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Abstract
Empirical data is needed in order to extend our knowledge of traffic behavior. Video

recordings are used to enrich typical data from loop detectors. In this context, data

extraction from videos becomes a challenging task. Setting automatic video process-

ing systems is costly, complex, and the accuracy achieved is usually not enough to

improve traffic flow models. In contrast “visual” data extraction by watching the

recordings requires extensive human intervention. A semiautomatic video process-

ing methodology to count lane-changing in freeways is proposed. The method allows

counting lane changes faster than with the visual procedure without falling into

the complexities and errors of full automation. The method is based on converting

the video into a set of space–time still images, from where to visually count. This

methodology has been tested at several freeway locations near Barcelona (Spain)

with good results. A user-friendly implementation of the method is available on

http://bit.ly/2yUi08M.

1 INTRODUCTION

In recent years, lane-change activity has been identified as

one of the main factors to trigger congestion in dense traf-

fic, causing instabilities and the capacity drop (Coifman,

Mishalani, Wang, & Krishnamurthy, 2006; Duret, Ahn, &

Buisson, 2011; Laval, Cassidy, & Daganzo, 2007). Besides,

the absence of lane changes has been associated with a

smoothed and improved traffic performance (Cassidy, Jang,

& Daganzo, 2010; Menendez & Daganzo, 2007; Qu & Wang,

2015). These findings are grounded on few empirical data. In

fact, most of the current research on freeway lane-changing

either use the laudable but limited and inaccurate Next Gen-

eration Simulation (NGSIM) data set (Coifman & Li, 2017;

Federal Highway Administration, 2015), use theoretical lane-

changing models (Coifman et al., 2006; Duret et al., 2011), or

use data from ad hoc experiments (Sun & Elefteriadou, 2012;
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Sun & Kondyli, 2010). The main cause of the lack of free-

way lane-changing data is that typical freeway sensors, such as

loop detectors or license plate recognition devices, are unable

to measure them. In such situations, video recordings appear

as an alternative, while the image processing required for the

data extraction constitutes a challenge.

While full automatization of the data extraction process

from video recordings is technically feasible, in many cases

it is not cost-effective and turns out to be insufficiently accu-

rate. The limited amount of data to treat in research pilot

tests does not justify the implementation of complex auto-

matic image processing systems, which generally involve sig-

nificant investments in hardware and software, as well as

long learning periods. In addition, even the best automated

tool requires extensive human intervention for obtaining the

data accuracy required in most of the research applications

(Coifman & Li, 2017). In this context, researchers usually
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avoid automated methods and opt for the “visual” data extrac-

tion, which implies watching the recordings and manually

annotating the relevant data. This is an extremely tedious

and time-consuming task. Just imagine a situation where lane

changes need to be counted in six different sections of a three-

lane freeway for a total of 63 hr of video recordings. This was

precisely the need that gave rise to the development of the fast,

simple, and reliable semiautomatic video processing method

presented in this paper.

The rest of the paper is structured as follows: Section 2

reviews different methods for video processing in order to

extract traffic data; next, in Section 3 a detailed description of

the proposed methodology for counting freeway lane changes

is presented. Numerical assessment and guidelines on how

to correctly use the method are also described. In Section 4,

the method is applied to video recordings from two freeways

accessing Barcelona (Spain). The reliability of the method

is assessed, and a preliminary traffic analysis is presented

showing the potential of this kind of data in understand-

ing the real effects of lane-changing. Finally, in Section 5,

some conclusions are outlined, highlighting the main contri-

butions of the presented method. The paper is completed with

three appendixes. Appendix A presents an analytical deriva-

tion of perspective deformation, which needs to be taken into

account in the framing of the cameras. Appendix B presents

the details behind the proposed Global Quality Index (GQI)

for the recordings. Appendix C describes the full automatic

video processing technique implemented in order to obtain a

comparative scenario.

2 TRAFFIC VIDEO PROCESSING:
A STATE OF THE ART

Automatic or semiautomatic methods for extracting traffic

data from video recordings exist. In general, the more automa-

tion, the more demanding is the method in terms of the hard-

ware and calibration required. Semiautomatic methods, where

some human intervention is needed, are more flexible, can

work in a wider range of configurations, and can be more pre-

cise than the fully automated ones. A selection of some meth-

ods of interest is presented next.

2.1 Fully automated techniques
To the authors’ best knowledge, the most automatic video

detection tool used for traffic analysis is the NGSIM software

(Federal Highway Administration, 2006, 2015). The NGSIM

project (Next Generation SIMulator) included image recogni-

tion software able to automatically detect and follow the tra-

jectory of every single vehicle in the study area. The software

also estimates the size of the vehicle. The technical require-

ments to use this tool include the usage of special cameras

and the rectification, stabilization, and georeferencing of the

video recordings. This makes its usage only suitable for some

specific cases where the equipment is already set up or when

enough budget is available for treating large amounts of data.

As if this type of requirements were not enough to limit the

usage of fully automated techniques, precision is another limi-

tation. Even the best automatic methods and tools cannot over-

come the difficulties created by occlusions, projection distor-

tions, shadows, vehicles with colors similar to pavement, etc.

(Coifman & Li, 2017). Actually, the accuracy of reconstructed

trajectories from video imaging techniques and their correc-

tion is a hot topic, analyzed for instance in Buisson, Villegas,

and Rivoirard (2016), where a general (i.e., not site-specific)

procedure is proposed. The NGSIM data are not an exception,

and several works have proved that its trajectories database

is plagued by errors. Moreover, measurement errors in the

vehicles’ lateral position are larger and more frequent, and

these significantly affect the lane-changing count, as shown

in Montanino and Punzo (2013a) and Punzo, Borzacchiello,

and Ciuffo (2011). The errors in the NGSIM database were

detected and filtered (Montanino & Punzo, 2015), and since

the lateral position was difficult to correct, it was replaced

by the lane assignment. Although the quality of the NGSIM-

corrected database (available at Montanino & Punzo, 2013b)

was greatly improved by the filtering procedure, significant

errors in the lane assignment remain. This can be seen by

realizing that, at some instances, two consecutive vehicles in

the same lane change their relative order without changing

lanes. Among other issues, this is analyzed in Coifman and Li

(2017), where a deeper evaluation of the NGSIM data errors

is performed. It is found that some of these errors are pro-

duced by motorbikes, as they often travel between the regular

lanes, while others are due to vehicles assigned to the slow

(i.e., rightmost) lane but actually traveling on the hard shoul-

der. Coifman and Li (2017) unveil other reasons for noise

and errors in the NGSIM database, like the down-sampling

of video recordings to 640 × 480 pixels, meaning that dis-

tant vehicles are only 12 × 12 pixels, too small for being

robustly detected by automatic tracking tools. At the end of

the day, they conclude that the lateral position reported in the

raw NGSIM database should not be relied on heavily.

Apart from those in the NGSIM project, other approaches

for automatic vehicle detection and tracking have also been

developed. Background subtraction algorithms can identify

moving objects if they are different enough from the still

background (Stauffer & Grimson, 1999). The background

changes with time, and the algorithm needs to detect and

adapt to these variations. Methods differ in the type of back-

ground model and in the procedures used to update the model,

which are generally based on machine learning techniques.

Applications to traffic data range from the complex behav-

ioral analysis, as in Kumar, Ranganath, Weimin, and Sengupta

(2005), where recorded pedestrian-vehicle and vehicle-check
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post interactions are classified into sets of predefined behav-

ioral scenarios, to the simple use of cameras as automatic

vehicle counting devices (Bhaskar & Yong, 2014). Actu-

ally, the idea of using cameras as virtual loop detectors is

quite popular in the literature (Avery, Wang, & Zhang, 2007;

Uke & Thool, 2013), in this last case allowing the selec-

tion of the part of the camera coverage that will constitute

the detection zone. The monitoring of traffic intersections

is another traditional application of cameras and automatic

imaging methods, as many loop detectors would be neces-

sary instead. Take as examples Cheung and Kamath (2005),

where trajectories are identified at a complex intersection, or

Zheng, Wang, Nihan, and Hallenbeck (2006), who use the

recordings to detect oversaturation at a traffic signal junction.

Other works use movement detection techniques to convert

cameras into automatic vehicle classification schemes (Mor-

ris & Trivedi, 2006a, 2006b), or into incident detection sys-

tems (Mak & Fan, 2006), although other incident detection

approaches based only on advanced processing of loop detec-

tor data exist (Adeli & Karim, 2005; Ghosh-Dastidar & Adeli,

2003; Karim & Adeli, 2003). It is also noticeable the increas-

ing research attention placed on the application of these tech-

niques to the tracking of cyclists and pedestrians, for whom

traditional detectors are unable to provide even the most

basic measurements. A real-time implementation to track

pedestrians and estimate their speed from video recordings

and using a background subtraction approach is presented in

Masoud and Papanikolopoulos (2001). If the off-line estima-

tion suffices, the approach in Malinovskiy, Zheng, and Wang

(2009) is able to work precisely with grayscale low-resolution

videos.

Movement detection techniques, like background subtrac-

tion, work reasonably well when vehicles move at fast and

constant speeds (i.e., in free-flowing traffic). In contrast, their

reliability is compromised when they travel at different and

varying speeds, and even more when they stop, as it hap-

pens in congested traffic. Edge or contrast detection methods

(Canny, 1986) are an alternative, which might work better in

these situations, as long as the angle of vision toward the vehi-

cle does not change much through the camera coverage. Shad-

ows and lighting transitions also represent a problem in these

types of methods, due to the different appearance of vehi-

cles under different lighting conditions. As examples, Alireza,

Karami-Mollaie, and Baleghi (2012) use color distributions

of objects for the real-time tracking of vehicles and Shaoqing,

Zhengguang, Jun, and Chen (2009) use edge detection to auto-

matically classify vehicles. In general, these methods are able

to detect and track vehicles reasonably well in the proximity

of the camera, but errors appear in the vehicle tracking at the

furthest part of the image.

Occlusions are another important source of error for all

automatic imaging techniques for vehicle tracking. Occlu-

sions appear when a vehicle is hidden, for instance behind a

truck, a tree, or a panel of traffic information. In dense traf-

fic, with a significant number of occlusions, errors arise in

the automated trajectory estimation. In order to alleviate this

problem, Coifman, Beymer, McLauchlan, and Malik (1998)

propose a feature-based tracking system. Tracking particular

features instead of the entire vehicle makes the system more

robust to partial occlusion. Another approach is proposed in

Nguyen and Smeulders (2004), where the tracking is based

in template matching. Templates are temporally smoothed

appearance features of vehicles, which are more resistant to

partial occlusions and abrupt lighting changes. Other works

propose the usage of aerial videos in order to avoid occlu-

sions (Angel, Hickman, Mirchandani, & Chandnani, 2003;

Zheng et al., 2013). The zenithal view not only eliminates

occlusions, but also reduces perspective distortions of the size

and shape of vehicles when they move closer to, or farther

from the camera. In spite of the fact that these two proper-

ties facilitate vehicle tracking from aerial videos, the image

vibration due to the recording from helicopters or drones, is

a challenging technical problem of this approach. The stabi-

lization of the recordings needs to be addressed, for instance

using the technique proposed in Knoppers, Van Lint, and

Hoogendoorn (2012).

In conclusion, to the authors’ knowledge, there is no

research work that addresses specifically the automatic detec-

tion of traffic lane-changing activity from video recordings.

And although lane-changing can be seen as a side result of the

tracking of vehicles in their lateral movement, the typical pre-

cision of trajectory estimation methods from video recordings

(i.e., ±5%) (Kumar et al., 2005) is similar to the lane width,

especially at the furthest part of the image, meaning that the

lane-change counting from tracking methods is not reliable

enough.

2.2 Semiautomatic video processing
Semiautomatic processing includes all the methods that

cannot completely eliminate the human visual intervention

but can limit it to very specific tasks. This may lead to an effi-

ciency improvement with respect to the completely visual and

manual processing, and to a higher accuracy with respect to

full automation. The methodology developed by Patire (2010)

and Patire and Cassidy (2011) for a specific traffic analysis on

the Tomei expressway accessing Tokyo in Japan, falls under

this category. This methodology requires using several cam-

eras placed nearby (e.g., 100 m apart) and without in-between

on/off ramps. The method first converts the video to standstill

images, called epochs. An epoch is the image resulting from

one pixel line of the video accumulated through time; this

line is called “the scanline” (see Figure 1). This implies that,

among all the pixels of the video scene, only those on the scan-

line are used. In Patire (2010) and Patire and Cassidy (2011),

the epochs are constructed from scanlines set perpendicular to
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(a)

Scanline

(b)

Time

Scanline (x)

F I G U R E 1 From video to epoch. Original methodology as in

Patire (2010). (a) Video frames through time. (b) Epoch

Note. Traffic direction follows the positive direction of the “y” axis.

the traffic stream, resembling virtual traffic detectors, where

vehicles appear over the pavement colored background,

although suffering some perspective deformation. With few

manual clicks the software semiautomatically recognizes the

vehicles in successive cameras and a rough estimation of

vehicles’ trajectory is achieved, making possible to count lane

changes to the precision given by the density of the cameras

used. The methodology proposed in this paper for measuring

the lane-changing activity will be based on this idea of the

epoch.

2.3 Visual video processing
This is the raw option, and it is considered as the baseline ref-

erence for comparison. It implies watching the entire video

length while measuring the traffic variable of interest. In case

of lane-changing, authors’ experience confirms that they can

only be counted reliably by playing the video at a maximum of

double speed, and that the entire video needs to be played for

every pair of lanes. Some options exist to enhance the com-

pletely manual procedure. For instance, counts could be auto-

matically saved when the user “clicks” an (x, y) coordinate

of the image, similar to what is done in Campbell (2012) and

Campbell and Skabardonis (2013), where authors aim to clas-

sify drivers’ reactions when facing a stop sign (i.e., stopping,

yielding, or skipping the signal). These options eliminate the

need of note taking and can speed up the visual video process-

ing, although the entire video still needs to be played. Those

who have undergone this visual activity know that this is an

incredibly tedious task.

3 A SEMIAUTOMATIC VIDEO
PROCESSING METHOD FOR
MEASURING LANE-CHANGING
ACTIVITY

A semiautomatic video processing method for measuring

freeway lane-changing activity is proposed in this paper. The

methodology is based on the idea of the epoch, as described

in Patire (2010). Basically, the method reduces the three-

dimensional video (𝑥, 𝑦, 𝑡), where (𝑥, 𝑦) are the screen coor-

dinates and (𝑡) is the time, to a two-dimensional subset (𝑠, 𝑡)
called epoch, where 𝑠(𝑥,𝑦) is the parametric curve describing

the scanline. In other words, an epoch is a standstill image

constructed by accumulating the pixels contained in a scanline

for each video frame through time (see Figure 1). However, in

the proposed method the scanline is no longer a straight line

perpendicular to the traffic stream, as it is in Patire (2010), but

a line following the lane division (see Figure 2a). With this

new definition of the scanline, any vehicle crossing the line

(i.e., a lane change) will appear in the epoch as a “stain” over

the pavement background (see Figure 2b,c). Despite being

affected by perspective distortion, as the vehicle keeps mov-

ing forward during the lane-changing maneuver, the shape of

the vehicle can still be identified in the epoch.

Then, it is only needed to identify lane changes from the

epoch. This does not only provide the count of lane changes,

but also their precise location and time. Three methods are

proposed in the paper to identify lane changes from the

epoch:

1. Epoch: Simply by visual inspection of the epoch.

2. GUI: Visually from the epoch with the help of a graphical

user interface (GUI).

3. Automatic: Using automatic image recognition.

The following sections describe the main difficulties in the

application of the method and how to deal with them.

3.1 Constructing the epoch
The first step in order to construct the epoch (i.e., the space–

time still image) from a video recording is to obtain the string

of pixels composing the scanline. Recall that the scanline is

defined as an 𝑠(𝑥,𝑦) parametric curve approximately following

the lane division, where (𝑥, 𝑦) represent the coordinate axis

of the video frame. Considering these axes, the video frame

can be seen as a matrix of pixels, whose dimensions are the

video resolution, and where each pixel is identified by the
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(a)

(b)

(c)

F I G U R E 2 New scanline definition and epoch construction. (a) Video screenshot with the new scanline; (b) Epoch; (c) Same epoch as in (b)

with perspective correction

Note. 𝑠̄(𝑥,𝑦) refers to the arc-length of the parametric curve 𝑠(𝑥,𝑦), which defines the scanline; 𝑠(𝑥,𝑦) refers to the same concept but when the perspective

correction is applied; see Appendix A for details.

F I G U R E 3 Example of the scanline pixel selection method

(𝑥, 𝑦) coordinates of its center. Thus, a methodology is nec-

essary to determine those pixels crossed by the scanline.

The method consists of, first, dividing the scanline in pieces

according to the dominant dimension, 𝑥 or 𝑦. This is to

split the portions of the scanline where 𝜕𝑠∕𝑑𝑥 > 𝜕𝑠∕𝑑𝑦, from

those where this is the other way around. The process is par-

ticularly easy if the scanline is defined as a piecewise linear

function (as in Figure 3). The coordinates in the dominant

direction of the extremes of each portion define the number

of pixels assigned to it. Then, it is only needed to determine

the orthogonal component of these pixels. This is achieved by

computing the intersection of the scanline with the coordinate

of the pixel in the dominant direction. This intersection falls

within one pixel, which is selected as part of the scanline.

To clarify these concepts, Figure 3 shows a simple exam-

ple. Imagine a video with a resolution of 10 × 8 pixels, and

a piecewise scanline defined by the following three points:

[(1,8); (5,3); (10,1)]. The scanline can be divided in two por-

tions (i.e., the two piecewise segments). In the segment [(1,8);

(5,3)], 𝑦 is dominant, so pixels between 𝑦 = 8 and 𝑦 = 3,

including them, are selected (i.e., six pixels). Then, the 𝑥 coor-

dinate of the pixels is determined by the intersection between

the scanline and the 𝑦 coordinates (i.e., in red in Figure 3).

The process can be repeated with the segment [(5,3); (10,1)],

where, in this case, 𝑥 is dominant.

3.2 Perspective and distortion
This new definition of the scanline implies perspective and

distortion problems. Recordings of a traffic stream made from

a finite height are affected by perspective deformation. The

parts of the road closer to the recording point appear larger

than those further apart. Perspective deformation affects the

epoch, as long as all the locations on the scanline do not

exhibit the same distance to the recording point. The field

of view (FOV) is an optical property defined as the angle

of vision at which the camera is recording. Large FOVs and

low height recording points imply larger perspective defor-

mation and should be avoided. Appendix A provides an ana-

lytical derivation of the perspective deformation effects and

guidelines in the setup of the camera to minimize them.

Also, a methodology to correct the perspective deformation
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is described in Appendix A. With such correction, all the pix-

els in the epoch represent the same fixed real-world distance.

Second, distortion appears due to the limitations in the

camera internal optics. The edges of the FOV appear larger

than they are in reality due to this optical distortion. A numer-

ical assessment of the distortion effects, assuming simplified

pinhole optics, is also presented in Appendix A. Results show

that for small FOVs, which are the ones recommended for this

application, the deformations due to distortion are small and

can be neglected.

3.3 Occlusions and shadows
An additional problem of the proposed method is that not only

lane changes appear as elements differentiated from the pave-

ment in the epochs. Vehicles travelling on the adjacent lanes

and their shadows may “occlude” the scanline, even when no

lane-changing maneuver is taking place. The occlusion of the

scanline also happens when a vehicle starts to change lane and

aborts the maneuver for some reason before finishing.

While the first time one sees an epoch it is rather diffi-

cult to distinguish lane changes from occlusions, shadows,

and aborted maneuvers, after some practice the analyst gets

familiar with the method and eventually learns to distinguish

them easily in most cases. Occlusions and shadows can be

differentiated from lane-changing maneuvers in the epoch

because they appear as long shapes covering a significant part

of the scanline. The shape and position of the occlusion varies

depending on the camera framing and the scanline defini-

tion, but always shows the same part of the vehicle and the

vehicular shape cannot be identified. In contrast, lane changes

appear as clear vehicular shapes, which cross the scanline in a

much limited space–time region of the epoch. It is even pos-

sible to distinguish the headlights and the windshield after

some practice. The dark, long, and thin lines in Figure 2b,c

illustrate the shadow effect, and the large patch of white in

Figure 4b corresponds to a vehicular occlusion. Figure 4 not

only illustrates the problem of occlusions, but also further

clarifies the method of obtaining lane changes from space–

time still images. Figure 4a shows six frames of a video

sequence of 12 s. One lane change takes place between 𝑡 = 8
and 𝑡 = 12 (i.e., a black car). This can be seen in the video

frames. The crossing of the scanline is reflected on the epoch

(Figure 4b). Also, a large white van starts occluding the scan-

line at 𝑡 = 2 and until 𝑡 = 8. Again, this can be observed in

the epoch and tracked back in the video frames.

Aborted lane-changing maneuvers can also be identified

from epochs. Figure 5 shows an epoch where a light truck

starts a lane change and immediately after returns to the origi-

nal lane. This is detected in the epoch by looking at the trajec-

tory of the “edges” of the vehicular shape (lines highlighted in

Figure 5). These depend on the direction of the lane change.

For instance, a lane change from the shoulder to the middle

Time = 2 Time = 4

Time = 6 Time = 8

Time = 10 Time = 12

(a)

0

Lane changeOcclusion

Time

(b)
2 4 6 8 10 12

F I G U R E 4 Occlusion of the scanline. (a) Sample of video

frames every 2 s. The scanline is plotted as a solid black line. (b) The

corresponding epoch

Note. 𝑠̄(𝑥,𝑦) refers to the arc-length of the parametric curve 𝑠(𝑥,𝑦), which

defines the scanline; times are in seconds from the start of the epoch.

lane has a different “edge direction” than the opposite maneu-

ver. In the epoch in Figure 5 it can be seen how the two tra-

jectories of the “edges” of the truck shape have very different

directions (in red), whereas in an actual lane change the tra-

jectories of the vehicular shapes’ edges need to be parallel (in

green).
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F I G U R E 5 Example of an aborted lane-changing maneuver

Note. The trajectories of the “edges” of the vehicular shapes are marked

in green for actual lane changes (i.e., parallel trajectories) and in red for

aborted maneuvers (i.e., different directions of the edges’ trajectories).

3.4 Camera settings for high-quality
recordings
After analyzing the application of the method to different

cameras and conditions (see Section 4), it is concluded that

camera settings are critical for achieving a good performance

of the method. Cameras must be focused in order to obtain

the best possible sharpness. Furthermore, as the width of the

scanline is one pixel, the camera resolution directly affects

the identification of lane changes on the epoch. The higher

is the video resolution, the clearer the epoch. The minimum

recommended video resolution is 480 × 360 pixels, although

lower resolutions (e.g., 320× 240) can still be used. The frame

rate per second (fps) defines the resolution of the epoch in the

time axis. A rate of 24 fps or higher is recommended, although

it is possible to start counting lane changes from 10 fps. The

camera framing is crucial, especially if using low-resolution

camera settings. The entire image needs to be focused on

the freeway pavement, where lane-changing takes place. Only

“pavement” pixels are useful. More open framings, including

part of the sky, for example, add nothing, and can be seen as

wasting scarce resources (i.e., pixels of the video). The visi-

ble freeway length must be much longer than the length taken

by the typical lane-changing maneuver. To give an approxi-

mate value, at least 50 m of freeway must be captured. Longer

lengths are encouraged in order to ease the differentiation of

occlusions from lane changes. In addition, in order to min-

imize occlusions, the scanline should appear in the camera

framing as vertical as possible. This means that straight free-

way segments aligned with the camera position are preferred.

Finally, it is strongly recommended to use the highest pos-

sible recording point and a small 𝐹𝑂𝑉 . Even though that,

given a fixed recording height, a larger 𝐹𝑂𝑉 would cover

more road distance, this would imply larger distortion and

perspective deformation. So, the recommendation is to try to

cover the maximum freeway length from the furthest point

possible, in order to keep a small 𝐹𝑂𝑉 (see Appendix A).

Given the previous recommendations, when recording from

a fixed pole close to the freeway, a correct video framing

usually comprises a stretch starting at least 100 m away

from the camera position and ending up to 600 m further

away.

Not only technical aspects must be considered for the cam-

era configuration and framing. Environmental factors also

have an impact. Clear daylight conditions are necessary. The

method should not be applied to night recordings, because the

vehicle headlights usually dazzle the camera. A similar effect

happens during dawn and dusk, so it is recommended not to

point the cameras toward the sun. Bad weather, such as fog or

rain, can also lead to low-quality video recordings if the image

is so blurry that vehicles cannot be identified.

3.5 GQI of the recording
Given the previous recommendations, it would be useful to

determine, beforehand, the adequacy of a camera framing and

video quality for the application of the proposed method.

Automatic methods to detect deficient video quality exist,

like the one proposed in Tsai and Huang (2010) based on a

machine learning algorithm. However, these generalist meth-

ods lack the ability to assess the specific framing requirements

of the epoch-based methodology proposed here. Therefore,

in order to objectively assess the previous recommendations

regarding the image resolution and framing, and to quantify

the quality of a recording for this specific application, an ad

hoc indicator is defined. The proposed index evaluates six dif-

ferent quality factors (see Table 1); three for the quality of

the image (i.e., brightness, clipping, and contrast) and another

three for the quality of the framing (i.e., scanline alignment,

coverage, and number of unique pixels). The indicator returns

a GQI in terms of a percentage, being 100% the maximum

possible quality for a recording. The detailed methodology

used to compute this indicator is presented in Appendix B.

As an example, Figure 6 shows the framing for seven dif-

ferent cameras, which were used to monitor lane-changing.

Among them, the high-definition (HD) camera shows the best

image quality and framing (GQI = 88%). Then follow cam-

eras 2305 (52.9%), 2306 (42.7%), 2310 (36.9%), and 2304

(19.2%). Cameras 2309 (0.0%) and 2312 (0.0%) do not ful-

fill the minimum requirements to apply the methodology with

reliability. It is important to stress the fact that, the better the

quality of the recording, the shorter the visual intervention

in the method. A bad configuration can even invalidate the

method, as in Cameras 2309 and 2312. So, each camera con-

figuration should always be tested for a few minutes to assess

the resulting epoch.

3.6 The GUI
To facilitate and enhance the visual identification and

counting of lane changes from the epochs a GUI has been
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T A B L E 1 Quality factors addressed in the proposed Global Quality Index (GQI) of the recording

Indicator Factor addressed Description
Video image 𝑞1 Brightness Penalizes extremely dark videos.

𝑞2 Clipping highlights Penalizes overexposure (i.e., when the

intensity in a certain area falls over the

max. intensity that can be represented).

𝑞3 Contrast Penalizes poor contrast (i.e., poor differences

in luminance that makes objects

indistinguishable).

Framing 𝑞4 Scanline alignment Penalizes scanline deviation from the vertical

direction in the video frame.

𝑞5 Scanline coverage Penalizes short scanlines.

𝑞6 Scanline resolution Penalizes scanlines with few pixels.

𝐺𝑄𝐼 Global Quality Index Harmonic average of the normalized versions

of the previous six partial components.

Camera 2304 Camera 2305 Camera 2306 HD

Camera 2309 Camera 2310 Camera 2312

F I G U R E 6 Framing and scanlines for seven different camera locations

Note. Camera HD shows excellent framing and quality (GQI = 88.8%); Cameras 2304 (19.2%), 2305 (52.9%), 2306 (42.7%), and 2310 (36.9%) show

acceptable framing and quality; Cameras 2309 (0.0%) and 2312 (0.0%) show poor contrast and severe framing problems. They present a low and

lateral viewing angle implying a higher rate of occlusions.

coded (see Figure 7; available on http://bit.ly/2yUi08M; the

download includes the code to generate the epochs, the GUI,

and a manual). With this GUI, the counting of lane changes

is done by looking at the epoch (bottom part of the window)

and clicking on the lane-change candidate. Then, the video

(top of the window) is automatically set to the corresponding

frame. If this is still not enough to decide if the maneuver

corresponds to a lane change, the GUI allows playing the

video around that instant to make the final decision. With the

use of the GUI, the method is much more reliable than only

using the epoch. The identified lane changes appear in a table

at the rightmost part of the window.

4 APPLICATION TO THE B-23
FREEWAY ACCESSING BARCELONA

The methodology developed in this paper has been applied

to count the lane changes in six particular locations on

the B-23 freeway accessing Barcelona, in the context of a

dynamic speed limit experiment. This is a heavily used free-

way with daily recurrent congestion episodes at peak hours.

See Soriguera and Sala (2014) for a complete description of

the experiment.

Lane-changing activity was to be extracted from 63 hr

of standard camera recordings, obtained from different days

http://bit.ly/2yUi08M
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F I G U R E 7 Graphical user interface

Note. In the epoch lane changes are marked with a blue cross.

during the morning rush, in order to assess the effects of lane-

changing in traffic dynamics. In this context, full automation

was not cost-effective, even more if one takes into account

the reported lack of precision of the automatic imaging tech-

niques. The raw visual procedure was cumbersome, and the

presented semiautomatic video processing was selected as

an alternative. Nevertheless, full automation based on image

preprocessing and machine learning has been implemented

in order to test its reliability compared to the proposed

method. The details of this implementation can be found in

Appendix C. In addition, to assess the full potential of the pro-

posed semiautomatic methodology, 2 hr of HD recording, in

the most favorable conditions that could be found, have been

included in the analysis.

The framing of the cameras and the scanlines used to create

the epochs for each pair of lanes are those shown in Figure 6.

These include the six original locations plus the HD record-

ing. The quality of the regular recordings is defined by a res-

olution of 536 × 400 pixels and a frame rate of 29.97 fps. For

the HD recording this is 1080 × 1920 pixels and 50 fps. Note

that the HD camera is set on the vertical position to have more

pixels on the scanline.

4.1 Description of the different methods used
Five different methods have been used to count the lane

changes. In all of them, a lane change is counted if at least 50%

of it happens over the scanline. This means that a lane change

can be counted even if the vehicle has started the maneuver

before the beginning of the scanline, or finishes it after its end.

The first method, named “ground truth” is a careful count

obtained by playing the video once per scanline at the regular

speed and pausing or slowing down whenever it is necessary.

This count is then refined by searching in the video for all

the nonidentified lane changes that have appeared in any of

the other methods. This very detailed and accurate counting,

unfeasible in the regular practice, is included in order to set a

ground truth value.

The second method used, namely “watching the video” is

the typical standard visual methodology. It consists in watch-

ing the video once for each scanline at double speed. The

third method is the “epoch count,” obtained simply from the

visual inspection of the epoch without any help from the

video. The fourth method is the “GUI count” obtained from

the epoch with the help of the user interface described in Sec-

tion 3.6. The last method is the “automatic count” resulting

from the fully automatic procedure described in Appendix C.

The method automatically detects the lane changes from the

epoch, given a previous learning period. The training of the

image processing algorithm is done with a sample count from

the GUI measurement. This aims to replicate regular practice,

where ground truth values are not available.

4.2 Performance of the different counting
methods
In the context of information retrieval and binary classifica-

tion like lane-changing count, errors arise either when a lane

change is missed by the method (i.e., false negative, 𝑓𝑛) or

when an identified lane change actually did not happen in real-

ity (i.e., false positive, 𝑓𝑝). In this scenario, performance is

assessed in terms of “precision,” 𝑝, defined as the fraction of

relevant identifications (i.e., true positives, 𝑡𝑝) among all the

retrieved identifications and “recall,” 𝑟, the fraction of rele-

vant identifications (𝑡𝑝) that have been identified over the total

amount of existing lane changes. The 𝐹1 score is an integrated

performance indicator, computed as the harmonic average of

precision and recall. It reaches the best value at 1 (perfect pre-

cision and recall) and worst at 0. This is:

𝑝 =
𝑡𝑟𝑢𝑒 positives

𝑡𝑜𝑡𝑎𝑙 identifications
=

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
, (1)

𝑟 =
𝑡𝑟𝑢𝑒 positives
𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ

=
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
, (2)

𝐹1 =
2𝑝𝑟
𝑝 + 𝑟

. (3)

Table 2 shows the obtained results. The first thing to realize

is that watching the video (i.e., at double speed, once for each

pair of lanes) does not yield a perfect measurement as one

could think. The accuracy measured in terms of the 𝐹1 𝑠𝑐𝑜𝑟𝑒

ranges from 0.86 to 0.98 without any clear evidence of the

source of such variation. This unexplained variance should

not be surprising in this visual intensive task, as the analyst's

level of attention very likely fluctuates during the processing

time.

In case of using the epoch, the processing time is drasti-

cally reduced. Less than 10% of the video duration is needed

to count the lane-changing between every pair of adjacent
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T A B L E 2 Lane-changing counts from different methods and their relative errors

Watch the videob Epochc GUId Automatice

Camera
Time
(min)

GTa

Count 𝒑 𝒓 𝑭𝟏
f 𝒑 𝒓 𝑭𝟏

f Savingsg 𝒑 𝒓 𝑭𝟏
f Savingsg 𝒑 𝒓 𝑭𝟏

f
Camera
GQIh

HD 31 133 0.94 0.95 0.95 0.90 0.96 0.93 89% 0.98 0.97 0.97 71% 0.83 0.68 0.75 88.8%

2305fi 30 257 0.98 0.85 0.91 0.99 0.79 0.88 87% 1.00 0.98 0.99 56% 0.85 0.75 0.80 52.9%

2305ci 30 437 0.99 0.92 0.95 0.98 0.84 0.91 78% 0.98 0.95 0.97 46% 0.85 0.71 0.77 52.9%

2306 60 241 1.00 0.85 0.91 0.89 0.67 0.76 88% 0.98 0.95 0.96 75% 0.70 0.71 0.70 42.7%

2310 30 187 0.85 0.86 0.86 0.95 0.47 0.62 88% 0.98 0.99 0.99 58% 0.87 0.46 0.60 36.9%

2304 60 165 0.89 0.88 0.88 0.78 0.47 0.58 87% 0.99 0.85 0.91 74% 0.78 0.34 0.48 19.2%

2309 15 88 1.00 0.95 0.98 0.78 0.20 0.32 84% 1.00 0.80 0.89 −11% – – – 0.0%

2312 15 91 0.96 0.80 0.87 0.67 0.31 0.42 83% 1.00 0.51 0.67 −33% – – – 0.0%

aGT stands for “Ground Truth.”
b“Watch the video” count by watching the video at double speed.
c“Epoch” is visually counting by only looking at the epoch.
d“GUI” is using the graphical user interface.
e“Automatic” is using the proposed automatic image recognition technique.
fSee Section 4.2 for the definition of the performance indicators: “precision” 𝑝, “recall” 𝑟, and “𝐹1 score.”
g“Savings” refers to the time savings of human visual intervention with respect to “watch the video” (i.e., at double speed). For “Automatic,” savings are 100%.
hGQI stands for the “Global Quality Index” of each camera.
iFor the Camera 2305 two consecutive 30 min intervals were tested. The first one (i.e., 2305f) is in free flowing, while the second (i.e., 2305c) is mostly congested with

three strong stop&go waves.

lanes. The main reason for this reduction is that visual time

is spent only when some activity happens (i.e., a spot in the

epoch), avoiding wasting time and energy in time windows

without lane-changing activity. Because the analyst is more

active when using this method, he is more likely to hold the

attention during the video processing. In spite of this, the

accuracy achieved with this method is worse than watching

the video, and only of the same order of magnitude (i.e.,

𝐹1 > 0.8) in cameras with high quality of recordings. This

low accuracy is mainly due to the difficulty in differentiat-

ing lane changes from small occlusions or shadows, especially

at the edges of the epoch. In most of cases this leads to an

underestimation of the lane-changing activity (i.e., increase

of the false negative rate, implying especially lower recall

values).

Using the GUI allows a better interpretation of the epoch,

bringing clear benefits in terms of accuracy. In most of

the cameras the GUI outperforms the “watching the video”

method in terms of accuracy, investing less than half of the

visual processing time. It has been found that when two lane

changes happen at different locations but almost at the same

time, only one is generally detected by watching video.1 In

contrast, using the GUI both can be clearly identified, leading

to a significantly better count when a lot of activity happens.

In conclusion, the GUI is an accurate and fast method if the

recording fulfills a minimum quality (i.e., GQI > 20%). Oth-

erwise, if the quality of the recording is extremely poor, the

GUI does not help, either in reducing the visual processing

time, or in achieving higher accuracies with respect to watch-

ing the video. Cameras 2309 and 2312 are an example of this

undesirable situation.

F I G U R E 8 Evolution of error in the automatic method for

different training sample sizes

Regarding the fully automatic procedure, a lower accu-

racy is the price one has to pay in order to avoid completely

the visual intervention. The implemented machine learning

algorithm does not improve the performance of the human

analyst in the identification of lane changes from the epoch,

and the obtained accuracy is in general worse, with values of

𝐹1 = 0.80, at best. In addition, the accuracy of the results

rapidly deteriorates with the reduction of the quality of the

recording, so that, if the quality of the recording is not good

(i.e., GQI > 40%), results cannot be considered reliable (i.e., 𝑝

or 𝑟 below 0.5). The effects of the length of the training sample

on the accuracy of the method have also been analyzed (see

Figure 8). Results show that longer training samples slightly

improve accuracy when the default accuracy of the automatic

method is very bad, because of an insufficient quality of the

recording. In contrast, if the default accuracy is already on

its higher levels, extending the training sample does not con-

tribute in further improvements. In conclusion, if the quality
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F I G U R E 9 Evolution of error with the quality of the recording

Note. Tendency lines are obtained from least squares regression to data.

F I G U R E 1 0 Detailed video quality indicators and resulting 𝐹1
accuracy metric

Note. 𝑞1 and 𝑞2 are not displayed since they are 100% for all cameras.

GQI stands for the Global Quality Index.

of the recording is good, the minimum training sample (e.g.,

50 lane changes) suffices.

Results in Table 2 also show that the accuracy of the meth-

ods is not significantly affected by different traffic regimes

(i.e., free-flowing or congested). This can be seen by com-

paring the results in Camera 2305f and 2305c.

Given the previous results, it is interesting to compare the

different sensitivities of the analyzed methods with respect to

the quality of the recordings. On the one hand, watching the

video results in accuracy levels around 𝐹1 ≈ 0.9 on average,

and this is almost insensitive to the quality of the recording.

On the other hand, the accuracy of all the other methods, based

on the epoch, is strongly dependent on the GQI. In these meth-

ods, accuracy increases with the quality of the recordings.

Figure 9 illustrates these facts, and could be used to support

the selection of the video processing technique, given the GQI

of the recording and the required accuracy of the results.

Further detail is provided in Figure 10, which shows

the effects of each individual factor (i.e., 𝑞𝑖; 𝑖 = 1 ÷ 6; see

Table 1 and Appendix B) in the GQI and eventually in the

accuracy level, 𝐹1. From Figure 10 it can be concluded that

a poor performance in one particular quality indicator can-

not be compensated by better results in other indicators. For

instance, poor image quality (i.e., brightness – 𝑞1, clipping

– 𝑞2, or contrast – 𝑞3) is not compensated by a better image

framing (scanline alignment – 𝑞4, length – 𝑞5, or resolution –

𝑞6) or vice versa. So, all individual quality factors need to be

F I G U R E 1 1 Oblique cumulative count (N), occupancy (T), and

lane-changing (L) curves

Note. Lane-changing data from Camera 2306; flow and occupancy data

are measured by a loop detector on the same freeway segment; the

subtracted background flow is 95% of the average. See Cassidy and

Windover (1995) for a detailed description of the oblique cumulative

count method.

considered when setting up the video cameras for the experi-

ment. These evidences support the multiplicative structure of

the GQI (see Appendix B) and lead to the recommendations

for the camera settings provided in Section 3.4.

4.3 Findings from the measured
lane-changing data
To illustrate the applicability of the lane-changing data

obtained using the proposed semiautomatic methodology

(GUI method), the results of a preliminary traffic analysis are

presented here. For instance, the data extracted from the video

recordings allow empirically proving that the lane-changing

rate peaks during traffic state transitions (i.e., from free flow-

ing to congestion, or vice versa).

This can be seen in Figure 11, where oblique cumula-

tive count (N-curve), cumulative occupancy (T-curve), and

cumulative lane-changing (L-curve) with respect to time are

plotted. Using these curves, the transition between free flow

and congestion is identified by an increase of the occupancy

(slope of the T-curve) simultaneously with a decrease of the

flow (slope of the N-curve). This happens slightly before 8:30

in Figure 11. In turn, the recovery of free-flowing condi-

tions is identified by an occupancy drop (i.e., around 9:00 in

Figure 11). It can be seen that in both situations, the lane-

changing rate peaks (slope of the L-curve).

Furthermore, the perspective correction method developed

in this paper allows locating the lane changes in their real posi-

tion on the freeway. Figure 12 illustrates the spatial distribu-

tion of the lane-changing data, and shows how the solid line,

between the central and shoulder lanes, reduces lane-changing

rates. Also, just after the end of the solid line, the void left by

vehicles exiting at the off-ramp produces an increase of the

lane-changing rates in this area.



12 SALA ET AL.

F I G U R E 1 2 Location of lane changes

Note. Data from Camera 2305; traffic goes from left to right; solid line

on the pavement bans lane-changing from the middle to the shoulder

lane at the off-ramp location.

While lane-changing is a complex drivers’ decision pro-

cess and further research would be needed to model the

phenomenon, this simple analysis only aims to show inter-

esting research directions supported by the data obtained

with the proposed methodology. In addition, the application

of the proposed method could allow other “microscopic”

applications. For instance, the perspective correction method

could be used to determine the duration in time and space

of each lane-change maneuver, by analyzing the shape of

the “stain” on the epoch. This would open up new research

directions.

5 CONCLUSIONS

On the one hand, visually extracting traffic data from video

recordings requires multiple visualizations. This task is time

consuming and extremely tedious. On the other hand, for rel-

atively short applications like the ones in a research context,

full automatic methods are overcomplicated, costly, and do

not provide the required accuracy. In between semiautomatic

methods do have an opportunity. They are simple video pro-

cessing tools, aimed to ease and speed up the visual pro-

cess avoiding the complexities and inaccuracies of complete

automation.

The proposed semiautomatic method is based on the trans-

formation of the video recordings, obtained from a fixed cam-

era, to an adequate standstill image, called “epoch,” from

where to visually identify lane changes. The method, which

has been implemented on a user-friendly GUI, speeds up

the completely visual procedure by concentrating human

intervention only on the time windows where some activ-

ity happens. For the sake of comparison in the accuracy of

the results, the visual identification of lane changes from

the epochs has been automated using a machine learn-

ing algorithm, achieving a fully automated tool in this

case.

The proposed semiautomatic method was to be applied to

63 hr of recordings from seven cameras on a Spanish freeway.

Two of these cameras did not meet the minimum recording

quality in order to apply the method with reliability. This left

“only” 45 hr to process. Using the typical visual procedure, the

extraction of the lane-changing data from the videos would

have taken 50 hr of labor, as the video needs to be watched

once for every pair of lanes at a maximum of double speed

(note that sections with three and four lanes were analyzed).

In contrast, it took only 7 hr by using the GUI, resulting in

43 hr of labor saved (i.e., 86% of “visual” processing time

saved). In addition, this has been achieved with an increased

accuracy in the lane-change count and providing the precise

time and location of the lane changes, which is not common

in visual methods.

Regarding the accuracy of the methods (in terms of the 𝐹1
score), while the completely visual procedure leads to accu-

racy levels of 0.86 ÷ 0.98 for different cameras, by using

the GUI semiautomatic method this accuracy is always above

0.95, provided that the recording meets some minimum qual-

ity standards (i.e., minimum of 35% in the developed GQI out

of 100% for an optimal recording). Also, for recordings with a

rather poor quality (e.g., GQI= 20%), the accuracy drops only

to 0.90, still above the results achieved with the visual proce-

dure (i.e., 0.88 for this quality of recording). In spite of this,

the recommendations regarding the video quality and framing

are crucial in order to successfully use the method. The bet-

ter the video quality, the easier, faster, and more reliable the

counting. It should also be noted that an extremely poor qual-

ity of the recordings (i.e., GQI = 0%) invalidates the reliable

use of the semiautomatic method, leaving the visual procedure

as the only alternative.

Regarding the fully automated implementation of the

method, two conclusions are obtained. First, the accuracy of

the results deteriorates, as expected, with 𝐹1 values around

0.80 in the best cases. Second, the accuracy of the results

depends much more strongly on the quality of the recordings,

so that, for recordings with GQI < 40%, a reliable count can-

not be obtained. Therefore, automatic methods should only

be applied when the quality of the recordings is high and low

precision data suffices.

Finally, it has also been found that both, the semiautomatic

and the fully automatic methods, perform equally well (or

equally bad) in free-flowing and in congested traffic regimes.

It remains as further research the application of the method

using stable aerial footage, with the benefits of reduced

perspective issues and without occlusions. Also, the method

could be adapted to be used with recordings taken from a

probe vehicle, exploding the benefits of a moving observer

in relating the lane-changing behavior with the properties of

the traffic flow.
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APPENDIX A
Video recordings suffer from perspective deformation and dis-

tortion. Appendix A presents the assessment of the effects of

distortion together with an analytical method to correct per-

spective deformation. Table A1 summarizes the variables and

parameters involved. Figures A1 and A2 provide their graph-

ical definition.

A1 EFFECTS OF DISTORTION ON A FLAT
SENSOR

Figure A2 illustrates the effects of distortion, considering a

camera with a distance 𝑟 between the flat sensor and the

F I G U R E A 1 Graphical definition of parameters

F I G U R E A 2 Distortion effects on a flat sensor

http://www.multitude-project.eu/exchange/101.html
https://doi.org/10.1111/mice.12430
https://doi.org/10.1111/mice.12430
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focal point. In the theoretical ideal curved sensor, the ray

of width 𝜕𝛾 encompasses the same number of pixels for all

𝛾 values. In contrast, in the real flat sensor, the number of

pixels encompassed by 𝜕𝛾 depends on 𝛾 , being maximum

for 𝛾 = ±𝐹𝑂𝑉 ∕2 and minimum for 𝛾 = 0. This effect is

known as image distortion.

From Figure A2 it can be seen that 𝑥1 = 𝑟 ⋅ tan(𝛾),
while 𝑥2 = 𝑟 ⋅ 𝛾 . Then, the increase in 𝑥1 and 𝑥2
when 𝛾 increases by 𝜕𝛾 , is expressed by the deriva-

tives 𝑥′1 =
𝜕𝑥1
𝜕𝛾

and 𝑥′2 =
𝜕𝑥2
𝜕𝛾

, as computed in Equations

(A1) and (A2). Equation (A2) shows that in the ideal

sensor this magnitude is constant and does not depend

on 𝛾 .

𝑥′1 = 𝑟 ⋅ (1 + tan2 (𝛾)) (A1)

𝑥′2 = 𝑟 (A2)

Distortion, 𝑒𝑠, is expressed as the relative difference

between 𝑥′1 and 𝑥′2 (i.e., the differential error), which depends

on 𝛾 , as expressed in Equation (A3). The average error for a

given 𝐹𝑂𝑉 is computed as the integral of Equation (A3) over

the whole range of 𝛾:

𝑒𝑠 (𝛾) =
𝑥′1 − 𝑥′2

𝑥′2
= tan2 (𝛾) . (A3)

Figure A3 shows average and maximum distortion as a

F I G U R E A 3 Maximum and average distortion values for

different 𝐹𝑂𝑉 s on a flat sensor

Note. The values of the 𝐹𝑂𝑉 have been limited to 𝜋∕4 as wider 𝐹𝑂𝑉 s

have little sense for this application.

function of different 𝐹𝑂𝑉 s. Because small 𝐹𝑂𝑉 s are rec-

ommended for this application, the effects of distortion are

small and can be neglected. For the case study presented in

Section 4, the maximum𝐹𝑂𝑉 is 0.27 rad, resulting in an aver-

age and maximum distortion of 0.08% and 1.87% of the pixel

size, respectively.

A2 THE PERSPECTIVE-CORRECTED
SCANLINE

Perspective deformation happens because as 𝛼 increases (i.e.,

more distant view), a larger stretch of freeway is seen within

a constant 𝜕𝛼. In order to develop a simple correction method

T A B L E A 1 Definition of variables and parameters in the perspective correction method

Var. Units Description
𝛼 (rad) Angle between the ray of vision and the orthogonal to the road.

𝑑 (m) Straight distance from the base of the camera to the point where the ray of vision reaches the road.

𝛾 (rad) Angle between the bisector of the field of view (𝐹𝑂𝑉 ) and the ray of vision. 𝛾 = 𝛼 − (𝛼1 + 𝛼2)∕2
𝜕𝛾 (rad) Differential of 𝐹𝑂𝑉 .

Par. Units Value* Description
𝐹𝑂𝑉 (rad) 0.106 Field of view (total angle of vision of the camera framing).

𝛼1
𝛼2

(rad) 1.431

1.537

Angle between the lower (𝛼1) or upper (𝛼2) ray of vision and the orthogonal to the road; 𝛼1 ≤ 𝛼 ≤ 𝛼2;

𝛼2 − 𝛼1 = 𝐹𝑂𝑉 .

ℎ (m) 8 Camera height from the base.

𝑑𝑅 (m) 179 Length of the scanline on the road.

𝑑𝑐 (m) 178.2 Length of the scanline projection on the camera 𝐹𝑂𝑉 plane. 𝑑𝑐 ≤ 𝑑𝑅.

𝑑1
𝑑2

(m)

(m)

57

235

Straight distance from the base of the camera to nearest (𝑑1) or furthest (𝑑2) point where the 𝐹𝑂𝑉 reaches

the road. 𝑑1 ≤ 𝑑 ≤ 𝑑2; 𝑑2 − 𝑑1 = 𝑑𝑐

𝜃 (rad) 4.01⋅10−2 Slope of the road with respect to the horizontal.

𝜕𝛼 (rad/pixel) 5.54⋅10−5 Angular value of one pixel in the original scanline.

𝑣𝑓 (m/s) 22.22 Traffic free-flow speed.

𝑓𝑝𝑠 (fps) 50 Video frames per second.

𝑔 (pixels/frame) 1 Perspective correction factor.

𝑚 (pixels) 1226 Number of vertical pixels in the original epoch.

𝑛 (pixels) 403 Number of vertical pixels in the perspective corrected epoch.

*“Value” stands for the particular application to the HD camera (see Figure 2).
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for the perspective deformation, two assumptions are made:

(i) no camera distortion (i.e., ideal curved sensor), and (ii)

a constant grade of the road, 𝜃. These assumptions approxi-

mately hold for the present application, because distortion can

be neglected for small 𝐹𝑂𝑉 s, and road grades are smooth in

the relatively small distances of the scanline.

Equation (A4) is derived from the geometry in Figure A1,

and allows computing 𝑑, the distance from the base of the

camera to any point seen with an angle 𝛼. In turn, Equation

(A5) computes the rate of change of this distance for an incre-

mental change in 𝛼:

𝑑(𝛼) = ℎ𝜃 ⋅ tan (𝛼) − 𝑑𝜃, (A4)

𝑑′(𝛼) =
𝜕
(
𝑑(𝛼)

)
𝜕𝛼

= ℎ𝜃 ⋅
(
1 + tan2 (𝛼)

)
, (A5)

where ℎ𝜃 = ℎ ⋅ cos(𝜃) and 𝑑𝜃 = ℎ ⋅ sin(𝜃).
Because distortion effects are neglected, it can be assumed

that all pixels in the scanline represent a constant 𝜕𝛼. So,

using linear interpolation, it is possible to construct a vec-

tor identifying the 𝛼𝑖’s for all the pixels in the original scan-

line, where 𝑖 ∈ 1 ÷ 𝑚, being 𝑚 the number of pixels in the

original scanline. Note that under these assumptions, 𝜕𝛼 =
(𝛼2 − 𝛼1)∕𝑚. Then, using Equation (A5), the distance corre-

sponding to the 𝛼𝑖 pixel in the original scanline is computed

as 𝑑𝑖 = 𝑓 ⋅ 𝑑′
𝑖
⋅ 𝜕𝛼, where 𝑓 is a correction factor to take into

account that the total distance of the scanline projection on

the 𝐹𝑂𝑉 plane is smaller than the real one.

This is:

𝑚∑
1
𝑑′
𝑖
⋅ 𝜕𝛼 ≈ 𝑑𝑐 ≤ 𝑑𝑅. (A6)

The inequality in Equation (A6) turns to equality only in

case of a straight scanline with a parallel camera alignment

(𝐹𝑂𝑉 ). In other cases 𝑑𝑐 < 𝑑𝑅. So, the correction factor,

𝑓 , defined in Equation (A7), needs to be applied in order to

obtain the real-world distance represented by each pixel:

𝑓 =
𝑑𝑅

𝑑𝑐
. (A7)

Recall that the objective of perspective correction is that

each pixel in the corrected scanline covers the same real-world

distance. This distance can be expressed as 𝑑𝑅∕𝑛, where 𝑛 is

the number of pixels in the corrected scanline. While 𝑛 can

be an arbitrarily selected integer, in order to obtain epochs

where lane changes are clearly identified by vehicle-shaped

stains over the pavement background, it is recommended for

𝑛 to be at least the number of frames taken by a vehicle to

travel the whole scanline length at free-flow speed. This is:

𝑛 = 𝑔 ⋅
𝑑𝑅

𝑣𝑓
⋅ fps, (A8)

where 𝑔 ≥ 1 is a user-defined perspective correction parame-

ter. The larger 𝑔, the higher the epoch, but the more deformed

the vehicular shape in the epoch.

Given the real-world distance encompassed by each pixel in

the original scanline 𝑑𝑖, which is a function of 𝛼𝑖 ∀𝑖 = 1 ÷ 𝑚,

and the constant real-world distance to be covered by pixels

in the corrected version of the scanline, 𝑑𝑅∕𝑛, the perspective

correction algorithm works as follows:

• If 𝑑𝑖 < 𝑑𝑅∕𝑛, the density of pixels per unit length in the

original scanline is too high and some pixels need to be

skipped in the corrected epoch.

• If 𝑑𝑖 > 𝑑𝑅∕𝑛, the density of pixels per unit length in the

original scanline is too low and some pixels need to be repli-

cated. This situation, which happens in the furthest part of

the scanline (especially if the 𝐹𝑂𝑉 is large) is undesirable

because it implies lack of information and results in blurry

parts of the epoch. For the recommended small 𝐹𝑂𝑉 s, the

worst pixel on the original scanline with the largest 𝑑𝑖 might

need to be replicated up to four times.

The algorithm in Figure A4 summarizes the method.

APPENDIX B
An ad hoc recording Global Quality Index (GQI) is devel-

oped in Appendix B. The index includes six different quality

parameters: three for video quality (i.e., brightness, clipping,

and contrast) and three devoted to the epoch framing (i.e.,

scanline alignment, coverage, and number of unique pixels).

F I G U R E A 4 Algorithm for the pixel selection in the perspective

corrected scanline

Note. 𝑐𝑜𝑢𝑛𝑡 represents the part of the distance of the pixel in the

corrected scanline covered at each iteration.
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B1 VIDEO IMAGE QUALITY INDEXES

The proposed three quality indexes of the recording are based

on its luminance histogram, which represents the frequency of

a given luminance value in an image. The normalized cumu-

lative luminance curve, 𝐿, is defined as the cumulative sum

of the histogram divided by its total value, as expressed in

Equation B1:

𝐿 (𝑖) =

∑𝑗=𝑖
𝑗=1 ℎ𝑗∑𝑗=𝑙
𝑗=1 ℎ𝑗

, (B1)

where ℎ(𝑖) is the frequency of a given luminance bin 𝑖; 𝑖 ∈
[1, 𝑙], ordered from darker to brighter levels, and 𝑙 is the num-

ber of different luminance values in the image. Note that a

typical 8 bit image or video includes a total of 256 possible

different values (i.e., 𝑙 = 256). Note that 𝐿 is a monotoni-

cally increasing function and 𝐿(𝑖) ∈ [0, 1].
Table B1 summarizes the formulas to obtain 𝑞1, 𝑞2, and 𝑞3,

the three image quality indexes. Brightness is addressed by 𝑞1
and it is computed as the sum of the first half of the cumu-

lative luminance curve. For darker images, 𝑞1 will be higher.

𝑞2 assesses the highlights clipping of the image and looks for

overexposed areas. 𝑞2 is smaller when there are larger overex-

posed areas in the image (i.e., higher percentage of luminance

in the brightest 16 bins). Finally, 𝑞3 assesses the contrast of the

image by computing the number of bins encompassing 80%

of the cumulative luminance. The larger this luminance range,

the better the image contrast.

Because 𝑞1, 𝑞2, and 𝑞3 are related to image quality, and a

video is a succession of images, the quality indicator needs to

be applied to a sample of frames. One frame every minute of

video is considered. The quality indicator is then computed as

the average of the values obtained in the sample.

T A B L E B 1 Video quality indexes and their lower and upper

bound thresholds: 𝑞𝑗_𝑙, 𝑞𝑗_𝑢

Indicator Definition 𝒒𝒋_𝒍 𝒒𝒋_𝒖

𝑞1
∑ 𝑙

2
𝑖 = 1 1 − 𝐿(𝑖) 𝑙

4
𝑙

3

𝑞2 𝐿(𝑙 − 16) 0.8 0.9

𝑞3 𝑏 − 𝑎

where
𝑎 = Min(𝑎)∕𝐿(𝑎) ≥ 0, 1
𝑏 = Min(𝑏)∕𝐿(𝑏) ≥ 0, 9

𝑙

4
𝑙

2

𝑞4 𝛽 = −
∑𝑘

1 (𝑝𝑖⋅𝛽𝑖)∑𝑘

1 𝑝𝑖
⋅ 1
𝑚𝑓

−30◦ −5◦

𝑞5
𝑑𝑅

𝑣𝑓
2 s 10 s

𝑞6 𝑈𝑛𝑖𝑞𝑢𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 25⋅𝑔 250⋅𝑔

Note. 𝑑𝑅 is the real length of the scanline; 𝑣𝑓 is the free-flow speed of traffic; 𝑔 is

the perspective correction factor.

B2 VIDEO FRAMING QUALITY INDEXES

In Table B1, 𝑞4, 𝑞5, and 𝑞6, are the three quality indexes

devoted to the quality of the video framing. The alignment

of the scanline is addressed by 𝑞4, and it is computed as the

average angle, 𝛽, between the scanline and the 𝐹𝑂𝑉 plane

(i.e., the vertical in the video frame). The lower 𝛽, the better

the alignment. If the scanline is defined as piecewise linear,

𝛽 is easily computed as a weighted average of the angle, 𝛽𝑖,

exhibited by each one of the 𝑘 parts of the scanline, where the

weights are their respective length in pixels, 𝑝𝑖. In addition, a

correction factor, 𝑚𝑓 , is included in 𝑞4. In general, 𝑚𝑓 = 1,

unless the camera is located over the freeway median. In such

case,𝑚𝑓 = 1.25 and the misalignment is less penalizing. This

is because the light vehicles in the median lane are less likely

to occlude the scanlines.

The free-flow travel time required to travel the whole

scanline length is denoted by 𝑞5. The longer this time,

the better the framing, because the relative effect of the

boundaries is reduced and more lane changes can be

counted.

Finally, 𝑞6 takes into account the number of unique pixels

that compose the perspective-corrected scanline. Recall that,

in the corrected scanline, in the furthest zones of the epoch

some pixels may be repeated. This happens when either the

recording has a high 𝐹𝑂𝑉 and/or a small resolution. Even if

the epochs are not corrected this amount of “unique pixels”

is a good indicator of the framing quality, taking into account

the scanline free-flow travel time, the number of frames per

second, the video resolution, and the perspective deformation.

B3 THE GQI

The 𝐺𝑄𝐼 is obtained as the harmonic average of the nor-

malized versions, 𝑞𝑗 , of the previous six partial compo-

nents. This is 𝑞𝑗 ∈ (0, 1); 𝑗 = 1 ÷ 6. In order to normal-

ize the partial quality indexes, upper and lower bound

thresholds are defined (i.e., 𝑞𝑗_𝑢; 𝑞𝑗_𝑙) and linear interpo-

lation is used in between (see Equation (B2)). Finally,

the GQI is computed as the weighted harmonic aver-

age represented in Equation (B3). Framing quality has a

stronger impact than image quality in the global quality

of the recording for this specific lane-changing monitoring

application:

𝑞𝑗 = max
(
0,min

(
1,

𝑞𝑗 − 𝑞𝑗_𝑙

𝑞𝑗_𝑢 − 𝑞𝑗_𝑙

))
; 𝑗 = 1 ÷ 6, (B2)

GQI = 4
√

3
√
𝑞1 ⋅ 𝑞2 ⋅ 𝑞3 ⋅ 𝑞4 ⋅ 𝑞5 ⋅ 𝑞6. (B3)

Table B2 shows the results of the application of the video

quality indexes to the seven cameras used in the present paper

(see Figure 6).
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T A B L E B 2 Video quality indexes applied to the cameras used in

the pilot test

Camera 𝒒𝟑 𝒒𝟒 𝒒𝟓 𝒒𝟔 𝑮𝑸𝑰

HD 73.6% 90.4% 76.3% 100.0% 88.8%

2305 43.9% 28.4% 100.0% 36.2% 52.9%

2306 17.1% 33.3% 45.3% 39.6% 42.7%

2310 62.6% 58.0% 25.6% 14.5% 36.9%

2304 69.8% 42.8% 16.6% 2.1% 19.2%

2309 5.4% 0.0% 11.0% 1.6% 0.0%

2312 0.5% 0.0% 61.3% 34.6% 0.0%

Note. 𝑞1 and 𝑞2 are not displayed since they are 100% for all cameras.

APPENDIX C
Appendix C describes the fully automatic method imple-

mented for detecting lane changes from the epochs. Lane

changes appear in the epochs as regions with shapes, col-

ors, and geometric characteristics that are very different from

the pavement background. The automatic method analyzes the

image to find distinctive areas that differ from the background,

characterizes these regions in terms of visual descriptors, and

decides if they correspond to a lane change or not using a

binary classifier.

C1 IMAGE PREPROCESSING AND
CANDIDATE EXTRACTION

The epoch (i.e., a color image; see Figure C1a) is first

converted to a grayscale image 𝑔 of size ℎ ×𝑤 (ℎ height, 𝑤

width) in units of pixels. Next, an estimate of the background

is obtained by computing a column vector 𝑏 of size ℎ × 1,

where each element 𝑖 in 𝑏 is the median of the pixel values

in the corresponding row in 𝑔: 𝑏(𝑖) = 𝑚𝑒𝑑𝑖𝑎𝑛𝑗 (𝑔(𝑖, 𝑗)).
The image background (i.e., the pavement) is eliminated by

subtracting the vector of median values from each image

column 𝑔̂ (𝑖, 𝑗) = 𝑔(𝑖, 𝑗) − 𝑏(𝑖), ∀𝑖, 𝑗 (see Figure C1b).

A morphological closing filter is used to connect small

regions corresponding to the same component of the

image that may be disconnected after removing the

background

The following step is the candidate extraction process,

using a segmentation technique called Maximally Stable

Extreme Regions (Matas, Chum, Urban, & Pajdla, 2002). The

objective is to detect image regions that may correspond to

lane changes. This algorithm finds homogeneous components

of high contrast with respect to the surrounding area. Finally,

post-processing morphological filters are applied to fill holes,

remove thin leakages, and filter out small regions. Figure C1c

shows the result of this process, where white areas correspond

to candidate regions. Figure C1d presents these regions filled

with the original image values (pixel-wise product between

the epoch C1a and the binary mask C1c).

(a) Original epoch

(b) Background subtraction

(c) Candidate region mask

(d)Final candidate regions

(e) Classification result. True positive and true negative regions are 
depicted with red and magenta dots, respectively, while green dots 
correspond to ground truth lane changes

F I G U R E C 1 Automatic epoch processing for lane-change detec-

tion. (a) Original epoch, (b) Background subtraction 𝑔̂, (c) Candidate

region mask, (d) Final candidate regions, (e) Classification result.

C2 CLASSIFICATION

After the preprocessing stage, a set of candidate regions is

obtained. A binary classifier is then used to discriminate

between positive (i.e., lane change) and negative (i.e., occlu-

sion, shade, or other artifacts) regions.

The classification is done with a support vector machine

(SVM) model. The classifier hyperparameters (width of the

Gaussian kernel and regularization parameter) are selected

by cross-validation, minimizing the 𝐹1 measure. The features

used by the classifier are: area of the region, region orienta-

tion, mean value of each color component in the region (using

the YCbCr color space), histogram in each color component,

horizontal and vertical projections of the region mask, and

lower and upper limits of the region bounding box. The same

set of features is used in all the experiments (i.e., for all

cameras).

One classifier is trained for each camera. The data used to

train each SVM are obtained applying the preprocessing and

region extraction procedures to epochs computed from a por-

tion of the video and using annotations from the GUI to label

each region as positive or negative. It is important to note that

the classifiers are not trained using real ground truth labels but

noisy labels provided by the GUI, as would be the case in real

practice. This issue might have a negative impact on the accu-

racy metrics reported for the fully automatic method. Follow-

ing the example, Figure C1e presents the classification results.


