
ATUN-HL: Auto Tuning of Hybrid Layouts
using Workload and Data Characteristics

Rana Faisal Munir1,2, Alberto Abelló1, Oscar Romero1, Maik Thiele2, and
Wolfgang Lehner2

1 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{fmunir,aabello,oromero}@essi.upc.edu

2 Technische Universität Dresden (TUD), Dresden, Germany
{maik.thiele,wolfgang.lehner}@tu-dresden.de

Abstract. Ad-hoc analysis implies processing data in near real-time.
Thus, raw data (i.e., neither normalized nor transformed) is typically
dumped into a distributed engine, where it is generally stored into a
hybrid layout. Hybrid layouts divide data into horizontal partitions and
inside each partition, data are stored vertically. They keep statistics for
each horizontal partition and also support encoding (i.e., dictionary)
and compression to reduce the size of the data. Their built-in support
for many ad-hoc operations (i.e., selection, projection, aggregation, etc.)
makes hybrid layouts the best choice for most operations.
Horizontal partition and dictionary sizes of hybrid layouts are config-
urable and can directly impact the performance of analytical queries.
Hence, their default configuration cannot be expected to be optimal for
all scenarios. In this paper, we present ATUN-HL (Auto TUNing Hy-
brid Layouts), which based on a cost model and given the workload and
the characteristics of data, finds the best values for these parameters.
We prototyped ATUN-HL for Apache Parquet, which is an open source
implementation of hybrid layouts in Hadoop Distributed File System, to
show its effectiveness. Our experimental evaluation shows that ATUN-
HL provides on average 85% of all the potential performance improve-
ment, and 1.2x average speedup against default configuration.

Keywords: Big data, Hybrid storage layouts, Auto tuning, Parquet

1 Introduction
Data analysis plays a decisive role in todays data-driven organizations, which

increasingly produce and store large volumes of data in the order of petabytes to
zettabytes [16]. The storage and processing of such data has imposed a shift in
the hardware, from single machines to large scale distributed systems. Apache
Hadoop3 is a pioneer large-scale distributed system and consists of a storage
layer, namely Hadoop Distributed File System (HDFS)4, and a processing layer,
namely MapReduce[6]. The former allows to keep data in raw format without any

3https://hadoop.apache.org
4https://hadoop.apache.org/docs/r1.2.1/hdfs design.html

normalization or pre-processing. The latter allows data-intensive flows (DIFs) to
process raw data such that they are ready for the analysis.

Hadoop and many modern in-memory processing engines (i.e., Apache Spark5)
provide high-level languages (i.e., Apache Pig, Hive, and SparkSQL) that facili-
tate writing DIFs for processing raw data (e.g., removing dirty data, integrating
multiple data sources) stored in HDFS. Typically, the processed data is stored as
a very wide table for analytical queries, because of its advantages over normal-
ized tables [4, 12]. Hybrid layouts are de-facto preferred options for storing such
wide tables, due to their built-in support for many basic operations (i.e., selec-
tion, projection, aggregation, etc.) allowing ad-hoc analysis, without the need of
moving the data to other storage (i.e., relational, document store, etc.).

There are several available hybrid layout implementations, such as: Opti-
mized Record Columnar (ORC)6, Parquet7 and CarbonData8. All of them follow
the same physical structure. Data is stored into multiple horizontal partitions,
known as stripes in ORC, row groups (RGs) in Parquet and blocklet in Carbon-
Data, and each horizontal partition stores its data column-wise. Hybrid layouts
also store min-max statistics [13] for each horizontal partition to help in filtering
(i.e., partitions that do not match predicates of a query are skipped). In addi-
tion, they support dictionary encoding to encode repetitive values, that can also
be used for further filtering partitions.

Small Partition Large Partition
Parallelism + -
Task overhead - +
Filtering + -
Metadata size - +
Dictionary encoding - +
Memory buffering + -
Load balancing + -

Table 1: Effect of horizontal partition size

Despite having default values, the sizes of horizontal partitions and dictionary
are configurable, depending on the type of workload. Thus, their values should
be decided based on the data characteristics and usage. For instance, it is rec-
ommended to have a small size of horizontal partition for low selectivity queries
and, a large size for high selectivity queries. However, it is not straight-forward
to find an optimal size for all the queries, because this depends on their con-
crete selectivity and the type of data they access, therefore the problem becomes
challenging. Moreover, the size of horizontal partitions can also effect different
execution settings, which is shown in Table 1. It can be seen that small partitions
positively impacts parallelism (by increasing the number of parallel tasks), filter-
ing (by skipping unmatched partitions using statistics), memory buffering (they
require less memory to buffer the data before flushing to the disk), and load
balancing (by better distributing the loads among multiple machines). Whereas,

5https://spark.apache.org
6https://orc.apache.org
7https://parquet.apache.org
8https://carbondata.apache.org

large horizontal partitions help positively to reduce task overhead (by reading
less metadata and reducing Java garbage collector overhead), metadata size (by
storing less statistics), and also helps in performing better encoding (by encoding
large number of repetitive values). In this paper, we aim at improving filtering,
metadata size and dictionary encoding by choosing the optimal partition size.

Similarly, the characteristics of data require different dictionary sizes to han-
dle different attribute lengths and number of distinct values. The dictionary is
not only important for compression, but it can also be used to filter partitions.
Specifically, when data is unsorted and it is not possible to filter partitions simply
using min-max statistics, as we will show in Section 5.3.

In this paper, we present our approach, namely ATUN-HL, which helps to
find best values for the aforementioned parameters using a cost model, which
estimates the optimal values for the size of the horizontal partition and the
dictionary, based on the given workload and data characteristics. Moreover, it
should also be noted that the chunk size of HDFS is always greater than or equal
to the horizontal partition size. Hence, it should be configured accordingly. We
instantiated ATUN-HL for Parquet, to show its applicability in real scenarios
and conducted an extensive evaluation on TPC-H9 to show that ATUN-HL
can significantly improve the query response times over Parquet with default
configuration.

The main contributions of this work can be summarized as follows:

– We extend the cost model for hybrid layouts presented in [14].
– We propose ATUN-HL, a framework to optimize hybrid layouts.
– We prototype ATUN-HL on Parquet to show its benefits.
– We report the results of our extensive evaluation with TPC-H benchmark.

The remaining paper is organized as follows. In Section 2, we discuss the related
work. In Sections 3 and 4, we discuss the cost model and our approach in detail.
In Section 5, we show our experimental results. Finally, in Section 6, we conclude
the paper.

2 Related Work
In [7], an indexing technique is proposed for hybrid layouts. The indexing

information is stored as metadata per RG and data node, which in turn enables
filtering RGs in selective queries. However, this approach uses default RG size,
which as previously argued does not always perform well.

In [17, 18], different partitioning approaches are presented, which help in se-
lective queries. In [17], data is divided into multiple horizontal partitions and in
each partition, data is stored row-wise, rather than column-wise. It also stores
extra meta information for each partition, which is computed based on the pred-
icates of queries. Predicates are used as features, where a bit is stored for each
tuple matching a feature. This eventually gives a feature-vector for every tu-
ple, which is then used for filtering partitions. A similar vector is also used in
[18], however this time it utilizes hybrid layouts with column grouping, instead of

9http://www.tpc.org/tpch

fixed row layouts. The latter helps for both selection and projection queries. Yet,
these techniques fall short when it comes to tuning the configurable parameters
and they only provide new strategies of partitioning.

In [4], a column reordering technique is proposed to reduce the disk seek
cost for hybrid layouts by storing together the columns which are accessed by
the same queries. In addition, this approach sometimes duplicates columns to
store them in a contiguous way. It helps to reduce the disk seek cost and overall
improves the query execution time. However, it still does not try to find the
optimal configuration values of hybrid layouts based on the running workload.

There are other works [2, 3, 11, 15], which try to use different layouts based
on the workload. The goal is always to store the data in the most appropriate
one for the given workload. Yet again, they do not optimize the layouts.

There are still few research works [9, 10] available on tuning big data analyti-
cal platforms (such as Hadoop). They focus on finding the optimal values for each
configuration parameter available in a big data analytical system. Nevertheless,
they target overall systems rather then individual layouts. These techniques can
be used as complementary to our approach.

Fig. 1: Physical structure of hybrid layouts

3 Cost Model
In this section, we extend a cost model of our previous work [14]. Specifically,

we refine the selection cost model based on the use of min-max statistics and dic-
tionary encoding. Further, we extend our cost model to estimate the dictionary
size for hybrid layouts.

First, we present the physical structure of hybrid layouts, which helps to
build the cost model. Based on that, we estimate the cost of selections and the
size of the dictionary. The former helps to find the optimal RG size. Our cost
model considers two scenarios to estimate the selection cost, which are as follows:
filtering using min-max statistics and using the dictionary. Likewise, it considers
two types of dictionaries, i.e., global and local.

As shown in Figure 1, the data is divided into RGs (i.e., horizontal partitions),
and inside each RG, it is stored column-wise. Further, if dictionary encoding is
possible, first dictionaries are stored per column and afterwards the correspond-
ing encoded data. If dictionary encoding is not possible, then the data values are
stored contiguously without any encoding. Moreover, hybrid layouts also store
metadata (e.g., min-max statistics) for each RG inside either the header or footer
section. Thus, the size of hybrid layouts depends on the size of the actual data
and metadata.

10Extra 4 bytes are considered for variable length columns

Variable Description
System Constants

p Probability of accessed replica being local
ChunkSize Disk assignment unit size in HDFS
BWDisk Disk bandwidth
BWNet Network bandwidth
TimeSeek Disk seek time
TimeDisk ChunkSize/BWDisk

TimeNet ChunkSize/BWNet

Data Statistics
|T | Number of rows in a table

ColV alueSize
10 Average size of a column value

#Cols Total columns of T
|C| Distinct values of a column
|D| Number of values in the dictionary
SortedCol True for sorted and False for unsorted data

Workload Statistics
SF Selectivity factor of a query

Hybrid Layouts Variables
RGSize Row group size
MetaRGSize

Size of meta data for an RG
MarkerSize Size of sync marker

Table 2: Parameters of the cost model

Our cost model for hybrid layouts relies on a wide range of statistical infor-
mation that are summarized in Table 2, containing system constants, data statis-
tics, workload statistics as well as hybrid layout variables. We assume that the
constants which depend on the configuration of the environment (e.g., BWDisk,
BWNet) are provided. Furthermore, we discuss the collection of statistics (e.g.,
dataset and workload) in Section 4.

UsedRowGroups =
(ColV alueSize · |T |+MarkerSize) ·#Cols

RGSize
(1)

|RG| =
|T |

UsedRowGroups
(2)

TotalMetaSize = (MetaRGSize
·#Cols) · UsedRowGroups (3)

3.1 Estimating the selection cost

The selection cost model estimates the number of RGs read from the disk
and as well as the total read size. For this, first we need to estimate the total
number of RGs using Equation 1, and the number of rows in an RG (|RG|)
using Equation 2. Further, we also need to estimate the total size of metadata
(cf. in Equation 3), which is always read from disk to check the matching RGs.
Our selection cost model focuses on two cases as discussed earlier. The first one
considers filtering using min-max statistics of each RG, and second one filtering
using the dictionary.

ReadRowGroups =

SF · UsedRowGroups + 1 sorted data

UsedRowGroups unsorted and min-max

(1− (1− SF)|RG|) · UsedRowGroups unsorted and dictionary

(4)

Filtering using min-max statistics. There are two extreme cases when hy-
brid layouts use min-max statistics to filter RGs, depending on whether data
is sorted or not. If data is completely sorted then the selected data will always
be contiguous and we can calculate the total number of read RGs based on the
selectivity factor as shown in Equation 4. We add one to handle the effect of
position variation inside the RGs for sorted data, because hybrid layouts read
the whole RG even if there is only one matching row. The reason to add one is
illustrated in Figure 2. It shows two RGs and each has 5 rows. Let us assume
that we select 3 rows. There are two possible scenarios: (A) there is no overlap
and only one RG is read from disk; and (B) there is an overlap and two RGs are
read. If we take the average of all possible positions of the first selected row in
the first RG, it gives approximately (SF · UsedRowGroups) + 1.

Fig. 2: Effect of position variation inside the RGs

If data is completely unsorted (i.e., uniform distribution), it is unlikely (shown
in Section 5.3) to skip any RG, because the distribution of data makes the min-
max range of each RG too wide. Hence, the read RGs will be the same as
the total number of RGs. We will also experimentally show in Section 5.3 the
ineffectiveness of min-max statistics for uniformly distributed unsorted data.
Intermediate cases exist for different kinds of skewness, and Equation 4 could be
enriched with corresponding estimations without affecting the rest of the paper.

Filtering using the dictionary. The dictionary can also be used to filter
RGs when data is encoded. When min-max statistics fail to filter any RG, the
dictionary is still very useful, because it contains all existing values. The number
of RGs required to be read from disk can be estimated as in Equation 4 (borrowed
from bitmap indexes [5]).

UsedChunks =
⌈UsedRowGroups ·RGSize

ChunkSize

⌉
(5)

ReadSize = (ReadRowGroups ·RGSize) + (TotalMetaSize · Usedchunks) (6)

|Chunk| =
⌊ChunkSize

RGSize

⌋
(7)

ChunkSeeks =

ReadRowGroups

|Chunk|
+ 1 if sorted

UsedChunks ·
(
1− (1−

ReadRowGroups

UsedRowGroups
)|Chunk|

)
if unsorted

(8)

WReadTransfer =
T imeDisk + (1− p) · T imeNet

T imeSeek + T imeDisk + (1− p) · T imeNet
(9)

QueryCost =
ReadSize

ChunkSize
·WReadTransfer (10)

+ (ChunkSeeks + UsedChunks) · (1−WReadTransfer)

The above equations give the expected number of RGs being read from disk,
which helps in estimating the total query cost. In distributed processing engines,
the data is processed in multiple tasks in parallel and the number of tasks equals
to the number of chunks used to store the data, which can be estimated using
Equation 5.

Moreover, we observed that each task reads all the metadata separately. The
reason is that the distributed processing engines (such as Hadoop and Spark)
create a separate process for each task with its own memory. This memory is not
accessible to other tasks and hence, forces to read all metadata, and consequently,
increases the reading size. We consider this in Equation 6, where we estimate
the total read size.

Additionally, we take into consideration the disk seek cost, which depends
on the number of chunks being read and also on the number of seeks required to
fetch the metadata. The former is equal to the number of read chunks if data is
sorted, because it reads consecutive RGs. In Equation 7, we calculate the total
number of RGs inside a chunk, which is used in Equation 8 to estimate the
total number of seeks for sorted data. Similar to filtering, we add add one to
Equation 7 to handle the effect of position variation of RGs inside chunks. On
the other hand, when data is unsorted, number of seeks is directly influenced
by the distribution of the read RGs, which are non-consecutive due to fact that
any RG can match the predicate independently of its position. Thus, it can
be approximated by estimating how many RGs are read from a chunk, which
depends on the total number of RGs inside a chunk, again calculated using
Equation 7. Similarly, we need to estimate the total seeks for reading metadata.
As discussed earlier, typically, metadata is stored in the header or footer sections
and one seek is required to locate it on the disk. Additionally, it is always read
separately in every task, hence the total seeks of metadata will be equal to the
total number of tasks (which is equal to the number of chunks).

In distributed processing engines, sometimes, they require to read the data
remotely (for instance, it depends on occupancy of machines and unbalanced
distribution of workload) and for it, we use a probability p to indicate the likeli-
hood of chunks being accessed locally (i.e., data shipping through the network is
needed to reach the operation executor). This is used in Equation 9 to estimate
the weight (to calculate the resources usage) of transferring the chunk data com-
pared to the corresponding seek time. Further, it is used along with the total
number of seeks in Equation 10 to estimate the total query cost.

|D| =

|C| for global dictionary

d|C| · (1− ((|C| − 1)/|C|)|RG|e for local dictionary
(11)

DictionarySize = |D| · ColV alueSize (12)

Usedbits = dlog2|D|e (13)

EncodedColSize =

Usedbits · |T | for global dictionary

Usedbits · |RG| for local dictionary
(14)

3.2 Estimating the size of the dictionary
As discussed earlier, hybrid layouts support dictionary encoding, which helps

to encode repetitive values to reduce the size and also to facilitate filtering RGs.
There are different implementations of dictionary encoding in different types of
hybrid layouts. For instance, CarbonData uses a global dictionary to encode the
data, whereas Parquet uses a local dictionary inside every RG. However, these
two implementations can be easily handled by the same cost model.

Global dictionary. The size of the dictionary depends on the number of values
to store inside, which is the total distinct values (i.e., |C|) of a column estimated
in Equation 11. The size of the dictionary for one column can be then estimated
using Equation 12. Further, the average number of bits required to encode one
value are estimated in Equation 13, and used in Equation 14 to estimate the
encoded size of the data.

Local dictionary. Similarly, the size of the local dictionary depends on the num-
ber of values to be put inside the dictionary of an RG, which is the same as
the distinct values of a column inside an RG. We estimate the total number of
expected distinct values11 inside an RG as shown in Equation 11. Next, similar
to global dictionary, the average number of bits required to encode one value
are estimated in Equation 13, and used further in Equation 14 to estimate the
encoded size of the data.

4 ATUN-HL
In this section, we first discuss about the collection of data and workload

characteristics. Next, we explain our methodology, which utilizes the cost model
to find the optimal sizes for RG and dictionary.

Fig. 3: Overview of ATUN-HL

4.1 Collecting workload and data characteristics
Figure 3 shows the overview of our approach. It takes a query log and the

sample data as input, and analyzes them in different components to extract
statistical information. The query log is used to extract the information related
to the workload. First, our approach extracts the clauses from all the query
representatives. Second, it merges the similar clauses or the clauses that can be
subsumed. Thirdly, it applies frequent itemset mining approach [8], to rank the
most frequent clauses. Finally, it takes the top-k clauses to extract the workload
information to be considered. On the other hand, dataset analysis module takes

11https://math.stackexchange.com/questions/72223/finding-expected-number-of-
distinct-values-selected-from-a-set-of-integers

Algorithm 1: Finding the best size of RG and dictionary

1 PossibleDictSizes = {0};
2 for c ∈ Cols do
3 DictSize = RoundUpToKiloBytes(EstimateDictionarySize(c));
4 PossibleDictSizes .insert(DictSize);

5 end
6 Best = [∞, 0, 0] ; // Best[Cost,RGSize, DictSize]
7 for DictSize ∈ PossibleDictSizes do
8 Z = EstimateEncodedSize(DictSize);

9 CurrRGSize = Solver(
d

dRGSize
(CostP (RGSize, Z)) = 0);

10 CurrCost = CostP (CurrRGSize , Z);
11 if CurrCost < Best.Cost then
12 Best = [CurrCost, CurrRGSize , DictSize];

13 end
14 return Best;

a sample of data and computes the statistical information listed in Table 2. We
use the single column profiling technique from [1].

The use of query log to optimize the parameters for future workloads is
justified in [17, 18], which conclude that filters are recurring and only a small
portion are entirely new over time.

4.2 Finding the best configuration parameters

Let us assume T is a wide table and has a set of columns defined as C =

{c1, c2, ..., cn}. Similarly, a workload is defined as Q = {q1, q2, ..., qn}, the frequent
clauses extracted from Q are defined as P = {p1, p2, ..., pn} the total cost of work-
load is calculated as CostP (RGSize, Z) =

∑
p∈P QueryCost(RGSize, Z), where Z rep-

resents the total size of T (considering dictionary encoding if needed). Our goal
is to minimize CostP by selecting the best RG and dictionary sizes.

Algorithm 1 shows the steps to find the optimal sizes of RG and dictionary.
It initializes a set in line 1 with the element 0, which corresponds to the scenario
where dictionary encoding is completely disabled for all columns. Next, in lines
2 to 4, it iterates over all the columns, computes their dictionary sizes, rounds
them up to the nearest kilobytes, and stores them inside the set. Further, in
lines 7 to 12, it iterates over all those dictionary sizes and computes the table
size according to the current processed dictionary size. Then, the encoded size
is used to find the optimal RG size by solving the derivative of the overall cost
function. Finally, this value is used to compute the corresponding cost. If the
cost is smaller than the best until now, we keep the current processed dictionary
and RG sizes as the best ones.

In order to be able to find the minimum cost, we derive the function with

respect to the RG size (i.e.,
d

dRGSize
(CostP (RGSize, Z)) = 0). Equation 15 shows

the overall query cost after replacing all variables except read RGs, which still
depends on how data has been stored (see Equation 4). Notice that, we need to
remove the ceiling function of Equation 5, as well as floor from Equation 7. We

can do the former, because the number of chunks is much smaller than the total
number of RGs, and it is only used in calculating the meta size and seek cost,
and both are very small compared to the total reading size. Similarly, we can
also remove floor in Equation 7, due to its negligible impact on overall cost. We
validated their removal with detailed experiments (see Section 5.3).

Z =

(ColV alueSize · |T |+MarkerSize) ·#Cols no encoding

(DictionarySize + EncodedColSize +MarkerSize) ·#Cols encoding

Y = MetaRGSize
·#Cols

QueryCost(RGSize, Z) =

ReadRowGroups ·RGSize +
Y · Z2

RGSize · ChunkSize

ChunkSize
(15)

· WReadTransfer

+

ReadRowGroups +
Z

RGSize

ChunkSize

RGSize

· (1−WReadTransfer)

5 Experimental Results
In this section, we discuss the setup and the dataset used for our experi-

ments. We also show the ineffectiveness of min-max statistics and usefulness of
dictionary for unsorted data. Moreover, we provide the results to validate the
accuracy of the cost model and to show the benefits of our approach.

Variable Value
p 0.97
ChunkSize 512MB
BWDisk 1.3× 108 bytes/second
BWNet 1.25× 108 bytes/second
TimeSeek 5.0× 10−3 seconds
MetaRGSize

156 bytes
MarkerSize 16 bytes

Table 3: Values according to our environment

5.1 Setup
The machine used in our evaluation has a Xeon E5-2630L v2 @2.40GHz CPU,

128GB of main memory, and 1TB SATA-3 of hard disk, and runs Hadoop 2.6.2
and Spark 2.1.10 on Ubuntu 14.04 (64 bit). Our approach is evaluated under two
settings: a single node and a 4-machines cluster12. In the cluster, we dedicated
one machine to HDFS name node and Spark master node together, and the
remaining three machines to data nodes for Hadoop and workers for Spark.

We prototyped our approach for Apache Parquet 1.8.2, which further di-
vides each column into multiple data pages (i.e., 1MB) and also stores min-max
statistics per data page (i.e., 53 bytes). Nevertheless, currently Parquet does not
support data page filtering, so we applied the cost model as described above.
If needed, our cost model could be easily adaptabed to data page filtering by

12http://www.ac.upc.edu/serveis-tic/altas-prestaciones

simply replacing RG size with data page size and |RG| with the number of rows
of a data page.

Table 3 shows the values of all environmental variables in our testbed. In
addition, default RG and dictionary sizes in Parquet are 128MB and 1MB, which
we use in our evaluation together with best and worse obtained costs.

5.2 Dataset
As mentioned in [4, 12], very wide tables are common in modern analytical

systems, because of their advantages in processing compared to normalizing
data into narrower tables. Nevertheless, in TPC-H, the widest table has only 16
columns and in TPC-DS13, only 26. To the best of our knowledge, there is no
public benchmark available that consists of wide tables. Hence, we follow [17]
to generate a wide table by completely denormalizing all other tables in TPC-H
against lineitem. The FROM clauses in all queries are consequently changed to
the corresponding denormalized table.

5.3 Results
We perform four types of evaluations for our approach. Firstly, we show the

drawbacks of min-max based filtering for unsorted data through statistical and
also experimental evaluation. Secondly, we show the benefits of dictionary based
filtering for unsorted data. Thirdly, we validate the accuracy of our cost model.
Finally, we show the performance improvements of our approach on the cluster
by comparing it to the baseline setting.

Usefulness of min-max statistics. As previously discussed, min-max statis-
tics are not useful for unsorted data, because uniform data distribution makes
it impossible to skip RGs. This behavior is validated with a detailed statistical
and experimental evaluation.

PSkipping =

∑|C|
i=1

((i− 1

|C|

)|RG|
+
(|C| − i

|C|

)|RG|)
|C|

(16)

ReadRowGroups = (1− PSkipping)× UsedRowGroups (17)

Since point queries (i.e., those that search one single value) have higher prob-
ability of skipping an RG than the other supported types (namely interval and
list of values), and also because of space limitation, we only provide a statistical
cost model for this in Equation 16. This estimates the probability of being out-
side of an RG, which would be the case if the value is less than the minimum
of the RG or greater than the maximum. Thus, our cost model adds the prob-
ability of both (i.e., minimum and maximum) for each value of that column.
Further, the probability of skipping one RG is used in Equation 17, to find the
total number of RGs read.

Figure 4a plots Equation 16 for different number of rows |RG|, and different
number of distinct values of a column |C|, which was confirmed with the corre-
sponding experiments. We took 100 as the minimum for |RG|, because Parquet

13http://www.tpc.org/tpcds

Fig. 4: Probability of skipping one RG

does not allow less rows per RG than that. Thus, it can be observed that the
probability of skipping an RG is very low (i.e., always less than < 2%), confirm-
ing that min-max statistics are useless for unsorted data. Moreover, when the
number of rows in an RG increases, the probability of skipping decreases, which
means that it is almost certain that a full scan will be performed. A higher num-
ber of distinct values slightly increase the chances of skipping an RG, but it is
still very unlikely for RGs with many rows.

Benefits of dictionary encoding. We also plot Equation 4 for dictionary
encoding (see Figure 4b), confirming its superiority over min-max statistics. It
can be seen that this clearly gives higher probability of skipping, but the chances
of skipping still decrease quickly as the number of rows in an RG grows. Yet, it
helps with low selectivity queries (when min-max statistics still fail).

Fig. 5: Comparison between cost model, simplified version, and real execution

Cost model validation. Figure 5 shows the comparison of our cost model, the
estimation through its simplified version (which allows derivation as presented
in Equation 15), and also actual execution (averaging 250 random runs). We
normalized them ((x−min)/(max−min)) to facilitate visual comparison. Moreover,
as we will show below, the different units (as our cost model only considers I/O
cost) do not affect the quality of our prediction to choose the optimal RG size,
since the estimated values always preserve the shape of the actual ones (i.e.,
minimum real cost is obtained for approximately the same value in the model).

We empirically validated the estimations on both sorted and unsorted data,
with and without encoding. It can be seen that our cost model and its simplified
version are very close and result in approximately the same value. Hence, the
derivative can be safely used to find the optimal RG size. Moreover, these both
versions follow exactly the same trend as the actual execution.

Performance evaluation. We analyzed TPC-H queries to extract the clauses
and ranked them according to their usage. The top 6 clauses which appear in 82%
of the queries, are used to find the optimal RG and dictionary sizes. ATUN-HL
chooses 30.76MB (that we round up to 32MB) for RG and 1MB for dictionary.

Fig. 6: Speedup gain

Figure 6a shows our estimated overall cost for TPC-H queries. It can be seen
that ATUN-HL predicts the default RG size (i.e., 128MB) as the worst config-
uration (being the minimum at 32MB). As discussed earlier, it is very unlikely
for Parquet to skip any RG, when the number of rows in an RG grows. When
this turning point is crossed, the larger the RG the better, and our estimated
cost depicts this behavior after 128MB. Moreover, we also verified our estima-
tion with detailed experiments as shown in Figure 6b and Figure 6c. Figure 6b
compares the time improvements of ATUN-HL against the optimal, default, and
worst configurations. ATUN-HL is not far from the optimal configuration, re-
sulting in an 85% of all potential gain. Additionally, Figure 6c shows the relative
gain with regard to default RG size, which is 1.2X speedup on average (for the
tested scale factors), clearly increasing with the increase in scale factor.

Fig. 7: Improvement in query execution time for 64GB scale factor

Finally, in Figure 7, we also scrutinize the effect on individual query execution
time for scale factor 64GB. This shows that our approach improves the execution
time of most of the queries, but does not help those actually performing a full
scan (i.e., Q1, Q13, Q15, and Q16) because of one reason (i.e., high SF, >

10%) or another (i.e., string matching using regular expression, which is not yet
supported by Parquet). As shown above, the large RG size is always better for
full scan.

6 Conclusions
Hybrid layouts are widely used to store processed data in highly distributed

Big Data systems to perform ad-hoc analysis. Nevertheless, they have many con-

figurable parameters that need to be tuned according to the characteristics of the
data and workload, which can heavily impact query performance. Consequently,
we proposed a cost-based approach to help optimizing such hybrid layouts. We
prototyped our approach for Apache Parquet, evaluated it on TPC-H queries,
and showed the improvement it provides.

Acknowledgement
This research has been funded by the European Commission through the

Erasmus Mundus Joint Doctorate “Information Technologies for Business Intel-
ligence - Doctoral College” (IT4BI-DC), and the GENESIS project, funded by
the Spanish Ministerio de Ciencia e Innovación under project TIN2016-79269-R.

References
1. Z. Abedjan, L. Golab, and F. Naumann. Data profiling: A tutorial. In SIGMOD

Conference. ACM, 2017.
2. I. Alagiannis, S. Idreos, and A. Ailamaki. H2O: a hands-free adaptive store. In

SIGMOD Conference. ACM, 2014.
3. T. Azim, M. Karpathiotakis, and A. Ailamaki. Recache: Reactive caching for fast

analytics over heterogeneous data. PVLDB, 11(3), 2017.
4. H. Bian, Y. Yan, W. Tao, L. J. Chen, Y. Chen, X. Du, and T. Moscibroda. Wide

table layout optimization based on column ordering and duplication. In SIGMOD
Conference. ACM, 2017.

5. A. F. Cardenas. Analysis and performance of inverted data base structures. Com-
mun. ACM, 18(5), 1975.

6. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1), 2008.

7. M. Ferreira, J. Paiva, M. Bravo, and L. E. T. Rodrigues. Smartfetch: Efficient
support for selective queries. In CloudCom. IEEE Computer Society, 2015.

8. J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current status
and future directions. Data Min. Knowl. Discov., 15(1), 2007.

9. H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based optimization
of mapreduce programs. PVLDB, 4(11), 2011.

10. H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu.
Starfish: A self-tuning system for big data analytics. In CIDR, 2011.

11. A. Jindal, J. Quiané-Ruiz, and J. Dittrich. Trojan data layouts: right shoes for a
running elephant. In SoCC. ACM, 2011.

12. Y. Li and J. M. Patel. Widetable: An accelerator for analytical data processing.
PVLDB, 7(10), 2014.

13. G. Moerkotte. Small materialized aggregates: A light weight index structure for
data warehousing. In VLDB, pages 476–487, 1998.

14. R. F. Munir, A. Abelló, O. Romero, M. Thiele, and W. Lehner. A cost-
based storage format selector for materialization in big data frameworks. CoRR,
abs/1806.03901, 2018.

15. R. F. Munir, O. Romero, A. Abelló, B. Bilalli, M. Thiele, and W. Lehner. Re-
silientstore: A heuristic-based data format selector for intermediate results. In
MEDI, 2016.

16. K. V. Shvachko. Hdfs scalability: the limits to growth. Login, 35(2):6–16, 2010.
17. L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin. Fine-grained partitioning for

aggressive data skipping. In SIGMOD Conference. ACM, 2014.
18. L. Sun, M. J. Franklin, J. Wang, and E. Wu. Skipping-oriented partitioning for

columnar layouts. PVLDB, 10(4), 2016.

