVM GET CLOCK and
KVM SET CLOCK, and those are used on live VM migra-
tion.

We managed to use those features to mimic a guest live
migration making the time taken to complete the VM disk IO
controllable. When the VMM receives an IO request, it will
kick the guest and save its clock. After the IO has finished,
the VMM restore the clock and resume the guest, making it
believe that specific time was spent on this IO.

IV. FREEZING TIME STORAGE EMULATOR

Our main idea behind Freezing Time was to build a fast
and efficient disk emulator using KVM and Virtio that would
only dilate the time of the emulated device and not the whole
system, allowing the user to make time comparisons and
benchmark of full systems. We also wanted to create a tool
that did not require the application to be recompiled and would
not increase the total time of the experiment in orders of
magnitude as in cycle-accurate simulators [12], [13], [14].

Our approach was to detect the guest IO as early as possible
inside the VMM and resume the guest just before guest’s
VCPUS returning to guest mode (we will call this event by
its syscall name KVM RUN).

The nomenclature KVM RUN is used by Kernel-based
Virtual Machine (KVM), among other nomenclature such as
KVM CREATE VM, KVM CREATE VCPU, however in our
context the most important is KVM RUN, which consist in
setup the CPU in guest mode, so the VCPU can run each
instruction natively. Each VMM that wishes to run on behalf
of KVM must use those APIs, in our case QEMU uses
it. So tacking off the CPU from KVM RUN means kicking



the VCPU from guest mode, and the control goes back to
QEMU. On this manner we have a chance to manipulate the
VM CLOCK, since it is not running. With this approach, it
becomes possible to precisely emulate new devices with a
small overhead.

Fig. 2. Flow of an IO request until completion, from guest to the device in
the host (the time unit are meaningless, it is just a reference when the guest
is “frozen”).

Figure 2 represents an abstraction of the implementation that
we propose in this paper which is transparent to both host’s
and guest’s kernel. The lower half of the figure represents the
host system and the Time-line perceived by the real machine,
while the upper half is the virtual system (guest) and the
virtual Time-line perceived by it, time units in this figure are
meaningless, just to show when the guest’s time is “frozen”.

At the point of guest time number one, the guest user space
process requests an IO to the guest’s kernel, after that the
kernel converts it to a disk command and issues it to the virtual
disk. QEMU then receives this command and kick the guest at
the number seven; the VMM translates the command to an IO
request to the host’s kernel, which in turn sends the command
to the real device. Once the device processes it, it forwards
the reply to QEMU through the host’s kernel, so at this time
QEMU can send the reply to the emulator. After the emulator
has finished processing the reply, QEMU issues a KVM RUN
and send it to the virtual disk in the guest. Finally, the virtual
disk has the reply and sends it to the process that requests it
through the guest’s kernel at guest’s time number eight. Notice
that we could even inject time in the virtual machine in order
to simulate some specific behavior of the disk device.

With our approach of pausing the time in the guest as soon
as the IO is detected (eventually injecting time) and resuming
the VCPUS as soon as it goes into context, we make the guest
believe that the time has not elapsed, as shown in the gap from
host time number seven until fourteen on Figure 2.

In the following section, we will show the implementation
of the emulator based on QEMU version 2.5.0.

A. Implementation

Our emulator is based on QEMU, of which at the time of the
implementation the latest version was 2.5.0. Implementations
on other VMMs systems besides QEMU can be studied, but

as we need to modify the inner layers VMMs’ source code
should be available. The first challenge was understanding the
inner working of QEMU and its interaction with KVM. QEMU
usually has the following threads: one thread per vcpu, one
iothread and some other helper threads (e.g. VNC) that are
not relevant in this context. Every time the VMM has to do a
privileged operation (e.g. access the back storage) it has to kick
the guest and lock a global mutex, serializing every IO, when
this operation finishes the IO the thread releases the mutex
and issue a KVM RUN to resume the guest operation [8], [7].

That implementation creates a big impact on performance
as for every IO, not only the guest has to be kicked but it
also serializes every access. Since version 1.4, QEMU has
a feature called dataplane, and the idea is that a device
configured with this feature will have its iothread therefore not
being bottlenecked by the global mutex. Another advantage to
this feature is that by creating a new thread for this device,
given that the host has enough CPU cores, the load on the
machine will be more evenly distributed among the CPUs,
thus decreasing latency.

Our implementation works on both iothread and dataplane
modes, but the focus is on the dataplane mode due to its
lower latency giving more precise results in our emulator. The
main concern was to detect, as soon as possible when an IO
occurred on the emulated disk to kick the guest and set, as
late as possible, the guest clock and issue a KVM RUN after
the IO has finished.

The dataplane thread will keep polling the FD (File De-
scriptor) which represents its device, so we inserted our code
right after the thread identifies that an IO request is popped
from the Virtio ring, and not a command to the device itself
(i.e. restart the device). Thus, our code request the global
mutex lock, to avoid the iothread or VCPUS threads from
trying to do a privileged instruction and interfere with the
process, kick the guest and save the guest clock. Now that
the guest is out of context the time elapsed from now on will
be undetected by the guest, which means that the host can
serve the requested IO on any medium and the guest (when
resumed) will notice only the user-defined latency.

After the IO has finished, we synchronize the QEMU
threads just before KVM RUN, and the global mutex lock is
released so that the other threads can finish their tasks. The
dataplane thread stays on a busy-wait for the other threads,
and when they arrive at the barrier it sets the clock back to
when the guest was paused, lifts the barrier and the guest
returns to KVM RUN mode.

B. Virtual IO path: From the guest application to the host
storage

Every IO made by the guest has to go through multiple
layers from guest’s virtual memory, guest’s kernel, QEMU and
host’s kernel before eventually reaching the storage backend.
Figure 3 shows a high-level abstraction of the path an IO
goes through. This section we will explain these steps in more
detail.
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Fig. 3. Going through in all layers of an IO request. Adapted from [15].

Whenever a process running in the guest generates an IO,
the guest’s kernel checks if that request is already on the page
cache, like a normal non-virtualized system would, in the case
of a page cache hit, then the kernel returns the requested data.
Now, let’s suppose that the IO is neither on the guest cache
nor in the host’s, then, the guest’s kernel sends the request
to the generic block layer which in turn sends to the IO
scheduler, then to the Virtio block driver and finally to the
virtqueue of the emulated device. Now on the host side, the
KVM kernel module detects the request and sends it to the
vhost-scsi inside the QEMU, explained in more detail below.
Then the dataplane thread wakes up and begin to process the
request, from now on the host’s kernel recognizes that thread
as a normal process and treats the request as it would for any
other process in the host going through the VFS and page
cache all the way to the local disk.

After the host’s kernel finalizes the request and notifies
the QEMU process, the guest’s kernel polls the PCI bus and
retrieves the answer to the request and forwards it to the guest’s
process.

C. Overhead of our emulator

The time seen by the guest during the IO is ideally equal
to zero but we cannot detect an IO and kick it instantly. The
overhead is composed of two parts: the bigger one is the time
elapsed since the guest kernel issued the request to the Virtio
driver and the dataplane thread detects a request and kick the
guest. The second part is when the IO is finished, the clock
is restored in the guest and the VMM issues a KVM RUN.
During the injection or when the guest is frozen, interruptions
in it are not affected, since we just apply time dilation after
all VCPUs are out of context.

When a QEMU device is configured to use the dataplane
mode, the thread polls only that FD (File Descriptor that
have been setup to the Virtio device) which means that it
will do fewer checks since it already knows what device is
represented by that FD. When the guest adds a request to
the Virtio ring it generates an interruption on the IRQ of
the device, which the host kernel translates to an event on
the FD. The dataplane thread removes the request from the

Virtio ring, at this time we request the global mutex lock to
avoid the iothread or VCPUS threads from trying to do a
privileged instruction and interfere with the process, checks
if it is a data (read or write) request and, if it is, save the
guest clock and kick it. The label A on Figure 4 represents
the cost of kicking all the VCPUS, this process is serial and
not instantaneous, so the time taken between kicking the first
and the last vcpu is distorted. This time distortion directly
affects the overhead of the emulator, decreasing the maximum
achievable performance. After QEMU finishes kicking the
guest, the host can complete the request without the guest
noticing the time passing by.

QEMU uses a technique called coroutine [16] to try to
mitigate the problem with multiple call-back functions [17].
We modified this technique to include our injection mechanism
after the IO is finished, we force the coroutine to sleep for a
user-defined amount of time which will be seen by the guest
as the device’s latency. The timer starts after the KVM RUN
command.

At the end, we synchronize the vcpu threads just before
issuing the KVM RUN command and restore the guest clock,
label B on Figure 4 represents the overhead of the VCPUS
returning to execution.

In the following section, we will validate the procedure
described above, by acquiring statistics through tracing tools
and synthetic IOs.

V. EXPERIMENTAL RESULTS

In order to show the emulator effectiveness we did the
following set of experiments: First, in the section V-A, we
show the fastest IO that technically could be achieved in
our test system using a RAM disk device. Following that,
in section V-B, we show the results of our experiment of
emulating an SSD without any modifications to guest nor
the host (except on QEMU) using a slower storage backend.
Finally, in section V-D we measure the overhead of the
emulation and how long the guest thinks the experiment ran
and how long it took.

The experiments in this paper were dedicated to simulating
an SSD. At the moment of the experiments described in this
paper, the devices available were: Server Grade SSD Cloud
Speed 500 (model TG32C1) manufactured by Smart Storage
Systems. HDD (Hard Disk Drive) (model JPT39C), with
size of 1 TB, using SATA interface, speed of 3.0 Gb/s, and
7200 RPMs manufactured by Hitachi Global. The selection
was done to cover a mechanical device (HDD) and a non-
mechanical device (SSD). The host’s and guest’s operation
system were Debian Jessie, kernel version 4.4.4 installed
on a separate HDD, to not influence the experiments. The
test bench machine was an AMD FX(tm)-6300 Six-Core
Processor, 3.5 GHz, with 12 GB of DDR3. All the experiments
executed in this paper were performed on this specific system
mentioned above. Thus, we expect that values obtained in our
experiments will vary from system to system.

We made the experiments using blktrace (Block IO layer
tracing), blkparse (Block IO layer parser) and fio (flexible IO



Fig. 4. Overview of the time dilation mechanism inside the hypervisor (QEMU).

tester). Blktrace is a block IO layer tracing utility that provides
the ability to collect detailed traces from the kernel for each
IO processed by the block IO layer [18]. Blkparse parses the
output events stored in files generated by blktrace in a human
readable way [18], while fio simulates a specific workload
configured by the user such as sequential or random read/write,
block size, number of threads, etc.

QEMU has two types of storage backend, iothread and
dataplane [19]. Our tests showed that the dataplane mode
is one order of magnitude more efficient than the iothread
mode, due to this fact, only the dataplane mode was used in
our evaluation.

The experiments consist of the following steps:
1) Run blktrace to collect IO events. We are only interested

in the response time.
2) While blktrace is running, run the workload; in our

experiments, fio plays that rule, making IOs to the device
in question.

3) When the workload has completed, stop the blktrace
utility (thus saving all traces over the entire workload).

4) Extract the pertinent IO information from the traces
saved by blktrace using the blkparse utility.

The experiments consist of running the fio program five
times on the SSD, HDD and RAM devices described above,
synchronously reading and writing, data with size of 4 GB
with chunks of 4 KB to the backend storage device, for one
and four VCPUS with a fixed amount of 2 GB of RAM in the
guest. After each execution, the guest cache was flushed, and
QEMU was configured to not cache IOs on the host.

A. Empirical IO speed limit

This section describes our emulator limit in performance,
based on our experiments, and how we achieved it.

To illustrate the optimal performance, we configured QEMU
to use the RAM as the storage backend to show the fastest
IO that can be achieved, and show some CDF (Cumulative
Distribution Function) charts with the results.

B. Emulating an SSD

Now we will show how the HDD and SSD react to the
experiments without the emulator, as we did with RAM, later
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Fig. 5. Cumulative distribution using a disk in RAM as backend, technically,
fastest IO that can be reach.

we will simulate the SSD but using a HDD as storage back-
end. The injected time was obtained empirically, by running
the experiments on the SSD without any virtualization and
injecting this time on each IO.

Figure 6 shows how the HDD reacts to the tests inside the
guest without any modification in QEMU. Figure 6 shows
the CDF (Cumulative Distribution Function) of the time to
complete an IO request on an HDD, with that plot we can
see that below 0.125 (or a 12.5%) of the write requests are
very fast due (before 2000 µs) to the HDD buffer. As we can
see, 100% of write requests are below 5ms and reads are
between 2.5ms and 10ms. It is clear that samples on the
HDD are multiple orders of magnitude more heterogeneous
than the RAM or an SSD.

With respect to an SSD, Figure 7 shows its behavior without
the emulator. 100% of write requests are below 200 µs and
reads are between 200 µs and 400 µs. It is closer to RAM
devices than HDD but still near an order of magnitude worse.

Figure 8 shows the results of the experiments using our
emulator to simulate the SSD using the HDD storage backend.
The aim of Figure 8 is to show how our technique provides
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Fig. 6. Cumulative distribution using HDD as backend with emulator off;
100% of write requests are below 5ms and reads are between 2.5ms and
10ms.
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Fig. 7. Cumulative distribution using SSD as backend with emulator off;
100% of write requests are below 200 µs and reads are between 200 µs and
400 µs.

results inside the observed variability of the original device.
The results are divided by operation and by the number of
VCPUs used and each boxplot shows the distribution of the
error difference between the mean SSD request and each of
the IO requests of the emulated SSD with the HDD backend
(for each scenario). The original variability of the IO requests
in the SSD is shown with a transparent shade rectangle, as we
can see the emulation is inside the rectangle on most of the
scenarios. These results are obtained using the mean of the IO
requests as input for the delay parameter, that is the simplest
way to model, but more complex ”delay” simulations could
also be used. For example, we can include cache effects in the
simulation.
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Fig. 8. Experiment emulating the SSD using an HDD as storage backend. The
original variability of the IO requests in the SSD is shown with a transparent
shaded rectangle, as we can see the emulation is inside the rectangle on most
of the scenarios, although we have used the mean of the IO requests as input
for the delay parameter.

C. Performance evaluation of a user space application in our
emulator.

A question that may arise is, how good is the performance
of user space process, using our emulator? What we want to
show in this section is the performance of a simple application,
in a regular environment compared with our emulator. To show
the performance, we chose the ffmpeg (Fast Forward MPEG
(Motion Picture Experts Group)), since is a simple tool which
is IO and CPU bound. Our objective is, to convert the video,
which implies read some chunks of the video (read IOs),
convert the video (CPU bound) and write the converted video
(write IO).

To accomplish this task we picked a random video with
3474123501 bytes in size, and 229838 frames. The original
format of this video is mp4 (MPEG Layer-4 Audio) which
we convert into h264 (Hikvision 264). So, to evaluate and get
the results we setup a RAM disk as the backend storage device,
as a reference to our experiment. The reason that we chose
this device is because of its well-known behavior, as seen in
section V-A, on this manner we eliminated any entropy, that
could interfere with the results. In our emulator we setup the
parameters in the freezing time layer to emulate this RAM
storage device, but using the HDD as storage backend. Then
we ran the conversion of the video in the regular environment,
then in our emulator. To validate we run ten instances in each
environment and the results can be seen on the Table I:

Analyzing the results on the Table I we observe that we
were able to mimic the RAM storage backend behavior. The
accuracy is 98% on average, it is really close to the time
elapsed to process the conversion of the video using the RAM
storage backend. These value can be confirmed by the same
value of the FPS, which is also 98% as expected. According
to the coefficient of variation the low value indicates that the
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Fig. 9. Rate of the differences of IOs between the SSD device and the same device emulated, The emulator with one and four VCPUs.

TABLE I
PERFORMANCE OF FFMPEG, COMPARE THE REGULAR AND OUR

EMULATOR ENVIRONMENT.

Statics type HDD RAM Emulating
RAM

Average time (s) 65.46 3.52 3.58
Coefficient of variation 0.01 0.02 0.09

Frames per seconds 3637 73311 74292
Wall clock time (s) 669 48 892
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Fig. 10. Overhead when using the emulator with delay 0, in a HDD backend,
compared to RAM. Overhead goes from 37.5 µs to 20.6 µs in median.

accuracy of the ten instances were enough to validate the
results. The overhead of the emulator compared to the wall
clock, is just 223 seconds (25%), when we are emulating
the RAM storage. Notice that, when using simulators this
overhead would be much greater (e.g. the simulation time
would take 1000× more than an virtual machine [20]).

D. Overhead of the emulator

As explained earlier, the overhead of the emulator relies
mostly on the fact that the process of Freezing Time using
the kick mechanism is not instantaneous and cannot be run
in parallel, which means that with an increased number of
VCPUs we have increased overhead. The next chart shows
the overhead of the emulator with the increase of VCPUs.

Figure 9 represents how many IO requests were faster or
slower than the default behavior of the SSD. Positive values
in X-axis represent how much slower the IO request was
(in percentage), and negative values are how much faster
the IO request was. The Y-axis indicates how many IO
requests occurred. The vertical lines limits each type of IO
request, where 95% of the samples are. The experiment using
one VCPU is represented by the + symbol and continuous
vertical line, and the x symbol and dashed line represents the
experiment using four VCPUs.

In both Figures 9 (a) and (b), the curves are slightly offset
from center, this means that the value we chose to simulate the
SSD was not accurate enough, setting a smaller value should
just offset the curves to the center. Also, the precision of the
emulator is about 80% of the real behavior, but previous tests
show that, on average, they are similar.

On the other hand, Figure 10 shows the overhead when
using an HDD backend to simulate a RAM device (which
should be the worst case). We can see how the overhead goes
from 37.5 µs to 20.6 µs in absolute terms. On percentagewise,
this overhead may seem big, but the absolute time is small
compared even with the usual RAM variability observed.

VI. CONCLUSION

In this paper we presented a solution to emulate existing
and non-existing disk devices. The motivation to provide such
environment is to emulate expensive and fast devices to make
decisions in infrastructure. Nevertheless it could also be used
for fine tuning IOs in highly demanding applications or any



other purpose that needs to tune latencies. We achieved this
goal by implementing the emulator using a time dilation
technique. Our implementation indeed has an overhead, but
we showed that it was small and performance impact was
also small due to the Virtio framework. Another goal that we
managed to accomplish was to be able to inject a specific
amount of time to each IO. Our main desired feature of not
making any modifications to neither guest’s kernel nor host’s
kernel was also accomplished.

We implemented the time dilation mechanism by kicking
the guest whenever an IO occurred on the emulated device,
on this way QEMU could take as long as necessary to process
the IO without the guest noticing the delay. We wanted to
keep the mechanism as efficient and flexible as possible, so
we implemented it using the Virtio framework and KVM, so
no emulation of the CPU was made.

To evaluate the proposed solution, we presented results
from several experiments that benchmarked the emulator.
The experiments revealed that the time dilation mechanism
works properly, but time distortion on CPU-bound applications
occurred. The behavior of the emulated device was close to the
real one, the mean was 7% lower than the SSD, on average for
both read and write IOs. As future work we plan to extend our
technique to simulate other devices such as NVRAM devices.
The code of the emulator is available for free under GPL
license on [3].
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