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ABSTRACT

Bubble detachment, rise, and bouncing upon impact with a free surface is studied experimentally in variable gravity
conditions. Previous investigations focused on the effects of fluid properties such as viscosity or surface tension on the
rise and bouncing dynamics. Gravity force is a crucial factor in the detachment, rise and bouncing processes. However,
the effect of different gravity levels has never been studied experimentally. In this paper we analyze the role of gravity
in the detachment, rise velocity and bouncing motion of millimetric bubbles colliding with a free surface. Single air
bubbles in ethanol are detached from a nozzle by the buoyancy force. After reaching a terminal velocity, the rising
bubble interacts with the free surface in a bouncing process prior to coalescence. The equivalent bubble diameter at
detachment decreases as the gravity level increases, in agreement with the theoretical prediction. An expression for
the terminal velocity as a function of gravity is proposed. The terminal velocity is found to increase with the gravity
level, although bubbles are smaller at higher values of gravity. The bouncing process has been modelled by a damped
oscillator, in which the free surface acts as an elastic membrane. An expression for the frequency of bouncing as a
function of gravity has been obtained, showing a good agreement with the experimental results. The motion of the
bubble during the bouncing process can be approximated by an underdamped oscillator even if viscosity is negligible.
Therefore, viscosity is not the main responsible for damping, which is probably due to energy transfer from the bubble
to the fluid in the form of vortex and surface waves generation.
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I. INTRODUCTION1

Many industrial applications require the use of bubbly flows2

with controlled dynamics. Hence, the enhancement of the3

understanding of bubble dynamics is essential in order to4

improve the operation of such applications. In particular, the5

collision of bubbles with a gas-liquid interface is a common6

phenomenon in bubbly flows. The dynamics of these interac-7

tions are a key aspect to determine whether the collision will8

result in the formation of foams, flotation aggregates or bubble9

coalescences.10

The collision of a bubble with a free interface depends on11

the characteristics of the bubble rise before impact, which in12

turn depends on the process of detachment from a nozzle.13

The bubble diameter at detachment determines its terminal14

rise velocity, which determines the coalescence or bouncing15

after the collision with the free interface.16

In the present case of study, a millimetric gas bubble is17

released from a nozzle and it rises until it collides with a free18

surface. The overall process can be divided into four stages:19

(i) detachment from the nozzle, (ii) bubble rise, (iii) bouncing20

with the free surface and (iv) bubble coalescence.21

Bubble formation and detachment from a nozzle have been22

studied by many authors over the years. The reader may23

refer to Kulkarni and Joshi (2005) for a detailed review of24

the existing models. Carrera et al. (2006) studied the bubble25

formation in microgravity conditions, reporting that at low gas26

flow rates the bubble size is not uniform and the frequency of 27

bubble generation is very difficult to control. 28

Many attempts to model the bubble shape and terminal 29

velocity in the steady rise have been carried out (Moore, 1965, 30

Tomiyama et al., 1998, Bozzano and Dente, 2001, Rodrigue, 31

2001, de Vries et al., 2002, Kulkarni and Joshi, 2005, Loth, 32

2008, Sanada et al., 2008, Legendre et al., 2012, Maldonado 33

et al., 2013, Suñol and González-Cinca, 2015). However, due 34

to the complexity of the problem, most of the predictions are 35

largely in terms of empirical correlations which are for the 36

most part based on specific test conditions. The application of 37

these correlations to other test conditions may not be valid, in 38

particular when the gravity level is changed. 39

Most of the studies on bubble bouncing carried out up to 40

date consider the collision of a gas bubble with a solid wall 41

(Tsao and Koch, 1997, Klaseboer et al., 2001, Legendre et al., 42

2005, Malysa et al., 2005, Legendre et al., 2006, Zenit and 43

Legendre, 2009, Manica et al., 2014, Klaseboer et al., 2014). 44

In this configuration the bubble bouncing is due uniquely 45

to bubble surface deformations upon impact with the solid 46

wall. However, the collision of a bubble with a free surface 47

is a more complex bouncing process characterized by the 48

deformation of both the bubble shape and the free surface. 49

Sanada et al. (2005) and Suñol and González-Cinca (2010) 50

reported that there is a critical threshold determined by the 51

bubble characteristics that separates the bouncing and non- 52
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Figure 1. Experimental setup. Red lines: power connections. Blue line: gas connection. Green line: control connections. 1: Computer; 2: High-speed camera;
3: Test cell; 4: Diffuser sheet; 5: LED Matrix; 6: Syringe pump.

bouncing regimes of the interaction: the bubble may bounce53

a few times before coalescing, or the bubble may coalesce as54

soon as it reaches the free surface. Air bubbles in ethanol show55

two distinct behaviors when they impact with a free surface56

in normal gravity conditions: bubbles with diameter d < 0.4757

mm coalesce with the free surface immediately after impact,58

while bubbles with d > 0.47 mm bounce a few times before59

coalescence.60

Zawala et al. (2011, 2013) and Kosior et al. (2014) stud-61

ied the bouncing process in resting and vibrating surfaces,62

concluding that highly deformed bubbles, which is related to63

fluid properties, bounce because the liquid film separating the64

gas phases has a large thickness, so that the bubble-interface65

contact time is shorter than the time needed for the film to66

drain.67

The dynamics of the bouncing process of a bubble upon68

impact with a free surface has been properly modelled by69

Sato et al. (2011) using a coupled mass-spring approximation.70

In this model, two springs connected in series are considered.71

One spring corresponds to the bubble shape deformation while72

the other one corresponds to the deformation of the free73

surface. The model contains two parameters that must be74

empirically determined for particular experimental conditions.75

Although the bouncing of a bubble impacting at a solid wall or76

a free surface is a highly dissipative process (Tsao and Koch,77

1997), the model by Sato et al. (2011) does not contain any78

dissipative terms.79

Zawala and Malysa (2011) studied the influence of the80

impact velocity and the size of the water film formed in the81

coalescence of a bubble with a free surface, showing that the82

bubble bounces when the thinning film does not reach its83

rupture thickness during the collision time. The film formed84

by the colliding bubble ruptured for radius smaller than 0.2885

mm. Pigeonneau and Sellier (2011) numerically investigated86

the evolution of both the bubble and the free surface shape by87

means of a boundary-integral method. For weakly deformed88

interfaces (corresponding to high values of the surface tension89

force), the film drainage time was found to be faster than for90

large interface deformations.91

Other investigations on the bubble bouncing process were92

mainly focused on the effects of viscosity in the bouncing 93

dynamics (Sanada et al., 2005), or the effects of salt concen- 94

tration and velocity of approach (Del Castillo et al., 2011). 95

The gravity level is one of the main parameters governing 96

the dynamics of the bubble from its detachment from the 97

nozzle until its coalescence with the free surface. In spite 98

of the importance of gravity in the whole phenomenon, no 99

experimental studies have been carried out up until to analyze 100

its effects. 101

The main objective of this work is to study the effects of 102

gravity on the bubble detachment diameter, terminal velocity 103

and drag coefficient, and to find a relation between the fre- 104

quency of bouncing and the gravity level. The bubble bouncing 105

with a free surface is modelled as a damped oscillator, in which 106

the free surface acts as an elastic membrane and the bubble 107

shape is approximated to be constant. 108

In Sec. II, the experimental setup and procedure are pre- 109

sented. Results on the bubble detachment, bubble steady rise, 110

and the bouncing process are presented in Sec. III. Sec. IV 111

contains the conclusions of this work. 112

II. EXPERIMENTAL SETUP AND PROCEDURE 113

In order to study the effects of the gravity level on the 114

bouncing of a bubble impacting at a free surface, we designed 115

an experimental setup and run it at the ESA Large Diameter 116

Centrifuge (LDC) of the European Space Agency in ESTEC 117

(Noordwijk, The Netherlands). This platform allows to explore 118

hypergravity levels from 1g0 up to 20g0, where g0 = 9.81 119

m/s2 is the acceleration due to gravity at sea level. The LDC 120

allows to reach g = 20g0 only at the bottom of the capsule 121

(“gondola”). 122

The experimental setup integrated in the gondola consists 123

of a test cell, a bubble injection system, and a data acquisition 124

system (Fig 1). The test cell is a tank with a rectangular 125

prism shape of dimensions 140 × 60 × 90 mm3 (height × 126

width × length), with aluminium and methacrylate walls filled 127

with ethanol up to 100 mm. A nozzle (Hamilton RN Needle 128

with with inner diameter dc = 0.15 mm and outer diameter 129

do = 0.8 mm) is placed in the direction of gravity at the 130

center of the tank. The distance between the nozzle tip and the 131
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Figure 2. Sequence of snapshots of the bubble bouncing process at 2g0 (top row), 5g0 (middle row), and 19g0 (bottom row).

free surface is 22 mm. This distance was chosen as the result132

of the balance between reaching the bubble terminal velocity133

and obtaining a rectilinear vertical path. On the one hand, if134

the distance is smaller than 2 cm, bubbles may not reach the135

terminal velocity before the impact with the free surface. On136

the other hand, if the distance is higher than a few centimeters,137

the Coriolis force can trigger a path instability and bubbles can138

undergo a zig-zag or helical path (Suñol and González-Cinca,139

2015), breaking the axisymmetry of the collision. The tip of140

the nozzle is at 14 cm from the bottom of the gondola. Since141

g = 20g0 is only reached at the bottom of the capsule, we142

decided to change the resulting artificial gravity level from143

1g0 to 19g0 (at the nozzle tip). Air is injected into the tank144

through the nozzle using a syringe pump (KDS Legato 180).145

When a steady flow rate of approximately one bubble every146

five seconds is reached (inertial forces are negligible at this147

flow rate), the data acquisition starts. A gas outlet is placed at148

the top of the tank in order to avoid any overpressure.149

The data acquisition system consists of a high-speed video150

camera, a matrix of 140 ultrabright LED and a diffuser151

sheet. The tank has two methacrylate windows to allow the152

illumination of the inside of the cell from one window and the153

recording of the phenomena of study from the other window.154

LED was chosen as lighting candidate with the aim to avoid155

temperature along the series of experiments, which were con-156

ducted at room temperature. The high-speed camera (RedLake157

Motion Xtra HG-SE) records the detachment, rising, bouncing158

and coalescence processes at 2000 frames per second. The159

spatial resolution of the images is 0.03 mm/pixel. The high-160

speed camera is placed at a height slightly below the free161

surface and tilted an angle of 5◦. This is necessary to avoid162

blurred images of the free surface, and allows the recording163

of both real and mirrored images of the bubble when it is near164

the free surface.165

The high-speed camera and the syringe pump are controlled166

by a fanless computer. An ethernet connection between the167

ground workstation and the computer allowed to remotely168

control the experiment using VNC and LabView software.169

Once the desired artificial gravity level is achieved in the170

LDC, the experimental procedure consists in the following171

steps:172

1) Switching on the illumination and the video camera.173

2) Bubble injection from the nozzle.174

3) Video recording of bubble detachment, rise, and bounc- 175

ing. 176

4) Transfer of the recorded video to the computer. 177

The total required time for these steps is between 5 and 178

8 min. Most of this time is employed for the transfer of the 179

high-speed movie to the computer. The procedure is carried 180

out for each gravity level. 181

III. RESULTS AND DISCUSSION 182

In our experiments, a millimetric gas bubble is injected from 183

the nozzle and rises until it collides with the free surface. 184

The whole process can be divided into four stages: bubble 185

detachment from the nozzle, bubble rise, bubble bouncing 186

with the free surface, and bubble coalescence. We focus our 187

study on the three first stages. Fig. 2 shows a sequence of 188

snapshots of the bubble bouncing and coalescence process. 189

The top row corresponds to a bubble bouncing at g = 2g0, 190

and consecutive frames are separated by a time interval of 191

∆t = 2 ms. The middle row shows a bubble bouncing at 192

g = 5g0, with consecutive frames separated by ∆t = 1 ms. In 193

the bottom row, the gravity level is g = 19g0 and consecutive 194

frames are separated by ∆t = 0.5 ms. In these three cases, the 195

bubble bounces twice before coalescing with the free surface. 196

The number of bounces of each bubble could be pre- 197

dicted if the energy dissipation at each collision was known. 198

Coalescence involves the existence of a drainage time Td 199

of the liquid film formed between the bubble and the free 200

surface. For Tc < Td (where Tc is the contact time between 201

the bubble and the free surface), the bubble will bounce, 202

while for Tc > Td, the bubble will coalesce with the free 203

surface. Tc is usually defined as Tc = d/va, where va is the 204

approach velocity of the bubble to the free surface, and d is 205

the bubble diameter. The bouncing of a bubble with a free 206

surface is a dissipative process. As a consequence, the energy 207

associated with the bubble motion diminishes and the approach 208

velocity va decreases at every bounce until d/va > Td, 209

which results in bubble coalescence with the free surface. 210

The shape and size of the bubble also play a determining role 211

on the coalescence process (Suñol and González-Cinca, 2010, 212

Zawala and Malysa, 2011, Pigeonneau and Sellier, 2011). The 213

drainage time and the approach velocity are closely related to 214

the size and shape of the bubble. The drainage time increases 215
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Figure 3. Bubble center position as a function of time.

for larger bubbles, and decreases if the difference between216

the curvatures of the bubble and the free surface is high. Our217

study is focussed on the bubble detachment and rise, and on218

the dynamics of the bouncing process prior to coalescence,219

rather than on the coalescence itself.220

Pictures in Fig. 2 show a decrease in the bubble diameter as221

the gravity level is increased. This is due to the fact that the222

buoyancy force is higher at higher gravity levels, while the223

surface tension force is constant. The bubble detaches from224

the nozzle when buoyancy equals the surface tension force,225

hence the bubble is smaller at higher gravity levels.226

Fig. 3 shows the position of the bubble center as a function227

of time for g = 5g0. The time needed for the bubble to reach a228

steady rise is approximately 10 ms after the detachment. From229

this time the bubble rises with a constant terminal velocity230

until it collides with the free surface. After the collision, the231

bubble bounces twice before coalescence occurs.232

A. Bubble detachment233

While the syringe is pumping air, a bubble grows attached234

to the nozzle until it detaches when the forces directed down-235

wards equal the forces directed upwards. In our experiments,236

the drag and inertial terms were negligible since air was237

injected at a very low flow rate (approximately 1 bubble every238

5 seconds). A competition takes place between the surface239

tension force, Fσ , which keeps the bubble attached to the240

nozzle, and the buoyancy force Fb, which pushes the bubble241

upwards. The buoyancy force is proportional to the bubble242

volume, which increases linearly in time, while the surface243

tension force is constant. Bubble detaches when Fb = Fσ:244

∆ρg
πd3

6
= πσdc, (1)

where ∆ρ = ρ−ρa = 789−1.2 = 787.8 kg/m3 is the density245

difference between the liquid and the air, g is the gravity246

level, d is the bubble equivalent diameter, σ = 0.0224 N/m247

is the surface tension, and dc = 0.15 mm is the nozzle inner248

diameter. The bubble diameter as a function of the gravity249

level is given by250

d = 2

(
dc
4

3σ

∆ρg

) 1
3

. (2)

Eq. (2)

Cℓ =
√
σ/(ρg)

g/g0

d
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m
)
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Figure 4. Bubble equivalent diameter as a function of the normalized gravity
level. Dots: experimental data. Solid line: Eq. 2. Dashed line: capillary length
C`.

It should be noted that Eq. 2 gives accurate results only if the 251

needle used for bubble formation is completely wetted by a 252

liquid and the bubble is formed at the inner diameter dc. 253

In order to obtain experimentally the bubble equivalent di- 254

ameter, we approximated the bubble shape as an axisymmetric 255

ellipsoid with vertical diameter dv and horizontal diameter dh, 256

where dv and dh can be measured from the images recorded 257

in the steady rise. Since the bubble equivalent diameter is, by 258

definition, the diameter of a spherical bubble containing the 259

same volume as the ellipsoid (πd3/6 = πd2hdv/6), it can be 260

expressed as 261

d =
(
d2hdv

) 1
3 . (3)

Fig. 4 shows the bubble diameter as a function of the 262

normalized gravity level. The capillary length C` =
√
σ/(ρg) 263

is also plotted for comparison. A very good agreement between 264

the experimental data and the prediction of Eq. 2 is obtained. 265

This confirms that neglecting drag and inertial forces is a 266

reasonable approximation for the current configuration. 267

B. Bubble rise 268

Once the bubble is detached from the nozzle, it starts to 269

accelerate vertically until the drag force Fd equals the buoy- 270

ancy force Fb. At this moment a steady state is attained and 271

the bubble properties remain constant. The main parameters 272

governing the bouncing/coalescence processes with the free 273

surface are the bubble approach velocity (terminal velocity) 274

and the shape of the bubble and the interface. 275

1) Terminal velocity: A relation between the terminal ve- 276

locity and the gravity level can be obtained from the analysis 277

of forces in the bubble rise. During the steady rise, the drag 278

force counteracts buoyancy, Fd = Fb: 279

1

2
ρv2TCd

πd2

4
= ∆ρg

πd3

6
, (4)

where vT is the terminal velocity and Cd is the drag coeffi- 280

cient. Solving for the terminal velocity, we obtain: 281

v2T =
4∆ρgd

3ρCd
. (5)
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Multiplying both sides by (ρd/µ)
2, µ being the liquid viscos-282

ity, Eq. 5 can be written in terms of dimensionless numbers283

as284

Re2 =
4

3Cd

√
Eo3

M
, (6)

where Re = ρdvT /µ is the Reynolds number, Eo = ∆ρgd2/σ285

is the Eötvös number, and M = ∆ρgµ4/(ρ2σ3) is the Morton286

number.287

In order to obtain Cd as a function of the gravity level,288

we can use the approach by Mendelson (1967) and Tomiyama289

et al. (1998), in which the existence of the bubble is considered290

as a disturbance on the gas-liquid interface. Neglecting the291

viscosity of the liquid (160 ≤ Re ≤ 237 in our experiments),292

the disturbance propagates through the liquid in the form of a293

capillary-gravity wave with a phase velocity (Lamb, 1932)294

v2p =
2πσ

ρλ
+

∆ρgλ

2πρ
, (7)

where λ is the wavelength. Defining θ as the angle between295

the vertical direction and any point in the bubble interface, the296

velocity component normal to the interface vN is a sinusoidal297

function of θ, with period 2π. As a result, one can regard the298

bubble as a source of a wave with wavelength λ = πd. This is299

valid even for non-spherical bubbles. Postulating that the phase300

velocity is equal to the terminal velocity in inviscid conditions301

(see Tomiyama et al. (1998) for a physical argumentation of302

this postulate), the wavelength relation introduced in Eq. 7303

yields to304

v2T =
2σ

ρd
+

∆ρgd

2ρ
. (8)

The combination of Eq. 2 and Eq. 8, gives rise to an explicit305

relation between the terminal velocity and the gravity level.306

Lehrer Lehrer (1976) argued that during rise, the potential307

energy of the bubble is converted into kinetic energy followed308

by its dissipation in the wake, which results in a slightly309

different expression for the terminal velocity in the capillary-310

gravity approach (Lehrer, 1976, Kulkarni and Joshi, 2005):311

v2T =
3σ

ρd
+

∆ρgd

2ρ
. (9)

Eq. 8 can be written in terms of dimensionless numbers as312

Re2 =
1

2

√
Eo
M

(Eo + 4) . (10)

Comparing Eq. 10 with Eq. 6 yields to313

Cd =
8

3

Eo
Eo + 4

. (11)

Similarly, Eq. 9 can be rewritten in terms of dimensionless314

numbers as315

Re2 =
1

2

√
Eo
M

(Eo + 6) , (12)

which, combining with Eq. 6, gives rise to316

Cd =
8

3

Eo
Eo + 6

. (13)

Eq. (9)

Eq. (8)

g/g0

v T
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m
/
s)
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Figure 5. Bubble terminal velocity as a function of normalized the gravity
level. Dots: experimental data. Dashed line: Eq. 8. Solid line: Eq. 9.

Eqs. 11 and 13 contain the required relation between the 317

drag coefficient and the gravity level. 318

In order to experimentally obtain the bubble terminal veloc- 319

ity, we have measured the time interval t needed for a bubble 320

to rise a given number of pixels z, in the steady rise region. 321

Fig. 5 shows the bubble terminal velocity as a function of 322

the normalized gravity level. The terminal velocity is found to 323

increase as the gravity level is increased. This is the expected 324

behavior for a fixed bubble size, but we must keep in mind 325

that in our experiments the size of the bubble decreases as the 326

gravity level is increased. As a consequence, the behavior of 327

the terminal velocity as a function of gravity for bubble size 328

determined by natural detachment is a priori unknown. 329

The experimental measurements are slightly above the the- 330

oretical prediction of Eq. 8. Lehrer’s (Lehrer, 1976) modifica- 331

tion of Eq. 8 by energy balance arguments, resulting in Eq. 9, 332

becomes a better prediction of the obtained data. Experimental 333

results show a good agreement with Eq. 9 for g > 10g0. 334

However, for lower gravity values there is a deviation between 335

the experimental data and the theoretical prediction of Eq. 9. 336

This could be due to the fact that the conversion from potential 337

to kinetic energy in Lehrer’s argumentation is somehow more 338

efficient at higher bubble terminal velocities. Therefore, the 339

prediction for g < 10g0 could be a combination between 340

Eqs. 8 and 9, which has not been developed theoretically up 341

to date. 342

Solving for the drag coefficient in Eq. 5, one can obtain its 343

experimental values by measuring the bubble diameter and the 344

bubble terminal velocity. 345

Fig. 6 shows the drag coefficient as a function of the Eötvös 346

number. It can be noted that Eq. 13 is a better fit to the 347

experimental data than Eq. 11. This behavior can be expected 348

from Fig. 5, since Eq. 9 (and correspondingly, Eq. 13), shows 349

a better prediction for the terminal velocity. 350

2) Bubble shape: The bubble shape in the steady rise region 351

is determined from the competition between inertial forces 352

and surface tension forces. Hence, the Weber number (defined 353

as We = ρdv2T /σ) becomes an appropriate dimensionless 354

number to characterize the bubble shape. The bubble aspect 355

ratio ε = dh/dv is plotted as a function of gravity in Fig. 7. 356

The effects of gravity on the bubble aspect ratio do not reflect 357
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Figure 7. Bubble aspect ratio as a function of the normalized gravity level.

any clear tendency. One must take into account that the points358

plotted in Fig. 7 correspond to bubbles of decreasing size as359

the normalized gravity level increases. In case the bubbles had360

the same size in all gravity levels, we would have expected361

the aspect ratio to increase with g/g0 (flatter bubbles at larger362

gravity levels).363

By employing a potential flow solution over an ellipsoid,364

an implicit relation between the aspect ratio and the Weber365

number for clean bubbles (slip condition at the interface) can366

be obtained (Moore, 1965):367

We = 4ε−4/3
(
ε3 + ε− 2

) (√ε2 − 1− ε2 sec−1 ε
)2

(ε2 − 1)
3 , (14)

which, for moderate deformations (ε < 2), can be approxi-368

mated as (Loth, 2008)369

ε ≈ 1 +
9

64
We− 0.0089We2 + 0.0287We3. (15)

The following expression was obtained for contaminated370

bubbles (no-slip condition) Loth (2008):371

ε = [1− 0.75 tanh (0.11We)]
−1
. (16)

Dots in Fig. 8 correspond to the measured aspect ratio372

as a function of the Weber number. The experimental data373

show a poor agreemnt with the prediction of Eq. 15 (dashed374

Eq. (16)
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Figure 8. Bubble aspect ratio as a function of the Weber number. Dots:
experimental data. Dashed line: Eq. 15. Solid line: Eq. 16.
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to a fit by Eq. 20. Circled-crossed points are used for the fit, the rest are
excluded.

line) and Eq. 16 (solid line). This disagreement could be 375

explained in a similar way as in Fig. 7. Eqs. 15 and 16 376

are only applicable to bubbles of the same size and different 377

aspect ratio. Furthermore, the discrepancies could be caused 378

by the unknown hydrodynamic boundary conditions at the 379

bubble surface. As reported recently, the bubble surface in 380

the considered system can be partially or even completely slip 381

(Basarová et al., 2018). 382

From the examination of the above results, we are not able 383

to make any clear statement about the effects of the gravity 384

level on the bubble shape. 385

C. Bubble bouncing 386

Fig. 9 shows the position of the bubble center as a function 387

of time for g = 5g0 during the bouncing process. The time 388

interval between the first impact and the final coalescence is 389

approximately 15 ms. 390

When a bubble bounces upon impact with a free surface, 391

both the bubble and the free surface become deformed. Sato 392

et al. (2011) modelled this process by means of a mass-spring 393

approximation consisting in two springs connected in series. 394

One spring with stiffness K1 accounts for the bubble defor- 395

mation, and the other spring with stiffness K2 corresponds 396

to the free surface deformation. Two limiting cases can be 397

considered. 398
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On the one hand, the limit K1 � K2 corresponds to a399

deformable bubble colliding with a solid wall. In this case,400

the frequency of the bubble bouncing can be approximated by401

the frequency of the second mode of an oscillating bubble in402

an unbounded fluid (Lamb, 1932):403

ω = 4

√
6σ

ρd3
. (17)

This frequency of bubble bouncing coincides with the404

frequency of a drop bouncing on a wall in a liquid (Legendre405

et al., 2005).406

On the other hand, the limit K1 � K2 corresponds to a407

bubble with an arbitrary shape colliding with a deformable408

free surface, which acts as an elastic membrane.409

The model used by Sato et al. (2011) does not contain any410

dissipative terms. However, the process of bubble bouncing411

with a solid wall or a free surface is a highly dissipative412

process (Tsao and Koch, 1997). Therefore, the process of413

bubble bouncing with a free surface can be approximated as414

a collision between a bubble with an arbitrary shape and an415

elastic membrane (which corresponds to the second limiting416

case), with a dissipative term. Our approximation is then417

related to a forced damped oscillator model:418

m
d2z

dt2
+ c

dz

dt
+Kz = Fb, (18)

where m is the added mass of the bubble, c is a damping419

coefficient (proportional to the fluid viscosity), K is the stiff-420

ness of the free surface (proportional to the surface tension),421

and Fb is the buoyancy force. Since the added mass and the422

buoyancy force are proportional to the bubble volume, we can423

rewrite Eq. 18 in the form424

z̈ + 2ζω0ż + ω2
0z = χ, (19)

where χ is a constant acceleration due to buoyancy, ζ is425

a dissipative term, and ω0 is the natural frequency of the426

harmonic oscillator. The solution of Eq. 19 in the underdamped427

case is428

z(t) = z0 + h0 exp(−ω0ζt) sin (ωt+ ϕ) , (20)

where ω = ω0

√
1− ζ2 is the frequency of the bubble429

bouncing and h0 exp(−ω0ζt) is the amplitude. Eq. 20 will430

be used to obtain the experimental values of ω and hn (where431

hn is the amplitude of the nth bounce), with z0, h0, ω0ζ, ω432

and ϕ as fitting parameters.433

Eq. 20 will be used to obtain the experimental values of434

bouncing frequency (ω) and amplitude hn (where hn is the435

amplitude of the nth bounce), with z0, h0, ω0ζ, ω and ϕ as436

fitting parameters.437

1) Frequency of bouncing: In order to obtain a theoretical438

prediction for the frequency of bouncing, we assume that the439

free surface acts as an elastic membrane driven by capillary440

and gravity forces. Taking into account the effects of viscosity,441

the general dispersion relation for a capillary-gravity driven442

wave can be written as a complex equation (Lamb, 1932,443

Behroozi et al., 2011):444

(
iω +

2µ

ρ
k2
)2

+ gk +
σ

ρ
k3 =

4µ2

ρ2
k3
√
k2 + i

ρ

µ
ω. (21)

where k is the wavenumber. In the capillary wave regime 445

(ρω � µk2), Eq. 21 can be approximated as Behroozi et al. 446

(2011) 447

ω2 = gk +

(
σ

ρ
+

4µ2

ρ2
k −

√
8µ3

ρ3
ω

)
k3, (22)

which is an implicit relation between the frequency and the 448

wavenumber k = 2π/λ. Using the wavelength relation λ = πd 449

(Section III-B) in Eq. 22, an implicit relation between the 450

frequency and the bubble diameter can be written as 451

ω2 =
2g

d
+

8σ

ρd3
+

64µ2

ρ2d3
− 16

d3

√
2µ3

ρ3
ω. (23)

Introducing Eq. 2 into Eq. 23, we obtain an implicit relation 452

between the bouncing frequency and the gravity level. The 453

numerical solution of this relation is plotted in Fig. 10. 454

An explicit relation between ω and g can be obtained in the 455

inviscid case. Neglecting the viscosity, the dispersion relation 456

in Eq. 22 can be written as 457

ω2 = gk +
σ

ρ
k3. (24)

Substituting the wavelength relation into Eq. 24 yields to 458

ω =

√
2g

d
+

8σ

ρd3
. (25)

Eq. 25 together with Eq. 2 results in an explicit relation 459

between the frequency of bouncing and the gravity level. 460

Note that from Eq. 24, the definition of the phase velocity 461

vp = ω/k, and the relation k = 2π/λ = 2/d, we recover the 462

result for the terminal velocity obtained by Mendelson (1967): 463

v2T =
gd

2
+

2σ

ρd
, (26)

which is very similar to Eq. 8, except for the factor ∆ρ/ρ 464

multiplying the gravitational term. 465

If we consider the terminal velocity obtained by Lehrer 466

Lehrer (1976) (Eq. 9), the frequency of bouncing becomes 467

ω =

√
2∆ρg

ρd
+

12σ

ρd3
. (27)

Extending this result to the viscous case, we obtain the implicit 468

dispersion relation 469

ω2 = gk +

(
3σ

2ρ
+

4µ2

ρ2
k −

√
8µ3

ρ3
ω

)
k3, (28)

which has been solved numerically, together with the relation 470

k = 2π/λ = 2/d and Eq. 2. The result is also plotted in 471

Fig. 10. 472

The experiments analyzed here are in a region of low 473

Reynolds number (160 ≤ Re ≤ 237), hence, in the inviscid 474

regime. This is clearly manifested in Fig. 10, in which the 475

plot of Eq. 23 and Eq. 25 obtained from our data overlap, as 476

happens with the plot of Eq. 27 and Eq. 28. 477

Dots in Fig. 10 show the experimental frequency of bounc- 478

ing as a function of gravity level. The following procedure has 479

been followed to obatin the data: (i) For g ≤ 7g0, experimental 480
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Eqs. (28) and (27)

Eqs. (23) and (25)

g/g0

ω
(s

−
1
)

20151050
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1600
1400
1200
1000
800
600
400
200
0

Figure 10. Frequency of bouncing as a function of the gravity level. Dots:
experimental data. Dashed line: Eq. 23 and Eq. 25. Solid line: Eq. 28 and
Eq. 27.

data have been fitted to Eq. 20, with z0, h0, ω0ζ, ω and ϕ as481

fitting parameters. The data used for the fit are the circled-482

crossed points in Fig. 9. The rest of the points have been483

excluded to the fit since they are in the steady rise region484

or in the coalescence region. (ii) For g > 8g0, there are not485

enough data points to make a reliable fit. Therefore, ω has486

been obtained from the time t that a bubble needs to complete487

a period, ω = 2π/t. The experimental frequency of buoyancy488

fits better in Eqs. 27 and 28 than in Eqs. 23 and 25. This489

confirms, as was obtained in Fig. 5, that the terminal velocity490

in Eq. 9 predicts better the experimental behavior than the491

prediction of Eq. 8, for g > 10g0.492

In summary, viscosity does not affect the frequency of493

bouncing. Moreover, the bubble trajectory can be approxi-494

mated by an underdamped oscillator, although damping is495

not caused by viscosity. Damping could be caused by energy496

transfer from the bubble to the fluid in form of vortex gen-497

eration and surface waves. Particle Image Velocimetry (PIV)498

measurements would be of interest to support this hypothesis.499

2) Amplitude of bouncing: The amplitude damping in our500

model is characterized by the coefficient ω0ζ (Eq. 20). Experi-501

mental data are fitted to the model only for g ≤ 7g0 due to the502

lack of sufficient data for g > 8g0. The damping coefficient is503

one of the fitting parameters. No conclusive effect of gravity504

on the damping coefficient has been found for the considered505

range of gravity level. Presumably, the damping coefficient506

only depends on the fluid properties (unless some kind of507

energy transfer to the fluid occurs), hence it is independent508

of the gravity level.509

After the first bounce, the bubble velocity becomes negative510

until the bubble center reaches its lowest position before511

rising again. In this second rise phase, the bubble reaches an512

approach velocity lower than the terminal velocity, va < vT .513

The amplitude of the first bounce, h1, is given by the position514

of the bubble center at its lowest point after the first bounce.515

Suñol and González-Cinca (2010), measured in normal gravity516

conditions the amplitude of the first bounce as a function of the517

bubble equivalent diameter in ethanol, and found two distinct518

behavioss: (i) For d < 0.47 mm, the bubble coalesces directly519

with no bouncing. (ii) For d > 0.47 mm, a linear relation520

Eq. (29)

g/g0

h
1
(m

m
)

20151050

1.2

1

0.8

0.6

0.4

0.2

0

Figure 11. Amplitude of the first bounce as a function of the gravity level.
Dots: experimental data. Solid line: Eq. 29.

between the amplitude of the first bounce and the bubble 521

diameter was derived: 522

h1 = (0.72± 0.03)d− (0.08± 0.04). (29)

Extending this result to hypergravity conditions, we can 523

introduce Eq. 2 in the above relation, to predict the behavior 524

of h1 as a function of the gravity level. Fig.11 shows the 525

amplitude of the first bounce as a function of the gravity level. 526

It is important to note that for Figs 10 and 11, each data point 527

refers to a different bubble size, thus graphs do not actually 528

represent the effect of gravity on the frequency and amplitude 529

of bouncing for a fixed bubble size. The measured values of h1 530

are slightly lower than those given by the prediction, specially 531

for high gravity levels. An increase of the energy dissipation 532

at high gravity levels could be the cause of this discrepancy. 533

However, there are no available models to quantify such 534

dissipation. 535

IV. CONCLUSIONS AND FUTURE CONSIDERATIONS 536

We have studied the effects of the gravity level on the bubble 537

detachment from a nozzle, steady rise, and bouncing upon 538

impact with a free surface. 539

The bubble detachment size has been found to decrease as 540

the gravity level increases, in very good agreement with the 541

prediction based on the competition between buoyancy and 542

surface tension forces. 543

The terminal velocity in the bubble rise increases with 544

gravity, although the bubble size is smaller at higher gravity 545

levels. A good agreement between the experimental results and 546

the prediction by wave analogy has been obtained. 547

No clear effects of the gravity level on the bubble shape 548

have been obtained. 549

Concerning the dynamics of bubble bouncing, we have 550

modelled the system as a damped oscillator with the free 551

surface acting as an elastic membrane. The experimental 552

determination of the frequency of bouncing as a function of 553

the gravity level showed a very good agreement with the 554

theoretical prediction. The amplitude of the first bounce has 555

been found to decrease as the gravity level increases. However, 556

the bubble size varies for each gravity level, hence the effects 557
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of gravity on the frequency and amplitude of bouncing for a558

fixed bubble size remains unknown. Finally, we have observed559

that the motion of the bubble can be approximated by that560

of an underdamped oscillator even if viscosity is negligible.561

This reflects that the viscosity is not the main responsible for562

damping.563

It would be of interest to consider bubbles of different size564

at a fixed gravity level in future experiments. This would allow565

to test the existing theoretical models, with a changing gravity566

level, in terms of dimensionless numbers. The study of liquids567

with different properties can also be of interest. In addition,568

a study of the restitution coefficient and the drainage time,569

would help to predict the number of bounces. The restitution570

coefficient gives an idea of the amount of kinetic energy lost571

in each bounce, so we could be able to predict the approach572

velocity, and hence the contact time, on the next bounce.573
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Suñol, F. and González-Cinca, R. (2015), ‘Effects of gravity681

level on bubble formation and rise in low-viscosity liquids’,682

Physical Review E 91, 053009.683

Tomiyama, A., Kataoka, I., Zun, I. and Sakaguchi, T. (1998),684

‘Drag coefficients of single bubbles under normal and micro685

gravity conditions’, JSME Int. Journal Series B 41(2), 472–686

479.687

Tsao, H.-K. and Koch, D. L. (1997), ‘Observations of high688

reynolds number bubbles interacting with a rigid wall’,689

Physics of Fluids 9(1), 44–56.690

Zawala, J., Dorbolo, S., Terwagne, D., Vandewalle, N. and691

Malysa, K. (2011), ‘Bouncing bubble on a liquid/gas inter-692

face resting or vibrating’, Soft Matter 7, 6719.693

Zawala, J., Dorbolo, S., Vandewalle, N. and Malysa, K. (2013),694

‘Bubble bouncing at a clean water surface’, Phys. Chem.695

Chem. Phys. 15, 17324–17332.696

Zawala, J. and Malysa, K. (2011), ‘Influence of the impact697

velocity and size of the film formed on bubble coalescence698

time at water surface’, Langmuir 27(6), 2250–2257.699

Zenit, R. and Legendre, D. (2009), ‘The coefficient of restitu-700

tion for air bubbles colliding against solid walls in viscous701

liquids’, Physics of Fluids 21(8), 083306.702


	Introduction
	Experimental setup and procedure
	Results and discussion
	Bubble detachment
	Bubble rise
	Terminal velocity
	Bubble shape

	Bubble bouncing
	Frequency of bouncing
	Amplitude of bouncing


	Conclusions and future considerations

