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Abstract
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1 Introduction

This paper deals with linear feasibility problems of the form
(LFP) Find x € R" such that a (t) > b(t), Vt €T, (1)

where T is an infinite index set, a (t) := (a1 (t),...,a, (t)) € R" and b(t) € R
for all t € T. We say that (LF'P) is semi-infinite as the number of unknowns
is finite while the number of constraints is infinite. We denote by

F:{xGR":a(t)T:EZb(t), VtET}

the set of solutions to (LFP).

Let us mention some fields where linear feasibility problems arise in a
natural way. A problem like (LF P) has to be solved to get a starting point
when one applies a feasible direction method to some linear semi-infinite
program (an updated list of documented applications of linear semi-infinite
programming can be found in [26, Remark 1.3.3]). Some interesting applica-
tions of (LF P) also include the image recovery problem [18] and the robust
optimization problem [12]. In particular, the feasibility of a robust linear
optimization problem can be reformulated as an example of (LF P) [13]. For
more recent development for robust linear multi-objective optimization prob-
lem see [23] and [24]. Observe also that any convex (possibly semi-infinite)
feasibility problem

Find x € R" such that g, () <0, Vs € S,

can be linearized in different ways (e.g., as in [25, (7.10)] or [19, pp. 117-118])
giving rise to a problem like (LF P). Thus, numerical methods for (LFP)
could be used to get a starting point when solving convex programs through
feasible direction methods (there exists a wide literature on the applications
of convex programming). Still in the framework of convex programming, a
particular instance of (LF' P) arises at each step of the subgradient methods
(which are slower than the Newton-like methods but allow to solve non-
differentiable convex programs). Indeed, given a convex non-differentiable
function f : R™ — R, such methods require the computation at step r of a
subgradient at the current iterate x”, i.e., they require to solve (LF P) with T
being the domain of f, a (t) := 2" —t, and b(t) := f(z") — f(t). Analogously,
the computation of e—subgradients and certain variational inequalities can
be reformulated in terms of (LF'P).
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It is well-known that the linear finite feasibility problem can be solved
by means of any linear programming method. Unfortunately, the same is
not true when 7' is infinite. The ellipsoid algorithm for finding a feasible
point in a convex set could potentially be adapted to solve (LF'P), but no
implementation is known up to know (even though the ingredients for the
complexity analysis of such an implementation are already available [16]).
The adaptation of numerical methods conceived for different problems seems
also possible but not without difficulties. So, a natural way to tackle (LF P)
consists of reformulating it as convex finite feasibility problems by replacing
the infinitely many constraints a (t)' # > b(t), t € T, by a single convex
inequality ¢(z) < 0, where ¢(z) := maxer <b t)—a()’ ac) . Applying any
convex programming method to minimize ¢, one could either find the aimed
solution of (LFP) or conclude that no such solution exists. The drawback
with this approach is that minimizing ¢ is usually intractable as its Lipschitz
constant cannot be estimated or, even worst, it is not Lipschitz continuous

(unless one can replace R™ with some polytope). Another potential approach
consists of extending to infinitely many sets (in this case the half-spaces

{:Jc eR":a(t) >0 (t)} , t € T') the Douglas-Rachford method for finite

families of closed convex sets [15], but proving the convergence could be a
hard task.

For all the reasons above, the unique available algorithms for solving
(LFP) are semi-infinite variants of the classical relaxation method intro-
duced in 1954, independently, by Agmon and by Motzkin and Schoenberg,
for the linear finite feasibility problem. It is well-known that this method
either generates a finite sequence whose last element is a feasible solution or
generates an infinite sequence which converges geometrically to some feasible
solution. Variants of the relaxation algorithm have strongly polynomial time
for special classes of the linear finite feasibility problems (see [6], [14] and
references therein). The semi-infinite fixed step relaxation algorithm can be
briefly described as follows: select a (relaxation) parameter A € (0, 2] and, if
the current iterate at step r € N is 2" ¢ F, compute the next iterate as

lr
=" 4 )\STM (2)

la (&) ||

where ¢, approximates the supremum g, of the distance from z” to the hy-

perplane H, = {w eR":a(t,) =0 (tr)} determined by some constraint
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a(t,) = > b(t), t, € T, violated by " : X = 1 in [33] and [34], while
A € (0,2] in [27], [28], [29], and [30]. If &, = pu,, 2""! is the projection of
2" onto H, when A = 1 and the symmetric of x" with respect to H, when
A = 2. All the mentioned works are focused on the convergence analysis and
provide few numerical examples (if any).

In this paper we propose a new relaxation algorithm where the user could
select a parameter v € (0, 2) and replace the fixed parameter A in (2) by some
Ar € [v,2] depending on 7. The sequence {\,} C [v,2] can be either predeter-
mined by the user or generated at random. In all our implementations of the
latter algorithm ), is a random variable uniformly distributed on [v, 2]. This
is also the first work comparing the numerical efficiency of the relaxation
algorithms for (LF P), with different values of the relevant parameters from
the efficiency point of view: X in the case of relaxation with fixed step length
and v in the case of relaxation with random step length.

Section 2 contains the necessary notation, the expression of the assump-
tions of the convergence theorems in terms of the data. We also mention some
features of the Extended Cutting Angle Method (ECAM) used to check the
feasibility of the current iterate 2" and to construct the new iterate ™ (two
global optimization subproblems). Section 3 shows the convergence of the
new algorithm under some mild conditions while Section 4 shows its geomet-
ric convergence. Section 5 describes the numerical experiments to compare
the computational efficiency of several implementations of the classical and
the new relaxation algorithm, Finally, Section 6 provides the conclusions of
this comparative study. For the sake of completeness we include a first ap-
pendix providing complementary information on ECAM and a second one
containing a brief introduction to the performance profiles used to interpret
the numerical experiments.

2 Preliminaries

We start this section by introducing the necessary notation. The Euclidean
norm of # € R™ is represented by ||z, the corresponding open ball centered
at = and radius € > 0 by B. (z), and the zero vector by 0,,. The Euclidean
distance in R” is denoted by d. The L; norm of x € R" is represented by
l|z]|, . Given X C R", 1 X and bd X denote the closure and the boundary of
X, span X the linear span of X, aff X the affine hull of X, conv X the convex
hull of X, and cone X := R, conv X the convez conical hull of X U{0,}. If X
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is convex, dim X, ri X, and extr X denote the dimension, the relative interior,
and the set of extreme points of X, respectively. We also denote by R() the
space of mappings £ : ' — R with finite support {t € T : £(t) # 0}, and by
Rf) its positive cone.

The graph of a real-valued function f is denoted by gph f and its do-
main by dom f; moreover, given x € dom f, the gradient and the convex
subdifferential of f at  are denoted by Vf (z) and df (x), when they exist.

We associate with (LF'P), corresponding to the linear system

{a(t)Tx >b(t), te T},
the so-called reference cone
K (a,b) :==clcone{(a(t),b(t)), t € T;(0,,—1)},

where a € (R")" and b € R” are the functions t — a (t) and t — b(t), re-
spectively. The existence theorem for linear semi-infinite systems establishes
that F' # () if and only if (0,,1) ¢ K (a,b) while the Farkas lemma asserts
that, given F' # () and (¢, d) € R**!, ¢ > d holds for all x € F' if and only
the coefficient’s vector (¢, d) € K (a,b) [25, Chapter 3]. Consequently,

aff F = ﬂ {xER”:cT:U:d},
(e,d)eH

where H = {(c,d) € R"™ : span{(c,d)} C K (a,b)}. Then, dim F' = n if
and only if H ={0,41} if and only if K (a,b) contains no line [25, Corollary
3.1.1 and Theorem 5.8]. Thus, the condition for the convergence of the
relaxation algorithm with arbitrary starting point 2°, dim F = n (or the
weakest one that 2 € aff F) can be expressed in terms of the data, but
unfortunately, it can hardy be verified in practice.

We solve the global optimization subproblems in the implementations of
the relaxation algorithms by means of the Extended Cutting Angle Method
(ECAM in short). ECAM solves optimization problems of the form

inf {f(z):z € X}, (3)

where f is Lipschitz continuous with known Lipschitz constant and X C R" is
a polytope (i.e., a bounded convex polyhedral set). We denote by infx f € R
the optimal value of (3). ECAM is briefly described in Appendix 1. We shall

3
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use the following two lemmas to get the Lipschitz constants for the functions
involved in the subproblems to be solved by the relaxation algorithms in this
paper. The first lemma deals with the generation of Lipschitz continuous
functions from functions of the same class while the second lemma exploits
the smoothness of the functions and the convexity of their domains. The
proofs can be found in the standard literature on the subject (see, e.g., [21,
Chapter 12] and [32, Proposition 5.1]).

Lemma 1 Let fi, fo : T — R be Lipschitz continuous on T with constants
Ly, Ly. Then the following statements hold:
(i) If supy |fi] < M; < +oo, i = 1,2, then the product fyfy is Lipschitz
continuous on T with Lipschitz modulus (the smallest Lipschitz constant) at
most My Lo + MsLy.
(ii) If 0 < my < infp|fi| and supy |fo| < My < 400, then, % is Lipschitz
continuous on T with Lipschitz modulus at most 7’;“1—21 + anl_%h

With f € C' (T) we mean that f is continuously differentiable on an open
set containing T' C R™, m € N.

Lemma 2 Let T C R™ be a non-singleton compact convex set and f €
CY(T). Then, f is Lipschitz continuous on T with Lipschitz modulus at most
maxy ||V f]| .

3 Convergence of the extended relaxation al-
gorithm

From now on we assume that a (t) # 0, for all t € T, so that the function
g(+, ) :== a(-) "z —b(-) is well-defined for all z € R™. Moreover, g(-, z) satisfies

infr ﬁé(rﬁ # —o0 as, in the contrary, there exists a sequence {t,} C T such

that ﬁ&’;kg)”‘)‘ — —o00 as k — oo and, taking into account that ‘ﬁg&gﬁc
we have % ZE::)) — 0, as k — oo.
So, (0,,1) € K (a,b) (contradiction). Consequently, the extended relaxation
algorithm (ERA in short) described in Table 1, where the step length is not

necessarily predetermined, is well-defined too.

< [lIl

— +00, which in turn implies that
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Table 1: Extended relaxation algorithm, ERA

Procedure: ERA

Initialization:

Select M > 1, 5y > 0, 7 > 0 (precision), v €0, 2];
Choose z° € R™;

r:= 0 (set to zero initial iteration),

S := By (value for the initial S-global optimal solution),
non_stop:=true (binary variable);

begin
while (non stop) do
Obtain (via ECAM) ¢,, a S-global optimal solution by solving the problem:

N—al(t, Txv‘ . a Tx”‘,
MT—6<6T::%§M::—1M{W:tET} (4)
if(e, > 7) then
if(B < e.(M —1)) then
Choose A, € [v,2] (in some way);

ty
2= 4 \e, A

llat)ll
ri=r+1
else
B=p/2
endif
else
non_stop:=false;
endif
endwhile
return z”, a feasible solution;
end
7
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Before to proceed further, we shall make some comments. The param-
eter [ represents the accuracy level required for the subproblem (4) to be
solved at step r, whose exact optimal value is denoted by ., while ¢, and e,
are, an approximation of the current optimal global solution, and a [-global
approximation of the optimal value, respectively. If § < e, (M — 1) one can
compute directly the new iterate; if not, § is replaced by a smaller positive
scalar of the form 2%, k € N, until the previous inequality holds. The ne-
cessity of enforcing 5 < e, (M — 1) at each step comes from the fact that
this inequality guarantees that p, — 0, which is the main ingredient of the
convergence proof of Theorem 6 below.

Obviously, ERA can be implemented in different ways, e.g., by taking
A = A (a fixed parameter in [v,2]) for each r = 0,1,2,... (the classical
fixed step relaxation algorithm FISRA), by choosing a predetermined se-
quence {\.} C [v,2], or by picking up the parameter A, at random in some
subinterval of [v,2] (the new random step relaxation algorithm RASRA).
Iteration r of ERA requires a S—optimal solution of — inf {!Iyl(a(w)rl\) teT } ,
where 2" is the current iterate. This can be done via ECAM provided that
these functions are Lipschitz continuous with known Lipschitz constants on a
polytope T' contained in some Euclidean space (in most practical applications
the index set T is a low dimensional box, usually with dim 7" € {1, 2}).

The next two results can be useful in order to apply ECAM to the sub-
problems of ERA. The first one involves the constants

B:=inf|la(t)]|, N :=suplla(t)||, and P :=sup|b(t)|. (5)
teT teT teT

The first two constants, B and N, play an important role in the proof of the

convergence Theorem 11, where we shall assume that B > 0 and N < 4o0.

Observe that B > 0 and N, P < +00 whenever T is a compact set, a : T —

R™ and b: T — R are continuous.

Proposition 3 Let b,aq,...,a, be Lipschitz continuous on T C R™, with
Lipschitz constants Ly, Ly ..., L,,, and assume that B > 0 and N, P < +ooc.
Denote L := (Ly, ..., Ly,) € R" and let 2" = (2}, ...,x]) € R". Then “|’|(a(x)]) is
Lipschitz continuous on T" with Lipschitz modulus at most

1 o N \
5 Lo+ ILIHI2") + 55 (P + N 2" [ L], - (6)
8
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Proof. Since g(-,2") = > ala;(-) — b(-) is a linear combination of n + 1
i=1

Lipschitz continuous functions with Lipschitz constants Ly, ..., L, and Lg, we

get that g(-,2") is Lipschitz continuous on 7" with Lipschitz modulus at most

Lo+ [| L] [[="] - ,

By Lemma 1(i), for each ¢ = 1,...,n, a; (-)” is Lipschitz continuous on T’
n

with Lipschitz modulus at most 2N L;. So, |la (-) ||> = 3 a; (-)* is Lipschitz
1

continuous on 71" with Lipschitz modulus at most 2/NV ||Lﬂ1 . Thus, if t,s € T,

we have
e (&) [1* — [l (s) [I? N L,
lla (@)1 = lla(s) Il = <{—5 ) llt=sl,
la (@) [+ lla(s) | B
which shows that ||a () || is Lipschitz continuous on 7" with Lipschitz modulus
at most ML

Observe also that, given t € T,
lg(t,2")| < [b@)] +[l2"|[ la (t) | < P+ Nl2"]|. (7)

Now we apply Lemma 1(ii) to the functions f; = ||a (+) || and fo = g(-, z"),
with 0 < B < infr |f;]| and

sup | fo| = sup lg(-,2")| S P+ N |lz"|| < +o0

by (7). Then we get (6). m
Let us introduce two additional constants when b, ay, ..., a, € C' (T) and
T is compact:

Q:= max |Va; (t)|| and R := max Vb (1)

i=1,...nteT

Proposition 4 LetT C R™ be a non-singleton compact convezx set, b, ay, ..., a, €
C'(T), and assume that B > 0. Then, given x" € R", “"2&') is Lipschitz con-
tinuous on T wnth Lipschitz modulus at most

(%) (B ([l="]l, @ + B) + (P + N [[z"[|) nQ] . (8)

Proof. Observe that

g(t,2") _ [la@®)[[Vig(t,2") — g(t, 2")V ([la () [])

Ve @l la (@) 12 '
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Since maxyer ||a (t) || < N, then
T < T
max [|V,g(t, 2")| < [la"[}, @ + R,

and
Nl < p .
r?eaTXas‘g(tyw ) <P+ Nz

Since

IV Qla @Dl = la @17 |3,

one has maxer |V (||a (¢) ||| < nB~'NQ, which together with minger ||a (¢) [|* >

B? shows that max;cr ‘ Vi ||a(t)\|) is not greater than the real number in

t) Vas (t H <nB'NQ, Vit €T,

-----

(8). Lemma 2 yields the aimed conclusion. m

Example 5 In robust linear programming with uncertain constraints (see,
e.g., [24, Section 3]), one assumes that the objective function x + c'x is
deterministic while the coefficient vectors of the p given constraints take val-
ues on given (generally infinite) uncertainty setsU;, j =1,...,p. The robust
feasible solutions are the feasible solutions of the so-called robust counterpart
problem

min{cTa: : aij > by, Y(a;,b;) €Uy, j=1,...,p}.

So, computing a robust feasible solution is the linear feasibility problem

(LFP) Find z € R" such that o'z > b, Y(a,b) € T, 9)
where T'=|J U;, which can be written as (LFP) in (1), witha : T — R"
7j=1,...,p
such that a (ty, ...,tn11) = (t1, ..., tn) and b: T — R such that b (t1,...,t,11) =
tn+1. Observe that T is compact whenever U; is compact for all j = 1, co, .

Obviously, the projection functions a; (-) and b(-) are Lipschitz contin-
wous with Lipschitz modult equal to 1. Most robust decision makers choose
uncertainty sets of the form

uj = (aj’gj)+ajua J=1...p, <1O)

where (a;,b;) € R™ are deterministic vectors and a; > 0, j = 1,...,p,
while U denotes the closed unit ball for some norm on R"L. For simplicity

10
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we consider here the affine constraint data perturbations model (9)-(10) with

U =B (0,41) . ERA is well defined provided that a (t) # 0, for allt € T, i.e.,

||a]|| > Oéj,j = 17"'7p7

or, equivalently, B := inf;—y _, (||a;|| — ;) > 0. If 27 € R" is the present

g('vxT)
7 laC)l

iterate, by Proposition 3 15 Lipschitz continuous on T with Lipschitz

modulus at most
niN

]‘ r r
5 L+ Vullall) + 25 (P + Nl2"ll)

where

y 5j+aj‘}.

N = sup (/g +a;) and P = sup max{|b; — o;
j=1,...,p j=1,...p
Other Lipschitz constants can be obtained for other norms in a similar way.
When the unit ball U is a polytope (e.g. for the Ly and the Lo, norms),
one can reformulate (LEF'P) in (9)-(10) as

(LFP) Find x € R" such thatt' (z,—1) >0, t €T,

where T =conv | U ((a;,b;) + o extr L{)] is a polytope in R"*'. Observe

that Q = R = 1, but Proposition 4 does not applies as T is the union of p
closed balls and, so, generally non-convex for p > 2.

According to [24, Theorem 4], (LFP) has solutions, i.e. F # (), whenever
max;—i ., «; is less than the distance from the so-called hypographical set

conv {(Ej,gj),j =1,... ,p} + R, {(0,,—1)}

to the origin 0,41. This distance can be computed by solving a quadratic
programming problem. Unfortunately, the assumption that dim F' = n in the
convergence theorems below, which can be expressed in terms of the data as
the requirement that the convex cone

A (S, B cone {(@,b) + ol + R {(0,,-1)})

contains no line , is not checkable. In other words, the user must apply ERA
assuming that dim F' = n and conclude that dim F' < n for those feasibility
problems for which the generated sequence {x"} does not converge to some
feasible solution.

11
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Now, we shall modify the proof of the convergence of FISRA, [29, Theo-
rem 3], in order to get the new proof of the convergence of ERA.

Theorem 6 (Convergence) Assume that dim F = n. Let 2° € R" and

€ 10,2[. If for each r = 0,1,2,... we chose an arbitrary A\, € [v,2], ERA
either ends after a finite number of steps, or gemerates an infinite sequence
{2"} converging to some element of F.

Proof. Observe that, if ERA generates a finite sequence, the last point is
an approximate solution to (LF'P). So, we can assume w.l.o.g. that {z"} is
an infinite sequence of infeasible points.

For each t € T we denote H, = {z € R" : a(t)" = = b(t)}. Given r € N,
we have p, > 0, ie., 2" ¢ H, for some t, € T. Thus, 2" belongs to the
half-line emanating from 2" in the direction of a (¢,) , with d (", 2") = \,&,.

By hypothesis, there exist z € R" and § > 0 such that

Bs(z)CFc{zeR":at,) z>b(t)}, r=12..

and py,:=d(z, Hy,) > 0.

By construction, the line determined by z” and x™', aff {z" 2"} is
orthogonal to Hy.. Let h, = d(z,aff {z",2""'}). We select a coordinate
system in the hyperplane aff{z", 2!, 2} such that the abscissa axis is the line
aff {a", 2"}  oriented in the direction from z" to 2”1, the axis of ordinates is
the line orthogonal to aff {z", 2”1} | oriented in such a way that z belongs to
the first quadrant, and the origin is located at H, Naff {", 2"} . With this
oriented system, the coordinates of the 2" are (—¢,,0), the coordinates of 2" !
are (A, —1)&,,0) = (§6,,0), with A\, —1 =&, € |]—1,1], and the coordinates
of z are (py,, h,), with h, > 0 (the case when dimaff{z", 2" *! 2} = 1 and
h, = 0 is trivial). Figure 1 illustrates the notations, which are the same as
in [29, Theorem 3].

12
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aff {x’,xr”}

Figure 1: Coordinate system involving aff{z", 2" "'} and the hyperplane H;, .

Following exactly the same steps as in the beginning of the proof of [29,
Theorem 3], we obtain the following inequality

r—1

1 0 2
> 1+ &)ex < ol = Al

k=0

Since & = Ay — Ll and v < A\ for all k=0,...,r — 1, one gets

r—1 r—1
1
Zugk < Z)\kek < %on — 2|3, (11)
k=0 k=0
which gives
r—1 1
e < 5l = 21 (12)
k=0

Defining 7, == Y.j_y ek, and K := 5512 — 2%, from (12) we get 0 <
n—1 < K for all r € N. As the sequence {7,} is bounded and increasing, it
is convergent, with 0 < lim, n, < K. Hence, ) &, converges as well (and
lim, e, = 0).

13
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We have that |, — e,.| < 3, for every r = 1,2, ..., and require at each step
that 8 < &,.(M — 1), which is equivalent to 8 + ¢, < €, M. But, we have that
B+ &, > ., whereby
% <é&r < pypy
ie., 0 < pu, <e.M,so, we get lim, p,, = 0.

From (11) we have

r—1 1
Z)\ké‘k < %on — 2%,
k=0

but, from the definition of ERA, we have

Meer = |l2" — 2"t

So,
r—1 1
D = < %on —zf?
k=0

and then the series > 7 [|a” — 2" || converges. Therefore, > 7 (2" — 2" 1)
is absolutely convergent (see, e.g., [5, Theorem 26.7]), and we conclude the
existence of some & € R™ such that lim, 2" = z.

It remains to show that € F. For any t € T, and for all » € N we have

glt,a™) b)) —a(t) a" - { fir, i g(t,2") <0, (13)

@1~ ol 0. otherwise.

Passing to the limit in (13) as r —00 we get % <0, forallt € T, and
this proves that 2 € . =

Observe that when dim F' = n and ERA generates an infinite sequence
{z"}, its limit & € bd F' as 2" € R™\ F for all € N.

The next example shows that the non-degeneracy assumption that dim F' =
n in Theorem 6 is not superfluous. Even more, the computational experience
in Section 4 shows that the convergence is quite slow whenever the condition
number of F (assumed to be bounded), say cond (F'), defined as the quo-
tient of the smallest width of F' by the greatest one, is small. Obviously, for
a compact convex set set I, dim F' < n if and only if cond (F') = 0.

14
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Example 7 The simple feasibility problem
(LFP) Findx € R* s.t. —d(cost)x, — c(sint)xy > —cd, Vt € [0, 27],

where ¢ and d are two given positive numbers, illustrates the difficulties en-
countered by FRA when solving feasibility problems when dim F' = n but

cond (F') is very small. It is easy to see that F = {x eR?: xl m2 < 1}

with cond (F') = mln{C d} Assuming that ERA generates an mﬁmte se-
quence {z"} whose limit & # (+¢,0), and that 0 < d < ¢, x5 # 0 for
sufficiently large r because xty — o # 0 (as the unique points x € bd F' such

that x5 = 0 are (£c,0)), & (g(xr’t)> = —<xb, and
=

@1 d
i (oot

Hence the Lipschitz modulus of g”(z(t)t”) tends to +oo too as cond (F') tends
to zero, making ECAM to become wnefficient to solve the global optimiza-
tion subproblems. This theoretical observation is coherent with the empirical
results shown in Table 2 (see Subsection 5.2).

Consider now the limit case that d = 0 while ¢ > 0. Obviously, F' =
Rx {0} with dim F' < n = 2. Recall that ERA selects at step r a parameter
A € (0,2] and, if the current iterate is x" ¢ F, computes the next iterate

by (2), with e, approximating the supremum p, = d(z", H,), where H, =

g
cond (F')

— 400 as cond (F) — 0.

reR":a(t,) =0 (tr)} is the hyperplane determined by some constraint
violated by «". Consider (LFP) with d = 0 and take . = p, for all r. Given
" ¢ F (ie, 2t #0), H. = F (the x axis), and gphg (-, 2") is the curve in
red (in blue) in Figure 2 whenever xf > 0 (x} < 0, respectively), so that

Ty ifay >0,

. Ty 2
argmin g (¢, z") { %g}’ if xf, < 0.

15
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Figure 2 shows the graph of the piecewise linear function g (-, ") (repre-

sented with dashed points) and the graph of the smooth function to be mini-
mized at step r, ’h(c;’(—y_C)TH), in both cases in red (blue) whenever xt > 0 (x4 < 0,

respectively). We now apply FISRA with different choices of the step size A
and the initial point 2°. As Figure 3 shows, the results are as follows:

i) IfA=0.5and 2’ = (—7,4), then FISRA generates an infinite sequence
{z"} — x* € F contained in the open half-plane x5 > 0.

i) If\=1.0 and 2° = (=3,4), then FISRA provides a point of x* € F in
Just one iteration.

iii) If X = 1.5 and 2° = (3,4), then FISRA generates again an infinite
sequence {x"} — x* € F, whose even (odd) terms are contained in the
open half-plane x5 > 0 (xo < 0, respectively).

iw) If X\ =20 and 2° = (7,4), then FISRA fails (the oscillating sequence
a" = (1, (=)t 4) does not converge).

17
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Figure 3: Different choices of the step size A and the initial point z°

18



QO ~J oy U b WN

Remark 8 FRA can be conceptually adapted to the unrealistic situation in
which dim F = m < n and the affine hull of F' is known, i.e., af F =p+V,

for a
have:

given p € R™ and a given linear subspace V' of dimension m. We thus

The translation x = z + p allows us to replace F with a closed convex
set

F= {zeR”:a(t)Tz—B(t)zo, VteT},

withb () =b()—a()" p, so that F=F +p and aff F = V.

We can complete an arbitrary basis {v',... v™} of V with n —m lin-
early independent vectors {w™ ', ... w"} to get a basis of R™. Thus,
R'=V oW

We can find a nxn non-singular matriz B = [By | Bs], with By (n x m)

1

and By (n x (n —m)), such that z = B ( 32 , where y = (y',y?) €

R™ xR"™™™ is the vector formed by the coordinates of z € R™ in the basis
{o', ™ wm T w™t. Observe that y* =0 for ally € V = aff F.

The result of replacing z = B ( 4 ) in the linear system

On—m
{a(t)Tz—B(t) >0, Vt e T}
is the system {Zi(t)T Yy —b(t) >0, Vt € T} ,witha () = Bla().
Then ERA allows to compute an element §* of
F= {yl cR™:G(t) 2 —b(t) >0, Vtc T}

as dim F = dimF = m (i.e. F has full dimension in R™). So, T :=

~1
p+B(Oy )EF.
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4 Rate of convergence of ERA

The objective of this section is to show that, taking A\, € [v,u] C (0,2) for
all » € N; the rate of convergence of ERA is geometric. To prove it we need
two lemmas.

Lemma 9 [1, Lemma 2.1]Let A € [0,2] and z,y € R™ be separated by the
hyperplane H = {x € R" : "z = b}, that isa'x < b and a"y > b. Then

lz + Aem —2) = yl* < llz =yl = A2 =N Jam —al”,  (14)

where xg is the orthogonal projection of x on H. The equality holds if A = 0,
orA\=2andy € H.

We also need the following extension of [33, Lemma 1], whose assumptions
involve the smallest and greatest distances from 0,, to the set {a (t) : t € T'}
introduced in (5): B := infier |la(t)|| € Ry and N = sup,er|la(t) ] €
R, U{+oo}, respectively.

Lemma 10 /27, Lemma 5] Assume that ERA generates an infinite sequence
{z"}. If dim F = n, B > 0 and N < 400, then there exists a constant
0 <~ <1 such that p, > ~vd(z", F) for allT =0,1,2, ... .

Now, we are ready to prove the following theorem on the rate of conver-
gence of ERA.

Theorem 11 (Geometric convergence) Let \. € [v,u] C (0,2) for all
r = 0,1,2,..., with v < u, and assume that FRA generates an infinite
sequence {x"}. If dim F = n, B > 0 and N < +o0o, then there exist M > 1,
0<60<1, and T € F such that T = lim, 2" and

la" =zl < 0"]2" — 2| (15)
for all r big enough.

Proof. From the definition of €,, we have ¢, = ||2" — zp, ||, where xp, is
the orthogonal projection of 2" on the hyperplane H; . We know that

e > MM r=01,.. (16)
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Let us replace x by 2", y by y” and A by A, in the inequality (14), where 3"
be the point in F' such that ||z — y"|| = d(z", F'), that is, y" is the projection
of " on F. From Lemma 9, Lemma 10 and the fact that ||z — y™||? <
[l —y"||?, we get

2" =y P < 2™ =y <l =y = A (2= A) 2T = o, |1

= [la" =y P = A (2= A e

)\r (2 - >\7“) Nz

<oy - 2
r r )\T (2_)\7“) 72 r r
< o =y = 222 e
= [la" =y IIP(1 = A (2= A) 2 M 72). (17)

Let us define ¢ :=min{v (2 —v),u(2—p)]. Then 0 < < A (2= A,) <
1, r = 0,1,....Thus, for a sufficiently large M we have 0 < o = (1 —
(v*M~2)2 < 1 and, making use of (17) repeatedly, we get

erJrl o yr+1|| S 0,7"+1Hl,0 o yO”

Since Z and 2" are in the ball Bjgr_,»(y") for each r = 0,1,2, ..., we finally
obtain

1
slle™™ =zl < e =y < o™ 2 =P < 0"l — 2], (18)

which proves the theorem for any 6 such that c <0 < 1. m

Remark 12 From (18), it would be convenient estimating the smallest o
such that (15) holds for any 6 such that o < 0 < 1, for sufficiently large
values of r. Assuming M > 1, we can chose M > max {1, Q%Fy} =1, because

¢ € (0,1) and ~y € (0,1). This means that (1 —(7%)2 <o < 1.

5 Numerical results

In this section we present the results of numerical experiments to compare
different implementations of FISRA (depending on the fixed value of A\ €
(0,2]) and RASRA (depending on the chosen distribution for A,.). In the
latter case, we have chosen uniform distributions on intervals of the form
[v,2], with 0 < v < 2, but other distributions on subintervals of (0, 2] could
be used. Observe that, for the chosen distribution of A, RASRA converges,
but the convergence could be slow as we may have A\, = 2.
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5.1 Test problems

A total of 27 linear feasibility test problems have been selected satisfying
the assumption guaranteeing the convergence of the relaxation algorithms
(dim F' = n) and the conditions allowing to check the feasibility of the cur-
rent iterate though ECAM (T polyhedral and Lipschitzian data functions).
From the test problems, and by considering several distances from the ran-
domly generated initial point to the origin, we have obtained 41 different
test instances (see Tables 2 and 3). These distances are significative in this
study because they increase the computational time. Nevertheless, in prac-
tice we don’t know how far the initial point is from F'. So, we do not consider
necessary to work with initial points far from the origin since this fact in-
creases the complexity of the functions to be optimized. In our experiments
we have selected distances 10, 20 and 50, just to illustrate the difficulties
associated with high distances. Instances from No. 1 to No. 12 have been
generated from ellipses with decreasing condition number (cond (F)), which
is indicated between parenthesis. Instances from No. 13 to No. 21 come
from [31, Examples 8, 9 and 10]. Finally, instances from No. 22 to No. 41
have been generated by using the procedure described in [22]. In this latter
case we can generate test problems without limitations on the number, n, of
variables and the dimension, m := dim 7T, of the index set.

5.2 Computational results

The numerical experiments, which are summarized in four tables, were car-
ried out on a PC with Processor Intel(R) Core(TM) i5-4200U CPU 1.60—2.30
GHz and 8 GB of RAM (MS Windows7 enterprise). In Tables 2 and 3, Num
denotes the number assigned to the instance, Name indicates the name of
the instance, and Iter and Time represent the number of iterations and the
CPUTime required for obtaining a feasible solution, respectively. Table 2
describes instances with A, = A for all » € N (constant sequences) while Ta-
ble 3 describes instances with random values of A,. The maximum number
of iterations was limited to 400 for all instances. When the algorithm needs
more than 400 iterations to attain a solution of (LF'P), then we consider
that the solver has failed in solving the problem. The failure of a solver is
indicated with a star (), in the column indicating the number of iterations.
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Table 2: Fixed value of A, €]0, 2]

A =01 A =04 A =07 A =10 A =12 A =15 A =138 A =20

Num | Name (cond (F)) n | m| Iter Time | Iter Time | Iter Time | Iter  Time TIter | Time || Iter ~ Time | Iter | Time | Tter | Time

1 clps.5.4.10 (0.8) 2 1] 324 16.084 || 68 30 1.045 1 0.047 1] 0.047 1 0.046 1| 0.047 11 0.031

2 .20 2 1| 334 16.240 | 70 31 1.092 30109 1| 0.047 1 0.031 2| 0.063 2| 0.078

3 2 1] 34 16.848 || 72 32 3 0.156 2| 0.093 2 0.094 41 0171 6| 0.266

4 2 1] 325 15.921 || 68 30 3 0.140 1] 0.062 1 0.047 1] 0.047 2| 0.062

5 5.5.3.20 2 1] 332 15.943 | 70 31 3 0.156 1| 0.063 20078 2| 0.093 3| 0125

6 | elps.5.3.50 2 1| 345 16.676 || 72 31 3 0.156 2| 0.093 30125 5| 0.219 8| 0.327

7 | elps.5.1.10 (0.2) 2 1] 326 19.936 || 69 30 10,047 2| 0.093 2 0.063 3| 0.093 4| 0.094

8 | elps.5.1.20 2 1] 334 20.546 || 70 31 2 0125 2| 0.109 3 0.110 5| 0.187

9 elps.5.1.50 2 1| 344 20.780 2 31 2 0.110 2] 0.078 4 0124 8] 0219

10 s.5.01.10 (0.002) | 2 1] 328 18.798 || 69 30 2 0.093 3| 0.125 60203 | 12| 0.296

11 .01.20 2 1| 335 19.235 || 66 31 1 0.047 41 0172 70234 | 17| 0421

12 | elps.5.01.50 2 1] 345 20.545 || 67 32 2 0.109 4| 0125 7 0171 | 20| 0.406

13 | GT14.ex8.10 2 1 8.666 | 70 31 1 0031 1] 0.031 2 0.063 2 0.047 3| 0.078

14 | GT14.ex8.20 2 1 10.327 || 70 31 6 0.125 2| 0.047 2 0062 | 14| 0.109 4| 0.109

15 | GT14.ex8.50 2 1 8.830 | 72 32 3 0.063 3] 0.078 30078 5] 0.109 8| 0.203

16 | GT14.ex9.10 2 1 3.994 | 70 31 1 0.032 3| 0.062 70172 | 23| 0.343 || 401% | 72.540

17 | GT14.ex9.20 2 1 3.963 | 71 31 1 0.016 5] 0.156 | 11  0.234 | 159 | 1.825 || 401* | 83.132

18 | GT14.ex9.50 2 1 4.025 || 72 31 1 0.015 3| 0.047 | 53 0437 | 25| 0.374 || 401* | 61.527

19 | GT14.ex10.10 2 2 12.776 || 141 61 2 0.062 1] 0.047 1 0.047 1] 0.047 1| 0.046

20 | GT14.ex10.20 2 2 12.620 || 144 63 2 0.063 1] 0.031 1 0.031 1] 0.031 1| 0.032

21 | GT14.ex10.50 2 2 10.218 || 149 54 3 0.063 2| 0.031 2 0.031 2| 0.031 2| 0.032

22 | FPftpea.20 3 1 70 31 30218 2| 0.156 70437 7| 0437 12| 0.764

23 | FPftpea.20 5 1 70 31 20171 2| 0.156 9 0.593 7| 0453 13| 0.826

24 | FPftpea.20 10 11 70 31 2 0187 2| 0156 | 13 0.842 8| 0.531 12| 0.795

25 | FPftpea.20 15 |1 70 31 10125 2| 0156 || 26 1.731 9| 0.624 12| 0.827

26 | FPftpea.20 25 |1 70 31 30374 1| 0125 | 178 13.541 | 12| 0.967 13 | 1.061

27 | FPftpea.20 50 |1 70 31 3 0.687 1| 0.312 30515 | 17| 2012 15| 1.825

28 | FPftpea.20 o1 71 31 2 0.530 1| 0.312 30593 | 13| 2137 14

29 | FPftpea.20 100 | 1 70 31 1 0281 2| 0.468 3 0.609 6| 1.216 10

30 | FPftpea.20 500 | 1 350.712 | 69  157.716 | 29 3 3214 2| 2231 3 3198 5| 5.195 10

31 | FPftpea.20 1000 | 1 761.235 || 149 2.403 | 30| 68.609 2 4914 2| 5226 3 7489 5| 12.058 10

32 | FPftpeaT2.20 3 2 39.047 || 66 8.128 | 34 4.118 4 0577 2| 0.266 30374 5| 0.577 10

33 | FPftpeaT2.20 5 2 43.368 || 60 8.424 | 29 6.771 30483 2| 0.359 30718 51 0.920 10

34 | FPftpeaT2.20 10 | 2 45.053 || 72 10.858 | 31 8.829 3 0.749 2| 0.577 30812 5| 1.482 10

35 | FPftpeaT2.20 15 |2 54.729 || 73 1 30 7.394 2 0.655 2| 0.577 3 0.936 5| 1.514 9

36 | FPftpeaT2.20 25 | 2 73.051 73 21.856 | 26 6.302 30920 2| 0.733 3 1061 5| 1.622 9

37 | FPftpeaT2.20 50 | 2 87.807 || 64 25.007 | 30 9.782 3 1107 2| 1077 3 1170 51 2215 9

38 | FPftpeaT2.20 o2 114.344 || 61 28.361 | 25 2 1.186 2| 1.092 3 1607 5| 2.589 9

39 | FPftpeaT2.20 100 | 2 160.884 || 61 26 1 0.780 2| 1.326 1 0.047 5| 2871 9

40 | FPftpeaT2.20 500 | 2 641.210 | 61 26 1 3.198 2| 5.148 1 0.031 5| 11.435 10

41 | FPftpeaT2.20 1000 | 2 1324.955 || 54 27 3 16.723 2| 11.279 3 15.584 5 25.818 10
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Table 3: Random values of A, € [v, 2] for fixed v

v =0.01 v=04 v=10 v=15 v=19 H
Num | Name (cond (F)) n  m | Iter | Time || Iter | Time || Iter | Time || Iter | Time || Iter | Time ‘
1 elps.5.4.10 (0.8) 2 1 21 0.094 1 0.031 1| 0.047 1 0.031 1| 0.031
2 elps.5.4.20 2 1 1] 0.078 21 0.094 21 0.078 21 0.093 21 0.094
3 elps.5.4.50 2 1 3| 0.156 41 0.172 1| 0.047 31 0.125 51 0.202
4 elps.5.3.10 (0.6) 2 1 1| 0.046 1| 0.047 1| 0.047 1| 0.047 1| 0.047
5 | elps.5.3.20 2 1 1] 0.062 3] 0.063 2] 0.078 3] 0.109 3] 0.094
6 | elps.5.3.50 2 1 2 0.094 2| 0.078 31 0.109 41 0.156 6| 0.203
7 elps.5.1.10 (0.2) 2 1 21 0.156 2| 0.125 31 0.141 31 0.124 41 0.141
8 | elps.5.1.20 2 1 3| 0.125 21 0.125 3] 0125 5| 0.187 71 0.265
9 elps.5.1.50 2 1 51 0.266 41 0171 51 0.172 81 0.234 12 | 0.359
10 | elps.5.01.10 (0.002) 2 1 6| 0.515 6| 0.468 41 0.281 91 0.452 23| 0.843
11 elps.5.01.20 2 1 51 0.373 71 0.233 6| 0.233 13 0414 57 | 1.282
12 | elps.5.01.50 2 1 51 0.482 71 0.289 2] 0.115 13 0.378 42| 1.038
13 | GT14.ex8.10 2 1 21 0.094 2| 0.047 1] 0.031 1| 0.031 1| 0.031
14 | GT14.ex8.20 2 1 41 0.171 2| 0.063 1] 0.031 2| 0.062 31 0.094
15 | GT14.ex8.50 2 1 51 0172 41 0.109 1] 0.031 31 0.078 6| 0.156
16 | GT14.ex9.10 2 1 5| 0.219 51 0.078 41 0109 || 12| 0.187 | 76 | 0.936
17 | GT14.ex9.20 2 1 6| 0.266 8| 0.187 10 | 0.218 16 | 0.281 68 | 1.014
18 | GT14.ex9.50 2 1 30 | 0.390 41 0.125 10 | 0.265 14 | 0.359 82| 1.435
19 | GT14.ex10.10 2 2 1| 0.016 21 0.047 2| 0.046 21 0.063 2| 0.031
20 | GT14.ex10.20 2 2 41 0.140 3| 0.094 2 0.046 21 0.047 2| 0.063
21 GT14.ex10.50 2 2 32| 0.437 30| 0.390 41 0.094 41 0.078 10 | 0.265
22 | FPftpea.20 3 1 6| 0.374 3] 0.156 51 0.219 71 0.296 91 0.359
23 | FPftpea.20 5 1 91 0.582 71 0.390 51 0374 6] 0.328| 10| 0.530
24 | FPftpea.20 10 1 41 0.344 41 0.249 51 0.328 41 0.312 81 0.468
25 | FPftpea.20 15 1 41 0.359 1| 0.093 31 0219 51 0.327 81 0.593
26 | FPftpea.20 25 1 6| 0.437 31 0.265 3| 0.281 51 0421 8| 0.655
27 | FPftpea.20 50 1 71 0.999 41 0.515 1| 0.156 31 0.358 8| 0.952
28 | FPftpea.20 75 1 31 0.570 3| 0.581 3| 0.560 51 0.893 8| 1.313
29 | FPftpea.20 100 1 1| 0297 31 0.639 41 0.796 5| 1.045 8| 1.545
30 | FPftpea.20 500 1 2| 2.652 31 3.104 51 5.148 41 4.259 8| 7.972
31 | FPftpea.20 1000 1 1] 3.136 5| 13.088 2| 5476 6| 15.693 8 1 20.436
32 | FPftpeaT2.20 3 2 31 0.515 31 0437 41 0.546 41 0.499 8| 1.014
33 | FPftpeaT2.20 5 2 17| 2.949 15| 2.231 3| 0.452 51 0.858 8| 1.544
34 | FPftpeaT2.20 10 2 8| 2.144 21 0.586 3| 1.023 51 1.347 8| 2.266
35 | FPftpeaT2.20 15 2 3| 1.264 41 1.030 31 0.936 6| 1.825 8| 2.527
36 | FPftpeaT2.20 25 2 3] 1.342 41 1435 1| 0.437 41 1.357 71 3.089
37 | FPftpeaT2.20 50 2 41 2932 3] 2138 41 2979 41 2715 8| 5.288
38 | FPftpeaT2.20 ™2 4] 3.636 1| 1.077 3] 3.011 4] 3.853 71 7191
39 | FPftpeaT2.20 100 2 2| 3.276 4] 4.836 5] 5.336 5| 5.756 9 1 10.655
40 | FPftpeaT2.20 500 2 2 110.421 31 15.943 23 | 15.023 5| 24.819 8 | 46.442
41 FPftpeaT2.20 1000 2 3] 29.421 2| 24.570 2| 34.648 51 59.717 8 1 66.471
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The results shown in Tables 2 and 3 are compared in Tables 4 and 5. The
precise meaning of the entries in the latter tables, p,(1) (probability of success
in solving a problem) and p% (probability of win over the rest) is explained
in the Appendix. For the sake of brevity and clarity, we have just included
two figures, Figures 4 and 5 (with different scales in the axis of abscissas,
corresponding to the No. of iterations), which plot the performance profile
of the results, for the number of iterations, for FISRA and for RASRA.

Table 4: Results for fixed value of A,

Time Iter

A | ps(1) Py ps(l) P}
0.1 0.0% 100.0% 0.0% 100.0%
0.4 2.4% 100.0% 0.0% 100.0%
0.7 0.0% 100.0% 0.0% 100.0%
1.0 26.2% 100.0% | 21.4% 100.0%
1.2 | 57.14% 100.0% | 71.43% 100.0%
1.5 14.3% 100.0% | 51.2% 100.0%
1.8 71% 100.0% 0.0% 100.0%
2.0 9.5%  85.7% 0.0% 85.7%

Table 5: Results for random values of A,

Time ITter

v | ps(1) Py | ps(1) P
0.01 | 23.8% 100.0% | 40.5% 100.0%
0.4 |40.5% 100.0% | 40.5% 100.0%
1.0 | 35.7% 100.0% | 45.2% 100.0%
1.5 | 11.9% 100.0% | 14.3% 100.0%
1.9 0.0% 100.0% | 0.0% 100.0%
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6 Conclusions

This paper reports on the implementation of the relaxation algorithm ERA
for solving (LF P) which combines different step size iterations with ECAM.
It is clear that the main computational difficulty to solve semi-infinite feasi-
bility problems comes from the non-convex optimization problems that must
be solved efficiently at each iteration. An innovation of this paper consists
of tackling these hard global optimization subproblems with the so-called
Cutting Angle Method, an efficient global optimization procedure for solv-
ing Lipschitz programming problems. Two variants of ERA with fixed and
random step sizes, FISRA and RASRA, have been implemented in C++ and
run on Visual Studio 2013.

The preliminary numerical considerations are as follows. From the sum-
mary results of Tables 2 and 3, we can conclude that, in general, the number
of iterations needed to attain a solution of (LF'P) is lower for RASRA than
for FISRA. Tables 4 and 5 (and Figures 4 and 5) show the probability of win
of each implementation over the rest and the probability of success in solving
a problem. As we can see in Table 2, FISRA with constant A, = 2.0 fails in
solving six of the instances (i.e., it only solves the 85.7% of the instances).
So, we can deduce that the random election of A, is a more stable procedure
in the sense that it solves the 100% of the instances. Nevertheless, when we
consider the best case for RASRA, i.e. v = 0.4, and the best case for FISRA,
ie., A\, = 1.2, then FISRA uses less iterations than RASRA (observe that
the best fixed step size for FISRA, A\, = 1.2, is the middle point of the best
interval [0.4, 2] for the random variable A, in RASRA). Indeed, by using the
corresponding performance profiles to compare the best cases, FISRA with
Ar = 1.2 and RASRA with v = 0.4 we obtain that the probability of win
for fixed value of A, = 1.2 is 95.1% and the probability of win for v = 0.4 is
24.4%.

The results obtained in the reported experiments are promising enough
to suggest that suitable implementations of RASRA, which combines a re-
laxation method that uses random election of A, together ECAM, could out-
perform FISRA for solving semi-infinite feasibility problems. In particular,
the above empirical observations suggest to replace the uniform distribution
of RASRA used in this paper with unimodal symmetric distributions on in-
tervals of the form [1.2 — ¢, 1.2 4 ¢], for small values of € > 0. This could be
object of further empirical studies.

28



QO ~J oy U b WN

Appendix: Extended Cutting Angle Method

The Extended Cutting Angle Method (ECAM in short) due to Beliakov
solves very hard optimization problems of the form

inf{f(z):2 e X}, (19)

where f is Lipschitz continuous and X is a polytope. For simplicity, we as-
sume that dim X = n. Since any full dimensional polytope can be expressed
as the finite union of non-overlapping simplices, X will be a simplex in this
appendix.

In ECAM the objective function is optimized by building a sequence of
piecewise linear underestimates. ECAM is inspired in the classical Cutting
Plane method by Kelley [35] and Cheney and Golstein [17] to solve linearly
constrained convex programs of the form (3), where X is the solution set
of a given linear system and f : R” — R is convex. Since f is lower semi-
continuous, it is the upper envelope of the set of all its affine minorants, i.e.

f=sup {h : h affine function, h < f}. (20)

Indeed, it is enough to consider in (20) the affine functions of the form h(x) =
f(z)+ (u,x — z), where u € Of (z), the graph of h being a hyperplane which
supports the epigraph of f at (z, f(z)). Let z!,...,2%¥ € X be given and
consider the affine functions h/(z) = f(2?) + (v, x — 27), for some v/ €
Of (z7), 7 =1,...,k. The function

fii= o, 2y

is a convex piecewise affine underestimate of the objective function f, in
other words, a polyhedral convex minorant of f. The k-th iteration of the
Cutting Plane method consists of computing an optimal solution z**! of the
approximating problem inf { fi(x) : € X'} which results of replacing f with
fx in (3) or, equivalently, solving the linear programming problem in R™*!

inf {zp11 0 € X, 2001 > W (x),j=1,....k}, (22)
where z = (1, ...,x,) . Then the next underestimate of f,

fk+1 := Inax {fkv hk+1} ) (23)
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is a more accurate approximation to f, and the method iterates.

The Generalized Cutting Plane method for (3), where f : R* — R is
now a non-convex function while X = {z € R% : 1" | ; = 1} is the unit
simplex, follows the same script, except that the underestimate f; is built
using the so-called H-subgradients (see [36]) instead of ordinary subgradients,
so that minimizing f; on S is no longer a convex problem. The Cutting
Angle method ([3],[4]), of which ECAM is a variant, is an efficient numerical
method for minimizing the underestimates when f belongs to certain class
of abstract convex functions. Assume that f is Lipschitz continuous with
Lipschitz constant M > 0 and take a scalar v > M. Let z',...,2" € S be
given. For j = 1,..., k, we define the support vector I € R" by

lj-:@—xﬂf i=1,....n, (24)

it [

v

and the support function h’ by

W)= min (f(a) = (o] —2) = min Al +z). (25)

----------

Since the functions i/ are concave piecewise affine underestimates of f (i.e.
polyhedral concave minorants of f), the underestimate f; defined in (21) is
now a saw-tooth underestimate of f and its minimization becomes a hard
problem as (22) is no longer a linear program. ECAM locates the set V* of all
local minima of the function f, which, after sorting, yields the set of global
minima of f; (see [9] and [10] for additional information). A global minimum
2**1 of f, is aggregated to the set {xl, e xk} and the method iterates with
Jr41 = max {fka hk“}-

As shown in [9, 10], a necessary and sufficient condition for a point z* €
ri X to be a local minimizer of f; given by (25),(21) is that there exist an
index set J = {kq, ka, ..., k,i1}, such that

d = fi(z") = y(IF" + 7)) =v(152 + 23) = ... = ([ + ahyy),
and Vi € {1,...,n+ 1},
(lfi +z}) < (lfl +x;),j # 1.

Let z* be a local minimizer of fj, which corresponds to some index set
J satisfying the above conditions. Form the ordered combination of the
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support vectors L = {{¥ [*2 . . [k»+1} that corresponds to J. It is helpful
to represent this combination with a matrix L whose rows are the support
vectors [Fi:

Y
A 1k2
L= |+ 2 oy (26)
Fosr ok
R A A
7,) .
so that its components are given by L;; = G xkl

Y
Let the support vectors ¥,k = 1,..., K be deﬁned as in (24). Let z*

denote a local minimizer of fj, and d = fk( *). Then the matrix (26) corre-
sponding to z* enjoys the following properties (see [10]):

1) Vi,je{l,...on+1}i#j: 07>

2) Vr g {kiky. . kpaydie{l,... on+1}:Ly=1">1,
3) d= 15 (Trace(L) + 1), and
4) :——l’“ i=1,...,n+1.

Property 1 reads that the diagonal elements of the matrix L are dominated
by their respective columns, and Property 2 reads that no support vector ("
(which is not part of L) strictly dominates the diagonal of L. The approach
taken in [8, 9] is to enumerate all combinations L with the Properties 1-2,
which will give the positions of local minima z* and their values d by using
Properties 3-4.

From (23), combinations of L-matrices can be built incrementally, by
taking initially the first n + 1 support vectors (which yields the unique com-
bination L = {{*,1?,...,"™}), and then adding one new support vector at a
time. Suppose, we have already identified the local minima of fy, i.e., all the
required combinations. When we add another support vector I**1, we can
inherit most of the local minima of f;,; (a few will be lost since Property 2
may fail with (1 playing the role of I"), and we only need to add a few new
local minima, that are new combinations necessarily involving [**'. These
new combinations are simple modifications of those combinations because
Property 2 fails with [ = (¥

When ECAM is applied for solving the global optimization subproblem
(4) at step r of ERA, the procedure finishes when fy.s; —d* > /3 so, a $-global
optimal solution is obtained.
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Remark 13 Notice that the transformation of variables
1) Zi=xi—ag,i=1,...,n,d=> " (bj—a;) withz; >0 and >} T; <d
2) zi =% 0i=1....n, 241 =D 1 %,
allows us to replace the program
min{ f(z) : x € [a,b]}
by the following one:

min{g(Zh" '7zn+1) : (Z17" '7zn+1) € X}J

where S denotes the unit simplex in R™*L,

Appendix: Performance profiles

In this paper we compare, on the one hand, 8 implementations of the classical
fixed step relaxation algorithm corresponding to 8 choices of A on a battery of
27 feasibility problems and, on the other hand, 5 implementations of the new
relaxation algorithm with variable step size corresponding to 5 choices of v
on the same set of test problems. Denote by S the set of implementations to
be compared, so that the cardinality of S, denoted by size S is 8 and 5 for the
classic and for the new relaxation algorithms, respectively. Denote also by
P the set of test feasibility problems, with size P = 27 for both algorithms.

The notion of performance profile [20] allows us to compare the perfor-
mance of the implementations from S on P. For each pair (p,s) € P x S we
define

fp,s 7= number of function evaluations required to solve problem p by solver

Consider a fixed problem p € P. The performance of a solver s € S able to
solve p is compared with the best performance of any solver of S on the same
problem through the performance ratio

Jp.s

= — > 1.
e min{f,s: s€S} —
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Obviously, 7, s = 1 means that s is a winner for p, as it is at least as good, for
solving p, as any other solver of S. For any solver s unable to solve problem
p we define 7, ; = rar, where 1), denotes an arbitrary scalar such that

ry > max {r,s: ssolves p, (p,s) € P xS}.

The evaluation of the overall performance of s € S is based on the stepwise
non-decreasing function p, : R, — [0, 1], called performance profile of s,
defined as follows:

size{p e P: 1, <t}
sizeP

ps(t) = , t>0.
Obviously, ps(t) = 0 for all t € [0,1] and ps(1) is the relative frequency
(which could be interpreted as a probability when p is taken at random from
P) of wins of solver s over the rest of the solvers. We say in brief that p,(1)
is the probability of win for s.

Analogously, for ¢ > 1, p4(t) represents the probability for solver s € S
that a performance ratio r, s is within a factor ¢ € R of the best possible ratio,
so that ps can be interpreted as a distribution function and the number

=1 t
I t\%ps()

as the probability of solving a problem of P with s € S.
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