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Abstract. In this paper we give cotangent models for integrable sys-
tems in symplectic and b-symplectic manifolds. The proof of the exis-
tence of such (semilocal) models boils down to the corresponding action-
angle coordinate theorems in these settings. The theorem of Liouville-
Mineur-Arnold establishes the existence of action-angle coordinates in a
neighbourhood of a Liouville torus [A74] of a symplectic manifold. An
action-angle theorem for a class of Poisson manifolds called b-symplectic
manifolds was proven in [KMS16]. This viewpoint of cotangent models
provides a new machinery to produce examples of integrable systems
on b-symplectic manifolds and revisit known examples. At the end of
the paper we introduce non-degenerate singularities as lifted cotangent
models on b-symplectic manifolds.

1. Introduction

The action-angle theorem of Liouville-Mineur-Arnold ([A74], [D80]) can
be reformulated as a symplectic equivalence in a neighbourhood of a Liouville
torus to an integrable system determined by the cotangent lift of the actions
by translations on the Liouville torus. Having such a cotangent lift model for
integrable systems is useful to produce examples as lifts of abelian actions
on the base. The Hamiltonian nature of the lifted action is automatic (see
[GS90]) and the fact that the action on the base is given by an abelian group
automatically yields an integrable system on the total space.

The first result in this paper is a reformulation of the existence of action-
angle coordinates for integrable systems in a symplectic manifold as semilo-
cal equivalence of the system with the model given by the cotangent lift of
the action by rotations on a Liouville torus to the cotangent bundle of this
torus. To our knowledge this point of view is new.

This paper is also devoted to establishing the analogous results in the con-
text of a class of Poisson manifolds called b-Poisson manifolds. b-Symplectic/b-
Poisson manifolds have been the object of study of recent works in Pois-
son Geometry (cf. [GMP11], [GMP12], [GMPS13], [GMW15], [GMPS14],
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[GL14], [GLPR14], [KMS16] and [DKM15]). For these manifolds, such a
reformulation is possible replacing the cotangent bundle by the b-cotangent
bundle and considering the dual Liouville form obtaining what we call the
twisted b-cotangent lift. The equivalence to these models is given by the exis-
tence of action-angle coordinates [KMS16]. This new point of view turns out
to be very fruitful because it provides a handful of examples of b-integrable
systems which was missing in the literature. One of the families of examples
is produced by considering abelian symmetries of affine manifolds and apply-
ing the twisted b-cotangent lift recipe to generate b-integrable systems. This
class of examples brings back reminiscences of the obstructions to the global
existence of action-angle coordinates in the symplectic context studied by
Duistermaat [D80]. We also consider the canonical b-cotangent lift which
can be used to furnish examples of Hamiltonian actions on b-symplectic
manifolds.

Singularities of integrable systems are present in mechanical systems and
they correspond to equilibria of Hamiltonian systems. From a topologi-
cal point of view, an integrable system on a compact manifold must have
singularities. In [E84], [E90], [Mi14], [Mi03], [MZ04] in total analogy with
Liouville-Mineur-Arnold theorem, a symplectic Morse-Bott theory is con-
structed in a neighbourhood of a point of a compact invariant manifold.

In the last section of the paper we present non-degenerate singular inte-
grable systems in the b-symplectic case as twisted b-cotangent lifts of actions
by abelian groups which have fixed points on the base or are non-compact.
This provides several examples with different kinds of singularities (elliptic,
hyperbolic, focus-focus). This last section is an invitation to the study of
singularities of integrable systems on b-symplectic manifolds. We plan to
study normal form theorems for these singularities in b-symplectic mani-
folds as equivalence to the twisted b-cotangent models in the future, thus
readdressing the normal form theory already initiated in [GMP12].

2. Preliminaries

2.1. Integrable systems and action-angle coordinates on symplec-
tic manifolds. Let (M2n, ω) be a symplectic manifold. An integrable
system is given by n functions f1, . . . , fn in involution with respect to the
Poisson bracket associated to the symplectic form ω and which are function-
ally independent on a dense set. Recall that the Poisson bracket associated
to ω is defined via

{f, g} := ω(Xf , Xg), f, g ∈ C∞(M),

where for a function f the vector field Xf is the Hamiltonian vector field
of f defined by ιXf

ω = −df .
The expression integrable refers to integrability of the system of differ-

ential equations associated to a function H which can be chosen as one of
the commuting functions: Integrability of the system in the sense described
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above (also called Liouville integrability) is related to actual integration of
the system by quadratures [L1855].

The local structure of a symplectic manifold is described by the Darboux
theorem. In the context of integrable systems the Darboux-Carathéodory
theorem states that we can find a special Darboux chart in which half the
coordinate functions are the integrals of the system (locally around a point
where the integrals are independent).

The theorem of Liouville-Mineur-Arnold goes one step further and estab-
lishes a semi-local result in a neighbourhood of a compact level set (“Liouville
torus”) of the integrable system:

Theorem 1. (Liouville-Mineur-Arnold Theorem)
Let (M2n, ω) be a symplectic manifold. Let F = (f1, . . . , fn) be an n-tuple

of functions on M which are functionally independent (i.e. df1∧· · ·∧dfn 6= 0)
on a dense set and which are pairwise in involution. Assume that m is a
regular point1 of F and that the level set of F through m, which we denote
by Fm, is compact and connected.

Then Fm is a torus and on a neighborhood U of Fm there exist R-valued
smooth functions (p1, . . . , pn) and R/Z-valued smooth functions (θ1, . . . , θn)
such that:

(1) The functions (θ1, . . . , θn, p1, . . . , pn) define a diffeomorphism U '
Tn ×Bn.

(2) The symplectic structure can be written in terms of these coordinates
as

ω =
n∑
i=1

dθi ∧ dpi.

(3) The leaves of the surjective submersion F = (f1, . . . , fs) are given
by the projection onto the second component Tn×Bn, in particular,
the functions f1, . . . , fs depend only on p1, . . . , pn.

The coordinates pi are called action coordinates; the coordinates θi are called
angle coordinates.

Remark 2. In physics, usually one of the integrals fi of Theorem 1 is the
energy H, e.g. f1 = H, and motion is given by the flow of the Hamiltonian
vector field of H. Statement (3) in Theorem 1 implies that H is constant
along the level sets of the functions fi. Moreover, since dfi(XH) = {fi, H} =
0, the vector field XH is tangent to the level sets. More precisely, in the
action-angle coordinate chart, the flow of XH is linear on the invariant tori.

Many important examples of dynamical systems in physics are integrable.
A first class of examples is given by any 2-dimensional Hamiltonian system
with dH 6= 0 on a dense set, e.g. the mathematical pendulum. Other
examples are,

1i.e. the differentials dfi are independent at m.
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Example 3. The two-body problem: A system consisting of two bodies which
interact through a potential V that depends only on their distance, i.e. the
system with configuration space R3×R3 and Hamiltonian H(q1, q2, p1, p2) =
p1

2m1
+ p2

2m2
+ V (|q1 − q2|) is integrable with first integrals the energy H, the

total momentum p1 + p2 and the total angular momentum q1× p1 + q2× p2.
The case where V is the gravitational potential is the well-known Kepler
problem; in physical examples the two bodies can e.g. be a satellite and a
planet, a planet and a star etc.

Example 4. N bodies in a central force field: The above example can be
reduced to the problem of a single body in a central force field via appropriate
changes of coordinates. More generally, we can consider the problem of
N ≥ 1 bodies under the influence of a central force, e.g. the motion of
planets in the gravitational field of the sun. If we neglect any interaction
between the bodies, this is an integrable system as well. In contrast, the
classical N body problem, where mutual interaction between all bodies is
allowed, is not integrable for N ≥ 3, as was shown in 1887 by H. Bruns2.

Example 5. A rigid body fixed at its centre of gravity in a constant gravi-
tational field: The system of a rigid body fixed at a point has configuration
space SO(3). Therefore, in addition to energy, one more constant of motion
is needed to obtain integrability. If the fixed point is the centre of gravity,
then such an integral is given by ‖M‖, the norm of the total angular mo-
mentum. Instead of assuming that the fixed point is the centre of gravity,
other (non-trivial) conditions can be given which guarantee integrability. A
list of these cases is given in [A99].

2.2. Background on b-symplectic geometry. In [GMP11] and [GMP12]
the concept of b-symplectic manifolds is introduced and studied. These man-
ifolds are symplectic away from a hypersurface Z; along Z the symplectic
form has a certain controlled singularity. We first want to describe this
singularity from the Poisson viewpoint:
b-Poisson manifolds. A symplectic structure ω, which is a section of

∧2 T ∗M

induces a ”dual” bivector field Π, i.e. a section of
∧2 TM :

Π(df, dg) := ω(Xf , Xg) = {f, g}, f, g ∈ C∞(M).

It can be shown that the bivector field Π associated to a symplectic form
satisfies the Jacobi identity, which means that it is a Poisson bivector field.
Now consider the case where we start with a symplectic form on M\Z whose
dual Poisson structure vanishes along Z in the following controlled way:

Definition 6. Let (M2n,Π) be an oriented Poisson manifold. If the map

p ∈M 7→ (Π(p))n ∈
2n∧

(TM)

2Bruns indeed showed it is not algebraically integrable.
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is transverse to the zero section, then Π is called a b-Poisson structure
on M . The hypersurface Z = {p ∈ M |(Π(p))n = 0} is the critical hyper-
surface of Π. The pair (M,Π) is called a b-Poisson manifold.

We want to develop a concept that allows us to extend the symplectic
structure from M\Z to the whole manifold M . This singular form will be
called a ”b-symplectic” form on M

Definition 7. A b-manifold is a pair (MN , Z) of an oriented manifold M
and an oriented hypersurface Z ⊂ M . A b-vector field on a b-manifold
(M,Z) is a vector field which is tangent to Z at every point p ∈ Z.

If x is a local defining function for Z on some open set U ⊂ M and
(x, y1, . . . , yN−1) is a chart on U , then the set of b-vector fields on U is a
free C∞(M)-module with basis

(x
∂

∂x
,
∂

∂y1
, . . . ,

∂

∂yN
).

We call the vector bundle associated to this locally free C∞(M)-module the
b-tangent bundle and denote it bTM .

We define the b-cotangent bundle bT ∗M of M to be the vector bundle
dual to bTM .

Given a defining function f for Z, let µ ∈ Ω1(M \Z) be the one-form df
f .

If v is a b-vector field then the pairing 〈v, µ〉 ∈ C∞(M \Z) extends smoothly
over Z and hence µ itself extends smoothly over Z as a section of bT ∗M .
For ease of notation, we will write µ = df

f , even though the expression on

the right hand side is not well-defined at points in Z.
For each k > 0, let bΩk(M) denote the space of b-de Rham k-forms,

i.e., sections of the vector bundle Λk(bT ∗M). The usual space of de Rham
k-forms sits inside this space in a natural way; for f a defining function of
Z every b-de Rham k-form can be written as

ω = α ∧ df
f

+ β, with α ∈ Ωk−1(M) and β ∈ Ωk(M). (1)

The decomposition (1) enables us to extend the exterior d operator to
bΩ(M) by setting

dω = dα ∧ df
f

+ dβ.

The right hand side is well defined and agrees with the usual exterior d oper-
ator on M\Z and also extends smoothly over M as a section of Λk+1(bT ∗M).
Note that d2 = 0, which allows us to define the complex of b-forms, the b-de
Rham complex.

In order for this complex to admit a Poincaré lemma, it is convenient
to enlarge the set of smooth functions and consider the set of b-functions
bC∞(M), which consists of functions with values in R ∪ {∞} of the form

c log|f |+ g,
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where c ∈ R, f is a defining function for Z, and g is a smooth function. For
ease of notation, from now on we identify R with the completion R ∪ {∞}.

We define the differential operator d on this space in the obvious way:

d(c log|f |+ g) :=
c df

f
+ dg ∈ bΩ1(M),

where dg is the standard de Rham derivative.
Moreover, we define the Lie derivative of b-forms via the Cartan for-

mula:

LXω = ιX(dω) + d(ιXω) ∈b Ωk(M), (2)

where ω ∈b Ωk(M) and X is a b-vector field.

2.2.1. b-symplectic manifolds. Instead of working with b-Poisson structures
we can dualize them and work with b-forms. In that sense, a b-symplectic
form is just a symplectic form modeled over a different Lie algebroid (the
b-cotangent bundle instead of the cotangent bundle):

Definition 8. Let (M2n, Z) be a b-manifold and ω ∈ bΩ2(M) a closed b-
form. We say that ω is b-symplectic if ωp is of maximal rank as an element

of Λ2( bT ∗pM) for all p ∈M .

Definition 9 (b-Hamiltonian vector field). Let (M,ω) be a b-symplectic
manifold. Given a b-function H ∈bC∞(M) we denote by XH the (smooth)
vector field satisfying

ιXH
ω = −dH.

Obviously, the flow of a b-Hamiltonian vector field preserves the b-symplectic
form and hence the Poisson structure, so b-Hamiltonian vector fields are in
particular Poisson vector fields.

The classical Darboux theorem for symplectic manifolds has its analogue
in the b-symplectic case ([GMP12]):

Theorem 10 (b-Darboux theorem). Let (M,Z, ω) be a b-symplectic man-
ifold. Then, on a neighborhood of a point p ∈ Z, there exist coordinates
(x1, y1, . . . , xn−1, yn−1, z, t) centered at p such that

ω =
n−1∑
i=1

dxi ∧ dyi +
1

z
dz ∧ dt.

Remark 11. As is clear from the proof of the b-Darboux theorem in [GMP12],
we can specify a particular local defining function z of the critical hypersur-
face aroundm and complete it to a coordinate system (x1, y1, . . . xn−1, yn−1, z, t)
such that the above holds.
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2.2.2. The topology and geometry of Z. For the rest of this paper we will
also assume that Z is compact. For a given volume form Ω on a Poisson
manifold M the associated modular vector field uΩ

mod is defined as the
following derivation:

C∞(M)→ R : f 7→
LXf

Ω

Ω
.

It can be shown (see for instance [We97]) that this is indeed a derivation
and, moreover, a Poisson vector field. Furthermore, for different choices
of volume form Ω, the resulting vector fields only differ by a Hamiltonian
vector field.

The topology of the exceptional hypersurface Z of a b-symplectic structure
has been studied in [GMP11] and [GMP12]. In [GMP11] it was shown that
if Z is compact and connected, then it is the mapping torus of any of its
symplectic leaves L by the flow of any choice of modular vector field u:

Z = (L × [0, k])/(x,0)∼(φ(x),k),

where k is a certain positive real number and φ is the time-k flow of u. In
particular, all the symplectic leaves inside Z are symplectomorphic.

In the transverse direction to the symplectic leaves, all the modular vector
fields flow with the same speed. This allows the following definition:

Definition 12 (Modular period). Taking any modular vector field uΩ
mod, the

modular period of Z is the number k such that Z is the mapping torus

Z = (L × [0, k])/(x,0)∼(φ(x),k),

and the time-t flow of uΩ
mod is translation by t in the [0, k] factor above.

2.3. Hamiltonian Tn-actions on b-symplectic manifolds. Hamiltonian
Tn-actions will play a key role in the definition of the cotangent model for
b-symplectic manifolds. These actions were studied in [GMPS14]. We recall
the definitions and results:

Definition 13. An action of Tr on a b-symplectic manifold (M2n, ω) is
Hamiltonian if for all X,Y ∈ t:

• the b-one-form ιX#ω is exact;
• ω(X#, Y #) = 0.

Here, t denotes the Lie algebra of Tr and X# is the fundamental vector
field of X. The primitive of the exact b-one-form ιX#ω is defined via the
moment map µ : M → t∗:

ιX#ω|p = d〈µ(p), X〉.

In other words, X# is the b-Hamiltonian vector field of −〈µ(p), X〉.
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2.3.1. Modular weights. When a b-function f ∈ C∞(M) is expressed as
c log |y| + g locally near some point of a component Z ′ of Z, the number
cZ′(f) := c ∈ R is uniquely determined by f , even though the functions y
and g are not.

Definition 14 (Modular weight). Given a Hamiltonian Tr-action on a b-
symplectic manifold, the modular weight of a connected component Z ′ of
Z is the map

vZ′ : t→ R
given by vZ′(X) = cZ′(HX). This map is linear and therefore we can regard
it as an element of the dual of the Lie algebra vZ′ ∈ t∗. We denote the kernel
of vZ′ by tZ′ ⊂ t.

2.4. b-integrable systems. In [KMS16] we introduced a definition of in-
tegrable systems for b-symplectic manifolds, where we allow the integrals to
be b-functions. Such a “b-integrable system” on a 2n-dimensional manifold
consists of n integrals, just as in the symplectic case. More precisely we
have the following

Definition 15 (b-integrable system). A b-integrable system on a 2n-
dimensional b-symplectic manifold (M2n, ω) is a set of n pairwise Poisson
commuting b-functions F = (f1, . . . , fn−1, fn) (i.e, {fi, fj} = 0), satisfying,

df1 ∧ · · · ∧ dfn is nonzero as a section of ∧n(bT ∗(M)) on a dense subset of
M and on a dense subset of Z. We say that a point in M is regular if the
vector fields Xf1 , . . . , Xfn are linearly independent (as smooth vector fields)
at it.

Notice that if a point on Z is regular, then at least one of the fi must be
non-smooth there.

On the set of regular points, the distribution given by Xf1 , . . . , Xfn defines
a foliation F . We denote the integral manifold through a regular point
m ∈ M by Fm. If Fm is compact, then it is an n-dimensional torus (also
referred to as “(standard) Liouville torus”). Because the Xfi are b-vector
fields and are therefore tangent to Z, any Liouville torus that intersects
Z actually lies inside Z. Two (b-)integrable systems F and F ′ are called
equivalent if there is a map µ : Rn ⊃ F (M) → Rn taking one system to
the other: F ′ = µ◦F . We will not distinguish between equivalent integrable
systems.

Remark 16. Near a regular point of Z, a b-integrable system on a b-symplectic
manifold is equivalent to one of the type F = (f1, . . . , fn−1, fn), where
f1, . . . , fn−1 are C∞ functions and fn is a b-function. In fact, we may always
assume that fn = c log |t|, where c ∈ R and t is a global defining function
for Z.

In analogy to the Liouville-Mineur-Arnold theorem, we have the following
action-angle coordinates theorem for b-integrable systems [KMS16]:
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Theorem 17 (Action-angle coordinates for b-integrable systems). Let

(M,ω, F = (f1, . . . , fn−1, fn = log |t|))
be a b-integrable system, and let m ∈ Z be a regular point for which the
integral manifold containing m is compact, i.e. a Liouville torus Fm. Then
there exists an open neighborhood U of the torus Fm and coordinates

(θ1, . . . , θn, p1, . . . , pn) : U → Tn ×Bn

such that

ω|U =
n−1∑
i=1

dθi ∧ dpi +
c

pn
dθn ∧ dpn, (3)

where the coordinates p1, . . . , pn depend only on F and the number c is the
modular period of the component of Z containing m.

3. Cotangent models for integrable systems

3.1. General facts about cotangent lifts. Let G be a Lie group and let
M be any smooth manifold. Given a group action ρ : G ×M −→ M , we
define its cotangent lift as the action on T ∗M given by ρ̂g := ρ∗g−1 where

g ∈ G. We then have a commuting diagram

T ∗M T ∗M

M M

//
ρ̂g

��

π

��

π

//
ρg

(4)

where π is the canonical projection from T ∗M to M .
The cotangent bundle T ∗M is a symplectic manifold endowed with the

symplectic form ω = −dλ, where λ is the Liouville one-form. The latter can
be defined intrinsically:

〈λp, v〉 := 〈p, (πp)∗(v)〉 (5)

with v ∈ T (T ∗M), p ∈ T ∗M .
A straightforward argument [GS90] shows that the cotangent lift ρ̂ is

Hamiltonian with moment map µ : T ∗M → g∗ given by

〈µ(p), X〉 := 〈λp, X#|p〉 = 〈p,X#|π(p)〉,
where p ∈ T ∗M , X is an element of the Lie algebra g and we use the same
symbol X# to denote the fundamental vector field of X generated by the
action on T ∗M or M .

An easy computation shows that the Liouville one-form is invariant under
the action, i.e. ρ̂∗gλ = λ. It is known that invariance of λ implies equivariance
of the moment map µ, meaning that

µ ◦ ρ̂g = Ad∗g−1 ◦ µ.
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A consequence is that the moment map is Poisson (cf. Proposition 7.1 in
[CW99]).

To distinguish the construction of this section from other types of cotan-
gent lifts that we will define later on, we will also refer to it as the sym-
plectic cotangent lift.

3.2. Symplectic cotangent lift of translations on the torus. In the
special case where the manifold M is a torus Tn and the group is Tn acting
by translations, we obtain the following explicit structure: Let θ1, . . . , θn be
the standard (S1-valued) coordinates on Tn and let

θ1, . . . , θn︸ ︷︷ ︸
=:θ

, a1, . . . , an︸ ︷︷ ︸
:=a

(6)

be the corresponding chart on T ∗Tn, i.e. we associate to the coordinates (6)
the cotangent vector

∑
i aidθi ∈ T ∗θ Tn. The Liouville one-form, which we

defined intrinsically above, is given in these coordinates by

λ =
n∑
i=1

aidθi

and its negative differential is the standard symplectic form on T ∗Tn:

ωcan =
n∑
i=1

dθi ∧ dai.

We denote by τβ the translation by β ∈ Tn on Tn; its lift to T ∗Tn is given
by

τ̂β : (θ, a) 7→ (θ + β, a).

The moment map µcan : T ∗Tn → t∗ of the lifted action with respect to the
canonical symplectic form is

µcan(θ, a) =
∑
i

aidθi,

where the θi on the right hand side are understood as elements of t∗ in
the obvious way. Even simpler, if we identify t∗ with Rn by choosing the
standard basis ∂

∂θ1
, . . . , ∂

∂θn
of t then the moment map is just the projection

onto the second component of T ∗Tn ∼= Tn×Rn. We will adopt this viewpoint
from now on. Note that the components of µ naturally define an integrable
system on T ∗Tn.

3.3. b-Cotangent lifts of Tn. As before, let T ∗Tn be endowed with the
standard coordinates (θ, a), θ ∈ Tn, a ∈ Rn and consider again the action
on T ∗Tn induced by lifting translations of the torus Tn.

We now want to view this action as a b-Hamiltonian action with respect to
a suitable b-symplectic form. In analogy to the classical Liouville one-form
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we define the following non-smooth one-form away from the hypersurface
Z = {a1 = 0} :

c log |a1|dθ1 +
n∑
i=2

aidθi.

The negative differential of this form extends to a b-symplectic form on
T ∗Tn, which we call the twisted b-symplectic form on T ∗Tn (we will
explain the terminology below):

ωtw,c :=
c

a1
dθ1 ∧ da1 +

n∑
i=2

dθi ∧ dai. (7)

The moment map of the lifted action with respect to this b-symplectic form
is then given by

µtw,c := (c log |a1|, a2, . . . , an),

where we identify t∗ with Rn as before.
We call this lift together with the b-symplectic form (7) the twisted

b-cotangent lift with modular period c. Note that, in analogy to the
symplectic case, the components of the moment map define a b-integrable
system on (T ∗Tn, ωtw,c).

Remark 18. We use the term “twisted b-symplectic form” to distinguish our
construction from the canonical b-symplectic form on bT ∗M , where M is
any smooth manifold. The latter is obtained naturally if we use the intrinsic
definition of the Liouville one-form (5) in the b-setting (see e.g. [NT96]).
More precisely, for M a b-manifold, we define a b-form λ on bT ∗M via

〈λp, v〉 := 〈p, (πp)∗(v)〉, (8)

where v ∈b T (bT ∗M) and p ∈b T ∗M . The negative differential

ω = −dλ
is the canonical b-symplectic form on bT ∗M . Here, we view bT ∗M as a
b-manifold with hypersurface π−1(Z) where

π : bT ∗M →M

is the canonical projection. Choosing a local set of coordinates x1, . . . , xn
on M , where x1 is a defining function for Z we have a corresponding chart

(x1, . . . , xn, p1, . . . , pn)

on T ∗M , given by identifying the 2n-tuple above with the b-cotangent vector

p1
dx1

x1
+

n∑
i=2

pidxi ∈b T ∗xM.

In these coordinates

λ = p1
dx1

x1
+

n∑
i=2

pidxi ∈bT ∗(bT ∗M).
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Note that the singularity here is given by the coordinate x1 on the base
manifold whereas in our “twisted” construction it is given by a fiber coor-
dinate, which is what we require for the description of b-integrable systems.

3.4. Models. With the notation introduced above we define the following
models of integrable systems, which we will use below to give a semilocal
description of integrable and b-integrable systems. We write an integrable
system as a triple (M,ω, F ) where M is a manifold, ω a (b-)symplectic form
and F the set of integrals.

(a) (T ∗Tn)can := (T ∗Tn, ωcan, µcan)
(b) (T ∗Tn)tw,c := (T ∗Tn, ωtw,c, µtw,c)

We say that two (b-)integrable systems (M1, ω1, F1) and (M2, ω2, F2) are
equivalent if there exists a Poisson diffeomorphism ψ and a map ϕ : Rs →
Rs such that we have a commuting diagram:

(M1, ω1) (M2, ω2)

Rs

//
ψ

$$

F1
��

ϕ◦F2

4. Description of (b-)integrable systems in terms of cotangent
models

4.1. Symplectic case. We restate the Liouville-Mineur-Arnold theorem
(Theorem 1) in terms of the symplectic cotangent model:

Theorem 19. Let F = (f1, . . . , fn) be an integrable system on the sym-
plectic manifold (M,ω). Then semilocally around a regular Liouville torus
the system is equivalent to the cotangent model (T ∗Tn)can restricted to a
neighborhood of the zero section (T ∗Tn)0 of T ∗Tn.

Proof. Let T be a regular Liouville torus of the system. The action-angle
coordinate theorem (Theorem 1) implies that there exists a neighborhood
U of T and a symplectomorphism

ψ : U → (Tn ×Bn, ωcan)

such that the “action coordinates”, i.e. the projections onto Bn, depend
only on the integrals f1, . . . , fn, hence their composition with ψ yields an
equivalent integrable system on U . We know that the projections onto
Bn correspond to the moment map µcan of the cotangent lifted action on
T ∗Tn ∼= Tn×Rn (restricted to Tn×Bn and understood with respect to the
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canonical basis on t∗), hence we can write

U (T ∗Tn, ωcan)

Rn

//
ψ

$$
F

��

ϕ◦µ

where ϕ is the map that establishes the dependence of the action coordinates
on f1, . . . , fn. �

4.2. b-symplectic case. The model of twisted b-cotangent lift allows us to
express the action-angle coordinate theorem for b-integrable systems in the
following way:

Theorem 20. Let F = (f1, . . . , fn) be a b-integrable system on the b-
symplectic manifold (M,ω). Then semilocally around a regular Liouville
torus T , which lies inside the exceptional hypersurface Z of M , the system
is equivalent to the cotangent model (T ∗Tn)tw,c restricted to a neighborhood
of (T ∗Tn)0. Here c is the modular period of the connected component of Z
containing T .

Proof. The proof is the same as above using the action-angle coordinate
theorem for b-integrable systems (Theorem 17): Around the Liouville torus
T we have a Poisson diffeomorphism

ψ : U → Tn ×Bn

taking the b-symplectic form on U to

n−1∑
i=1

dθi ∧ dpi +
c

pn
dθn ∧ dpn,

where (θ1, . . . , θn, p1, . . . , pn) are the standard coordinates on Tn ×Bn, and
such that p1, . . . , pn only depend on the integrals. Hence in the language of
Section 3.3 we have a commuting diagram

U (T ∗Tn, ωtw,c)

Rn

//
ψ

$$
F

��

ϕ◦µtw,c

�

4.3. b-Cotangent lifts in the general setting. Above we focused on the
case where the manifold M is a torus and the action is by rotations of the
torus on itself, since this is the model that describes (b-)integrable systems
semilocally around a Liouville torus.
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To obtain a wider class of examples, we now consider any manifold M
and the action of any Lie group G on M :

ρ : G×M →M : (g,m) 7→ ρg(m). (9)

As described in Section 3.1 we can lift the action to an action ρ̂ on T ∗M ,
which is Hamiltonian with respect to the standard symplectic structure on
T ∗M . We want to investigate modifications of this construction, which lead
to Hamiltonian actions on b-symplectic manifolds.
Canonical b-cotangent lift. Connecting with Remark 18, assume that M
is an n-dimensional b-manifold with distinguished hypersurface Z. Instead
of T ∗M consider the b-cotangent bundle bT ∗M endowed with the canonical
b-symplectic structure as described in the remark. Moreover, assume that
the action of G on M preserves the hypersurface Z, i.e. ρg is a b-map for

all g ∈ G. Then the lift of ρ to an action on bT ∗M is well-defined:

ρ̂ : G×bT ∗M →bT ∗M : (g, p) 7→ ρ∗g−1(p).

We call this action on bT ∗M , endowed with the canonical b-symplectic struc-
ture, the canonical b-cotangent lift.

Proposition 21. The canonical b-cotangent lift is Hamiltonian with equi-
variant moment map given by

µ : bT ∗M → g∗, 〈µ(p), X〉 := 〈λp, X#|p〉 = 〈p,X#|π(p)〉, (10)

where p ∈ bT ∗M , X ∈ g, X# is the fundamental vector field of X under
the action on bT ∗M and the function 〈λ,X#〉 is smooth because X# is a
b-vector field.

Proof. The proof of Equation (10) for the moment map is exactly the same
as in the symplectic case: Using the implicit definition of λ, Equation (8),
we show that λ is invariant under the action:

〈(ρ̂∗gλ)p, v〉 = 〈λρ̂g(p), (ρ̂g)∗v〉 = 〈ρ̂g(p), (πρ̂g(p))∗((ρ̂g)∗v)〉 =

= 〈ρ∗g−1(p), (ρg−1)∗((πp)∗(v))〉 = 〈p, (πp)∗(v)〉.
In going from the first to the second line we have used the definition of ρ̂
and applied the chain rule to πρ̂g(p) ◦ ρ̂g = ρg−1 ◦ πp.

Hence we have LX#λ = 0 and applying the Cartan formula for b-symplectic
forms, Equation (2), we obtain

ιX#ωp = −ιX#dλp = d(ιX#λp),

which proves the expression for the moment map stated above.
Equivariance of µ is a consequence of the invariance of λ:

〈(Ad∗g−1 ◦ µ)(p), X〉 = 〈µ(p), Adg−1X〉 = 〈λp, (Adg−1X)#︸ ︷︷ ︸
=(ρ̂g)∗X#

|p〉 =

= 〈ρ̂∗gλp, X#|ρ̂g−1 (p)〉 = 〈λρ̂g−1 (p), X
#|ρ̂g−1 (p)〉 = 〈µ(ρ̂g−1(p)), X〉
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for all g ∈ G, X ∈ g, p ∈ T ∗M , where in the first equality of the second line
we have used that λ is invariant. �

Remark 22. The condition that the action preserves Z means that all fun-
damental vector fields are tangent to Z and therefore at a point in Z the
maximum number of independent fundamental vector fields is n − 1. This
means that the moment map of such an action never defines a b-integrable
system on bT ∗M since this would require n independent functions.

Twisted b-cotangent lift. We have already defined the twisted b-cotangent
lift on the cotangent space of a torus T ∗Tn in Section 3.3. In particular,
on T ∗S1 with standard coordinates (θ, a) we have the logarithmic Liouville
one-form λtw,c = log |a|dθ for a 6= 0.

Now consider any (n − 1)-dimensional manifold N and let λN be the
standard Liouville one-form on T ∗N . We endow the product T ∗(S1×N) ∼=
T ∗S1×T ∗N with the product structure λ := (λtw,c, λN ) (defined for a 6= 0).
Its negative differential ω = −dλ is a b-symplectic structure with critical
hypersurface given by a = 0.

Let K be a Lie group acting on N and consider the component-wise action
of G := S1 ×K on M := S1 ×N where S1 acts on itself by rotations. We
lift this action to T ∗M as described in the beginning of this section. This
construction, where T ∗M is endowed with the b-symplectic form ω, is called
the twisted b-contangent lift.

If (x1, . . . , xn−1) is a chart on N and (x1, . . . , xn−1, y1, . . . , yn−1) the cor-
responding chart on T ∗N we have the following local expression for λ

λ = log |a|dθ +

n−1∑
i=1

yidxi.

Just as in the symplectic case and in the case of the canonical b-cotangent
lift, this action is Hamiltonian with moment map given by contracting the
fundamental vector fields with λ:

Proposition 23. The twisted b-cotangent lift on M = S1×N is Hamilton-
ian with equivariant moment map µ given by

〈µ(p), X〉 := 〈λp, X#|p〉, (11)

where X# is the fundamental vector field of X under the action on T ∗M .

Proof. As in the proof of Proposition 21, we show that the action preserves
the logarithmic Liouville one-form λ = (λtw,c, λN ). Since the action splits
this amounts to showing invariance of λtw,c under S1; the invariance of λN
under K is the classical symplectic result. The former is easy to see:

(τ̂)∗ϕλtw,c = log |a ◦ τ̂ϕ|d(θ ◦ τ̂ϕ︸ ︷︷ ︸
=θ+ϕ

) = log |a|dθ,

where τ is the action of S1 on itself by rotations and ϕ ∈ S1.
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This shows that LX#λ = 0 and as before we conclude the proof by using
Cartan’s formula.

�

Remark 24. A special case of a manifold S1 × N is a cylinder Tk × Rn−k.
We will use the construction in this case in Section 4.4.2

Remark 25. For computing the moment map it is convenient to observe that
the expression 〈λ,X∗〉 remains unchanged when we replace the fundamental
vector field X∗ of the action on T ∗M by any vector field on T ∗M that
projects to the same vector field on M (namely the fundamental vector field
of the action on M). This follows immediately from the definition of λ.

4.4. Examples of integrable systems on b-symplectic manifolds. As
an application of the models above we can construct examples of (b−)integrable
systems:

Theorem 26. Let M be a smooth manifold of dimension n and let G be
a n-dimensional abelian Lie group acting on M effectively. Pick a basis
X1, . . . , Xn of the Lie algebra of G. Consider the moment map µ : T ∗M →
g∗ of one of the following Hamiltonian actions:

(1) the (symplectic) cotangent lift on T ∗M
(2) the twisted b-cotangent lift on T ∗M , where we assume that M =

S1 ×N and G = S1 ×K for N an n− 1 dimensional manifold and
K a Lie algebra and that the action splits with S1 acting on itself by
rotations.

Then the components of the moment map with respect to the basis Xi define
an (1) integrable resp. (2) b-integrable system on T ∗M .

Proof. Denote the components of the moment map by fi := 〈µ,Xi〉. Effec-
tiveness of the action implies that the fi are linearly independent everywhere.
Moreover, since µ is a Poisson map and the elements Xi commute, we obtain
{fi, fj} = 0.

�

4.4.1. The geodesic flow. A special case of a Tn-action is obtained in the
case of a Riemannian manifold M which is assumed to have the property
that all its geodesics are closed, so-called P-manifolds. Then the geodesics
admit a common period (see e.g. [Be12], Lemma 7.11); hence their flow
induces an S1-action on M and we can use the twisted b-cotangent lift to
obtain a b-Hamiltonian S1-action on T ∗M . The moment map then cor-
responds to a non-commutative b-integrable system on T ∗M , which is a
generalization of the systems studied here and will be explored in a future
work. In dimension two, examples of P-manifolds are Zoll and Tannery sur-
faces (see Chapter 4 in [Be12]). Given an S1-action on such a surface, via
the cotangent lift we immediately obtain examples of (b-)integrable systems
on its cotangent bundle.
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4.4.2. Affine manifolds. A smooth manifold M is called flat if it admits
a flat (i.e. zero curvature) connection. It is called affine if moreover the
connection is torsion-free.

It is well-known that a simply connected flat manifold is parallelizable,
i.e. it admits a basis of vector fields that are everywhere independent. Such
a basis is called parallel. The relation between flatness (in the sense that
the curvature is zero) and parallelizability was studied in [T65]. We are not
assuming that the affine manifold is compact.

Bieberbach [Bi1911] proved in 1911 that any complete affine Riemannian
manifold is a finite quotient of Rk × Tn−k.

Theorem 27. Let M be a cylinder Rk × Tn−k. Then for any choice of
parallel basis X1, . . . Xn, we obtain a (b-)integrable system on T ∗M .

Proof. Let X1, . . . , Xn be a global basis of parallel vector fields. Since the
torsion of the connection is zero and the vector fields Xi are parallel, the
expression ∇XiXj−∇XjXi− [Xi, Xj ] = T∇(Xi, Xj) = 0 yields [Xi, Xj ] = 0.
In other words, the flows of the vector fields commute. Let us denote by
Φ
sj
Xj

the sj-time flow of the vector field Xj . Since the manifold is complete,

the joint flow of the vector fields Xi then defines an Rn-action3,

Φ : Rn ×M →M(
(s1, . . . , sn), (x)

)
7→ Φs1

X1
◦ · · · ◦ Φsn

Xn
((x)).

By the construction defined in Section 4.3 we obtain a (b-)Hamiltonian
action on T ∗M and the components of the moment map of this action define
a (b-)integrable system (Theorem 26). �

Remark 28. We proved the above result only for cylinders Rk×Tn−k. It will
be interesting to explore whether a similar construction is possible for finite
quotients of Rk × Tn−k, which by Bieberbach’s result would correspond to
all complete affine Riemannian manifolds.

Remark 29. Even if this yields examples of b-integrable systems on non-
compact manifolds, we may consider Marsden-Weinstein reduction to ob-
tain compact examples. Reduction in the b-setting is already plotted in
[GMPS13] for abelian groups. The general scheme follows similar guide-
lines.

Remark 30. In [BJ04] the authors use the cotangent lift to T ∗(G/H) to
construct examples of non-commutative integrable systems, this approach
can also be exported to the context of b-symplectic manifolds to obtain
examples of non-commutative integrable systems.

3Depending on the topology of the fiber, this action may descend to a Tn-action or
more generally to a Rk × Tn−k-action.
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5. b-integrable systems with singularities

In this framework we will introduce non-degenerate integrable systems
as twisted b-cotangent lifts of some action. This section is intended as an
invitation to the study of singularities of integrable systems.

5.1. The harmonic oscillator. Let us consider the 2-dimensional har-
monic oscillator, i.e. the coupling of two simple harmonic oscillators. The
configuration space is R2 with standard coordinates x = (x1, x2). The phase
space is T ∗(R2) endowed with symplectic form ω = dx1 ∧ dy1 + dx2 ∧ dy2.
H is the sum of potential and kinetic energy,

H =
1

2
(y2

1 + y2
2) +

1

2
(x2

1 + x2
2)

The level set H = h is a sphere S3. We have rotational symmetry on this
sphere. Thus another first integral is the angular momentum L = x1y2−x2y1

which corresponds to the action by rotations lifted to the cotangent bundle.
Its Hamiltonian vector field isXL = (−x2, x1,−y2, y1). This yieldsXL(H) =

{L,H} = 0 thus proving integrability of the system.
To construct a b-integrable system, we consider S1 × S1 acting on M :=

S1 × R2, where the first S1 component acts on itself by rotations and the
second one acts on R2 by rotations. We lift the action to T ∗M , which we
endow with the twisted b-symplectic form, see Section 4.3. The moment
map with respect to the standard basis of the Lie algebra of S1×S1 is then
given by

T ∗M ∼= S1×R2×R×R2 → R2 : (θ, x1, x2, a, y1, y2) 7→ (log |a|, x1y2−x2y1).

Note that the second component is the angular momentum L. We can
complete these two functions to a b-integrable system by adding the energy
H, i.e. the system is given by (log |a|, L,H).

5.2. Hyperbolic singularities. Consider the group G := S1 × R+ acting
on M := S1 × R in the following way:

(ϕ, g) · (θ, x) := (θ + ϕ, gx),

i.e. on the S1 component we have rotations and on the R component we have
multiplications. Then the Lie algebra basis ( ∂∂θ ,

∂
∂g ) induces the following

fundamental vector fields on M :

X1 :=
∂

∂θ
, X2 := x

∂

∂x
.

As defined in Section 4.3 we consider the twisted b-cotangent lift on T ∗M ,
i.e. the b-symplectic structure ω = −dλ where

λ := log |p|dθ + ydx

and (θ, p, x, y) are the standard coordinates on T ∗M . As we showed in
Proposition 23, the lifted action on T ∗M is b-Hamiltonian with moment
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map given by µ := (f1, f2):

f1 = 〈λ,X#
1 〉 = log |p|,

f2 = 〈λ,X#
2 〉 = xy.

This type of singular b-integrable system is known as hyperbolic singularity.

Definition 31 (b-integrable system with hyperbolic singularity). Let (f1, f2)
be a b-integrable system on a b-symplectic manifold (M,ω). Consider a point
p ∈ M where the system is singular, i.e. the Hamiltonian vector fields Xfi
are not independent there. We say that the singularity is of hyperbolic type
if there is a chart (t, z, x, y) centred at p such that the critical hypersurface
of ω is locally around p given by t = 0 and the integrals are

f1 = c log |t|, f2 = xy.

5.3. Focus-focus singularities. Consider the group G := S1 × R+ × S1

acting on M := S1 × R2 in the following way:

(ϕ, a, α) · (θ, x1, x2) := (θ + ϕ, aRα(x1, x2)),

where Rα is the matrix corresponding to rotation by α in the plane. In other
words, on R2 we have R+ acting by radial contractions/expansions and S1

acting by rotations.
Using the coordinates above, the Lie algebra basis ( ∂∂θ ,

∂
∂a ,

∂
∂α) induces

the following fundamental vector fields on M :

X1 :=
∂

∂θ
, X2 := x1

∂

∂x1
+ x2

∂

∂x2
, X3 := x1

∂

∂x2
− x2

∂

∂x1
.

As above, we consider the twisted b-cotangent lift. The logarithmic Liou-
ville one-form is

λ := log |p|dθ + y1dx1 + y2dx2

and the moment map is, according to Proposition 23, given by µ := (f1, f2, f3)
with

f1 = 〈λ,X#
1 〉 = log |p|,

f2 = 〈λ,X#
2 〉 = x1y1 + x2y2,

f3 = 〈λ,X#
3 〉 = x1y2 − y1x2.

In the theory of singular integrable systems on symplectic manifolds, the
last two components define the well-known focus-focus singularity if we ex-
tend the manifold M to include points with (x1, x2) = 0.

In a future work we will study focus-focus singularities in the b-symplectic
context. Here we only give the definition

Definition 32 (b-integrable system with focus-focus singularity). Let (f1, f2, f3)
be a b-integrable system on a b-symplectic manifold (M,ω). Consider a point
p ∈ M where the system is singular, i.e. the Hamiltonian vector fields Xfi
are not independent there. We say that the singularity is of focus-focus
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type if there is a chart (t, z, x1, y1, x2, y2) centred at p such that the critical
hypersurface of ω is locally around p given by t = 0 and the integrals are

f1 = c log |t|, f2 = x1y1 + x2y2, f3 = x1y2 − y1x2.

Remark 33. By simplifying the examples above and eliminating the “b-part”
we may also introduce non-degenerate singularities of integrable systems on
symplectic manifolds in the sense of [E90], [E84], [Z96], [Mi14], [Mi03] and
view them as cotangent lifts.

Remark 34. We may define non-degenerate singularities of integrable sys-
tems on b-symplectic manifolds as Cartan subalgebras of sp(2n− 1,R)⊕R.

Remark 35. We may obtain general (0, kh, kf )-Williamson type4 singularities
of integrable systems and view them as b-cotangent lifts by coupling the
examples in Subsections 5.2 and 5.3.

References

[A74] V. I. Arnold, Mathematical methods of classical mechanics. Graduate Texts in
Mathematics, 60 originally published by Nauka, Moscow, 1974 2nd ed. 1989,
XVI, 520 p.

[A99] M. Audin, Spinning tops: a course on integrable systems, Vol. 51. Cambridge
University Press, 1999.

[Be12] A. Besse, Manifolds all of whose geodesics are closed., Vol. 93. Springer Science
and Business Media, 2012.
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