# Forcing Arguments in Infinite Ramsey Theory 

Luz María García Ávila

Aquesta tesi doctoral està subjecta a la llicència Reconeixement - SenseObraDerivada 3.0. Espanya de Creative Commons.

Esta tesis doctoral está sujeta a la licencia Reconocimiento - SinObraDerivada 3.0. España de Creative Commons.

This doctoral thesis is licensed under the Creative Commons Attribution-NoDerivs 3.0. Spain License.

# University of Barcelona 

## Faculty of Philosophy

## Department of Logic, History and Philosophy of Science

## Forcing Arguments in Infinite Ramsey Theory

by Luz María García Ávila

Submitted in accordance with the requirements for the degree of Doctor of Philosophy

Con mucho cariño para aquellos
cuyo amor incondicional me acompaña a pesar de la distancia.

## Acknowledgements

I would like to thank most of all my supervisor, Joan Bagaria i Pigrau, whose support and guidance have been indispensable for the completion of this dissertation. I am deeply indebted to him for the success of my entire academic life.

I would like to thank, in a special way, Ignasi Jané, who has been involved in my work and academic development. I cannot imagine what this thesis would have looked like without his suggestions.

I would like to thank Jörg Brendle, whose contribution to the last part of the thesis is enormous. During the autumn of 2012, at Fields Institute, Jörg was so generous to discuss about different topics related to my research. Doing maths with him has been a productive and enjoyable experience.

I would like to thank all the members of my doctorate committee: Pierre Matet, Adrian Mathias, and Stevo Todorčević for taking the time and effort to critically read this manuscript.

There are many other set theorists whom I met and who have influenced or in some way contributed to my PhD thesis: David Asperó, Neus Castells, David Chodounsky, Carlos Di Prisco, Natasha Dobrinen, Michael Hrušák, Peter Krautzberger, Jordi López, Miguel Ángel Mota, and Marcin Sabok.

I want to thank all my professors of the PhD courses, in chronological order: Ignasi Jané, Enrique Casanovas, Ramon Jansana and Rafael Farré. I should give a special mention to Pablo Río, the secretary of the Department of Logic, History an Philosophy of Science of the University of Barcelona for all the help during my PhD studies and Yolanda Suances Gago, member of administrative and service staff of faculty for her kind help. I also want to thank all my professors from Mexico, specially Celestino Soriano, Manuel Ibarra, and Agustín Contreras for their contribution to my mathematical formation.

I would also like to mention all persons who were with me and who allowed me to be very happy during these almost six years in Barcelona (by order to appearance):

- My friends of the University of Barcelona: Daniel Palacín, Umberto Riveccio, Miguel Ángel Mota, Neus Castells, Oscar Cabaco, Mirja Pérez, Gonçalo Santos, José Martínez, Chiara Panizza, Sergi Oms, Marta Jorba, María Esteban, David Virgili, Viviane Llorens, Vera Tripodi, Francisco Murcia, Blanca Llorca, and Salvador Mancilla.
-My flatmates: Valeria Mostajo, Xiomara Tenorio, and Vanesa Garduño.
-My other friends who have always been supportive: Fabián Valdivia, Belinka González, Lizeth Pérez, Juliana Cuzzi, Annamaria Leone, Caroline Bavay, Davina Ríos, Tania Ruíz, Fabiana Akemi, Mery Tenorio, Flor Biagini, Kuky Biagini, Elie Díez, and Raxá de Castilla.

I want to thank my closest family for their unconditional support and for being my inspiration; my mother Aida Ávila García, my father Mauricio García Tejeda, and my brother Mauricio García Ávila.

I need to thank the Ávila-Juárez and Castillo-Martínez families. Finally, I thank my cousin Lucila Ávila for helping me to understand better the mathematics in high school.

## Funding

This thesis has been supported by the taxes of mexicans through Consejo Nacional de Ciencia y Tecnología (CONACyT) and Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) FI-DGR 2010, Generalitat de Catalunya. I also had a supplementary aid from Secretaría de Educación Pública (SEP), Mexico. This work has been partially funded by the following research grants: MTM2011-25229 (Spanish Government) and 2009-SGR-187 (Catalan Government).

Luz María García Ávila<br>Barcelona, Catalonia.<br>July, 2013.

## Contents

Introduction ..... 1
1 Preliminaries ..... 5
1.1 Set-theoretic notation ..... 5
1.1.1 Filters ..... 6
1.1.2 Ramsey filters ..... 7
1.2 Forcing ..... 8
1.2.1 Mathias forcing ..... 12
1.2.2 The forcing $\mathbb{P}^{*}$ ..... 14
1.2.3 Matet forcing ..... 15
1.3 Proper forcing ..... 20
2 Ramsey's Theorem ..... 23
3 Hindman's Theorem ..... 27
4 The $\mathbb{P}_{\text {FIN }}$ forcing and its properties ..... 35
$4.1 \mathbb{P}_{\text {FIN }}$ is not equivalent to Matet forcing ..... 38
$4.2 \mathbb{P}_{\text {FIN }}$ decomposed as a two-step iteration ..... 40
$4.3 \mathbb{P}_{\text {FIN }}$ satisfies Axiom A ..... 43
4.4 $\mathbb{P}_{\text {FIN }}$ satisfies the Pure Decision Property ..... 47
$4.5 \mathbb{P}_{\text {FIN }}$ does not add Cohen reals ..... 49
$5 \mathbb{P}_{\text {FIN }}$ and Mathias forcing ..... 51
$5.1 \mathbb{P}_{\text {FIN }}$ adds a Matet real ..... 51
$5.2 \mathbb{P}_{F I N}$ is not equivalent to Mathias forcing ..... 52
5.3 A "product" of two copies of Mathias forcing. ..... 67
6 Conclusion ..... 75

## Introduction

This is a contribution to combinatorial set theory, specifically to infinite Ramsey Theory, which deals with partitions of infinite sets. The basic pigeon hole principle states that for every partition of the set of all natural numbers in finitely-many classes there is an infinite set of natural numbers that is included in some one class. Ramsey's Theorem, which can be seen as a generalization of this simple result, is about partitions of the set $[\mathbb{N}]^{k}$ of all $k$-element sets of natural numbers. It states that for every $k \geq 1$ and every partition of $[\mathbb{N}]^{k}$ into finitely-many classes, there is an infinite subset $M$ of $\mathbb{N}$ such that all $k$-element subsets of $M$ belong to some same class. Such a set is said to be homogeneous for the partition. In Ramsey's own formulation (Ramsey, [19], p.264), the theorem reads as follows.

Theorem 0.1 (Ramsey). Let $\Gamma$ be an infinite class, and $\mu$ and $r$ positive numbers; and let all those sub-classes of $\Gamma$ which have exactly $r$ numbers, or, as we may say, let all $r$-combinations of the members of $\Gamma$ be divided in any manner into $\mu$ mutually exclusive classes $C_{i}(i=1,2, \ldots, \mu)$, so that every $r$-combination is a member of one and only one $C_{i}$; then assuming the axiom of selections, $\Gamma$ must contain an infinite sub-class $\triangle$ such that all the $r$-combinations of the members of $\triangle$ belong to the same $C_{i}$.

In [13], Neil Hindman proved a Ramsey-like result that was conjectured by Graham and Rotschild in [9]. Hindman's Theorem asserts that if the set of all natural numbers is divided into two classes, one of the classes contains an infinite set such that all finite sums of distinct members of the set remain in the same class. Hindman's original proof was greatly simplified, though
the same basic ideas were used, by James Baumgartner in [2].
An important reference in the area of Ramsey theory is Stevo Todorčević's book, Introduction to Ramsey Spaces [24], presenting a general procedure to transfer any Ramsey theoretic principle to higher, and especially infinite, dimension going beyond Ellentuck's topological Ramsey theory.

We will give proofs of Ramsey's and Hindman's theorems which rely on forcing arguments. After this, we will be concerned with the particular partial orders used in each case, with the aim of studying their basic properties and their relation to other similar forcing notions. The partial order used to prove Ramsey's Theorem is, from the point of view of forcing, equivalent to Mathias forcing. The analysis of the partial order arising in the proof of Hindman's Theorem, which we denote by $\mathbb{P}_{\text {FIN }}$, will be the object of the $4^{\text {th }}$ chapter of the thesis.

A summary of our work follows.
In the first chapter we give some basic definitions and state several known theorems that we will need. We explain the set-theoretic notation used and we describe some forcing notions that will be useful in the sequel. Our notation is generally standard, and when it is not it will be sufficiently explained. Thus, although most of the theorems recorded in this first, preliminary chapter, will be stated without proof, it will be duly indicated where a proof can be found.

Chapter 2 is devoted to a proof of Ramsey's Theorem in which forcing is used to produce a homogeneous set for the relevant partition. The partial order involved is equivalent to Mathias forcing.

In Chapter 3 we modify Baumgartner's proof of Hindman's Theorem to define a partial order, denoted by $\mathbb{P}_{\mathscr{C}, \mathscr{D}}$, from which we get by a forcing argument a suitable homogeneous set. Here $\mathscr{C}$ is an infinite set of finite subsets of $\mathbb{N}$, and $\mathscr{D}^{\prime}$ is an infinite block sequences such that $\mathscr{C}$ is large for $\mathscr{D}^{\prime} . \mathbb{P}_{\mathscr{C}, \mathscr{D}^{\prime}}$ adds an infinite block sequence of finite subsets of natural numbers with the property that all finite unions of its elements belong to $\mathscr{C}$. Our proof follows closely Baumgartner's, and the fact that $\mathbb{P}_{\mathscr{C}, \mathscr{T}^{\prime}}$ has the required
properties is secured by the propositions proved in [2] (see also [10]). The partial order $\mathbb{P}_{\mathscr{C}, \mathscr{D}^{\prime}}$ is similar both to the one due to Pierre Matet in $[17]$ and to Mathias forcing. This prompts the question whether it is equivalent to one of them or to none, which can only be answered by studying $\mathbb{P}_{\mathscr{C}, \mathscr{V}^{\prime}}$, which we do in chapter 4.

In chapter 4 we first show that, for some dense set of conditions $(A, \mathscr{D})$ of $\mathbb{P}_{\mathscr{C}, \mathscr{D}}$, the partial order $\mathbb{P}_{\mathscr{C}, \mathscr{D}}$ bellow $(A, \mathscr{D})$ is equivalent to a more manageable partial order, which we denote by $\mathbb{P}_{\text {FIN }}$, thus studying $\mathbb{P}_{\text {FIN }}$ allow us to know $\mathbb{P}_{\mathscr{C}, \mathscr{D}}$, where $\mathscr{C}$ is large for $\mathscr{D}$. For this reason, from now on, we will restrict our attention to $\mathbb{P}_{\text {FIN }}$. From a $\mathbb{P}_{\text {FIN-generic filter an infinite block sequence }}$ can be defined, from which, in turn, the generic filter can be reconstructed, roughly as a Mathias generic filter can be reconstructed from a Mathias real. In section 4.1 we prove that $\mathbb{P}_{\text {FIN }}$ is not equivalent to Matet forcing. This we do by showing that $\mathbb{P}_{\text {FIN }}$ adds a dominating real, thus also a splitting real (see [11]). But Andreas Blass and Claude Laflamme proved (independently and unpublished) that Matet forcing preserves $p$-point ultrafilters. Their result can be recovered from Theorem 4 in Tod Eisworth's article [8], from which follows that Matet forcing does not add splitting reals.

Still in section 4.1 we prove that $\mathbb{P}_{\text {FIN }}$ adds a Mathias real by using Mathias characterization of a Mathias real in [18] according to which $x \subseteq \omega$ is a Mathias real over $V$ iff $x$ diagonalizes every maximal almost disjoint family in $V$. In fact, we prove that if $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$ is the generic block sequence of finite sets of natural numbers added by forcing with $\mathbb{P}_{\text {FIN }}$, then both $\left\{\min d_{i}: i \in \omega\right\}$ and $\left\{\max d_{i}: i \in \omega\right\}$ are Mathias reals. In section 4.2 we prove that $\mathbb{P}_{\text {FIN }}$ is equivalent to a two-step iteration of a $\sigma$-closed and a $\sigma$ centered forcing notions. In section 4.3 we prove that $\mathbb{P}_{\text {FIN }}$ satisfies Axiom A and in section 4.4 that, as Mathias forcing, it has the pure decision property. In section 4.5 we prove that $\mathbb{P}_{\text {FIN }}$ does not add Cohen reals. So far, all the properties we have found of $\mathbb{P}_{\text {FIN }}$ are also shared by Mathias forcing.

The question remains, then, whether $\mathbb{P}_{\text {FIN }}$ is equivalent to Mathias forcing. This we solve in Chapter 5 by first showing in section 5.1 that $\mathbb{P}_{\text {FIN }}$ adds a

Matet real and then, in section 5.2, that Mathias forcing does not add a Matet real, thus concluding that $\mathbb{P}_{\text {FIN }}$ and Mathias forcing are not equivalent forcing notions.

In the last section we explore another forcing notion, denoted by $\mathbb{M}_{2}$, which was introduced by Saharon Shelah and Otmar Spinas in [23] and is a kind of product of two copies of Mathias forcing. The reason for looking at $\mathbb{M}_{2}$ is its connection with $\mathbb{P}_{\text {FIN }}$.

## Chapter 1

## Preliminaries

### 1.1 Set-theoretic notation

We work in $Z F C$, the standard Zermelo-Fraenkel set theory with the Axiom of Choice. About set theoretical matters we follow Kunen's book [16]. Any ordinal number $\alpha$ is the set of all those ordinal numbers which are smaller than $\alpha$. Natural numbers are the finite ordinal numbers. A cardinal number is an ordinal which is not equipotent with any smaller ordinal. The notation ${ }^{Y} X,{ }^{<\kappa} X,[X]^{\kappa}$ and $[X]^{<\kappa}$, where $X$ and $Y$ are sets and $\kappa$ is a cardinal number, respectively mean: the set of all functions from $Y$ into $X$, the set of all functions from some $\alpha<\kappa$ into $X$, the set of all subsets of $X$ with cardinality $\kappa$ and the set of all subsets of $X$ with cardinality smaller than $\kappa$. Given a function $f$ and a set $A, f[A]$ denotes the set $\{f(x): x \in A\}$ and $\operatorname{ran}(f):=\{y:(\exists x)(f(x)=y)\}$. If $s$ and $t$ are sequences of elements of a set $X$, then by $s^{\wedge} t$ we denote the concatenation of $s$ and $t$. And if $t \in X$, then $s \curvearrowright t$ denotes $s \curvearrowleft\langle t\rangle$.

Given any sets $A, B$ and $C$ we express that $A$ is partitioned into the two pieces $B$ and $C$, i.e., that $A=B \cup C$ and $B \cap C=\emptyset$ by writing: $A=B \cup \dot{\cup} C$.

For $X \in[\omega]^{\omega}$, we write $X=\left\{x_{i}: i \in \omega\right\}$ to mean that the sequence $\left\langle x_{i}\right\rangle_{i \in \omega}$ is the increasing enumeration of the elements of $X$.

### 1.1.1 Filters

Definition 1.1. A filter on a nonempty set $S$ is a collection $\mathscr{F}$ of subsets of $S$ such that

- $S \in \mathscr{F}$ and $\emptyset \notin \mathscr{F}$,
- if $X \in \mathscr{F}$ and $Y \in \mathscr{F}$, then $X \cap Y \in \mathscr{F}$,
- if $X, Y \subseteq S, X \in \mathscr{F}$, and $X \subseteq Y$, then $Y \in \mathscr{F}$.

A filter $\mathscr{F}$ on a set $S$ is an ultrafilter if for every $X \subseteq S$, either

$$
X \in \mathscr{F} \text { or } S \backslash X \in \mathscr{F} .
$$

Some examples of filters:

1. The trivial filter: $\mathscr{F}=\{S\}$.
2. A principal filter. Let $X_{0}$ be a nonempty subset of $S$. The filter

$$
\mathscr{F}=\left\{X \subseteq S: X \supseteq X_{0}\right\}
$$

is a principal filter. Note that every filter on a finite set is principal.
3. The Fréchet filter. Let $S$ be an infinite set. The filter

$$
\mathscr{F}=\{X \subseteq S: S \backslash X \text { is finite }\}
$$

is called Fréchet filter on $S$. Note that the Fréchet filter is not principal.
Definition 1.2. A filter $\mathscr{F} \subseteq[\omega]^{\omega}$ is called $a$ free filter if it contains the Fréchet filter.

For a filter $\mathscr{F} \subseteq[\omega]^{\omega}, \mathscr{F}^{+}$denotes the collection of all subsets $x \subseteq \omega$ such $x^{c} \notin \mathscr{F}$.

Definition 1.3. A family $\mathscr{E}$ of subsets of $\omega$ is called $a$ free family if there is a free filter $\mathscr{F} \subseteq[\omega]^{\omega}$ such that $\mathscr{E}=\mathscr{F}^{+}$.

In particular, $[\omega]^{\omega}$ and all ultrafilters are free families.
The following definitions are Definition 4.4.1, pag. 224 and Definition 4.5.1, pag. 235, respectively, in book [1]. But in fact, these notions are older, definition of $p$-point ultrafilters goes at least back to Rudin in [20].

Definition 1.4. A filter $\mathscr{F}$ is called a $p$-filter if for every family

$$
\left\{X_{n}: n \in \omega\right\} \subseteq \mathscr{F}
$$

there exists $X \in \mathscr{F}$ such that $X \backslash X_{n}$ is finite, which we denote by $X \subseteq^{*} X_{n}$, for $n \in \omega$. If $\mathscr{F}$ is an ultrafilter and a $p$-filter, then we call it a $p$-point.

Definition 1.5. An ultrafilter $\mathscr{F}$ is called a $q$-point if for every infinite partition of $\omega$ into finite pieces $\left\{I_{n}: n \in \omega\right\}$ there exists $X \in F$ such that $\left|X \cap I_{n}\right| \leqslant 1$ for $n \in \omega$.

Lemma 1.6 is Lemma 4.4.3 in [1], page 224.
Lemma 1.6. Let $\mathscr{F}$ be an ultrafilter on $\omega$. The following conditions are equivalent:

1. $\mathscr{F}$ is a $p-$ point, and
2. for every partition of $\omega,\left\{Y_{n}: n \in \omega\right\}$, either there exists $n \in \omega$ such that $Y_{n} \in \mathscr{F}$ or there exists $X \in \mathscr{F}$ such that $X \cap Y_{n}$ is finite for $n \in \omega$.

### 1.1.2 Ramsey filters

Definition 1.7 ([18]). A filter $\mathscr{F}$ on $\omega$ is called Ramsey if for every $\subseteq$ descending sequence

$$
\left\{X_{n}: n \in \omega\right\} \subseteq \mathscr{F}
$$

there exists a set $\left\{x_{n}: n \in \omega\right\} \in \mathscr{F}$ such that $x_{n} \in X_{n}$, for all $n \in \omega$.
A well known characterization of Ramsey filters is Theorem 4.5.2 in [1].
Theorem 1.8. Let $\mathscr{F}$ be an ultrafilter on $\omega$. The following are equivalent:

1. $\mathscr{F}$ is Ramsey.
2. For every partition of $\left\{Y_{n}: n \in \omega\right\}$ of $\omega$, either $Y_{n} \in \mathscr{F}$ for some $n \in \omega$ or there exists $X \in \mathscr{F}$ such that $\left|X \cap Y_{n}\right| \leqslant 1$ for all $n \in \omega$.
3. For every set $A \subseteq[\omega]^{2}$ there exists $X \in \mathscr{F}$ such that $[X]^{2} \subseteq A$ or $[X]^{2} \cap A=\emptyset$.
4. $\mathscr{F}$ is a $p$-point and a $q$-point.

### 1.2 Forcing

We refer the reader to Kunen's book [16] for the elementary theory of forcing.
Definition 1.9. Let $M$ be a countable transitive model for $Z F C$ and let $\langle\mathbb{P}, \leqslant\rangle$ be a partial order such that $\langle\mathbb{P}, \leqslant\rangle \in M . G$ is $\mathbb{P}$-generic over M if and only if $G$ is a filter on $\mathbb{P}$ and for all dense $D \subseteq \mathbb{P}$ with $D \in M, D \cap G \neq \emptyset$.

Theorem 1.10. Let $M$ be a countable model and $p \in \mathbb{P}$, then there is a $G$ which is $\mathbb{P}$-generic over $M$ such that $p \in G$.

Definition 1.11. Let $\mathbb{P}$ be a forcing notion, $\mathbb{P}$ is $\kappa$-closed if for every $\lambda<\kappa$, every descending sequence $p_{0} \geqslant p_{1} \geqslant \ldots \geqslant p_{\alpha} \geqslant \ldots(\alpha<\lambda)$ has a lower bound.

Definition 1.12. A partial order $\mathbb{P}$ is $\sigma$-centered if it can be partitioned into countably-many pieces, each one of them consisting of finitewise-compatible elements.

Definition 1.13. For two functions $f, g \in{ }^{\omega} \omega$ we say that $g$ is dominated by $f$, denoted by $g<^{*} f$, if there is an $n \in \omega$ such that for all $k \geqslant n$ we have $g(k)<f(k)$.

Definition 1.14. For two sets $x, y \in[\omega]^{\omega}$ we say that $x$ splits $y$ if both sets $y \cap x$ and $y \backslash x$ are infinite.

Let $V$ be any model of $Z F C$ and let $V[G]$ be a generic extension (with respect to some forcing notion $\mathbb{P}$ ).

Definition 1.15. A function $f \in{ }^{\omega} \omega$ in $V[G]$ is called a dominating real over $V$ if each function $g \in{ }^{\omega} \omega \cap V$ is dominated by $f$.
$A$ set $x \in[\omega]^{\omega}$ in $V[G]$ is called a splitting real over $V$ if it splits each $y \in[\omega]^{\omega} \cap V$.

Proposition 1.16. If $V[G]$ contains a dominating real, then it also contains a splitting real.

Proof. See proof of Proposition 3 in [11].
Definition 1.17. Given two partial orders $\mathbb{P}$ and $\mathbb{Q}$ we say that $\mathbb{P}$ is a projection of $\mathbb{Q}$ if there is a function $\pi: \mathbb{Q} \rightarrow \mathbb{P}$ such that $\pi$ preserves order, i.e., if $q \leqslant_{\mathbb{Q}} q^{\prime}$, then $\pi(q) \leqslant_{\mathbb{P}} \pi\left(q^{\prime}\right)$, and for all $p \in \mathbb{P}$ and $q \in \mathbb{Q}$ if $p \leqslant_{\mathbb{P}} \pi(q)$, there is $q^{\prime} \leqslant \mathbb{Q} q$ such that $\pi\left(q^{\prime}\right) \leqslant \mathbb{P} p$.

The next lemma is Lemma 15.45 in Jech's book [15].
Lemma 1.18. If $\mathbb{P}$ is a projection of $\mathbb{Q}$ and $G$ is a $\mathbb{Q}$-generic filter over $V$ then $\pi[G]$ is a base for a $\mathbb{P}$-generic filter over $V$, where $\pi$ is a function that witnesses that $\mathbb{P}$ is a projection of $\mathbb{Q}$.

Proof. Let

$$
U=\{p \in \mathbb{P}: \exists r \in G \text { such that } \pi(r) \leqslant \mathbb{P} p\}
$$

We shall prove that $U$ is a $\mathbb{P}$-generic filter.
Note that $U \neq \emptyset$. And $U$ is upwards closed: If $p \in \mathbb{P}$ and $p^{\prime} \in U$ are such that $p^{\prime} \leqslant \mathbb{P} p$ then there is $r \in G$ such that $\pi(r) \leqslant \mathbb{P} p^{\prime}$, so $\pi(r) \leqslant \mathbb{P} p$, therefore $p \in U$.

Now let $p$ and $p^{\prime}$ in $U$. There exist $r$ and $r^{\prime}$ in $G$ such that $\pi(r) \leqslant \mathbb{P} p$ and $\pi\left(r^{\prime}\right) \leqslant p^{\prime}$. Since $G$ is a filter, there is $s \in G$ such that $s \leqslant_{\mathbb{Q}} r$ and $s \leqslant_{\mathbb{Q}} r^{\prime}$, using the fact that $\pi$ preserves order, we have that $\pi(s) \leqslant \mathbb{P} p$ and $\pi(s) \leqslant \mathbb{P} p^{\prime}$. Thus, $p$ and $p^{\prime}$ are compatible in $U$. Hence $U$ is a filter.

Let $D \subseteq \mathbb{P}$ be a dense set in $V$ and define

$$
D^{\prime}:=\{q \in \mathbb{Q}: \exists d \in D \text { such that } \pi(q) \leqslant \mathbb{P} d\} .
$$

We shall prove that $D^{\prime}$ is a dense subset of $\mathbb{Q}$. Let $q \in \mathbb{Q}$, then $\pi(q) \in \mathbb{P}$. Since $D$ is dense, there is $d \in D$ such that $d \leqslant \mathbb{P} \pi(q)$, by definition of projection then there is $q^{\prime} \leqslant \mathbb{Q} q$ such that $\pi\left(q^{\prime}\right) \leqslant \mathbb{P} d$. So $q^{\prime} \in D^{\prime}$, which shows that $D^{\prime}$ is dense. Since $G$ is a $\mathbb{Q}$-generic filter $G \cap D^{\prime} \neq \emptyset$. Let $q \in D^{\prime} \cap G$, then there exists $d \in D$ such that $\pi(q) \leqslant \mathbb{P} d$, i.e., $d \in U$. So $D \cap U \neq \emptyset$.

Definition 1.19 (Baumgartner [3]). A partial ordering $\mathbb{P}=(P, \leqslant)$ satisfies Axiom A if and only if there exist partial ordering relations $\left\langle\leqslant_{n}: n \in \omega\right\rangle$ on $P$ such that
(1) For all $p, q \in P, p \leqslant 0 q$ if and only if $p \leqslant q$,
(2) For all $p, q \in P$ if $p \leqslant_{n+1} q$, then $p \leqslant_{n} q$ for all $n \in \omega$,
(3) if $\left\langle p_{n}: n \in \omega\right\rangle$ is a sequence of elements of $P$ such that $p_{n+1} \leqslant n p_{n}$ for all $n \in \omega$, then there is a condition $q \in P$ such that for all $n \in \omega$ $q \leqslant n p_{n}$,
(4) if $I \subseteq P$ is pairwise incompatible, then for all $p \in P$ and for all $n \in \omega$ there is $q \in P$ such that $q \leqslant_{n} p$ and

$$
\{r \in I: q \text { is compatible with } r\}
$$

is countable.

Lemma 1.20 (Baumgartner [3]). Condition (4) may be rephrased in terms of forcing as follows:
(4') For all $p \in P$ and for all $n \in \omega$, if $p \Vdash$ " $\tau \in V$ ", then there is a countable set $x$ and $q \leqslant_{n} p$ such that $q \Vdash \tau \in \check{x}$.

Proof. Assume (4). Let $p \in P$ be such that $p \Vdash$ " $\tau \in V$ ". Consider the set

$$
D:=\{r \in P: r \leqslant p \text { and }(\exists a \in V) r \Vdash \tau=\check{a}\} .
$$

Since for all $q \leqslant p$ there is $r \leqslant q$ and $a \in V$ such that $r \Vdash \tau=\check{a}$, so $D$ is not empty. Note that such $a$ is unique and denoted by $a_{r}$.

Pick a maximal subset $I$ of pairwise incompatible elements of $D$. By (4) of the Definition 1.19, there is $q \leqslant_{n} p$ such that the set

$$
\{r \in I: q \text { is compatible with } r\}
$$

is countable.
For each $r \in I$, pick $a_{r} \in V$ such that $r \Vdash \tau=\dot{a_{r}}$. Let $x:=\left\{a_{r}: r \in I\right\}$. So, $x$ is a countable set.

Claim 1.21. $q \Vdash \tau \in \check{x}$.
Proof of Claim: If $q^{\prime} \leqslant q$ and $V$ is such that $q^{\prime} \Vdash \tau=a$, then $q^{\prime} \in D$, and so it is compatible with some $r \in I$. But then $a=a_{r}$ and so $r \Vdash \tau \in \check{x}$. This shows that the set of conditions that force " $\tau \in \mathscr{x}$ " is dense below $q$. So, $q \Vdash$ " $\tau \in \breve{x} "$.

Assume ( $4^{\prime}$ ). Let $I$ be a pairwise incompatible subset of $P$. Let $p \in P$ and $n \in \omega$. Without loss of generality we can assume that $I$ is maximal.

Let $\tau=\{(\check{x}, p): p \in I$ and $x \in p\}$. Note that $1 \Vdash \tau \in \Gamma \cap \check{I}$, where $\Gamma$ is the canonical name for the filter $G$. So $p \Vdash$ " $\tau \in V$ ". Hence by ( 4 ') there is $q \leqslant_{n} p$ and a countable set $x$ such that $q \Vdash \tau \in \check{x}$.

We claim that $\{r \in I: q$ is compatible with $r\} \subseteq x$, and so it is countable. Let $r \in I$ be such that $q$ and $r$ are compatible. So, there exists $s \leqslant q$ and $s \leqslant r$. We have that $s \Vdash \tau \in \check{x}$. But $s \Vdash " \tau=\check{r} "$.

## Cohen forcing

Cohen forcing, denoted by $\mathbb{C}$, is the set $2^{<\omega}$ of all finite binary sequences ordered by reversed inclusion.

The forcing $\mathscr{P}(\omega) /$ fin

Let fin $=[\omega]^{<\omega}$ be the ideal of finite sets and let $\mathbb{U}:=\langle\mathscr{P}(\omega) /$ fin, $\leqslant\rangle$ be the partial order whose conditions are infinite subsets of $\omega$, ordered by $p \leqslant q$ if and only if $p \subseteq^{*} q$, that is, if and only if $p$ is almost contained in $q$.

Lemma 1.22 (Mathias [18]). Let $\mathscr{V}$ be a $\mathbb{U}$-generic over $V$, then $\mathscr{V}$ is a Ramsey ultrafilter in $V[\mathscr{V}]$.

Proof. We reproduce the proof of the Fact 3.4 in Halbeisen's article [12].
First note that $\mathbb{U}$ is $\sigma$-closed, hence adds no new reals to $V$. Let $\pi \in 2^{[\omega]^{2}}$, by the Ramsey theorem for each $p \in[\omega]^{\omega}$ there exists a $q \subseteq^{*} p$ such that $\pi$ is constant on $[q]^{2}$. Therefore

$$
H_{\pi}=\left\{q \in[\omega]^{\omega}: \pi \upharpoonright[q]^{2} \text { is constant }\right\}
$$

is dense in $\mathbb{U}$, hence $H_{\pi} \cap \mathscr{V} \neq \emptyset$.

### 1.2.1 Mathias forcing

The following notion of forcing is due to Adrian Mathias [18].
Mathias forcing, denoted by $\mathbb{M}$, is the set of pairs $(a, A)$ where $a \in[\omega]^{<\omega}$ and $A \in[\omega]^{\omega}$ and such that $\max (a)<\min A$. First part $a$ is called the "stem" of the condition $(a, A)$. And the ordering is given by:

$$
\begin{aligned}
(a, A) \leqslant(b, B) & \Leftrightarrow b \text { is an initial segment of } a, A \subseteq B \\
& \text { and } \forall i \in a \backslash b(i \in B)
\end{aligned}
$$

Let $\mathscr{E}$ be an arbitrary free family, Definition 1.3. Mathias forcing restricted to $\mathscr{E}$, denoted $\mathbb{M}(\mathscr{E})=\left(M_{\mathscr{E}}, \leqslant\right)$, is defined as follows:

$$
M_{\mathscr{E}}=\left\{(a, x): a \in[\omega]^{<\omega}, x \in \mathscr{E}, \max (a)<\min x\right\}
$$

and $\leqslant$ as in Mathias forcing.
If $G$ is a generic filter for the Mathias forcing, over the ground model $M$, let $x_{G}$ be the set

$$
x_{G}=\bigcup\{s:(s, A) \in G \text { for some } A\} .
$$

By standard density arguments, $x_{G}$ is an infinite subset of $\omega \cdot x_{G}$ is called a Mathias real (over $M$ ). The filter $G$ is determined by $x=x_{G}$, as

$$
G=\{(s, A): s \subseteq x \subseteq s \cup A\}
$$

Mathias forcing satisfies some interesting properties, which are listed below with references to their proofs.

Lemma 1.23. If $x$ is a Mathias real over $V$, then $x$ is a dominating real over $V$.

Proof. See proof of the Lemma 1.15 in [14].
Given a condition $(a, B) \in \mathbb{M}$, and a sentence $\phi$ of the forcing language, we say $(a, B)$ decides $\phi$ if $(a, B) \Vdash \phi$ or $(a, B) \Vdash \neg \phi$.

Next lemma is known as the Pure decision property for $\mathbb{M}$. It says that for any condition $(a, A)$ every sentence can be decided by strengthening $(a, A)$ while keeping the same stem.

Lemma 1.24 (Mathias). Let $\phi$ be a sentence of the forcing language $\mathbb{M}$ and let $(a, A)$ be a condition. Then there exists and infinite set $B \subseteq A$, such that $(a, B) \Vdash \phi$ or $(a, B) \Vdash \neg \phi$.

Next theorem is due to Mathias (see also [15], Theorem 26.38).
Theorem 1.25 (Mathias). Let $M$ be a transitive model of ZFC. An infinite set $x \subseteq \omega$ is a Mathias real over $M$ if and only if for every maximal almost disjoint family $\mathscr{A} \in M$ of subsets of $\omega$, there exists an $X \in \mathscr{A}$ such that $x-X$ is finite.

Proof. See Theorem 26.35 in [15].
Corollary 1.26 (Mathias). If $x$ is a Mathias real over $M$ and $y \subseteq x$ is infinite, then $y$ is a Mathias real over $M$.

Theorem 1.27 (Baumgartner). Mathias forcing satisfies Axiom A.
Proof. See the proof of Corollary 26.38 in [15].

Definition 1.28 ([18]). For $s \in[\omega]^{<\omega}$, let $\bar{s}^{+}:=(\max s)+1$. A set $x \subseteq \omega$ is said to diagonalize the set $\left\{x_{s}: s \in[\omega]^{<\omega}\right\} \subseteq[\omega]^{\omega}$, if $x \subseteq x_{\emptyset}$ and for all $s \in[\omega]^{<\omega}$, if $\max s \in x$, then $x \backslash \bar{s}^{+} \subseteq x_{s}$.

For $\mathscr{A} \subseteq[\omega]^{\omega}$ we write fil $\mathscr{A}$ for the filter generated by the members of $\mathscr{A}$, i.e., fil $\mathscr{A}$ consists of all subsets of $\omega$ which are supersets of intersections of finitely many members of $\mathscr{A}$.

Definition 1.29 ([18]). A free family $\mathscr{E}$ is called $a$ happy family if whenever fil $\left\{x_{s}: s \in[\omega]^{<\omega}\right\} \subseteq \mathscr{E}$, then there is an $x \in \mathscr{E}$ which diagonalizes the set $\left\{x_{s}: s \in[\omega]^{<\omega}\right\}$.

Theorem 1.30 ([18]). If $\mathscr{A}$ is a happy family, then the forcing notion $\mathbb{M}(\mathscr{A})$ adds generically a Ramsey ultrafilter $\dot{\mathscr{U}}$ and $\mathbb{M}(\mathscr{A}) \approx \mathscr{A} * \mathbb{M}(\dot{\mathscr{U}})$. A special case: $\mathbb{M} \approx \mathscr{P}(\omega) /$ fin $* \mathbb{M}(\dot{\mathscr{U}})$

Proof. See Lema 3.5 in [12].

### 1.2.2 The forcing $\mathbb{P}^{*}$

We denote by FIN the set of all finite non empty subsets of $\omega$. For $s$ and $t$ in $F I N$, we write $s<t$ if $\max (s)<\min (t)$.

If $X$ is a subset of $F I N$, then we write $F U(X)$ for the set of all finite unions of members of $X$, excluding the empty union.

Definition 1.31. Let $I$ be a natural number or $I=\omega$. A finite (an infinite) block sequence is a sequence $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in I}$ of finite subsets of $\mathbb{N}$ such that $d_{i}<d_{i+1}$ for all $i \in I$. The set $(F I N)^{\omega}$ is the collection all infinite block sequences of elements of FIN.

Given an infinite block sequence $\mathscr{D}$, we define $F U(\mathscr{D})$ as before, i.e., viewing $\mathscr{D}$ as a collection of finite subsets of natural numbers. If $\mathscr{D}$ is the empty sequence, then $F U(\mathscr{D})=\emptyset$.

Given $\mathscr{D}$ and $\mathscr{E}$ in $(F I N)^{\omega}$, we say that $\mathscr{D}$ is a condensation of $\mathscr{E}$, written $\mathscr{D} \sqsubseteq \mathscr{E}$, if $\mathscr{D} \subseteq F U(\mathscr{E})$. If $s \in F I N$ and $\mathscr{D} \in(F I N)^{\omega}$ we denote

$$
\mathscr{D} \backslash s:=\{t \in \mathscr{D}: \min (t)>\max (s)\} .
$$

If $s$ is a singleton $\{n\}$ then we simply write $\mathscr{D} \backslash n$, instead of $\mathscr{D} \backslash\{n\}$.
Definition 1.32. The partial ordering $\mathbb{P}^{*}$ is $(F I N)^{\omega}$ with the ordering $\sqsubseteq^{*}$ defined as follows: if $\mathscr{D}$ and $\mathscr{E}$ are in $(F I N)^{\omega}$, then $\mathscr{D} \sqsubseteq^{*} \mathscr{E}$ iff there is an $n$ such that $\mathscr{D} \backslash n$ is a condensation of $\mathscr{E}$.

Proposition 1.33. The partial ordering $\mathbb{P}^{*}$ is $\sigma$-closed.
Proof. Let $\left\{\mathscr{D}_{n}: n \in \omega\right\} \subseteq(F I N)^{\omega}$ such that $\mathscr{D}_{n+1} \sqsubseteq^{*} \mathscr{D}_{n}$, for each $n$. We shall inductively construct $\mathscr{B} \in(F I N)^{\omega}$ such that $\mathscr{B}$ is a condensation of $\mathscr{D}_{n}$ for all $n \in \omega$.

We have $\mathscr{D}_{0}=\left\langle d_{j}^{0}\right\rangle_{j \in \omega}$. Let $b_{0}=d_{0}^{0}$, since $\mathscr{D}_{1} \sqsubseteq^{*} \mathscr{D}_{0}$ there are $m_{1}^{\prime} \in \omega$ such that $\mathscr{D}_{1} \backslash m_{1} \sqsubseteq \mathscr{D}_{0}$.

Assume we have $b_{0}<b_{1}<\ldots<b_{n}$ such that $t_{j} \in \mathscr{D}_{j} j \leqslant n$ and $t_{j} \in F U\left(\mathscr{D}_{j-1}\right)$ for all $j \in\{1, \ldots, n\}$. Since $\mathscr{D}_{n+1} \sqsubseteq^{*} \mathscr{D}_{n}$, there is $m_{n+1}^{\prime} \in \omega$ such that $\mathscr{D}_{n+1} \backslash m_{n+1}^{\prime} \sqsubseteq \mathscr{D}_{n}$. Let $m_{n+1}=\max \left\{m_{n+1}^{\prime}, \max t_{n}\right\}$, we take $b_{n+1} \in \mathscr{D}_{n+1} \backslash m_{n+1}$, then $b_{n}<b_{n+1}$ and $b_{n+1} \in F U\left(\mathscr{D}_{n}\right)$. Let $\mathscr{B}=\left\langle b_{n}\right\rangle_{n \in \omega}$. It is clear that $\mathscr{B} \in(F I N)^{\omega}$.

Claim 1.34. $\mathscr{B} \sqsubseteq^{*} \mathscr{D}_{n}$ for all $n \in \omega$.
Proof of Claim: Note that $\mathscr{B} \backslash m_{j} \sqsubseteq \mathscr{D}_{j} \backslash m_{j} \sqsubseteq \mathscr{D}_{j-1}$ for all $j \geqslant 1$.
Thus $\mathscr{B} \sqsubseteq^{*} \mathscr{D}_{n}$ for all $n \in \omega$. We have proved the claim.

### 1.2.3 Matet forcing

Definition 1.35 (Blass [5]).

1. A filter $\mathscr{F}$ on FIN is said to be an ordered-union filter if it has a basis of the form $F U(\mathscr{D})$ for $\mathscr{D} \in(F I N)^{\omega}$.
2. An ordered-union filter is said to be stable if, whenever it contains $F U\left(\mathscr{D}_{n}\right)$ for each of countably many sets $\mathscr{D}_{n} \in(F I N)^{\omega}$, it also contains $F U(\mathscr{E})$ for some $\mathscr{E} \in(F I N)^{\omega}$ that is a condensation of each $\mathscr{D}_{n}$.
3. If $\mathscr{F}$ is an ordered-union filter, we let $\mathscr{F} \upharpoonright(F I N)^{\omega}$ be the set of all $\mathscr{D} \in(F I N)^{\omega}$ such that $F U(\mathscr{D}) \in \mathscr{F}$.

Definition 1.36 ([8]). We say that a set $\mathscr{H} \subseteq(F I N)^{\omega}$ is Matet-adequate $i f$ :

1. $\mathscr{H}$ is closed under finite changes, i.e., if $A \in \mathscr{H}$ and $A \triangle B$ is finite, then $B \in \mathscr{H}$.
2. $\mathscr{H}$ is closed upwards: $A \in \mathscr{H}$ and $A \sqsubseteq^{*} B$ implies $B \in \mathscr{H}$.
3. $\left(\mathscr{H}, \sqsubseteq^{*}\right)$ is countably closed, i.e., if $\left\{A_{n}: n \in \omega\right\} \subseteq \mathscr{H}$ and, for all $n$, $A_{n+1} \sqsubseteq^{*} A_{n}$ then there is a $B \in \mathscr{H}$ such that $B \sqsubseteq^{*} A_{n}$ for each $n$.
4. If $A \in \mathscr{H}$ and $F U(A)$ is partitioned into 2 pieces, then there is a $B \sqsubseteq A$ in $\mathscr{H}$ so that $F U(B)$ is included in a single piece of the partition.

We refer to condition 4 as Hindman property.
The most obvious example of a Matet-adequate family is $(F I N)^{\omega}$ itself. If $\mathscr{U}$ is a stable ordered-union ultrafilter, then

$$
\mathscr{U} \upharpoonright(F I N)^{\omega}=\left\{\mathscr{D} \in(F I N)^{\omega}: F U(\mathscr{D}) \in \mathscr{U}\right\}
$$

is another example of a Matet-adequate family.
The following notion of forcing is due to Pierre Matet [17]. We use Eisworth's formulation in [8]. Note that stable ordered-union ultrafilters are Matet's Milliken-Taylor ultrafilters.

Definition 1.37 ([8]). Let $\mathscr{H}$ be a Matet-adequate family. We define a notion of forcing $\mathbb{M} \mathbb{T}(\mathscr{H})$, Matet forcing with respect to $\mathscr{H}$, as follows: A condition $p$ is a pair $(s, D)$ where $s \in F I N, D \in \mathscr{H}$, and $\max s<\min d$ for $d \in D$. A condition $(s, D)$ extends $(t, E)$ if $s \supseteq t, D \sqsubseteq E$, and $s \backslash t \in F U(E)$.

If $G$ is any generic subset of $\mathbb{M T}(\mathscr{H})$, then

$$
\bigcup\{s: \text { for some } D \in \mathscr{H},(s, D) \in G\}
$$

is a subset of $\omega$ that we call a Matet real. A condition $(s, D) \in \mathbb{M T}(\mathscr{H})$ should be thought of a promise that the Matet real will have $s$ as initial segment and will consist of unions of elements of $D$.

Given $(s, D) \in \mathbb{M T}(\mathscr{H})$, we define

$$
[s, D]:=\left\{x \in[\omega]^{\omega}: x=s \cup \bigcup_{i \in I} d_{i} \text { for some } I \in[\omega]^{\omega}\right\}
$$

where $D=\left\langle d_{i}\right\rangle_{i \in \omega}$.
We are going to consider two special cases:

- If $\mathscr{H}=(F I N)^{\omega}$, we denote $\mathbb{M T}(\mathscr{H})$ by $\mathbb{M T}$.
- If $\mathscr{H}=\mathscr{U} \upharpoonright(F I N)^{\omega}$, where $\mathscr{U}$ is a stable ordered-union ultrafilter, we denote $\mathbb{M T}(\mathscr{H})$ by $\mathbb{M T}(\mathscr{U})$.

The next results are essentially the same as those obtained by Blass in his investigation of Matet forcing (see also Eisworth's article [8]).

Proposition 1.38 ([8]). Let $\mathscr{H}$ be Matet-adequate family. If $G$ is any generic subset of $\mathscr{H}$, then in the generic extension $V[G]$, the set

$$
\mathscr{U}_{G}=\{X \subseteq F I N: X \supseteq F U(A) \text { for some } A \in G\}
$$

is a stable ordered-union ultrafilter.

Proof. See the proof of Proposition 3.2 in [8].
Theorem 1.39 ([8]). If $\mathscr{H}$ is a Matet-adequate family and $\dot{\mathscr{U}}$ is the canonical $\mathscr{H}$ - name for the generic stable ordered-union ultrafilter, then

$$
\mathbb{M T}(\mathscr{H}) \approx \mathscr{H} * \mathbb{M T}(\dot{\mathscr{U}})
$$

In the special case that $\mathscr{H}=(F I N)^{\omega}$, we have $\mathbb{M T} \approx \mathbb{P}^{*} * \mathbb{M T}(\dot{\mathscr{U}})$.

Proof. See the proof in [8], page 458.

Lemma 1.40. Let $\mathscr{U}$ be a stable ordered-union ultrafilter. If $(s, \mathscr{D}) \in \mathbb{M T}(\mathscr{U})$ and $\theta$ is a sentence of the forcing languaje, then $(s, \mathscr{D})$ has a pure extension deciding $\theta$, i.e., there is a condensation $\mathscr{E}$ of $\mathscr{D}$ in $\mathscr{U} \upharpoonright(F I N)^{\omega}$ such that either

$$
(s, \mathscr{E}) \Vdash \theta \text { or }(s, \mathscr{E}) \Vdash \neg \theta .
$$

Proof. See proof of Lemma 2.6 in [8].
Both Andreas Blass and Claude Laflamme proved (independently and unpublished) that "traditional" Matet forcing (i.e., no ultrafilters involved) preserves $p$-points ultrafilters in the ground model, i.e., if $\mathscr{V}$ is a $p$-point, then in the generic extension every subset of $\omega$ either contains or is disjoint from a set in $\mathscr{V}$. Their result can be recovered from Theorem 4 in Eisworth's article [8] by viewing traditional Matet forcing as a two-step iteration, where one first adjoins a generic stable-ordered ultrafilter $\mathscr{U}$, and then forces with $\mathbb{M T}(\mathscr{U})$.

Definition 1.41. Let $\mathscr{U}$ be a stable ordered-union ultrafilter. The core of $\mathscr{U}$, denoted by $\Phi(\mathscr{U})$ is defined by

$$
X \in \Phi(\mathscr{U}) \text { if and only if } \exists Y \in \mathscr{U} \text { with } \bigcup Y \subseteq X .
$$

The following proposition summarizes some facts about $\Phi(\mathscr{U})$.
Proposition 1.42 (Eisworth [8]).

1. $\Phi(\mathscr{U})=\left\{X \in \omega:[X]^{<\omega} \in \mathscr{U}\right\}$.
2. $\Phi(\mathscr{U})$ is a $p$-filter.
3. $\Phi(\mathscr{U})$ is not diagonalized, i.e., there is no infinite $Z \subseteq \omega$ such that $Z$ is almost included in each member of $\Phi(\mathscr{U})$.
4. Forcing with $\mathbb{M T}(\mathscr{U})$ adjoins a set that diagonalizes $\Phi(\mathscr{U})$.

Proof. See the proof of the Proposition 2.3 in [8].

Proposition 1.43 (Eisworth). Let $\mathscr{V}$ be an ultrafilter on $\omega$, and suppose there is a finite-to-one function $f$ for which $f(\Phi(\mathscr{U})) \subseteq \mathscr{V}$. Then forcing with $\mathbb{M T}(\mathscr{U})$ destroys $\mathscr{V}$.

Proof. See the proof of the Proposition 2.4 in [8].
Definition 1.44 (Blass [7]). If $\mathscr{F}$ is a filter on a set I and $f$ is a function from $I$ to some set $J$, then $f(\mathscr{F})$ is the filter on $J$ defined by

$$
X \in f(\mathscr{F}) \text { if and only if } f^{-1}(X) \in \mathscr{F} .
$$

If $\mathscr{F}$ and $\mathscr{G}$ are two filters on $\omega$, we say that $\mathscr{G}$ lies below $\mathscr{F}$ in the RudinBlass ordering, written $\mathscr{G} \leqslant_{R B} \mathscr{F}$, if there is a finite-to-one function $f$ with

$$
f(\mathscr{G}) \subseteq f(\mathscr{F})
$$

Corollary 1.45. If $\mathscr{V}$ is an ultrafilter above $\Phi(\mathscr{U})$ in the Rudin-Blass ordering, then forcing with $\mathbb{M T}(\mathscr{U})$ destroys $\mathscr{V}$.

Proof. See the proof of the Corollary 2.5 in [8].
Theorem 1.46 (Eisworth [8]). If $\mathscr{V}$ is a p-point that is not above $\Phi(\mathscr{U})$ in the Rudin-Blass ordering, then continues to generate an ultrafilter after we force with $\mathbb{M T}(\mathscr{U})$.

Proof. See proof of the Theorem 4 in [8].
Corollary 1.47 (Eisworth [8]). Matet forcing preserves p-points.
Proof. By the Theorem 1.39, we have $\mathbb{M T} \approx \mathbb{P}^{*} * \mathbb{M T}(\dot{\mathscr{U}})$. Let $\mathscr{V}$ a $p$-point ultrafilter in $V$, then $\mathscr{V}$ is $p$-point ultrafilter in intermediate extension, because $\mathbb{P}^{*}$ is $\sigma$-closed (Proposition 1.33), so we are not adding new reals. By a forcing argument we have that $\mathscr{V}$ is not above $\Phi(\mathscr{U})$ in the Rudin-Blass ordering, so by Corollary 1.45 and Theorem 1.46, $\mathbb{M T}(\mathscr{U})$ does not destroy $\mathscr{V}$.

Corollary 1.48. Matet forcing does not add splitting reals over $V$.

Proof. Assume towards a contradiction that there exists a splitting real over $V$ in a $\mathbb{M T}$-generic extension of $V$. Let $q \in \mathbb{M T}$ be such that $q \Vdash$ " $\tau$ is splitting real over $V$ ". Let $G$ be a $\operatorname{Col}\left(\omega_{1},<\mathfrak{c}\right)$-generic filter. We have that $C H$ holds in $V[G]$, so by Theorem 7.8 in [15] there exists a $p$-point filter. Let $\mathscr{V}$ a $p$-point filter in $V[G]$. Since $\operatorname{Col}\left(\omega_{1},<\mathfrak{c}\right)$ is $\sigma$-closed we are not adding new reals, hence $\mathscr{P}(\omega)^{V}=\mathscr{P}(\omega)^{V[G]}$. Let $H$ be a $\mathbb{M T}$-generic filter over $V[G]$ such that $q \in H$. Note that in $V[G][H]$ the interpretation $\tau_{H}$ of $\tau$ is a splitting real over $V$. By Theorem 1.46, there exists $v \in \mathscr{V}$ such that $v \subseteq \tau_{H}$ or $v \cap \tau_{H}=\emptyset$, which is a contradiction to the definition of splitting real over $V$.

### 1.3 Proper forcing

Proper forcing was introduced by Saharon Shelah, who isolated properness as the property of forcing that is common to many standard examples of forcing notions and that is preserved under countable support iteration, see [21] and [22].

A partial order $\mathbb{P}$ is said to be proper if and only if for any uncountable set $X$ and every stationary set $S \subseteq[X]^{\omega}, \Vdash_{\mathbb{P}}$ "Š is stationary subset of $[\check{X}]^{\omega "}$.

An equivalent characterization which is easier to work with is the following. If $\lambda$ is a regular uncountable cardinal and $N$ is a countable substructure of $H(\lambda)$ with $\mathbb{P} \in N$, then we will say that $p \in \mathbb{P}$ is a $(N, \mathbb{P})$-generic condition if and only if for every maximal antichain $A$ of $\mathbb{P}$ that belongs to $N$ we have that $A \cap N$ is predense below $p$, i.e., for every $q \leqslant p$ there exists $r \in A \cap N$ such that $q$ and $r$ are compatible.

Definition 1.49. $\mathbb{P}$ is proper if and only if for every $\lambda>2^{|\mathbb{P}|}$ and every countable elementary submodel $N$ of $H(\lambda)$ with $\mathbb{P} \in N$, for every $p \in \mathbb{P} \cap N$ there is a $(N, \mathbb{P})$-generic condition stronger than $p$.

Proposition 1.50. The following are equivalent:
a) $p$ is $(N, P)$-generic.
b) p forces that $\dot{G} \cap N$ is P-generic filter over $N$.

Theorem 1.51. If $\mathbb{P}$ satisfies Axiom $A$, then $\mathbb{P}$ is proper.
Proof. See Lemma 31.11 in Jech's book [15].

## Chapter 2

## Ramsey's Theorem

We are interested in functions $h:[A]^{n} \rightarrow \lambda$, where $n$ is a natural number and $\lambda$ is a cardinal. We often refer to any such function $h$ as a partition of $[A]^{n}$ (into $\leqslant \lambda$ classes), or a coloring of $[A]^{n}$ into $\leqslant \lambda$ colors.

If $h:[A]^{n} \rightarrow \lambda$, a subset $H$ of $A$ is called homogeneous for $h$, or $h$-homogeneous, if and only if $h$ is constant on $[H]^{n}$, i.e., if and only if $h(X)=h(Y)$ for all $X, Y \in[H]^{n}$. The notation $(\kappa) \rightarrow(\alpha)_{\lambda}^{n}$, for $\kappa$ and $\lambda$ (finite or infinite) cardinals, $\alpha$ an ordinal, and $n$ a natural number, means that for every partition $h$ of $[\kappa]^{n}$ into $\leqslant \lambda$ classes there is an $h$-homogeneous set of order-type $\alpha$.

Notice that if $\kappa$ is an infinite cardinal, $A$ is a subset of $\kappa$ of cardinality $\kappa$ and $\kappa \rightarrow(\alpha)_{\lambda}^{n}$ holds, then every partition $f:[A]^{n} \rightarrow \lambda$ has an $f$-homogenous set of order-type $\alpha$.

We will give a proof of Ramsey's Theorem using forcing arguments.
Theorem 2.1 (Ramsey [19]). For every $n, m>0, \omega \rightarrow(\omega)_{m}^{n}$.
We will take care only of the case $m=2$, the general case can easily be proved by induction on $m$.

Proof. We proceed by induction on $n \geqslant 1$. By the Pigeonhole principle we have it for $n=1$. Given $n \geqslant 1$ and given $g:[\omega]^{n+1} \rightarrow 2$, we must conclude that there is an infinite $g$-homogeneous set.

Assume that there is no $H \subseteq \omega$ infinite such that $H$ is $g$-homogeneous of color 0 . We will produce an infinite $g$-homogeneous set of color 1 .

We define a partial order $\mathbb{P}_{g, 1}=\left\langle P, \leqslant^{*}\right\rangle$ as follows: the elements of $P$ are of the form $(a, A)$ where $a \in[\omega]^{<\omega}, A \in[\omega]^{\omega}, a<A$, which means $\max (a)<\min (A), g(x)=1$ for all $x \in[a]^{n+1}$, and for every $j \in\{1, \ldots, n\}$, every $y \in[a]^{j}$, and every $x \in[A]^{n+1-j}, g(y \cup x)=1$.

Given two elements of $(a, A),(b, B) \in P$, we define $(b, B) \leqslant^{*}(a, A)$, as in Mathias forcing, if and only if $a$ is an initial segment of $b, B \subseteq A$ and for all $x \in(b \backslash a)(x \in A)$.

We have that $P$ is not empty because $(\emptyset, \omega) \in P$, and $\leqslant^{*}$ is clearly reflexive and transitive.

Claim 2.2. Given a condition $(a, A) \in P$ we can extend it, i.e., there exists $m \in A$ and there exists $B \subseteq A$ infinite with $k>m$ for all $k \in B$ such that $g(\{m\} \cup y)=1$ for all $y \in[B]^{n}$. Note that then $(b, B) \leqslant^{*}(a, A)$ where $b=a \cup\{m\}$.

Proof of Claim: Assume, towards a contradiction, that for all $m \in A$ and for all $B \subseteq A$ if $g(\{m\} \cup y)=1$ for all $y \in[B]^{n}$, then $B$ is finite.

Let $m_{0}=\min A$, and let $g_{m_{0}}:\left[A \backslash\left\{m_{0}\right\}\right]^{n} \rightarrow 2$ be defined as $g_{m_{0}}(y)=$ $g\left(\left\{m_{0}\right\} \cup y\right)$. By inductive hypothesis there is $B_{0} \subseteq A \backslash\left\{m_{0}\right\}$ infinite such that $g_{m_{0}} \upharpoonright\left[B_{0}\right]^{n}$ is constant. By our assumption $g_{m_{0}} \upharpoonright\left[B_{0}\right]^{n}$ is constant with value 0 .

Assume that we have elements $m_{0}<m_{1}<\ldots<m_{k}$ in $A$ and

$$
B_{k} \subseteq \ldots \subseteq B_{0} \subseteq A
$$

are such that $m_{j}=\min B_{j-1}$ for all $j \in\{1, \ldots, k\}$, the function

$$
g_{m_{j}}:\left[B_{j-1} \backslash\left\{m_{j}\right\}\right]^{n} \rightarrow 2
$$

is defined as $g_{m_{j}}(y)=g\left(\left\{m_{j}\right\} \cup y\right)$, and $g_{m_{j}} \upharpoonright\left[B_{j}\right]^{n}$ is constant 0 for all $j \in\{1, \ldots, k\}$.

Then let $m_{k+1}=\min B_{k}$, and let $g_{m_{k+1}}:\left[B_{k} \backslash\left\{m_{k+1}\right\}\right]^{n} \rightarrow 2$ be defined as

$$
g_{m_{k+1}}(y)=g\left(\left\{m_{k+1}\right\} \cup y\right) .
$$

By the inductive hypothesis and our assumption, there exists

$$
B_{k+1} \subseteq B_{k} \backslash\left\{m_{k+1}\right\}
$$

infinite such that $g_{m_{k+1}} \upharpoonright\left[B_{k+1}\right]^{n}$ is constant 0 .
Inductively we have constructed $H=\left\{m_{i}: i \in \omega\right\}$. We claim that $g \upharpoonright$ $[H]^{n+1}$ is constant 0 , which yielding a contradiction to our initial assumption.

For $y \in[H]^{n+1}$, the least element of $y$ is $m_{j}$, for some $j \in \omega$. Then

$$
g(y)=g\left(\left\{m_{j}\right\} \cup\left(y \backslash\left\{m_{j}\right\}\right)\right)=0
$$

because $y \backslash\left\{m_{j}\right\} \in\left[B_{j+1}\right]^{n}$. This proves the claim.
For every $n \in \omega$ we define $D_{n}=\{(a, A) \in P:|a| \geqslant n\}$. Note that $D_{n}$ is a dense set for all $n \in \omega$ and consider $\mathscr{D}=\left\{D_{n}: n \in \omega\right\}$. Let $G$ a $\mathscr{D}$-generic filter in $\mathbb{P}_{g, 1}$ and

$$
S:=\bigcup\left\{a \in[\omega]^{<\omega}: \exists A \in[\omega]^{\omega} \text { such that }(a, A) \in G\right\} .
$$

By the claim we have that $S$ is infinite.
We shall prove that and $g \upharpoonright[S]^{n+1}$ is constant 1 . Let $y \in[S]^{n+1}$, where $y=\left\{y_{0}, \ldots, y_{n}\right\}$, then there exist $\left(a_{0}, A_{0}\right), \ldots,\left(a_{n}, A_{n}\right)$ in $G$ such that every element $y_{j} \in a_{j}$ for all $j \leqslant n$. Since $G$ is a filter there is $(b, B) \in G$ such that $(b, B)$ extends $\left(a_{j}, A_{j}\right)$ for all $j \leqslant n$. Then $y \in[b]^{n+1}$, and so $g(y)=1$. Hence $S$ is $g$-homogeneous with color 1 .

Given a partition $g:[\omega]^{2} \rightarrow 2$, by Ramsey's Theorem there exist $X \in[\omega]^{\omega}$ and some $i \in\{0,1\}$ such that $X$ is $g$-homogeneous with color $i$. We define

$$
\mathbb{M}_{X}=\left\{(s, A): s \in[X]^{<\omega}, A \in[X]^{\omega} \text { and } \max s<\min A\right\}
$$

and we define the ordering relation between elements in $\mathbb{M}_{X}$ as in Mathias forcing. Then $\mathbb{M}_{X}$ order is isomorphic to Mathias forcing.

If $\mathbb{P}$ is a partial order and $p \in \mathbb{P}, \mathbb{P} \upharpoonright p$ is the suborder of $\mathbb{P}$ whose elements are in $\mathbb{P}$ below $p$.

Theorem 2.3. The following statements are equivalent:

1. $\mathbb{P}_{g, i}$ is non trivial, i.e., every condition can be extended in the finite part.
2. Every infinite set of natural numbers has an infinite set $X$ such that $\mathbb{P}_{g, i} \upharpoonright(\emptyset, X)=\mathbb{M}_{X}$.
3. Every infinite set of natural numbers has an infinite set $X$ such that $X$ is a $g$-homogeneous set of color $i$.

Proof. $1 \rightarrow 2$. Assume that $\mathbb{P}_{g, i}$ is non trivial. Let $Y$ be an infinite set of natural numbers. Consider the condition $(\emptyset, Y) \in \mathbb{P}_{g, i}$ and let $G$ be a $\mathbb{P}_{g, i^{-}}$ generic filter such that $(\emptyset, Y) \in \mathbb{P}_{g, i}$. Then there exists $X \in[Y]^{\omega}$ such that $g \upharpoonright[X]^{2}$ is constant with value $i$.

Consider the partial order $\mathbb{P}_{g, i} \upharpoonright(\emptyset, X)$, i.e., all elements in $\mathbb{P}_{g, i}$ below condition $(\emptyset, X)$. Then the $i d$ function is an isomorphism between the partial orders $\left(\mathbb{P}_{g, i} \upharpoonright(\emptyset, X), \leqslant^{*}\right)$ and $\left(\mathbb{M}_{X}, \leqslant\right)$.
$2 \rightarrow 3$. Let $Y$ be a infinite set of natural numbers, by assumption there exists $X \in[Y]^{2}$ such that $\mathbb{P}_{g, i} \upharpoonright(\emptyset, X)=\mathbb{M}_{X}$. The id function is an isomorphism between the partial orders $\left(\mathbb{P}_{g, i} \upharpoonright(\emptyset, X), \leqslant^{*}\right)$ and $\left(\mathbb{M}_{X}, \leqslant\right)$. Let $\{n, m\} \in[X]^{2}$. Assume that $n<m$ and let

$$
A:=\{x \in X: x>n\} \text { and } B:=\{x \in X: x>m\} .
$$

Then the conditions $(\{n\}, A),(\{n, m\}, B)$ belong to $\mathbb{M}(X)$ and $(\{n, m\}, B) \leqslant$ $(\{n\}, A)$. By the assumption $(\{n, m\}, B) \leqslant^{*}(\{n\}, A)$, in particular $g(\{n, m\})=$ $i$. Hence $g \upharpoonright[X]^{2}$ is contant $i$.
$3 \rightarrow 1$. It is trivial.

## Chapter 3

## Hindman's Theorem

In this chapter we will define a partial order associated to Hindman's theorem ([13]) and we will give a proof of Hindman's theorem using forcing arguments relative to this partial ordering. Our proof uses some lemmas from Baumgartner's proof of the theorem, in [2].

Definition 3.1. Let $H \subseteq \omega$. $F S(H)=\left\{\sum_{n \in a} n: a \in[H]^{<\omega}\right.$ and $\left.a \neq \emptyset\right\}$, $F S(H)$ is called the sum-set of $H$. For example:

$$
F S(\{2,3,7\})=\{2,3,5,7,9,10,12\}
$$

Theorem 3.2 (Hindman [13]). If $\omega$ is finitely colored, then there exists $H$ an infinite subset of $\omega$, such that $F S(H)$ is monochromatic.

Call $\mathscr{D}$ a disjoint collection if $\mathscr{D}$ is an infinite set of pairwise disjoint finite subsets of natural numbers.

Theorem 3.3 (Baumgartner [2]). Let $[\omega]^{<\omega}=\mathscr{C}_{0} \dot{\cup} \ldots \dot{\cup} \mathscr{C}_{k}$. Then there exist $0 \leqslant i \leqslant k$ and a disjoint collection $\mathscr{D}$ with $F U(\mathscr{D}) \subseteq \mathscr{C}_{i}$.

Lemma 3.4. Theorem 3.3 implies Hindman's Theorem.
Proof. Let $k \geqslant 1$ be a natural number and let $h: \omega \rightarrow k$ be a coloring of $\omega$ with $k$ colors. Consider the canonical bijection $g:[\omega]^{<\omega} \rightarrow \omega$, that assings each $s \in[\omega]^{<\omega}$ to $n_{s}=\sum_{i \in s} 2^{i}$. Then $[\omega]^{<\omega}=\mathscr{C}_{0} \dot{U} \ldots \dot{\cup} \mathscr{C}_{k-1}$ where

$$
\mathscr{C}_{i}=\left\{s \in[\omega]^{<\omega}: h(g(s))=i\right\}
$$

for $i \in\{0, \ldots, k-1\}$. By Theorem 3.3 there exists $0 \leqslant i<k$ and a disjoint collection $\mathscr{D}$ with $F U(\mathscr{D}) \subseteq \mathscr{C}_{i}$.

Let $H:=\{g(d): d \in \mathscr{D}\}$. It is clear that $H \subseteq \omega$ is infinite. Let $s \in[H]^{<\omega}$ with $s \neq \emptyset$. Then $s=\left\{a_{0}, \ldots, a_{m}\right\}$, where $a_{0}=g\left(d_{j_{0}}\right), \ldots, a_{m}=g\left(d_{j_{m}}\right)$.

We have:

$$
\begin{gathered}
h\left(a_{0}+\ldots+a_{m}\right)=h\left(g\left(d_{j_{0}}\right)+\ldots+g\left(d_{j_{m}}\right)\right)=h\left(\sum_{l \in d_{j_{0}}} 2^{l}+\ldots+\sum_{l \in d_{j_{m}}} 2^{l}\right)= \\
\\
h\left(\sum_{l^{\prime} \in \cup_{l=0}^{l=m} d_{j_{l}}} 2^{l^{\prime}}\right)=h\left(g\left(\bigcup_{l=0}^{l=m} d_{j_{l}}\right)\right)=i
\end{gathered}
$$

Hence $h \upharpoonright F S(H)$ is monochromatic.

On the class of disjoint collections of finite subsets of natural numbers, we define a partial order $\sqsubseteq$ by $\mathscr{D}_{1} \sqsubseteq \mathscr{D}$ if and only if $\mathscr{D}_{1} \subseteq F U(\mathscr{D})$.

Definition 3.5. Given a collection of finite subsets of natural numbers $\mathscr{C}$, we say $\mathscr{C}$ is large for $\mathscr{D}$ if $\mathscr{C} \cap F U\left(\mathscr{D}_{1}\right) \neq \emptyset$ for all $\mathscr{D}_{1} \sqsubseteq \mathscr{D}$.

Lemma 3.6 (Decomposition Lemma, Baumgartner [2]). Assume that $\mathscr{C}$ is large for $\mathscr{D}$ and $\mathscr{C}=\mathscr{C}_{0} \dot{\dot{U}} \ldots \dot{\cup} \mathscr{C}_{k}$. Then there exists $0 \leqslant i \leqslant k$ and $\mathscr{D}_{1} \sqsubseteq \mathscr{D}$ such that $\mathscr{C}_{i}$ is large for $\mathscr{D}_{1}$.

Proof. By induction on $k$.
Let $k=1$. If $\mathscr{C}=\mathscr{C}_{0} \cup \mathscr{C}_{1}$ and $\mathscr{C}_{0}$ is not large for $\mathscr{D}$, then $\mathscr{C}_{0} \cap F U\left(\mathscr{D}_{1}\right)=\emptyset$ for some $\mathscr{D}_{1} \sqsubseteq \mathscr{D}$. Let $\mathscr{D}_{2} \sqsubseteq \mathscr{D}_{1}$. Since $\mathscr{C}$ is large for $\mathscr{D}, \mathscr{C} \cap F U\left(\mathscr{D}_{2}\right) \neq \emptyset$, so $\mathscr{C}_{1} \cap F U\left(\mathscr{D}_{2}\right) \neq \emptyset$ (because $F U\left(\mathscr{D}_{2}\right) \subseteq F U\left(\mathscr{D}_{1}\right)$ and $\left.\mathscr{C}_{0} \cap F U\left(\mathscr{D}_{1}\right)=\emptyset\right)$. Hence $\mathscr{C}_{1}$ is large for $\mathscr{D}_{1}$.

Assume now that the statement is true for $k$.
Let $\mathscr{C}=\mathscr{C}_{0} \dot{U} \ldots \dot{\cup} \mathscr{C}_{k+1}$. Assume that $\mathscr{C}_{0}$ is not large for $\mathscr{D}$. Then there is $\mathscr{D}_{1} \sqsubseteq \mathscr{D}$ that is large for $\mathscr{C}_{1} \dot{\cup} \ldots \dot{\cup} \mathscr{C}_{k+1}$. By the inductive hypothesis, there is $\mathscr{D}_{2} \sqsubseteq \mathscr{D}_{1}$ and $i \in\{1, \ldots, k+1\}$ such that $\mathscr{D}_{2}$ is large for $\mathscr{C}_{i}$.

Define $\mathscr{C}-s:=\{c \in \mathscr{C}: c \cap s=\emptyset\}$.

Lemma 3.7 (Baumgartner). If $\mathscr{C}$ is large for $\mathscr{D}$ and $s$ is a finite subset of $\omega$, then $\mathscr{C}-s$ is large for $\mathscr{D}$.

Proof. Suppose that there is $\mathscr{D}_{1} \sqsubseteq \mathscr{D}$ such that $(\mathscr{C}-s) \cap F U\left(\mathscr{D}_{1}\right)=\emptyset$. Let $\mathscr{D}_{2}=\left\{d \in \mathscr{D}_{1}: d \cap s=\emptyset\right\}$. Note that $\mathscr{D}_{2}$ is infinite since $s$ is finite. Then $\mathscr{C} \cap F U\left(\mathscr{D}_{2}\right)=\emptyset$, but $\mathscr{D}_{2} \sqsubseteq \mathscr{D}$, and we reach a contradiction.

Lemma 3.8 (Baumgartner). If $\mathscr{C}$ is large for $\mathscr{D}$, there exist $s \in F U(\mathscr{D})$ and $\mathscr{D}_{1} \sqsubseteq \mathscr{D}-s$ such that $\mathscr{C}_{1}=\{t \in \mathscr{C}-s: t \cup s \in \mathscr{C}\}$ is large for $\mathscr{D}_{1}$.

Proof. Let us first prove the following.
Claim 3.9. There exist $n$ and $d_{1}, \ldots, d_{n} \in \mathscr{D}$ such that, for every $d_{n+1} \in$ $F U(\mathscr{D})$ disjoint from $d_{1} \cup \ldots \cup d_{n}$, there exists non-empty $I \subseteq\{1, \ldots, n\}$ such that $d_{n+1} \cup \bigcup_{i \in I} d_{i} \in \mathscr{C}$.

Proof of Claim: Suppose, otherwise. If $I \subseteq\{1, \ldots, n\}$, let us write $d_{I}$ for $\bigcup_{i \in I} d_{i}$. Thus, for all $n \in \omega$ and for all $d_{1}, \ldots, d_{n} \in \mathscr{D}$ there is $d_{n+1} \in F U(\mathscr{D})$ disjoint from $d_{1} \cup \ldots \cup d_{n}$ such that $d_{n+1} \cup d_{I} \notin \mathscr{C}$ for all $I \subseteq\{1, \ldots, n\}$, $I \neq \emptyset$.

Suppose that we have $d_{1}, \ldots, d_{k}$, elements of $F U(\mathscr{D})$, that are pairwise disjoint and such that every finite union of them does not belong to $\mathscr{C}$. By assumption, there is $d_{k+1} \in F U(\mathscr{D})$ disjoint from $d_{1} \cup \ldots \cup d_{k}$ such that $d_{k+1} \cup d_{I} \notin \mathscr{C}$ for all $I \subseteq\{1, \ldots, k\}, I \neq \emptyset$. In this way, we construct $\mathscr{D}^{\prime}=\left\{d_{1}, d_{2}, \ldots\right\} \sqsubseteq \mathscr{D}$ such that $\mathscr{C} \cap F U\left(\mathscr{D}^{\prime}\right)=\emptyset$, which is a contradiction.

Continuing with the proof of the Lemma, fix $d_{1}, \ldots, d_{n} \in \mathscr{D}$ and write $d^{*}$ for $d_{1} \cup \ldots \cup d_{n}$. For $\emptyset \neq I \subseteq\{1, \ldots, n\}$ we let

$$
\mathscr{C}_{I}=\left\{c \in \mathscr{C}: c \cap d^{*}=\emptyset, c \cup d_{I} \in \mathscr{C}\right\} .
$$

We claim that $\mathscr{C}_{I_{1}} \dot{\cup} \ldots \dot{\cup} \mathscr{C}_{I_{k}}$ is large for $\mathscr{D}$, where $\left\{I_{1}, \ldots, I_{k}\right\}$ is a list of all nonempty subsets of $\{i, \ldots, n\}$. For if $\mathscr{D}^{\prime} \sqsubseteq \mathscr{D}$, then define

$$
\mathscr{D}^{*}:=\left\{d \in \mathscr{D}^{\prime}: d>d^{*}\right\} .
$$

So, $\mathscr{D}^{*} \sqsubseteq \mathscr{D}$ and since $\mathscr{C}$ is large for $\mathscr{D}$ there exists $d \in F U\left(\mathscr{D}^{*}\right) \cap \mathscr{C}$. In particular, $d \in F U\left(\mathscr{D}^{\prime}\right) \cap F U(\mathscr{D})$ and $d$ is disjoint from $d^{*}$ so $d \cup d_{I_{i}} \in \mathscr{C}$ for some $i \in\{1, \ldots, k\}$. Thus,

$$
d \in\left\{c \in \mathscr{C}: c \cap d^{*}=\emptyset \text { and } c \cup d_{I_{i}} \in \mathscr{C}\right\}=\mathscr{C}_{I_{i}} .
$$

Since $\mathscr{D}-d^{*} \sqsubseteq \mathscr{D}$,

$$
\mathscr{C}_{I_{1}} \dot{\cup} \ldots \dot{\cup} \mathscr{C}_{I_{k}}
$$

is also large for $\mathscr{D}-d^{*}$, so by Lemma 3.6 there is $\mathscr{C}_{I_{i}}$ large for some $\mathscr{D}^{\prime} \sqsubseteq$ $\mathscr{D}-d^{*}$. And this proves the lemma with $s=d_{I_{i}}$, because $\mathscr{C}_{I_{i}} \subseteq \mathscr{C}_{1}$.

Lemma 3.10 (Baumgartner). If $\mathscr{C}$ is large for $\mathscr{D}$, then there exist $s^{\prime} \in$ $F U(\mathscr{D}) \cap \mathscr{C}$ and $\mathscr{D}^{\prime} \sqsubseteq \mathscr{D}-s^{\prime}$, such that

$$
\mathscr{C}^{\prime}=\left\{t \in \mathscr{C}: t \cap s^{\prime}=\emptyset \text { and } t \cup s^{\prime} \in \mathscr{C}\right\}
$$

is large for $\mathscr{D}^{\prime}$.
Proof. Notice that only the requirement $s^{\prime} \in \mathscr{C}$ distinguishes Lemma 3.10 from Lemma 3.8. We apply Lemma 3.8 repeatedly. Beginning with $\mathscr{C}_{0}=\mathscr{C}$, $\mathscr{D}_{0}=\mathscr{D}$, we find, for $i \geqslant 1, s_{i}, \mathscr{C}_{i}, \mathscr{D}_{i}$ with $s_{i+1} \in F U\left(\mathscr{D}_{i}\right)$ so that

$$
\mathscr{C}_{i+1}=\left\{T \in \mathscr{C}_{i}: T \cap s_{i+1}=\emptyset, T \cup s_{i+1} \in \mathscr{C}_{i}\right\}
$$

is large for $\mathscr{D}_{i+1} \sqsubseteq \mathscr{D}_{i}$ and $D \cap \bigcup_{j=1}^{i+1} s_{j}=\emptyset$, for all $D \in F U\left(\mathscr{D}_{i+1}\right)$.
Note that $\mathscr{C}_{i+1} \subseteq \mathscr{C}_{i}$ for all $i \in \omega$, and if $T \in \mathscr{C}_{i+1}$ then $T \cup s \in \mathscr{C}$ and $T \cap s=\emptyset$ for all partial unions $s$ of the $s_{1}, \ldots, s_{i+1}$.

We define $\mathscr{D}^{*}:=\left\{s_{i}: i \geqslant 1\right\}$. So, $\mathscr{D}^{*}$ is a disjoint collection and $\mathscr{D}^{*} \sqsubseteq \mathscr{D}$. Since $F U\left(\mathscr{D}^{*}\right) \cap \mathscr{C} \neq \emptyset$, we can find $i_{1}<\ldots<i_{k}$ such that

$$
s^{\prime}=s_{i_{1}} \cup \ldots \cup s_{i_{k}} \in \mathscr{C}
$$

If $t \in \mathscr{C}_{i_{k}}$, then $t \in \mathscr{C}^{\prime}$ and Lemma 3.10 holds with $\mathscr{D}^{\prime}=\mathscr{D}_{i_{k}}$, as $\mathscr{C}_{i_{k}} \subseteq$ $\mathscr{C}^{\prime}$.

Notice that given a disjoint collection $\mathscr{D}$ we can obtain an infinite block sequence from it, recall Definition 1.31, in fact, some $\mathscr{D}^{\prime} \subseteq \mathscr{D}$ is an infinite block sequence. By convenience when we say $x$ is an element of a finite (an infinite) block sequence, means that $x$ is equal to some element of the range of the finite (infinite) block sequence.

Theorem 3.11. If $\mathscr{C}$ is large for $\mathscr{D}^{\prime}$, then there exists $\mathscr{E} \sqsubseteq \mathscr{D}^{\prime}$ such that $F U(\mathscr{E}) \subseteq \mathscr{C}$.

Proof. Assume that $\mathscr{C}$ is large for $\mathscr{D}^{\prime}$. We are going to define a partial order and by a forcing argument we shall obtain $\mathscr{E}$ with the desired property.

We define

$$
\begin{equation*}
\mathbb{P}_{\mathscr{C}, \mathscr{T}^{\prime}}=\langle P, \leqslant \mathscr{C}\rangle \tag{3.0.1}
\end{equation*}
$$

as follows: the elements of $P$ are of the form $(A, \mathscr{D})$, where $A=\left\langle x_{0}, \ldots, x_{m}\right\rangle$ is a finite block sequence of finite subsets of natural numbers such that $F U(A) \subseteq \mathscr{C}, \mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$ is an infinite block sequence such that $\mathscr{D} \sqsubseteq \mathscr{D}^{\prime}$ and $A<\mathscr{D}$, i.e., $\max \left(x_{m}\right)<\min \left(d_{0}\right)$, and

$$
\mathscr{C}^{*}=\{y \in F U(\mathscr{D}) \cap \mathscr{C}: \forall x \in F U(A)(x \cup y \in \mathscr{C})\}
$$

is large for $\mathscr{D}$.
Given two elements in $P,(A, \mathscr{D})$ and $(B, \mathscr{B})$, we let $(B, \mathscr{B}) \leqslant \mathscr{C}(A, \mathscr{D})$ if and only if $A$ is an initial subsequence of $B$, in this context we only write $B \supseteq A, \mathscr{B} \sqsubseteq \mathscr{D}$ and $\forall x \in B \backslash A(x \in F U(\mathscr{D}))$.

Note that $\left(\left\rangle, \mathscr{D}^{\prime}\right) \in P\right.$ and the ordering relation $\leqslant \mathscr{C}$ is reflexive and transitive.

Claim 3.12. Every condition in $P$ can be extended in the finite part.
Proof of Claim: Let $(A, \mathscr{D})$ be a condition in $P$, with $A=\left\langle x_{0}, \ldots, x_{m}\right\rangle$. We have, in particular, that $\mathscr{C}^{*}$ is large for $\mathscr{D}$.

By Lemma 3.10 there are $s \in \mathscr{C}^{*} \cap F U(\mathscr{D})$ and $\mathscr{E} \sqsubseteq \mathscr{D}-s$ such that

$$
\mathscr{C}^{\prime}=\left\{z \in \mathscr{C}^{*}: s \cap z=\emptyset \text { and } z \cup s \in \mathscr{C}^{*}\right\}
$$

is large for $\mathscr{E}$.
Since $s \in \mathscr{C}^{*}, s \in F U(\mathscr{D}) \cap \mathscr{C}$, and for all $x \in F U(A)$ we have $x \cup s \in \mathscr{C}$, so $F U\left(A^{\sim}\langle s\rangle\right) \subseteq \mathscr{C}$.

Let $\mathscr{D}^{*}=\{d \in \mathscr{E}: d>s\}$.
We shall prove that the set

$$
\mathscr{F}:=\left\{y \in F U\left(\mathscr{D}^{*}\right) \cap \mathscr{C}: \forall x \in F U\left(A^{\wedge}\langle s\rangle\right)(x \cup y \in \mathscr{C})\right\}
$$

is large for $\mathscr{D}^{*}$. Let $\mathscr{D}^{\prime \prime} \sqsubseteq \mathscr{D}^{*}$. Since $\mathscr{C}^{\prime}$ is large for $\mathscr{E}, F U\left(\mathscr{D}^{\prime \prime}\right) \cap \mathscr{C}^{\prime} \neq \emptyset$. So there exists $z \in F U\left(\mathscr{D}^{\prime \prime}\right)$ such that $z \in \mathscr{C}^{*}, z>s$, and $z \cup s \in \mathscr{C}^{*}$. Thus, $z \in \mathscr{F}$.

Hence $\left(A^{\wedge}\langle s\rangle, \mathscr{D}^{*}\right) \in P$ and $\left(A^{\wedge}\langle s\rangle, \mathscr{D}^{*}\right) \leqslant \mathscr{C}(A, \mathscr{D})$. We have proved the Claim.

For every $n \in \omega$ we define $D_{n}:=\{(A, \mathscr{D}) \in P:|A| \geqslant n\}$. Note that $D_{n}$ is a dense set for all $n \in \omega$ and consider $D=\left\{D_{n}: n \in \omega\right\}$. Let $G$ a $D$-generic filter in $\mathbb{P}_{\mathscr{C}, \mathscr{V}^{\prime}}$ and let

$$
\mathscr{E}:=\bigcup\{A: \exists \mathscr{D} \text { such that }(A, \mathscr{D}) \in G\} .
$$

It is clear, by standard density arguments, that $\mathscr{E}$ is infinite. Moreover, $F U(\mathscr{E}) \subseteq \mathscr{C}$, because if $x \in F U(\mathscr{E})$, then there exist $x_{0}, \ldots, x_{m} \in \mathscr{E}$ such that $x=\bigcup_{j=0}^{j=m} x_{j}$, hence there are $\left(A_{j}, \mathscr{D}_{j}\right) \in G$ such that $x_{j}$ is an element of the finite block sequence $A_{j}$. Since $G$ is a filter there exists $(B, \mathscr{D}) \in G$ such that $(B, \mathscr{D}) \leqslant \mathscr{C}\left(A_{j}, \mathscr{D}_{j}\right)$ for all $j \in\{0, \ldots, m\}$. By definition of the partial order, $F U(B) \subseteq \mathscr{C}$, and so $x \in \mathscr{C}$.

Corollary 3.13. If $[\omega]^{<\omega}=\mathscr{C}_{0} \cup \mathscr{C}_{1}$, then there exists an infinite block sequence $\mathscr{E}$ such that $F U(\mathscr{E}) \subseteq \mathscr{C}_{i}$ for some $i \in\{0,1\}$.

Proof. Since $[\omega]^{<\omega}$ is large for $\langle\{i\}\rangle_{i \in \omega}$, by the Decomposition Lemma 3.6, there is $\mathscr{D}^{\prime} \sqsubseteq\langle\{i\}\rangle_{i \in \omega}$ such that $\mathscr{C}_{i}$ is large for $\mathscr{D}^{\prime}$ for some $i \in\{0,1\}$. By the Theorem 3.11, there exists $\mathscr{E} \sqsubseteq \mathscr{D}^{\prime}$ such that $F U(\mathscr{E}) \subseteq \mathscr{C}_{i}$.

Remark 3.14. The Corollary above remains true if, instead of partitioning $[\omega]^{<\omega}$ one partitions $F U(\mathscr{D})$ where $\mathscr{D}$ is a block sequence. Then the homogeneous set $\mathscr{E}$ given by the theorem is such that $\mathscr{E} \sqsubseteq \mathscr{D}$.

Note that Corollary 3.13 implies Theorem 3.3, by Remark 3.14.

## Chapter 4

## The $\mathbb{P}_{\text {FIN }}$ forcing and its properties

Let $\mathscr{C}$ be a family of finite subsets of natural numbers and $\mathscr{D}$ a infinite block sequence such that $\mathscr{C}$ is large for $\mathscr{D}$. Consider $\mathbb{P}_{\mathscr{C}, \mathscr{D}}$ the partial order that was defined for proving Theorem 3.11, (3.0.1).

Let $\mathbb{P}_{F I N}=\mathbb{P}_{F I N,\langle\{i\}\rangle_{i \in \omega}}$. Note that the elements of $\mathbb{P}_{F I N}$ are all pairs of the form $(A, \mathscr{D})$, where $A=\left\langle x_{0}, \ldots, x_{m}\right\rangle$ is a finite block sequence, and $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$ is an infinite block sequence such that $A<\mathscr{D}$. And the ordering is denoted by $\leqslant_{F I N}$ and defined as in (3.0.1): given two elements $(A, \mathscr{D})$ and $(B, \mathscr{B})$ in $\mathbb{P}_{F I N}$, we let $(B, \mathscr{B}) \leqslant_{F I N}(A, \mathscr{D})$ if and only if $A$ is an initial subsequence of $B, \mathscr{B} \sqsubseteq \mathscr{D}$ and $\forall x \in B \backslash A(x \in F U(\mathscr{D}))$.

From now on, $\mathscr{C}$ is a fixed set that is large for $\langle\{i\}\rangle_{i \in \omega}$, and $\mathbb{P}_{\mathscr{C}}:=$ $\mathbb{P}_{\mathscr{C},\{\{i\}\rangle_{i \in \omega}}$.

Definition 4.1. Let $\Delta=\Delta_{\mathscr{C}}$ be the set of all pairs $(A, \mathscr{D})$ such that $A$ is a finite block sequence and $\mathscr{D}$ is an infinite block sequence with $A<\mathscr{D}$ and $F U\left(A^{\wedge} \mathscr{D}\right) \subseteq \mathscr{C}$. Thus, $\Delta \subseteq \mathbb{P}_{\mathscr{C}}$.

Lemma 4.2. $\Delta$ is a dense subset of $\mathbb{P}_{\mathscr{C}}$.
Proof. Given $(A, \mathscr{D}) \in \mathbb{P}_{\mathscr{C}}$, let

$$
\mathscr{C}^{\prime}=\{y \in F U(\mathscr{D}) \cap \mathscr{C}: \forall x \in F U(A)(x \cup y \in \mathscr{C})\}
$$

By definition of $\mathbb{P}_{\mathscr{C}}, \mathscr{C}^{\prime}$ is large for $\mathscr{D}$, and by the Theorem 3.11 there exists $\mathscr{D}^{\prime} \sqsubseteq \mathscr{D}$ such that $A<\mathscr{D}^{\prime}$ and $F U\left(\mathscr{D}^{\prime}\right) \subseteq \mathscr{C}^{\prime}$. Clearly, $\left(A, \mathscr{D}^{\prime}\right) \leqslant \mathscr{C}(A, \mathscr{D})$.

We check that $\left(A, \mathscr{D}^{\prime}\right) \in \Delta$. Note that $F U(A) \subseteq \mathscr{C}$, by definition of $\mathbb{P}_{\mathscr{C}}$. And $F U\left(\mathscr{D}^{\prime}\right) \subseteq \mathscr{C}^{\prime} \subseteq \mathscr{C}$. If $x \in F U(A)$ and $y \in F U\left(\mathscr{D}^{\prime}\right)$, then since $F U\left(\mathscr{D}^{\prime}\right) \subseteq \mathscr{C}^{\prime}$, we have that $x \cup y \in \mathscr{C}$. That is, $F U\left(A^{\sim} \mathscr{D}^{\prime}\right) \subseteq \mathscr{C}$.

Lemma 4.3. If $(A, \mathscr{D}) \in \Delta$ and $\left(A^{\prime}, \mathscr{D}^{\prime}\right) \leqslant_{F I N}(A, \mathscr{D})$, then $\left(A^{\prime}, \mathscr{D}^{\prime}\right) \in \Delta$.
Proof. Suppose $(A, \mathscr{D}) \in \Delta$ and $\left(A^{\prime}, \mathscr{D}^{\prime}\right) \leqslant_{F I N}(A, \mathscr{D})$.
Let $x \in F U\left(A^{\prime}\right)$ and $y \in F U\left(\mathscr{D}^{\prime}\right)$. We must conclude that $x \cup y \in \mathscr{C}$. Since $x \in F U\left(A^{\prime}\right)$ there are $z \in F U(A)$ and $u \in F U(\mathscr{D})$ such that $x=$ $z \cup u$. Thus $u \cup y \in F U(\mathscr{D})$. But then, since $(A, \mathscr{D}) \in \Delta$ and $z \in F U(A)$, $z \cup(u \cup y)=x \cup y \in \mathscr{C}$, as desired.

Proposition 4.4. If $(A, \mathscr{D}) \in \Delta$ and $\left(A^{\prime}, \mathscr{D}^{\prime}\right) \leqslant_{F I N}(A, \mathscr{D})$, then

$$
\left(A^{\prime}, \mathscr{D}^{\prime}\right) \leqslant \mathscr{C}(A, \mathscr{D}) .
$$

Proof. Assume that $(A, \mathscr{D}) \in \Delta$ and $\left(A^{\prime}, \mathscr{D}^{\prime}\right) \leqslant_{F I N}(A, \mathscr{D})$. Since $\Delta \subseteq \mathbb{P}_{\mathscr{C}}$, to show that $\left(A^{\prime}, \mathscr{D}^{\prime}\right) \leqslant \mathscr{C}(A, \mathscr{D})$ it is enough to see that $\left(A^{\prime}, \mathscr{D}^{\prime}\right) \in \Delta$, which is the case by Lemma 4.3.

Corollary 4.5. If $(A, \mathscr{D}) \in \Delta$ then $\mathbb{P}_{F I N} \upharpoonright(A, \mathscr{D})=\mathbb{P}_{\mathscr{C}} \upharpoonright(A, \mathscr{D})$.
Proof. By Proposition 4.4, owing to the fact that the identity is an embedding of $\mathbb{P}_{\mathscr{C}}$ into $\mathbb{P}_{F I N}$.

Remark 4.6. Suppose $G$ is a $\mathbb{P}_{\mathscr{C}}$-generic filter over $V$, and let $(A, \mathscr{D}) \in \Delta \cap G$ (there is such $(A, \mathscr{D})$ by Lemma 4.2). Thus $G \upharpoonright(A, \mathscr{D})$ is a $\mathbb{P}_{\mathscr{C}} \upharpoonright(A, \mathscr{D})$ generic filter over $V$ and $G$ is the filter generated by $G \upharpoonright(A, \mathscr{D})$. By corollary 4.5, $G \upharpoonright(A, \mathscr{D})$ is a $\mathbb{P}_{\text {FIN }} \upharpoonright(A, \mathscr{D})$-generic filter over $V$. Let $H$ the filter on $\mathbb{P}_{\text {FIN }}$ generated by $G \upharpoonright(A, \mathscr{D})$. Then, $H$ is a $\mathbb{P}_{\text {FIN-generic filter over } V}$ and $H \upharpoonright(A, \mathscr{D})=G \upharpoonright(A, \mathscr{D})$, hence $V[H]=V[G]$.

By the preceding remark for a dense subset of conditions $\left(A^{\prime}, \mathscr{D}^{\prime}\right)$ of $\mathbb{P}_{\mathscr{C}, \mathscr{D}}$ we have $\mathbb{P}_{\mathscr{C}, \mathscr{D}} \upharpoonright\left(A^{\prime}, \mathscr{D}^{\prime}\right) \approx \mathbb{P}_{F I N} \upharpoonright\left(A^{\prime}, \mathscr{D}^{\prime}\right)$, thus studying $\mathbb{P}_{F I N}$ allow us to know $\mathbb{P}_{\mathscr{C}, \mathscr{D}}$, where $\mathscr{C}$ is large for $\mathscr{D}$, because of this, from now on we restrict our attention to $\mathbb{P}_{\text {FIN }}$.

The first question that we ask is: What is the relation between Mathias forcing and $\mathbb{P}_{\text {FIN }}$ ? Are they equivalent? If we look carefully at the definition of $\mathbb{P}_{\text {FIN }}$ we may also ask about the relation between Matet forcing and $\mathbb{P}_{\text {FIN }}$. Are they equivalent? In order to answer these questions, we need to discover what properties does $\mathbb{P}_{\text {FIN }}$ have.

Let $G$ be a $\mathbb{P}_{F I N}$ generic filter over some ground model. Then

$$
\mathscr{D}_{G}^{*}=\bigcup\{A: \exists \mathscr{D}(A, \mathscr{D}) \in G\}
$$

is an infinite block sequence $\left\langle a_{i}^{G}\right\rangle_{i \in \omega}$.
Like the Mathias real, the generic block sequence $\left\langle a_{i}^{G}\right\rangle_{i \in \omega}$ reconstructs the generic filter.

Given a finite block sequence $A$ and an infinite block sequence $\mathscr{D}$, we define $\mathscr{D}-A$ as the infinite block sequence whose elements $d$ are such that for all $a \in A, a<d$.

Lemma 4.7. The filter $G$ is determined by $\mathscr{D}^{*}=\mathscr{D}_{G}^{*}$, as $G$ is precisely the set

$$
\begin{aligned}
& G_{\mathscr{D}^{*}}:=\left\{(A, \mathscr{D}) \in \mathbb{P}_{F I N}: A \text { is an initial block sequence of } \mathscr{D}^{*}\right. \\
& \text { and } \left.\mathscr{D}^{*}-A \sqsubseteq \mathscr{D}\right\} .
\end{aligned}
$$

Proof. It is clear that $G_{\mathscr{D}^{*}}$ is a filter.
So let's see that $G=G_{\mathscr{D}^{*}}$.
Let $(A, \mathscr{D}) \in G$. Since $\mathscr{D}^{*}=\bigcup\{A: \exists \mathscr{D}(A, \mathscr{D}) \in G\}$, we have $A$ is a finite initial part of $\mathscr{D}^{*}$. Let $x \in \mathscr{D}^{*}-A$. There is $(B, \mathscr{B}) \in G$ such that $x \in B$. Since $G_{\mathscr{D}^{*}}$ is a filter, there is $(C, \mathscr{C}) \leqslant(A, \mathscr{D}),(B, \mathscr{B})$ so $x \in C$ and on the other hand $A<x$ which implies $x \in C \backslash A$. Thus $x \in F U(\mathscr{D})$ and $(A, \mathscr{D}) \in G_{\mathscr{D}^{*}}$.

Let $(A, \mathscr{D}) \in G_{\mathscr{D}^{*}}$. We will show that $(A, \mathscr{D})$ is compatible with all $\left(B, \mathscr{D}^{\prime}\right)$ in $G$. Let $\left(B, \mathscr{D}^{\prime}\right) \in G$, in particular we have that $B$ is an initial part of $\mathscr{D}^{*}$, so $A \subseteq B$ or $B \subseteq A$. Assume that $A \subseteq B . \mathscr{D}^{*}-A \sqsubseteq \mathscr{D}$ and since $\left(B, \mathscr{D}^{\prime}\right) \in G$ we obtain $\mathscr{D}^{*}-B \subseteq F U\left(\mathscr{D}^{\prime}\right)$, in particular $F U(\mathscr{D}) \cap F U\left(\mathscr{D}^{\prime}\right)$ is infinite. We can obtain an infinite block sequence of elements in $F U(\mathscr{D}) \cap F U\left(\mathscr{D}^{\prime}\right), \mathscr{E}$, so $\mathscr{E} \sqsubseteq \mathscr{D}, \mathscr{D}^{\prime}$ then $(B, \mathscr{E}) \leqslant(A, \mathscr{D}),\left(B, \mathscr{D}^{\prime}\right)$. Therefore $(A, \mathscr{D}) \in G$. We have proved the claim.

## 4.1 $\mathbb{P}_{\text {FIN }}$ is not equivalent to Matet forcing

$\mathbb{P}_{\text {FIN }}$ and Matet forcing are not equivalent forcing notions. This is a consequence of the following.

Lemma 4.8. Let $f$ be a function from $[\omega]^{<\omega}$ to $\omega$ in $V$ such that $f[\mathscr{D}]$ is infinite for all $\mathscr{D} \in(F I N)^{\omega}$ and such that for all $\mathscr{D} \in(F I N)^{\omega}, f[F U(\mathscr{D})] \subseteq$ $f[\mathscr{D}]$. Suppose $\mathscr{D}^{*}$ is a block sequence that is $\mathbb{P}_{\text {FIN-generic over } V \text {. Then }}$ $x=f\left[\mathscr{D}^{*}\right]$ is a Mathias real over $V$.

Proof. Let $\mathscr{A} \subseteq[\omega]^{\omega}$ be a maximal almost disjoint family in $V$ and suppose $G$ is a $\mathbb{P}_{F I N^{-}}$-generic filter over $V$. Let

$$
D=\left\{(A, \mathscr{D}) \in \mathbb{P}_{F I N}: \exists a \in \mathscr{A} \text { such that } f[\mathscr{D}] \subseteq a\right\}
$$

Claim 4.9. $D$ is a dense subset of $\mathbb{P}_{\text {FIN }}$.
Proof of Claim: Let $(A, \mathscr{D}) \in \mathbb{P}_{\text {FIN }}$. Since $|f[\mathscr{D}]|=\aleph_{0}$, there is $a \in \mathscr{A}$ such that $|a \cap f[\mathscr{D}]|=\aleph_{0}$. Consider $\mathscr{E} \sqsubseteq \mathscr{D}$ such that $f[\mathscr{E}] \subseteq a$, then $(A, \mathscr{E}) \leqslant(A, \mathscr{D})$ and $(A, \mathscr{E}) \in D$. This proves the claim.

Thus $G \cap D \neq \emptyset$, and so there is $(A, \mathscr{D}) \in G \cap D$, which implies the existence of an element $b \in \mathscr{A}$ such that $f[\mathscr{D}] \subseteq b$.

Assume $|A|=m$. For all $k>m, d_{k}^{G} \in F U(\mathscr{D})$ where $\mathscr{D}^{*}=\left\langle d_{i}^{G}\right\rangle_{i \in \omega}$ is the $\mathbb{P}_{F I N}$-generic block sequence added by $G$. We have $f\left(d_{k}^{G}\right) \in f[\mathscr{D}] \subseteq b$.

Letting $x=f\left[\mathscr{D}^{*}\right]$, we have that $x \subseteq^{*} b$. Thus $x$ is a Mathias real by Theorem 1.25 .

Corollary 4.10. If $\mathscr{D}^{*}$ is the generic infinite block sequence added by $\mathbb{P}_{\text {FIN }}$, over $V$, then the images of $\mathscr{D}^{*}$ under the functions min and max are Mathias reals over $V$.

Corollary 4.11. $\mathbb{P}_{\text {FIN }}$ is not equivalent to Matet forcing.
Proof. Since $\mathbb{P}_{\text {FIN }}$ adds a Mathias real, we have that $\mathbb{P}_{\text {FIN }}$ adds a dominating real by Lemma 1.23. Thus it adds a splitting real, see Proposition 3 in [11], but Matet forcing does not add splitting reals, by Corollary 1.48.

Note that given a natural number $n \geqslant 1$, the set $D_{n}$ defined as

$$
\begin{equation*}
\left\{(A, \mathscr{D}) \in \mathbb{P}_{F I N}: \forall x \in \mathscr{D}(|x| \geqslant n)\right\} \tag{4.1.1}
\end{equation*}
$$

is a dense set.
Let $k \in \omega$. We define a function $f_{k}: F I N \rightarrow \omega$ as follows: for $x \in F I N$, $f_{k}(x)$ is equal to the $k+1$-th element of $x$, if $|x|>k$, or equal to 0 , otherwise.

Lemma 4.12. Let $k \in \omega$. Suppose $(A, \mathscr{D}) \in \mathbb{P}_{\text {FIN }}$ is such that $|x|>k$ for each $x \in \mathscr{D}$. Suppose $G$ is a $\mathbb{P}_{\text {FIN }}$-generic filter over $V$ is such that $(A, \mathscr{D}) \in G$. Let $m_{0}$ be the Mathias-generic real over $V$ obtained by applying the function $f_{0}$ to $\mathscr{D}^{*}$, where $\mathscr{D}^{*}$ is the $\mathbb{P}_{\text {FIN }}$-generic block sequence added by $G$, and let $m_{k}$ be the Mathias real obtained by applying the function $f_{k}$ to $\mathscr{D}^{*}$. Then $V\left[m_{0}\right]=V\left[m_{k}\right]$.

Proof. Suppose $(A, \mathscr{D}) \in G$, where $A=\left\langle a_{0}, \ldots, a_{m}\right\rangle$ and $m_{0}=\left\langle x_{i}\right\rangle_{i \in \omega}$. Then we define the sequence $\left\langle y_{i}\right\rangle_{i \in \omega}$ as follows: $y_{j}=f_{k}\left(a_{j}\right)$ for all $j \leqslant m$, and for $j>m, y_{j}$ is the $k$-th element of the unique element $d \in \mathscr{D}$ such that $x_{j} \in d$. Then $m_{k}=\left\langle y_{i}\right\rangle_{i \in \omega} \in V\left[m_{0}\right]$, so $V\left[m_{k}\right] \subseteq V\left[m_{0}\right]$.

Assume that we have $m_{k}=\left\langle y_{i}\right\rangle_{i \in \omega}$. Then we define the sequence $\left\langle x_{i}\right\rangle_{i \in \omega}$ as follows: $x_{i}=f_{0}\left(a_{i}\right)$ for all $i \leqslant m$, and for all $i>m, x_{i}$ is the minimum
element of the unique set $d \in \mathscr{D}$ such that $y_{i} \in d$. Then $m_{0}=\left\langle x_{i}\right\rangle_{i \in \omega} \in V\left[m_{k}\right]$. So $V\left[m_{0}\right] \subseteq V\left[m_{k}\right]$.

Lemma 4.13. If $G$ is a $\mathbb{P}_{F I N}$ generic filter over $V$, then $V[G]=V\left[\left\langle m_{i}\right\rangle_{i \in \omega}\right]$, where for each $i \in \omega, m_{i}$ is the image of $\mathscr{D}^{*}$, the generic block sequence, under the function $f_{i}$.

Proof. Let $\mathscr{D}^{*}=\left\langle d_{i}^{G}\right\rangle_{i \in \omega}$ be the infinite block sequence added by $G$. For each $k \in \omega$ we apply the function $f_{k}:[\omega]^{<\omega} \rightarrow \omega$ to each element of $\mathscr{D}^{*}$, thus obtaining a sequence $m_{k}=\left\langle m_{j}^{k}\right\rangle_{j \in \omega}$, where $m_{j}^{k}=f_{k}\left(d_{j}^{G}\right)$ for all $j \in \omega$. Clearly $\left\langle m_{k}\right\rangle_{k \in \omega} \in V[G]$, and so $V\left[\left\langle m_{k}\right\rangle_{k \in \omega}\right] \subseteq V[G]$.

We shall show that $G \in V\left[\left\langle m_{i}\right\rangle_{i \in \omega}\right]$.
Define, for $k \in \omega$,

$$
d_{k}^{\prime}:=\left\{m_{k}^{i}: i \in \omega\right\} .
$$

Note that $\left|d_{k}^{\prime}\right|<\aleph_{0}$ for all $k \in \omega$. For $k \in \omega$, let $d_{k}=d_{k}^{\prime} \backslash\{0\}$. We have that for all $k \in \omega, d_{k}<d_{k+1}$, i.e, $\max d_{k}<\min d_{k+1}$. Put $\mathscr{D}^{*}=\left\langle d_{k}\right\rangle_{k \in \omega}$. We have that $\mathscr{D}^{*} \in V\left[\left\langle m_{i}\right\rangle_{i \in \omega}\right]$ and $G=G_{\mathscr{D}^{*}}$, by Lemma 4.7 $G \in\left[V\left\langle m_{i}\right\rangle_{i \in \omega}\right]$ follows.

Remark 4.14. Note that by Lemma 4.12 all $V\left[\left\langle m_{i}\right\rangle_{i<k}\right]$ (for arbitrary $k$ ) are the same Mathias extension. By Lemma $4.13 V\left[\left\langle m_{i}\right\rangle_{i \in \omega}\right]$ is the $\mathbb{P}_{\text {FIN }}$ extension. We will see later (in section 5.2), that the two are not equivalent, i.e., any $V\left[\left\langle m_{i}\right\rangle_{i<k}\right]$ is strictly contained in $V\left[\left\langle m_{i}\right\rangle_{i \in \omega}\right]$.

## 4.2 $\mathbb{P}_{F I N}$ decomposed as a two-step iteration

In [5] Andreas Blass defines the notion of stable ordered-union filter, and in [8] Tod Eisworth defines the notion of Matet-adequate family. Both of them prove that forcing with this kind of families adjoins a stable-ordered union ultrafilter $\mathscr{U}$. See Definition 1.35, Definition 1.36 and Proposition 1.38 in the Preliminaries section above.

Definition 4.15. Suppose $\mathscr{U}$ is a stable ordered-union ultrafilter. We define a partial order $\mathbb{P}_{\mathscr{U}}$ as follows: the conditions are pairs $(A, \mathscr{D}) \in \mathbb{P}_{F I N}$ such that $F U(\mathscr{D}) \in \mathscr{U}$. The ordering relation on $\mathbb{P}_{\mathscr{U}}$ is the same as in $\mathbb{P}_{F I N}$.

Notice that any two conditions with the same first coordinate are compatible, so $\mathbb{P}_{\mathscr{U}}$ is $\sigma$-centered.

In 1.2.2 of the Preliminaries section we defined the partial ordering $\mathbb{P}^{*}=$ $\left\langle(F I N)^{\omega}, \sqsubseteq^{*}\right\rangle$.
$\mathbb{P}^{*}=\left\langle(F I N)^{\omega}, \sqsubseteq^{*}\right\rangle$ is a Matet-adequate family, see Definition 1.36. Let $G$ be a $\mathbb{P}^{*}$-generic filter, by Proposition 1.38 we add $\mathscr{U}$ a stable ordered-union ultrafilter in the generic extension.

Lemma 4.16. Let $\dot{\mathscr{U}}$ be the canonical $\mathbb{P}^{*}$-name for the $\mathbb{P}^{*}$-generic object, then $\mathbb{P}_{F I N} \approx \mathbb{P}^{*} * \mathbb{P}_{\mathscr{U}}$.

Proof. We have that

$$
\mathbb{P}^{*} * \mathbb{P}_{\mathscr{U}}=\left\{(\mathscr{E},(\dot{A}, \dot{\mathscr{D}})): \mathscr{E} \in \mathbb{P}^{*} \text { and } \mathscr{E} \Vdash_{\mathbb{P}^{*}}(\dot{A}, \dot{\mathscr{D}}) \in \mathbb{P}_{\dot{\mathscr{U}}}\right\} .
$$

Let $h: \mathbb{P}_{F I N} \rightarrow \mathbb{P}^{*} * \mathbb{P}_{\mathscr{U}}$ be defined by: $h(A, \mathscr{D})=(\mathscr{D},(\check{A}, \check{\mathscr{D}}))$.
We shall prove that $h$ is a dense embedding.
It is clear that $h$ preserves $\leqslant$.
Let $(\mathscr{E},(\dot{A}, \dot{\mathscr{D}})) \in \mathbb{P}^{*} * \mathbb{P}_{\mathscr{\mathscr { V }}}$. Since $\mathbb{P}^{*}$ is $\sigma$-closed (Proposition 1.33), there is $\mathscr{E}^{\prime} \sqsubseteq \mathscr{E}$ such that

$$
\mathscr{E}^{\prime} \Vdash " \dot{A}=\check{A} \text { and } \dot{\mathscr{D}}=\check{\mathscr{D}} " \text { for some } A \text { and } \mathscr{D} \text {. }
$$

We have $\left(\mathscr{E}^{\prime},(\check{A}, \check{\mathscr{D}})\right) \in \mathbb{P}^{*} * \mathbb{P}_{\mathscr{\mathscr { O }}}$, and $\left(\mathscr{E}^{\prime},(\check{A}, \check{\mathscr{D}})\right) \leqslant(\mathscr{E},(\dot{A}, \dot{\mathscr{D}}))$. If $G$ is a $\mathbb{P}^{*}$-generic filter over $V$ such that $\mathscr{E}^{\prime} \in G$ then $(A, \mathscr{D}) \in \mathbb{P}_{\mathscr{U}} . \operatorname{So}, F U(\mathscr{D}) \in \mathscr{U}$, and there is $\mathscr{B}$ such that $\mathscr{B} \sqsubseteq \mathscr{E}^{\prime}$ and $\mathscr{B} \sqsubseteq \mathscr{D}$. We have

$$
h((A, \mathscr{B}))=(\mathscr{B},(\check{A}, \check{\mathscr{B}})) \leqslant(\mathscr{E},(\dot{A}, \dot{\mathscr{D}})) .
$$

So, $h$ is a dense embedding.

Proposition 4.17. Let $G$ be a $\mathbb{P}^{*}$-generic filter over $V$. In $V[G]$ we define $\mathscr{V}=\left\{v_{\mathscr{D}} \subseteq \omega: v_{\mathscr{D}}=\left\{\min d_{i}: i \in \omega\right\}\right.$ for some $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$ in $\left.G\right\}$.

Then $\mathscr{V}$ is an ultrafilter on $\omega$.
Proof. We shall prove first that $\mathscr{V}$ is upward closed. Let $v_{\mathscr{D}} \in \mathscr{V}$ for some $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$ in $G$ and suppose $Y \supseteq v_{\mathscr{D}}$. We shall find a $\mathscr{D}^{\prime}=\left\langle d_{i}^{\prime}\right\rangle_{i \in \omega}$ such that $\mathscr{D} \sqsubseteq^{*} \mathscr{D}^{\prime}$ and $Y=v_{\mathscr{D}^{\prime}}$.

Let $Y \in[\omega]^{\omega}$ such that $v_{\mathscr{D}} \subseteq Y$.

- If $y \in Y$ and $y \notin \cup \mathscr{D}$, then we define $d_{y}:=\{y\}$.
- If $y$ is such that $Y \cap d=\{y\}$ for some $d$ element of $\mathscr{D}$, then $d_{y}:=d$.
- If $Y \cap d=\left\{y_{0}, \ldots, y_{k}\right\}$ for some $d$ element of $\mathscr{D}$, where $k \geqslant 1$, then let $d_{y}:=\left\{x \in d: y_{i} \leqslant x<y_{i+1}\right\}$ if $y=y_{i}$ and $i<k$ and $d_{y}=\{x \in d:$ $\left.y_{k} \leqslant x\right\}$ if $y=y_{k}$.

Note that $y=\min d_{y}$, for all $y \in Y$.
Let $\mathscr{D}^{\prime}=\left\langle d_{y}\right\rangle_{y \in Y}$. Thus, $\mathscr{D} \sqsubseteq^{*} \mathscr{D}^{\prime}$. Since $G$ is a filter, $\mathscr{D}^{\prime} \in G$, and

$$
Y=\left\{\min d_{y}: y \in Y\right\}=v_{\mathscr{D}^{\prime}} .
$$

Let us now check that $G$ is pairwise compatible. So, let $v_{\mathscr{D}}$ and $v_{\mathscr{T}^{\prime}}$ in $\mathscr{V}$. Since $\mathscr{D}$ and $\mathscr{D}^{\prime}$ are in $G$ there is $\mathscr{E} \in G$ that extends both $\mathscr{D}$ and $\mathscr{D}^{\prime}$. Let $\mathscr{E}=\left\langle e_{i}\right\rangle_{i \in \omega}$. Thus, $v_{\mathscr{E}}=\left\{\min e_{i}: i \in \omega\right\} \in \mathscr{V}$. Since $v_{\mathscr{E}} \subseteq v_{\mathscr{D}} \cap v_{\mathscr{V}^{\prime}}$, we have $v_{\mathscr{D}} \cap v_{\mathscr{D}^{\prime}} \in \mathscr{V}$. Hence $\mathscr{V}$ is a filter on $\omega$.

Let $Y \in[\omega]^{\omega}$ and

$$
X=\{d \in F I N: \min (d) \in Y\} .
$$

Since $\mathscr{U}_{G}$ is an ultrafilter we have that $X \in \mathscr{U}_{G}$ or $(F I N \backslash X) \in \mathscr{U}_{G}$. If $X \in \mathscr{U}_{G}$, then there is $\mathscr{D}^{\prime} \in G$ such that $F U\left(\mathscr{D}^{\prime}\right) \subseteq X$. Then

$$
v_{\mathscr{D}^{\prime}}=\left\{\min d_{i}^{\prime}: i \in \omega\right\} \subseteq Y
$$

and so $Y \in \mathscr{V}$. The case $F I N \backslash X \in \mathscr{U}_{G}$ is similar. Hence $\mathscr{V}$ is an ultrafilter on $\omega$.

Notice that since $\mathbb{P}^{*}$ is $\sigma$-closed, forcing with $\mathbb{P}^{*}$ does not add any new subsets of $\omega$.

Proposition 4.18. Let $\mathbb{U}=\langle\mathscr{P}(\omega) /$ fin,$\leqslant\rangle$ be defined as in Section 1.2. Then $\mathscr{V}$ as defined above, is a $\mathbb{U}$-generic filter over $V$.

Proof. We already proved that it is an ultrafilter. So, it only remains to prove that $\mathscr{V}$ is $\mathbb{U}$-generic. Let $D \subseteq \mathbb{U}$ be an open and dense set and consider

$$
D^{\prime}=\left\{\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega} \in(F I N)^{\omega}:\left\{\min d_{i}: i \in \omega\right\} \in D\right\} .
$$

Claim 4.19. $D^{\prime}$ is dense a subset of $(F I N)^{\omega}$.
Proof of claim: Let $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega} \in(F I N)^{\omega}$, and let

$$
x=\left\{\min d_{i}: i \in \omega\right\} \in[\omega]^{\omega} .
$$

Since $D$ is dense there is $A \in D$ such that $A \leqslant x$, i.e., $A \subseteq^{*} x$. Note that $A \backslash(A \backslash x) \in D$ because $D$ is open. Let $\mathscr{E}=\left\langle d_{i}\right\rangle_{i \in I}$ where $I=A \cap x$. Then we have $\mathscr{E} \sqsubseteq^{*} \mathscr{D}$ and $\mathscr{E} \in D^{\prime}$. Hence $D^{\prime}$ is dense.

We have $D^{\prime} \cap G \neq \emptyset$, i.e., there is $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega} \in D^{\prime}$ such that $\mathscr{D} \in G$. Let

$$
v_{\mathscr{D}}=\left\{\min d_{i}: i \in \omega\right\} .
$$

So $v_{\mathscr{D}} \in D \cap \mathscr{V}$. Therefore, $\mathscr{V}$ is an $\mathbb{U}$-generic filter.
Corollary 4.20. $\mathscr{V}$ is a selective ultrafilter on $\mathbb{U}$.
Proof. All $\mathbb{U}$-generic filters are selective, by Lemma 1.22 in Section 1.2 .

## $4.3 \quad \mathbb{P}_{F I N}$ satisfies Axiom A

Lemma 4.21. For every $(A, \mathscr{D}) \in \mathbb{P}_{\text {FIN }}$ such that

$$
(A, \mathscr{D}) \Vdash " \tau \in V "
$$

there exists $\mathscr{D}^{*} \sqsubseteq \mathscr{D}$ and $x \in V$ countable such that

$$
\left(A, \mathscr{D}^{*}\right) \Vdash \tau \in \check{x} .
$$

Moreover, $\mathscr{D}^{*}$ may be chosen so that if $(B, \mathscr{B}) \leqslant\left(A, \mathscr{D}^{*}\right), a \in V$ and $(B, \mathscr{B}) \Vdash \tau=\check{a}$, then $\left(B, \mathscr{D}^{*}-B\right) \Vdash \tau=\check{a}$.

Proof. We will construct, by induction, a sequence $\left\langle\mathscr{D}_{i}\right\rangle_{i \in \omega}$ such that $\mathscr{D}_{i+1} \sqsubseteq$ $\mathscr{D}_{i}$, for all $i \in \omega$, and $e_{i}<e_{i+1}$, for all $i \in \omega$, where $e_{i}$ is the first element of the block sequence $\mathscr{D}_{i}$. Let $\mathscr{D}_{0}=\mathscr{D}$. Given $\mathscr{D}_{n}$ consider all finite block sequences $s_{0}, \ldots, s_{k}$ of elements of $F U\left(\left\{e_{i}: i<n\right\}\right)$. We shall obtain a sequence

$$
\mathscr{D}_{0}^{n} \sqsupseteq \ldots \sqsupseteq \mathscr{D}_{k+1}^{n}
$$

as follows:
Let $\mathscr{D}_{0}^{n}=\mathscr{D}_{n}$. Given $\mathscr{D}_{j}^{n}$, if there is $\mathscr{E} \sqsubseteq \mathscr{D}_{j}^{n}$ and $a \in V$ such that

$$
\left(A^{\wedge} s_{j}, \mathscr{E}\right) \Vdash \tau=\check{a}
$$

then $\mathscr{D}_{j+1}^{n}=\mathscr{E}$. If there is none, then $\mathscr{D}_{j+1}^{n}=\mathscr{D}_{j}^{n}$. Let $e_{n}$ the first element of the block sequence $\mathscr{D}_{k+1}^{n}$ and let $\mathscr{D}_{n+1}:=\mathscr{D}_{k+1}^{n}-\left\langle e_{n}\right\rangle$.

Consider the infinite block sequence $\mathscr{D}^{*}=\left\langle e_{i}\right\rangle_{i \in \omega}$. We define

$$
x=\left\{a \in V: \exists Y \text { finite block sequence of elements in } F U\left(\mathscr{D}^{*}\right)\right. \text { such that }
$$

$$
\left.\left(A^{\wedge} Y, \mathscr{D}^{*}-Y\right) \Vdash \tau=\check{a}\right\} .
$$

It is clear that $x$ is countable.
Claim 4.22. $\left(A, \mathscr{D}^{*}\right) \Vdash \tau \in \check{x}$.
Proof of Claim: Note that $\left(A, \mathscr{D}^{*}\right) \leqslant(A, \mathscr{D})$. Since

$$
(A, \mathscr{D}) \Vdash " \tau \in V "
$$

there is $\left(B, \mathscr{D}^{\prime}\right) \leqslant\left(A, \mathscr{D}^{*}\right)$ and $a \in V$ such that

$$
\left(B, \mathscr{D}^{\prime}\right) \Vdash \tau=\check{a} .
$$

Let $Y=B-A$. Thus, $Y$ is a finite block sequence of elements in $F U\left(\mathscr{D}^{*}\right)$. Suppose that $Y$ is a block sequence of elements in $F U\left(\left\{e_{i}: i<n\right\}\right)$, then $Y=s_{j}$ for some $j$ in the $n$-th step. We have that

$$
\left(A^{\wedge} s_{j}, \mathscr{D}_{j+1}^{n}\right) \Vdash \tau=\tilde{a}^{\prime}
$$

for some $a^{\prime} \in V$. Since $\left(A^{\wedge} Y, \mathscr{D}^{\prime}\right) \leqslant\left(A^{\wedge} s_{j}, \mathscr{D}_{j+1}^{n}\right)$, we have $a=a^{\prime}$ and

$$
\left(A^{\wedge} Y, \mathscr{D}^{*}-Y\right) \leqslant\left(A^{\wedge} s_{j}, \mathscr{D}_{j+1}^{n}\right)
$$

so $a \in x$. Thus $\left(A, \mathscr{D}^{*}\right) \Vdash \tau \in \check{x}$. We have proved the claim.
We shall now prove the last part of the lemma. Let $(B, \mathscr{B}) \leqslant\left(A, \mathscr{D}^{*}\right)$ and $a \in V$ be such that $(b, \mathscr{B}) \Vdash \tau=\check{a}$. We proceed as in the last part of the proof of Claim 4.22. Letting $Y=B-A$, we obtain $\left(A^{\wedge} Y, \mathscr{D}^{*}-Y\right) \Vdash \tau=\check{a}$.

Theorem 4.23. The partial ordering $\mathbb{P}_{\text {FIN }}$ satisfies Axiom $A$.
Proof. Let $n \geqslant 1$. We define $\left(B, \mathscr{D}^{\prime}\right) \leqslant_{n}(A, \mathscr{D})$ if and only if $\left(B, \mathscr{D}^{\prime}\right) \leqslant$ $(A, \mathscr{D}), A=B$ and the infinite block sequences $\mathscr{D}$ and $\mathscr{D}^{\prime}$ have the same initial block sequence of size $n$. We define $\left(B, \mathscr{D}^{\prime}\right) \leqslant_{0}(A, \mathscr{D})$ if and only if $\left(B, \mathscr{D}^{\prime}\right) \leqslant(A, \mathscr{D})$.

It is clear that $\mathbb{P}_{\text {FIN }}$ satisfies:
(1) for all $p, q \in P, p \leqslant_{0} q$ if and only if $p \leqslant q$ and
(2) for all $p, q \in P$ if $p \leqslant_{n+1} q$, then $p \leqslant_{n} q$ for all $n \in \omega$ of the definition of Axiom A (Definition 1.19 in Section 1.2).

We now show that $\mathbb{P}_{\text {FIN }}$ satisfies condition (3). Let $\left\langle\left(A_{i}, \mathscr{D}_{i}\right): i \in \omega\right\rangle$ be a sequence of elements in $\mathbb{P}_{F I N}$ such that

$$
\left(A_{i+1}, \mathscr{D}_{i+1}\right) \leqslant i\left(A_{i}, \mathscr{D}_{i}\right)
$$

for all $i \in \omega$, where $\mathscr{D}_{i}=\left\langle d_{j}^{i}\right\rangle_{j \in \omega}$ for all $i \in \omega$.
We define $A=A_{1}$ and $\mathscr{D}=\left\langle d_{j-1}^{j}\right\rangle_{1 \leqslant j}$. Note that $d_{0}^{1}$ is the first element of $\mathscr{D}_{1}$. Proceeding inductively, if $d_{0}^{i}, \ldots, d_{i-1}^{i}$ are the first $i$ elements of $\mathscr{D}_{i}$, then $d_{0}^{1}, \ldots, d_{i}^{i+1}$ are the first $i+1$ elements of $\mathscr{D}_{i+1}$.

$$
\begin{array}{cccc}
d_{0}^{1} & & & \\
\text { ॥ } & & & \\
d_{0}^{2} & d_{1}^{2} & & \\
\text { ॥ } & \text { ॥ } & & \\
d_{0}^{3} & d_{1}^{3} & d_{2}^{3} & \\
{ }^{\prime \prime} & \text { ॥ } & \text { ॥ } & \\
d_{0}^{4} & d_{1}^{4} & d_{2}^{4} & d_{3}^{4} \\
\vdots & \vdots & \vdots & \vdots \\
\vdots
\end{array}
$$

Then, for each $i$, since $\mathscr{D} \sqsubseteq \mathscr{D}_{i}$, we have that $\mathscr{D} \sqsubseteq_{i} \mathscr{D}_{i}$ and $(A, \mathscr{D}) \leqslant_{i}$ $\left(A_{i}, \mathscr{D}_{i}\right)$, for all $i \in \omega$. Thus $\mathbb{P}_{\mathscr{C}}$ satisfies (3) of the definition of Axiom A.

We finally show that $\mathbb{P}_{F I N}$ satisfies $\left(4^{\prime}\right)$. Let $n \in \omega$ and $(A, \mathscr{D}) \in \mathbb{P}_{F I N}$ be such that

$$
(A, \mathscr{D}) \Vdash " \tau \in V " .
$$

Let $Y=\left\langle d_{0}, \ldots, d_{n-1}\right\rangle$, the initial block sequence of size $n$ of $\mathscr{D}$, and let $s_{0}, \ldots, s_{k}$ be an enumeration of all block sequences that we can form with elements of the set $F U\left(\left\{d_{0}, \ldots, d_{n-1}\right\}\right)$. We let $s_{0}$ to be the empty sequence.

Let $\mathscr{D}_{0}=\mathscr{D}-Y$. Given $\mathscr{D}_{j}$, since

$$
(A, \mathscr{D}) \Vdash " \tau \in V "
$$

we have $\left(A^{\wedge} s_{j}, \mathscr{D}_{j}\right) \Vdash$ " $\tau \in V^{\prime}$. By Lemma 4.21 there exist $\mathscr{D}_{j+1} \sqsubseteq \mathscr{D}_{j}$ and $x_{j} \in V$ countable such that

$$
\left(A^{\wedge} s_{j}, \mathscr{D}_{j+1}\right) \Vdash \tau \in \check{x_{j}} .
$$

Let $x=x_{0} \cup \ldots \cup x_{k}$ and $\mathscr{D}^{*}=Y^{\wedge} \mathscr{D}_{k+1}$. It is clear that $\left(A, \mathscr{D}^{*}\right) \leqslant_{n}(A, \mathscr{D})$.
Claim 4.24. $\left(A, \mathscr{D}^{*}\right) \Vdash \tau \in \check{x}$.
Proof of Claim: Let $\left(B, \mathscr{D}^{\prime \prime}\right) \leqslant\left(A, \mathscr{D}^{*}\right)$. Then, $Z:=B-A$ is a finite block sequence of elements in $F U\left(\mathscr{D}^{*}\right)$. If $Z$ is a block sequence of elements in the set

$$
F U\left(\left\{d_{0}, \ldots, d_{n-1}\right\}\right)
$$

then $Z=s_{j}$ for some $j \in\{0, \ldots, k\}$. Then $\left(A^{\wedge} Z, \mathscr{D}^{\prime \prime}\right) \leqslant\left(A^{\wedge} s_{j}, \mathscr{D}_{j+1}\right)$. Since

$$
\left(A^{\wedge} s_{j}, \mathscr{D}_{j+1}\right) \Vdash \tau \in \check{x_{j}}
$$

we have $\left(A^{\wedge} Z, \mathscr{D}^{\prime \prime}\right) \Vdash \tau \in \check{x}$. Similarly, if $Z^{\prime}$ is an initial subsequence of $Z$ and $Z^{\prime}=s_{j}$ for some $j$. If $Z$ is a finite block sequence with elements in $F U\left(\mathscr{D}^{*}-Y\right)$, then $\left(A^{\wedge} Z, \mathscr{D}^{\prime \prime}\right) \leqslant\left(A^{\wedge} s_{0}, \mathscr{D}_{1}\right)$ and $\left(A^{\wedge} s_{0}, \mathscr{D}_{1}\right) \Vdash \tau \in \check{x_{0}}$, then $\left(A^{\wedge} Z, \mathscr{D}^{\prime \prime}\right) \Vdash \tau \in \check{x}$.

This proves the claim and the lemma.

## 4.4 $\mathbb{P}_{\text {FIN }}$ satisfies the Pure Decision Property

Theorem 4.25. Let $\varphi$ be a sentence of the language of forcing with $\mathbb{P}_{\text {FIN }}$. For any $(A, \mathscr{D}) \in \mathbb{P}_{\text {FIN }}$ there is $\mathscr{D}^{*} \sqsubseteq \mathscr{D}$ such that $\left(A, \mathscr{D}^{*}\right) \Vdash \varphi$ or $\left(A, \mathscr{D}^{*}\right) \Vdash \neg \varphi$. Proof. Let $\tau$ be a name such that if $G$ is a $\mathbb{P}_{F I N}$-generic filter, then $\tau_{G}=0$ if $\varphi$ holds in $V[G]$ and $\tau_{G}=1$ if $\neg \varphi$ holds in $V[G]$, for example

$$
\tau=\{(\check{0},(B, \mathscr{B})):(B, \mathscr{B}) \Vdash \neg \varphi\} .
$$

Note that $\Vdash \tau \in\{0,1\}$ and for all $(B, \mathscr{B}) \in \mathbb{P}_{F I N},(B, \mathscr{B}) \Vdash \tau=\check{0}$ if and only if $(B, \mathscr{B}) \Vdash \varphi$. And $(B, \mathscr{B}) \Vdash \tau=\check{1}$ if and only if $(B, \mathscr{B}) \Vdash \neg \varphi$.

By Theorem 4.21, there is $\mathscr{D}^{\prime}$ such that if $(E, \mathscr{E}) \leqslant\left(A, \mathscr{D}^{\prime}\right)$ and

$$
(E, \mathscr{E}) \Vdash \tau=\check{0}
$$

then $\left(E, \mathscr{D}^{\prime}-E\right) \Vdash \tau=\check{0}$, so $\left(E, \mathscr{D}^{\prime}-E\right) \Vdash \varphi$, respectively $\neg \varphi$.
For the rest of the proof, if $Y$ is a finite block sequence of elements in $F U\left(\mathscr{D}^{\prime}\right)$, let $Y \Vdash \phi$ abbreviate $\left(A^{\wedge} Y, \mathscr{D}^{\prime}-Y\right) \Vdash \varphi$, and similarly for $\neg \varphi$.

We are going to construct elements $e_{0}<e_{1}<\ldots$ of $F U\left(\mathscr{D}^{\prime}\right)$ and block sequences $\mathscr{D}_{0} \sqsupseteq \mathscr{D}_{1} \sqsupseteq \ldots$ such that $\mathscr{D}_{j} \sqsubseteq \mathscr{D}^{\prime}$ by induction, as follows:

Let $\mathscr{D}_{0}=\mathscr{D}^{\prime}$. Given $\mathscr{D}_{n}$ find $\mathscr{D}_{n+1}^{\prime} \sqsubseteq \mathscr{D}_{n}$ such that $F U\left(\mathscr{D}_{n+1}^{\prime}\right) \subseteq \mathscr{C}_{i}$ for some $i \in\{0,1,2\}$ where:

1. $\mathscr{C}_{0}=\left\{d \in F U\left(\mathscr{D}_{n}\right): \forall Y \subseteq F U\left(\left\{e_{i}: i<n\right\}\right) Y^{\wedge}\langle d\rangle \Vdash \varphi\right\}$
2. $\mathscr{C}_{1}=\left\{d \in F U\left(\mathscr{D}_{n}\right): \forall Y \subseteq F U\left(\left\{e_{i}: i<n\right\}\right) Y^{\wedge}\langle d\rangle \Vdash \neg \varphi\right\}$
3. $\mathscr{C}_{2}=F U\left(\mathscr{D}_{n}\right) \backslash\left(\mathscr{C}_{0} \cup \mathscr{C}_{1}\right)$

We are using Hindman's theorem for finding such $\mathscr{D}_{n+1}^{\prime}$.
Let $e_{n}$ be the first element of $\mathscr{D}_{n+1}^{\prime}$ and let $\mathscr{D}_{n+1}:=\mathscr{D}_{n+1}^{\prime}-\left\langle e_{n}\right\rangle$.
Letting $\mathscr{D}^{*}=\left\langle e_{j}\right\rangle_{j \in \omega}$, we have $\mathscr{D}^{*} \sqsubseteq \mathscr{D}_{j}$ for all $j \in \omega$.
Now, suppose that $(E, \mathscr{E}) \leqslant\left(A, \mathscr{D}^{*}\right)$ and $(E, \mathscr{E}) \Vdash \varphi$ (the case for $\neg \phi$ is similar).

Let $|E|$ be minimal such that $(E, \mathscr{E}) \Vdash \phi$. If $|E|=|A|$, then $E=A$ and by assumption on $\mathscr{D}^{\prime},\left(A, \mathscr{D}^{\prime}\right) \Vdash \varphi$. And since $\mathscr{D}^{*} \sqsubseteq \mathscr{D}^{\prime}$, we must have $\left(A, \mathscr{D}^{*}\right) \Vdash \varphi$.

If $|E|>|A|$, then $E=A^{\wedge} Y$, where $Y=\left\langle x_{0}, \ldots, x_{m}\right\rangle$ and $x_{j} \in F U\left(\mathscr{D}^{*}\right)$ for all $j \in\{0, \ldots, m\}$. We have that $x_{m}=e_{n_{0}} \cup \ldots \cup e_{n_{l}}$. Let

$$
n=\min \left\{n_{0}, \ldots, n_{l}\right\} .
$$

Then at the stage $n$ we must have had for $Y^{\prime}=Y-\left\langle x_{m}\right\rangle, Y^{\prime}\langle d\rangle \Vdash \varphi$ for all $d \in F U\left(\mathscr{D}_{n+1}^{\prime}\right)$.

Claim 4.26. $\left(A^{\wedge} Y^{\prime}, \mathscr{D}_{n+1}\right) \Vdash \varphi$.

Proof of claim: Let $(B, \mathscr{B}) \leqslant\left(A^{\wedge} Y^{\prime}, \mathscr{D}_{n+1}\right)$. Then $B=A^{\wedge} Y^{\prime} Z$, where $Z$ is a finite block sequence of elements in $F U\left(\mathscr{D}_{n+1}\right)$. Note that the first element $z_{0}$ of $Z$ belongs to $F U\left(\mathscr{D}_{n+1}^{\prime}\right)$, so $Y^{\prime \wedge}\left\langle z_{0}\right\rangle \Vdash \varphi$. Since

$$
(B, \mathscr{B}) \leqslant\left(A^{\wedge} Y^{\prime \wedge}\left\langle z_{0}\right\rangle, \mathscr{D}^{\prime}-\left(A^{\wedge} Y^{\prime}\left\langle z_{0}\right\rangle\right)\right.
$$

we have $(B, \mathscr{B}) \Vdash \varphi$.

Since $\mathscr{E} \sqsubseteq \mathscr{D}_{n+1}$, we have $\left(A^{\wedge} Y^{\prime}, \mathscr{E}\right) \Vdash \varphi$, contradicting the minimality of $|E|$.

## $4.5 \mathbb{P}_{\text {FIN }}$ does not add Cohen reals

Theorem 4.27. $\mathbb{P}_{\text {FIN }}$ does not add Cohen reals.
Proof. Let $\dot{f}$ be a $\mathbb{P}_{\text {FIN }}$-name for a function from $\omega$ to 2 , i.e.,

$$
1_{\mathbb{P}_{\mathscr{G}}} \Vdash \dot{f}: \check{\omega} \rightarrow \check{2} .
$$

We will show that there is a dense set $D$ of $\mathbb{C}$ such that for all $p \in D$,

$$
1_{\mathbb{P}_{\mathscr{C}}} \Vdash \dot{f} \upharpoonright \operatorname{dom}(p) \neq p .
$$

Since $1_{\mathbb{P}_{F I N}} \Vdash \dot{f}: \check{\omega} \rightarrow \check{2}$, by the pure decision property for every $(A, \mathscr{D}) \in$ $\mathbb{P}_{\mathscr{C}}$ and every $k \in \omega$, there is $\mathscr{D}^{\prime} \sqsubseteq \mathscr{D}$ such that $\left(A, \mathscr{D}^{\prime}\right)$ decides $\dot{f} \upharpoonright j$ for all $j \leqslant k$.

We can define $\left\langle\mathscr{D}_{n}: n \in \omega\right\rangle$ and $\left\langle a_{n}: n \in \omega\right\rangle$ such that $\mathscr{D}_{n}$ is an inifinite block sequence, $a_{n}=\min \mathscr{D}_{n}, \mathscr{D}_{n+1} \sqsubseteq \mathscr{D}_{n}, a_{n}<a_{n+1}$ and for each finite block sequence $t$ that we can form from the elements of the set

$$
F U\left(\left\{a_{i}: i<n\right\}\right)
$$

$\left(t, \mathscr{D}_{n}\right)$ decides $\dot{f} \upharpoonright 2^{b_{n}}$, where $b_{n}=2^{n}$.
Let $p_{t}^{n}$ be such that

$$
\left(t, \mathscr{D}_{n}\right) \Vdash \dot{f} \upharpoonright 2^{b_{n}}=p_{t}^{n} .
$$

Let $\mathscr{D}^{*}=\left\langle a_{i}\right\rangle_{i \in \omega}$ and let

$$
C:=\left\{q \in \mathbb{C}: \exists n \in \omega \exists t \subseteq F U\left(\mathscr{D}^{*}\right)\left(q \subseteq p_{t}^{n}\right)\right\}
$$

Let $D=\mathbb{C} \backslash C$. We will show that $D$ is dense.
Suppose $m<n$ and $t$ is a finite block sequence with elements in

$$
F U\left(\left\{a_{i}: i<n\right\}\right)
$$

and $s$ is a block sequence with elements in

$$
F U\left(\left\{a_{i}: i<m\right\}\right)
$$

such that $t=s^{\wedge} r$ for some $r$. Since $\left(t, \mathscr{D}_{n}\right) \leqslant\left(s, \mathscr{D}_{m}\right)$, we have $\left(t, \mathscr{D}_{n}\right)$ and $\left(s, \mathscr{D}_{m}\right)$ force the same value for $\dot{f}(\check{k})$, for all $k<2^{b_{m}}$. Thus,

$$
p_{t}^{n} \upharpoonright 2^{b_{m}}=p_{s}^{m} .
$$

Claim 4.28. $\left|\left\{q \in C: \operatorname{dom}(q)=2^{b_{l}}\right\}\right|<2^{b_{l}}$.
Proof of Claim: If $q \in C$ and $\operatorname{dom}(q)=2^{b_{l}}$, then $q=p_{t}^{l}$ for some finite block sequence $t$ with elements in $\operatorname{FU}\left(\left\{a_{i}: i<l\right\}\right)$. The number of such $q$ 's is less than

$$
\left|\mathscr{P}\left(F U\left(\left\{a_{i}: i<l\right\}\right)\right)\right|=2^{b_{l}} .
$$

Claim 4.29. If $t=\left\langle x_{0}, \ldots, x_{m}\right\rangle$ is a finite block sequence of elements in $F U\left(\mathscr{D}^{*}\right)$ and $n \geqslant \max x_{m}$, then

$$
\mid\left\{q \in \mathbb{C}: p_{t}^{n} \subseteq q \text { and } \operatorname{dom}(q)=2^{b_{n+1}}\right\} \mid=2^{2^{b_{n+1}}-2^{b_{n}}}
$$


Let us check that $D$ is a dense set. So let $r \in \mathbb{C}$. If $r \notin D$ then $r \in C$, so there is $n \in \omega$ and a finite block sequence $t$ with elements in $F U\left(\mathscr{D}^{*}\right)$ such that $r \subseteq p_{t}^{n}$. There is $q$ such that $p_{t}^{n} \subseteq q, \operatorname{dom}(q)=2^{b_{n+1}}$ and $q \notin C$, because

$$
b_{n+1}<2^{b_{n+1}}-2^{b_{n}} .
$$

Therefore $q \in D$ and $q \leqslant r$.

## Chapter 5

## $\mathbb{P}_{\text {FIN }}$ and Mathias forcing

We have proved that $\mathbb{P}_{\text {FIN }}$ and Matet forcing are not equivalent in Section 4.1. It remains to answer the question about the relation between Mathias forcing and $\mathbb{P}_{F I N}$.

In this chapter we will prove that $\mathbb{P}_{F I N}$ and Mathias forcing are not equivalent forcing notions. It is known that Matet and Mathias forcing are not equivalent forcing notions, because Mathias forcing adds a dominating real, so a splitting real, see the Lemma 1.23 and the Proposition 1.16, but Matet forcing does not add splitting reals by Corollary 1.48.

First, we are going to prove that $\mathbb{P}_{F I N}$ adds a Matet real, and then we will show that Mathias forcing does no add Matet reals.

In the last part of this chapter we will recall a forcing notion due to Saharon Shelah and Otmar Spinas in [23], denoted by $\mathbb{M}_{2}$, which is a sort of a product of two copies of Mathias forcing. We are interested in the connection between this forcing notion and $\mathbb{P}_{\text {FIN }}$.

## 5.1 $\mathbb{P}_{F I N}$ adds a Matet real

Recall Matet forcing (Definition 1.37) and the notion of projection (Definition 1.17).

Lemma 5.1. Matet forcing, denoted by $\mathbb{M T}$, is a projection of $\mathbb{P}_{\text {FIN }}$.

Proof. Let $\pi: \mathbb{P}_{F I N} \rightarrow \mathbb{M T}$ be the function defined by

$$
\pi((A, \mathscr{D}))=(\bigcup A, \mathscr{D})
$$

We shall prove that $\pi$ witnesses that $\mathbb{M T}$ is a projection of $\mathbb{P}_{\text {FIN }}$.
It is clear that $\pi$ preserves order.
Let $(A, \mathscr{D}) \in \mathbb{P}_{F I N}$ and $\left(b, \mathscr{D}^{\prime}\right) \in \mathbb{M T}$ be such that $\left(b, \mathscr{D}^{\prime}\right) \leqslant \pi(A, \mathscr{D})$. Then $\left(b, \mathscr{D}^{\prime}\right) \leqslant(\bigcup A, \mathscr{D})$, i.e., $\bigcup A \subseteq b, \mathscr{D}^{\prime} \sqsubseteq \mathscr{D}$, and $b \backslash \bigcup A \in F U(\mathscr{D})$. Define $\left(C, \mathscr{D}^{\prime \prime}\right):=\left(A^{\wedge}(b \backslash \bigcup A), \mathscr{D}^{\prime}\right) \in \mathbb{P}_{F I N}$. Now notice that $\left(C, \mathscr{D}^{\prime \prime}\right) \leqslant(A, \mathscr{D})$ and $\pi\left(\left(C, \mathscr{D}^{\prime \prime}\right)\right) \leqslant\left(b, \mathscr{D}^{\prime}\right)$.

Corollary 5.2. $\mathbb{P}_{\text {FIN }}$ adds a Matet real.

## 5.2 $\mathbb{P}_{F I N}$ is not equivalent to Mathias forcing

We are going to prove that $\mathbb{P}_{\text {FIN }}$ is not equivalent to Mathias forcing. For this we are going to show that Mathias forcing does not a Matet real. Given $\dot{x}$, a $\mathbb{M}$-name for a real, and a Mathias condition $(a, A)$ we will prove that there exists a stronger condition with the same stem that forces $\dot{x}$ is not a Matet generic real in the generic extension.

First we shall prove a lemma that gives us approximations to $\dot{x}$. Given $(a, A)$ we construct an infinite $B \subseteq A$ and sets $X_{t}$, with $a \subseteq t \subseteq a \cup B$, where $X_{t}$ is the set of approximations to $\dot{x}$. We are going to make a distinction between finite $X_{t}$ and infinite $X_{t}$, because this will be important for the proof that Mathias forcing does not add a Matet real.

Lemma 5.3. If $\dot{x}$ is a name in Mathias forcing $\mathbb{M}$ and $(a, A) \in \mathbb{M}$ is such that $(a, A) \vdash_{\mathbb{M}}$ " $\dot{x} \in[\omega]^{\omega "}$, then there are $B \subseteq A, B=\left\{b^{j}: j \in \omega\right\}$ infinite, and sets $X_{t}$, for all finite $t$ with $a \subseteq t \subseteq a \cup B$, such that
(1) $X_{t}=\left\{n \in \omega: \exists C \subseteq B \backslash \max (t)+1\left((t, C) \Vdash " n \in \dot{x}^{\prime}\right)\right\}$.
(2) If $X_{t}$ is finite, then $(t, B \backslash \max (t)+1) \Vdash X_{t} \subseteq \dot{x}$.
(3) If $X_{t}=\left\{x_{t}^{j}: j \in \omega\right\}$ is infinite and $B \backslash \max (t)+1=\left\{b^{j}: j \geqslant k\right\}$ for some $k \in \omega$, then there is $\left(l_{i}\right)_{i \geqslant k}$ a strictly increasing sequence of natural numbers such that for all $i \geqslant k$

$$
\left(t,\left\{b^{j}: j \geqslant i\right\}\right) \Vdash\left\{x_{t}^{j}: j \leqslant l_{i}\right\} \subseteq \dot{x} .
$$

(4) $(t, B \backslash \max (t)+1) \Vdash \dot{x} \cap(\max (t)+1)=X_{t} \cap(\max (t)+1)$.

Proof. We are going to define recursively an infinite set $B \subseteq A$,

$$
B=\left\{b^{j}: j \in \omega\right\}
$$

that satisfies the four statements above.
This is a fusion argument, which uses the pure decision property (pdp) for $\mathbb{M}$.

Given $(a, A) \in \mathbb{M}$ and $s_{0}:=\emptyset$, by the pdp there exists an infinite subset $C_{a \cup s_{0}}^{0} \subseteq A$ such that $\left(a \cup s_{0}, C_{a \cup s_{0}}^{0}\right)$ decides " $0 \in \dot{x} "$, that is, either

$$
\left(a \cup s_{0}, C_{a \cup s_{0}}^{0}\right) \Vdash " 0 \in \dot{x} " \text { or }\left(a \cup s_{0}, C_{a \cup s_{0}}^{0}\right) \Vdash " 0 \notin \dot{x} " .
$$

Assume that for all $i \leqslant k$ we have that $\left(a \cup s_{0}, C_{a \cup s_{0}}^{i}\right)$ decides " $i \in \dot{x}$ " and $C_{a \cup s_{0}}^{i} \supseteq C_{a \cup s_{0}}^{i+1}$, for all $i<k$. By the pdp there exists an infinite $C_{a \cup s_{0}}^{k+1} \subseteq C_{a \cup s_{0}}^{k}$ such that $\left(a \cup s_{0}, C_{a \cup s_{0}}^{k+1}\right)$ decides " $k+1 \in \dot{x}$ ".

We define

$$
X_{a \cup s_{0}}:=\left\{i \in \omega:\left(a \cup s_{0}, C_{a \cup s_{0}}^{i}\right) \Vdash i \in \dot{x}\right\} .
$$

- If $\left|X_{a \cup s_{0}}\right|<\aleph_{0}$, then let $k^{\prime}:=\max X_{a \cup s_{0}}$ and let $k:=\max \left\{k^{\prime}, \max (a \cup\right.$ $\left.\left.s_{0}\right)+1\right\}$. Choose $A_{0} \subseteq C_{a \cup s_{0}}^{k}$ such that $A_{0} \subseteq^{*} C_{a \cup s 0}^{i}$ for all $i>k$. Notice that

$$
\left(a \cup s_{0}, A_{0}\right) \Vdash X_{a \cup s_{0}} \subseteq \dot{x} .
$$

- If $\left|X_{a \cup s_{0}}\right|=\aleph_{0}$, say $X_{a \cup s_{0}}=\left\{x_{a \cup s_{0}}^{j}: j \in \omega\right\}$, then let $l \in \omega$ be the least such that $\max \left(a \cup s_{0}\right)+1<x_{a \cup s_{0}}^{l}$ and let

$$
A_{0}:=\left\{c_{i}: i \in \omega\right\}
$$

where the $c_{i}$ are defined as follows: $c_{0}=\min C_{a \cup s_{0}}^{j_{0}}$, where $j_{0}=x_{a \cup s_{0}}^{l}$. Given $c_{k}$ such that $c_{k} \in C_{a \cup s_{0}}^{j_{k}}$, where $j_{k}=x_{a \cup s_{0}}^{l+k}$, take $c_{k+1} \in C_{a \cup s_{0}}^{j_{k+1}}$ such that $c_{k+1}>c_{k}$. Notice that $A_{0} \subseteq^{*} C_{a \cup s_{0}}^{j}$ for all $j \in X_{a \cup s_{0}}$, in particular, $A_{0} \subseteq C_{a \cup s_{0}}^{j_{0}}$. Moreover,

$$
\left(a \cup s_{0}, A_{0}\right) \Vdash\left\{x_{a \cup s_{0}}^{j}: j \leqslant l\right\} \subseteq \dot{x},
$$

and for all $k \in \omega$ we have

$$
\left(a \cup s_{0}, A_{0} \backslash c_{k}+1\right) \Vdash\left\{x_{a \cup s_{0}}^{j}: j \leqslant l+k+1\right\} \subseteq \dot{x} .
$$

Let $b^{0}=\min A_{0}$.
Suppose that we already have $b^{i}=\min A_{i}$ for all $i \leqslant k$, such that $b^{i}<b^{i+1}$ and $A_{i+1} \subseteq A_{i}$, for all $i \leqslant k-1$.

Let $s_{0}, \ldots, s_{m-1}$ be an enumeration of all the subsets of $\left\{b^{i}: i \leqslant k\right\}$. We are going to define $A_{k+1}$ and $b^{k+1}$.

Let $A_{0}^{k+1}=A_{k} \backslash\left\{b^{k}\right\}$. Given $A_{j}^{k+1}$ with $j<m$ consider the condition $\left(a \cup s_{j}, A_{j}^{k+1}\right)$. By the pdp there exists an infinite subset $C_{a \cup s_{j}}^{0}$ of $A_{j}^{k+1}$ such that $\left(a \cup s_{j}, C_{a \cup s_{j}}^{0}\right)$ decides " $0 \in \dot{x}$ ".

In this way, we obtain an infinite decreasing sequence of infinite subsets $C_{a \cup s_{j}}^{i}$ so that $\left(a \cup s_{j}, C_{a \cup s_{j}}^{i}\right)$ decides " $i \in \dot{x}$ ".

As before we form the set

$$
X_{a \cup s_{j}}:=\left\{i \in \omega:\left(a \cup s_{j}, C_{a \cup s_{j}}^{i}\right) \Vdash i \in \dot{x}\right\} .
$$

- If $\left|X_{a \cup s_{j}}\right|<\aleph_{0}$ then let $l^{\prime}:=\max X_{a \cup s_{j}}$ and let $l:=\max \left\{l^{\prime}, \max (a \cup\right.$ $\left.\left.s_{j}\right)+1\right\}$. Choose $A_{j+1}^{k+1} \subseteq C_{a \cup s_{j}}^{l}$ and $A_{j+1}^{k+1} \subseteq^{*} C_{a \cup s_{j}}^{i}$ for all $i>l$. Note that $\left(a \cup s_{j}, A_{j+1}^{k+1}\right) \Vdash X_{a \cup s_{j}} \subseteq \dot{x}$.
- If $\left|X_{a \cup s_{j}}\right|=\aleph_{0}$, then let $X_{a \cup s_{j}}=\left\{x_{a \cup s_{j}}^{i}: i \in \omega\right\}$ and let $r$ be the least such that $\max \left(a \cup s_{j}\right)+1<x_{a \cup s_{j}}^{r}$. Let

$$
A_{j+1}^{k+1}=\left\{c_{i}: i \in \omega\right\}
$$

where $c_{0}:=\min C_{a \cup s_{j}}^{j_{0}}, j_{0}=x_{a \cup s_{j}}^{r}$, and where the elements $c_{i} \in C_{a \cup s_{j}}^{j_{i}}$ are chosen so that $c_{i}<c_{i+1}$ for all $i \in \omega$ and $j_{i}=x_{a \cup s_{j}}^{r+i}$ for all $i \geqslant 1$.

Notice that $A_{j+1}^{k+1} \subseteq^{*} C_{a \cup s_{j}}^{l}$ for all $l \in \omega$, in particular, $A_{j+1}^{k+1} \subseteq C_{a \cup s_{j}}^{j_{0}}$ and

$$
\left(a \cup s_{j}, A_{j+1}^{k+1}\right) \Vdash\left\{x_{a \cup s_{j}}^{i}: i \leqslant r\right\} \subseteq \dot{x} .
$$

For all $i \in \omega$ we have

$$
\begin{equation*}
\left(a \cup s_{j}, A_{j+1}^{k+1} \backslash c_{i}+1\right) \Vdash\left\{x_{a \cup s_{j}}^{l}: l \leqslant r+i+1\right\} \subseteq \dot{x} . \tag{5.2.1}
\end{equation*}
$$

Let $A_{k+1}:=A_{m}^{k+1}$. Clearly $A_{k+1} \subseteq A_{k}$.
Let $b^{k+1}:=\min A_{k+1}$. This completes the definition of $B=\left\{b^{i}: i \in \omega\right\}$.
Clearly $(a, B) \leqslant(a, A)$. Note that $B \subseteq^{*} C_{t}^{i}$ for all $i \in \omega$ and $a \subseteq t \subseteq B$, where the $C_{t}^{i}$ are the sets obtained in the proof.

We shall prove 1-4.
Claim 5.4. Let $t$ be a finite subset such that $a \subseteq t \subseteq a \cup B$. For all $n \in \omega$ there exists $C \subseteq B \backslash \max (t)+1$ such that $(t, C) \Vdash$ " $n \in \dot{x}$ " if and only if $n \in X_{t}$.

Proof of Claim: Let $t$ be a finite subset such that $a \subseteq t \subseteq a \cup B$ and let $n \in \omega$. Suppose that $n \in X_{t}$. Then $\left(t, C_{t}^{n}\right) \Vdash n \in \dot{x}$. Since $B \subseteq^{*} C_{t}^{n}$, there exits $m \in \omega$ such that $B \backslash m \subseteq C_{t}^{n}$. Let $k^{\prime}=\max \{m, \max (t)+1\}$ and let $C:=B \backslash k^{\prime}$. We have that $(t, C) \leqslant\left(t, C_{t}^{n}\right)$, and so $(t, C) \Vdash n \in \dot{x}$.

For the other direction, assume towards a contradiction that there are $n \in \omega$ and $C \subseteq B \backslash \max (t)+1$ such that $(t, C) \Vdash n \in \dot{x}$ and $n \notin X_{t}$.

Since $n \notin X_{t}$, we have $\left(t, C_{t}^{n}\right) \Vdash n \notin \dot{x}$. Let $m \in \omega$ be such that $B \backslash m \subseteq$ $C_{t}^{n}$. Let $k=\max \{m, \max (t)+1\}$. Then, $C \backslash k \subseteq C_{t}^{n}$. Thus $(t, C \backslash k) \leqslant\left(t, C_{t}^{n}\right)$ and $(t, C \backslash k) \Vdash n \notin \dot{x}$, which yields a contradiction.

Claim 5.5. Let $t$ be a finite subset such that $a \subseteq t \subseteq a \cup B$. If $X_{t}$ is finite, then $(t, B \backslash \max (t)+1) \Vdash X_{t} \subseteq \dot{x}$.

Proof of the claim: Let $t$ be a finite subset such that $a \subseteq t \subseteq a \cup B$, then $t=a \cup s$. Let $k \in \omega$ the least natural number such that $s \subseteq\left\{b^{0}, \ldots, b^{k}\right\}$, then in the step $k+1$ of the construction

$$
\left(t, A_{k+1}\right) \Vdash X_{t} \subseteq \dot{x}
$$

then

$$
(t, B \backslash \max (t)+1) \Vdash X_{t} \subseteq \dot{x}
$$

We have proved the claim.
Claim 5.6. Let $t$ be a finite subset such that $a \subseteq t \subseteq a \cup B$. If $X_{t}=\left\{x_{t}^{j}\right.$ : $j \in \omega\}$ is infinite and $B \backslash \max (t)+1=\left\{b^{j}: j \geqslant k\right\}$ for some $k \in \omega$, then there is $\left(l_{i}\right)_{i \geqslant k}$ a strictly increasing sequence of natural numbers such that for all $i \geqslant k$

$$
\left(t,\left\{b^{j}: j \geqslant i\right\}\right) \Vdash\left\{x_{t}^{j}: j \leqslant l_{i}\right\} \subseteq \dot{x} .
$$

Proof of Claim: We shall prove by induction on $i \geqslant k$ that

$$
\left(t,\left\{b^{j}: j \geqslant i\right\}\right) \Vdash\left\{x_{t}^{j}: j \leqslant l_{i}\right\} \subseteq \dot{x}
$$

for some increasing sequence $\left(l_{i}\right)_{i \geqslant k}$.
Suppose $i=k$. We are going to prove that

$$
(t, B \backslash \max (t)+1) \Vdash\left\{x_{t}^{j}: j \leqslant l_{k}\right\} \subseteq \dot{x}
$$

for some $l_{k}$.
We have that $\max (t)=b^{k-1}$.
Let $t=a \cup s_{j}$, where $s_{j} \subseteq\left\{b^{0}, \ldots, b^{k-1}\right\}$. In the $k$-th step we have that $A_{k} \subseteq^{*} C_{t}^{j}$ for all $j \in X_{t}$. Let $l$ be the least such that $\max (t)+1<x_{t}^{l}$. By the construction we have that $\left(t, A_{k}\right) \Vdash\left\{x_{t}^{j}: j \leqslant l\right\} \subseteq \dot{x}$. Let $l_{k}=l$.

Since $B \backslash \max (t)+1 \subseteq A_{k}$, we obtain

$$
(t, B \backslash \max (t)+1) \Vdash\left\{x_{t}^{j}: j \leqslant l_{k}\right\} \subseteq \dot{x}
$$

Assume that for $k^{\prime} \geqslant k$, we have $\left(t,\left\{b^{j}: j \geqslant k^{\prime}\right\}\right) \Vdash\left\{x_{t}^{j}: j \leqslant l_{k^{\prime}}\right\} \subseteq \dot{x}$ and $l_{k^{\prime}}=l+r^{\prime}+1$, where $b^{k^{\prime}-1}=c_{r^{\prime}}$, similarly as in (5.2.1). We shall prove that $\left(t,\left\{b^{j}: j \geqslant k^{\prime}+1\right\}\right) \Vdash\left\{x_{t}^{j}: j \leqslant l_{k^{\prime}+1}\right\}$ for some $l_{k^{\prime}+1}>l_{k^{\prime}}$.

Then $b^{k^{\prime}}=c_{r}$, for some $c_{r} \in C_{t}^{j_{r}}$, and $j_{r}=x_{t}^{l+r}$. Since $b^{k^{\prime}-1}<b^{k^{\prime}}$, we have that $r^{\prime}<r$. By the construction we have

$$
\left(t, A_{k} \backslash c_{r}+1\right) \Vdash\left\{x_{t}^{j}: j \leqslant l+r+1\right\} \subseteq \dot{x}
$$

Let $l_{k^{\prime}+1}=l+r+1$. Notice that $l_{k^{\prime}+1}>l_{k^{\prime}}$. Since $\left\{b^{j}: j \geqslant k^{\prime}+1\right\} \subseteq A_{k} \backslash b^{k^{\prime}}+1$,

$$
\left(t,\left\{b^{j}: j \geqslant k^{\prime}+1\right\}\right) \Vdash\left\{x_{t}^{j}: j \leqslant l_{k^{\prime}+1}\right\} \subseteq \dot{x} .
$$

This finishes the proof of the Claim.
Claim 5.7. For all $t$ with $a \subseteq t \subseteq a \cup B$,

$$
(t, B \backslash \max (t)+1) \Vdash \dot{x} \cap(\max (t)+1)=X_{t} \cap(\max (t)+1) .
$$

Proof of Claim: Let $t$ be finite and such that $a \subseteq t \subseteq a \cup B$, where $\max (t)=$ $b^{m}$.

Suppose first that $\left|X_{t}\right|<\aleph_{0}$. By the construction $\left(t, A_{m+1}\right) \Vdash X_{t} \subseteq \dot{x}$. Since $B \backslash \max (t)+1 \subseteq A_{m+1}$, we have $(t, B \backslash \max (t)+1) \Vdash X_{t} \subseteq \dot{x}$. If $n \in \max (t)+1$ and $\left(t, C_{t}^{n}\right) \Vdash n \in \dot{x}$, then by Claim 5.4 we have $n \in X_{t}$. Therefore

$$
(t, B \backslash \max (t)+1) \Vdash \dot{x} \cap(\max (t)+1)=X_{t} \cap(\max (t)+1) .
$$

In fact,

$$
(t, B \backslash \max (t)+1) \Vdash \dot{x} \cap(\max (t)+1)=X_{t} .
$$

Now, suppose that $\left|X_{t}\right|=\aleph_{0}$ and $X_{t}=\left\{x_{t}^{j}: j \in \omega\right\}$. We have that for the least $k$ such that $b^{m}<x_{t}^{k}, A_{m+1} \subseteq C_{t}^{l}$, where $l=x_{t}^{k}$, and

$$
\left(t, C_{t}^{l}\right) \Vdash\left\{x_{t}^{j}: j \leqslant k\right\} \subseteq \dot{x} .
$$

Since $B \backslash \max (t)+1 \subseteq A_{m+1}$,

$$
(t, B \backslash \max (t)+1) \Vdash\left\{x_{t}^{j}: j \leqslant k\right\} \subseteq \dot{x} .
$$

By Claim 5.4 we have $(t, B \backslash \max (t)+1) \Vdash \dot{x} \cap(\max (t)+1)=X_{t} \cap(\max (t)+1)$. This proves the Claim.

This finishes the proof of Lemma 5.3.
Lemma 5.8. Suppose that for all $t$ such that $a \subseteq t \subseteq a \cup B, X_{t}$ is finite. Then for every $a \subseteq t \subseteq a \cup B$, letting $B \backslash \max (t)+1=\left\{b^{i}: i \in \omega\right\}$, we have that $\min \left(X_{t \cup\left\{b^{i}\right\}} \backslash X_{t}\right) \rightarrow \infty$ as $i \rightarrow \infty$ (where we set $\min \left(X_{t \cup\left\{b^{i}\right\}} \backslash X_{t}\right)=\infty$ if $X_{t \cup\left\{b^{i}\right\}} \backslash X_{t}=\emptyset$ ).

Proof. Notice that if $t \subseteq t^{\prime}$, then $X_{t} \subseteq X_{t^{\prime}}$. Assume towards a contradiction that there are $k \in \omega$ and $M \in[\omega]^{\omega}$ such that for all $m \in M$

$$
\min \left(X_{t \cup\left\{b^{m}\right\}} \backslash X_{t}\right)=k
$$

Consider $B^{\prime}=\left\{b^{i}: i \in M\right\}$.
Claim 5.9. $\left(t, B^{\prime}\right) \Vdash k \in \dot{x}$.
Proof of Claim: We need to show that the set of conditions that force $k \in \dot{x}$ is dense below $\left(t, B^{\prime}\right)$. Let $(s, C) \leqslant\left(t, B^{\prime}\right)$. By going to stronger condition, if necessary, we may assume that $t \backslash s \neq \emptyset$. So, we have

$$
s=t \cup\left\{b^{i_{0}}, \ldots, b^{i_{m}}\right\}
$$

with $\emptyset \neq\left\{i_{0}, \ldots, i_{m}\right\} \subseteq M$. Notice that $k \in X_{t \cup\left\{b^{i} 0\right\}} \backslash X_{t}$. By Lemma 5.3 (2), we have

$$
\left(t \cup\left\{b^{i_{0}}\right\}, B \backslash \max \left(t \cup\left\{b^{i_{0}}\right\}\right)+1\right) \Vdash k \in \dot{x}
$$

Since $(s, C) \leqslant\left(t \cup\left\{b^{i_{0}}\right\}, B \backslash \max \left(t \cup\left\{b^{i_{0}}\right\}\right)+1\right)$, we have $(s, C) \Vdash k \in \dot{x}$. We have proved the claim.

By (1) of Lemma 5.3, we now have that $k \in X_{t}$, which is a contradiction.

We are going to use following notation: $Y_{t \cup\{i\}}:=X_{t \cup\{i\}} \backslash X_{t}$, whenever $a \subseteq t \subseteq a \cup B$ and $i \in B \backslash \max (t)+1$.

We define $Y_{a}:=X_{a}$.
Lemma 5.10. Suppose that for all $t$ such that $a \subseteq t \subseteq a \cup B, X_{t}$ is finite. Then there is an infinite $B^{\prime} \subseteq B$ such that for any $t$ and $t^{\prime}$ with $a \subseteq t \subseteq a \cup B^{\prime}$, $a \subseteq t^{\prime} \subseteq a \cup B^{\prime}$, and $\max (t)<\max \left(t^{\prime}\right)$, we have $\max Y_{t}<\min Y_{t^{\prime}}$.

Proof. We are going to prove the lemma using lemma 5.8 and some pruning.
Let $t=a \cup\left\{b^{0}\right\}$ and assume that $Y_{t} \neq \emptyset$.
Since $\min \left(Y_{a \cup\left\{b^{i}\right\}}\right) \rightarrow \infty$, as $i \rightarrow \infty$, there exists $i_{0}>0$ such that for all $i \geqslant i_{0}, \max \left(Y_{a \cup\left\{b^{0}\right\}}\right)<\min \left(Y_{a \cup\left\{b^{i}\right\}}\right)$.

Consider now $\left\{b^{0}, b^{i_{0}}\right\}$ and all subsets $r_{j}$ such that $a \subseteq r_{j} \subseteq a \cup\left\{b^{0}, b^{i_{0}}\right\}$. Say $r_{0}=a, r_{1}=a \cup\left\{b^{0}\right\}, r_{2}=a \cup\left\{b^{i_{0}}\right\}$ and $r_{3}=a \cup\left\{b^{0}, b^{i_{0}}\right\}$.

Since $\min \left(Y_{r_{k} \cup\left\{b^{i}\right\}}\right) \rightarrow \infty$ whenever $i \rightarrow \infty$, there is $i_{1}>i_{0}$ such that for all $i \geqslant i_{1} \min \left(Y_{r_{k} \cup\left\{b^{i}\right\}}\right)>\max \left\{\max Y_{r_{2}}, \max Y_{r_{3}}\right\}$, for all $k \in 4$.

In general, assume that we have $\left\{b^{0}, b^{i_{0}}, \ldots, b^{i_{n}}\right\}$ with the property that for any two subsets $s, r$ such that $a \subseteq s, r \subseteq a \cup\left\{b^{0}, b^{i_{0}}, \ldots, b^{i_{n}}\right\}$ and max $s<$ $\max r$ we have $\max Y_{s}<\min Y_{r}$.

We are going to define $b^{i_{n+1}}$.
Let $\left\{r_{j}: j<2^{n+2}\right\}$ be an enumeration of all $r$, where $a \subseteq r \subseteq a \cup$ $\left\{b^{0}, b^{i_{0}}, \ldots, b^{i_{n}}\right\}$.

Since $\min \left(Y_{r_{k} \cup\left\{b^{i}\right\}}\right) \rightarrow \infty$ whenever $i \rightarrow \infty$, for all $k \in 2^{n+2}$, there is $i_{n+1}>i_{n}$ such that for all $i \geqslant i_{n+1}, \min \left(Y_{r_{k} \cup\{b i\}}\right)>\max \left\{\max Y_{r_{j}}: \max r_{j}=\right.$ $\left.b^{i_{n}}\right\}$ for all $k \in 2^{n+2}$.

Let $B^{\prime}=\left\{b^{0}\right\} \cup\left\{b^{i_{m}}: m \in \omega\right\}$. It is clear that $B^{\prime} \subseteq B$, and for any $t$ and $t^{\prime}$ such that $\max t<\max t^{\prime}$, we have that $\max Y_{t}<\min Y_{t^{\prime}}$.

Corollary 5.11. Suppose that $B$ is an infinite set of natural numbers that satisfies lemma 5.10, i.e., for any $t$ and $t^{\prime}$ with $a \subseteq t \subseteq a \cup B, a \subseteq t^{\prime} \subseteq a \cup B$, if $\max (t)<\max \left(t^{\prime}\right)$, then $\max Y_{t}<\min Y_{t^{\prime}}$. Then for all $i, j \in B$ such that $i<j$,

$$
\begin{aligned}
& \max \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}< \\
& \min \bigcup\left\{Y_{t}^{\prime}: \max t^{\prime}=j, a \subseteq t^{\prime} \subseteq a \cup B\right\}
\end{aligned}
$$

Proof. Suppose $t^{\prime}$ is such that $a \subseteq t^{\prime} \subseteq a \cup B$ and $\max t^{\prime}=j$. If $t$ is any finite set such that $a \subseteq t \subseteq a \cup B$ and with $\max t=i$, then $\max Y_{t}<\min Y_{t^{\prime}}$. So

$$
\max \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}<\min Y_{t^{\prime}}
$$

Since this holds, for all $t^{\prime}$ such that $a \subseteq t^{\prime} \subseteq a \cup B$ and max $t^{\prime}=j$, we have

$$
\begin{aligned}
& \max \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}< \\
& \min \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime}=j, a \subseteq t^{\prime} \subseteq a \cup B\right\}
\end{aligned}
$$

Lemma 5.12. Assume that $B$ is an infinite subset of the natural numbers that satisfies lemma 5.10. Let $d$ be a finite set of natural numbers such that

$$
\min d<\max \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime}=j, a \subseteq t^{\prime} \subseteq a \cup B\right\}<\max d
$$

where $j$ is some fixed element of $B$. Then

$$
d \nsubseteq \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}
$$

for all $i \in B$.
Proof. Let $i$ be an element in $B$. We are going to prove the lemma by cases:

- if $i=j$, then $\max d \notin \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}$ because by hypothesis

$$
\max \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime}=j, a \subseteq t^{\prime} \subseteq a \cup B\right\}<\max d
$$

- if $j<i$, then by Corollary 5.11, we have

$$
\begin{gathered}
\max \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime}=j, a \subseteq t^{\prime} \subseteq a \cup B\right\}< \\
\min \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}
\end{gathered}
$$

Then,

$$
\min d \notin \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}
$$

- if $i<j$, then by Corollary 5.11, we have

$$
\begin{aligned}
& \max \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}< \\
& \min \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime}=j, a \subseteq t^{\prime} \subseteq a \cup B\right\}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \min \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime}=j, a \subseteq t^{\prime} \subseteq a \cup B\right\} \leqslant \\
& \max \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime}=j, a \subseteq t^{\prime} \subseteq a \cup B\right\}
\end{aligned}
$$

it follows

$$
\max \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}<\max d
$$

Theorem 5.13. Mathias forcing does not add a Matet real.
Proof. Let $\dot{x}$ be a $\mathbb{M}$-name for a real (i.e., an element of $[\omega]^{\omega}$ ) which is not in the ground model $V$. We want to prove that $\dot{x}$ is not a $\mathbb{M}$-name for a Matet real over $V$.

If $m$ is a Matet real over $V$, then for all $D \subseteq \mathbb{M T}$ dense, $D \in V$, there is $(b, \mathscr{D}) \in D$, where $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$, such that

$$
m \in[b, \mathscr{D}]=\left\{x \in[\omega]^{\omega}: x=b \cup \bigcup_{i \in I} d_{i} \text { for some } I \in[\omega]^{\omega}\right\} .
$$

So, we shall prove that, in $V$, for all $(a, A) \in \mathbb{M}$, there are $(a, B) \leqslant(a, A)$ and $D \subseteq \mathbb{M T}$ dense such that for all $(b, \mathscr{D}) \in D,(a, B) \Vdash \dot{x} \notin[b, \mathscr{D}]$. This implies that $\dot{x}$ is not an $\mathbb{M}$-name for a Matet real over $V$.

Let $(a, A)$ be an element in Mathias forcing $\mathbb{M}$. By lemma 5.3 there is $(a, B) \leqslant(a, A)$ such that $B=\left\{b^{j}: j \in \omega\right\}$ is an increasing enumeration of $B$ that satisfies properties (1)-(4).

We have two cases:

1. For all $\left(a^{\prime}, B^{\prime}\right) \leqslant(a, B)$ there is $t$ finite with $a^{\prime} \subseteq t \subseteq a^{\prime} \cup B^{\prime}$ such that $X_{t}$ is infinite, or
2. there exists $\left(a^{\prime}, B^{\prime}\right) \leqslant(a, B)$ such that for all $t$ with $a^{\prime} \subseteq t \subseteq a^{\prime} \cup B^{\prime}$, $X_{t}$ is finite.

Assume that we are in case 1. This is the easy case.
Claim 5.14. Given a family $\left\{X_{m}: m \in \omega\right\} \subseteq[\omega]^{\omega}$ and a condition $\left(b^{\prime}, \mathscr{D}^{\prime}\right) \in$ $\mathbb{M T}$ there is $(b, \mathscr{D}) \leqslant\left(b^{\prime}, \mathscr{D}^{\prime}\right)$ with $b=b^{\prime}$ and $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$ such that $X_{m} \backslash$ $\bigcup_{i \in \omega} d_{i}$ is infinite for all $m \in \omega$.

Proof of Claim: View each $X_{m}$ as an increasing sequence $\left\langle x_{j}^{m}\right\rangle_{j \in \omega}$.
Let $\mathscr{D}^{\prime}=\left\langle d_{i}^{\prime}\right\rangle_{i \in \omega}$. We are going to construct $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$ such that $\mathscr{D} \sqsubseteq \mathscr{D}^{\prime}$ and a family

$$
\left\{Z_{m}: m \in \omega\right\}
$$

where $Z_{m} \subseteq X_{m} \backslash \bigcup_{i \in \omega} d_{i}$ for all $m \in \omega$.
Let $d_{0}=d_{0}^{\prime}$. Since $\left|d_{0} \cap X_{0}\right|<\aleph_{0}$ let $z_{0}^{0} \in X_{0}$ larger than $\max \left(d_{0}\right)$.
Let $d_{1}=d_{l_{0}}^{\prime}$ be such that $z_{0}^{0}<\min d_{l_{0}}^{\prime}$, and let $z_{0}^{1} \in X_{1}$ be larger than $\max \left(d_{l_{0}}^{\prime}\right)$.

Let $z_{1}^{0} \in X_{0}$ be such that $z_{1}^{0}>z_{0}^{1}$.
Assume that we have $z_{k}^{0}$ such that $\max d_{0}<z_{0}^{0}<\min d_{1} \leqslant \max d_{1}<$ $z_{0}^{1}<z_{1}^{0}<\min d_{2} \leqslant \max d_{2}<z_{0}^{2}<z_{1}^{1}<z_{2}^{0}<\ldots<\min d_{k} \leqslant \max d_{k}<z_{0}^{k}<$ $\ldots<z_{k}^{0}$.

Let $d_{k+1}=d_{l_{k+1}}^{\prime}$ be such that $z_{k}^{0}<\min d_{l_{k+1}}^{\prime}$. Since $\left|d_{l_{k+1}}^{\prime} \cap X_{k+1}\right|<\aleph_{0}$, we take $z_{0}^{k+1} \in X_{k+1}$ such that $z_{0}^{k+1}>\max \left(d_{l_{k+1}^{\prime}}^{\prime} \cap X_{k+1}\right)$. Choose $z_{1}^{k} \in X_{k}$ such that $z_{1}^{k}>z_{0}^{k+1}$, and finally let $z_{k+1}^{0} \in X_{0}$ be such that $z_{k+1}^{0}>z_{k}^{1}>\ldots>$ $z_{1}^{k}>z_{0}^{k+1}$.

We have obtained $Z_{m}=\left\langle z_{j}^{m}\right\rangle_{j \in \omega}$ for all $m \in \omega$ and $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$ such that $Z_{m} \subseteq X_{m} \backslash \bigcup_{i \in \omega} d_{i}$ is infinite for all $m \in \omega$. We have thus proved the claim.

We shall define a dense $D \subseteq \mathbb{M T}$. Let

$$
\begin{gathered}
D:=\left\{(b, \mathscr{D}) \in \mathbb{M T}: \text { for all } a \subseteq t \subseteq a \cup B \text { such that }\left|X_{t}\right|=\aleph_{0}\right. \\
\text { we have } \left.\left|X_{t} \backslash \bigcup_{n \in \omega} d_{n}\right|=\aleph_{0}, \text { where } \mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}\right\} .
\end{gathered}
$$

Claim 5.15. $D$ is dense.

Proof of Claim: Given any element $\left(b^{\prime}, \mathscr{D}^{\prime}\right) \in \mathbb{M T}$, by Claim 5.14 there is $(b, \mathscr{D}) \leqslant\left(b^{\prime}, \mathscr{D}^{\prime}\right)$ such that $X_{t} \backslash \bigcup_{i \in \omega} d_{i}$ is infinite for all $t$ with $a \subseteq t \subseteq a \cup B$ such that $X_{t}$ infinite. Therefore $D$ is dense.

Claim 5.16. For all $(b, \mathscr{D}) \in D$, where $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$,

$$
(a, B) \Vdash " \exists n \in \omega\left(n \in \dot{x} \text { and } n \notin \bigcup_{i \in \omega} d_{i}\right) " .
$$

Therefore $(a, B) \Vdash \dot{x} \notin[b, \mathscr{D}]$.

Proof of Claim: Let $(b, \mathscr{D})$ be an element in $D$, and let $(s, C) \leqslant(a, B)$. Then there is some $t$ with $s \subseteq t \subseteq s \cup C$ such that $X_{t}$ is infinite.

Let $n \in X_{t} \backslash \bigcup_{i \in \omega} d_{i}$ be such that $n>\max (b)$. Since

$$
n \in X_{t}=\left\{x_{t}^{i}: i \in \omega\right\}
$$

we have that $n=x_{t}^{k}$, for some $k \in \omega$. Consider $i^{\prime} \in \omega$ such that $k<l_{i^{\prime}}$, where $l_{i^{\prime}}$ is an element of the increasing sequence $\left(l_{i}\right)_{i \in \omega}$ in (4) of Lemma 5.3. Let $C^{\prime}:=\left\{b^{j} \in C: j \geqslant i^{\prime}\right\}$. Then

$$
\left(t,\left\{b^{j}: j \geqslant i^{\prime}\right\}\right) \Vdash\left\{x_{t}^{j}: j \leqslant l_{i^{\prime}}\right\} \subseteq \dot{x}
$$

by (3) of Lemma 5.3. Since $\left(t, C^{\prime}\right) \leqslant\left(t,\left\{b^{j}: j \geqslant i^{\prime}\right\}\right)$,

$$
\left(t, C^{\prime}\right) \Vdash\left\{x_{t}^{j}: j \leqslant l_{i^{\prime}}\right\} \subseteq \dot{x},
$$

and so

$$
\left(t, C^{\prime}\right) \Vdash " n \in \dot{x} \text { and } n \notin b \cup \bigcup_{i \in \omega} d_{i} " .
$$

Thus $\left(t, C^{\prime}\right) \Vdash \dot{x} \notin[b, \mathscr{D}]$. We have shown that the set of conditions that force " $\dot{x} \notin[b, \mathscr{D}]$ " is dense below $(a, B)$. This implies $(a, B) \Vdash$ " $\dot{x} \notin$ $[b, \mathscr{D}]$ ".

Suppose now that we are in the case 2 . So, suppose there is $\left(a^{\prime}, B^{\prime}\right) \leqslant$ $(a, B)$ such that for all $t$, where $a^{\prime} \subseteq t \subseteq a^{\prime} \cup B^{\prime}, X_{t}$ is finite. For simplicity of notation we may take $\left(a^{\prime}, B^{\prime}\right)=(a, B)$.

We assume that the condition $(a, B)$ satisfies the property of lemma 5.10, namely, for any $t$ and $t^{\prime}$ with $a \subseteq t \subseteq a \cup B, a \subseteq t^{\prime} \subseteq a \cup B$ and $\max (t)<$ $\max \left(t^{\prime}\right)$, we have $\max Y_{t}<\min Y_{t^{\prime}}$, where we recall the notation, $Y_{t \cup\{i\}}=$ $X_{t \cup\{i\}} \backslash X_{t}$, whenever $a \subseteq t \subseteq a \cup B$ and $i \in B \backslash \max (t)+1$.

We shall define in this case a dense $D \subseteq \mathbb{M T}$ such that for all $(b, \mathscr{D}) \in D$,

$$
(a, B) \Vdash " \exists n_{0} \in \omega \forall n \geqslant n_{0}\left(d_{n} \nsubseteq \dot{x}\right) "
$$

where $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$. Let
$D=\left\{(b, \mathscr{D}) \in \mathbb{M T}: \forall n \in \omega \forall i \in B\left(d_{n} \nsubseteq \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}\right)\right\}$.

Claim 5.17. $D$ is a dense subset of Matet forcing.
Proof of Claim: Let $\left(b, \mathscr{D}^{\prime}\right)$ be an element of Matet forcing, where $\mathscr{D}^{\prime}=$ $\left\langle d_{i}^{\prime}\right\rangle_{i \in \omega}$. We are going to define $\mathscr{D} \sqsubseteq \mathscr{D}^{\prime}$ such that $(b, \mathscr{D}) \in D$.

Let $j \in B$ be minimal such that

$$
\min d_{0}^{\prime}<\max \bigcup\left\{Y_{t}: \max t=j, a \subseteq t \subseteq a \cup B\right\}
$$

Note that such $j$ exists, because by lemma 5.8 there exists $j \in B$ such that for all $i^{\prime} \geqslant j$

$$
\min d_{0}^{\prime}<\min Y_{a \cup\left\{i^{\prime}\right\}} \leqslant \max Y_{a \cup\left\{i^{\prime}\right\}}
$$

and so, in particular, $\min d_{0}^{\prime}<\max Y_{a \cup\{j\}}$.
Let $k \geqslant 0$ be minimal such that

$$
\max d_{k}^{\prime}>\max \bigcup\left\{Y_{t}: \max t=j, a \subseteq t \subseteq a \cup B\right\}
$$

Let $d_{0}=d_{0}^{\prime} \cup d_{k}^{\prime}$. Since $d_{0}$ satisfies the hypothesis of lemma 5.12,

$$
d_{0} \nsubseteq \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}
$$

for all $i \in B$.
Suppose now that we have a finite sequence $d_{0}<d_{1}<\ldots<d_{l}$ such that for all $m \in\{0, \ldots, l\}, d_{m} \in F U\left(\mathscr{D}^{\prime}\right)$, and

$$
d_{m} \nsubseteq \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}
$$

for all $i \in B$.
We are going to obtain $d_{l+1}$ with the last property.
Let $d_{r}^{\prime}$ be such that $\max d_{l}<\min d_{r}^{\prime}$, and $j^{\prime}$ is minimal such that

$$
\min d_{r}^{\prime}<\max \bigcup\left\{Y_{t}: \max t=j^{\prime}, a \subseteq t \subseteq a \cup B\right\}
$$

Let $s \geqslant r$ be minimal such that

$$
\max d_{s}^{\prime}>\max \bigcup\left\{Y_{t}: \max t=j^{\prime}, a \subseteq t \subseteq a \cup B\right\}
$$

Define $d_{l+1}:=d_{r}^{\prime} \cup d_{s}^{\prime}$. Notice that $d_{l+1}$ satisfies the hypothesis of lemma 5.12, so

$$
d_{l+1} \nsubseteq \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}
$$

We define $\mathscr{D}:=\left(d_{i}\right)_{i \in \omega}$. It is clear that $\mathscr{D} \sqsubseteq \mathscr{D}^{\prime}$ and $\mathscr{D}$ satisfies the property that for all $n \in \omega$ and for all $i \in B$

$$
d_{n} \nsubseteq \bigcup\left\{Y_{t}: \max t=i, a \subseteq t \subseteq a \cup B\right\}
$$

Hence $D$ is a dense subset of Matet forcing. We have proved the claim.
Claim 5.18. For all $(b, \mathscr{D}) \in D$,

$$
(a, B) \Vdash " \exists n_{0} \in \omega \forall n \geqslant n_{0}\left(d_{n} \nsubseteq \dot{x}\right) "
$$

and therefore $(a, B) \Vdash \dot{x} \notin[b, \mathscr{D}]$.
Proof of Claim: Let $\left(a^{\prime}, B^{\prime}\right) \leqslant(a, B)$. We shall find $(t, C) \leqslant\left(a^{\prime}, B^{\prime}\right)$ and $n_{0} \in \omega$ such that for all $n \geqslant n_{0}$

$$
d_{n} \nsubseteq \bigcup\left\{Y_{t^{\prime}}: t \subseteq t^{\prime} \subseteq t \cup C\right\} .
$$

Let $t=a^{\prime}$. Let $Y_{a^{\prime}}$ and $n_{0} \in \omega$ be such that $\max Y_{a^{\prime}}<\min d_{n_{0}}$. We are going to obtain inductively $C=\left\{j_{l}: l \in \omega\right\} \subseteq B^{\prime}$.

There exists $j_{0} \in B^{\prime}$ such that $\max d_{n_{0}}<\min Y_{a^{\prime} \cup\{j\}}$, for all $j \geqslant j_{0}$.
Let $B_{0}=\left\{j \in B^{\prime}: j \geqslant j_{0}\right\}$. Notice that

$$
d_{n_{0}} \nsubseteq \bigcup\left\{Y_{t^{\prime}}: a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup B_{0}\right\}
$$

and that for any $C \subseteq B_{0}$ infinite we still have

$$
d_{n_{0}} \nsubseteq \bigcup\left\{Y_{t^{\prime}}: a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup C\right\} .
$$

Choose $n_{1}>n_{0}$ minimal such that

$$
\min d_{n_{1}}>\max \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime}=j_{0}, a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup B_{0}\right\}
$$

Now, choose $j_{1} \in B_{0}$ such that $j_{1}>j_{0}$ and

$$
\max d_{n_{1}}<\min \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime}=j_{1}, a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup B_{0}\right\}
$$

Such $j_{1}$ exists by corollary 5.11.
Let $B_{1}:=\left\{j \in B_{0}: j \geqslant j_{1}\right\}$.

Subclaim 5.19. For all $m$ such that $n_{0}+1 \leqslant m \leqslant n_{1}$,

$$
d_{m} \nsubseteq \bigcup\left\{Y_{t^{\prime}}: a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup\left\{j_{0}\right\} \cup B_{1}\right\}
$$

Proof of Subclaim: We shall prove the statement by cases:

- If $m=n_{1}$, then by selection of $n_{1}$ and $j_{1}$, we have $d_{m} \cap Y_{t^{\prime}}=\emptyset$ for all $t^{\prime}$ such that $a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup\left\{j_{0}\right\} \cup B_{1}$.
- If $m$ is such that $n_{0}+1 \leqslant m<n_{1}$ then
$-d_{m} \cap Y_{a^{\prime}}=\emptyset$ because $\max Y_{a^{\prime}}<\min d_{n_{0}}<\min d_{m}$.
$-d_{m} \cap Y_{t^{\prime}}=\emptyset$ for all $t^{\prime}$ such that $a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup B_{0}$ and $\max t^{\prime} \geqslant j_{1}$ because

$$
\max d_{m}<\min d_{n_{1}}<\min \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime} \geqslant j_{1}, a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup B_{0}\right\}
$$

- and finally $d_{m} \nsubseteq \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime}=j_{0}, a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup B_{0}\right\}$ by definition of $D$.

We have proved the subclaim.
Note that the claim above is true for any infinite subset $C$ of $B_{1}$, i.e., for all $m$ such that $n_{0}+1 \leqslant m \leqslant n_{1}$ we have

$$
d_{m} \nsubseteq \bigcup\left\{Y_{t^{\prime}}: a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup\left\{j_{0}\right\} \cup C\right\}
$$

Assume that we have $j_{0}<j_{1}<\ldots<j_{k}$ elements in $B^{\prime}$, infinite subsets $B_{k} \subseteq \ldots \subseteq B_{0} \subseteq B^{\prime}$ such that $\min B_{l}=j_{l}$ for all $l \in\{0, \ldots, k\}$, and natural numbers $n_{1}<\ldots<n_{k}$ such that

$$
d_{l} \nsubseteq \bigcup\left\{Y_{t^{\prime}}: a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup\left\{j_{0}, \ldots, j_{k-1}\right\} \cup B_{k}\right\}
$$

for all $l$ with $n_{0} \leqslant l \leqslant n_{k}$.
We shall obtain $j_{k+1}, B_{k+1} \subseteq B_{k}$ and $n_{k+1}>n_{k}$ such that

$$
d_{m} \nsubseteq \bigcup\left\{Y_{t^{\prime}}: a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup\left\{j_{0}, \ldots, j_{k}\right\} \cup B_{k+1}\right\}
$$

for all $m$ such that $n_{k} \leqslant m \leqslant n_{k+1}$.
Choose $n_{k+1}>n_{k}$ minimal such that

$$
\min d_{n_{k+1}}>\max \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime}=j_{k}, a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup\left\{j_{0}, \ldots, j_{k-1}\right\} \cup B_{k}\right\}
$$

Choose $j_{k+1} \in B_{k}$ such that $j_{k+1}>j_{k}$ and

$$
\max d_{n_{k+1}}<\min \bigcup\left\{Y_{t^{\prime}}: \max t^{\prime}=j_{k+1}, a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup\left\{j_{0}, \ldots, j_{k-1}\right\} \cup B_{k}\right\}
$$

Let $B_{k+1}=\left\{j \in B_{k}: j \geqslant j_{k+1}\right\}$.
Subclaim 5.20. For all $m$ such that $n_{k} \leqslant m \leqslant n_{k+1}$

$$
d_{m} \nsubseteq \bigcup\left\{Y_{t^{\prime}}: a^{\prime} \subseteq t^{\prime} \subseteq a^{\prime} \cup\left\{j_{0}, \ldots, j_{k}\right\} \cup B_{k+1}\right\}
$$

Proof of subclaim: Exactly like the proof of subclaim 5.19.
We define $C=\left\{j_{l}: l \in \omega\right\}$, then $\left(a^{\prime}, C\right) \leqslant\left(a^{\prime}, B^{\prime}\right)$ and for all $n \geqslant n_{0}$

$$
d_{n} \nsubseteq \bigcup\left\{Y_{t}: a^{\prime} \subseteq t \subseteq a^{\prime} \cup C\right\}
$$

Hence $\left(a^{\prime}, C\right) \Vdash \exists n_{0} \forall n \geqslant n_{0}\left(d_{n} \nsubseteq \dot{x}\right)$, and thus $(a, B) \Vdash \dot{x} \notin[b, \mathscr{D}]$. We have proved the Claim 5.18 and the Theorem.

Corollary 5.21. $\mathbb{P}_{\text {FIN }}$ is not equivalent to Mathias forcing.
Proof. By the Corollary 5.2, we have that $\mathbb{P}_{\text {FIN }}$ adds a Matet real.

### 5.3 A "product" of two copies of Mathias forcing.

We are going to consider a "product" of two copies of Mathias forcing, denoted by $\mathbb{M}_{2}$, that is the same as the forcing notion considered by Shelah and Spinas in [23]. The reason for looking at $\mathbb{M}_{2}$ is its connection with $\mathbb{P}_{F I N}$. We shall prove that $\mathbb{M}_{2}$ is a projection of $\mathbb{P}_{F I N}$, hence adding a generic for $\mathbb{P}_{\text {FIN }}$ adds a generic for $\mathbb{M}_{2}$.

Definition 5.22. Conditions in $\mathbb{M}_{2}$ are pairs $((s, A),(t, B))$ such that $s, t \in$ $[\omega]^{<\omega}, A, B \in[\omega]^{\omega},|s|=|t|, \max s<\min A, \max t<\min B$, and if

$$
\begin{aligned}
& s=\left\{s_{i}: i<n\right\} \\
& t=\left\{t_{i}: i<n\right\}
\end{aligned}
$$

are the increasing enumerations of $s$ and $t$, respectively, then

$$
s_{0} \leqslant t_{0} \leqslant s_{1} \leqslant \ldots \leqslant s_{k} \leqslant t_{k} \leqslant \ldots \leqslant s_{n-1} \leqslant t_{n-1}
$$

For any elements $\left(\left(s^{\prime}, A^{\prime}\right),\left(t^{\prime}, B^{\prime}\right)\right),((s, A),(t, B))$ of $\mathbb{M}_{2}$, the ordering is given by

$$
\left(\left(s^{\prime}, A^{\prime}\right),\left(t^{\prime}, B^{\prime}\right)\right) \leqslant_{\mathbb{M}_{2}}((s, A),(t, B))
$$

if and only if $\left(s^{\prime}, A^{\prime}\right) \leqslant_{\mathbb{M}}(s, A)$ and $\left(t^{\prime}, B^{\prime}\right) \leqslant_{\mathbb{M}}(t, B)$.
Remark 5.23. Let $D$ be the set of all pairs $((s, A),(t, B)) \in \mathbb{M}_{2}$ such that whenever $A=\left\{a_{i}: i \in \omega\right\}$ and $B=\left\{b_{i}: i \in \omega\right\}$ are increasing enumerations of $A$ and $B$, we have $a_{i}<b_{i}<a_{i+1}$ for all $i \in \omega$. It is clear that $D$ is dense in $\mathbb{M}_{2}$.

Note that $Q^{2}$, in Definition 1.3 [23], is the same as the set $D$ defined in previous remark.

Notice that if $G$ is $\mathbb{M}_{2}$-generic filter over $V$, then

$$
H_{0}:=\{(a, A) \in \mathbb{M}: \exists(b, B) \in \mathbb{M}((a, A),(b, B)) \in G\}
$$

is an $\mathbb{M}$-generic filter over $V$. Similarly,

$$
H_{1}:=\{(b, B) \in \mathbb{M}: \exists(a, A) \in \mathbb{M}((a, A),(b, B)) \in G\}
$$

is an $\mathbb{M}$-generic filter over $V$. Thus $\mathbb{M}_{2}$ adds a pair of Mathias reals $(n, m)$. By Remark 5.23, we have that for some $k \in \omega, n_{j}<m_{j}<n_{j+1}$ for all $j \geqslant k$, where $n=\left\langle n_{i}\right\rangle_{i \in \omega}$ and $m=\left\langle m_{i}\right\rangle_{i \in \omega}$.

Recall definition of dense sets $D_{n}$ of $\mathbb{P}_{\text {FIN }}$ for all $n \in \omega$, as in (4.1.1) of Chapter 4:

$$
D_{n}:=\left\{(A, \mathscr{D}) \in \mathbb{P}_{F I N}: \forall x \in \mathscr{D}(|x| \geqslant n)\right\} .
$$

Lemma 5.24. $\mathbb{M}_{2}$ is a projection of $D_{2}$. Hence adding a generic for $\mathbb{P}_{F I N}$ adds a generic for $\mathbb{M}_{2}$.

Proof. Given $(A, \mathscr{D}) \in D_{2}$, where $A=\left\langle x_{0}, \ldots, x_{m}\right\rangle$ and $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$ such that $\left|d_{i}\right| \geqslant 2$ for all $n \in \omega$. We define $\pi((A, \mathscr{D})) \in \mathbb{M}_{2}$ as
$\left(\left(\left\{\min x_{j}: j \leqslant m\right\},\left\{\min d_{i}: i \in \omega\right\}\right),\left(\left\{\max x_{j}: j \leqslant m\right\},\left\{\max d_{i}: i \in \omega\right\}\right)\right)$.

- $\pi$ preserves order.
- For all $((s, S),(t, T)) \in \mathbb{M}_{2}$ and for all $(A, \mathscr{D}) \in \mathbb{P}_{F I N}$ such that

$$
((s, S),(t, T)) \leqslant \pi((A, \mathscr{D}))
$$

there is $\left(A^{\prime}, \mathscr{D}^{\prime}\right) \leqslant(A, \mathscr{D})$ such that $\pi\left(\left(A^{\prime}, \mathscr{D}^{\prime}\right)\right) \leqslant((s, S),(t, T))$.
Order preservation is trivial. We shall prove the last statement.
Let $((s, S),(t, T)) \in \mathbb{M}_{2}$ and let $(A, \mathscr{D}) \in D_{2}$ where $A=\left\langle x_{0}, \ldots, x_{m}\right\rangle$, $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$ such that $\left|d_{i}\right| \geqslant 2$ for all $n \in \omega$ and

$$
((s, S),(t, T)) \leqslant_{\mathbb{M}_{2}} \pi((A, \mathscr{D})) .
$$

By Remark 5.23 , there exists $\left(\left(u, S^{\prime}\right),\left(v, T^{\prime}\right)\right)$ in $D$ such that

$$
\left(\left(u, S^{\prime}\right),\left(v, T^{\prime}\right)\right) \leqslant_{\mathbb{M}_{2}}((s, S),(t, T)) \leqslant_{\mathbb{M}_{2}} \pi((A, \mathscr{D}))
$$

Since $\left(\left(u, S^{\prime}\right),\left(v, T^{\prime}\right)\right)$ belongs to $D$,

$$
S^{\prime}=\left\{s_{i}^{\prime}: i \in \omega\right\} \text { and } T^{\prime}=\left\{t_{i}^{\prime}: i \in \omega\right\}
$$

are increasing enumerations such that $s_{i}^{\prime}<t_{i}^{\prime}<s_{i+1}^{\prime}$, for all $i \in \omega$.
We have

$$
S^{\prime} \subseteq S \subseteq\left\{\min d_{i}: i \in \omega\right\} \text { and } T^{\prime} \subseteq T \subseteq\left\{\max d_{i}: i \in \omega\right\}
$$

Define $\mathscr{D}^{\prime}=\left\langle d_{l}^{\prime}\right\rangle_{l \in \omega}$ as follows: for $l \in \omega, d_{l}^{\prime}=d_{i_{l}} \cup d_{j_{l}}$, where $s_{l}^{\prime}=\min d_{i_{l}}$ and $t_{l}^{\prime}=\max d_{j_{l}}$. It is clear that $\mathscr{D}^{\prime} \sqsubseteq \mathscr{D}$.

Let $l:=|u|=|v|$. Since $\left(\left(u, S^{\prime}\right),\left(v, T^{\prime}\right)\right) \in \mathbb{M}_{2}$, we have

$$
u_{0} \leqslant v_{0} \leqslant u_{1} \leqslant v_{1} \leqslant \ldots \leqslant u_{l-1} \leqslant v_{l-1}
$$

Notice that $u \supseteq\left\{\min x_{j}: j \leqslant m\right\}$ and if $x \in u \backslash\left\{\min x_{j}: j \leqslant m\right\}$, then $x \in$ $\left\{\min d_{i}: i \in \omega\right\}$. Similary, for all $y \in v \backslash\left\{\max x_{j}: j \leqslant m\right\}, y \in\left\{\max d_{i}: i \in \omega\right\}$. Since $(A, \mathscr{D}) \in D_{2}$, we have that for all $j$ such that $m<j<l, u_{j}<v_{j}<u_{j+1}$.

For $m<k<l$, we have $u_{k}=\min d_{i_{k}}$ and $v_{k}=\max d_{j_{k}}$. Define $x_{k}:=$ $d_{i_{k}} \cup d_{j_{k}}$. Put $A^{\prime}=A^{\wedge}\left\langle x_{m+1}, \ldots, x_{l-1}\right\rangle$

Now

$$
\left(A^{\prime}, \mathscr{D}^{\prime}\right) \leqslant_{\mathbb{P}_{F I N}}(A, \mathscr{D})
$$

and

$$
\pi\left(\left(A^{\prime}, \mathscr{D}^{\prime}\right)\right)=\left(\left(u, S^{\prime}\right),\left(v, T^{\prime}\right)\right) \leqslant_{\mathbb{M}_{2}}((s, S),(t, T))
$$

Thus $\mathbb{P}_{\text {FIN }}$ adds a generic for $\mathbb{M}_{2}$. If $\mathscr{D}^{*}$ is a $\mathbb{P}_{\text {FIN }}$-generic block sequence over $V$, then

$$
\left(\left\{\min d: d \in \mathscr{D}^{*}\right\},\left\{\max d: d \in \mathscr{D}^{*}\right\}\right)
$$

is an $\mathbb{M}_{2}$-generic over $V$.
Proposition 5.25. $\mathbb{M}_{2}$ is not equivalent to the usual product of two copies of Mathias forcing $\mathbb{M} \times \mathbb{M}$.

Proof. We are going to prove that $\mathbb{M} \times \mathbb{M}$ adds a Cohen real. Let ( $m_{0}, m_{1}$ ) be a pair of Mathias reals $\mathbb{M} \times \mathbb{M}$-generic over $V$. We define $c \in 2^{\omega}$ as follows

$$
c(i)= \begin{cases}0 & \text { if } m_{0}(i) \leqslant m_{1}(i) \\ 1 & \text { if } m_{0}(i)>m_{1}(i)\end{cases}
$$

We shall show that $c$ is a Cohen real. Let $D \subseteq \mathbb{C}$ be a dense subset.
Given $(a, b) \in[\omega]^{<\omega} \times[\omega]^{<\omega}$ such that $|a|=|b|=k$, and $a=\left\{a_{i}: i<k\right\}$ and $b=\left\{b_{i}: i<k\right\}$ are increasing enumerations of $a$ and $b$, respectively, we define a function $q_{(a, b)}: k \rightarrow 2$ as follows:

$$
q_{(a, b)}(i)= \begin{cases}0 & \text { if } a_{i} \leqslant b_{i} \\ 1 & \text { if } a_{i}>b_{i}\end{cases}
$$

Define

$$
D^{\prime}:=\left\{((a, A),(b, B)) \in \mathbb{M} \times \mathbb{M}:|a|=|b|, \exists q \in D \text { such that } q=q_{(a, b)}\right\}
$$

Claim 5.26. $D^{\prime}$ is a dense subset of $\mathbb{M} \times \mathbb{M}$.
Proof of Claim: Let $\left(\left(a^{\prime}, A^{\prime}\right),\left(b^{\prime}, B^{\prime}\right)\right) \in \mathbb{M} \times \mathbb{M}$. Assume that $\left|a^{\prime}\right| \leqslant\left|b^{\prime}\right|$, there exists a condition $\left(a^{\prime \prime}, A^{\prime \prime}\right) \in \mathbb{M}$ such that $\left(a^{\prime \prime}, A^{\prime \prime}\right) \leqslant\left(a^{\prime}, A^{\prime}\right)$ and $\left|a^{\prime \prime}\right|=\left|b^{\prime}\right|=$ $k$. Consider $q_{\left(a^{\prime \prime}, b^{\prime}\right)}$ defined as before. Since $D$ is dense, there is $q \in D$ such that $q \leqslant q_{\left(a^{\prime \prime}, b^{\prime}\right)}$, i.e., $q \upharpoonright k=q_{\left(a^{\prime \prime}, b^{\prime}\right)}$. Hence, $\left(\left(a^{\prime \prime}, A^{\prime \prime}\right),\left(b^{\prime}, B^{\prime}\right)\right) \leqslant\left(\left(a^{\prime}, A^{\prime}\right),\left(b^{\prime}, B^{\prime}\right)\right)$ and $\left(\left(a^{\prime \prime}, A^{\prime \prime}\right),\left(b^{\prime}, B^{\prime}\right)\right) \in D^{\prime}$. So, $D^{\prime}$ is a dense subset of $\mathbb{M} \times \mathbb{M}$.

We have that $\left(G_{m_{0}} \times G_{m_{1}}\right) \cap D^{\prime} \neq \emptyset$, there is $((a, A),(b, B)) \in G_{m_{0}} \times G_{m_{1}}$ and there is $q \in D$ such that $q=q_{(a, b)}$, where $|a|=|b|=k$. By definition of function $c$ we obtain that $c \upharpoonright k=q_{(a, b)}=q$. Hence $c$ is a Cohen real.

Since $\mathbb{M}_{2}$ is a projection of $\mathbb{P}_{F I N}$ and $\mathbb{P}_{F I N}$ does not add Cohen reals by Theorem 4.27, we have that $\mathbb{M}_{2}$ does not add a Cohen real. Hence, $\mathbb{M}_{2}$ is different from $\mathbb{M} \times \mathbb{M}$.
$\mathbb{P}_{\text {FIN }}$ does not add Cohen reals (Theorem 4.27), so it does not add a generic for $\mathbb{M} \times \mathbb{M}$.

In 1.2 .2 of the Preliminaries section we defined the partial ordering $\mathbb{P}^{*}=$ $\left\langle(F I N)^{\omega}, \sqsubseteq^{*}\right\rangle$. In Section 1.2, we defined $\mathbb{U}=\langle\mathscr{P}(\omega) /$ fin, $\leqslant\rangle$ as the partial order whose elements are infinite subsets of $\omega$ ordered by $\subseteq^{*}$.

Lemma 5.27. The partial order $\mathscr{P}(\omega) /$ fin $\times \mathscr{P}(\omega) /$ fin with the usual product is a projection of $\mathbb{P}^{*}$.

Proof. Define $\pi: \mathbb{P}^{*} \rightarrow \mathscr{P}(\omega) /$ fin $\times \mathscr{P}(\omega) /$ fin as follows.
For $\mathscr{D} \in \mathbb{P}^{*}$, where $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$. We define

$$
\pi(\mathscr{D}):=\left(\left\{\min d_{i}: i \in \omega\right\},\left\{\max d_{i}: i \in \omega\right\}\right) .
$$

- $\pi$ preserves order.

Let $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega}$ and $\mathscr{D}^{\prime}=\left\langle d_{i}^{\prime}\right\rangle_{i \in \omega}$ be elements of $(F I N)^{\omega}$ such that $\mathscr{D} \sqsubseteq^{*} \mathscr{D}^{\prime}$. Then there exists $n \in \omega$ such that $\mathscr{D} \backslash n \sqsubseteq \mathscr{D}^{\prime}$, i.e., $\mathscr{D} \backslash n \subseteq$ $F U\left(\mathscr{D}^{\prime}\right)$.

Then

$$
\begin{gathered}
\pi(\mathscr{D})=\left(\left\{\min d_{i}: i \in \omega\right\},\left\{\max d_{i}: i \in \omega\right\}\right) \leqslant \\
\pi\left(\mathscr{D}^{\prime}\right)=\left(\left\{\min d_{i}^{\prime}: i \in \omega\right\},\left\{\max d_{i}^{\prime}: i \in \omega\right\}\right)
\end{gathered}
$$

because

$$
\left\{\min d_{i}: i \in \omega\right\} \backslash\left\{\min d_{i}^{\prime}: i \in \omega\right\} \in[\omega]^{<\omega}
$$

and

$$
\left\{\max d_{i}: i \in \omega\right\} \backslash\left\{\max d_{i}^{\prime}: i \in \omega\right\} \in[\omega]^{<\omega} .
$$

- For all $(A, B) \in \mathscr{P}(\omega) /$ fin $\times \mathscr{P}(\omega) /$ fin and for all $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega} \in \mathbb{P}^{*}$ such that $(A, B) \leqslant \pi(\mathscr{D})$, there is $\mathscr{D}^{\prime} \sqsubseteq^{*} \mathscr{D}$ such that $\pi\left(\mathscr{D}^{\prime}\right) \leqslant(A, B)$.

Let $(A, B) \in \mathscr{P}(\omega) /$ fin $\times \mathscr{P}(\omega) /$ fin and $\mathscr{D}=\left\langle d_{i}\right\rangle_{i \in \omega} \in \mathbb{P}^{*}$ be such that $(A, B) \leqslant \pi(\mathscr{D})$.

Since the set

$$
\begin{gathered}
D=\left\{\left(A^{\prime}, B^{\prime}\right): \text { if } A^{\prime}=\left\{a_{i}^{\prime}: i \in \omega\right\} \text { and } B^{\prime}=\left\{b_{i}^{\prime}: i \in \omega\right\}\right. \text {, then } \\
\left.a_{i}^{\prime}<b_{i}^{\prime}<a_{i+1}^{\prime}, \text { for all } i \in \omega\right\}
\end{gathered}
$$

is a dense subset of $\mathscr{P}(\omega) /$ fin $\times \mathscr{P}(\omega) /$ fin, there is some $\left(A^{\prime}, B^{\prime}\right) \in D$ such that $\left(A^{\prime}, B^{\prime}\right) \leqslant(A, B)$, and

$$
A^{\prime} \subseteq^{*}\left\{\min d_{i}: i \in \omega\right\} \text { and } B^{\prime} \subseteq^{*}\left\{\max d_{i}: i \in \omega\right\}
$$

There exists $n \in \omega$ such that $a_{i}^{\prime}=\min d_{j_{i}}$ for all $i \geqslant n$ and there exists $m \in \omega$ such that $b_{i}^{\prime}=\max d_{l_{i}}$ for all $i \geqslant m$. Letting $k:=\max \{n, m\}$, we define $\mathscr{D}^{\prime}$ as follows: let $d_{i}^{\prime}=d_{j_{i}} \cup d_{l_{i}}$ for all $i \geqslant k$.

It is clear that $\mathscr{D}^{\prime} \sqsubseteq^{*} \mathscr{D}$ and

$$
\pi\left(\mathscr{D}^{\prime}\right)=\left(\left\{\min d_{i}^{\prime}: i \in \omega\right\},\left\{\max d_{i}^{\prime}: i \in \omega\right\}\right) \leqslant\left(A^{\prime}, B^{\prime}\right) \leqslant(A, B) .
$$

Hence $\mathscr{P}(\omega) /$ fin $\times \mathscr{P}(\omega) / f i n$ is a projection of $\mathbb{P}^{*}$.
Propositions 4.17 and 4.18 proved that $\mathbb{P}^{*}$ adds a $\mathscr{P}(\omega) /$ fin-generic filter over $V$ and the last lemma is a generalization of this fact because we are proving that $\mathbb{P}^{*}$ adds a generic for $\mathscr{P}(\omega) /$ fin $\times \mathscr{P}(\omega) /$ fin .

## Chapter 6

## Conclusion

We have worked with three forcing notions, namely, Mathias forcing, which we denote by $\mathbb{M}$, Matet forcing, which we denote by $\mathbb{M T}$, and $\mathbb{P}_{\text {FIN }}$. The partial orders $\mathbb{M}$ and $\mathbb{P}_{F I N}$ arose in our forcing proofs of the theorems of Ramsey and Hindman, respectively. As to $\mathbb{M T}$, we considered it by its similarity both to Mathias forcing and to $\mathbb{P}_{F I N}$, and it is by means of it that we managed to prove the non-equivalence of these last two forcing notions. In fact, none of the three partial orders mentioned is equivalent to any other.

In order to compare $\mathbb{P}_{\text {FIN }}$ with $\mathbb{M}$ and $\mathbb{M T}$ we have examined what properties $\mathbb{P}_{\text {FIN }}$ has. In particular, we have shown that, like the Mathias real in Mathias forcing, the generic block sequence added by $\mathbb{P}_{\text {FIN }}$ allows us to reconstruct the generic filter. As in the case of $\mathbb{M}$ and $\mathbb{M T}, \mathbb{P}_{\text {FIN }}$ can be put into the form of a two-step iteration of a $\sigma$-closed and a $\sigma$-centered partial orders. Again, also as $\mathbb{M}$ and $\mathbb{M T}, \mathbb{P}_{F I N}$ satisfies Axiom A and has the pure decision property. $\mathbb{P}_{\text {FIN }}$ adds no Cohen reals, either.

Finally, we considered a partial order defined by Shelah and Spinas, which we denote by $\mathbb{M}_{2}$, and have shown that $\mathbb{P}_{\text {FIN }}$ adds a generic filter for it.

There is more work to do. On the one hand, on the line of what we did regarding Ramsey's and Hindman's theorems, we are seeking a partial order suitable for a proof of Gowers' Theorem on the existence of homogeneous sets for partitions of $\mathrm{FIN}_{k}$. On the other hand, we want to keep on studying
$\mathbb{P}_{\text {FIN }}$, by answering such natural questions as

1. What are the cardinal invariants associated with $\mathbb{P}_{\text {FIN }}$ ?
2. Does $\mathbb{P}_{\text {FIN }}$ add Sacks, Silver, or Laver reals?
3. Is there an extrinsic characterization of the generic block sequences of $\mathbb{P}_{\text {FIN }}$, in a way similar to Mathias reals being characterized in terms of almost disjoint families of the ground model?
4. Is it true, again as in the case of Mathias forcing, that every condensation of a $\mathbb{P}_{F I N}$-generic block sequence is also a generic block sequence?

## Bibliography

[1] T. Bartoszyński and H. Judah. Set Theory. On the structure of the real line. A. K. Peters Wellesley, Massachusetts, 1995.
[2] J. E. Baumgartner. A short proof of Hindman's theorem. Journal of Combinatorial Theory, 17:384-386, 1974.
[3] J. E. Baumgartner. Iterated forcing. In A. R. D. Mathias, editor, Surveys in set theory, pages 1-59. Cambridge University Press, 1983.
[4] J. E. Baumgartner. Applications of the proper forcing axiom. In K. Kunen and J.E. Vaughan, editors, Handbook of Set theoretic topology, pages 913-959. North-Holland Publishing Co., 1984.
[5] A. Blass. Ultrafilters related to Hindman's finite-unions theorem and its extensions. Contemporary Mathematics, 65:89-124, 1987.
[6] A. Blass. Applications of superperfect forcing and its relatives. In Set theory and its applications. Lecture notes in Mathematics. Springer, Berlin, 1989.
[7] A. Blass. Groupwise density and related cardinals. Archive for mathematical logic, 30:1-11, 1990.
[8] T. Eisworth. Forcing and stable ordered-union ultrafilters. The Journal of Symbolic Logic, 67:449-464, 2002.
[9] R. L. Graham and B. L. Rothschild. Ramsey's theorem for $n$-parameter sets. Transactions of the American Mathematical Society, 159:257-292, 1971.
[10] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey Theory, Second edition. Wiley-Interscience Series in Discrete Mathematics and Optimization, 1990.
[11] L. Halbeisen. A playful approach to Silver and Mathias forcing. Studies in Logic, 11:123142, 2007.
[12] L. Halbeisen and H. Judah. Mathias absoluteness and the Ramsey property. The Journal of Symbolic Logic, 61:177-194, 1996.
[13] N. Hindman. Finite sums from sequences within cells of a partition of N. Journal of Combinatorial Theory (A), 17:1-11, 1974.
[14] T. Jech. Multiple forcing. Cambridge University Press, 1986.
[15] T. Jech. Set Theory. The third millennium edition, revised and expanded. Springer, 2002.
[16] K. Kunen. Set theory. An introduction to independence proofs. Elsevier, 1980.
[17] P. Matet. Some filters of partitions. The Journal of Symbolic Logic, 53:540-553, 1988.
[18] A. R. D. Mathias. Happy families. Annals of Mathematical logic, 12:59111, 1977.
[19] F. P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical Society, 30:264-286, 1930.
[20] W. Rudin. Homogeneity problems in the theory of Čech compactifications. Duke Mathematical Journal, 23:409-419, 1956.
[21] S. Shelah. Proper forcing, volume 940 of Lecture notes in Mathematics. Springer-Verlag, Berlin-New York, 1982.
[22] S. Shelah. Proper and improper forcing, volume 29 of Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1998.
[23] S. Shelah and O. Spinas. The distributivity numbers of finite products of $\mathscr{P}(\omega) /$ fin. Fundamenta Mathematicae, 158:81-93, 1998.
[24] S. Todorčević. Introduction to Ramsey spaces. Princeton University Press, 2010.

