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Abstract

In a market with frictions, bid and ask prices are described by sublinear pricing

functionals, which can be defined recursively using coherent risk measures. We prove

the convergence of bid and ask prices for various European and American possible

path-dependent options, in particular plain vanilla, Asian, lookback and barrier

options in a binomial model with transaction costs. We perform several numerical

experiments to confirm the theoretical findings. We apply the results to real market

data of American options and compute an implied liquidity to describe the bid-

ask spread. This method describes liquidity over time very well, compared to the

classical approach of describing bid and ask prices by quoting bid and ask implied

volatilities.

KEYWORDS

CONTACT Gero Junike. Email: junike@mat.uab.cat



Market with frictions, bid-ask spread, American options, barrier options, binomial

model

JEL CLASSIFICATION

G12, G13, D23, D52, C51

1. Introduction

In this article, we obtain closed-form solutions of bid and ask prices of European plain

vanilla and barrier options in markets with frictions. Markets with frictions are markets

with transaction costs. In contrast to complete financial markets without any imperfec-

tions where prices are obtained by a linear pricing rule, prices in markets with frictions

can be described by sublinear pricing functionals, see Jouini (2000). Such pricing func-

tionals may also describe prices in markets with additional or different kind of frictions

than (proportional) transaction costs, like short sales costs or constrains, borrowing

costs, taxes and other market imperfections, see Jouini and Kallal (2001), Koehl and

Pham (2000), Bion-Nadal (2009) and references therein.

Jouini and Kallal (1995, 2001) and Jouini (2000) introduced an axiomatic approach

to describe financial markets with frictions. They considered a finite time-horizon T > 0

and a multiperiod economy, where investors can trade a riskless and a risky asset. Let

N be the number of trading periods in [0, T ]. Jouini (2000) modelled the bid and ask

price processes of the risky asset by adapted processes 0 < Sbi ≤ Sai , i = 0, .., N . They

postulated the existence of a pricing functional p, which satisfies the following axioms:

(i) p is monotone, (ii) p is sub-additive, (iii) p is positively homogeneous, (iv) p does

not introduce arbitrage, (v) p is lower-semi-continuous and (vi) for a future random

cash flow C, p(C) is less than or equal to the price of the smallest self-financing trading

strategy dominating C. The ask price of a contingent claim C is defined by p(C), the

bid-price is defined by −p(−C), hence buying the contingent claim C is the same as

selling −C.

Jouini and Kallal (1995) showed that the market is arbitrage-free, if and only if there

exist a measure Q, equivalent to the physical measure P, and a process ZQ, which is

a martingale under Q, such that Sb ≤ ZQ ≤ Sa. This leads to an easy construction
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of arbitrage-free financial markets with frictions: we take a complete frictionless mar-

ket, the binomial model, where the risky underlying is described by some martingale

(Si)i=0,..,N under the risk-neutral measure. Introducing a sequence of dynamic coher-

ent risk measures (ρi)i=0,..,N and defining a pricing functional by pi(.) := ρi(−.), we

introduce frictions into the market by defining the ask price process of the underlying

by (pi(SN )) and the bid price process by (−pi(−SN )). The sequence (pi) based on a

sequence of coherent risk measures fulfils axioms (i)-(vi).

Contribution

In a binomial-type model with frictions, bid and ask prices are recursively defined. For

efficient numerical applications, we prove convergence of bid and ask prices of European

and American plain vanilla and exotic options. We develop closed-form solutions for

European plain vanilla and some barrier options and obtain in the limit an extended

Black-Scholes formula with a new parameter γ ≥ 0, which adjusts the dividend yield.

The greater γ, the greater the bid-ask spread.

The limit bid or ask price of a possible path-dependent option is given by the Black-

Scholes price of the option but on a stock with an adjusted dividend yield. Hence

existing numerical methods, developed to price options in a Black-Scholes setting in

classical finance, can also be used to compute bid and ask prices of such options. No

new software need to be written to apply our formulas in financial institutions.

Practical Relevance

We think the main application area of our two-price formulas is the possibility of com-

puting implicitly a parameter γ, such that given bid and ask market prices of a European

or an American plain vanilla option are exactly matched by our extended Black-Scholes

formula.

This idea is comparable to the concept of implied volatility. In principle volatilities

could be constant across strikes, maturities, and underlying assets, hence the preference

by practitioners for quoting implied volatilities instead of (mid-)prices. Similarly the

parameter γ could be constant across all three dimensions, even though there are many
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non-linearities between the bid-ask spread and strikes, maturities, and underlying as-

sets. It should therefore be beneficial to quote an implicitly computed γ instead of the

absolute bid-ask spread of a plain vanilla option. Indeed Corcuera et al. (2012) used a

setting similar to our model, but in static time, and showed empirically that the liquid-

ity dry up during the period 2007-2009 is described very well by the parameter γ. Our

discrete time model makes it possible to analyse also path-dependent and American

options.

Up to now, traders quote the difference between implied bid and ask volatilities to

describe the current market liquidity of plain vanilla options. Both this heuristic method

and our proposal of computing implicitly the parameter γ have the advantage of using

only present market data and of being extremely fast in terms of computational time, in

both cases one has to invert the Black-Scholes formula. However, we show empirically

that our model describes (il)liquidity of American plain vanilla options very well over

time compared to the heuristic method of quoting implied bid and ask volatilities. In a

static setting, a similar study has been done by Guillaume et al. (2018) for European

plain vanilla options.

Limitations

Convergence is only proven for monotone payoffs, for example European or American

plain vanilla, lookback, Asian and some barrier options (up-and-out put, down-and-out

call, down-and-in put and up-and-in call).

The underlying is essentially modelled by a binomial model in discrete time and

by geometric Brownian motion in continuous time. Hence the volatility is assumed

to be constant over time and log-returns are assumed to be (approximately) normal

distributed.

Future research needs to be done to treat contingent claims which are not monotone

with respect to the underlying, e.g. a barrier up-and-out call option and to generalize

the market model replacing for example the constant volatility by a mean-reverting

stochastic process.
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Literature Review

In general, liquidity is effected by many factors like the ability of trading large quantities,

by the speed, the cost and the price impact of the trade. Several measures have been

developed in literature to capture some or all of these factors. Amihud (2002) defines the

liquidity of a stock by the average of the ratio of absolute daily returns to volume, where

the average is taken over a month. Acharya and Pedersen (2005) developed a liquidity

adjusted capital asset pricing model and measured liquidity using a normalized version

of Amihud’s liquidity measure. Liu (2006) analyse the relation between liquidity risk

and asset pricing using a liquidity measure based on historic data. Goyenko, Holden

and Trzcinka (2009) compared several well known liquidity measures using stock data

from 1993 to 2005.

In contrast to the above studies, which define (il)liquidity mainly using a historic

time series of the stock, our model is well suited to be applied to an option surface and

needs only present market data to compute the market implied liquidity parameter γ.

Recently, Madan and Cherny (2010) developed the conic finance theory. Our market

model with frictions is connected to conic finance by the common approach of using

recursively defined sublinear functionals to describe bid and ask prices. Indeed our

discrete market model is closely related to discrete time conic finance models, where

bid and ask prices are defined recursively using nonlinear expectations, see Leippold

and Schärer (2017), Madan (2010), Madan, Pistorius and Schoutens (2013, 2017) and

Madan and Schoutens (2012). Time-consistent nonlinear expectations are connected

with solutions to backward stochastic difference equations, see Cohen and Elliott (2010).

See Bielecki et al. (2013) and Bielecki, Cialenco and Chen (2015) for a framework

incorporating transaction costs in discrete time conic finance models.

Our work is related to Madan, Pistorius and Stadje (2017) who showed in a general

context that, under some technical conditions, an iterated spectral risk measure, which is

a risk measure in a multiperiod setting based on distortion functions, converges to some

g-expectation. A g-expectation is a non-linear expectation proposed by Peng (2004).

Relative to these papers our contribution is to proof convergence of bid and ask prices

in a binomial-type model with frictions when the number of trading periods approaches

infinity and to obtain closed-form solutions for bid and ask prices for plain vanilla and
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barrier options in the limit.

Contents

The remainder of the article is organized as follows. In Section 2, we introduce a discrete

time-model for a market with frictions. In Section 3, we present the classical binomial

model. In Section 4 we prove convergence of bid and ask prices for European and

American possibly path-dependent options. In Section 5, we apply the results to real

market data. Section 6 concludes.

2. The Formal Setup

We make the following economic assumptions: we assume all investors have a finite

time-horizon and trading can take place only finitely many times. There is a very liquid

bank account and a risky-asset whose bid and ask prices can be described by binomial

trees. There exists a pricing functional and bid and ask prices of a contingent claim

can be computed via the pricing functional. At the end of the time-horizon, the bid-ask

spread of all products is assumed to be zero.

Formally, we assume the following framework: Let T > 0 be some time-horizon and

N ∈ N be the number of trading periods, each trading period has length T
N . We introduce

a frictionless market and extend it to a market with frictions using a pricing functional.

Let the risky-asset

(Si)i=0,1,..,N

be described by a nonnegative adapted stochastic process on a given filtered probability

space

(
Ω, (Fi)i=0,...,N ,F ,P

)
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satisfying the usual conditions. By

Bi = (1 + r)i, i = 0, .., N,

we denote a risk-free bank account. We assume the market is arbitrage-free and denote

by Q a risk-neutral measure, such that the discounted price process of the risky-asset is

a Q−martingale. The process (Si) describes the risky asset of the underlying frictionless

market. In this section we assume that the interest rates are equal to zero, i.e. we work

with discounted cash flows, and that the stock is not paying any dividends. Those

assumptions are only made to keep the notation simple and will be relaxed in Section

3 and 4. Let

L∞ := L∞ (Ω,Q,F)

be the set of F−measurable bounded random variables with respect to the probability

measure Q and (ρi)i=0,...,N be a set of dynamic, time-consistent coherent risk measures

being continuous from above

ρi : L∞ → L∞i := L∞ (Ω,Q,Fi) .

We call the operator

pi(.) := ρi(−.), i = 0, ..., N

a price functional. Then (pi) fulfils the following properties, see Föllmer and Schied

(2011, Definition 11.1, Theorem 11.2. and Lemma 11.11). Let X, Y ∈ L∞. It holds for

i = 0, ..., N ,

R1: Cash invariance: pi(X +Xi) = pi(X) +Xi for any Xi ∈ L∞i .

R2: Monotonicity: X ≤ Y ⇒ pi(X) ≤ pi(Y ).

R3: Sub-additivity: pi(X + Y ) ≤ pi(X) + pi(Y ).

R4: Positive homogeneity: pi(λX) = λpi(X), where λ ∈ L∞i and 0 ≤ λ.
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R5: Continuity from below: It holds Xn ↗ X ⇒ pi(Xn) ↗ pi(X) for any sequence

(Xn) ⊂ L∞.

R6: Time-consistency: pi(X) = pi(pi+1(X)), i = 0, ..., N − 1.

We additionally assume

R7: No-arbitrage: EQ [X| Fi] ≤ pi(X).

Jouini (2000) modelled the risk-free bank account as perfectly liquid. Property R1 states

the same: investors may insert or withdraw any amount of cash to or from the risk-free

bank account without transaction costs. Properties R2-R5 have been proposed in similar

form and are discussed by Jouini and Kallal (1995, 2001) and Jouini (2000). Time-

consistency has been introduced by Peng (2004) for nonlinear expectations. It means

that prices behave consistently over time: prices can be computed either directly or using

an intermediate instant of time, see Bion-Nadal (2009). Property R7 guarantees that the

bid-ask spread is always greater or equal to zero and that the market is arbitrage-free,

see Proposition 2.1. Our model of bid and ask prices can be seen as a discrete version of

the continuous time model via dynamic convex risk-measures developed by Bion-Nadal

(2009).

Bid and ask prices of a contingent claim C ∈ L∞ at trading period i are defined by

bidi(C) := −pi(−C) and aski(C) := pi(C), i = 0, ..., N,

i.e. as in Jouini and Kallal (1995), Staum (2004) and Bion-Nadal (2009), we consider

that selling C is the same as buying −C. By property R1, we assume that at the end of

the time-horizon the bid-ask spread of C is zero. We therefore do not have to distinguish

between contingent claims with asset delivery and cash settlement. Bid and ask prices

of the risky asset are then defined by the processes

Sbi := −pi(−SN ) and Sai := pi(SN ), i = 0, ..., N.

American contingent claims can be described by adapted stochastic processes, bid and

ask prices of such claims are defined in Section 2.3.
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We call the tuple
(
(Bi) ,

(
Sbi
)
, (Sai ) , (pi)

)
a security price model. We show that our

security price model does not admit arbitrage. Furthermore, it is not possible to con-

struct a self-financing portfolio, which super-replicates C but can be bought for less

than p0(C). The proof can be found in the appendix.

Proposition 2.1. The security price model
(
(Bi) ,

(
Sbi
)
, (Sai ) , (pi)

)
admits no arbitrage

and the ask price p0(C) of a contingent claim C ∈ L∞ is less or equal to the price of

the smallest self-financing trading strategy dominating C.

2.1. Concave Distortion Functions

In this Section, we introduce a parametric model for the pricing functional (pi). We

will allow the pricing functional to depend on a parameter γ ≥ 0 with the following

interpretation: the greater γ, the greater the bid-ask spread; for γ = 0, the spread

is equal to zero. To obtain such parametrization, we let the coherent risk measures,

defining the pricing functional, be based on a family of concave distortion functions,

which is defined as follows:

Definition 2.2. A family of concave distortion functions (FCDF) (Ψγ)γ≥0 is a set of

functions Ψγ : [0, 1]→ [0, 1] that are monotonically increasing, continuous and concave

for all γ ≥ 0 and for which Ψγ(0) = 0 and Ψγ(1) = 1. Moreover the family is monotoni-

cally increasing and continuous at γ, i.e. it holds that Ψγ1(u) ≤ Ψγ2(u) for γ1 ≤ γ2 and

the map γ 7→ Ψγ(u) is continuous for all u ∈ [0, 1].

Additional, we make the following two assumptions:

A1 For γ = 0, the FCDF is equal to the identity, i.e.

Ψ0(u) = u, u ∈ [0, 1].

A2 The total differential of the FCDF exists at the point (u, γ) =
(1

2 , 0
)
, i.e.

Ψξγ

(1
2 + ξp

)
= 1

2 + ξu + 1
2ξγ + o (|ξu|+ |ξγ |) , ξu ∈ (0, 1), ξγ > 0. (1)
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Equation (1) holds, if the function (u, γ) 7→ Ψγ(u) is partial differentiable and all partial

derivatives at the point
(1

2 , 0
)
are continuous with

∂

∂u
Ψγ(u)

∣∣∣∣
(u,γ)=( 1

2 ,0)
= 1 and ∂

∂γ
Ψγ(u)

∣∣∣∣
(u,γ)=( 1

2 ,0)
= 1

2 . (2)

Assumption A2 is used to prove convergence of bid and ask prices. By Assumption

A1 the FCDF (Ψγ) fulfils Ψ0(1
2) = 1

2 . All FCDF satisfying Assumption A2 are also

(approximately) equal in a small neighbourhood around (u, γ) =
(1

2 , 0
)
. Therefore we

will see that the particular choice of the FCDF to model the pricing functional in the

discrete time model does not matter when the number of trading periods tend to infinity.

Example 2.3. The family of distortion function corresponding to the expected shortfall

can be defined by

Ψγ
ExpShortfall(u) = min(u(1 + γ), 1), u ∈ [0, 1], γ ≥ 0.

The FCDF corresponding to the expected shortfall satisfies Equation (2) because for u

close enough to 1
2 and γ close enough to zero, it holds

Ψγ
ExpShortfall(u) = u+ uγ.

Example 2.4. Let Φ be the cumulative standard normal distribution function and ϕ

the normal density. The WANG-transform

Ψγ
WANG(u) = Φ

(
Φ−1(u) + 1

2ϕ(0)γ
)
, u ∈ [0, 1], γ ≥ 0,

was introduced byWang (2000) and fulfils Equation (2). The WANG-transform is widely

used in actuarial science and was originally defined without the scaling factor 1
2ϕ(0) .

Many other FCDF known in literature fulfil Assumptions A1 and A2, in particular the

FCDF MINVAR, MAXVAR, MINMAXVAR and MAXMINVAR introduced by Cherny
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and Madan (2008).

2.2. Coherent Risk measures induced by Concave Distortion Functions

Given a FCDF (Ψγ), the map

ργ(X) :=
∞̂

0

(Ψγ (Q [X < y])− 1) dy +
0ˆ

−∞

Ψγ (Q [X < y]) dy, γ ≥ 0 (3)

defines a static coherent risk measure in the sense of Artzner et al. (1999), see Föllmer

and Schied (2011, Theorem 4.70). The greater γ, the more conservative the risk measure.

As in Madan, Pistorius and Schoutens (2013, 2017) and Leippold and Schärer (2017),

we generalize this risk measure to the dynamic case. For i = 0, ..., N let

ρ̃γi (X) :=
∞̂

0

(Ψγ (Qi [X < y])− 1) dy +
0ˆ

−∞

Ψγ (Qi [X < y]) dy, γ ≥ 0,

where

Qi[A] := EQ [1A |Fi ] , i = 0, ..., N, A ∈ F ,

is a conditional probability. Define

ργN := ρ̃γN

and recursively

ργi := ρ̃γi (−ργi+1), i = 0, ..., N − 1, γ ≥ 0.

The pricing functional used in this article is then defined by

pγi (.) := ργi (−.), i = 0, ..., N, γ ≥ 0. (4)
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The recursive definition makes the pricing functional time-consistent. By assumption

A1 it holds

EQ[X| Fi] = p0
i (X).

The parameter γ ≥ 0 describes the liquidity of the market: the greater γ, the greater

the bid-ask spread. For γ = 0, bid and ask prices coincide and are identical to the risk

neutral price operator.

Due to the time-consistency, for a fixed γN ≥ 0, bid and ask prices of a future random

cash flow CE ∈ L∞ can be obtained by recursions:

bidN
(
CE
)

= askN
(
CE
)

= CE ,

bidi
(
CE
)

= −pγNi
(
−bidi+1

(
CE
))
, i = 0, .., N − 1, (5)

and aski
(
CE
)

= pγNi

(
aski+1

(
CE
))
, i = 0, .., N − 1.

We explicitly allow the parameter γN , which describes the bid-ask spread in the N th

model, to depend on N , in order to obtain convergence results for N →∞.

a21

a22

a23

a11

a0

1−Ψ
γ
(1−p)

or Ψ
γ
(p)

Figure 1. Binomial tree to compute the ask price. The up-move probability depends on the sorting of the
successive nodes.

Remark 1. The bid and ask prices are recursively defined and can be computed going

backwards through a tree. Figure 1 shows a binomial tree with N = 2 time-steps. The

ask prices at the final nodes are equal to the value of the option at expiration. The

ask price at the first node (today) can be computed going iteratively through the tree
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using the recursions (5). For example the ask price a11 can be computed using the two

successive nodes a21 and a22.

a11 =


Ψγ(1− p)a22 + (1−Ψγ(1− p))a21 , a21 ≤ a22

(1−Ψγ(p))a22 + Ψγ(p)a21 , a21 > a22,

where p denotes the up-move probability in a classical binomial model and (Ψγ) is a

FCDF. The formula is deduced from the definition of pricing functional, see Equation

(4). In contrast to the iterative computation of the risk-neutral price in the classical

binomial model, the bid and ask prices depend on the sorting of the successive nodes.

Therefore in this article we only prove convergence for monotone payoffs, which are

precisely defined in Section 2.3. Bid and ask prices of general payoffs can be computed

in the discrete time model going backwards through the tree and checking at each node

the sorting of the two successive nodes.

2.3. Payoffs

The main goal of this article is to prove convergence of bid and ask prices of different

European and American contingent claims, when the number of trading periods ap-

proaches infinity. We focus on contingent claims which are monotonically increasing or

decreasing with respect to the underlying, this has a technical reason, see Remark 1.

In the following we precisely define increasing and decreasing European and American

contingent claims and provide a selection of examples.

Definition 2.5. A European contingent claim CE is a bounded random variable on

(Ω,F), such that there is a measurable function h, with

CE = h(S0, ..., SN ).

The claim is called increasing if

h(x0, ..., xN ) ≥ h(y0, ..., yN ), xi ≥ yi, i = 0, ..., N
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and decreasing if

h(x0, ..., xN ) ≤ h(y0, ..., yN ), xi ≥ yi, i = 0, ..., N.

An American contingent claim CA is a bounded adapted process

CA =
(
CA
i

)
i=0,..,N

,

such that for each i there is a measurable function hi, with

CA
i = hi(S0, ..., Si).

The claim is called increasing if

hi(x0, ..., xi) ≥ hi(y0, ..., yi), xk ≥ yk, i = 0, ..., N, , k = 0, ..., i

and decreasing if

hi(x0, ..., xi) ≤ hi(y0, ..., yi), xk ≥ yk, i = 0, ..., N, , k = 0, ..., i.

A European claim CE can be interpreted as a random payoff at maturity T . For

each i, the random variable CA
i is interpreted as the payoff of the American contingent

claim if the claim is exercised after i trading periods. We assume the American option

is cash-settled, and the reference price is the process (Si). If the holder of an American

option exercises the option early after i trading periods, she will receive the amount

hi(S0, ..., Si), which is independent of the current bid-ask spread or the processes
(
Sbi
)

and (Sai ). This may in particular hold for cash-settled index options and it holds ap-

proximately for options with physically delivery if the transaction costs of trading the

stock are small. Similar to European contingent claims, see Equation (5), bid and ask

prices of an American contingent claim CA can be defined recursively, incorporating the
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possibility of an early exercise:

bidN (CA) = askN (CA) = CA
N ,

bidi(CA) = CA
i ∨ −p

γN
i (−bidi+1(CA)), i = 0, .., N − 1, (6)

and aski(CA) = CA
i ∨ p

γN
i (aski+1(CA)), i = 0, .., N − 1.

Let Ξ be the set all American contingent claims. To simplify notation, the operators

assigning bid and ask prices to American contingent claims

bidi : Ξ→ L∞i and aski : Ξ→ L∞i ,

have the same names as the operators describing prices of European contingent claims,

which can be seen as functionals from L∞ to L∞i .

We provide some examples of European and American contingent claims. Let K ≥ 0

be a strike price and B ≥ 0 be a barrier. By N we denote the time, the option is

exercised. If N ∈ {0, ..., N} can be chosen by the holder of the option, we speak of an

American contingent claim, exercised at time N . If only N = N is allowed, i.e. the

option can only be exercised at maturity, we speak of a European contingent claim.

Example 2.6. The following derivatives are increasing contingent claims.

• Call option: CCall = (SN −K)+

• Lookback call option: CLbCall =
(

max
i∈{0,...,N}

Si −K
)+

• Asian call option: CAsianCall =
(

1
N
∑N
i=0 Si −K

)+

• Barrier up-and-in call option:

CUICall =


(SN −K)+ , max

i∈{0,...,N}
Si ≥ B

0, otherwise
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• Barrier down-and-out call option:

CDOCall =


(SN −K)+ , min

i∈{0,...,N}
Si > B

0, otherwise

Example 2.7. Decreasing payoffs are for example:

• Put option: CCall = (K − SN )+

• Lookback put option: CLbPut =
(
K − max

i∈{0,...,N}
Si

)+

• Asian put option: CAsianPut =
(
K − 1

N
∑N
i=0 Si

)+

• Barrier up-and-out put option:

CUOPut =


(K − SN )+ , max

i∈{0,...,N}
Si < B

0, otherwise.

Example 2.8. The following two derivatives are neither increasing nor decreasing pay-

offs.

• Barrier up-and-out call option

CUOCall =


(SN −K)+ , max

i∈{0,...,N}
Si < B

0, otherwise

• Barrier down-and-in call option

CDICall =


(SN −K)+ , min

i∈{0,...,N}
Si ≤ B

0, otherwise.

3. Classical Binomial Model

In this Section, we recall the classical binomial model. Let T > 0 be some time-horizon

and assume there are N ∈ N trading periods between [0, T ], each trading period is of
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length T
N . There is a riskless bond

B
(N)
i = (1 + rN )i, i = 0, 1, ..., N,

paying interest rN = rT
N > −1 in each trading period and just one risky asset, paying

dividends qN = qT
N in each period, and whose price process takes the form

S
(N)
i = S0

i∏
k=1

(1 +R
(N)
k ), i = 1, 2, ..., N,

where S0 > 0, and the returns

R
(N)
i =

S
(N)
i − S(N)

i−1

S
(N)
i−1

, i = 1, 2, ..., N

are random variables with values in {aN , bN} ⊂ R, such that

dN := 1 + aN = e−σ
√

T
N and uN := 1 + bN = eσ

√
T
N . (7)

The market is arbitrage-free and complete if −1 < aN < rN − qN < bN , which holds for

N large enough. In this case, the returns R(N)
1 , ..., R

(N)
N are independent, their distribu-

tions are characterized by

P ∗N (R(N)
i = bN ) := p∗N := pqN + ϕ(N), i = 1, 2, ..., N, (8)

where P ∗N is the unique risk neutral measure, ϕ(N) ∈ o
(

1√
N

)
and

pqN := 1
2 + r − q

2σ

√
T

N
. (9)

We say the classical binomial model is characterized by the tuple (S0, T, r, q, σ,N).

Let C(N)
E be a possibly path-dependent European contingent claim. The discounted
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claim

H
(N)
E = C

(N)
E

B
(N)
N

can be written as

H
(N)
E = h

(
S

(N)
0 , ..., S

(N)
N

)
(10)

for a suitable function h. The value process in the N th model,

V
(N)
i = EP ∗

N

[
H

(N)
E |Fi

]
, i = 1, 2, ..., N,

of a replicating strategy for H(N)
E at time t = iT

N is of the form

V
(N)
i (ω) = v

(N)
i (S0, S1(ω), .., Si(ω)),

where the function v(N)
i is given by recursion

v
(N)
N (x0, ..., xN ) = h(x0, ..., xN )

v
(N)
i (x0, ..., xi) = (1− p∗N ) v(N)

i+1 (x0, ..., xi, xidN )

+p∗Nv
(N)
i+1 (x0, ..., xi, xiuN ) , i = 0, 1, ..., N − 1,

see e.g. Föllmer and Schied (2011, Proposition 5.41).

On the other hand, dealing with an American contingent claim

C
(N)
A =

(
C

(N)
A,i

)
i=0,..,N

,

and the corresponding discounted claim

H
(N)
A,i =

C
(N)
A,i

B
(N)
i

, i = 0, .., N,
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for each i = 0, 1, .., N there is a suitable function hi such that

H
(N)
A,i = hi(S0, ..., Si).

By no-arbitrage-arguments, the value process (Vi)i=0,...,N of a replicating strategy for

H
(N)
A can be found by recursion, compare with Föllmer and Schied (2011, Chapter 6):

VN := H
(N)
A,N , Vi := H

(N)
A,i ∨ EP ∗

N
[Vi+1| Fi] , i = 0, .., N − 1.

Hence, there are functions v(N)
i such that

Vi = v
(N)
i (S0, ..., Si), i = 0, ..., N,

namely

v
(N)
N (x0, ..., xN ) = hN (x0, ..., xN )

v
(N)
i (x0, ..., xi) = hi(x0, ..., xi) ∨

{
(1− p∗N ) v(N)

i+1 (x0, ..., xi, xidN )

+p∗Nv
(N)
i+1 (x0, ..., xi, xiuN )

}
, i = 0, 1, ..., N − 1.

It is well known that in a classical binomial-tree model, which is characterized by the

tuple (S0, T, r, q, σ,N), the risk-neutral price

π(N)(C(N), S0, T, r, q, σ) := v
(N)
0 (S0) (11)

of a European or an American contingent claim C(N) = C
(N)
E or C(N) = C

(N)
A , converge

for many products as N →∞. If the limit exists, we define

π(C, S0, T, r, q, σ) := lim
N→∞

π(N)(C(N), S0, T, r, q, σ).

Convergence of plain vanilla European options to the Black-Scholes price are dis-

cussed in Cox, Ross and Rubinstein (1979). For plain vanilla American options we refer
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to Amin and Khanna (1994), for European and American Asian options and lookback

options and some other path-dependent options, see Jiang and Dai (2004). For a proof

of convergence for European barrier option, see Carbone (2004) and Lin and Palmer

(2013) and references therein. Those convergence results can directly be applied to prove

convergence of bid and ask prices as Theorem 4.1 shows.

4. Convergence of Bid and Ask Prices

In this Section we prove our main result and show that bid and ask prices of European

or American contingent claims converge, if the risk-neutral price of the claim converges

in the classical binomial model. The theorem has an important practical implication: it

states that bid and ask prices of monotone payoffs, in particular plain vanilla European

and American options, can be computed using the classical Black-Scholes model with

an adjusted drift. Bid and ask prices of such options can therefore be computed very

fast.

Theorem 4.1. Let (Ψγ)γ≥0 be a FCDF fulfilling Assumption A1 and A2. Let a classical

binomial-tree model be given, which is characterized by the tuple

(S0, T, r, q, σ,N).

Let C(N) be an increasing (decreasing) European or American contingent claim. Let

γ ≥ 0 and

γN := γ

√
T

N
. (12)

Define bid and ask prices of a European claim by recursions (5) and of an American

claim by recursions (6). If risk-neutral price, defined via Equation (11),

π(N)(C(N), S0, T, r, q̃, σ)
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converges in the classical binomial model for all dividends

q̃ ∈ [q − σγ, q + σγ]

to some non-negative number π(C, S0, T, r, q̃, σ), then the ask (bid) of the contingent

claim converges to

lim
N→∞

π(N)(C(N), S0, T, r, q − σγ, σ)

and the bid (ask) price converges to

lim
N→∞

π(N)(C(N), S0, T, r, q + σγ, σ).

Proof. The proof can be found in the appendix.

A look at the proof of Theorem 4.1 shows that one could define γN in Equation (12)

arbitrarily, as long as it converges to zero as fast as 1√
N
. Under our particular choice, γ

can be interpreted as a drift-adjustment via the dividend yield in the continuous time

limit scaled by the volatility. The drift adjustment is

q̂T = (q ± σγ)T.

Remark 2. In the binomial model, the underlying is modelled by a bounded stochastic

process. Therefore there is no restriction of the definition of bid and ask prices via

recursions (5) and (6) requiring the contingent claims to be bounded. In particular call

options are bounded in discrete time. Bid and ask prices of a contingent claim form a

two-dimensional sequence with the natural numbers 1, 2, 3, .. as index set. The index N

corresponds to the N th binomial model. In Theorem 4.1, we prove convergence of such

a sequence. Hence Theorem 4.1 says that bid and ask prices of a possibly unbounded

contingent claim like a European call option in continuous time can be approximated

arbitrary closely by the bid and ask prices of a bounded contingent claim in discrete
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time.

4.1. European Plain Vanilla Options

In the classical Black-Scholes world, there exist closed-form solutions for the risk-neutral

price of European plain vanilla and barrier options. By Theorem 4.1, we obtain closed-

form solutions for bid and ask prices of European plain vanilla and barrier options, which

are stated in the next corollaries, by taking the corresponding closed-form solutions for

the risk-neutral price and adjusting the dividend yield.

The Black-Scholes prices of plain vanilla European call and put options with strike

K and maturity T are given in closed-form and denoted by

BSCall(S0, T,K, r, q, σ) = S0e
−qTΦ (d1)− e−rTKΦ (d2)

and

BSPut(S0, T,K, r, q, σ) = e−rTKΦ (−d2)− S0e
−qTΦ (−d1) ,

where d1 = logS0
K

+(r−q+ 1
2σ

2)T
σ
√
T

and d2 = d1−σ
√
T and Φ denotes the distribution function

of the standard normal distribution, see Black and Scholes (1973).

Corollary 4.2. Under the notation of Theorem 4.1, let C(N) be a European plain vanilla

option with strike K > 0 and maturity T . Bid and ask prices of a put option converge

to

bidγPut = BSPut(S0, T,K, r, q − σγ, σ)

and

askγPut = BSPut(S0, T,K, r, q + σγ, σ).
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Bid and ask prices of a call option converge to

bidγCall = BSCall(S0, T,K, r, q + σγ, σ)

and

askγCall = BSCall(S0, T,K, r, q − σγ, σ).
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Figure 2. Relative bid-ask spread surface for European plain vanilla call options. We use the following
parameters: the underlying is equal to 100, the strikes vary between 50 and 150, annual interest rates are set
to 0.01, the dividend yield is assumed to be 0.03, the time left to maturity lays in the interval [0, 2], the annual
volatility is 0.2 and the annual γ is set to 0.05.

Figure 2 shows the relative bid-ask spread ask−bid
(ask+bid) 1

2
surface of European call options

over strikes and maturities. Long term options and options being deep out-of-the money

are less liquid, the relative bid-ask spread is greater.

Remark 3. Similarly to the existence of an implied volatility smile, there exist an

implied liquidity smile. Computing γ implicitly from given bid and ask prices of options,

Corcuera et al. (2012) show that there is a non-linear dependence of γ, with respect to

the term structure and the moneyness of the option surface. In particular, we cannot
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expect to predict the bid-ask spread of one option from given bid and ask prices of

another option, if the corresponding strikes and maturities are too distant from each

other.

4.2. Path-dependent and American Options

In a classical Black-Scholes framework, there exist closed-form solution for many barrier

options, see Rubinstein and Reiner (1991) and Cheng (2003). For example the arbitrage-

free price of an up-and-in barrier call option with maturity T , strike K and barrier

B > K is

BSUICall(S0, T,K,B, r, q, σ) = S0e
−qTΦ(x1)−Ke−rTΦ(x1 − σ

√
T )

−S0e
−qT

(
B

S0

)2m
(Φ(−y)− Φ(−y1))

+Ke−rT
(
B

S0

)2m−2
(Φ(−y + σ

√
T )

−Φ(−y1 + σ
√
T )),

where

m =
r − q + 1

2σ
2

σ2 , y =
log
(
B2

S0K

)
σ
√
T

+mσ
√
T ,

x1 =
log
(
S0
B

)
σ
√
T

+mσ
√
T , y1 =

log
(
B
S0

)
σ
√
T

+mσ
√
T .

Corollary 4.3. Under the notation of Theorem 4.1, let C(N) be an up-and-in barrier

call option with maturity T , strike K > 0, and barrier B > K. The bid price converges

to

bidγUICall = BSUICall(S0, T,K,B, r, q + σγ, σ)

and the ask converges to

askγUICall = BSUICall(S0, T,K,B, r, q − σγ, σ).
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In the following, we treat bid prices of American put options but the findings can be

transferred directly to ask prices of American put options and American call options as

well. Let the risk-neutral Black-Scholes prices of a plain vanilla American put option

with strike K and maturity T be denoted by

BSAPut(S0, T,K, r, q, σ).

There are no closed-form solutions for American plain vanilla options in a classical

Black-Scholes framework, but there exist efficient numerical methods to approximate

BSAPut, see for example Barone-Adesi and Whaley (1987) and Bjerksund and Stensland

(1993). We denote the numerical approximation by

B̃S
A
Put(S0, T,K, r, q, σ)

and the error by

εqPut :=
∣∣∣∣BSAPut(S0, T,K, r, q, σ)− B̃S

A
Put(S0, T,K, r, q, σ)

∣∣∣∣ .
The next corollary follows immediately:

Corollary 4.4. Under the notation of Theorem 4.1, let C(N) be an American plain

vanilla put option with strike K > 0 and maturity T . The bid price converge to

bidγPut = BSAPut(S0, T,K, r, q − σγ, σ).

The error approximating the bid price using B̃S
A
Put as an estimate for BSA

Put is less or

equal to εq−σγPut .

The corollary states the following: the bid price of an American put option on a stock

with dividend yield q is equal to the risk-neutral price of an American put option but

on a stock with dividend yield q − σγ. The bid price directly inherits the numerical

error from the approximation of the the risk-neutral price of the American option by
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some numeric algorithm. A similar corollary could easily be stated for other options, like

Asian options, which do not have closed-form solutions in the classical Black-Scholes

model and can only be approximated for example with Monte Carlo methods. Bid and

ask prices can then also be computed using Monte Carlo methods and the absolute error

does not increase compared to classical risk-neutral pricing.

4.3. Numeric Simulations

In this Section, we try to investigate how fast the recursively defined bid and ask prices

converge. We make two approximations: we approximate the concave distortion function

by a linear function, see Equation (1) and we approximate the Black-Scholes model by

a binomial tree. The error of the first approximation approaches zero faster than 1√
N
,

see Equation (13).

The convergence rate of the classical binomial model is well studied in literature for

many products: Heston and Zhou (2000) show that the risk-neutral price of a plain

vanilla European call option converges at least as fast as 1√
N
. Lamberton (1998) proves

that the risk-neutral price of an American put option converges from below and from

above at least as fast as N− 2
3 and N−

3
4 respectively. Leisen and Reimer (1996) and

Leisen (1998) analysed three different approaches to build a binomial tree, in particular

the definitions for the returns of one trading period differ. They show that European

plain vanilla options converge at least as fast as 1
N but American put options may only

converge from below as fast as 1√
N

depending on the exact tree definition. Lin and

Palmer (2013) treat barrier options.

In our setting the up-move probability to obtain bid and ask prices has only asymp-

totically the martingale property, which makes it difficult to directly apply convergence

results for classical binomial trees to our framework.

We therefore rely on simulations and compute bid and ask prices of a European call

option, an American put option and a European up-and-in call option using recursions

(5) and (6) for time-steps ranging from N ∈ {5, .., 2000}. We compare the tree-prices to

their continuous counterpart, which can be obtained via the Corollaries 4.2, 4.3 and 4.4.

Slightly abusing notation, we denote by eN the absolute difference (error) between the

bid or ask price of a contingent claim C(N) in the N th binomial model to the limiting
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bid or ask price. We say the sequence of errors converges with order ρ > 0, if there is a

constant κ > 0 such that

∀N ∈ N : eN ≤
κ

Nρ
.

The order of convergence can be indicated straightforwardly by a simulation, see Leisen

and Reimer (1996). As

log
(
κ

Nρ

)
= log(κ)− ρ log(N),

the negative slope of a straight line obtained from a log-log plot of the errors eN against

the refinement N can be used as an indicator for ρ. Figure 3 indicates an order of

convergence between 1 and 1
2 of the recursions (5) and (6) for different European and

American options.
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Figure 3. Log-log plot of the binomial tree approximation error for a European call option, an American
put option and an up-and-in barrier option with barrier B = 110. All option have the strike K = 100 and the
maturity is set to one year. The stock starts in S0 = 100, annual interest rates are set to 0.01, the dividend yield
is assumed to be 0.03, the annual volatility is 0.2 and the annual γ is set to 0.05. N goes in non-equidistant
steps from 5 to 2000. The up-and-in barrier option is only simulated up to N = 1000.
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5. Implied Liquidity (IL)

Change in Liquidity, ATM American Options
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Figure 4. This Figure describes the change of the relative bid-ask spread, the IL and the difference of implied
bid and ask volatilities from February, 2nd to February, 5th of various American at-the-money put and call
options by a multiplicative factor. Maturities are measured in months.

In Guillaume et al. (2018), the concept of implied liquidity (IL) is defined, see also

Corcuera et al. (2012), Dhaene et al. (2012) and Albrecher, Guillaume, and Schoutens

(2013). It is similar to the idea of implied volatility and returns two implicitly computed

parameters γb and γa such that modelled bid and ask prices match real market prices.

The benefits of quoting the IL instead of bid-ask spreads are comparable to the benefits

of quoting implied volatilities instead of mid-prices: in principle the IL can be constant

across strikes, maturities and underlyings and hence makes it possible to compare bid-

ask spreads across all three dimensions. Guillaume et al. (2018) computed the IL for

European options and compared the defining formula of the IL to the industrial standard

of describing bid and ask price by quoting implied bid and ask volatilities. Their main

finding is: a change in liquidity is described much more adequately by the IL than by

the change of the difference of implied bid and ask volatilities. We repeat this empirical

study for American options and obtain similar results.

For February, 2nd and February, 5th, 2018, we obtained end of day bid and ask prices
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of 80 plain vanilla, at-the-money American put and call options on the S&P500, or rather

the SPDR S&P 500 ETF Trust, an exchange traded fund replicating the S&P500, with

maturities ranging from about 3 to 8 month. The option prices were obtained from the

Chicago Board Options Exchange and can be found in Table 1.

The CBOE Volatility Index (VIX), tracking short-term market volatility, jumped

from 17.31 points on February, 2nd to 37.32 points on February, 5th, thus by 116%,

which is the highest daily relative change recorded so far. The S&P500 lost about

4% between the two dates. It is well-known that liquidity dries up, when uncertainty

in financial market rises. Therefore the chosen dates are well suited to analyse how

different measures for the bid-ask spread behave, when liquidity changes.

For each American option, on both dates, we first compute an implied volatility

σMid matching exactly the mid-price. Then we use the mid-price implied volatility and

compute the IL, (γb, γa) ∈ R2
+, such that the modelled bid and ask prices match exactly

the quoted market bid and ask prices. In particular for an American call option C, we

solve numerically

bidquoted market price(C) = πACall (S0, T,K, r, q + σMidγb, σMid) ,

for γb. πACall(S0, T,K, r, q, σ) is the risk-neutral price of an American call option in a

Black-Scholes setting with strike K and maturity T on a stock with initial value S0,

volatility σ and paying a continuously dividend yield q. The risk-free interest rate is

denoted by r. The parameter γa for the call option and the IL (γ̃b, γ̃a) of put options

can be found analogously, see Theorem 4.1. For most options γb and γa are almost

identical.

The average relative bid-ask spread of the American option set is 1.6% on February,

2nd and 6.6% on February, 5th. The relative bid-ask spread changed by the factor

4.1. The average IL γa+γb
2 , changed from an average value of 0.011 for all options on

February, 2nd to 0.043 on February, 5th, which corresponds to a change by the factor

3.9. The average difference of implied bid and ask volatilities on the other hand, rose by

the factor 6.1, hence about 49% more than the relative bid-ask spread. In Figure 4, we

show the multiplicative factor describing the change of the relative bid-ask spread, the
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IL and the difference of implied bid and ask volatilities from February, 2nd to February

5th separately for put and call options and different maturities.

The overall picture is the following: a change in liquidity of American options, due to

a rise in uncertainty in the market and measured by the change of the relative bid-ask

spread, is described by the IL very well. On the other hand, an overestimation of the

change of liquidity by 50% and more are no exceptions, when describing the bid-ask

spread by the classical way of quoting implied bid and ask volatilities. Our findings for

American options are in line with a similar empirical study for European options done

by Guillaume et al. (2018).

6. Conclusion

We model a financial market with frictions in discrete time by applying a pricing func-

tional, which is defined recursively via coherent risk measures, to a classical binomial

model. Economically, the discrete time model is justified in Jouini and Kallal (1995,

2001) and Jouini (2000). We are able to prove convergence of bid and ask prices for

monotone products like European and American plain vanilla, Asian, lookback and

(some) barrier options. In the limit we obtain an extended Black-Scholes formula con-

taining a new parameter γ ≥ 0, which adjusts the dividend yield. The greater γ, the

greater the bid-ask spread. In particular for European plain vanilla options and barrier

options exist closed-form solutions. The convergence results allow us to compute bid

and ask prices of an option as fast as the risk-neutral price in a classical Black-Scholes

model.

The new model may find a similar application in practise as the classical Black-Scholes

model. Trader usually prefer to quote implied volatilities instead of prices, because

there are many nonlinearities in prices making comparisons across strikes, maturities,

and underlying assets difficult to comprehend and understand. In principle volatilities

could be constant across all three dimensions, hence the preference for quoting implied

volatilities.

With the same argument it might be more convenient to quote an implicitly computed

γ instead of the bid-ask spread. To demonstrate this idea, we computed implicitly two
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parameters γb and γa for a set of American options such that modelled bid and ask

prices match real market prices. In principle the tuple (γb, γa) could be constant across

strikes, maturities and underlyings and hence makes it possible to compare bid-ask

spreads across all three dimensions.

We compare this new market implied liquidity measure to the common approach

of describing the bid-ask spread by the difference between implied bid and ask Black-

Scholes volatilities and show empirically that our model describes liquidity of American

options over time significantly better. A similar study has been done by Guillaume et

al. (2018) for European options using a static model.

A future research could consist of generalizing the binomial model and allowing in

particular the parameter γ and the volatility to be possibly correlated stochastic pro-

cesses.
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Appendix

Proof of Proposition 2.1.

We trivially have

0 ≤ Sbi ≤ EQ [SN | Fi] = Si ≤ Sai , i = 0, ..., N,

hence by Jouini and Kallal (1995, Theorem 3.2), the security price model admits no

multiperiod free lunch and is hence arbitrage-free. Let

A0 := {X ∈ L∞, ρ0(X) ≤ 0} .

For a probability measure Q equivalent to Q, define

αmin
0 (Q) := sup

X∈A0

EQ[X].

It holds αmin
0 (Q) ≤ 0, hence by Föllmer and Penner (2006, Corollary 4.12.), there exist

a set of probability measures (Qe), such that each element of Qe is equivalent to Q and

pi(X) = sup
Q∈Qe

EQ[X| Fi], i = 0, .., N.

Let P be a set of probability measures containing all probability measures P which are

equivalent to Q for which exist a P−martingale
(
ZPi
)
with

Sbi ≤ ZPi ≤ Sai , i = 0, .., N.

It follows Qe ⊆ P : for each Qe ∈ Qe there is a Qe−martingale
(
ZQ

e

i

)
, namely

ZQ
e

i := EQe [SN | Fi],
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such that

Sbi ≤ ZQ
e

i ≤ Sai , i = 0, .., N.

Let C ∈ L∞. By Jouini (2000, Theorem 1.), the value p∗(C) := sup
P∈P

EP [C] is less

or equal to the price of the smallest self-financing trading strategy dominating C. As

p0(C) ≤ p∗(C), we conclude.

Proof of Theorem 4.1

We first assume C(N) models a European contingent claim and can be described by

a function h as in Equation (10). Let uN , dN and pqN be defined as in Section 3.

Then it holds for the processes describing the ask price (Ai)i=0,1,..,N and the bid price

(Bi)i=0,1,..,N of C(N),

Ai(ω) = ai((S0, S1(ω), .., Si(ω)),

and

Bi(ω) = bi((S0, S1(ω), .., Si(ω)),

where the functions ai and bi are recursively defined:

bN (x0, ..., xN ) = aN (x0, ..., xN ) = h(x0, ..., xN )

and for i = 0, 1, .., N − 1, if the European contingent claim is increasing

ai(x0, ..., xi) = (1−ΨγN (pqN + ϕ(N))) ai+1 (x0, ..., xi, xidN )

+ΨγN (pqN + ϕ(N)) ai+1 (x0, ..., xi, xiuN )
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and

bi(x0, ..., xi) = ΨγN (1− (pqN + ϕ(N))) bi+1 (x0, ..., xi, xidN )

+ (1−ΨγN (1− (pqN + ϕ(N)))) bi+1 (x0, ..., xi, xiuN ) .

If h defines a decreasing European contingent claim, it follows for i = 0, .., N − 1,

ai(x0, ..., xi) = ΨγN (1− (pqN + ϕ(N))) ai+1 (x0, ..., xi, xidN )

+ (1−ΨγN (1− (pqN + ϕ(N)))) ai+1 (x0, ..., xi, xiuN )

and

bi(x0, ..., xi) = (1−ΨγN (pqN + ϕ(N))) bi+1 (x0, ..., xi, xidN )

+ΨγN (pqN + ϕ(N)) bi+1 (x0, ..., xi, xiuN ) .

The ask (bid) price of an increasing European payoff and the bid (ask) price of a

decreasing European payoff at level γN ≥ 0 are exactly defined as the risk-neutral price

in the classical binomial model, when replacing the up-move probability in Equation

(8), i.e,

pqN + ϕ(N),

by

ΨγN (pqN + ϕ(N)) ,

respectively by

(1−ΨγN (1− (pqN + ϕ(N)))) .
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This observation can directly be carried forward to American contingent claims and is

explained by the structure of the binomial model and the recursive definition of bid and

ask prices.

By Assumption A2, there is a sequence ϕ̃(N) ∈ o
(

1√
N

)
such that

ΨγN (pqN + ϕ(N)) = 1
2 + r − q

2σ

√
T

N
+ γ

2

√
T

N
+ ϕ̃(N)

= 1
2 + r − (q − σγ)

2σ

√
T

N
+ ϕ̃(N)

= pq−σγN + ϕ̃(N).

Similarly it holds for a suitable ϕ̂(N) ∈ o
(

1√
N

)
,

1−ΨγN (1− (pqN + ϕ(N))) = pq+σγN + ϕ̂(N).

Hence the up-move probability of the distorted binomial model describing bid and ask

prices can be expressed as in the classical binomial model with an adjusted dividend

yield:

1
2 + r − (q ± σγ)

2σ

√
T

N
+ o

( 1√
N

)
. (13)

As the up and down moves uN and dN remain unchanged compared to the classical

binomial model, we conclude.
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