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SUMMARY 

Three strategies addressed to give further scope on to the antimicrobial photodynamic therapy field 

comprise the first part of the thesis. In a f irst approach, six cationic photosensitisers varying in the net 

electrical charge and structure have been characterised in solution and their photoinactivation skills have 

been tested against different types of microorganisms. In a s econd approach, conjugates between a 

photosensitiser and the antimicrobial peptide Apidaecin 1b have been analysed in a photophysical and 

mechanistic way, and their properties have been correlated with their bacterial photoinactivation ability. 

In the last approach, two fluorescent proteins –namely TagRFP and miniSOG- have been expressed in E. 

coli and their phototoxicity has been studied and characterised mechanistically. Moreover, the capacity of 

miniSOG to photosensitise singlet oxygen formation has been revisited and studied in detail. 

In the second part of the thesis, focus has been shifted towards singlet oxygen detection. In the first 

section, the probing ability of a new dyad comprising a naphthoxazole moiety plus a singlet oxygen 

chemical trap has been evaluated in solution. In the last section, we develop, test, and discuss the 

feasibility of a polyacrylamide nanoparticle scaffold as a potential platform for singlet oxygen detection 

in intracellular systems. 



RESUMEN 
 

Tres estrategias destinadas a aportar una mayor perspectiva en el campo de la terapia fotodinámica 

antimicrobiana componen la primera parte de la tesis. En una primera aproximación, seis 

fotosensibilizadores catiónicos, con distinta carga eléctrica neta y estructura, han sido 

caracterizados en disolución y sus propiedades fotoinactivadoras probadas contra diferentes tipos 

de microorganismos. En una segunda aproximación, conjugados entre un fotosensibilizador y el 

péptido antimicrobiano Apidaecina 1b han sido analizados fotofísica y mecanísticamente, y sus 

propiedades correlacionadas con su habilidad fotosensibilizadora en bacterias. En la última 

aproximación, dos proteínas fluorescentes –TagRFP y miniSOG- han sido expresadas en E. coli y 

se ha estudiado su fototoxicidad así como su mecanismo de acción. Además, se ha reevaluado y 

estudiado en detalle la capacidad de miniSOG para fotosensibilizar la formación de oxígeno 

singlete. 

 

En la segunda parte de la tesis, el interés se ha centrado en la detección de oxígeno singlete. En la 

primera sección, se ha evaluado la capacidad de detección en disolución de una nueva díada 

compuesta por un naftoxazol y una trampa química de oxígeno singlete. En la última sección, se 

desarrolla, prueba y discute la viabilidad de nanopartículas de poliacrilamida como plataforma 

potencial para detección de oxígeno singlete en sistemas intracelulares. 

 

 



 

 

ABBREVIATIONS 

ADPA   9,10-anthracene dipropionic acid 

AMP   antimicrobial peptide 

(a)PDT   (antimicrobial) photodynamic therapy 

a.u.   arbitrary units 

BHI   brain-heart infusion 

BSA   bovine serum albumin 

CALI   chromophore-assisted light inactivation 

CD   circular dichroism 

CFU   colony forming units 

(d)PBS   (deuterated) phosphate buffered saline 

DABCO  1,4-diazabicyclo[2.2.2]octane 

DMSO   dimethylsulfoxide 

EDC   1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride 

EM   electron microscopy 

FACS   fluorescence-activated cell sorting 

FP   fluorescent protein 

GFP   green fluorescence protein 

Gdn HCl  guanidinium hydrochloride 

His   histidine 

IM   inner membrane 

IPTG   isopropyl β-D-1-thiogalactopyranoside 

IR   infrared 

IRF   instrument’s response function 

LB   lysogeny broth 

MDR   multridrug-resistant 

MeOH   methanol 

Met   methionine 

miniSOG  mini singlet oxygen generator 

MRSA   methicillin-resistant Staphylococcus aureus 

m-THPP  5,10,15,20-tetrakis(m-hydroxyphenyl)-21H,23H-porphine 

NaN3   sodium azide 

NDM-1   New Delhi metallo-beta lactamase 

NHS   N-hydroxysuccinimide 

NMB   new methylene blue 

NMe3MeO-TBPo 2,7,12-tris(trimethyl-p-tolyl)–17-(p-(methoxymethyl)phenyl)porphycene 

NPN   1-N-phenylnaphthylamine 

NPs   nanoparticles 



1O2 (1∆g)   singlet oxygen 

OD   optical density 

OM   outer membrane 

PDI   photodynamic inactivation 

PDR   pandrug-resistant 

PDT   photodynamic therapy 

PN(S)   phenalenone (-2-sulfonate) 

PS   photosensitiser 

Py3MeO-TBPo  2,7,12-tris(α-pyridinio-p-tolyl)–17-(p-(methoxymethyl)phenyl)porphycene 

RFP   red fluorescent protein 

ROS   reactive oxygen species 

rt   room temperature 

SOSG   singlet oxygen sensor green 

Spp   species 

TCSPC   time-correlated single photon counting 

THF   tetrahydrofuran 

TMPyP   5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine 

TPP   5,10,15,20-Tetraphenyl-21H,23H-porphine 

TPPo   2,7,12,17-tetraphenylporphycene 

TPPS   meso-tetrakis(4-sulfonatophenyl)-porphyrin 

Trp   tryptophan 

TRPD   time-resolved phosphorescence detection 

TSB   tryptic soy broth 

Tyr  tyrosine 

UA uric acid 

UV   ultraviolet 

VIS   visible 

XDR   extensively-drug resistant 
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Living in a microbial world 

 

“The number of these animals in the scurf of a man’s teeth, are so many 

that I believe they exceed the number of men in a kingdom. […] Some of these 

are so exceedingly small that millions of millions might be contained in a 

single drop of water. I was much surprised at this wonderful spectacle, having 

never seen any living creature comparable to those for smallness; nor could I 

indeed imagine that nature had afforded instances of so exceedingly minute 

animal proportions.” 

-Antony van Leeuwenhoek  

(1684; letter to the Royal Society of London)  

 

Bacteria have been encountered on every recondite surface on Earth, and almost all bacteria possess 

at least one alternative energy-generating system if the preferred route is unavailable. Ecologists have 

discovered bacteria in places no one thought a creature could live, and not only do they tolerate these 

places, but they thrive. Extremophiles live in environments of extraordinary harshness to human standards 

(very high/low temperatures, huge salt concentrations, etc.) where few other living beings can survive.1,2  

Though tiny, bacteria occupy the Earth in enormous numbers. The total population of bacteria is 

estimated to reach 1030 and the mass of these cells approaches 1 × 1015 kg. Of these, the overwhelming 

majority lives in the soil. Just to provide a couple of extra figures and as an update of van Leeuwenhoek 

comparison, the number of microorganisms in a teaspoon of soil can be compared to the number of 

humans currently living in Africa. Or, in another rough estimation, dental plaque is so densely packed that 

one gram will contain namely the same number of humans that have ever populated the Earth!3  

We are microbe magnets since we are born. Evolutionarily, we are meant to attract these bugs 

because that's the initial signal to activate our immune system.4 Although animals and bacteria have 

different forms and lifestyles, they recognise one another and are able to coexist. Most organisms have 

about 1/3 of their genes in common. For instance, in the human genome 37% genes are similar to those in 



Chapter I. General Introduction 
 

15 
 

bacteria and archaea. Another 28% are similar to genes in unicellular eukaryotes. Thus, a full 65% of 

human genes show similarity to those of microbes.5  

 

Figure 1. Human genomic signature through phylogenetic analysis. Drawing (from ref 5) sorts out human genes 

relative to percentage of the genome that arose at a series of stages in biological evolution. 

The human body is, thus, both an organism and a complex ecosystem, whose inhabitants comprise 

ca. 1000 different species belonging to 200 genera. The human microbiota (the collection of microbes 

that live on and inside us) consists of about 100 trillion microbial cells that outnumber our ‘‘human’’ cells 

10 to 1, and that provide a wide range of metabolic functions that we lack.6 If we consider ourselves as 

supraorganisms encompassing these microbial symbionts, by far the majority of genes in the system are 

microbial (over 23,000 genes constitute the human genome while ca. 8,000,000 genes present in the 

human microbiome –which refers to the collective genomes of the microbes that colonise a determined 

habitat, in this case the human body-).7 
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Bacteria 

 

 

“Ce qui est vrai pour le colibacille est vrai pour l’éléphant”  

-Jacques Monod 

 (Biologist; Nobel Prize 1965) 

 

Bacteria are self-sufficient packets of life, the smallest independently living creatures on Earth. Most 

bacteria are between 0.5 and 1.5 μm in diameter and 1 to 2 μm long, bacterial volumes ranging, thus, 

from 0.02 to 400 μm3.8 Still, extreme cases appear: huge Thiomargarita namibiensis reaches 750 μm 

while Francisella tularensis is as small as 0.2 μm.9,10  One of many advantages in being small involves 

the ability to sense environmental changes with an immediacy that large multicellular organisms lack. 

Bacteria need only be big enough to hold their vital enzymes, proteins, and genetic machinery. Its simple 

architecture allows for rapid reproduction, which aids adaptation. Bacterial metabolism is a model of 

efficiency because of a large surface-to-volume ratio that the aforementioned smallness creates.8 No part 

of a bacterial cell is very far from the surface where nutrients enter and undesired products exit. Finally, 

small size contributes to massive bacterial populations that dwarf the populations of any other biota. On 

the other hand, microbiology’s slow acceptance was partly due to the minuscule dimensions of microbes. 

Antony van Leewenhok reported the first thorough pictures of the ‘very little animalcules’ in the end of 

XVIIth century; but not until the naissance of electron and fluorescence microscopy did their inner 

structures (nucleoids, ribosomes, cell walls and membranes, flagella) become discernible.11 

In a microscope, bacteria exhibit several different shapes: spheres (coccus), rods (bacillus), spirals 

(spirillum), corkscrews (spirochaete), and boomerangs (vibrio). When bacteria grow, the cell wall 

prevents any increase in size contrary to multicellular organisms.12,13 

 Bacteria grow by splitting into two new cells by binary fission. Bacteria do not always live as free-

floating specimens. As cell numbers increase, certain species align or form clusters. Furthermore, if 

bacterial populations find a surface with a little moisture and some nutrients they settle and form thin, flat 
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sheets and swarm forming what we call bacterial biofilms (Figure 2).14,15 Thus, they tend to form 

communities which display attributes of multicelullarity, with a vast diversity in population, architecture 

and activities. These groups of cells are held in place by an extracellular matrix and can use intercellular 

signaling for communication.16 

 

Figure 2. Biofilms formed by Bacillus subtilis (strain NCIB 3610). Image from reference 5. 

Until the late 1970s, microbiologists identified bacteria through enzyme activities, end products, 

nutrient needs, and morphology. In 1977 C arl Woese proposed a classification based on the use of 

ribosomal ribonucleic acid (rRNA) fragments. Because the genetic information in rRNA is unique to each 

species, it can act as a type of bacterial fingerprint. This analysis led to a new hierarchy of living things 

with bacteria, archaea, and eukaryotes comprising the three domains shown in Figure 3b that substituted 

classical kingdom-like phylogeny tree (Figure 3a).17,18  

 

Figure 3. Classical (a) and molecular (b) phylogenia representation. Adapted from ref 19 and 

http://www.astronoo.com/en/news/tree-of-life.html (retrieved April 2013)  
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In a different approach, bacteria are usually classified in two main categories regarding their 

differences in structure. Gram-positive bacteria (Figure 4 right) are surrounded by an outer wall, which is 

separated from the plasma membrane by a p eriplasmic space. This 20-80 nm thick wall acts as a 

protective mesh constituted mainly by peptidoglycan layers, which are traversed by negatively charged 

lipoteichoic and teichuronic acids anchored in the membrane. This architecture doesn’t act strictly as a 

permeability barrier, since macromolecules with molecular weight up to 60,000 Da can diffuse through 

the inner membrane (IM). On the other hand, Gram-negative bacteria (Figure 4 left) are endowed with an 

additional 10-15 nm thick densely packed structural layer, external to the peptidoglycan network, whose 

constituents (e.g., lipoproteins, lipopolysaccharides) confer the outer surface highly negative charges. 

This highly organised system –called outer membrane (OM)- inhibits the penetration of compounds with 

molecular weight larger than 600-700 Da.20  

 

 

Figure 4. Gram-positive and Gram-negative bacteria structure. Image from ref  20. 
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Bad bugs, no drugs 

 

“Bacteria have been around for billions of years. Then we steal some 

antibacterial drugs from fungi and think we can do us in for good.”  

 

-Stephen Jay Gould 
(1941-2002; Evolutionary biologist) 

 

There is a p reconceived concept that associates bacteria with pathogenesis and, in the end, with 

deleterious effects (e.g. bioterrorism, infections concomitant to natural catastrophes, organisms resistant 

to antibiotics, etc.). However, the vast majority of microorganisms are not necessarily bad, indeed.  

Besides oxygenating the early Earth, loads of bacterial activities shape the ecology of the planet, 

thus helping to sustain human life. In soil, several bacteria replenish nitrogen that higher organisms need 

or regulate the carbon cycle through the Earth’s organic and inorganic matter; they help metabolise food, 

block dangerous pathogens and even help develop the immune response.21,22  Humans and animals also 

come with a full complement of gut flora that sometimes provides the host living system with metabolic 

capabilities that do n ot possess by themselves.23-25 In addition to aiding our digestive system, gut 

microorganisms also influence distant parts of the body, including the brain.5 

Moreover, our understanding of microbes has allowed us to use their features in our profit. Among 

others, we can track disease outbreaks or monitor pollution; we can use them to clean up our wastes and 

decontaminate (sulfide removal, oil spills…);26,27 they can provide important and useful chemical 

compounds;28-31 preparation of many daily products (food and beverages) are aided by microbes;32 they 

have enabled the development of revolutionary tools for bioengineering such as PCR;33 or we now 

manage that medically important compounds such as human insulin can be processed in large scale by 

recombinant bacteria.34 

Despite we have exemplified in the previous paragraphs that bacteria are not always to be related 

with deleterious effects, the truth is that pathogenic microorganisms have become a u niversal threat. 

Today infectious disease is the second most important killer in the world, number three in developed 
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nations and fourth in the USA. It is the third leading cause of death in Europe and despite existing 

antibiotic therapies and vaccines, infectious diseases remain the leading cause of mortality and morbidity. 

Worldwide, 17 million people die each year from bacterial infections.35  

In total, there are ca. 1,400 known species of human pathogens (including viruses, bacteria, fungi, 

protozoa and helminths), but they account for much less than 1% of the total number of microbial species 

on the planet.3 The issue of prevention and control of infectious diseases remains open and a series of 

highly virulent pathogens are emerging both in and beyond the hospital setting. Penicillin and subsequent 

development and synthesis of other antibiotics were one of the most sounded scientific highlights of the 

20th century as a tool of prevention and control of infectious diseases worldwide. Fleming’s first paper on 

penicillin was published in 1929. Penicillin was put into common use in the early 1940s but by 1944 half 

of all clinical Staphylococci species (hereafter spp) isolates were resistant to this proclaimed “miracle 

drug.” Still, by the 1980s, pharmaceutical companies were convinced that there were enough antibiotics 

and that it was about time to shift focus to more threatening clinical problems such as cancer, diabetes and 

heart or degenerative diseases.  

Paradoxically, concomitant with the rise of antibiotic-resistant bacteria, approval of new antibiotics 

has dramatically slowed (Figure 5). And not on only that: the number of truly novel compounds with new 

mechanism of action remains small.36 Of great significance, nearly all major pharmaceutical companies 

have withdrawn from or greatly downsized their antibiotic research and development (R+D) programs 

over the past two decades, and the egress from the market is actively continuing. 
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Figure 5. Number of antibacterial agents approved by the US FDA per 5-year period (from reference 37) 
 

Microorganisms, however, had a different opinion. The extensive and inappropriate use of 

antibiotics gradually has led to a worrying resurgence of morbidity and mortality from new and old 

infectious diseases.  

 

 
 
Figure 6. Stop to the abuse of antibiotics usage. Image adapted from http://www.flickr.com/photos/mbradbury/1847123974/ 

(retrieved April 2013) 

 

The problem of antimicrobial resistance is not specific to bacteria. Medically important viruses (e.g., 

HIV, influenza), fungi (e.g., Candida, Aspergillus), and parasites (e.g., malaria) also develop resistance. 

However, a unique convergence of events has created an enormous public health concern regarding 

antibiotic resistance in bacteria making it the primary focus of most research in the field. Today, many 

bacteria are already resistant to common antibiotics. Antimicrobial resistance is a co nsequence of 
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continued misuse and overuse of antibiotics (both in humans and animals, Figure 6) combined with the 

natural and constant growth of resistance over time and the remarkable genetic plasticity of bacteria.36,38,39  

Harmonised definitions with which to describe and classify the different patterns of bacterial 

resistance found in healthcare-associated environments comprise three categories: multidrug-resistant 

(MDR), extensively-drug resistant (XDR) and pandrug-resistant (PDR) bacteria.40 Up to date, The 

naiscement of the so called “superbugs” or ESKAPE pathogens (Enterococcus faecium, Staphylococcus 

aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Escherichia coli and 

Enterobacter spp) cause serious and life-threatening infections. Indeed, they are extremely difficult and in 

many cases impossible to effectively treat.41  

 

Figure 7. SEM micrographs depicting ESKAPE pathogens. Images were obtained from the Public Health Image 

Library of the centers for disease control and prevention (http://phil.cdc.gov/Phil/default.asp; retrieved April 2013). 

 

Ten years ago, concern was centred on Gram-positive bacteria, particularly methicillin-resistant S. 

aureus and vancomycin-resistant Enterococcus spp. Now, however, consensus exist that MDR Gram-

negative bacteria pose the greatest risk. Not only is the increase in resistance of Gram-negative bacteria 

faster than in Gram-positive bacteria, but also there are fewer new and developmental antibiotics active 

against Gram-negative bacteria. The increase in resistance of Gram-negative bacteria is mainly due to 

mobile genes on plasmids that can readily spread through bacterial populations.42 
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Therapeutic options for ESKAPE pathogens are extremely limited such that clinicians are often 

forced to use obsolete drugs, such as colistin, that are associated with significant toxicity and for which 

there is a lack of robust data to guide dosage regimen or duration of therapy.43 For example, more people 

now die of MRSA infection in U.S.A. than of HIV/AIDS, emphysema, Parkinson’s disease and homicide 

together.37 XDR Klebsiella or XDR Acinetobacter bacteria kill up to 50% of infected patients despite 

treatment with last resort drugs, and resistance rates for these pathogens continue to climb. As a final 

threatening example, all strains of Klebsiella and E. coli containing the New Delhi metallo-beta-lactamase 

(NDM-1) enzyme are resistant to all antibiotics except colistin and tigecycline, and 10% of these strains 

are even resistant to these drugs, making them truly pan resistant. XDR Acinetobacter strains that are 

resistant to colistin are now being reported.42  

We must increase our efforts to preserve the activity of available antibiotics, or at least expand as 

much as possible the period of their use, whilst intense research efforts should be focused on the 

development and introduction into clinical practice of new antimicrobial agents or therapies. 
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Photodynamic therapy 

 

“I don't understand it Dr. von Tappeiner, the paramecia were all wiggling 

just fine a minute ago, but now these over by the window seem to be dead.” 

-Oscar Raab (1900) 

 

The origin of photosensitisation as a science is usually attributed to the work of Oscar Raab at the 

end of 19th century. Although there are several accounts of photosensitisation reactions in the writings of 

the Egyptians, Indians and Chinese dating to at least 30 centuries ago, the modern era is conveniently 

recognised to begin in the year 1900. 

Oscar Raab was a medical student of Hermann von Tappeiner at the Ludwig-Maximilian University 

in Munich. Raab was involved in a study of the toxicity of acridine towards paramecia. In the winter 

semester of 1897-98, Raab found that the apparent toxicity that he measured depended on the time of day 

when he performed his experiment. Near midday the toxicity was the greatest. Raab realised that one of 

the variables in his work was the amount of light in the laboratory, and he subsequently demonstrated that 

paramecia in acridine solutions were inactivated more effectively if the solutions were kept near a bright 

window, than if they were prevented from light. The surprising result was published in 1900 a nd 

stimulated further activity in the field. It was the first report regarding what they called “photodynamic 

action”. Since then, a lot has been learnt about this effect ant the development of its use in therapies is a 

fact.44  

The photodynamic therapy (PDT) concept comprises the action of three components: a 

photosensitiser (PS), a light source of appropriate wavelength, and oxygen. The interaction between light 

and the PS leads to the generation of reactive oxygen species (ROS), e.g. singlet oxygen (1O2), by two 

possible mechanisms involving either the interaction of the PS with the oxidizable substrate (e.g., by 

electron-transfer) -type I- or with oxygen (by energy- or electron-transfer) -type II- reactions.  Almost 

every cell component is a potential target for these ROS, as they react readily with proteins, 

carbohydrates, cell-membrane components, and nucleic acids resulting in cytotoxicity.45 PDT is a highly 
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selective modality as (a) hyperproliferating cells selectively uptake PSs and (b) cell death is spatially 

limited to regions where light of the appropriate wavelength is applied. 

Every PS molecule participates in multiple cycles of oxygen activation so that low doses are 

required so as to achieve the therapeutic effect. Excited species are generated by photon absorptions and, 

generally, they exhibit very short lifetimes limiting this way the possible reactions that occur. There are 

different pathways of returning the energy delivered by irradiation. Either through radiative means 

(fluorescence, phosphorescence) or thermal pathways (intersystem crossing (ISC), internal conversion, 

etc.); but they can also react with neighbouring compounds. In this second scenario, another classification 

can be also done. When energy transfer is mediated through proton or electron with the biological 

substrate it is known as Type I mechanism; on the contrary, if oxygen is the primary acceptor this process 

is called Type II mechanism (see Scheme 2). Both mechanisms occur simultaneously and the efficiency 

of each process hinges on the respective value relative to oxygen and substrate concentration and to the 

reaction constant rates and also on the triplet state deactivation kinetics.46  

 

Scheme 1. Photophysical ROS generation cycle. 
 
 

PDT was established and remains a successful modality for a varied pool of malignancies ranging 

from cancer to macular degeneration, going through dermatological affections and odontological 
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diseases.47,48 But photodynamic inactivation (PDI) has been transformed recently to an antimicrobial 

discovery and development platform. 

We have described the PS as the agent able to generate the ROS that will lead to the desired 

therapeutical effect. Despite their clinical application, several problems aroused from the first generation 

PSs. For instance, porfimer sodium (Photofrin®; the first clinically approved PS) provoked severe 

dermatological photosensitivity for several weeks due to its low selectivity; also the photosensitising drug 

was an inseparable mixture of porphyrin oligomeric compounds with the subsequent chemical 

characterisation difficulties. Based on these and other problems encountered in the clinical use of 

Photofrin and other first generation PSs, several ideal features were regarded for the ideal PS:  

• Pure chemical compound and photochemical stability. 

• Preferential location and selective retention at the target tissue. 

• Single compound, with known and constant composition whose synthesis is affordable, high 

performance and scalable. 

• Effective generator of 1O2 and other ROS. 

• Appropriate photophysical properties: e.g. high quantum yield of triplet formation (ΦT), high 

quantum yield of 1O2 formation (Φ∆) and high triplet state energy (enough to achieve 1O2 

formation). 

• Low toxicity and negligible dark cytotoxicity. 

• Rapid drug clearance in healthy tissue and minimal skin photosensitivity. 

• High coefficient of absorption in the red / near infrared in order to achieve maximum penetration 

into tissues. 

• Soluble in biological fluids (allowing administration via parenteral). If not, easy to incorporate into 

a hydrophilic transport system capable of circulating in the bloodstream. 

• Susceptible to become drug through a simple and stable formulation. 
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Scheme 2. Summary of desired properties for an ideal PS. 

Trying to improve the properties of their predecessors in compliance with the aforementioned 

properties new families of PSs have been born: the so-called 2nd generation PSs. Among them stand 

porphycenes, porphyrins, chlorins, bacteriochlorins, phthalocyanines, aza-porphyrins, naphthocyanines, 

texaphyrins or purpurins.49 
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Scheme 3. Families of 2nd generation PSs. 1) Porphycene, 2) Porphyrin, 3) Chlorin, 4) Bacteriochlorin, 5) 

Phthalocyanine, 6) Azaporphyrin, 7) Naphthalocyanine, 8) Texaphyrin, 9) Purpurin 
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Singlet oxygen 

Molecular oxygen (O2) is a ubiquitous and often adventitious participant in organic photochemical 

reactions. O2 is ubiquitous because samples are saturated with air, which means that unless purged, they 

contain a certain concentration of dissolved O2 that at room temperature (rt) and 1 atm of air typically 

falls in the order of ~ millimolar. O2 is adventitious because attempts of purging it may not succeeded 

completely, thus leading to unexpected reactions. 

Singlet oxygen (1O2) is defined as the lowest excited electronic state of molecular oxygen and has 

been present in the scientific community for over 80 years. Its intrinsically atypical but appealing 

physico-chemical properties and behaviour (due to the unique electronic structure of the dioxygen 

molecule with a spin triplet in its ground state), makes 1O2 remain at the forefront of research in different 

disciplines.50,51 1O2 is definitely of great interest. Firstly, due to its high reactivity toward organic 

substrates as a synthetic reagent.52 Secondly, as an intermediate in oxygenation reactions of polymers.53 

Thirdly, and probably the most appealing up to date, as a member of the ROS family that takes active part 

in a range of biological events. A great variety of biological molecules (i.e. proteins, DNA and lipids) can 

suffer oxidation processes by 1O2, leading to a plethora of deleterious effects that can ultimately result in 

cell death, degenerative diseases, etc.54 Over the years, insight has been gained in the rules that control 

1O2 generation, the characters involved and the energy requirements. More recent studies have focused on 

assessing the 1O2 involvement during cellular signaling upon its generation in sub-lethal amounts, 

studying its role in cell regulation events (i.e. mediation of immune response, cell transduction or gene 

expression). Also, we are learning how to use it in our profit, for instance, destroying malignant cells as a 

therapy (i.e. PDT).48 Still many gaps are to be closed and better understanding about 1O2 is needed. In this 

sense, delivering the proper amount of 1O2 within a therapy is crucial for its success, but it is  not 

something we can fully control nor monitor yet.  

As mentioned in the previous paragraph, the ground state of O2 is a triplet, paramagnetic because of 

two parallel electronic spins. When excited, oxygen gets to two different metastable electronically excited 

singlet states. The higher-energy state (1Σg) is deactivated to the so called 1∆g stated very rapidly. So 

rapidly that it has no chance to react. 1∆g, namely called singlet oxygen (hereafter 1O2), decays slower, 
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thus allowing for interaction and reactivity. 1O2 lies ca. 94 kJ·mol-1 above the ground state, energy 

corresponding to an infrared wavelength of 1270 nm, where it emits light (Scheme 4). 

 

Scheme 4. Energetic representation of 1O2 excited singlet states. 

Because 1O2 in solution deactivates by transferring its electronic energy to solvent vibrations, its 

lifetime depends strongly on the medium. Thus, solvents with high vibrational frequencies provide the 

most efficient relaxation. It is for this reason that the lifetime is shortest in water (which has a strong OH 

vibration) followed by solvents with CH groups. In deuterated solvents the quenching rate constant 

decreases by approximately an order of magnitude because the corresponding vibrations shift to lower 

frequency. This results in lifetimes increasing from 3-4 µs in water up to 65 µs in D2O. 

There are two major sources of 1O2: photochemical and “chemical”. One of the most common 

sources of 1O2 requires energy transfer (ET) from an excited PS, as seen in Scheme 5.  

 

Scheme 5. Representation of 1O2 formation through energy transfer with an excited 3PS. 
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The role of the PS is to absorb the light and be converted to an electronically excited state (usually 

the first excited triplet state, T1); then transfers its energy to molecular oxygen, producing 1O2 and 

regenerating the PS as we previously showed in detail in Scheme 1. Three are the requirements for a 

molecule to be able to photosensitise the production of 1O2 efficiently: (A) have a good ability to populate 

the excited triplet state (high ISC quantum yield), (B) the energy of its triplet state must be higher than 94 

kJ·mol-1.and (C) energy transfer must occur efficiently. 

Although not included in Schemes 1 and 5 for the sake of simplicity, 1O2 can also be generated from 

the fluorescent (singlet, S1) state of a PS. This phenomenon is less frequent and requires that the S1–T1 

energy gap exceeds the excitation energy of 1O2 (94 kJ·mol-1) so that oxygen can elicit this spin allowed 

intersystem crossing.50,51 This discovery led to the finding that it is possible to achieve Φ∆ values higher 

than unity if both S1-T1 and T1-S0 energy gaps of the PS are around 94 kJ·mol-1. For instance, rubrene is 

reported to have a Φ∆ value of 1.8 in toluene and oxygen pressure of 10 atm. Perylene, pyrene or 1,3-

diphneylisobenzofuran are other examples.50 Still, most PSs do not have such a large S1-T1 energy gap 

and the utterly high oxygen pressure requirements make their feasibility in PDT unviable. 

Hence, for most PSs, the role of oxygen quenching of S1 is limited to enhancement of the triplet 

quantum yield, and the main pathway of 1O2 generation is oxygen quenching of T1. Because the 

intramolecular T1  S0 transition is spin-forbidden, T1 states generally have long lifetimes, allowing 

mostly for complete quenching by ground-state oxygen in air-saturated solution. From now on, we will 

focus only in this majority event when dealing with  photosensitised 1O2 formation. 

Chemical sources of 1O2 are quite diverse (Scheme 6). The oldest is the reaction of HClO with 

H2O2, which produces 1O2 in nearly quantitative yields. Other sources of 1O2 are phosphite ozonides 

(produced by reaction of ozone with phosphites) and decomposition of hydrotrioxides. Peroxomolybdates 

are also able to produce 1O2 in good yields. One of the cleanest methods of producing 1O2 without other 

reactive oxidants is the decomposition of aromatic (particularly substituted naphthalene) endoperoxides. 

These compounds undergo the reverse reaction to give 1O2 and the aromatic compound in near-

quantitative yields. 



Singlet oxygen 
 

32 
 

 

Scheme 6. Chemical sources of singlet oxygen. 
 

A drawback of chemical sources is that many substrates do not trap 1O2 efficiently, so that a large 

excess of the reagent must be used to obtain appreciable substrate conversions. Moreover, since many of 

the sources use strong oxidising agents, undesired side reactions may also occur. Still, this system renders 

useful whenever light cannot be used or just for mechanistic purposes. 

 

Due to the characteristic reactivity of 1O2, photooxygenation is a valuable complement of oxidation 

methods. 1O2 is a synthetically useful electrophilic reagent which, in many cases, allows stereospecific 

and regiospecific introduction of O2 into organic substrates. In industry, the reaction is applied to 

production of perfumes and aromas by oxidation of terpenes or terpenols. The singlet spin multiplicity 

significantly increases reactivity with respect to triplet (ground state) oxygen. Main reactions are briefly 

summarised in the following paragraphs. 

[4+2] cycloaddition: 1O2 reacts with the s-cis conformations of 1,3-dienes to form endoperoxides. The 

reactions are characterised by a negligible solvent effect and they can be stereospecific. The synthetic 

importance of this reaction relies on the great variety of transformations available to the endoperoxide 

products.  

Ene reaction: In this reaction, olefins with allylic hydrogens are oxidised to allylic hydroperoxides 

concomitant with a s hift of the double bond. These allylic hydroperoxides can be easily converted to 

allylic alochols, key intermediates in several synthetic transformations. The synthetic utility of the ene 
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reaction is increased by tits unique stereochemistry and regiochemistry since the double bond always 

shifts to the allylic position. 

[2+2] cycloaddition: [2+2] cycloadditions with 1O2 occur with electron-rich substrates or with olefins in 

which the competing ene reactions are structurally precluded. The products are dioxetanes, characteristic 

by their ability to decompose with light emission. 

Sulfide photooxidation: The photooxidative behaviour of sulphides was examined more than 50 years 

ago and reported as a new method of making sulfoxides. The quantum efficiency of product formation is 

sensitive to both temperature and the identity of the solvent. While pretty efficient in methanol it does not 

proceed properly in benzene. But efficiency in aprotic solvents, however, increases as the temperature is 

lowered. 

Reactivity towards aminoacids: Biomolecules react in the same way other molecules do, but many of 

the initial products are unstable and cannot be isolated. Special attention has been gained since the 

obvious use of 1O2 in biological media as we will later see. 

 

 

Scheme 7. Representative selection of chemical reactivity of 1O2 with organic molecules. 
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Aside from 1O2 deactivation through chemical reaction (i.e. reaction with chemical traps as we will 

see in chapter IV) physical pathways are very common for deactivation of 1O2. Hereafter we will refer as 

“quenching” to the concept of deactivation of an excited molecule to its ground state without chemical 

reaction with the deactivating molecule (quencher). In some case, competition between chemical and 

physical deactivation pathways occur. There are two major mechanisms of physical quenching: 

Energy transfer: this process is typified by carotenes. Carotenes participate in a reverse reaction of that 

by which 1O2 is formed by the PS. Carotene’s triplet excitation energy lies below that of 1O2 so that the 

reaction is exothermic. Moreover, the rate constant for this reaction is in the diffusional limit rate, that is, 

in the order of 1·1010 M-1·s-1, meaning that reaction occurs with every collision. Thus, carotene family 

become extremely efficient physical 1O2 quenchers. This quenching may be the reason for the very 

important role played by carotenes in protecting against oxidative photodamage in photosynthetic 

systems. 

carotene + 1O2  3carotene + 3O2 

Charge transfer: electron-rich compounds make up the second class of physical quenching molecules. 

Partial charge transfer from these compounds appears to catalyse the intersystem crossing of 1O2 to the 

ground state. Complete electron transfer to 1O2 has been observed but only with extremely strong electron 

donors. However, complete transfer is not a requirement for quenching. 

Q + 1O2  +Q--O2
-  Q + 3O2 

Sodium azide (NaN3) and DABCO (diazabicyclo[2.2.2]octane) are examples of charge-transfer 

quenchers. DABCO has a particularly low oxidation potential for an amine and quenches 1O2 very 

efficiently without itself undergoing any reaction. Hydrazines also are very efficient quenchers. Finally, 

NaN3 is a water soluble quencher which has been frequently used in biological studies; however, it is not 

as inert chemical and it can undergo reactions itself via the azido radical; it is also a potent 

metalloenzyme poison, which limits its usefulness in biological systems. Certain reactive phenols do also 

undergo a mixture of reaction and quenching; vitamin E (α-tocopherol) is a particularly reactive example 

and the ratio of reaction/quenching hinges on the solvent. 
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Objectives of the thesis 

 
 
 

AIM OF THE STUDY 

In the present study we aim at two main objectives: 

• The study of different novel approaches towards antimicrobial photodynamic 

therapy that can give insight for the development of feasible strategies to 

overcome antibiotic resistance as well as help understand the mechanisms 

underneath bacterial cell death upon singlet oxygen-mediated photokilling. 

• The study and/or development of new probes that elicit better singlet oxygen 

detection either in solution or in intracellular systems.  
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Steady state measurements 

 
INSTRUMENTS 

Equipment: Absorption spectra were recorded on a double beam Cary 6000i spectrophotometer (Varian, 

Palo Alto, CA), equipped with a 110 mm diameter integrating sphere and high performance 

photomultiplier tube for transmittance measurements. Fluorescence excitation and emission spectra were 

registered in a Spex Fluoromax-4 spectrofluorometer (Horiba Jobin-Yvon, Edison, NJ).  

Light sources: Sorisa Photocare using a 35 mW·cm-2 fluence rate was used in probe conversion 

assays in Chapter IV (1st section). Light wavelength was chosen depending on the type of 

experiment, namely, blue (475 ± 15 nm), green (535 ± 15 nm) or red (635 ± 15 nm). Paterson red 

Lamp BL1000A (630 ± 30 nm) was used for experiments in Chapter IV (2nd section). Fluence rates 

were routinely measured using a power meter. 

METHODS 

Fluorescence quantum yield: The fluorescence quantum yield (ΦF) is defined as the number of photons 

emitted by the sample per absorbed photon. The fluorescence intensity integrated over the entire emission 

spectrum was measured as a function of the sample absorption factor (1-10-Abs) for the sample and a 

suitable reference (ref; i.e. with a similar emission spectrum as the sample), excited at the same 

wavelength. ΦF values were determined using Equations (1-3). 
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where F stands for the value of the integrated fluorescence and n  is the refractive index of the 

solvent used in each case.1 Absorbance of the sample and the reference are to be less than 0.05 

arbitrary units (a.u.) in the overlap region between absorption and emission to avoid inner filter 

effects. 
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Time-resolved measurements 

 

INSTRUMENTS 

Equipment: Time-resolved fluorescence and phosphorescence measurements were carried out using a 

customised PicoQuant Fluotime 200 fluorescence lifetime system and its FluoFit 4.0 software for the data 

analysis. For fluorescence assays, excitation was achieved by means of picosecond diode lasers or LEDs 

(PicoQuant, 10 MHz repetition rate) and the counting frequency was always below 1 %. For direct 1O2 

phosphorescence detection, a diode-pumped pulsed Nd:YAG laser (FTSS355-Q, Crystal Laser, Berlin, 

Germany) working at 10 kHz repetition rate at 532 nm (12 mW, 1.2 µJ per pulse) or at 355 nm (5 mW, 

0.5 uJ per pulse) was used for excitation. A 1064 n m rugate notch filter (Edmund Optics, U.K.) was 

placed at the exit port of the laser to remove any residual component of its fundamental emission in the 

near-IR region. The luminescence exiting from the side of the sample was filtered by two long-pass filters 

of 355 and 532 nm (Edmund Optics, York, U.K.) and two narrow bandpass filters at 1275 nm (NB-1270-

010, Spectrogon, Sweden; bk-1270-70-B, bk Interferenzoptik, Germany) to remove any scattered laser 

radiation. A near-IR sensitive photomultiplier tube assembly (H9170-45, Hamamatsu Photonics 

Hamamatsu City, Japan) was used as the detector at the exit port of the monochromator. Photon counting 

was achieved with a multichannel scaler (PicoQuant’s Nanoharp 250). 

Transient absorption experiments in the UV-VIS region were carried out using a home-built 

nanosecond laser flash photolysis system. In this instrument, either the 2nd harmonic (532 nm) or the 3rd 

harmonic (355 nm) of a Continuum Surelite I-10 Nd:YAG laser (10 Hz, 5 ns pulse width, 1-10 mJ per 

pulse) was directed to the sample. In other experiments, the 355 nm the the Nd:YAG laser was used to 

pump a Continuum OPO laser to produce laser pulses in the 400-700 nm region. Changes in the sample 

absorbance were detected using a Hamamatsu R928 photomultiplier to monitor the intensity variations of 

an analysing beam produced by a 7 5 W short arc Xe lamp (USHIO) and spectral discrimination was 

obtained using a PTI 101 monochromator. The signal was fed to a Lecroy Wavesurfer 454 oscilloscope 

for digitising and averaging (typically 3-10 shots) and finally transferred by a GPIB interface (National 

Instruments) to a PC computer for data storage and analysis. The TTL sync output of the laser was used 

to trigger the oscilloscope. The energy of the laser pulse was varied by neutral density filters and 
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measured with a pyroelectric energy meter (RJP 735 and RJ 7610) from Laser Precision Corp. The 

system was controlled by the in house-developed LKS sofware (LabView, National Instruments).  

A schematic representation of our setup is depicted in Scheme 1: 

 

Scheme 1 Experimental setup for nanosecond UV-VIS laser flash photolysis. Image adapted from ref. 2 
 

GENERAL TECHNIQUES 

The time-resolved techniques involve the observation, of excited states or other reaction 

intermediates generated upon pulsed-laser irradiation of a sample.  

Time-Correlated Single Photon Counting (TCSPC): It is the most commonly used technique for 

singlet state lifetime determination. It is based on the detection of single photons of a periodical light 

signal, the measurement of the detection times of the individual photons and the reconstruction of the 

waveform from the individual time measurements. TCSPC technique makes use of the fact that for low-

level, high-repetition-rate pulses, the produced light intensity is so low that the probability of detecting 

one photon in one signal period is less than one. Therefore, is not necessary to seek for the possibility of 

detecting several photons in one signal period. It is sufficient to record the photons, measure their time in 

the signal period, and build up a histogram of the photon times.3 

For fluorescence measurements, an instrument’s response function (IRF) is needed because the 

response of the electronics can be convoluted with the chromophore’s decay spectrum. In the absence of 

chromophore, any decay measured will be the solely the result of the electronics. This is not necessary for 

samples with lifetimes approaching 1.0 μs. To achieve the IRF signal a sample able to scatter excitation 

light into the photomultiplier is needed. Diluted solutions of commercially available Ludox is an option, 

but whatever scattering sample may work. 
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Time-resolved Near-IR phosphorescence detection (TRPD): This technique is commonly used for 

directly and specifically monitoring 1O2 formation and decay, the measurement of its lifetime (τ∆) and its 

quantum yield of formation (Φ∆). It is based on the detection of the weak 1O2 phosphorescence, centred 

at 1275 nm (Scheme 2) and has its major potential in homogeneous systems.2  

 

Scheme 2. Near-IR phosphorescence spectrum of 1O2 .Image taken from ref. 3 

Direct 1O2 luminescence was detected by means of PicoQuant Fluotime 200 system but with a 

different customisation respect to TCSPC measurements, as described in the previous section. 

 

UV-VIS nanosecond laser flash photolysis: this technique addresses to the measurement of triplet states 

of photochemical and photophysical phenomena. There are many experimental setups for the detection of 

triplet-triplet absorption spectra, but two elements are common. First, an exciting source to produce the 

triplet state species is required. Second, each experiment has a monitoring light source to probe their 

absorbance. Triplet states can be generated in several ways; however, two are the main methods for 

achieving substantial triplet state populations: photolysis with light and radiolysis with ionising radiation.4 

In the case of study, excitation is achieved by means of a nanosecond pulsed Nd:YAG laser.  
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GENERAL METHODS 

Singlet state decay kinetics (τS): A solution of the sample in the proper solvent was prepared ensuring 

that the absorbance of the sample was less than 0.05 in the overlap region between absorption and 

emission to avoid inner filter effects. The deconvolution of the TCSPC fluorescence signal with the IRF 

signal yields the singlet lifetime (τS). 

Assessing 1O2 formation and decay kinetics: 1O2 lifetimes were obtained and assigned by fitting 

Equation (4) to the time-resolved phosphorescence signals (St) detected at 1275 nm,  

( )Ttt
t eeaS ττ // −− −×= ∆

 (4)
 

where a is the zero-time amplitude of the signal and τΤ and τ∆ are the actual lifetimes of the PS’ triplet 

state and 1O2, respectively.  

1O2 luminescence quantum yield (Φ∆): Optically matched solutions of sample and reference were 

measured and the time-resolved phosphorescence signals analysed. The amplitude (a) is proportional to 

Φ∆ (Equation 5), 

( )Abs

T

ka −

∆

∆
∆ −×

−
×Φ×= 101·

ττ
τ

      (5) 

Thus, the relationship between amplitudes (from sample and reference, respectively) together with 

Φ∆ (ref) renders the Φ∆ (sample) value, as represented in Equation (6)   

( ) ( ) sample

ref

a
sample ref

a∆ ∆Φ = Φ ×
      (6) 

 

This result is only valid if both –sample and reference- show the same τΤ and τ∆ values. May this 

condition not be fulfilled, one needs to make a correction taking into account the aforementioned changes 

in lifetimes, rendering Equation (7): 
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Assessing reaction rate constants: The rate constant for 1O2 quenching (kq) by a q uencher (Q) was 

determined by measuring the 1O2 lifetime as a function of the quencher concentration. 1O2 was generated 

by an external PS and the concentration of the sample was varied. A plot of the reciprocal lifetime vs the 

concentration of the sample afforded kq as the slope of the linear-fit Equation (8).  

0

1 1 [Q]qk
τ τ∆ ∆

= + ,  (8) 

where τ∆º is the 1O2 lifetime in the neat solvent. 
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Microbiological measurements 

 

GENERAL MATERIALS 

Chemicals. Phosphate buffer saline (PBS) or deuterated PBS (dPBS) solutions were prepared dissolving 

the required amount of a PBS tablet (Sigma) in 100 mL milliQ water o deuterium oxide (Fluka). 

isopropyl β-D-1-thiogalactopyranoside (IPTG), arabinose and disodium carbenicillin were purchased 

from Sigma and used as received. Growth media and agar were purchased from Scharlau. 

Microbial strains: The microbial strains used for the PDI experiments in Chapter 3.1 were: 

Staphylococcus aureus (CECT239) and methicillin-resistant strain of S. aureus (ATCC BAA-44) as 

Gram-positive bacteria; Escherichia coli (CECT101) and Pseudomonas aeruginosa (ATCC 25668) as 

Gram-negative bacteria; Candida albicans (ATCC 10231) and Candida krusei (ATCC 6258) as yeasts. 

For spectroscopic measurements in Chapter 3.2 we used E. coli (CECT101). E. coli strain BL21 (DE3) 

and E. coli DH5α were the strains used in Chapter 3.3. 

Light sources: The light source used in the inactivation experiments was selected in order to provide the 

highest possible overlap between the irradiation range and the absorption spectrum of the PSs. Different 

light sources were used. MRSA and P. aeruginosa inactivation (corresponding to Chapter 3.1) were 

irradiated with red light (600 -750 nm) with the Waldmann PDT 1200 lamp (Waldmann; Medizintechnik) 

with a fluence rate at the level of the samples of 40 mW·cm-2. A CW 532 nm laser beam (Cobolt Samba, 

Sweden) was used at low power density (40 mW·cm-2) for irradiation of TagRFP expressing E. coli in 

Chapter 3.3. Sorisa Photocare using a 35 mW·cm-2 fluence rate was used for the rest of PDI experiments 

(Chapters 3.1 and 3.3). Fluence rates were routinely measured using a power meter. Light wavelength 

was chosen depending on the type of experiment, namely, blue (475 ± 15 nm), green (535 ± 15 nm) or red 

(635 ± 15 nm). 

 

GENERAL METHODS 

Microbial growth and protein induction: Bacterial cells were aerobically grown overnight at 37 ºC in 

brain-heart infusion (BHI), lysogeny broth (LB) broth or tryptic soy broth (TSB) to stationary phase. A 

reinoculum was then grown in fresh LB medium at 37 ºC to an optical density at 600 nm (OD600) of 0.2 
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(start of log phase). TagRFPHis expression was induced with 50 µM solution of IPTG and miniSOGHis 

expression with 0.1 % arabinose for 1 hour at 37 °C to an attenuance value of ca. 0.6-0.7 at 600 nm or 

0.35 at 660 nm, corresponding to ca. 108 colony forming unit per milliliter (CFU·mL-1).5 If protein 

expression was not required cells were grown directly to the previous attenuance values. The cell 

suspensions were then centrifuged (5 min, 3000 rpm) and resuspended with sterile PBS or dPBS at pH 

7.4 at the same concentration. 

Candidas spp were grown overnight at 35 ºC in Sabouraud broth, and then subcultivated in new 

Sabouraud medium at 35ºC in an orbital shaking incubator at 130 rpm to an OD600 = 0.7, corresponding 

to ca. 107 CFU/mL. The suspensions were then centrifuged (5 min, 3500 r pm) and resuspended with 

sterile PBS at pH 7.4 at the same concentration for phototoxicity experiments. 

Cultures were maintained by two weeks of subcultures in agar-medium in the presence of the 

appropriate amount of antibiotics in the media when required (100 µg/mL disodium carbenicillin).  

 
Spectroscopic measurements in cell suspensions: Spectroscopic measurements were recorded on the 

systems previously described. Cell suspension samples were prepared as follows: bacterial suspensions 

were incubated in the dark with the desired amount of PS for the required contact time; when required, 

bacterial samples were centrifuged, excess PS removed and samples resuspended in PBS or dPBS to a 

final concentration of ~ 5 x 108 CFU·mL-1. The suspensions were gently stirred during the measurements 

to avoid cell settlement. 

 
Photodynamic inactivation protocol: Cell suspensions in PBS were incubated in the dark at rt for 30 

min with the appropriated amount of PS. Centrifugation (3 min, 12000 rpm) of aliquots was used to 

remove the excess of PS that was not taken up by the bacteria when experiments required it. Then, 

bacterial suspensions aliquots were placed in 96-well plates. The wells were illuminated from the top of 

the plates by light of the selected wavelenght. At the time points when the desired light doses had been 

delivered, aliquots were thoroughly mixed before sampling to avoid the settlement of bacteria. Light-

alone controls (without PS) were also performed for all experimental conditions in order to rule out any 

inactivation effect due to the light and heating effects. For determination of population reduction, aliquots 

were serially diluted, streaked on nutrient agar plates and incubated in the dark for 18 h at 37 ºC (bacterial 

cells and C. krusei) or for 36 h at 30 ºC (C. albicans). Experiments were carried out in triplicate for each 

condition. 
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Introduction 
 

We have previously introduced the emerging threat due to global diffusion of new antimicrobial 

infections as well as the continuously increasing resistance of pathogens against many of the commonly 

used antibiotics. Enhanced efflux pumps, loss of porins, antibiotic inactivation by enzymes and, most 

worrying, gene transfer codifying resistance to antibiotic among species are several of these strategies 

bacteria have developed or refined in the latest years (Scheme 1).1  

 

Scheme 1. Representation of the most common antibiotic resistance mechanisms. 1: Entrance of the antibiotic 

through porins. 2: Binding to the target. A: Loss of porins. B: Antibiotic inactivating enzymes (modification, B1, or 

hydrolysis, B2). C: Enhanced efflux. D: Pre-transcriptional modification of the target. E: P ost-translational 

modification of the target. (i) Bacterial chromosome bearing the gene encoding the target. (ii) Resistance plasmid 

bearing genes encoding for modifying enzymes. Image from reference 1 

In the past time immense efforts led to new natural and semi-synthetic antibiotics. Development of 

novel antimicrobial agents, derivatisation of currently known active molecules to overcome resistance, 

and the development of potentiators of commonly used antimicrobials represent current areas of 

investigation. For instance, the propagation of DNA extracted directly from environmental samples in 

laboratory-grown bacteria provides a means to study natural products encoded in the genomes of 

uncultured bacteria. Tetarimycin A, a tetracyclic MRSA-active antibiotic, was found this way.2  

It is foreseeable that, in spite of the immense expenditure, the therapeutic success will soon be only 

minimal. Past and current policies for dealing with resistance have been only partially effective. Thus, an 

imperious effort to the development of novel approaches to the problem is badly needed.3 Several 
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alternatives to antibiotic treatments will be briefly reported in the following paragraphs. Some of them are 

not novel, but their use was eclipsed mainly due to two causes: insufficient understanding among researchers 

at the moment of its discovery and the advent of antibiotics. 

• Use of polymicrobial vaccines: alternative in early stages of development. Koch’s postulates are the 

reference and have proven useful for vaccination against several diseases, but they do not adequately 

consider the pathogenesis of microbes with multiple virulence factors or polymicrobial infections. 

Even if a vaccination attempt successfully blocks virulence factor for one pathogen (i.e. a toxin), 

virulence could potentially be complemented by another factor produced by a neighbouring species 

in the polymicrobial community. Microbes can benefit from virulence factors of other organisms or 

strains during coinfection to enhance their own pathogenesis and colonisation. The eradication of 

one species from the polymicrobial community may be insufficient to reduce overall disease, as 

another organism present may fill the niche left behind.4 A vaccine composed of a multivalent 

cocktail of antigenic proteins from all microbes involved in disease pathology is expected to be 

required, making the approach still far from its use. In line with this idea, more modest attempts rely 

on the idea to use inhibitors of bacterial virulence functions. The rationale for this concept is that 

antivirulence drugs would deprive pathogenic bacteria of their virulence functions, which would 

enable their elimination by the body’s immune system. 

• Synbiotic approach: an overwhelming number of polymicrobial diseases are propagated on abiotic 

surfaces, such as intravenous and urinary catheters, stents, artificial heart valves, parenteral nutrition 

feeding tubes, pacemakers and orthopedic devices (e.g. prostheses). These implants may serve as 

sources of chronic infection and can potentially serve as a source of inoculation into the 

bloodstream, leading to sepsis. In these cases a failure of antimicrobial therapy requires an 

alternative treatment strategy, given the evidence that the administration of antibiotics may actually 

increase overgrowth by potentially pathogenic microorganisms.4 A synbiotic is defined as the 

combination of a probiotic and a prebiotic: an oligosaccharide indigestible by humans but able to be 

fermented by beneficial gut bacteria therefore promoting their growth and displacing the pathogenic 

colonies.4-6 

• Antimicrobial peptides: Antimicrobial peptides (hereafter AMPs) are small biological molecules 

(<10 kDa) with direct antimicrobial activity, including enzymatically synthesised compounds and 
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ribosomal-synthesised AMPs, provide effective microbial defence for all organisms from bacteria to 

mammals.7 Bacteriocins are a specific subgroup of AMPs that are produced by bacteria themselves 

and active against other bacteria.8,9 But AMPs can also be originated from fungi, plants and animals. 

Among the main drawbacks –to overcome if desired as a feasible therapy- is that the proteinaceous 

nature of AMPs makes them vulnerable to proteolytic enzymes and also the membrane-target makes 

the possibility of acquiring resistance in the middle/long term. 

• Miscellaneous treatments: here we include a repertoire of minority options that –in specific cases- 

can be useful. Examples include the use of vacuum-assisted closure, hyperbaric oxygen treatment 

and maggot debridement therapies. These techniques –in combination with conventional surgical 

treatments- have been proven to aid in the recovery and clearance of wound infections.4 

 
• Phage therapies: Bacteriophages were first identified in 1915 and were used as antimicrobial agents 

from 1919 onwards. Despite its initial successes and widespread application, their efficacy remained 

controversial. Although they were replaced by antibiotics in the west countries, bacteriophages 

remained a common therapeutic approach in parts of eastern Europe (especially in Georgia) where 

they are still in use. Bacteriophages are bacterial viruses that invade bacterial cells and, in the case 

of lytic ones, disrupt bacterial metabolism and cause the bacterium to lyse. It has been well 

established that phages can kill microorganisms which are resistant to many or all broad spectrum 

modern antibiotics. This effect has been shown 

both in vitro and in vivo and reflects the fact that 

phage mechanisms of bacterial killing differ 

radically from those of antibiotics. Despite its 

many advantages, its world-wide use is still to 

come. Some problems arise from controversial 

proof of efficacy and problems of 

stability/viability of some preparations in the 

beginning. Advanced purification techniques 

together with careful selection for lytic phages 

are key points in their feasibility for their 

potential common use.10    

Figure 1. Electron micrograph of bacteriophages 

attached to bacterial cell. (from Dr. Graham 

Beards ; Wikimedia Commons / Public Domain) 
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• Antimicrobial PDT: While the photodynamic effect was initially discovered in paramecia, the use in 

the microbial field was stopped due to the incapacity of typical antitumor PSs (neutral or anionic) to 

perform against Gram-negative bacteria. The better understanding of the system and the new 

developments in the photodynamic field have re-emerged antimicrobial PDT (hereafter aPDT) as a 

very promising strategy, particularly for the treatment of superficial and localised infectious 

diseases. Advantages over traditional antibiotics include a broad-spectrum activity (also against 

antibiotic-resistant spp) and the lack of development of resistance mechanisms due to the multi-

target process; one extra attractive feature peculiar to PDT as an antibacterial treatment is the 

possibility that the generated ROS may chemically destroy many of secreted virulence factors 

(especially those that are proteins).11  

 

Scheme 2. aPDT broad spectra of action.  
 

Moreover, aPDT it has gained use as research tool: to help identify the photochemical and 

photophysical mechanisms involved in inactivation, to develop potent and clinically compatible PS, 

to understand how photoinactivation is affected by key microbial phenotypic elements (multidrug 

resistance and efflux, virulence and pathogenesis determinants, biofilms), to explore novel delivery 

platforms inspired by current trends in pharmacology and nanotechnology and to identify 

photoinactivation applications beyond the clinical setting such as environmental disinfectants.12 
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In line with the first objective of the thesis we have focused our study in 3 different aPDT-based 

approaches: 

a) 3rd generation cationic PSs. 

While new families of PS have been developed and tailored, still many conventional 2nd generation 

PSs tend to aggregate in aqueous media due to π-stacking and hydrophobic interactions, resulting in self-

quenching of their photoexcited states. Thus, the photodynamic effect becomes significantly weaker. The 

concept of ‘3rd generation PSs’ evolved as a combination of the 2nd generation PSs associated to any drug-

delivery system which allows enhanced transport into the desired target.13 Examples of such delivery 

strategies comprise the use of emulsions or encapsulations with nanoparticles (NPs) and liposomes or 

association with antibodies or other biomolecules. However, they carry the risk of associated loss of 

photodynamic effect as well. When one considers the delivery strategy, the final receiver must be borne 

in mind. Gram-positive and Gran-negative bacteria differ in the composition of their bacterial wall, 

implying different susceptibility to PDT treatments. This fact, however, was only observed and 

understood in the 1990s, leading to a turning point in the use of aPDT.14 As previously described, the 

absence of external membrane in Gram-positive bacteria allows the entrance of conventional PS (neutral 

and anionic) while the highly organised and negatively charged outer membrane of Gram-negative 

bacteria retains them outside the outer membrane in most cases, preventing them from causing inner-cell 

damage upon illumination. The use of cell wall-disrupting agents such as EDTA or cationic polypeptides 

such as polymixin B was the next improvement step in this sense.15,16 However, the crucial discovery was 

the verification that PSs with intrinsically cationic charges at physiological pH were capable of achieving 

photoinactivation in both types of bacteria without the need for any co-administered agent.17,18 

Cationicity, thus, can be presented itself as a potential delivery tool for the objective to targeting Gram-

negative bacteria through a simplistic way minimising, a priori, loss of activity. Their overall positive 

charge ensures accumulation at the poly-anionic microbial cell surfaces in both types of bacteria. 

b) PSs conjugated to antimicrobial peptides 

An alternative approach to improve the susceptibility of Gram-negative bacteria to the photodynamic 

action of neutral PSs involves the covalent attachment of the PS to AMPs. AMPs are components of the 

innate defence system of many organisms and they are being considered a promising source of new 

antibiotics.19 Beyond the presence of several cationic amino acids, a s ubstantial proportion of 

hydrophobic amino acid residues permit most AMP to fold into an amphipathic structure that inserts into 



Chapter III. New strategies in aPDT 
 

55 
 

the phospholipid bilayer of the cell membranes. After insertion, AMPs act by either disrupting the 

physical integrity of the membrane or translocating across the membrane to hit internal bacterial targets.20 

This multi-target mode of action promises both low susceptibility to antibiotic resistance and a broad 

spectrum of activity against a v ariety of microorganisms. Among AMPs, the family of short proline-

arginine rich peptides attracts particular interest because of some unique features, such as a higher activity 

against Gram-negative bacteria, a relative stability against proteolysis, and a very low toxicity against 

mammalian cells. Apidaecin 1b, an insect 18-residue long peptide belonging to this family, is effective 

against a large number of Gram-negative bacteria and a few Gram-positive bacteria,21 where it acts by a 

non-pore-forming mechanism only partially elucidated. Mutagenesis22,23 and structure-activity 

relationship studies24 have identified the C-terminal half of apidaecin as essential for its antimicrobial 

activity and several studies have shown that the peptide is able to translocate a f luorescent tag into a 

bacterial cell.  

c) Fluorescent proteins as genetically encoded PSs. 

Because the PS is delivered from the cell exterior it has not been possible so far to separately study 

the contributions of external and internal damage, nor has it been possible to control the location of the PS 

and thus the primary site of photodamage.25 The small size of bacteria (Figure 2) precludes the use of 

fluorescence microscopy techniques due to the limited spatial resolution of this technique.  

 

Figure 2. Fluorescence image of TagRFP-expressing bacteria upon laser illumination at 532 nm (scale bar 5 µm) 

Electron microscopy (EM) has the necessary resolution and has recently revealed progression of 

envelope damage inflicted during irradiation.26 On the other hand, time-resolved studies of the formation 

and decay of 1O2 have been instrumental in establishing the coexistence of externally-bound and 

internalised PS molecules in E. coli.27 Still, a sound understanding of the role of drug location in the 

mechanism of cell death has been elusive to date. 
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Since the discovery of the fluorescent proteins (FPs), novel variants have been engineered to tailor its 

properties. The development of mutants able to generate reactive oxygen species is pursued as a tool in 

microscopy, chromophore-assisted light inactivation (CALI) or PDT. Genetically encoded 1O2 PS that are 

able to express inside the cell can be a solution both to the issue of PS location in aPDT mechanistic 

studies and as mere photosensitising agents.  

KillerRed was the first genetically encoded ROS fluorescent protein and it has led to a plethora of 

successful studies especially in the CALI  field,28,29 but its sex-appeal was partially lost when it was 

discovered it was not a purely 1O2 PS.30,31 Previous studies in the group have shown that some green and 

red FPs are able to photosensitise 1O2 (Scheme 3).32-34  

 

Scheme 3. Towards efficient genetically-encoded 1O2 production by FPs. Graphical representation of the studies 

performed in the group over the years. 

Firstly we have approached TagRFP, a monomeric orange FP generated from the wild-type red 

fluorescent protein (RFP) from sea anemone Entacmaea quadricolor.35 It possesses bright fluorescence 

with excitation/emission maxima at 555 and 584 nm, respectively and it was recently reported to be a 

purely 1O2 generator that is able to sensitise 1O2 with a Φ∆ value of 0.004.36 Flavin-binding FPs have 

recently gained attention due to its smaller size and the maturation of the chromophore without the 

presence of oxygen.37 We have also focused our attention to miniSOG (for mini Singlet Oxygen 

Generator), a recently-reported flavin-binding FP claimed to produce 1O2 with high yield.38-40 
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3rd generation cationic PSs 

AIM OF THE STUDY 

In the present study we analyse the photophysical properties as well as their behaviour against 

typical Gram-positive and Gram-negative bacteria of selected members of two families of cationic PSs as 

potential 3rd generation PSs. 

 

Graphical Abstract 1. Representation of the different behaviour of the tricationic porphycenes (a,b) or dendrimeric 

phthalocyanines (c,d) either in aggregated (a,c) or disaggregated (b,d) form. 

Porphycenes have long been shown as an interesting family of PS due to the appealing optical and 

photochemical properties conferred by their lower molecular symmetry as compared to porphyrins. A 

new tricationic porphycene, namely,  2,7,12-tris(trimethyl-p-tolyl)–17-(p-(methoxymethyl)phenyl) 

porphycene (NMe3MeO-TBPo) is compared against its predecessor, 2,7,12-tris(α-pyridinio-p-tolyl)–17-

(p-(methoxymethyl)phenyl) porphycene (Py3MeO-TBPo), in order to unravel the effect of different 

substituents on PDI activity (Scheme 4).  
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Scheme 4. Representation of tricationic porphycenes of study 

On the other hand, we have also explored phthalocyanines bearing dendrimeric substituents (zero 

and first generation). Dendrimer-encapsulated chromophores are attractive for PDT because the inner 

chromophores are partially shielded from media while maintaining their photoactive form. Four highly 

charged dendrimeric phthalocyanines varying in degree of ionicity (4 or 8 positive charges) and 

coordinating metal (zinc or ruthenium) are presented as potential photosensitising agents in terms of 

antimicrobial activity (Scheme 5). 

 

Scheme 5. Representation of zero (n = 0) and first (n = 1) generation of dendrimeric cationic ruthenium (upper 

scheme) or zinc (lower scheme) phthalocyanines of study.  
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RESULTS  

Photophysical characterisation of porphycene derivatives.  

The main photophysical properties of NMe3MeO-TBPo are summarised in Table 1 and compared 

to those already reported for Py3MeO-TBPo and the parent 2,7,12,17-tetraphenylporphycene (TPPo).41,42 

Figure 3 shows a compilation of spectral differences between both compounds. In panels a,c comparison 

of the absorption spectra of NMe3MeO-TBPo and Py3MeO-TBPo in methanol (MeOH) and water can 

be seen, respectively. The profile remains similar for both compounds and in line with that of other 

porphycene derivatives. Only a small red shift can be observed for NMe3MeO-TBPo. Namely, a main 

band in the Soret region plus a small shoulder and three bands in the Q-region can be distinguished in 

MeOH while a remarkable loss of structure occurs (especially in the Q-region) in aqueous media due to 

aggregation effects. However, the absorption coefficient values are smaller in both media for NMe3MeO-

TBPo. 

 

Figure 3. Absorption (a,c) and fluorescence spectra of Py3MeO-TBPo (red) and NMe3MeO-TBPo (blue) in MeOH 

(a,b) and water (c,d) (solid and dotted line, respectively). Insets: Excitation spectra of the fluorescence at 700 nm (c). 

Time-resolved fluorescence decays (b,d). Signal, signal fit and instrument response function at 700 nm upon 

excitation at 375 nm. 

Regarding fluorescence measurements (panels b,d), ΦF values are smaller for NMe3MeO-TBPo both  

in MeOH and water (1.4 and 2.5-fold, respectively; Table 1). Cresyl violet in MeOH (ΦF = 0.54)43 was the 

chosen reference (see methodology in chapter II). Again, no significative spectral changes can be 



3rd generation cationic PSs 
 

60 
 

observed between both compounds. While minor spectral shifts occur due to solvatochromic effect, both 

compounds in both media exhibit the same fluorescence emission spectra profile, again characteristic of 

porphycenes (a main band and a weaker vibrational overtone at lower energy that are the mirror image of 

the S1  S0 absorption transition).44 This result let us hypothesise that the aggregates are not emissive. 

The fluorescence excitation spectra in water (inset panel c) match that of the compounds in MeOH, 

clearly confirming that only the monomers are fluorescent. 

As for the singlet state kinetics, fluorescence decays are monoexponential, consistent with the 

previous observation that only the monomeric species are fluorescent.42 The lifetime values are equal in 

MeOH for both compounds, only a tiny difference being found in aqueous media where the lifetime is 

slightly longer for NMe3MeO-TBPo (Table 1). 

1O2 signals were detected through direct observation of the 1O2 luminescence at 1275 nm –

maximum of 1O2 phosphorescence- for samples excited at 532 nm (Figure 4). Analysis of the signals for 

NMe3MeO-TBPo resulted in decay lifetimes that matched the literature 1O2 lifetime values in neat water 

and MeOH, respectively. No rising signal could be observed, thus triplet lifetime could not be assessed 

through direct luminescence neither in water or MeOH. 

 

Figure 4. 1O2 luminescence signals observed at 1275 nm for optically matched solutions at 532 nm of NMe3MeO-

TBPo (solid lines) and reference PSs (dashed lines) in water (a) or in MeOH (b). Inset: magnification of NMe3MeO-

TBPo signal in water. 5,10,15,20-tetrakis(m-hydroxyphenyl)-21H,23H-porphine (m-THPP) in water (a) and 

5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine (TMPyP) in MeOH (b) are the chosen PSs. 

Comparison of the intensity of the 1O2 signals shown by NMe3MeO-TBPo to that of optically-

matched solutions of reference PSs (TMPyP; Φ∆ = 0.74 in water; m-THPP; Φ∆ = 0,69 in MeOH)45,46 are 

depicted in Figure 4 and yielded the Φ∆ values reported in Table 1. Once again, the comparison rendered 

slightly smaller values for NMe3MeO-TBPo respect to Py3MeO-TBPo. 
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Table 1. Summary of photochemical properties of the porphycenes of study. 
Compound Solvent λAbs / nma λFluo / nmb ΦFc τS / ns ΦΔd τ∆ / µs 

TPPoe Toluene 659 (5.0·104) 667 0.150 4.8 0.230 - 

Py3MeO-TBPo 

MeOH 655 (5.1·104) 664 0.075 2.6 0.193 10.0 

Water 644 (2.6·104) 657 0.005 1.8 0.004 3.7 

NMe3MeO-TBPo 
MeOH 657 (4.7·104) 669 0.054 2.4 0.180 9.6 

Water 641 (2.0·104) 660 0.002 2.0 0.003 4.1 
a maximum of the lowest-energy absorption band with ε values (M-1·cm-1) in brackets. b maximum of the fluorescence band. 
c,d values at 532 nm. e Data from reference 41 

 

Photoinactivation studies of porphycene derivatives 

As a first approach, porphycene NMe3MeO-TBPo was tested against representative members of the 

Gram-positive and Gram-negative families (namely E. coli and S. aureus) as well as against two Candida 

spp (albicans and krusei). Population reductions up to 6-log10 in colony forming units per millilitre 

(CFU/mL) could be achieved in a light-dose and PS-concentration dependent fashion (Figure 5). Results 

were comparable to those previously reported for Py3MeO-TBPo while slightly less harmful. Dark 

controls revealed less than 1-log10 reduction in CFU/mL at the assayed concentrations (data not shown). 

 

Figure 5. Bacterial (a,b) and yeast (c,d) survival curves with Py3MeO-TBPo (red solid line) and NMe3MeO-TBPo (blue dashed 

line) upon red LED light (635 ± 15 nm) irradiation. (a) Light doses: 30 J·cm-2 (Py3MeO-TBPo) and 20 J·cm-2 (NMe3MeO-TBPo) 

against S. aureus (filled inverted triangles); 60 J·cm-2 against E. coli (open squares). (b) Bulk concentrations: 2 µM against S. 

aureus; 5 µM against E. coli. (c) Light doses: 15 J·cm-2 (Py3MeO-TBPo) and 22.5 J·cm-2 (NMe3MeO-TBPo) against C. krusei 

(filled triangles); 30 J·cm-2 (Py3MeO-TBPo) and 22.5 J·cm-2 (NMe3MeO-TBPo) against C. albicans (open circles). (d) Bulk 

concentrations: 10 µM against C. krusei; 20 µM (Py3MeO-TBPo) and 35 µM (NMe3MeO-TBPo) against C. albicans. 
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The ability of NMe3MeO-TBPo as photosensitising agent was also assessed against more resistant 

strains, namely MRSA and P. aeruginosa. Over 6-log10 reduction in CFU/mL was achieved against 

MRSA for both porphycenes at concentrations below 0.75 µM keeping a light dose constant (Figure 6 a). 

Keeping the concentration constant at 0.5 µM, a population reduction up to 6-log10 CFU/mL could be 

achieved increasing the light dose to ca. 20 J·cm-2. A difference ca. 1-log10 CFU/mL was encountered 

when samples were centrifugated, the excess of PS removed, and bacteria resuspended in neat PBS prior 

to irradiation. This trend could be observed for both PSs under almost all conditions assayed. 

 

Figure 6. Bacterial photoinactivation and uptake studies. Py3MeO-TBPo (a,b; solid line) and NMe3MeO-TBPo 

(c,d; dashed line) survival curves against MRSA before (filled symbol) and after (open symbol) removing the excess 

of PS from the solution before irradiation. Light-dose was maintained at 7.5 J·cm-2 (a,c) and bulk concentration of 0.5 
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µM was assayed (b,d). FACS population distribution of cells incubated with 0.5 μM Py3MeO-TBPo (e,g) or 

NMe3MeO-TBPo (f,h) for 30 min before (e,f) and after (g,h) removing the excess of PS. 

Fluorescence-activated cell sorting (FACS) flow cytometry experiments were carried out in order to 

correlate the binding of the PS with the photokilling efficiency. Samples incubated with 0.5 µM 

porphycene for 30 min were analysed removing or not the PS excess. Panels e-h in Figure 6 show the 

overall profile of the FACS distributions. The clear shift of the maximum to lower populations and the 

overall lower fluorescence intensity are indicative of partial removal of the PS (see data in Table 2). 

Figure 7 shows the results correponding to analogue experimentes assayed against Gram-negative P. 

aeruginosa. We were gladly surprised to also achieve ca. 6-log10 reduction for both PSs in the two series 

of experiments, altough higher doses either of light or concentration were required. 

 

Figure 7. Bacterial photoinactivation and uptake studies. Py3MeO-TBPo (a,b; solid line) and NMe3MeO-TBPo 

(c,d; dashed line) survival curves against P. aeruginosa removing (empty symbol) or not (filled symbol) the PS 
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excess from the solution before irradiation. Light-dose was maintained at 100 J·cm-2 (a,c) and bulk concentration of 

20 µM was assayed (b,d). FACS population distribution of cells incubated with 0.5 μM Py3MeO-TBPo (e,f) or 

NMe3MeO-TBPo (g,h) for 30 min before (e,g) and after (f,h) removing the excess of PS. 

 
In this case, differences removing or not the excess of PS were less evident and differences only in 

the experimental errors were in the data set. FACS analysis was carried out for the optimum conditions, 

namely incubation with 20 µM PS for 30 min in the absence of light. Fluorescence measurements of the 

cell populations analysed rendered the results included in Table 2. As can be seen, and consistent with the 

survival curves, no significative difference in cell binding could be obtained removing or not the PS 

excess. Interestingly, the population profiles were not as narrow as for MRSA. This was especially 

noticeable for the case of NMe3MeO-TBPo where 2 different populations could be observed.  

 
Table 2. FACS fluorescence distribution upon uptake experiments. 

 Fluorescence Intensity / Counts 

Compound PS removal MRSA P. aeruginosa 

Py3MeO-TBPo 

NO 2600 ± 900 4200 ± 1000 

YES 2100 ± 400 4300 ± 2000 

NMe3MeO-TBPo 
NO 2600 ± 700 2600 ± 900 

YES 2000 ± 900 2600 ± 700 

    

 

Photophysical characterisation of dendrimeric charged phthalocyanines.  

A compilation of the photophysics of the 4 dendrimeric charged phthalocyanines is summarised in 

Table 3. As we will see in the following paragraphs, the different behaviour between organic and aqueous 

solvents has very much to do with aggregation issues. 

Figure 8 shows the normalised absorption spectra of all four phthalocyanines in tetrahydrofuran 

(THF), water and dimethylsulfoxide (DMSO). As previously anticipated, marked changes appear due to 

the degree of aggregation that they exhibit in each solvent. Aside from minor peak shifts derived from 

solvatochromic effects, the important changes rely in the relative intensities of the bands in each region. 

The spectrum in DMSO is taken as representative for the monomeric form, characterised by a narrow and 

intense red Q band.47 The general trend for three out of the four compounds is that they tend to 

disaggregate in aqueous media. This is not completely clear for compound ZnCat4+ (Panel a) whose Soret 
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band, but not the Q region, resembles that in DMSO. Both ruthenium compounds pretty much completely 

disaggregate in water. In spite of having the same charges as their zinc analogues, the presence of the 

apical pyridil groups seems to prevent aggregation. 

 

Figure 8. Normalised absorption spectra of dendrimeric cationic phthalocyanines in DMSO (green dashed line), THF 

(red dotted line) and water (blue solid line). ZnCat4+ (a), ZnCat8+ (b), RuCat4+ (c) and RuCat8+ (d). 

 
Fluorescence of the compounds was also studied in the same series of solvents. As observed in 

Figure 9 and Table 3, there is a huge difference in behaviour depending on the nature of the central metal 

ion, only zinc phthalocyanines being fluorescent. Moreover, a great difference in ΦF values can be 

encountered for a given compound depending on the medium, once again due to aggregation.  

 
Figure 9. Normalised fluorescence spectra of dendrimeric cationic phthalocyanines in DMSO (green dashed line), 

THF (red dotted line) and water (blue solid line). ZnCat4+ (a), ZnCat8+ (b) 
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Especially significant is the case of ZnCat8+ that shows ΦF values two orders of magnitude different 

in THF and water (Table 3). Similarly, the fluorescence of both ZnCat4+ and ZnCat8+ was completely 

lost in PBS. Fluorescence decay kinetics were also studied. 

Finally, the ability of the phthalocyanines to sensitise the production of 1O2 was studied both in THF 

and in aqueous media. Φ∆ measurements were performed by direct observation of 1O2 luminescence at 

1275 nm (as described above for porphycene derivatives), exciting either at 532 nm (for RuCats) or at 

355 nm (for ZnCats). In line with the fluorescence results, the photosensitising properties of the 

phthalocyanines hinged on the degree of aggregation, being more efficient when less aggregated. This 

effect was –once again- especially exagerated for compound ZnCat8+ whose Φ∆ value in water was two 

orders of magnitude higher than in THF (Table 3). The τ∆ values indicate that RuCats are better 1O2 

quenchers than ZnCats, as their τ∆ values are shorter than reported in the literature for the solvents used 

(21 µs in THF and 64 µs in D2O).48 This effect has previously been reported for other ruthenium 

dendrimeric derivatives, although to a lesser extent.49  

Table 3. Summary of photochemical properties of the dendrimeric phthalocyanines of study. 

Compound Solvent λAbs / nm λFluo / nm ΦF
 a ΦΔ

b τ∆ / µs 

ZnCat4+ 

THF 679 688    < 1·10-4 0.002 20.8 

D2O 634 692 0.035 0.022 62.8 

ZnCat8+ 
THF 684 667 0.002 0.004 21.0 

D2O 690 698 0.538 0.119 64.0 

RuCat4+ 
THF 628 - < 1·10-4 0.011 19.7 

D2O 633 694 < 1·10-3 0.015 45.3 

RuCat8+ 
THF 631 - < 1·10-4 0.001 19.4 

D2O 636 694 < 1·10-3 0.017 38.7 
a Rhodamine 6G as reference (ΦF (ethanol) = 0.94). 50 b 5,10,15,20-Tetraphenyl-21H,23H-porphine (TPP ; Φ∆ (THF) = 

0.62) and meso-tetrakis(4-sulfonatophenyl)-porphyrin (TPPS ; Φ∆ (D2O) = 0.64) as references.46 

 

Photoinactivation studies of dendrimeric charged phthalocyanines 

All 4 dendrimers were assayed against E. coli to assess their potential use as photosensitising agents 

(Figure 10). Dark toxicity was below 1-log10 CFU/mL for the ZnCat compounds and RuCat8+, but ca. 2-

log10 CFU/mL for RuCat4+ at concentrations above 5 µM. A remarkable difference in PDI efficiency was 

also displayed depending on the coordinated metal. Undoubtedly, ZnCats performed far better than their 
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ruthenium analogues. Ca. 6-log10 CFU/mL reductions were achieved at concentrations as low as 2.5 µM 

for ZnCat4+ and 5 µM for ZnCat8+ at 30 J·cm2 light dose. In contrast, a m ore modest reduction was 

obtained when using RuCat4+ in even more demanding conditions (ca. 5-log10 reduction at best with 5 

µM and 60 J ·cm2, but with dark toxicity over 1-log10 reduction). Compound RuCat8+ caused only a 

modest 2-log10 CFU/mL reduction even at 50 µM and 100 J·cm2; data not shown). 

An interesting effect could be observed for all families of compounds at high concentration: instead 

of achieving higher killing efficiency the efficiency worsened. Aggregation above a concentration 

threshold could be a plausible explanation to this behaviour. 

 

Figure 10. E. coli photoinactivation studies with ZnCat4+ (a), ZnCat8+ (b), RuCat4+ (c) and RuCat8+ (d) upon red 

LED light (635 ± 15 nm) irradiation. Different concentrations were used at different light doses: 10 J·cm-2 (triangles), 

30 J·cm-2 (filled squares), and 60 J·cm-2 (inverted triangles). Dark toxicity is represented with empty squares. 
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DISCUSSION 

Porphycene is a s tructural isomer of porphyrin and constitutes an interesting new class of 2nd 

generation PS. Porphycene derivatives show higher absorption values than porphyrins in the red spectral 

region (λ > 600 nm, ε ~ 50000 M-1·cm-1) owing to the lower molecular symmetry.44 Photophysical and 

photobiological properties of porphycene derivatives make them excellent candidates as PSs and have 

proven interesting in several recent studies addressing not only antimicrobial but also tumor targets.42,51-53 

Based on the encouraging results obtained with the first cationic aryl porphycene Py3MeO-TBPo 

against a wide variety of pathogenic spp both in vivo and in animal model42 a second member of the 

family of the tricationic porphycenes was synthesised in order to further investigate in the properties of 

the family. Decades of research on porphycenes has built the knowledge that most dramatic photophysical 

changes arise either by increasing the conjugation (electronic circulation of the core) or with the 

introduction of heteroatoms to the porphycene core.44 Thus, one would not expect remarkable changes 

due to the presence of trimethylammonium groups instead of pyridynium groups. Spectral changes were 

not huge; however, a general decrease in the photophysical parameters of study for NMe3MeO-TBPo 

was found. Moreover, a remarkable decrease in the ΦF value was observed not fully in line with the 

decrease in the τs. A notorious decrease in the ε value was also observed. Still, both Py3MeO-TBPo and 

NMe3MeO-TBPo photophysics lie far from those of parent TPPo. For instance, the τs values are almost 

half faster as compared to TPPo in toluene (4.8 ns), that can be attributed both to new deactivation 

pathways due to intermolecular interactions consequence of aggregation but also to the higher degrees of 

freedom conferred by the periferical residues. 

The PDI experiments resulted in a similar antimicrobial efficiency for both tricationic porphycenes 

with slight differences depending on the microbial type. In the case of Candida spp, Py3MeO-TBPo 

clearly outperformed NMe3MeO-TBPo. The reverse situation was found for MRSA and P. aeruginosa 

even though the difference between both compounds was below 1-log10. One remarkable difference was 

the significative dark toxicity of Py3MeO-TBPo at the highest concentration needed to photoinactivate P. 

aeruginosa. More significative is the fact that Py3MeO-TBPo had previously been unable to inactivate P. 

aeruginosa at 100 μM porphycene concentration and light dose up to 100 J·cm-2.42 However, both light 

source and, especially, cell strain (ATCC 19660 vs ATCC 25668) were markedly different. In fact, it is 

described that ATCC 19660 strain is especially virulent when inoculated in an area of burned skin, 
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producing septicemia in mice while strain ATCC 25668 is sensitive to common antibiotics such as 

carbenicillin or gentamicin.54 

The second result to debate is the outcome regarding removal of the unbound PS prior to irradiation. 

In the case of MRSA the difference was ca. 1-log10 in performance for both PSs; however, little loss of 

efficiency occurred when same experiments were tested for P. aeruginosa. Overall, no clear effects can 

be attributed to the difference in charge density among Gram-positive and Gram-negative bacteria. In 

fact, previous studies for Py3MeO-TBPo also showed no significative differences between inactivation 

curves recorded either in the presence of excess of PS or after three washings.42 

 As far as the bacterial wall in Gram-negative is much more densely packed and negatively charged 

it is expected that the cationic PS will be better attached and less PS will be lost after centrifugation step 

as compared to the same experiment in Gram-positive bacteria. This hypothesis seems to correlate with 

the data obtained in our flow cytometry studies (bearing in mind the high error associated with the mean 

fluorescence intensity; Table 2). Thus, the positive charges on the PS appear to promote a tight 

electrostatic interaction with negatively charged sites at the outer surface of the Gram-negative bacteria. 

The fact that the efficiency of the photoinactivation processes is not highly altered seems to indicate that 

only the PS bound to the cells is involved in the photodynamic effect.  

Dendrimer-encapsulated chromophores are attractive for PDT because the bulky substituents 

prevent aggregation of the macrocycle. Their large dimensions should allow prolonged circulation in the 

blood and higher accumulation of dendronised PSs in the tumor tissues via the so-called enhanced 

permeation retention effect.55 We have assessed the potential of four different cationic dendrimeric 

phthalocyanines as potential antibacterial PSs. The study of the photophysics revealed substantial 

differences among them, the ZnCats dendrimers showing superior properties than the RuCats. This 

behaviour perfectly correlates with the results obtained in the PDI treatments against E. coli. While 

ZnCat4+ and ZnCat8+ achieved bacterial reduction over 6-log10 CFU/mL at low concentration/light doses 

this is not the case for RuCats, especially for the octacationic compound. 

The incorporation of positive charges in PSs has been a benchmark in the reemerging of aPDT as a 

potential platform to fight antibiotic-resistant microbials. Still, cationicity is not a straightforward 

property and caution is to be borne in mind since most PSs are comprised of a highly hydrophobic core. 

In spite of the solubility in aqueous media that cationicity confers, one must not forget the fact that 
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aggregation is likely to be present. And most of the times aggregation means loss of photodynamic 

potential. The photophysical studies summarised in Tables 1 a nd 3 clearly exemplify that some 

photophysical properties can decrease up to two orders of magnitude (i.e. ΦF or Φ∆ values). It is 

interesting to note that the disaggregated form –and thus the one that exhibits best photophysical 

properties- corresponds to opposite media depending on the family of the studied compounds. Thus, for 

porphycenes the best performance in cuvette is found in organic-like media, while for the dendrimeric 

compounds the most powerful skills arise in aqueous media.  

Results show that both cationic porphycenes as well as ZnCats perform nicely against E. coli, 

reaching 6-log10 reduction in CFU/mL at concentrations 5 µM or lower. We infer three different issues in 

the explanation: A) there must be different localisation of the active compounds so that in all cases they 

are disaggregated (no matter where or how). B) In line with the previous statement, the 

hydrophobicity/hydrophilicity balance must be an important factor. C) Finally, but not least important, the 

number and distribution of charges in the compounds is also a key parameter. Some studies have 

attempted to establish relationships between PDI efficiency and the overall charge of the PSs. The study 

of Caminos et. al showed that the photosensitising efficiency of a series of meso-substituted cationic 

porphyrins against E.coli , followed the trend (PS)3+ > (PS)4+ >> (PS)2+ > (PS)+.56 In our case, a shallow 

comparison would point out that ZnCat4+ outperforms them all while tricationic Py3MeO-TBPo and 

NMe3MeO-TBPo, and ZnCat8+ work more or less with the same efficiency. However, it is very risky to 

extrapolate the results as different families with markedly different behaviour are being compared. Thus, 

no extra conclusions should be taken without further investigation under same conditions.  

Photokilling efficiency among dendrimers seems to go in line with the photophysics of the 

compounds. In general, ZnCats showed better properties, namely higher ΦF and Φ∆ values. However, 

behaviour in the presence of cells should be further studied. In order to correlate the promising results in 

killing efficiency one could hypothesise that in the presence of bacteria ZnCats will be able to 

disaggregate in order to exhibit their best photophysical behaviour. On the contrary, RuCats will probably 

have worse affinity towards E. coli. Especially, this is expected for RuCat8+ whose killing efficiency 

rendered extremely poor. 
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CONSLUSIONS 
Six different cationic PSs have been assayed against bacterial cultures in order to correlate its 

photochemical behaviour in cuvette with their photokilling efficiency. The differences arising from their 

macrocyclic inner structure renders different behaviour in solution towards aggregation. While 

porphycene family seems to disaggregate more in organic solvents dendrimeric phthalocyanines present 

better skills in aqueous media. Still, best candidates in both families achieve a similar photoinactivation 

efficiency towards E. coli, indicating disaggregation when uptaken and consequent different localisation. 

The more complete study of tricationic porphycenes renders a higher affinity towards Gram-negative 

organisms as deduced from the photoinactivation and flow cytometry results comparing experiments 

removing or not the excess of PS. Finally, the different amount of charges seem to have an important 

effect, while further conclusions cannot be obtained since different conditions have been used. 
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SPECIFIC EXPERIMENTAL SECTION 

Chemical synthesis. 2,7,12-Tris(r-pyridinio-p-tolyl)-17-(p-(methoxymethyl)phenyl) porphycene 

(Py3MeO-TBPo) was synthesised as previously described42 and its analogue 2,7,12-

tris(trimethylamonioum -p-tolyl)-17-(p-(methoxymethyl)phenyl) porphycene (NMe3MeO-TBPo) with 

small variation in the last step. Purity of NMe3MeO-TBPo was confirmed by thin layer chromatography 

using a pre-coated TLC plate (Silica gel C18 0.25 mm; Macherey-Nagel) in a t rifluoroacetic 

acid/acetonitrile mixture (20:80), providing a unique spot at Rf = 0.26. 1H-NMR (δ / ppm, d6-MeOD): 

10.02 (brs, 4H), 9.98 (brs, 4H) 8.58 (d, 6H), 8.38 (d, 2H), 7.84 (d, 2H), 8.06 (d, 6H); 4.86 (s, 6H), 4.58 (s, 

2H); 3.72 (s, 2H), 3.59 (s, 2H), 3.30 (s, 27H).  

UV/Vis (MeOH): 657 (46483), 626 (41129), 584 (32590), 393(80599), 377 (102543) 
 
HRMS (ESI-TOF) m/z C58H64N7O1

3+ [M-3Br] found, 290.5054.  

Flow Cytometry. The interaction of PSs with bacteria was evaluated by flow cytometry. For these 

experiments, the bacteria were subjected to the same treatments used for PDI experiments, but instead of 

being illuminated after incubation and washing they were analysed with a FACSCantoTm II flow 

cytometer. Samples were excited with the 488 nm laser, and fluorescence emission signals were recorded 

at wavelengths higher than 670 nm. The bacteria population was isolated from instrument noise by setting 

electronic gates on the dual-parameters dot plots of forward scatter against side scatter. For each sample, 

20000 events were acquired and analysed with the FACSDiva software (BD). Samples not incubated with 

the PSs were used to determine the cell background fluorescence. 

 

 

 
 

  





AMP-PS conjugates 
 

74 
 

 

AMP-PS conjugatesi 

 

AIM OF THE STUDY 

Binding to a cationic antimicrobial peptide offers the attractive prospect of improving both the water 

solubility and the localisation of the photoactive drug in bacteria. In this work we have compared a 

number of free and apidaecin-conjugated PSs differing in structure and charge. 

We report the photophysical characterisation and relation to the phototoxicity studies against E. coli 

and MRSA of new conjugates in which apidaecin and its C-terminal octapeptide were modified at the N-

terminus with neutral or charged porphyrin and porphycene PSs. 

Our results indicate that the conjugation of per se ineffective highly hydrophobic PSs to a cationic 

peptide produces a photosensitising agent effective against Gram-negative bacteria. Apidaecin cannot 

improve the phototoxic activity of cationic PSs, which mainly depends on a very high yield of singlet 

oxygen production in the surroundings of the bacterial outer membrane. Apidaecin−PS conjugates appear 

most promising for treatment protocols requiring repeated washing after sensitiser delivery. 

 

 

Graphical Abstract 2. Representation of the combination of different PSs and Apidaecin 1b seeking synergistic 

effects for enhanced aPDT treatments.  

 

                                                 
i This section has been adapted from the work published in J.Med.Chem. 2013. Vol.56. pp 1052-1063  
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RESULTS  

Conjugates description.  

 4 conjugates comprised by Apidaecin 1b and 4 different PSs (two neutral porphyrins, a tricationic 

porphyrin and a neutral porphycene) were the basis of the study (Scheme 6). Further details on the 

synthesis, purification and characterisation of the compounds can be found in reference 57.  

 

Scheme 6. Structure of the PSs of study and the conjugated peptides 

 
Absorption and fluorescence of the conjugates.  

 The spectroscopic and photophysical properties of the PSs and their conjugates were measured in 

aqueous and organic media and in cell suspensions in order to assess structural and environmental effects 

as well as their correlation with antibacterial activity. 

MeOH. Figures 11 and 12 show the absorption and fluorescence spectra of the free PSs and of their 

peptide conjugates in MeOH.  
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Figure 11. Absorption spectra in MeOH (A−D), PBS (E−H), and E. coli suspensions (I−L), normalised to facilitate 

their comparison. The concentration is 5 μM for all compounds. MeOH: (A) 4e (red) and 4b (blue); (B) 2c (red) and 

2a (blue; dichloromethane (DCM) as solvent); (C) 1d (red) and 1b (blue); (D) 1c (red) and 1b (blue). PBS: (E) 4e 

(red) and 4b (blue); (F) 2c (red) and 2a (blue); (G) 1d ( red) and 1b (blue); (H) 1c (red) and 1b (blue). E. coli 

suspensions (green): (I) 4e; (J) 2c; (K) 1d; (L) 1c. Spectra in MeOH (red) and PBS (blue) are given for comparison. 
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Figure 12. Emission spectra in MeOH (A−D), PBS (E−H), and E. coli suspensions (I−L), normalised to facilitate 

their comparison. The concentration is 5 μM for all compounds. MeOH: (A) 4e (red) and 4b (blue); (B) 2c (red) and 

2a (blue; DCM as solvent); (C) 1d (red) and 1b (blue); (D) 1c (red) and 1b (blue). PBS: (E) 4e (red) and 4b (blue); (F) 

2c (red) and 2a (blue); (G) 1d (red) and 1b (blue); (H) 1c (red) and 1b (blue). E. coli suspensions (green): (I) 4e; (J) 

2c; (K) 1d; (L) 1c. Spectra in MeOH (red) and PBS (blue) are given for comparison. 
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While the spectra of porphyrins are essentially insensitive to conjugation (panels A, C, D), clear 

changes can be observed for the porphycene (panel B). In turn, the ΦF value does not change appreciably 

for the porphyrins while it drops by ca. 50% for the porphycene (Table 4). Finally, all porphyrins show 

monoexponential fluorescence decay kinetics and conjugation does not change the lifetime values either 

(Table 4). Again, the situation is different for the porphycenes in that the conjugate 2c shows 

biexponential kinetics unlike the free porphycene 2a (Table 4) and on average the singlet state decays 

faster (Table 4). 

Table 4. Fluorescence properties of the peptide conjugates and model compounds in MeOH, PBS and in E. coli 

suspensions. (Fractional amplitudes in parentheses) 

 λF, max / nm   ΦF  τS / ns 

Compound MeOH PBS E. coli  MeOHa PBSb  MeOH PBS E. coli 

           

1b 647 nsc -  0.040 ns  10.1 ns - 

1c 647 651 651 

 

0.050 0.006 

 

9.8 
10.7 (0.82) 

3.1 (0.18) 

10.5 (0.46) 

7.5 (0.33) 

3.1 (0.21) 

1d 646 652 652 

 

0.044 0.006 

 

9.8 
6.1 (0.61) 

2.6 (0.39) 

5.9 (0.11) 

4.9 (0.48) 

2.5 (0.41) 

2a 715 ns -  0.030d -  1.46d - - 

2c 697 - - 
 

0.016 <1·10-3 
 0.9 (0.94) 

9.6 (0.06) 
- 

0.9 (0.75) 

5.2 (0.25) 

4b 656 675 -  0.022 0.008  7.9 4.2 - 

4e 655 660 660 
 

0.024 0.018 
 

8.1 
4.2 (0.49) 

7.1 (0.51) 

4.2 (0.48) 

7.1 (0.52) 

a Cresyl violet as standard (ΦF (MeOH) = 0.54.43 b TMPyP as standard (ΦF (PBS) = 0.017).58 c Not soluble. d In toluene. 

 

Aqueous solutions (PBS). Porphyrin 4b is water soluble as a co nsequence of its positively- and 

negatively-charged groups. It remains water soluble after conjugation (4e) with small but clear shifts in 

the position of the Soret and Q absorption bands and changes in their relative intensities (Figure 11E). 

The fluorescence spectrum of 4b shows a single, structureless broadband (Figure 11E), a behaviour 

strikingly different from that in MeOH but in line with that of the related tetracationic TMPyP.59 

Conjugation to the peptide (4e) leads to partial recovery of the two well-resolved fluorescence bands 

observed in MeOH. The fluorescence decay kinetics of 4b is monoexponential, albeit with lifetime much 
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shorter than in MeOH. For the conjugate 4e two decay components can be observed, whose lifetimes are 

close to those of 4b in MeOH and in PBS, respectively (Table 4). The kinetics are independent of 

concentration over 3 orders of magnitude (Figure 13).  

Figure 13. Time-resolved fluorescence at 660 nm in MeOH and IRF (grey) upon excitation at 405 nm, normalised to 

facilitate their comparison. A) 4e at 5 μM (red), 0.5 μM (blue) and 0.05 μM (green). B) 1d at 5 μM (red), 0.5 μM 

(blue) and 0.05 μM (green). C) 1c at 5 μM (red), 0.5 μM (blue) and 0.05 μM (green). 

On the other hand, porphyrin 1b and porphycene 2a are insoluble in water and therefore no 

fluorescence can be recorded in this solvent. Conjugation to the peptides (1c, 1d and 2c, respectively) 

renders them water-soluble but the spectroscopic and photophysical properties change substantially 

relative to MeOH: the absorption spectra show broadening of the Soret band and loss of structure in the Q 

region (Figure 11F-H) and the fluorescence is dramatically quenched. In addition, the fluorescence 

spectra of 1c-1d are slightly red shifted (Figure 12G,H), and the decays are biexponential (Table 4) and 

show a clear concentration trend (Figure 13B,C). 

E. coli suspensions. The conjugate 4e shows in cell suspensions the same absorption and fluorescence 

properties as in PBS (Figures 11I-12I and Table 4). On the other hand, there are evident changes for 

conjugates 1c and 1d relative to PBS, particularly in the absorption spectrum and in the fluorescence 

kinetics, which show a third decay component not present in PBS or in MeOH (Table 4). Finally, 

porphycene conjugate 2c shows a very similar absorption spectrum in PBS and in E. coli suspensions 

(Figure 11J). However, while we could record no fluorescence in PBS, we were nevertheless able to 

observe extremely weak biexponential fluorescence decay in cell suspensions (Figures 12, and Table 4). 

Singlet oxygen production and decay. All free and conjugated PSs were able to photosensitise the 

formation of 1O2 in MeOH as evidenced by its phosphorescence at 1275 nm. The quantum Φ∆ values 

were in the 0.6-0.7 range for the porphyrins and 0.1-0.3 for the porphycenes (Table 5). The kinetics of 

1O2 production matched the results of laser flash photolysis experiments for the triplet PS decay (data not 
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shown). Likewise, an excellent match was found between the observed lifetime of 1O2 and literature 

values. In PBS, only porphyrins 4b and 4e retained their high ability to produce 1O2. All other 

compounds experienced a decrease of the Φ∆ value by 20-30-fold (porphyrins 1c and 1d) or even 100-

fold (porphycene 2c; Table 5). Inspection of the kinetics of 1O2 reveals that production of 1O2 by 

conjugate 4e is as fast as by the free porphyrin 4b (Table 5), yet for the conjugates 1c, 1d and 2c it is one 

order of magnitude slower. On the other hand, the lifetime of 1O2 for all conjugates in dPBS is shorter 

than the value expected in this solvent (65 μs),60 which is actually observed only for the free porphyrin 

4b. When E. coli suspensions were studied, the 1O2 signals showed essentially the same pattern as in PBS 

solutions (Table 5).  

Table 5. Kinetics of singlet oxygen production (ΦΔ) and decay (τ∆) of the peptide conjugates and model compounds 

in air-saturated MeOH, PBS and E. coli suspensions. 

Compound  
Φ∆  

 
τ

∆
 / µs 

MeOH a PBS b MeOH PBSc E. colid 

1b  0.63 Ns
e
  9.8 f ns - 

1c 
 

0.70 0.020  9.8 
3.0 

43g 
2.3 

1d  0.66 0.036  9.5 45g - 

2a  0.26h ns  - ns - 

2c  0.14 0.001  9.8 42g - 

4b 
 

0.69 0.73  9.6 
3.6 

60g 
3.6 

4e 
 

0.67 0.89  9.6 
3.6 

36g 
3.6 

a TMPyP as reference (Φ∆  (MeOH) = 0.74).46 b TPPS as reference (Φ∆  (water) = 0.69).46 c Literature value 
3.5 µs in PBS and 65 µs in dPBS.61 d In PBS.  e Not soluble. f Literature value 10.4 µs.61 g In dPBS. h In 
toluene. 
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DISCUSSION 

In a p revious communication it has already been shown that the conjugate 1c is endowed with 

antibacterial activity upon light activation.57 In this work we have extended the investigations towards 

other porphyrin-apidaecin conjugates, containing either neutral or cationic groups in order to assess the 

effects of structural modifications. Porphycene, a structural isomer of porphyrin, was also included in the 

study for its larger absorption coefficients in the red part of the spectrum, where light can deeply 

penetrate in tissues (Scheme 6). Because positively-charged PSs are effective in PDT against Gram-

negative bacteria without the addition of outer membrane-disrupting agents,62 we hypothesised that a 

conjugate between apidaecin and a ca tionic porphyrin could further promote the uptake of the PS in 

Gram-negative bacteria, thereby reducing the minimum effective dose. Moreover, in order to establish 

whether the antimicrobial peptide is able to direct the PS against specific bacterial targets, we synthesised 

also a conjugate between porphyrin 1b and a short cationic nonapeptide (GPRPPHPRL) corresponding to 

the C-terminal segment of apidaecin.  

Although the mode of action of apidaecin has not been determined in detail, several evidences 

suggest that this peptide enters E. coli cells by a non-pore forming mechanism and, once inside the cell, it 

interacts with components of the protein synthesis machinery, impairing protein synthesis and folding. 

The full-length apidaecin sequence is very important and the C-terminal nonapeptide does not possess 

any antibacterial activity63 nor is able to translocate a fluorescent cargo into bacterial cells.64 Thus, most 

probably, the conjugate with this cationic peptide (1d) can effectively bind to the bacterial cell wall 

without being able to reach the cytosol.  

Efficient PSs for PDT must have appropriate photophysical properties, such as an intense red-light 

absorption band and a high quantum yield of generation of both the long-lived excited triplet state and 

cytotoxic ROS, in particular 1O2. To establish whether the peptide moiety negatively affects the PS 

photosensitising efficiency, the porphyrin-peptide conjugates were submitted to a detailed photophysical 

characterisation.ii  

                                                 
ii For the sake of a more complete discussion, correlation with phototoxicity results as well as with FACS and circular dichroism 
(CD) spectroscopy has been included even though they were conducted by our collaborators in the Biology and Chemistry 
departments of the University degli studi di Padova. Further data can be found in the published article J.Med.Chem. 2013. Vol.56. 
pp 1052-1063 
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The fluorescence properties and the 1O2 production ability of the peptide conjugates 1c-d and 4e in 

MeOH (Tables 4 and 5) are essentially identical to those of free PSs, demonstrating that the peptide 

moiety exerts no influence on the PS photosensitising efficiency in this solvent. Only in the case of 

porphycene 2a changes can be observed in the absorption spectrum and a reduction by about 50% of the 

ΦF value of the PS and in 1O2 production after conjugation to the peptide, which may be ascribed to 

interactions between the peptide and the macrocyclic core.  

The situation is different in aqueous environment where the photophysical data change considerably 

relative to MeOH for all conjugates and particularly for those containing a neutral PS. The decrease in ΦF 

value, the concentration dependence of the fluorescence kinetics, and the slow kinetics of 1O2 production 

in 1c-d and 2c reveal the presence of intermolecular interactions as observed also by CD spectroscopy 

(data not shown). Such interactions account also for the 20-fold lower production of 1O2 in PBS relative 

to MeOH (Table 5). Nevertheless, following illumination (with blue light for 1c-d and red light for 2c) 

the conjugates resulted phototoxic against E. coli cells, inducing a decrease of survival of 3-4 log10 at 15 

µM concentration (data not shown). On the other hand, the unconjugated PS 2a was completely 

ineffective towards E. coli (data not shown), consistently with data previously reported for 1b57 and other 

neutral porphyrins, which are unable to diffuse through the highly organised outer membrane of Gram-

negative bacteria.65  

Peptide conjugates 1c-d and 2c associate efficiently to E. coli cells, as suggested by the observation 

that repetitive washing of bacteria treated with conjugates, before illumination, caused only a moderate 

reduction of phototoxicity (data not shown). In the case of 1c-d this is also supported by the flow 

cytometry results (data not shown). Porphycene was not fluorescent enough for FACS studies but the 

detection of fluorescence by time-resolved techniques in the E.coli suspensions, but not in PBS (Table 4), 

is taken as proof for binding.  

A deeper understanding of the type of binding/association of 1c-d to E. coli cells was obtained by 

analysing the fluorescence decay kinetics: unlike PBS or MeOH, three decay components were observed 

in cell suspensions, which suggest multiple binding sites (Table 4). The match between two of the three 

observed lifetimes with those detected in PBS indicates that one binding site is located in an aqueous-like 

environment. Thus, the third decay component suggests that an additional binding site exists where the 

conjugates experience a less hydrophilic environment. However, the phototoxicity, the photophysical and 
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flow cytometry results for the apidaecin conjugate 1c and its truncated analogue 1d are so similar that it is 

difficult to propose a different localisation of these conjugates in E. coli cells. Most probably both 

conjugates can diffuse through the OM and localize in different environments, but since the C-terminal 

apidaecin fragment is unable to translocate a PS across the cytoplasmic membrane, we are led to conclude 

that the apidaecin conjugate is also not able to reach the bacterial targets of apidaecin in cytosol. 

The conjugate between the cationic porphyrin 4e and apidaecin possess a +6 net positive charge, 

well distributed along the whole molecule that is expected to discourage the aggregation phenomena 

observed in conjugates 1c and 2c. In confirmation of this, the far-UV CD spectrum of 4e in water is very 

similar to that of the free peptide and no dichroic signal, indicative of porphyrin-porphyrin interactions, 

was detected in the Soret band region (Figure 11 A and B). Aggregation can also be ruled out by the lack 

of concentration effects on the decay kinetics (Figure 13). It can therefore be safely concluded that the 

major differences observed between 4b and 4e (Table 4) are due to interactions between apidaecin and 

the porphyrin within the conjugate.  

Comparison of the fluorescence spectrum, quantum yield and kinetics for 4b and 4e, reveals that 

two populations of conjugates coexist, in which the porphyrin is either exposed to water or shielded from 

it by the peptide. This conclusion is consistent with the well-known solvent-polarity effects on the 

fluorescence of tetra-pyridinium porphyrins.59 Nevertheless the production of 1O2 was very high in PBS, 

comparable or even higher than that in MeOH (Table 5). In fact, the conjugate 4e caused total 

photokilling of E. coli cells at a co ncentration (10 µM) at which 1c induced a strong (4-log10) but 

incomplete reduction of cell survival. The cationic porphyrin 4b proved to be even more potent than its 

apidaecin conjugate 4e.  

The 1O2 lifetime data in Table 2, particularly in dPBS, indicate that apidaecin is able to quench 1O2. 

Thus, because 1O2 molecules are generated in the vicinity of apidaecin, some of them will be quenched 

by the peptide during their lifetime rather than by cell components. The washing of the cells before 

illumination, to remove the unbound or weakly associated PS, caused a tremendous reduction of 

photokilling of E. coli cells and under these conditions 4b became the least efficient PS (data not shown). 

Flow cytometry measurements showed that only unwashed cells exhibited red fluorescence slightly above 

the background after incubation with these compounds (data not shown).  
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Thus, the results indicate that 4b and 4e associate very weakly to E. coli cells and the killing of 

unwashed cells is caused mainly by 1O2 generated by the PS molecules not associated or loosely 

associated to bacteria. Several reports of PDT on Gram-negative bacteria have pointed out that if 1O2 can 

be generated in sufficient quantities near to the bacterial OM, it will be able to diffuse into the cell to 

inflict damage to vital structure. Our photophysical data thus support this hypothesis. 
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CONCLUSIONS 
Binding to an AMP offers the attractive prospect of enhancing both the water solubility of the PS 

and the efficiency of the PDT treatments through a synergistic effect. In this work we have compared a 

number of free and apidaecin-conjugated PSs differing in structure and charge. Our results confirm 

previous findings that the conjugation of per se ineffective highly hydrophobic PSs to a cationic peptide 

produces a photosensitising agent effective against Gram-negative bacteria. The apidaecin ability to 

penetrate Gram-negative bacteria is lost after conjugation to a bulky PS, but the amphiphilic character 

conferred by the peptide enforces the binding of the PS to the bacterial OM. 

Apidaecin-PS conjugates appear most promising for treatment protocols requiring repetitive 

washing after sensitiser delivery, where the most active cationic PSs, such as 4b and its apidaecin 

conjugate 4e, are rapidly washed out. On the other hand apidaecin cannot improve the phototoxic activity 

of the cationic porphyrin, which is mainly determined by a very high yield of singlet oxygen production 

in the surroundings of the bacterial outer membrane. 
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Killing bacteria from the inside: genetically encoded 
1O2 productioniii 

 

 
AIM OF THE STUDY 

In the present study we explore the use of TagRFP and miniSOG as genetically encoded PSs in 

aPDT not only as antimicrobial agents but also as “Trojan horses” that shed light on cell death 

mechanisms underlying bacterial photoinactivation treatments. Moreover, for miniSOG the 1O2 

generation mechanism has been analysed in further detail and the Φ∆ value has been reassessed (Φ∆ = 

0.03 ± 0.01) using two alternative and independent methods. We provide further insight into the 

photochemistry of miniSOG and we ascertain the reasons for the discrepancy in Φ∆ values (reported 

value of Φ∆ = 0.47 ± 0.01).  In addition, we find that cumulative irradiation of miniSOG increases its Φ∆ 

value ca. 10-fold due to a photoinduced transformation of the protein 

 

 

Graphical Abstract 3. TagRFP and miniSOG, fluorescent proteins capable of photosensitising the production of 

singlet oxygen have been expressed in E. Coli. Photophysics and mechanistic aspects of photoinduced cell death have 

been thoroughly studied and discussed.  

   

                                                 
iii This section has been adapted from the work published in Photochem.Photobiol.Psi. 2012. Vol.11 pp 1411-1413; Proc. of SPIE 

2013. Vol. 8596 doi: 10.1117/12.2000695 and JACS 2013. (under revision) 
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RESULTS  

Photodynamic inactivation studies.  

When E. coli BL21 (DE3) cells expressing TagRFP in the cytosol were irradiated (535 ± 15 

nm) no significant damage was observed for light doses below 750 J·cm-2. However, a population 

reduction of ca. 4-log10 in CFU/mL was achieved after a l ight dose of 3200 J·cm-2 in dPBS 

suspensions (ca. 2.5-log10 CFU/mL reduction in normal PBS; Figure 14A). E. coli cells transformed 

with pET20b control plasmid, devoid of the TagRFP sequence, were tested under the same 

experimental conditions. As shown in Figure 1A, a reduction less than 0.5-log10 CFU/mL was 

observed in all cases. In addition, non-irradiated bacteria expressing TagRFP did not significantly 

lose viability (data not shown). These negative controls confirm that damage is inflicted by 

photodynamic effect, i.e., by the combination of light, oxygen and TagRFP acting as PS. 

A similar experiment was performed with E. coli DH5α cells expressing miniSOG in the cytosol. A 

population reduction of over 1-log10 units was achieved after light doses as mild as 2.5 J·cm-2 and up 

to 3.5-log10 units was observed after 12 J·cm-2 treatment (Figure 14B). As above, an enhancement of 

photoinduced cell death was observed when the experiment was performed in dPBS. No damage was 

observed at maximum light dose without miniSOG. Moreover, no damage could be effected to 

bacteria expressing miniSOG in the absence of light (data not 

shown).
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Figure 14. A) Photoinactivation of E. coli BL21 (DE3) expressing TagRFP in the cytosol upon irradiation with 532-

nm laser light. Light-dose dependence on cell death transformed with pET20TagRFPhis in PBS (red circles) or dPBS 

(blue triangles). Control with pET20b in PBS (black diamonds) or dPBS (grey squares). B) Light-dose dependence 

(475± 15 nm LED irradiation) on bacterial cell death in E. coli DH5α expressing miniSOG in PBS (red circles) and 

dPBS (blue triangles). 
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Mechanistic studies. 

In order to obtain further insight into the mechanism of cell death photosensitised by both FPs, 

several additional assays were performed. First, we focused on the cytoplasmic cell membrane. Damage 

to the bacterial IM can be tracked spectroscopically through absorbance measurements at 260 nm.66,67 The 

results of this assay are shown in Figure 15 (red circles), where the 260 nm absorbance of the 

supernatants of irradiated bacteria suspensions is plotted as a function of the light dose. Data have been 

normalised against the values for non-irradiated samples. In both cases (TagRFP- and miniSOG-

expressing bacteria) a clear growth in the 260 nm absorbance can be observed almost from the outset. 

In a s econd series of assays, the integrity of the OM was assessed after PDI treatments. The 

fluorescent probe 1-N-phenylnaphthylamine (NPN) increases its fluorescence upon binding to cells with a 

damaged OM.67,68 As shown in Figure 15 (blue circles), there is a markedly different behaviour between 

TagRFP- and miniSOG-expressing bacteria. For TagRFP, no increase in NPN fluorescence was observed 

relative to dark control suspensions. However, over two-fold increase in NPN fluorescence was observed 

in miniSOG-tagged bacteria. NPN fluorescence measurements in water and in lysed cells served as 

further controls (data not shown). 
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Figure 15. Bacterial cell envelope integrity assays after different aPDT light-dose treatments. Red circles: absorbance 

of supernatants at 260 nm. Blue triangles: fluorescence of NPN. Data are normalised to values measured for non-

irradiated samples. A)TagRFP in E. coli BL21 (DE3), laser irradiation at 532 nm; B) miniSOG in E. coli DH5α. LED 

irradiation at 475 nm.  

 Finally, damage to genomic DNA from genomic E. coli cells was studied. DNA from irradiated 

cells was extracted by standard procedures and electrophoresis of the extracts was run in a 0.6 % agarose 

gel. As shown in Figure 16, no differences could be observed between samples irradiated at the maximum 

light dose and dark controls.  
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The triplet state of miniSOG was investigated using nanosecond laser flash photolysis (for 

experimental details consult Chapter II). Upon excitation of oxygen-free solutions at 355 nm, a transient 

signal with lifetime of 35 µs was observed at 300 and at 700 nm (Figure 18a-b), with a decay rate that 

was accelerated by oxygen (3 µs in aerated solutions; Figure 18c). This transient signal is therefore 

ascribed to the triplet state of miniSOG. For comparison, the triplet lifetime of FMN was 42 µs and the 

transient absorbance was two-fold larger for an optically-matched solution (Figure 18a-b). 

 

Figure 18. Transient absorption decays of FMN (blue line) and miniSOG (red line) observed at 300 nm (a) and 700 

nm (b) for argon-saturated optically-matched solutions excited at 355 nm. Transient absorbance decays for argon-

saturated solutions (green line) or aerated solutions (pink) of miniSOG observed at 300 nm and excited at 475 nm (c). 

As the previously reported Φ∆ value of miniSOG (Φ∆ = 0.47 ± 0.05 40) was determined by an 

indirect method based on the fluorescence photooxidation of 9,10-anthracene dipropionic acid (ADPA), 

we have now measured it by directly monitoring the phosphorescence of 1O2 at 1275 nm  in a time-

resolved manner.71 For these studies, miniSOG was dissolved at a concentration of 2.5 µM either in PBS 

or in a mixture of dPBS and PBS (9:1) since deuteration increases the 1O2 lifetime and thus facilitates its 

detection.72 Upon pulsed excitation at 355 nm, clear 1O2 phosphorescence signals could be detected in 

both media (Figure 19). Comparison of the intensity of the miniSOG 1O2 signal to that of optically-

matched reference solutions of FMN and phenalenone-2-sulfonate (PNS; Φ∆ = 1),73 at the excitation 

wavelength of 355 nm and in the same solvent,74 yielded Φ∆ = 0.03 ± 0.01 irrespective of solvent 

deuteration. 
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b

 

Figure 9. MiniSOG-photosensitised 1O2 formation. 1O2 phosphorescence signals for optically-matched solutions of 

the reference photosensitiser PNS (top, green line), FMN (middle, blue line) and miniSOG (bottom, red line) excited 

at 355 nm in PBS; the intensities are proportional to the Φ∆ values. 

To resolve the discrepancy between the reported and the measured values we used an alternative 1O2 

chemical trap. Uric acid (UA) was chosen as it reacts with 1O2 through a different mechanism than 

ADPA.75,76 Using UA we obtained Φ∆ = 0.03 ± 0.01 both in PBS and in dPBS upon excitation at 450 nm 

(Figure 20), fully in line with the value measured by time-resolved 1O2 phosphorescence (Table 6).  

 

Figure 20. Singlet oxygen quantum yield determination using UA as probe. Spectral variations of optically-matched 

solutions of FMN (a) and miniSOG (b) in the presence of UA 50 µM upon excitation at 450 nm. Insets: time-

dependent absorbance variations at 292 and 315 nm. (c) Comparison of UA bleaching rate at 292 nm in the presence 

of miniSOG (red) or FMN (blue). 

Table 6. MiniSOG Φ∆ values obtained by different techniques 

Φ∆ 

Method PBS dPBS 

Luminescence 0.03±0.01 0.03±0.01 

Uric Acid 0.03±0.01 0.03±0.01 

ADPA 0.42±0.02 0.18±0.02 
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Next series of experiments were carried out to ascertain the ADPA mismatching results. When 

oxygen-depleted solutions of miniSOG or FMN were blue-irradiated in the presence of increasing 

amounts of ADPA formation of new long-lived transient species could be readily observed, whose 

absorbance increased in an ADPA-concentration dependent manner (Figure 21a-b). In addition, we 

observed that, in the presence of ADPA, the fluorescence of miniSOG was partially quenched and the 

spectrum lost its vibronic structure (Figure 21c). 

 

Figure 210. Transient absorption of (a) FMN and (b) miniSOG in deaerated PBS solutions in the presence of 

increasing amounts of ADPA (0 µM, blue line; 12 µM, green line; 60 µM, black line). λexc = 475 nm; λobs = 300 nm. 

(c) MiniSOG fluorescence time-dependent changes upon addition of 20 µM ADPA. λexc = 450 nm. 

Finally, we have further assessed the involvement of electron-transfer processes in ADPA 

degradation by studying the photooxidation of ADPA by 4-diphenyl-6-(4´-methoxyphenyl)pyrylium 

tetrafluoroborate, which acts as an electron acceptor and does not generate 1O2.77  Figure 22 

unequivocally shows that ADPA fluorescence gradually disappears upon irradiation of this type I PS.  

 

Figure 22. (a) Absorption spectra of ADPA (blue) and 2,4-diphenyl-6-(4´-methoxyphenyl)pyrylium tetrafluoroborate 

(Pyrilium; orange). (b) ADPA fluorescence photobleaching upon blue light irradiation in the presence of Pyrilium. 

λexc = 355 nm. 

The results above led us to the necessity of performing a series of experiments focused on studying 

the effect of the protein environment on miniSOG’s 1O2 photosensitisation efficiency. First, miniSOG 

was denatured in a 6 M  solution of guanidinium hydrochloride (Gdn HCl)78 (Figure 23a-b). The 1O2 
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photosensitisation efficiency increased over 10-fold upon protein denaturation (Figure 23c), coming close 

to the value for free FMN.  

 

Figure 11. Absorption (a) and fluorescence (b) spectral changes of 2.5 µM miniSOG in Gdn HCl 6 M PBS over time. 

λexc = 355 nm. The initial resolved vibronic structure of miniSOG is progressively lost as the protein denatures and 

FMN is released. Note that, unlike other flavoproteins, denaturation results in loss of fluorescence as free FMN has a 

lower fluorescence quantum yield than miniSOG. (c) Time-resolved near IR phosphorescence of 1O2 photosensitised 

by folded (red line) or denatured (green line) miniSOG in PBS. 

As far as miniSOG contains a l arge number of aminoacids that are effective 1O2 quenchers, 

measurements of 1O2 upon cumulative irradiation of miniSOG were carried out. We were rewarded to 

observe that the amplitude of the 1O2 signal, and therefore the Φ∆ value, increased ca. 10-fold after 

irradiation (taking into account the small absorbance decrease upon irradiation) in a light-dose dependent 

manner (Figure 24c). Absorption and fluorescence measurements rule out any contribution of protein 

denaturation to this effect (Figure 24a-b).  

 

Figure 12. Absorption (a) and fluorescence (b) changes of 2.5 µM tag-less miniSOG in dPBS upon cumulative 

irradiation at λexc = 355 nm . Fluorescence was probed at λexc = 400 nm . c) Effect of cumulative irradiation of 

miniSOG on its 1O2 photosensitisation ability in dPBS. λexc = 355 nm; λobs = 1275 nm. Inset: Φ∆ enhancement. 
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In contrast, photolysis of free FMN leads to a decrease in the 1O2 phosphorescence signal (Figure 

25). As a final remark, removal of the His-tag did not change the Φ∆ value (data not shown). 

 

Figure 13. Absorption (a) and fluorescence (b) changes of FMN in dPBS upon cumulative irradiation at λexc = 355 

nm. Fluorescence was acquired at λexc = 355 nm . (c) Relative enhancement of Φ∆ values taking into account 

absorbance decrease. 
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DISCUSSION 

Photoinactivation studies.  

We report an approach to the issue of PS location in aPDT mechanistic studies by using two 

genetically-encoded 1O2 PSs that have been expressed in the cytoplasm of two E. coli strains. It is known 

that some green and red FP variants are able to photosensitise 1O2.32,34,36 In our first approach, we have 

chosen TagRFP as a PS because, unlike other FPs such as KillerRed,28,30,31 it is able to photosensitise the 

production of 1O2 but not of other ROS,36 and is therefore uniquely suited to ascertain the role of 1O2 in 

bacterial cell death. Our observation of ca.1-log10 population reduction difference between PBS- and 

dPBS-suspended cells is consistent with a 1O2 lifetime of 3.5 µs in H2O and 65 µs in D2O.72 Such 

enhancement of oxidative damage upon deuteration has long been used as a mechanistic test for the 

involvement of 1O2. This also agrees with our previous report that TagRFP is a p ure 1O2 PS36 and 

constitutes the first report showing that cytoplasmic location of a 1O2 PS is sufficient to induce bacterial 

cell death following light irradiation. Regarding the light dose used, it is orders of magnitude higher than 

that used in typical aPDT treatments25 but comparable to that in CALI assays79 and –again- in line with 

the low quantum yield of 1O2 generation by TagRFP (Φ∆ = 0.004 ± 0.001).36  

As for miniSOG, similar correlation was observed since deuterotopic effects could be observed in 

the PDI treatments. However, the light dose required was orders of magnitude lower than that used in 

previous PDI treatments with TagRFP, but comparable to the those of KillerRed.80  

 

Mechanistic studies 

When bacterial IM is compromised, leaching-out of low molecular-weight species and DNA 

and RNA fragments occurs, which are also able to permeate the external membrane. Release of such 

intracellular components can be, thus, conveniently monitored by spectroscopic means, and the onset 

of UV absorption at 260 nm in the supernatant is taken as a strong indication of membrane damage. 

According to the results, photodynamic damage to the inner cell membrane occurs in both cell types. 

It is well known that Gram-negative bacteria are markedly more resistant to PDI treatments than 

Gram-positive spp due to the highly organised structure of its cell envelope.81 Specifically, many studies 

have shown that the presence of an additional OM prevents many PSs from reaching and/or binding to the 

IM, resulting in lowered photosensitisation efficiency.81 The OM is, thus, a typical target in Gram-
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negative bacteria.82 According to the data presented in Figure 2B, it looks clear that the more efficient 

photosensitising properties of miniSOG result in a significant amount of 1O2 being able to reach the OM 

and inflict damage, which is not the case for TagRFP-tagged bacterial experiments. 

Finally experiments regarding DNA damage indicate that FP-induced photodamage to genomic 

DNA does not occur to any measurable extent. Our results are in line with those of previous studies where 

it was concluded that DNA damage is not the primary cause of bacterial cell photoinactivation.25,83 

However, we cannot exclude that a lethal effect may be produced by localised DNA damage that could 

not be detected in our assay.84  

Overall, TagRFP photodamage seems to occur mainly in the cytoplasm and IM. No damage of the 

OM or of genomic DNA could be observed. These observations are markedly different to those reported 

for an external PS.67 As for miniSOG, its enhanced ability to sensitise 1O2 makes it inflict more severe 

damage that also affects the OM viability. Thus, not only the amount but also the site where 1O2 is 

primarily generated proves crucial for inflicting different types of cell damage. It is relevant to recall that 

the latest estimates of the radial diffusion distance of 1O2, which represents its sphere of activity, are 

about 155 nm and 550 nm in H2O and D2O, respectively.72 These distances are below the typical size of a 

bacterial cell.  

 

Unravelling 1O2 generation by miniSOG 

Basic photophysical properties of miniSOG are markedly different to those of FMN. The 

characteristic vibronic absorption and fluorescence spectra of miniSOG indicate tight binding of the 

chromophore to the protein. This is consistent both with the reported small dissociation constant of 170 ± 

8 pM40 and with the environmental restrictions to the chromophore motion resulting from its confinement 

and interactions within the active pocket of the protein.69  

The most novel aspect of miniSOG is its stronger photosensitisation ability compared to FPs from 

the green fluorescen protein (GFP) family.40 We have herein confirmed this superior ability by comparing 

the photoinduced cell death of E. coli bacteria expressing either miniSOG or TagRFP. Consistent with our 

expectations, miniSOG clearly outperformed TagRFP (vide supra). The higher photosensitisation ability 

of miniSOG was initially explained by its apparently higher Φ∆  value (0.47 ± 0.0540) very close to that of 

free FMN in solution (Φ∆ = 0.51).85 However, when we performed direct measurements of 1O2 

phosphorescence or indirect Φ∆ quantification with UA we got a value ~ 15-fold smaller (Φ∆ = 0.03 ± 
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0.01) -irrespective of solvent deuteration- that, per se, was unable to explain the behaviour overall and, 

thus, further investigations were required. 

The reported Φ∆ value for miniSOG was arrived at using ADPA as 1O2 probe.40  Specifically, Φ∆ 

was determined by comparing the rates of ADPA photooxidation sensitised by miniSOG and by the 

reference FMN, the loss of ADPA being monitored by fluorescence. It was found that the rates of ADPA 

photooxidation were very similar, a result that we have reproduced in our laboratory. Surprisingly, when 

we repeated the experiment in dPBS the ratio of photooxidation rates decreased to ca. 1/3, corresponding 

to an apparent Φ∆ value of ~ 0.18. This lower value is totally unexpected if ADPA photooxidation occurs 

exclusively through a 1O2 reaction (as the longer 1O2 lifetime in dPBS would increase the rate of ADPA 

photooxidation)86 and suggests that a more complex mechanism is involved. In view of the results above, 

we were led to conclude that processes other than reaction with 1O2 contributed significantly to ADPA 

photooxidation by miniSOG. Photooxidation reactions may occur through two mechanisms: type-I, where 

the PS reacts directly with the substrate, or type-II, where 1O2 is formed instead.87 Indeed, it has been 

reported that, in addition to their reaction with 1O2, anthracene derivatives can be oxidised by electron-

transfer processes.88  

Support of the previous statements was achieved thanks to the series of experiments performed. 

First, flash photolysis experiments revealed the formation of new species that we assigned to 

semioxidised forms of ADPA, in line with previous reports for other anthracene derivatives.89 Next, 

miniSOG alteration in the presence of ADPA (without irradiation) strongly suggests that ADPA binds to 

miniSOG as observed for other anthracene derivatives that bind to proteins through electrostatic and 

hydrophobic interactions thereby interfering in some cases with protein function.90,91 Finally,  we could 

support that direct photoinduced electron transfer reactions can contribute to ADPA photooxidation with 

the degradation of ADPA in the presence of a p urely electron-transfer PS such as 4-diphenyl-6-(4´-

methoxyphenyl)pyrylium tetrafluoroborate. It is well documented that flavins are able to undergo electron 

transfer reactions with suitable electron donors.92,93 The observations above indicate that photooxidation 

of ADPA results from both 1O2 and electron-transfer processes, the latter facilitated by the binding of 

ADPA to the protein. Thus, in addition to generating 1O2, miniSOG is capable of photooxidising 

substrates by type-I mechanisms as well, which should be taken into account by researchers using 

miniSOG as a genetically-encodable 1O2 source.  
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Our observations upon miniSOG denaturation point to a strong effect of the protein environment on 

1O2 photosensitisation efficiency. The high increase of the Φ∆ value upon denaturation highlights the 

effect of protein residues, which could either modulate the excited states of FMN in the folded protein 

and therefore affect the quantum yield of 1O2 production, or quench a fraction of 1O2 molecules before 

they can diffuse into the bulk medium.  

As to the first possibility, it is well established that the photosensitised production of 1O2 occurs in 

three steps, each with its own efficiency: first the PS’s triplet state must be populated by ISC from the 

originally photoexcited singlet excited state; second, the triplet-state molecules must be trapped by 

oxygen before they decay; finally, ET from the triplet sensitiser to oxygen must take place.74 Regarding 

the first process, it has been reported that the protein environment can modulate ISC in flavoproteins by 

electrostatic effects.69 Consistent with this, we do observe smaller triplet transient absorbance signals for 

miniSOG than for free FMN (data not shown) and a higher fluorescence quantum yield. ISC in miniSOG 

would therefore be less efficient than in free FMN, although this effect alone fails to account for the 15-

fold decrease in Φ∆. The triplet lifetime data likewise indicate that oxygen trapping of miniSOG’s triplet 

state is almost as efficient as for FMN in water, which also rules out the second process as an important 

factor. Finally it must be recalled that oxygen quenching of triplet excited states can occur by either ET, 

producing 1O2, or electron transfer, yielding the superoxide radical anion. The lack of any evidence for 

radical formation in transient absorption experiments suggests that the electron transfer pathway is of 

minor importance.  

Our data, thus, suggest that 1O2 production by the flavin inside the protein is probably not much 

different from that in the bulk aqueous solution. Even though FMN is located at about 10-15 Å of the 

protein surface, the triplet lifetime of miniSOG, similar to that of FMN, indicates that the chromophore is 

accessible to oxygen. Therefore, the most relevant cause for the difference in measured Φ∆ may be 

attributed to a substantial fraction of the nascent 1O2 molecules being quenched on their way off the 

protein.94,95 This notion is supported by the fact that miniSOG contains a large number of aminoacids that 

are effective 1O2 quenchers (Figure 25): tryptophan (Trp; x1), histidine (His; x1), tyrosine (Tyr; x3), 

methionine (Met; x2) (Figure 3a), plus the His-tag (x6) used for purification.  
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Figure 14. MiniSOG’s molecular model based on the structure of iLOV protein (PBD ID: 4eet), built using the 

Swiss-model server (http://swissmodel.expasy.org/). The backbone of miniSOG is shown as a green ribbon, FMN as 

orange sticks, and the aminoacids that may quench 1O2 as magenta sticks. 

 
As for the increase of the Φ∆ value upon cumulative irradiation, experiments both for miniSOG and 

free FMN seem to indicate progressive photoinactivation of the aminoacids responsible for 1O2 

quenching,  discarding the build-up of FMN photoproducts of higher Φ∆ value. Respect to the fact that 

the miniSOG mutant lacking the His-tag showed the same Φ∆ than miniSOG itself was not totally 

unexpected since this tag is far away from the site of 1O2 production. This is relevant for drawing 

comparisons between miniSOG’s photochemistry as a purified protein in solution with that as a fusion 

partner in a cell. It is worth to note that redox-active aminoacids (Trp, Tyr) that are involved in electron 

transfer reactions in some flavoproteins are also present in miniSOG’s sequence.96 However, these 

residues are not in the chromophore vicinity (Figure 14), and are not likely to participate in direct electron 

transfer reactions with FMN (see ref 97 and references therein). For example, replacement of Trp81 by 

phenylalanine (Phe) does not improve 1O2 photosensitisation (Φ∆ = 0.01), which seems to rule out the 

direct participation of this residue in electron transfer reactions. 

 

http://swissmodel.expasy.org/
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CONCLUSIONS 

Purely endogenous 1O2 produced by genetically-encoded photosensitising proteins expressed in the 

bacterial cytosol is able to induce bacterial cell death. Photodamage seems to occur mainly in the bacterial 

membrane, the extent of which correlates with the photosensitising efficiency of the protein. Both 

TagRFP and miniSOG can induce damage in the IM, but only miniSOG in the OM. No damage of 

genomic DNA could be observed. Our observations are markedly different to those reported for an 

external photosensitiser.67 Thus, the site where 1O2 is primarily generated proves crucial for inflicting 

different types of cell damage.  

Moreover, we have unravelled the photochemical 1O2 generation of the fluorescent protein 

miniSOG. Our most important result is the revision of the Φ∆ value, which we have determined to be 

0.03 ± 0.01, ca. 15-fold lower than reported previously.40 We have accounted for potential reasons for the 

discrepancy, namely the contribution of electron transfer processes to ADPA oxidation, and the increase 

of Φ∆ upon cumulative irradiation. Regarding the first point, a contribution of electron-transfer processes 

to the photodynamic activity of miniSOG in biological media should not be excluded a priori. As to the 

second one, increase of Φ∆ upon irradiation may prove advantageous for EM imaging and other potential 

uses of miniSOG. A recent communication in which miniSOG is shown to outperform commercial 

fluorescent tag ReAsH (for resorufin arsenical hairpin) in EM experiments suggests that this may indeed 

be the case.38  As a final remark, it is worth pointing out that the screening method used to evolve 

miniSOG was based on evaluating the photobleaching of a fused fluorescent protein. Photobleaching can 

be due not only to 1O2, but also to other ROS and radical reactions. Thus, there is still scope to improve 

the value of Φ∆ by screening with another, more specific method that selects for singlet oxygen-

generating mutants. Detection of 1O2 phosphorescence at 1275 nm as described within this work is thus 

highly suited to develop new and better miniSOG variants. 

This work supports the potential of genetically-encoded strategies in mechanistic studies of aPDT, 

and using appropriate gene transfer methods could be extended to therapeutic strategies. 
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SPECIFIC EXPERIMENTAL SECTION 

Chemical Compounds: UA, PN, Gdn·HCl and NPN were purchased from Sigma; FMN was purchased 

from Chemochroma and ADPA from Chemodex. All these reagents were used as received. PNS was 

resynthesised according to the published method in reference.73 

Cell membrane integrity assessment protocol: After photodynamic treatments, samples were 

centrifuged (13000 rpm, 10 min) and the supernatant was monitored by UV-vis spectroscopy in order to 

measure the absorbance values at 260 nm, which indicates leakage of small cellular components due to 

inner membrane damage.16 Supernatant of non-irradiated cells was also measured as control and 

normalisation factor. To test the integrity of the outer membrane, the pellet was resuspended and NPN 

was added to a final concentration of 15 µM.14, 17 Fluorescence spectra were readily measured after NPN 

addition upon excitation at 350 nm. Cell lysate (3 x 1 minute sonication) was used as a positive control 

(data not shown). 

DNA purification and electrophoresis: Genomic DNA was extracted immediately after photodynamic 

treatments by means of a Wizard Genomic DNA Purification Kit (Promega). DNA samples were gently 

mixed with 3 µL of Loading Buffer 6x and analysed by agarose gel electrophoresis (0.6 % agarose in 

TBE buffer). The nucleic acid stain Sybr Green (1 mg/mL; Invitrogen) was incorporated during 

preparation of agarose gel. The Lamda DNA/EcoRI + Hind III Marker (BioRad) was used as molecular 

weight marker (0.5 mg/mL) with DNA fragments between 564 and 21,226 bp. 

Protein protocols: miniSOG expression and purification were performed by our collaborators Sara H. 

Mejías and Aitziber L. Cortajarena following reference 98 with minor modifications. For denaturation, 

miniSOG was adjusted to a concentration of 2.5 µM in a 6 M solution of Gdn HCl (PBS or dPBS) 

according to a well-established protocol.78 The solution was stirred over time and, periodically, 

absorption and fluorescence spectra were acquired in order to assess the degree of denaturation. 

Φ∆ using UA as a 1O2 probe: In the presence of 1O2, UA forms an intermediate that undergoes an 

additional degradation step to allantoin.99 As a result, absorbance at 292 nm decays with biexponential 

kinetics. The degradation of the intermediate is known to be oxygen-independent, so only the first decay 

(k1) reflects the reaction with singlet oxygen. The reaction can also be monitored at 315 nm, with the 

difference that the intermediate formation (k1) appears as an increase of absorbance.76  



References 
 

102 
 

References 

1. González-Zorn, B.; Escudero, J. A. Ecology of antimicrobial resistance: humans, animals, food and environment. 
Int Microbiol 2012, 15, 101-109. 

2. Kallifidas, D.; Kang, H. S.; Brady, S. F. Tetarimycin A, an MRSA-active antibiotic identified through induced 
expression of environmental DNA gene clusters. J. Am. Chem. Soc. 2012, 134, 19552-19555. 

3. Infectious Diseases Society of America (IDSA) Combating antimicrobial resistance: Policy recommendations to 
save lives. Clin.  Infect.  Dis. 2011, 52, S397-S428. 

4. Peters, B. M.; Jabra-Rizk, M. A.; O'May, G. A.; Costerton, J. W.; Shirtliff, M. E. Polymicrobial interactions: 
impact on pathogenesis and human disease. Clin. Microbiol. Rev. 2012, 25, 193-213. 

5. Quigley, E. M. M. Prebiotics and probiotics; modifying and mining the microbiota. Pharmacol. Res. 2010, 61, 
213-218. 

6. Quigley, E. M. Gut microbiota and the role of probiotics in therapy. Current Opinion in Pharmacology 2011, 11, 
593-603. 

7. Sang, Y.; Blecha, F. Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Animal Health 
Research Reviews 2008, 9, 227-235. 

8. Riley, M. A.; Robinson, S. M.; Roy, C. M.; Dennis, M.; Liu, V.; Dorit, R. L. Resistance is futile: the bacteriocin 
model for addressing the antibiotic resistance challenge. Biochem. Soc. Trans. 2012, 40, 1438-1442. 

9. Cotter, P. D.; Ross, R. P.; Hill, C. Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 
95-105. 

10. Kutter, E.; De Vos, D.; Gvasalia, G.; Alavidze, Z.; Gogokhia, L.; Kuhl, S.; Abedon, S. T. Phage Therapy in 
Clinical Practice: Treatment of Human Infections. Curr. Pharm. Biotechnol. 2010, 11, 69-86. 

11. Hamblin, M. R.; Hasan, T. Photodynamic therapy: a new antimicrobial approach to infectious disease? 
Photochemical & Photobiological Sciences 2004, 3, 436-450. 

12. St Denis, T. G.; Dai, T.; Izikson, L.; Astrakas, C.; Anderson, R. R.; Hamblin, M. R.; Tegos, G. P. All you need is 
light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious 
disease. Virulence 2011, 2, 509-520. 

13. Garland, M. J.; Cassidy, C. M.; Woolfson, D.; Donnelly, R. F. Designing photosensitizers for photodynamic 
therapy: strategies, challenges and promising developments. Future Med Chem 2009, 1, 667-691. 

14. Malik, Z.; Ladan, H.; Nitzan, Y. Photodynamic Inactivation of Gram-Negative Bacteria - Problems and Possible 
Solutions. Journal of Photochemistry and Photobiology B-Biology 1992, 14, 262-266. 

15. Bertoloni, G.; Rossi, F.; Valduga, G.; Jori, G.; Lier, J. E. V. Photosensitizing activity of water- and lipid-soluble 
phthalocyanines on Escherichia coli. FEMS Microbiol. Lett. 1990, 71, 149-156. 

16. Nitzan, Y.; Gutterman, M.; Malik, Z.; Ehrenberg, B. Inactivation of Gram-Negative Bacteria by Photosensitized 
Porphyrins. Photochem. Photobiol. 1992, 55, 89-96. 

17. Wilson, M. Photolysis of Oral Bacteria and its Potential Use in the Treatment of Caries and Periodontal Disease. 
J. Appl. Bacteriol. 1993, 75, 299-306. 

18. Merchat, M.; Bertolini, G.; Giacomini, P.; Villanueva, A.; Jori, G. Meso-substituted cationic porphyrins as 
efficient photosensitizers of gram-positive and gram-negative bacteria. J Photochem Photobiol B. 1996, 32, 
153-157. 

19. Hancock, R. E. W. The end of an era? Nature Reviews Drug Discovery 2007, 6, 28-28. 



Chapter III. New strategies in aPDT 
 

103 
 

20. Jenssen, H.; Hamill, P.; Hancock, R. E. W. Peptide Antimicrobial Agents. Clinical Microbiology Reviews 2006, 
19, 491-511. 

21. Li, W. F.; Ma, G. X.; Zhou, X. X. Apidaecin-type peptides: biodiversity, structure-function relationships and 
mode of action. Peptides 2006, 27, 2350-2359. 

22. Casteels, P.; Romagnolo, J.; Castle, M.; Casteels-Josson, K.; Erdjument-Bromage, H.; Tempst, P. Biodiversity of 
apidaecin-type peptide antibiotics. Prospects of manipulating the antibacterial spectrum and combating 
acquired resistance. J. Biol. Chem. 1994, 269, 26107-26115. 

23. Taguchi, S.; Mita, K.; Ichinohe, K.; Hashimoto, S. Targeted Engineering of the Antibacterial Peptide Apidaecin, 
Based on a n In Vivo Monitoring Assay System. Applied and Environmental Microbiology 2009, 75, 1460-
1464. 

24. Gobbo, M.; Biondi, L.; Filira, F.; Gennaro, R.; Benincasa, M.; Scolaro, B.; Rocchi, R. Antimicrobial peptides: 
Synthesis and antibacterial activity of linear and cyclic drosocin and apidaecin 1b analogues. J. Med. Chem. 
2002, 45, 4494-4504. 

25. Jori, G.; Coppellotti, O. Inactivation of pathogenic microorganisms by photodynamic techniques: Mechanistic 
aspects and perspective applications. Anti-Infective Agents in Medicinal Chemistry 2007, 6, 119-131. 

26. Pudziuvyte, B.; Bakiene, E.; Bonnett, R.; Shatunov, P. A.; Magaraggia, M.; Jori, G. Alterations of Escherichia 
coli envelope as a co nsequence of photosensitization with tetrakis(N-ethylpyridinium-4-yl)porphyrin 
tetratosylate. Photochem. Photobiol. Sci. 2011, 10, 1046-1055. 

27. Ragàs, X.; Agut, M.; Nonell, S. Singlet oxygen in Escherichia coli: New insights for antimicrobial photodynamic 
therapy. Free Radic. Biol. Med. 2010, 49, 770-776. 

28. Bulina, M. E.; Chudakov, D. M.; Britanova, O. V.; Yanushevich, Y. G.; Staroverov, D. B.; Chepurnykh, T. V.; 
Merzlyak, E. M.; Shkrob, M. A.; Lukyanov, S.; Lukyanov, K. A. A genetically encoded photosensitizer. Nat. 
Biotechnol. 2006, 24, 95-99. 

29. Waldeck, W.; Mueller, G.; Wiessler, M.; Toth, K.; Braun, K. Positioning effects of KillerRed inside of cells 
correlate with DNA strand breaks after activation with visible light. Int. J. Med. Sci. 2011, 8, 97-105. 

30. Serebrovskaya, E. O.; Edelweiss, E. F.; Stremovskiy, O. A.; Lukyanov, K. A.; Chudakov, D. M.; Deyev, S. M. 
Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein. Proc. Natl. Acad. Sci. 
U. S. A. 2009, 106, 9221-9225. 

31. Vegh, R. B.; Solntsev, K. M.; Kuimova, M. K.; Cho, S.; Liang, Y.; Loo, B. L.; Tolbert, L. M.; Bommarius, A. S. 
Reactive oxygen species in photochemistry of the red fluorescent protein "Killer Red". Chem. Commun. 2011, 
47, 4887-4889. 

32. Jiménez-Banzo, A.; Nonell, S.; Hofkens, J.; Flors, C. Singlet oxygen photosensitization by EGFP and its 
chromophore HBDI. Biophys. J. 2008, 94, 168-172. 

33. Ragàs, X.; Jiménez-Banzo, A.; Sanchez-Garcia, D.; Batllori, X.; Nonell, S. Singlet oxygen photosensitisation by 
the fluorescent probe Singlet Oxygen Sensor Green (R). Chem. Commun. 2009, 20, 2920-2922. 

34. Jiménez-Banzo, A.; Ragàs, X.; Abbruzzetti, S.; Viappiani, C.; Campanini, B.; Flors, C.; Nonell, S. Singlet oxygen 
photosensitisation by GFP mutants: oxygen accessibility to the chromophore. Photochem. Photobiol. Sci. 2010, 
9, 1336-1341. 

35. Merzlyak, E. M.; Goedhart, J.; Shcherbo, D.; Bulina, M. E.; Shcheglov, A. S.; Fradkov, A. F.; Gaintzeva, A.; 
Lukyanov, K. A.; Lukyanov, S.; Gadella, T. W.; Chudakov, D. M. Bright monomeric red fluorescent protein 
with an extended fluorescence lifetime. Nat. Methods 2007, 4, 555-557. 

36. Ragàs, X.; Cooper, L. P.; White, J. H.; Nonell, S.; Flors, C. Quantification of photosensitized singlet oxygen 
production by a fluorescent protein. Chemphyschem 2011, 12, 161-165. 

37. Drepper, T.; Eggert, T.; Circolone, F.; Heck, A.; Krauss, U.; Guterl, J. K.; Wendorff, M.; Losi, A.; Gartner, W.; 
Jaeger, K. E. Reporter proteins for in vivo fluorescence without oxygen. Nat. Biotechnol. 2007, 25, 443-445. 



References 
 

104 
 

38. Boassa, D.; Berlanga, M. L.; Yang, M. A.; Terada, M.; Hu, J.; Bushong, E. A.; Hwang, M.; Masliah, E.; George, 
J. M.; Ellisman, M. H. Mapping the subcellular distribution of alpha-synuclein in neurons using genetically 
encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis. 
J. Neurosci. 2013, 33, 2605-2615. 

39. Qi, Y. B.; Garren, E. J.; Shu, X.; Tsien, R. Y.; Jin, Y. Photo-inducible cell ablation in Caenorhabditis elegans 
using the genetically encoded singlet oxygen generating protein miniSOG. Proc. Natl. Acad. Sci. U. S. A. 2012, 
109, 7499-7504. 

40. Shu, X.; Lev-Ram, V.; Deerinck, T. J.; Qi, Y.; Ramko, E. B.; Davidson, M. W.; Jin, Y.; Ellisman, M. H.; Tsien, 
R. Y. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and 
organisms. PLoS Biol. 2011, 9, e1001041. 

41. Rubio, N.; Prat, F.; Bou, N.; Borrell, J. I.; Teixido, J.; Villanueva, A.; Juarranz, A.; Canete, M.; Stockert, J. C.; 
Nonell, S. A comparison between the photophysical and photosensitising properties of tetraphenyl porphycenes 
and porphyrins. New Journal of Chemistry 2005, 29, 378-384. 

42. Ragàs, X.; Sánchez-García, D.; Ruiz-González, R.; Dai, T.; Agut, M.; Hamblin, M. R.; Nonell, S. Cationic 
porphycenes as potential photosensitizers for antimicrobial photodynamic therapy. J. Med. Chem. 2010, 53, 
7796-7803. 

43. Magde, D.; Brannon, J. H.; Cremers, T. L.; Olmsted, J. Absolute luminescence yield of cresyl violet - Standard 
for the red. J. Phys. Chem. 1979, 83, 696-699. 

44. Stockert, J. C.; Cañete, M.; Juarranz, A.; Villanueva, A.; Horobin, R. W.; Borrell, J. I.; Teixido, J.; Nonell, S. 
Porphycenes: facts and prospects in photodynamic therapy of cancer. Curr. Med. Chem. 2007, 14, 997-1026. 

45. Wilkinson, F.; Helman, W. P.; Ross, A. B. Quantum yields for the photosensitized formation of the lowest 
electronically excited singlet state of molecular oxygen in solution. J.  Phys.  Chem. 1993, 22, 113-262. 

46. Redmond, R. W.; Gamlin, J. N. A compilation of singlet oxygen yields from biologically relevant molecules. 
Photochem. Photobiol. 1999, 70, 391-475. 

47. Anonymous Phthalocyanines: Properties and Applications (Vol. 3); VCH Publishers, Inc: 1989; , pp 1-303. 

48. Gorman, A. A.; Rodgers, M. A. J. In Singlet Oxygen; Scaiano, J. C., Ed.; Handbook of organic photochemistry; 
Boca Raton: CRC Press, 1989; Vol. II, pp 229-247. 

49. Hahn, U.; Setaro, F.; Ragas, X.; Gray-Weale, A.; Nonell, S.; Torres, T. Microenvironment-switchable singlet 
oxygen generation by axially-coordinated hydrophilic ruthenium phthalocyanine dendrimers. Phys. Chem. 
Chem. Phys. 2011, 13, 3385-3393. 

50. Montalti, M.; Credi, A.; Prodi, L.; M.T, G. Handbook of photochemistry; CRC Press: 2006; . 

51. García-Díaz, M.; Nonell, S.; Villanueva, A.; Stockert, J. C.; Canete, M.; Casado, A.; Mora, M.; Sagrista, M. L. 
Do folate-receptor targeted liposomal photosensitizers enhance photodynamic therapy selectivity? Biochim. 
Biophys. Acta 2011, 1808, 1063-1071. 

52. Ruiz-González, R.; Acedo, P.; Sánchez-García, D.; Nonell, S.; Cañete, M.; Stockert, J. C.; Villanueva, A. 
Efficient induction of apoptosis in HeLa cells by a novel cationic porphycene photosensitizer. Eur. J. Med. 
Chem. 2013, 63, 401-414. 

53. Soriano, J.; García-Díaz, M.; Mora, M.; Sagrista, M. L.; Nonell, S.; Villanueva, A.; Stockert, J. C.; Canete, M. 
Liposomal temocene (m-THPPo) photodynamic treatment induces cell death by mitochondria-independent 
apoptosis. Biochim. Biophys. Acta 2013. 

54. AnonymousATCC - Pseudomonas Aeruginosa (Schroeter) Migula. http://www.lgcstandards-atcc.org/en.aspx 
(accessed May/12, 2013). 

55. Li, W. S.; Aida, T. Dendrimer porphyrins and phthalocyanines. Chem. Rev. 2009, 109, 6047-6076. 

http://www.lgcstandards-atcc.org/en.aspx


Chapter III. New strategies in aPDT 
 

105 
 

56. Caminos, D. A.; Spesia, M. B.; Durantini, E. N. Photodynamic inactivation of Escherichia coli by novel meso-
substituted porphyrins by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl 
groups. Photochem.  Photobiol.  Sci. 2006, 5, 56-65. 

57. Dosselli, R.; Gobbo, M.; Bolognini, E.; Campestrini, S.; Reddi, E. Porphyrin-apidaecin conjugate as a new broad 
spectrum antibacterial agent. ACS Med. Chem. Lett. 2010, 1, 35-38. 

58. Reddi, E.; Ceccon, M.; Valduga, G.; Jori, G.; Bommer, J. C.; Elisei, F.; Latterini, L.; Mazzucato, U. 
Photophysical properties and antibacterial activity of meso-substituted cationic porphyrins. Photochem. 
Photobiol. 2002, 75, 462-470. 

59. Vergeldt, F. J.; Koehorst, R. B. M.; Vanhoek, A.; Schaafsma, T. J. Intramolecular Interactions in the ground and 
excited-state of tetrakis(N-Methylpyridyl)porphyrins. J. Phys. Chem. 1995, 99, 4397-4405. 

60. Ogilby, P. R.; Foote, C. S. Chemistry of Singlet Oxygen .36. Singlet molecular oxygen (1-Delta-G) 
Luminescence in solution following pulsed laser excitation - Solvent deuterium isotope effects on the lifetime 
of singlet oxygen. J. Am. Chem. Soc. 1982, 104, 2069-2070. 

61. Scaiano, J. C. CRC Handbook of Organic Photochemistry; CRC Press: Boca Raton,Florida, 1989; Vol. 1. 

62. Jori, G. Far-red-absorbing photosensitizers: their use in the photodynamic therapy of tumours. J. Photochem. 
Photobiol. A. 1992, 62, 371-378. 

63. Dutta, R. C.; Nagpal, S.; Salunke, D. M. Functional mapping of apidaecin through secondary structure 
correlation. Int. J. Biochem. Cell Biol. 2008, 40, 1005-1015. 

64. Czihal, P.; Hoffmann, R. Mapping of Apidaecin regions relevant for antimicrobial activity and bacterial 
internalization. International Journal of Peptide Research and Therapeutics 2009, 15, 157-164. 

65. George, S.; Hamblin, M. R.; Kishen, A. Uptake pathways of anionic and cationic photosensitizers into bacteria. 
Photochem. Photobiol. Sci. 2009, 8, 788-795. 

66. Chen, C. Z.; Cooper, S. L. Interactions between dendrimer biocides and bacterial membranes. Biomaterials 2002, 
23, 3359-3368. 

67. Spesia, M. B.; Caminos, D. A.; Pons, P.; Durantini, E. N. Mechanistic insight of the photodynamic inactivation of 
Escherichia coli by a tetracationic zinc(II) phthalocyanine derivative. Photodiagnosis Photodyn Ther. 2009, 6, 
52-61. 

68. Loh, B.; Grant, C.; Hancock, R. E. Use of the fluorescent probe 1-N-phenylnaphthylamine to study the 
interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob. 
Agents Chemother. 1984, 26, 546-551. 

69. Schüttrigkeit, T. A.; Kompa, C. K.; Salomon, M.; Rüdiger, W.; Michel-Beyerle, M. E. Primary photophysics of 
the FMN binding LOV2 domain of the plant blue light receptor phototropin of Avena sativa. Chem. Phys. 
2003, 294, 501-508. 

70. Valle, L.; Vieyra, F. E.; Borsarelli, C. D. Hydrogen-bonding modulation of excited-state properties of flavins in a 
model of aqueous confined environment. Photochem. Photobiol. Sci. 2012, 11, 1051-1061. 

71. Jiménez-Banzo, A.; Ragàs, X.; Kapusta, P.; Nonell, S. Time-resolved methods in biophysics. 7. Photon counting 
vs. analog time-resolved singlet oxygen phosphorescence detection. Photochem. Photobiol. Sci. 2008, 7, 1003-
1010. 

72. Ogilby, P. R. Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 2010, 39, 3181-3209. 

73. Nonell, S.; González, M.; Trull, F. R. 1h-Phenalen-1-One-2-Sulfonic Acid - an Extremely Efficient Singlet 
Molecular-Oxygen Sensitizer for Aqueous-Media. Afinidad 1993, 50, 445-450. 

74. Nonell, S.; Braslavsky, S. E. In Time-resolved singlet oxygen detection; Methods in enzymology; Academic Press 
INC: San Diego; San Diego, CA 92101-4495 USA, 2000; Vol. 319, pp 37-49. 



References 
 

106 
 

75. Matsuura, T.; Saito, I. Photoinduced reactions—XXI : Photosensitized oxygenation of N-unsubstituted 
hydroxypurines. Tetrahedron 1968, 24, 6609-6614. 

76. Rabello, B. R.; Gerola, A. P.; Pellosi, D. S.; Tessaro, A. L.; Aparício, J. L.; Caetano, W.; Hioka, N. Singlet 
oxygen dosimetry using uric acid as a chemical probe: Systematic evaluation. J. Photochem. Photobiol. A. 
2012, 238, 53-62. 

77. Miranda, M. A.; Garcia, H. 2,4,6-Triphenilpyrylium tetrafluoroborate as an electron-transfer photosensitizer. 
Chem. Rev. 1994, 94, 1063-1089. 

78. Munro, A.; Noble, M. In Fluorescence Analysis of Flavoproteins; Chapman, S. K., Reid, G. A., Eds.; 
Flavoprotein Protocols; Humana Press Inc.: Totowa, NJ, 1999; Vol. 131, pp 25-48. 

79. McLean, M. A.; Rajfur, Z.; Chen, Z.; Humphrey, D.; Yang, B.; Sligar, S. G.; Jacobson, K. Mechanism of 
chromophore assisted laser inactivation employing fluorescent proteins. Anal. Chem. 2009, 81, 1755-1761. 

80. Waldeck, W.; Mueller, G.; Wiessler, M.; Brom, M.; Toth, K.; Braun, K. Autofluorescent proteins as 
photosensitizer in eukaryontes. Int. J. Med. Sci. 2009, 6, 365-373. 

81. Jori, G.; Fabris, C.; Soncin, M.; Ferro, S.; Coppellotti, O.; Dei, D.; Fantetti, L.; Chiti, G.; Roncucci, G. 
Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. 
Lasers Surg. Med. 2006, 38, 468-481. 

82. Segalla, A.; Borsarelli, C. D.; Braslavsky, S. E.; Spikes, J. D.; Roncucci, G.; Dei, D.; Chiti, G.; Jori, G.; Reddi, E. 
Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-
phthalocyanine. Photochem. Photobiol. Sci. 2002, 1, 641-648. 

83. Schafer, M.; Schmitz, C.; Horneck, G. High sensitivity of Deinococcus radiodurans to photodynamically-
produced singlet oxygen. Int. J. Radiat. Biol. 1998, 74, 249-253. 

84. Ashkenazi, H.; Pechatnikov, I.; Nitzan, Y. Low-intensity photosensitization may enhance RecA production. Curr. 
Microbiol. 2006, 52, 317-323. 

85. Baier, J.; Maisch, T.; Maier, M.; Engel, E.; Landthaler, M.; Baumler, W. Singlet oxygen generation by UVA light 
exposure of endogenous photosensitizers. Biophys. J. 2006, 91, 1452-1459. 

86. Foote, C. S.; Clennan, E. L. In Properties and Reactions of Singlet Dioxygen; Liebman, J. L., Ed.; Blackie 
Academic and Professional: Glasgow, 1995; Vol. 1, pp 105-140. 

87. Foote, C. S. Definition of type-I and type-Ii photosensitized oxidation. Photochem. Photobiol. 1991, 54, 659-659. 

88. Kotani, H.; Ohkubo, K.; Fukuzumi, S. Photocatalytic oxygenation of anthracenes and olefins with dioxygen via 
selective radical coupling using 9-mesityl-10-methylacridinium ion as an effective electron-transfer 
photocatalyst. J. Am. Chem. Soc. 2004, 126, 15999-16006. 

89. Shida, T. Electronic absorption spectra of radical ions; Physical sciences data; Elsevier science publishers: 1988; 
Vol. 34, pp 1-446. 

90. Wilson, A. J.; Hong, J.; Fletcher, S.; Hamilton, A. D. Recognition of solvent exposed protein surfaces using 
anthracene derived receptors. Org. Biomol. Chem. 2007, 5, 276-285. 

91. Wilson, A. J. Inhibition of protein-protein interactions using designed molecules. Chem. Soc. Rev. 2009, 38, 
3289-3300. 

92. Crovetto, L.; Braslavsky, S. E. Photoinduced electron transfer to triplet flavins. Correlation between the volume 
change-normalized entropic term and the Marcus reorganization energy. J Phys Chem A 2006, 110, 7307-7315. 

93. Barbieri, Y.; Massad, W. A.; Díaz, D. J.; Sanz, J.; Amat-Guerri, F.; García, N. A. Photodegradation of bisphenol 
A and related compounds under natural-like conditions in the presence of riboflavin: Kinetics, mechanism and 
photoproducts. Chemosphere 2008, 73, 564-571. 



Chapter III. New strategies in aPDT 
 

107 
 

94. Chin, K. K.; Trevithick-Sutton, C. C.; McCallum, J.; Jockusch, S.; Turro, N. J.; Scaiano, J. C.; Foote, C. S.; 
Garcia-Garibay, M. A. Quantitative determination of singlet oxygen generated by excited state aromatic amino 
acids, proteins, and immunoglobulins. J. Am. Chem. Soc. 2008, 130, 6912-6913. 

95. Jensen, R. L.; Arnbjerg, J.; Ogilby, P. R. Reaction of singlet oxygen with tryptophan in proteins: a pronounced 
effect of the local environment on the reaction rate. J. Am. Chem. Soc. 2012, 134, 9820-9826. 

96. Kao, Y. T.; Tan, C.; Song, S. H.; Ozturk, N.; Li, J.; Wang, L.; Sancar, A.; Zhong, D. Ultrafast dynamics and 
anionic active states of the flavin cofactor in cryptochrome and photolyase. J. Am. Chem. Soc. 2008, 130, 7695-
7701. 

97. Kao, Y. T.; Saxena, C.; He, T. F.; Guo, L.; Wang, L.; Sancar, A.; Zhong, D. Ultrafast dynamics of flavins in five 
redox states. J. Am. Chem. Soc. 2008, 130, 13132-13139. 

98. Shaner, N. C.; Campbell, R. E.; Steinbach, P. A.; Giepmans, B. N. G.; Palmer, A. E.; Tsien, R. Y. Improved 
monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. 
Nat Biotech 2004, 22, 1567-1572. 

99. Ammann, E. C.; Lynch, V. H. Purine metabolism by unicellular algae. 3. The photochemical degradation of uric 
acid by chlorophyll. Biochim. Biophys. Acta 1966, 120, 181-182. 

  
 
 







 

 

Chapter IV.  

 

New strategies for 1O2 

detection 
 

 

 

 

 

 

The real voyage of discovery consists not in seeking new landscapes but in 

having new eyes” 

- Marcel Proust 

 

 

 

  





Introduction 
 

108 
 

 

Introduction 
 

With all this previous considerations, it lo oks clear that 1O2 measurement is a goal of general 

interest for the scientific community. In fact, over the years a great effort has been made in developing 

techniques and/or methods able not only to detect but also to quantify the generation of 1O2. As a general 

idea, high sensitivity and selectivity towards 1O2, high signal-to-noise ratio, and ease of measurement are 

a must for any candidate probing system. So far, 1O2 detection methods can be sorted into two groups: 1) 

physical detection, given by direct measurement of near-infrared 1O2 phosphorescence at 1275 nm and 2) 

chemical probes that, in the presence of 1O2, undergo a reaction with a subsequent great magnification of 

a measurable physical property, such as absorption, fluorescence or chemiluminescence. 

1O2 can be detected through its intrinsic phosphorescence with maximum centered at 1275 nm.1 This 

is a robust, specific, noninvasive and direct method; but it suffers from weak signal due to the lower 

efficiency particularly in biological media, where the lifetime of 1O2 is very short (3.1 µs)2 and the 

phosphorescence quantum yield is very small, ca. 10-7.3 

Among the chemical traps, UA is a good alternative that has recently gained atention.4,5 In the 

presence of 1O2, UA forms an intermediate that undergoes an additional degradation step to allantoin.6 As 

a result, absorbance at 292 nm decays with biexponential kinetics. As a drawback, it is not convenient for 

in vivo measurements due to the difficulty of measuring absorption in the UV region without interferences 

of biological components. Plus tracking the bleaching of a physical property is less desirable than 

tracking its enhancement. 

Another approach has been the development of chemiluminescent probes, believed to be one of the 

most sensitive methods in 1O2 detection. Compared with fluorescence, chemiluminescence does not 

require excitation light, so background fluorescence and scattered light interference are eliminated. The 

set of widely-used chemiluminescence probes includes 2-methyl-6-phenyl-3,7-dihydroimidazo [1,2-a] 

pyrazin-3-one, and its derivatives.7,8 More recently developed chemiluminescence probes, include 

tetrathiafulvalene9 and probes based on s table dioxetane precursors10. Tetrathiafulvalene is a strong 

electron donor that enhances its reaction with 1O2 and it offers improved sensitivity and good ratiometric 

correlation between 1O2 and chemiluminescence. Dioxetane-based traps comprehend the reaction of 1O2 

with a p recursor (sporoadamantyl-substituted vinyl ether) that can form a d ioxetane, 1O2 chemical trap 
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that can be used for quantification purposes by chemiluminescence after addition of a chemical trigger. 

Again, the lack of water solubility and the short emission wavelength are the main drawbacks when 

assessed in detection of 1O2 in biosamples. 

Another commonly used 1O2 trap system consists of molecules able to react with 1O2 through 

photochemical endoperoxidation reactions. In the presence of 1O2, anthracene (or acene-like) or furan 

derivatives specifically react with 1O2 to form an endoperoxide.11 This reaction is accompanied by a 

decrease in absorbance which can be used as a signal of 1O2 production. Again, such detection is not very 

sensitive since it is based on an absorbance measurement. However, lately, the fluorescence bleaching of 

anthracene has also been used as 1O2 reporter with good results.12,13 Unfortunately, anthracene 

fluorescence is observed in the blue, which is difficult to monitor in living systems due to overlap with 

cell autofluorescence.14 

Fluorescent probing of 1O2 is probably the most studied and developed technique. Fluorometric 

assays were firstly based on the use of the chemically reduced, non-fluorescent forms of highly 

fluorescent dyes such as fluorescein and rhodamine that when properly oxidised to the parent dye 

molecule, resulted in a notorious increase in fluorescence intensity.15 However, these dihydro-compounds 

are highly photosensitive compounds (they tend to be autoxidised producing a large background 

fluorescence even in the absence of ROS) and lack selectivity for 1O2.  

In later studies, it was concluded that the fluorescence properties of fluorescein derivatives were 

controlled by a p hotoinduced electron transfer process from the benzoic acid moiety to the xanthene 

ring.16-18. Thus, it paved the way to devise a new general approach: a two-component system comprised 

of a 1O2 trapping moiety coupled to a light-emitting chromophore. Several probes have been developed 

following this principle: DPAX and DMAX,16,19 MTTA-Eu3+ 20 and  more recently SOSG (for Singlet 

Oxygen Sensor Green),21 use an anthracene moiety to trap 1O2. In their native state, the luminescence of 

the emitting moiety is quenched by the anthracene by an electron-transfer process. Oxidation of the 

anthracene by 1O2 eliminates this quenching channel and the probe becomes luminescent. The same 

concept has been recently used to develop a n ear-infrared probe, His-Cy, where anthracene has been 

replaced by a histidine and a cyanine is chosen as fluorophore.22 A common drawback for all the above 

probes is that the fluorescence increases only moderately after reaction with 1O2, e.g., from less than two-

fold for His-Cy22 to ca. 10-fold for SOSG. Moreover, since electron-transfer reactions are strongly 
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dependent on solvent polarity, false positive signals arise that merely reflect location of the probe in a 

less-polar microenvironment rather than reaction with 1O2, e.g., when the probe is in hydrophobic pockets 

of proteins.23 In addition, the presence of an anthracene moiety in the structure is potentially misleading 

since anthracene is itself a 1O2 PS that may auto-oxidize the probe, which further complicates its use.24  

Most 1O2 probes have in common that they have been envisaged to measure 1O2 in solution or in 

extracellular systems. As a consequence, when interest was drawn to measuring 1O2 intracellularly and 

the available probes were tested in this context they failed, needed harsh/not physiological conditions, or 

were not successful enough.14,20,23 Recently, a s ynthetic 1O2 sensitive construct has been reported to 

successfully perform in intracellular systems. However, the synthetic complexity of the system –

comprised by a photocleavable moiety, two fluorophores and a cholesterol unit to achieve cell 

internalisation (Scheme 1)- makes it far from being the ideal and accessible 1O2 probe.25 

 

Scheme 1. Representation of the system described in ref 25. An anthracene moiety is coupled to two fluorophores 

(whose fluorescence is initially quenched) and a cholesterol unit to enhance cell penetration. In the presence of 1O2 

an unstable endoperoxide breaks liberating the fluorophores that recover their inner fluorescence. 

For the sake of measuring 1O2 intracellularly, extra features are requested from the probing 

candidates that need to be borne in mind during their design, i.e. stability, ease of uptake, and lack of 

toxicity. Inside the cell, the 1O2 produced will encounter mainly an aqueous-like environment, what 

means that the probe must be water soluble and non-toxic in working concentrations for good and viable 

cell internalisation. Most 1O2 probes are highly hydrophobic and, thus, lack water solubility and ease of 
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cell uptake. Although new water-soluble chemical probes have been developed,13,19,21,26,27 problems 

associated with dye toxicity or cell uptake are also being encountered. On the other hand, the 1O2 lifetime 

in water and inside cells is very short.28 This results in the immediate quenching of a l arge fraction of 

the 1O2 produced, hence reducing the emission signal to the threshold of detection by physical methods. 

In addition, it i s extremely difficult for the physical method to monitor the accumulation of 1O2 

production during, for instance, a PDT process. Another important feature of 1O2 measurement is its 

spatial localisation. Even considering that the 1O2 probe could be successfully internalised, still its 

targeting to the subcellular region where 1O2 will be located is a great handicap (or goal). Microscopy has 

been used to achieve resolution in a spatio-temporal manner, but the resolution limit is very close to the 

diffraction limit. Still, interesting approaches have been achieved in this respect.29-31  

There is an emerging trend to the use of polyacrylamide NPs in cellular and in vivo drug delivery,32-

34 sensing35,36 and imaging37 and successful examples of the system have recently been published in 

several fields.38-40 Their first and well-known advantage is the biocompatibility and ease of delivery into 

cellular systems. While dyes usually rely on passive uptake by cells, NPs design elicits a more targeted 

delivery of the probe, especially as they can easily be chemically tailored for enhanced targeting to cells 

and subcellular compartments. Another property of NPs is their ability to be encapsulated/conjugated 

with a vast variety of molecules. The loaded NPs can be used in aqueous solution regardless of the 

hydrophobicity of the drug/probe. NPs thus become potential carriers and physical protectors of the 

cargo. The dye molecule will be shielded from the chemical and biological environment in the 

physiological system while, simultaneously, the physiological system will also be protected from the 

potential toxicity of the dye molecules.  

Some previous approaches have been tried to combine 1O2 chemical probing with the advantages of 

using biocompatible carriers. Steinbeck et al.,41 used micron-sized glass beads coated with 9,10-

diphenylanthracene, a well-known 1O2 chemical trap. Although they demonstrated that 1O2 was produced 

from the cells, its huge size (1.6 µm) is likely to perturb the cells, thus, limiting its use in vivo. More 

recently, Cao et al.42 reported the results of a system composed by another common 1O2 chemical probe, 

9,10-dimethyl anthracene, entrapped in a p ermeable silica matrix (ORMOSIL) leading to NPs able to 

detect 1O2 while maintaining the advantages of being a biocompatible carrier. Further studies of its 

performance in intracellular systems have not been published to date. With all this shown, it is clear that 

there is not a perfect detection method for 1O2 and room exists for new findings in this area. 
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Naphthoxazole-based 1O2 fluorescent probesi 

 

AIM OF THE STUDY 

In this study we report the synthesis and photochemical behaviour of a new family of photoactive 

compounds in order to assess its potential as singlet oxygen probes. The candidate dyads are composed by 

a singlet oxygen trap plus a naphthoxazole moiety linked through an unsaturated bond. In the native state, 

the inherent great fluorescence of the naphthoxazole moiety is quenched; but in the presence of 1O2, 

generated by the addition and appropriate irradiation of an external PS, a photooxidation reaction occurs 

leading to the formation of a new chemical entity whose fluorescence is two orders of magnitude higher 

than that of the initial compound, at the optimal selected wavelength. The presented dyads outperform the 

commonly used indirect fluorescent singlet oxygen probes in terms of fluorescence enhancement 

maintaining the required specificity for singlet oxygen detection in solution. 

  

 

Graphical Abstract 1. Conjugation of a fluorescent and a 1O2-trapping moieties leads to a dyad with a low fluorescence in its 

native state. In the presence of 1O2 a new photooxidised chemical entity is born, leading to a fluorescence enhancement over two 

orders of magnitude at the optimal selected wavelength. 
                                                 
i This section has been adapted from the work accepted in Photochem.Photobiol. 2013 (DOI: 10.1111/php.12106). 
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RESULTS  

Naphthoxazole dyads description.  

2-(2-(Furan-2-yl)ethyl)naphtho[1,2-d]oxazole, FN-I1, contains a naphthoxazole linked to a furan 

through a saturated ethyl bridge. In 2-(furan-2-yl)naphtho[1,2-d]oxazole, FN-I2, the furan moiety is 

bonded directly to the position 2 of the oxazole ring, whereas in (E)-2-(2-(furan-2-yl)vinyl)naphtho[1,2-

d]oxazole, FN-4, the naphthoxazole and the furan are conjugated through an unsaturated ethylidene link. 

In the control molecule, (E)-2-(4-methylstyryl)naphtho[1,2-d]oxazole, FN-7, the furan ring of FN-4 has 

been replaced by a non-reactive tolyl group. Two candidates could be used as singlet oxygen sensors, 

namely FN-I2 and FN-4, since their fluorescence is boosted by a factor of ca. 135 and 300, respectively, 

upon reaction with 1O2. Four described compounds are depicted in Scheme 2. 

 

Scheme 2. Chemical structures of the four naphthoxazole derivatives of study. 
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Photophysical characterisation 

FN-4 is a dyad composed by a furan ring linked to a naphthoxazole moiety through an ethylidene group. 

The absorption spectrum is dominated by a main band with maximum at 367 nm and a second weaker 

band at 314 nm (Figure 1a) that compares reasonably well with the values of 387 and 314 nm obtained 

from TD-DFT calculations using G09W. The position of the bands follows no obvious trend with the 

solvent polarity (data not shown). The high values of molar absorptivity, ca. 3·104·M-1cm-1 in all solvents 

except in water, and the molecular orbital analysis of the minimum energy structure obtained from DFT 

calculations, indicate a π,π* transition. A similar behaviour of the absorption properties was observed for 

FN-I2 (data not shown), in which the furan ring is linked directly to the naphthoxazole moiety, and for 

FN-7, in which a non-reactive tolyl substituent replaces the furan moiety. When the linker is saturated 

(FN-I1) spectral bands shift substantially to the blue (λmax = 322 nm) and become more structured. These 

results correlate with the distinct degree of electronic coupling between the aromatic moiety and the 

naphthoxazole fluorophore. Similar trends are observed in the maximum of the fluorescence spectra 

(Figure 2b), consistent with the reports for related benzoxazole derivatives.43  

Figure 1. Normalised absorption (a) and fluorescence (b) spectra of FN-4 (thick solid), FN-I1 (dashed), FN-I2 

(dotted) and FN-7 (thin solid) in MeOH. 

Aryl oxazoles typically exhibit a very high ΦF value, in the 0.7-1.0 range 44,45. Among all studied 

compounds, this is observed only for FN-I1 ((ΦF = 0.93 in MeOH). In contrast, FN-4 and FN-7 show 

high ΦF values in low-polarity solvents only, the quantum yield decreasing by 1-2 orders of magnitude as 

the solvent polarity increases (Figure 2). However, for (E)-4-(2-(naphtho[1,2-d]oxazol-2-

yl)vinyl)benzonitrile (FN-7CN), an FN-7 analogue in which the methyl group is replaced by the strong 
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electron-attractor cyano group, the fluorescence quantum yields are close to 1 in all solvents, irrespective 

of their polarity (A. L. Zanocco, unpublished data). Finally, FN-I2 is scantly fluorescent even in non-

polar solvents (Figure 2). These results indicate that electron-rich aromatic moieties can act as effective 

quenchers of naphthoxazole fluorescence in conjugated dyads and, particularly, in polar protic 

environments, likely due to a charge-transfer interaction. Thus, furyl-oxazole dyads fulfill the first 

condition requested for a potential 1O2 probe, namely that the fluorescence is severely quenched in their 

native form, thus deserving further scrutiny. 

 

Figure 2. Correlation of ΦF values with the solvent polarity (represented by the ET(30) values) for the dyads FN-4 

(red circles), FN-I2 (green squares), FN-7 (light blue triangles), FN-7CN (black inverted triangles) and FN-I1 (dark 

blue diamond) 

  

Reactivity towards singlet oxygen  

The ability of the dyads to react with 1O2 has been studied by monitoring changes in their absorption 

and fluorescence properties. No changes could be recorded for FN-I1 and FN7, as expected. In the case 

of FN-4, reaction with 1O2 in MeOH caused bleaching of the main band at 367 nm and the growth of a 

new band in the 325-350 nm region (Figure 3a). The clear isosbestic point at 348 nm suggests a clean 

transformation to a single photoproduct (hereafter FN-4OX). This was confirmed by HPLC experiments 

that, after 95% FN-4 (tr = 14.3 min) consumption, show the formation of a main product at tr = 8.3 min 

and several minor secondary products (data not shown). Experiments to identify reaction products are in 

progress; however, furan is well known to selectively react with 1O2 through an endoperoxidation 

reaction, followed by methanolysis of the endoperoxide.46-48  
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Figure 3. Absorption (a,b) and fluorescence (c,d) spectra of FN-4 (a, c) and FN-I2 (b, d) before (solid line) and after 

(dashed lines) reaction with 1O2. The PS was NMB 1 µM, the irradiation wavelength was 635 ±  15 nm, and the 

experiments were carried out in aerated MeOH. Insets show normalised excitation (a, b) and fluorescence (c, d) 

spectra to facilitate their comparison. 

Involvement of 1O2 in the process was unequivocally demonstrated by the inhibitory effect of 

selective 1O2 quenchers (data not shown). Most effective were α-terpinene and sodium azide that 

inhibited the FN-4 photo-oxidation by ca. 90%. DABCO was able to diminish the FN-4 consumption to a 

lesser extent.  A strong fluorescence increase and a concomitant shift of the fluorescence peak to the blue 

could also be observed (Figure 3c), the excitation spectra of the original and final fluorescence bands 

being markedly different, implying that they correspond to different chemical entities (Figure 3a, inset). 

The spectral overlap is minimised at 330 nm, which suggests that this excitation wavelength should be 

chosen to maximise the fluorescence of FN-4OX. As shown in Figure 4 the fluorescence intensity at 378 

nm is enhanced by more than 300-fold. Compared to SOSG, the fluorescence enhancement of FN-4 is 30-

fold larger.  

In a similar fashion to that observed for FN-4, emission of FN-I2 also increases considerably upon 

reaction with 1O2 in MeOH (Figure 3d), concomitant with the bleaching of the low-energy absorption 

band at 367 nm (Figure 3b). Both the absorption and fluorescence spectra reveal the appearance of new 

bands shifted to the blue. The absorption spectra show a clear isosbestic point at 352 nm, suggesting the 
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formation of a single photoproduct as for FN-4. Excitation at 333 nm maximises the system emission, 

which increases by a factor ca. 135 at 363 nm (Figure 4).  

 

Figure 4. Fluorescence enhancement of FN-4 (solid red triangles; λexc = 330 nm; λobs = 378 nm) and FN-I2 (solid 

blue circles; λexc = 333 nm; λobs = 363 nm.) upon external generation of 1O2 in MeOH. Open red triangles stand for 

FN-4 fluorescence intensity changes upon cumulative irradiation at 355 nm. F stands for the fluorescence intensity at 

each point of study while F0 refers to the background fluorescence.  

The rate constant for 1O2 quenching by the dyads (kq) was determined by time-resolved detection 

of 1O2 phosphorescence at 1275 nm.1,49 Increasing concentrations of the dyads enhanced the decay rate 

of 1O2 in a linear fashion. The slope of the plots afforded the kq values, which are collected in Table 1.  

 

Table 1. Summary of photophysics, 1O2 production and reactivity data for the compounds of study in MeOH. 

Compound  λexc/ nm ε / M-1·cm-1 ΦF kq / M-1·s-1 Φ∆ 
a 

N-4 

FN-I1 

FN-I2 

FN-7 

 

367 

322 

342 

351 

30060 

13940 

31721 

32516 

0.014 

0.930b 

0.032 

0.050 

9.1 x 105 

1.9 x 107 

2.1 x 107 

0.0033c 

0.003 

0.070 

0.009 

0.004 

a PN in MeOH (Φ∆ = 1.0) was used as standard; λexc = 355 nm.50 b naphthalene in ethanol (ΦF = 0.21) was 
used as reference 51 Excitation wavelength was λexc = 280 nm for FN-I1. c acetonitrile as solvent 
 

Interestingly, the value for FN-4 (vinyl bridge) is 20-fold smaller than that for FN-I1 (ethyl bridge) 

and for FN-I2 (direct link), and about 40-fold smaller than for isolated 2-methylfuran (kq = 9.9x107 M-1s-1 

in MeOH 52), which confirms the strong electronic delocalisation of the furan ring across the vinyl bridge 
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in FN-4. Notice that the fluorescence enhancements do not correlate with kq. Finally, the low kq value for 

FN-7 confirms that naphthoxazole derivatives lacking the furyl substituent are essentially unreactive 

towards 1O2.  

 

Self-sensitisation of 1O2 by the dyads and reactivity towards other ROS 

A drawback of SOSG is the growth of fluorescence due to self-sensitisation of 1O2 (19). Other dyads 

lack selectivity towards 1O2 and react also with different ROS. We investigated whether the 

naphthoxazole dyads suffered from the same problems. All dyads sensitised the production of 1O2, 

although with very small quantum yields (Φ∆, Table 1 and Figure 5). Nevertheless, Figure 4 show that the 

fluorescence of FN-4 does not increase upon cumulative irradiation in MeOH and that of FN-I2 actually 

decreases (data not shown).  

Figure 5. 1O2 phosphorescence signals upon excitation at 355 nm and observation at 1275 nm. Amplitudes of the 

dyads’ decays were compared to that of PN used as standard. 

 

Reactivity towards other ROS was also tested for FN-I2 and FN-4 with negative results for both 

superoxide (KO2) and H2O2 (Figure 6). 

 

   

 



Chapter IV. New strategies for 1O2 detection 
 

119 
 

 

Figure 6. Fluorescence changes of methanolic solutions of FN-4 upon addition of H2O2 (a) or KO2 (b). Analogous 

results are presented for FN-I2 (c, d). 
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DISCUSSION 

The results above demonstrate that the new family of naphthoxazole dyads represented by 

compounds FN-4 and FN-I2 outperform any other fluorescent probe currently available for 

monitoring 1O2. The key novelty of the system relies on the fact that the fluorophore in the 

photooxidation adduct is different from that in the initial species. Thus, spectral changes arise that elicit 

the selection of optimal excitation wavelengths to enhance the fluorescence of the photoproducts. 

Enhancement factors up to 310-fold have been observed, that compare favorably with the 2-fold observed 

recently for His-Cy or with the 10-fold for SOSG. While both dyads are able to self-sensitise 1O2, their 

fluorescence does not increase in the absence of external 1O2 PSs. Finally, a high degree of specificity 

for 1O2 has been shown for both candidates.  
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CONCLUSIONS 

FN-4 and FN-I2 are two examples of successful naphthoxazole-based dyads capable of 

monitoring 1O2 in solution with unprecedented sensitivity. Photooxidation of the trapping moiety leads to 

the formation of a new chemical entity whose fluorescence is spectrally different from that of the non-

irradiated conjugate. Fluorescence enhancement factors up to 310-fold have been observed taking 

advantage of the change in spectral properties upon photooxidation. Its added selectivity towards 1O2 and 

the negligible effects of self-sensitisation, make naphthoxazole dyads worth of further development 

as 1O2 fluorescent probes. 
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Polyacrylamide nanoparticles as scaffold for 1O2 

detection in intracellular systems 
 

AIM OF THE STUDY 

We have envisaged a polyacrylamide nanoparticle scaffold that might be able to circumvent many of 

the general drawbacks of 1O2 intracellular detection while meeting the requirements for a good in 

vivo 1O2 reporter readily compatible with biological systems. Two commercial 1O2 probes, namely 9,10-

anthracenedipropionic acid (ADPA) and singlet oxygen sensor green (SOSG) with different working 

mechanisms have been covalently bound through different size linkers to the nanoparticle core and their 

detecting performance and biocompatibility have been tested in solution as well as in cells. 1O2 

generation has been achieved either by an exogenous PS coadministered with the nanoparticles or by 

including the PS in the polyacrylamide matrix. The preliminary results show biocompatibility and uptake 

feasibility with concomitant localisation inside cells. While the system is not yet fully optimised it s till 

serves as proof of concept for the scaffold. 

 
Graphical Abstract 2. Rational of the designed system intended for detecting 1O2 in intracellular systems. Key structures of a 

versatile system endowed with a polyacrylamide nanoparticle scaffold where different units can be probe is clicked to a generic 

fluorogenic 1O2 probe through different linkers. Other units such as charged moiety or porphyrin are also shown.  
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RESULTS  

As a primary approach, we developed the simplest scenario where the 1O2 probe is readily attached 

to the NP scaffold, following the Scheme 3. Amino-derivatised NPs were covalently bound either to 

ADPA or SOSG.  

 

Scheme 3. Rational design of ADPA (blue dots) or SOSG (green dots) probes readily linked to amino-NPs through 

amide bonds, together with the chemical structures of ADPA and SOSG 

Solutions containing 2 mg/mL NPs and 1 µM NMB were irradiated by means of a red light source 

and fluorescence changes were observed over time. The behaviour of the nano-probes in solution was 

poor as compared to the free probes, especially for SOSG-NPs, where the fluorescence enhancement was 

very mild (Figure 7).  
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Figure 7. Fluorescence bleaching (a,b) or enhancement (c,d) upon irradiation in the presence of 1 µM of NMB for 

aqueous solutions of (a) ADPA, (b) ADPA-NPs, (c) SOSG and (d) SOSG-NPs. Solid red line represents basal 

fluorescence and green dotted line first irradiation time. Extra light doses were given to NP-probe systems to assess 

their evolution. 

The excessive vicinity of the probe to the polyacrylamide matrix could be responsible for the 

aforementioned low probing efficiency by non-specific interactions of the probe to the NPs. Thus, we 

decided to include a spacer between the polyacrylamide scaffold and the probe, as can be seen in Scheme 

4. In order to be able to include the linker, the polyacrylamide matrix was synthesised exposing alkyl 

groups in the outer surface so that linkers could be coupled via click chemistry. Moreover, all the linkers 

exposed a terminal amino group allowing them to be bound either to ADPA or SOSG through amide 

bond. 
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Scheme 4. Rational design of nano-probes including different size linkers between the NP and the probe. Blue dots 

represent ADPA dye and green dots SOSG. 

New scaffolds including linkers of three different lengths were synthesised, characterised and tested 

in solution, as summarised in Figure 8. For both types of probe, absorption and emission spectra match 

those of the free probe. In the case of the absorption, a tail in the base line can be seen due to NP 

scattering. The results in terms of 1O2 sensing are modest and still the free probe outperforms them all. 

However, for both types of probe, the linker with an intermediate size (“M”) seems to provide an 

acceptable behaviour, at least to serve as a p roof of concept of the system. After 10 min irradiation, 

ADPA-M-NPs were photobleached up to a 90%; and over 95% photobleaching was achieved after 20 min 

irradiation. For SOSG-M-NPs, a 3.5-fold fluorescence enhancement could be achieved in dPBS and 3-

fold when in PBS.  

 

Figure 8. Behaviour in solution of probe-link-NPs. Absorption (solid line) and emission (dashed line) spectra of 

representative ADPA-M-NP (a) or SOSG-M-NP (c). Probing efficiency in solution of probe-link-NPs was assessed 

by addition of 1 µM NMB to 1 mg/mL nano-probe solutions and irradiation. ADPA bleaching in % (b) or SOSG 

fluorescence enhancement (d) was plotted, respectively. 
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In order to discard a problem of inner filter effect due to scattering, solutions of SOSG containing 

increasing concentrations of plain bare NPs were tested in the presence of 1 µM NMB and irradiated 

(Figure 9). Our experiment shows that for concentrations below 5 mg/mL SOSG solutions are able to 

behave almost equally with or without free NPs.  

 

Figure 9. Scattering effect on SOSG conversion. 

Once proved the viability of the system, further development was carried out to our best scaffold 

system: particles with the probe and a medium-size linker (probe-M-NPs). Our next goal was to confer 

charge to the system so as to be apt to be uptaken by the cells. Two different charged groups were 

developed: trimethylamoniumbysacrylamide (-NMe3+) and trimethylphosphoniumbysacrylamide (-

PMe3+) and integrated in the system as depicted in Scheme 5. Chemically speaking, the main difference 

with the previously developed particles is that now the NPs, apart from exhibiting alkyl groups, do also 

carry the charged functionalised groups. The new particles were characterised and its 1O2 sensing ability 

resulted comparable to its non-charged analogues. 

 

Scheme 5. Rational design of charged nano-probes including the probe and a medium-size linker. Blue dots represent 

ADPA dye and green dots SOSG. 

One of the main problems found in the performance of available probes in living systems is their 

difficulty to be uptaken by the cells due to interactions with serum proteins.23 Thus, next stage was to test 

their behaviour in the presence of bovine serum albumin (BSA). Fluorescence measurements were 
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registered upon addition of increasing amounts of BSA. In previous reports it has been described that 

shifts can be observed for SOSG in both absorption and emission spectra in the presence of BSA even at 

very low concentrations.23 In contrast, in our system, while partial fluorescence quenching occurs, no 

fluorescence shifts can be observed as presented in Figure 10. This result seems to point out that 

interactions of the protein with the nano-probe are minimised, especially for SOSG were even the 

fluorescence quenching effects are low. Likewise, the efficiency of the probe in the presence of BSA 

and 1O2 is decreased (data not shown), consistent with the fact that BSA is known to be a good 1O2 

quencher. 

 

Figure 10. Interaction of probe-link-NPs in the presence of BSA. Figures a and b show fluorescence changes upon 

addition of BSA up to150 µM to ADPA-M-NPs (a) or SOSG-M-NPs (b).  

Another drawback encountered for the 1O2 probes used intracellularly up till now is the difficulty of 

delivering the probe and the PS to the same subcellular localisation.14 Taking advantage of the versatility 

of our system, a new class of nano-probes was designed and synthesised including both the 1O2 probe and 

the PS, as schematised in Scheme 6. 

 

Scheme 6. Rational design of porphyrin-containing NPs including the probe and a medium size linker. 

A zinc porphyrin polymerised within the polyacrylamide matrix was chosen as model PS. In Figure 

11 it can be observed the absorption and emission resulting from the new constructs. 
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Figure 11. Behaviour in solution of porphyrin loaded probe-link-NPs. Absorption (a,c) and fluorescence (b,d) spectra 

for the ADPA systems (a,b) or SOSG systems (c,d). Dotted lines correspond to probe fluorescence and dashed lines 

to porphyrin fluorescence. 

Apart from the majority porphyrin absorption bands, shoulders corresponding either to ADPA or 

SOSG can also be observed, respectively. More interestingly, in both cases the fluorescence from both the 

porphyrin and the probe is sufficiently well separated. That will confer an extra aid in terms of 

fluorescence detection intracellularly as fluorescence colocalisation will be possible. Regarding its 

sensing behaviour, it is even more modest than for the previous system. Comparison between the 

behaviour of the NPs with and without porphyrin is depicted in Figure 12. 

 

Figure 12. Probing behaviour in solution of porphyrin loaded probe-link-NPs upon irradiation. 
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DISCUSSION 

 In order to assess the potential of the polyacrylamide as a scaffold for the development of 1O2 

probes for its use in intracellular systems, several items have been studied and are worth of further 

comments.  

 One of the requirements to meet for a potential scaffold is versatility. As our final goal was to obtain 

a general platform able to perform inside a cell independently of the probing molecule, we chose two 

commercial 1O2 probes, fairly different in mode of action. ADPA is a water-soluble anthracene derivative 

that in the presence of 1O2 undergoes an endoperoxidation that results in a decrease of both its absorbance 

and fluorescence.11,53 On the other hand, SOSG is a dyad composed by a fluorescein moiety whose 

fluorescence is quenched by photoinduced intramolecular electron transfer due to the presence of a near 

covalently bound anthracene moiety. In the presence of 1O2, the anthracene suffers an endoperoxidation 

and, as a result, the electron transfer is blocked leading to great fluorescence enhancement.23 Chemically 

speaking, both probes are acidic salts that under proper activation can readily react with amino groups. 

This is the reason why all the NPs developed presented amino groups either directly on the surface or 

throughout the linker. Coupling through an amide bond is a fairly straightforward reaction and high yields 

of reaction were obtained. Moreover, amino derivatisation was easily achieved. When required on the 

surface, commercial amino-bisacrylamide was used; when needed detached from the surface, linkers were 

directly connected via click chemistry. 

 The second requirement is, of course, that the system should work. This was first tested in solution. 

In the first approach, with the probes readily attached to the NP surface, results were unfruitful and very 

modest conversion rates were obtained as compared to the virgin probe. Incorporation of spacers of 

different length improved substantially the result. However, no clear correlation between linker length 

and probing efficiency was found. For both compounds the medium-size linker NPs performed more 

efficiently. NPs composed of mixed linkers of different lengths were also synthesised and tested, but 

without improving the general outcome.  

 Biocompatibility with living systems is another must. As previously mentioned, one of the main 

problems dealing with regular 1O2 probes is that they have not been envisaged to act in intracellular 

systems and many fail due to toxicity, biocompatibility or difficulties in uptake. For instance, SOSG has 

been proved hard to be internalised in HeLa cells cultures when administered in whole media (including 
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serum proteins). One of the advantages of our system is that NPs presented minimised interaction in the 

presence of BSA. While still partial fluorescence quenching occurs, no spectral changes arise. Thus, 

administration and uptake in whole medium has been proven feasible (preliminary results, Figure 13). 

Cationicity has been shown necessary for polyacrylamide systems to be internalised. Thus, two different 

cationic groups have been designed and added to the system from the NP synthesis. Thankfully, the 

incorporation of these groups on the surface of the NP did not affect the global performance of the NPs. 

Once again, this result elicits more versatility on the system since different subcellular localisations can 

be targeted. 

 One of the most interesting approaches developed on the system is the incorporation of both the 

probe and a reference PS. One of the main problems in detecting 1O2 is the difficulty to achieve that the 

probe is present just in the loci where 1O2 is being produced. By incorporating a porphyrin in the matrix 

of the NP this problem is overcome. Moreover, dual fluorescent localisation is displayed since porphyrin 

and probe fluorescent spectra are fairly well separated. It is true that performance in cuvette has proven 

less efficient that their analogues without porphyrin. However, the PS’ concentration loaded in the 

construct is minor to that of the experiments performed in cuvette. Still we could observe enhancement 

and the system is closer to reality when administered in cells. Further data has not been provided, but 

preliminary experiments (Figure 13) show that NPs loaded both with probe and PS are uptaken and 

colocalisation occurs. Next stage will be to assess the performance upon generation of 1O2. 

 

Figure 13. Confocal merged image of HT-29 cells incubated for 18 h with NP-M-SOSG-Porph (2 mg/mL in whole 

medium). Plasma membranes were stained with Cell Mask Deep Red (5 min; 5 mg/mL; green). Little red dots 

inside the green circles indicate that smaller NPs have been taken in. Some NPS are aggregated at the surface of the 

membrane (big red blobs). Big yellowish bright blobs correspond to artifact from the laser light going through both 

membrane and aggregate. FITC set up (488 nm Ar laser) and Alexa Fluor set up (633 nm HeNe laser). 
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CONCLUSIONS 

In summary, we have designed, synthesised and preliminary proven a multifunctional biodegradable 

polyacrylamide NP scaffold for 1O2 detection inside cellular systems. By a combination of two different 

commercial 1O2 chemical probes linked to the polyacrylamide nanocore we obtain an interesting 

approach to achieving intracellular 1O2 ratiometric measurements. Modification of the polyacrylamide 

matrix with linkers of different length between the core and the probe enabled changes in sensing 

response towards 1O2. Moreover, the NP scaffold hampered the interactions between the hydrophobic 

probes and BSA thus proving minimised efficiency losses when in a cell-like environment. Best candidate 

positively charged NPs incorporating either SOSG or ADPA were successfully uptaken by cells without 

appreciable dark toxicity and localisation assessed by the probe basal fluorescence. NPs incorporating a 

porphyrin PS in the polyacrylamide matrix were also tested and demonstrated both a better colocalisation 

and the possibility to generate 1O2 in situ. Even though the best candidates are far from ideal, we believe 

the described platform is endowed with potential features to soon become the reference system for 

intracellular 1O2 measurement. 
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SPECIFIC EXPERIMENTAL SECTION 

Materials.  

Chemicals: Acrylamide (99% minimum), ammonium persulsufate, dioctyl sulfosuccinate sodium salt and 

N,N,N,N-tetramethylethylenediamine were purchased from Sigma-Aldrich. 

N,N’methylenebis(acrylamide) and Brij 30® were obtained from Fluka Analytical. 1-(3-

dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were 

purchased from Alfa Aesar. Hexane HPLC grade and ethanol analytical grade were obtained from Fisher 

Scientific. SOSG was purchased from Invitrogen. ADPA was supplied by Chemodex. 

Methods.  

Synthesis of polyacrylamide NPs: Amino functionalised NPs were synthesised by adopting the free 

radical microemulsion polymerisation procedure optimised by Chauhan et al.38 Briefly, a final volume of 

1.9 mL containing acrylamide (540 mg, 7.60 mmol), N,N-methylenebisacrylamide (150 mg, 1.04 mmol) 

and N-(3-aminopropyl)methacrylamide hydrochloride (10 mg; mmol; 1% equivalence to acrylamide) in 

water (1.7 mL) was added to a deoxygenated hexane (42 mL) solution containing Brij 30 (3.08 g, 8.49 

mmol) and completely dissolved dioctyl sulfosuccinate sodium salt (1.59 g, 3.58 mmol). To this solution 

30 μL of ammonium persulfate (0.4 μmol) in water and 15 μL N,N,N,N-tetramethylethylenediamine (0.1 

μmol) were added and the mixture stirred for 2 h under a positive argon pressure at rt. Excess hexane was 

removed in vacuo. The resulting viscous yellow colored solid was washed with ethanol, centrifuged (8 x 

50 mL, 10 min, 4500 r pm) and recovered by microfiltration (Whatman Anodisc 25, 0.02 μm, 25 mm 

filters) to yield the desired NPs. Yield: 86% (602 mg). 

To synthesise alkyl functionalised NPs, the above synthesis procedure was followed with the exception of 

addition of N-(pent-4-yn-1-yl)methacrylamide instead of N-(3-aminopropyl)methacrylamide. To 

synthesise charged alkyl functionalised NPs, the above synthesis procedure was followed with the 

exception of extra addition of trimethylamoniumbysacrylamide or trimethylphosphoniumbysacrylamide 

together with the rest of the acrylamide monomers.  

Linker synthesis: (2-azidoethoxy)methanamine hydrochloride (medium linker; “M”) and 2-(2-(2-

azidoethoxy)ethoxy)ethanamine hydrochloride (large linker; “XL”) were synthesised following protocols 

described in references 54,55. Short description for “XL” is explained as example. To a stirred solution of 

tert-butyl (2-(2-(2-aminoethoxy)ethoxy)ethyl)carbamate (10 mmol) in MeOH (50 mL) was added copper 

(II) sulphate (1 mg), and anhydrous potassium carbonate (2.5 g; 12 mmol) was added, and the mixture 
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stirred at rt for 24 h . The solvent was removed under reduced pressure and the product purified via 

column chromatography (1% MeOH: DCM) to yield tert-butyl (2-(2-(2-

azidoethoxy)ethoxy)ethyl)carbamate as a colourless oil (2.37 g, 87 %). The obtained product was 

dissolved in 20 mL ethyl acetate and 10 mL HCl in dioxane were added and the reaction mixture stirred at 

rt for another 24 h. The solvent was removed under reduced pressure, and the residue washed with diethyl 

ether yielding “XL”. 3-azidopropan-1-amine (Small linker; “S”) was synthesised according to 

reference 56. Commercially available Boc-propanolamine was converted to the mesylate, which then 

smoothly underwent direct substitution with sodium azide to give the Boc-protected azide. Removal of 

the amine protecting group under standard anhydrous conditions gave the azidoethylamine as the 

hydrochloride salt. 

Coupling and purification: coupling between carboxylic dyes and amino groups were performed by 

standard protocols. Namely, dye-carboxylate was activated for 30 min upon addition of 1 EDC and NHS 

per mg dye followed by addition of the amino-NPs (20 mg in 2 mL NaHCO3). Stirring of the mixture 

was allowed overnight and dye-NPs were collected after running of the sample through a 8 .3 mL 

Shepadex PD-10 desalting columns (GE Healthcare) and precipitation in cold ethanol. Coupling of the 

linker to the NP was achieved using standard click chemistry protocol.57 Namely, a mixture of the alkyne-

NPs, the azide linker (2 equiv.), sodium ascorbate (0.2 equiv.) and copper sulphate (0.2 equiv.) was 

stirred for 8 hours and subsequently recovered after Shepadex column purification. 

Porphyrin: 5-{4-[3-(2-methylpropenamido)propylamino]thiocarbonylamino]phenyl}-10,15,20-tris-[4-

(methylpyridinium)-yl]-porphyrinato zinc (II) trichloride was kindly provided by Francesca Giuntini. 

NPs characterisation: particle size and size distribution properties of the NPs were measured by PCS, 

Zetaplus particle size analyzer (Malvern 3000) at 25 ºC and at a scattering angle of 90º. A dilute sample 

of 1 mg/mL NPs was prepared in Milli-Q water, sonicated for 30 s and filtered (Millex GP, 0.22 μm filter 

unit) before analysis. The value was recorded as the average of 30 data measurements. Porphyrin and dye 

loading was quantified using the Beer-Lambert law . 
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“There must be no barriers to freedom of inquiry. 

There is no place for dogma in science. 

The scientist is free, and must be free to ask any question, 

to doubt any assertion, to seek for any evidence, to correct any errors.” 

- Robert Oppenheimer 





General discussion & outlook 
 

138 
 

GENERAL DISCUSSION & OUTLOOK 

Getting involved in a PhD has made me grow as a scientist and as a person. And not only scientific 

knowledge has been gained. I find it important to share a couple of thoughts I have obtained throughout 

my PhD thesis.  

Firstly, the realisation of how small we are as compared to science and the scientific world. One has 

only two hands and a finite time to dig in the infinite vineyard that is science. Reading every Monday 

over the discoveries in the field –and science in general- has helped me to start every week both 

enthusiastic about thrilling science and also with the feeling that I am late and at times obsolete in my 

research. And that tells you the more you think you know, the more humble you must be.  

I would like to add a second reflection concerning science in general. After my first research stay in 

Edinburgh I learnt that science is a lonely world. But it is not only loneliness; it also has to do with 

frustration and getting stuck many times. Feeling stupid, even. Fortunately to me, a summer later in Hull, 

I got to read the amazing reading “The importance of stupidity in scientific research”.1 I found it utterly 

revealing and encouraging. At times we forget we have to muddle through a field where we do not have 

insight. But nobody has insight and that’s why it is science research!! 

“I remember the day when Henry Taube (who won the Nobel Prize two 

years later) told me he didn’t know how to solve the problem I was having 

in his area. I was a third-year graduate student and I figured that Taube 

knew about 1000 times more than I did (conservative estimate). If he 

didn’t have the answer, nobody did. That’s when it hit me: nobody did. 

That’s why it was a research problem. And being my research problem, it 

was up to me to solve.” 

 Focusing, now it’s time to shift discussion towards scientific matters. After three lovely years 

devoted to singlet oxygen, its detection and its application in antimicrobial photodynamic therapy, what 

have I learn out of it? My first reflection goes towards “classical aPDT”, may I call it that way. With this 

term, I recall the cyclic concept of 1) designing and synthesising the “miracle” PS that will likely solve 

the problem of antibiotic resistance and outperform all previous last-resort drugs or PSs. 2) Measuring its 
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photophysics in cuvette and its photokilling efficiency in bacterial cultures. 3) Realising it is another PS 

as good as the others but nothing especially new. Evolution towards 3rd generation PSs, as for me, 

represents an opportunity to better understand the processes of antimicrobial killing trough the 

photodynamic effect and unraveling key factors that would allow aPDT as a regular tool in our medical 

repertoire. But I believe we should be careful in thinking we are getting closer to the “Holy Grail PS”. 

This idea became clear to me in the last congress of the ESP I attended in Geneve (September 2011). 

Most studies regarding photodynamic inactivation were pretty similar to mine, even though different 

families of classy PSs with several degrees of complexity were used. Our cationic porphycenes were as 

good as the rest. However, what I could appreciate is that there was an upcoming shift in direction. 

Instead of looking for a new drug candidate, “old-fashioned” 2nd generation PSs were being used (or 

“recycled” somehow) as disinfectant agents in waters in conjunction with white light, to treat malaria, 

fungi or other parasites where little had been previously done (and thus becoming cool for publication) or 

to ascertain the relationships of photodynamic effect and immune system. The results obtained in the 

Chapter III section “cationic PSs as 3rd generation PSs” points out the previous statement. Out of the 6 

tested compounds, nice results have been achieved with at least 4 of them, even though they varied in the 

family of PS, the number of charges and probably in the subcellular localisation. However, little has been 

improved since first approaches with cationic phenothiazine or porphyrins PSs in terms of photodynamic 

efficiency.2,3 Rather, further and more thorough rationalisation regarding charge effects should be 

undergone, since little focus have been gained in recent years and shallow studies have been performed.4,5 

Out of our 4 good candidates two were tricationic, one tetracationic and one octacationic. Still, big 

differences among them make it hard to canalize the feasibility of the comparison. Especially regarding 

mechanistic issues as important limitations are found as far as the PS is delivered externally.  

Despite the previous reflections, I believe “classical aPDT” is far from death, but it needs a shift in 

direction. And one gap looks clear to me: biofilms. If one consults the number of scientific publications 

resulting from the search “antimicrobial photodynamic therapy” in PUBMED 

(http://www.ncbi.nlm.nih.gov/pubmed) and compares it with the same search for “microbial biofilms” the 

result goes as follows: 

http://www.ncbi.nlm.nih.gov/pubmed
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Figure 1. Evolution on scientific publications on “microbial biofilms” (red; left ordinate axis) and “antimicrobial 

photodynamic therapy” (blue; rightt ordinate axis) and combined topics (green) over the last 40 years. Publications 

for 2013 have been extrapolated from results up to date and trend. 

 While both topics seem to be hot spots, if one goes for a combined search of both topics, the result 

obtained is as surprising as 57 results altogether!! Biofilms have gained a lot of attention since our 

understanding and the techniques have let us gain a lot of insight in the complex architecture that bacteria 

build-up in different niches.6,7 It was previously believed that a single virulence factor sufficiently 

mediated disease caused by a single organism. While true in some cases, many diseases can no longer be 

defined as an infection by a s ingle species. And here we include diseases of the oral cavity, otitis media, 

diabetic foot wound infections, and chronic infection in the cystic fibrosis lung. In these cases, the composition 

of microbial populations predicts both disease severity and outcome.8 Thus, if aPDT is meant to go for gold, 

further aPDT-mediated studies should be addressed. Almost twenty years ago Roberto Kolter (one of the 

popes on biofilms) saw clear it was about time to move from bacterial cultures to biofilms;9 now it is time 

for aPDT to move onwards.  

“However, things changed for me in 1994 when, noticing my depressed 

state, members of my laboratory gave me a fish tank in an effort to draw 

me out of the blues. As I sat locked-up in the office staring at the tank, I 

realized that by studying shaken cultures of E. coli I had been barking up 

the wrong tree. The water in the fish tank remained crystal clear, it was 

on the surfaces where most microbial activity was occurring.” 
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Introduction of Chapter III intended to offer the reader some background on the approach of AMPs 

and bacteriocins as possible helpers in the fight against bad bugs. From the outside and within, we are 

constantly bombarded with a myriad of diverse microbial species. Fortunately, our bodies are equipped 

with an evolutionarily conserved innate immune defence system that allows us to thwart potential 

pathogens. AMPs are a unique and assorted group of molecules produced by living organisms of all 

types, considered to be part of the host innate immunity. These peptides demonstrate potent antimicrobial 

activity and are rapidly mobilised to neutralize a broad range of microbes, including viruses, bacteria, 

protozoa, and fungi.10 Thus, the idea of combining the use of PSs with AMPs in order to seek for a 

synergistic effect looks promising. In spite of the encouraging results obtained, further studies are 

necessary: new conjugates assaying other AMPs (magainin, bufforin, etc.), going to animal models (for 

instance to check if AMPs are degraded before getting to the target) and, importantly, controls in 

mammalian cells. Recent reports have shown that small modification of AMPs can result in targeting to 

mammalian cells,11 fact that could lead to undesired properties for our candidates. Another issue to bear 

in mind is that conjugation of the PS with other entities sometimes results in loss of efficiency.  

Definitely, to me, the approach that employs FPs as genetically-encoded PSs results the most 

promising and the most elegant of all. What better than a PS that can be built by the bacteria itself with its 

own machinery. Whenever I come to think of it, it reminds me the idea of a Trojan Horse. Giving bacteria 

plasmids encoding for tasty FP, letting them grow, making them glow to observe where they are and 

finally sheding light to kill them or exert localised damage at will! 

The beauty of using FPs that are able to generate sufficient amounts of 1O2 is multiple. First, 

localisation issues: by properly tailoring a plasmid we are able –on paper- to target any protein (and thus 

any part) of the cell by fusing our FP-gene to that of the protein of interest. Second, tracking issues: FPs 

are –as their name indicates- fluorescent. And we can take advantage of the property to check the 

feasibility of the construct and even the life of the protein. Finally, being able to generate 1O2 opens the 

door to a plethora of unprecedented opportunities. We can finely tune the amount of 1O2 we need to 

provoke cell death (addressing dosimetry issues, key in clinical success), we can damage selectively a 

fused protein, we can compare the damage at different loci (thus going to selectivity issues) or we can 

improve the development of probes that can perform in intracellular systems (as far as FPs are not 

restricted to bacteria). 
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Figure 2. Drawing representing Trojan Horse. (Image from www.keiththompsonart.com; retrieved April 2013) 

 The potential of its use as a t herapy could be explored combined with the use of a p roper carrier 

systems (siRNA, phages, etc.). But before anything, new flavin-binding proteins with enhanced capacity 

to produce 1O2 have to be developed. And also further insight needs to be given. Questions such as why 

miniSOG ability to sensitise 1O2 is increased upon cumulative irradiation are not fully understood yet. 

 

 Shifting to the issue of 1O2 detection I would like to comment first on the fact that it is a recurrent 

issue and that has had broad interest. Some of the already mentioned reviews regarding the topic clearly 

show that it has attracted a never-ending interest and pretty beautiful and smart approaches have been 

published.12,13 Having had the necessity of quantifying 1O2 myself in different scenarios I have had the 

chance to experience with many of them what has given me a better idea on what advantages and 

drawbacks each technique exhibits. 

 As for me, the number one option has always been direct 1O2 measurement through 

phosphorescence at 1275 nm. You just need to adjust solutions of the sample and a reference to the same 

absorbance at the excitation wavelength and let it shine for a certain period of time, depending on the 

efficiency of the sample as 1O2 generator. If the unknown sample is a chemical substance soluble in 

organic solvents not many inconvenients will appear. May the sample be water soluble, a bit more patient 

one will have to be as far as the 1O2 phosphorescence efficiency in aqueous media is low.14 But with 

enough sample and using deuterated solvents usually it is enough to solve the measurement. Direct 1O2 
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phosphorescence detection looked perfect to me until two especial water-like scenarios came to my 

hands. First, I had the necessity of measuring 1O2 generated by PSs uptaken by living cells. The huge 

scattering and the amazingly low signals made me realise the limitations of the system. Later on, we 

found the problem of obtaining a Φ∆ value much lower for miniSOG than that published. In the latest 

case, even though we were sure our measurements were correct, we needed at least a second method that 

would proof us right. These two examples told me it was time for me to get to use indirect 1O2 detection 

methods. My first approach was the use of the commercially available SOSG. This fluorescent probe has 

long been used in the topic of assessing 1O2 values in many different systems with pretty nice results.15 

Just to refresh what I previously said, this probe, however, has two important disadvantages. Firstly, it is 

unable to perform in intracellular systems mainly due to unspecific interactions with other substrates 

(such as BSA).16 Secondly, fluorescence enhancement upon reaction with 1O2 in “only” ca. 10 times at 

best. I also had the chance to use another fluorescent probe called ADPA (anthracene dipropionic acid, 

just to remind you). As commented back in chapter III, it has long been used and its use is fairly standard 

in the assessment of 1O2 in PSs. One of the most unexpected results was to find that this probe failed to 

measure 1O2 in proteins due to unspecific interactions with the protein itself. Interaction of anthracene-

like molecules with proteins had been previously reported, but not until the necessity of using both 

systems together did people realise of its inadequacy. Other interesting probe I had the pleasure to play 

with UA: Another indirect probe, this time not fluorescent. In this case, the 1O2 reactivity is tracked by 

absorbance due to bleaching of the probe. While useful in cuvette, this system is endowed with several 

drawbacks. Firstly, it works in the blue part of the spectrum, where many cell components absorb or emit 

(e.g. mitochondria autofluorescence); second, it is not such a straightforward measuring method, as far as 

a second order reaction takes place and one must be careful with the kinetics of the bleaching. Finally, the 

decrease in absorption can be really hard to measure -once again- in living systems. 

 With the previous background on the topic I was happy to have the opportunity to work with two 

new 1O2 detection scaffolds, corresponding to the two sections in Chapter IV. 

 The approach of the naphthoxazole dyads offered a pretty nice surprise. While the first 

measurements were conducted early on my thesis, not until the last months did we realise the power of 

the scaffold we had in our hands. At the beginning, we thought the system was “just” another fluorescent 

dyad in which fluorescent was prevented by photoinduced electron transfer until reaction with 1O2 
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hindered the electron transfer and the fluorescence was thus recovered. The key point was to realize the 

novelty and usefulness of our system: the presence of two real different chemical entities before and after 

reaction of the dyad with 1O2. In common fluorescent 1O2 traps such as SOSG, the fluorophore is 

fluorescein. And it always is. However, in our system the conjugation of the two partners of the dyads 

makes that, in fact, the native and oxidised photoproducts are not the same. Such fact results in a 

fluorescent photoproduct that presents also spectral shift respect to the initial compound, thus enabling to 

choose a wavelength were initial and final products present maximum spectral differences. This double 

phenomenon explains why we achieve the amazing 310-fold fluorescent enhancement values. And it 

confers the system with very promising attributes. However, it is no gold all that glitters. First, we have 

not yet been able to fully ascertain the reasons for the initial quenching of the dyad in its native state. 

Second, the system presents huge dependence on the solvent polarity (in apolar solvents the probe is 

fluorescent before irradiation and photoconversion is slowed down and minimised). Finally, its solubility 

in aqueous media is very poor what hampers its use as a probe in intracellular systems. 

 In line with the end of the previous sentence, solubility in aqueous media and cell uptake are two of 

the milestones that a probe has to overcome so as to present itself as a potential 1O2 candidate to perform 

in intracellular systems. Of course, cell uptake talks about biocompatibility (low toxicity, for instance) 

and minimised (ideally lack of) interaction with other biological entities such as serum proteins. With 

these requirements in mind we decided to develop a system whose core would have polyacrylamide NPs 

that would confer both solubility in aqueous media and biocompatibility (at least by itself). Another 

attractive point is that it presents affordable chemical synthesis and versatility. Polyacrylamide NPs have 

long been used in several fields, also as probes for other analytes, so much of the chemistry needed was 

unravelled.17,18 The first approaches with direct ADPA and SOSG attachment to the NP didn’t render the 

desired performance. And thus we went for the incorporation of the linkers using the well-established 

click-chemistry. Despite we have seen the systems are not perfect in terms of fluorescent changes upon 

conversion, still we decided it was worth giving them a try in cellular systems. The first reason, because 

we needed to check they really were cell-compatible and that the scaffold was tolerated and uptaken. It 

was this way we realised we needed to incorporate charges in the system when the cationic porphyrin was 

not incorporated in the NP matrix. One of the greatness of the system we developed is the versatility as 

mentioned before. In a first approach, it allows the incorporation of several entities. For instance, we have 

incorporated the probe and the porphyrin. This idea provides two important factors: it improves the 
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localisation of the NP (by colocalising both fluorophores) and it puts together the probe and the 

generation of 1O2, something not achieved up till now. Besides, it opens the door to much more 

elaborated systems still without introducing too much complexity into the system. For instance, we could 

include both probes to check both the bleaching of the anthracene moiety and the enhancement of the 

SOSG fluorescence; we could also try new probes (naphthoxazole-based dyads!!) or even load it with 

other PSs. However, better performance in cuvette is needed before moving much forward. As mentioned 

in the corresponding chapter, we are not the first group trying to measure 1O2 in intracellular systems; but 

none of us has fully succeeded up till now. After all, the main conclusion on this topic can be that none of 

the kind-of-successful systems published are ideal. Every system is inherently different (and difficult 

enough) and thus room for new improved 1O2 will always be welcome. 

 

 To finish this chapter I would love to give further emphasis on the reality of the bacteria resistant to 

antibiotics. Sadly, I’m afraid little will be done until cases of the “big monsters” land at home (just to 

recall, most of the cases of the pan-resistant bacteria are present in India or Pakistan, still far from western 

Europe). I also believe that people are not fully aware of the risks of misuse and abuse of antibiotics (not 

only in humans but also in cattle industry). And sadly is such a common use. Together with the 

improvement in the development of new therapies and drugs, much more should be done regarding 

raising awareness of the problem on society. And we should take notes on what our neighbours in the 

USA do in this respect with institutions such as ISDA (Infectious Diseases Society of America). Finally, I 

would also like to send a message of hope. And it comes from one of the aforementioned therapies: phage 

therapies. I was astonished by reading that this therapy is being used in Georgia (and other URSS-derived 

countries) routinely since 1920s!! And you can purchase phage-cocktails as easy as you can get an 

aspirin. Again, we have much to learn (and reading interesting reviews helps!).19 Hopefully some research 

back in this forgotten therapy is being held. 
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As a result of the present work, the following conclusions have been arrived at: 

• Tricationic porphycene NMe3MeO-TBPo has slightly improved photoinactivation 

ability against MRSA and P. aeruginosa as compared to its analogue Py3MeO-

TBPo, but it is less efficient against Candida spp. Dendrimeric phthalocyanines 

bearing zinc group clearly outperform their ruthenium analogues. Still, all 

dendrimers except RuCat8+ are capable of effectively photoinactivating E. coli. 

Aggregation effects have been observed for all compounds, while differences in 

behaviour occur depending on the family of PS. 

• Photophysical studies on A pidaecin 1b c onjugated to four different PSs indicate 

binding to the bacterial OM but not improved photophysical properties respect to 

the parent PS, except for the water solubility conferred by the intrinsic charge of 

Apidaecin 1b. The reported results are consistent with photoinactivation 

experiments, FACS analysis, and circular dichroism studies. 

• 1O2 production by TagRFP has proven sufficient to exert bacterial cell death in a 

light dose dependent manner, being the first report on bacterial photokilling via 

purely 1O2 endogenous production. MiniSOG has been shown to outperform any 

other reported fluorescent protein in terms of bacterial photoinactivation. 

Additionally, insight has been gained unravelling mechanistic aspects on bacterial 

cell death. 
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• MiniSOG capability of sensitising 1O2 has been revisited and an apparent Φ∆ value 

of 0.03 ± 0.01 has been established through direct 1O2 luminescence and indirectly 

by using uric acid as probe. An increase in the Φ∆ value of almost an order of 

magnitude upon cumulative irradiation of miniSOG indicates that its sensitisation 

ability is hindered by scavengers inside the protein. 

• Conjugated naphthoxazole-based dyads have shown an unprecedented fluorescence 

increase up to 310-fold in the presence of 1O2. This effect can be explained since 

native and photooxidize species are indeed different chemical entities allowing 

optimised wavelength selection.  

• Polyacrylamide-based NPs linked to 1O2 chemical traps have been successfully 

developed and tested in solution. Chemical versatility of the system has allowed the 

inclusion of two different trapping moieties (ADPA or SOG), linkers varying in 

size, charged groups and even a model porphyrin. Moreover, minimised 

interactions of the system towards BSA have been observed. Finally, preliminary 

results in intracellular systems point out on biocompatibility, ease of localisation 

and lack of toxicity. 
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APPENDIX I 

 
This first appendix includes two paragraphs corresponding to a published interview to Professor 

John Conly by World Health Organization at the end of 2010 related to the World Health Day 2011 

dedicated to antimicrobial resistance. 

 
 

Q: What’s special about this new type of resistance labelled as NDM1? 

A: NDM1 is an enzyme that confers resistance to one of the most potent classes of antibiotics, 

known as carbapenems, but what has been observed is different in many ways to what we have 

seen to date. This new resistance pattern has been reported in many different types of bacteria 

compared to previously and at least one in 10 of these NDM1-containing strains appears to be 

pan-resistant, which means that there is no known antibiotic that can treat it. A second concern 

is that there is no significant new drug development for antimicrobials. Third, this particular 

resistance pattern is governed by a set of genes that can move easily from one bacterium to 

another. Fourth, NDM1 has been found in the most commonly encountered bacterium in the 

human population, E. coli, which is the most common cause of bladder and kidney infections. A 

further concern is that of the two drugs potentially capable of treating an infection due to one of 

these new multiresistant strains, one of them, colistin, causes toxic effects to the kidney in about 

a third of people. 

 

Q: Is this the doomsday scenario of a world without antibiotics? 

A: Unfortunately yes, with these new multiresistant NDM1-containing strains and their 

potential for worldwide spread. Doctors will face a terrible dilemma when a pregnant woman 

develops a kidney infection that spills over into the bloodstream with a pan-resistant strain 

containing NDM1 and there are no treatment options. We are essentially back to an era with no 

antibiotics. 
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APPENDIX II 

 
Not until one gets to know real stories one is not fully aware of the significance of the problem. 

With this purpose in mind, two representative and shocking real and recent cases have been selected and 

attached below as part of this second appendix. More information can be found from the main web page 

of the Infectious Diseases Society of America (IDSA; 

http://www.idsociety.org/Topic_Antimicrobial_Resistance/)  

David Ricci’s story 

 

 
 
A 19-year-old from the Seattle area battles several NDM-1 positive antibiotic-resistant infections as he recovers from 

a train accident that cost him his right leg. 

“In just one moment my life changed forever. In June 2011 I  was 19 years old and working as a 

volunteer with HIV/AIDS orphans in Calcutta, India, through the social justice organization YWAM, far 

from my home in the Seattle area.  One morning while I was walking to the orphanage, I took a shortcut 

across some train tracks to avoid the trash-filled roadside. All of the sudden I was hit and dragged by a 

train, resulting in the brutal amputation of my right leg above the knee. 

You never know when it's the biggest day of your life until it's happening. It was as if I was in the 

middle of a nightmare turned reality; I didn’t receive pain relievers until a week after the accident. When I 

received clearance to be airlifted back home to Seattle after a hazy three weeks of agony, I thought the 

worst of my journey would be over: Maybe I would need some antibiotics and other treatment, but I could 

get on with learning how to live with only one leg. Little did I know how wrong I was. 

http://www.idsociety.org/Topic_Antimicrobial_Resistance/
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When I arrived back in the U.S., I soon learned that my wounds were infected with multiple drug-

resistant bacteria (including Pseudomonas aeruginosa, Klebsiella pneumoniae, Morganella morganii, 

and Enterococcus), several of which tested positive for New Delhi metallo-beta-lactamase-1 (NDM-1), a 

dangerous and recently discovered enzyme that makes bacteria resistant to a whole class of very 

important  antibiotics. I had never heard of any of those bacteria, nor NDM-1, let alone thought that one 

day I would become infected with them. I remember when the lab results came back, the hospital staff 

was so concerned by the NDM-1 that everyone went into crisis mode, and I was immediately isolated in 

my room. After another surgery to remove infected tissue from my residual limb, I was put on broad-

spectrum antibiotics as a precaution. They thought the infection was 

gone, so I was released and returned home to my family. 

After four weeks at home the pain still hadn’t subsided, and my 

doctor knew something was wrong. Another surgery was required, and 

the surgeon found the tissue was still infected with  the highly drug-

resistant bacteria. I began a course of strong antibiotics, including an 

antibiotic of last-resort called colistin, which is rarely used because it’s so toxic. I felt my body shutting 

down from the toxicity of the treatment. My immune system, kidneys, and liver were failing, and I could 

feel my body giving up. Top doctors were giving me potent cocktails of the most powerful antibiotics 

available, and we were not sure if the drugs were even working. To know that the drugs that were strong 

enough to damage my internal organs might not be powerful enough to fight the bacteria they were 

intended to treat, made me feel incredibly powerless.   

I stopped the antibiotics at the end of September when the infection was thought to be gone. By 

December, it was back again in the form of a golf ball-sized abscess in my thigh. A biopsy revealed that 

the resistant bacteria were back full-force, and I underwent another emergency surgery to have more 

infected tissue removed. The antibiotics I took during this time were even stronger than the first course, 

and the side effects completely exhausted my body. The treatment was very similar to chemotherapy, 

making me vomit daily. It felt as though each of my organs were slowly deteriorating. I felt my body 

dying. When my white blood cell count dropped, I was so weak that normal daily activities were 

impossible.  
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Now, eight months after my accident, my wounds are closed, but my worries are not over. My life 

consists of watchful waiting and praying that the infection, like some awful type of cancer, does not 

return. I have weekly doctor visits and monthly hospital visits so that we can keep a close watch on my 

progress. The learning process for my new prosthetic leg has been slow going because I had to restart my 

physical therapy treatments after every emergency surgery, which removed more of my leg tissue. Plus, 

losing more and more of my leg to these antibiotic-resistant infections has made it harder to use a 

prosthetic, since I have less muscle to work with. 

My battle is not over, but I'm thankful to be alive. I survived an impossible accident and continue to 

fight the deadliest of infections.  My family, friends, and faith keep me going, and it is for them that I stay 

optimistic. While things may never be the same as they were before that June morning, I am grateful for 

life. Recovering from a traumatic accident isn't easy, saying it is exhausting is an understatement. The 

infections leave my body weak and broken, but I continue to fight every day. I cheated death because I 

found life too beautiful to resist.” 

April 2012 

 
Addie Rerecich’s story 

 

 

A healthy 11-year-old girl from Tucson, Ariz., who spent months in the hospital fighting several antibiotic-resistant 

infections and needed a lung transplant to save her life. 

 
“Addie will never be the same again, and there’s nothing I can do about it. I thought this as I sat in 

the hospital watching my 11-year-old daughter’s health rapidly fade. She had tubes running all over her 

body, a special machine had been brought in to help her breathe, and doctors were preparing me for the 

worst. I was not new to hospital settings, but I’ve never been invested on such a personal level. As a 
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nurse, I remember learning about drug-resistant organisms, such as methicillin-resistant Staphylococcus 

aureus (MRSA) and Escherichia coli (E. coli), in school. I preached to my patients and colleagues the 

importance of using antibiotics properly to avoid promoting the development of life-threatening 

pathogens. However, as I sat there watching my little girl fight for her life I realized, dear God, this is 

happening to us!  

It all started on Mother’s Day 2011. I remember Addie being more tired than usual. I didn’t think 

too much of it since she was always such an active kid who loved to swim, run track, and play softball. 

Those things catch up with you, and I figured on this day she was just worn out. About a week later, 

Addie mentioned to me that she had been having a lot of pain in her hip. I suspected a pulled muscle but 

made an appointment with our doctor for the next day just in case. We never made it to that appointment. 

Instead, her pain continued to increase, and she developed a fever of 103, prompting us to make a trip to 

the emergency room. 

Doctors there saw nothing wrong with her white blood cell counts or other lab results that might 

indicate she had a bacterial infection, so they sent us home with ibuprofen and a reminder to see our 

doctor within three days. But Addie didn’t get better. I called paramedics and took her to the emergency 

room one more time before seeking a second opinion at another hospital. Addie walked into the hospital 

with me on May 19, 2011, and would not pass again through those doors until October, five months later. 

Those months were a whirlwind, and it started immediately. Doctors ordered a culture of her blood, and 

found her body was overcome with a Staphylococcus infection, a condition called sepsis. The infection 

had begun growing as an abscess in her hip muscle, and spread into her blood, eventually causing a 

devastating bacterial pneumonia in her lungs. The abscess in her hip had gone untreated for so long that 

she had developed a blood clot deep in a vein near the abscess. Unfortunately, part of the clot broke away 

and caused a pulmonary embolism to her right lung – further complicating matters. 

Within 24 hours, my little girl went from happy and healthy to being intubated and hooked to a 

breathing machine. Her small body was riddled with tubes and wires.  She had surgery to remove the 

abscess from her hip.  She was not getting better. Eventually her lungs began to fail entirely, and she had 

to be placed on a machine called ECMO (extracorporeal membrane oxygenation), which circulated her 

blood and added oxygen to it, like and external lung. The hope was that taking the pressure off her lungs 
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would allow them to heal. The machine is usually only needed for five to seven days; Addie was 

connected to it for three full months. 

During this time, Addie’s doctors realized her lungs were not getting better– she would need a lung 

transplant to survive. However, they were unsure they could perform a transplant, because there were so 

much bacteria running amok in her body.  She had developed infections caused by several drug-resistant 

bacteria – including extended-spectrum beta-lactamase (ESBL)-producing E. coli, Stenotrophomonas 

maltophilia, and a resistant form of pneumonia caused by Enterobacter aerogenes. Addie’s doctors had 

run out of the most common antibiotics used to treat these serious bacteria so, in desperation, they turned 

to an antibiotic known as colistin. Colistin is very powerful, but it is also so highly toxic to the kidneys 

and other organs that doctors rarely use it.  We started saying extra prayers.  

Our prayers were answered as she responded to this antibiotic therapy and was cleared for a double 

lung transplant. The transplant went off successfully, but, in the end, our lives will never be the same. 

When we left the hospital, Addie was in a wheelchair. She had lost the use of her left arm, had almost no 

vision in her left eye, and had restricted vision in her right eye. She had limited use of her left leg. She 

had suffered a stroke. She had lost 30 pounds, almost one third of her body weight. She was so weak and 

debilitated that she couldn't even turn herself side to side in bed. With intensive therapy Addie is 

improving, but progress is slow, and no one is sure how much function she can regain. She has horrible 

scars all over her body from the various procedures, tubes, and tests that ultimately saved her life. My 

once normal, strong, athletic Addie will need medical attention and therapy for the rest of her life. I’m so 

grateful that she’s still with us and that we made it through, but my heart aches when she looks up at me 

and asks, “Why me?”, because I don’t have an answer. 

Nothing can describe my feelings as a mother sitting helpless as I watched my little girl go from 

smiling and healthy to near death in less than a day. Antibiotic-resistant infections have devastated my 

daughter’s life and our family’s health, wellbeing, and finances. The health care costs from Addie's five-

month hospital stay alone came to $6 million. We need to take steps now to ensure we are able to more 

effectively battle these infections in the future and that we have the antibiotics we need to do so. My 

family and I pray every day that no one else will have to experience what Addie has gone through. 

 

February 2012 
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A genetically-encoded photosensitiser demonstrates killing of bacteria by
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TagRFP, a fluorescent protein capable of photosensitizing the
production of singlet oxygen, was expressed in E. coli. Sub-
sequent exposure to green light induced bacterial cell death
in a light-dose dependent manner. It is demonstrated for the
first time that intracellular singlet oxygen is sufficient to kill
bacteria.

Antimicrobial therapies are being actively sought with the goal
to address the increasing resistance of pathogens to
antibiotics.1–4 Antimicrobial photodynamic therapy (aPDT) is
regarded as very promising in this respect mainly because its
mechanism of action involves non-specific photo-oxidation of
cellular components, which strongly reduces the likelihood to
develop resistance.5 In fact, no reports exist describing the selec-
tion of aPDT-induced resistant pathogens in vitro6,7 or in vivo.8

After light absorption by a molecular entity acting as photosensi-
tizer (PS), the primary molecular event in the photodynamic
action is the generation of reactive oxygen species (ROS) such
as singlet oxygen (1O2), superoxide radical anion, hydrogen per-
oxide, or hydroxyl radicals. Almost every cell component is a
potential target for these ROS, as they react readily with proteins,
carbohydrates, cell-membrane components, and nucleic acids.9

Despite decades of research, the actual mechanism of cell
death triggered by these early photochemical steps is poorly
understood and it is not clear whether bacterial death requires
damage to the external wall and/or the inner cell components.10

Crucially, it has been difficult to establish the role of the PS
location, and thus the primary site of photodamage, since the
small size of bacteria precludes the use of fluorescence
microscopy techniques due to the limited spatial resolution of

this technique. Electron microscopy has the necessary resolution
and has recently revealed progression of envelope damage
inflicted during irradiation.11 On the other hand, time-resolved
studies of the formation and decay of 1O2 have been instrumental
in establishing the coexistence of externally-bound and interna-
lized PS molecules in E. coli.12 Because the PS is delivered from
the cell exterior it has not been possible so far to separately
study the contributions of external and internal damage, nor has
it been possible to control the location of the PS. As a result, a
sound understanding of the role of drug location in the mechan-
ism of cell death has been elusive to date.

In this communication, we report a solution to the issue of PS
location in aPDT mechanistic studies by using a genetically-
encoded 1O2 PS that we are able to express inside the cell. We
have previously shown that some green and red fluorescent
protein variants are able to photosensitize 1O2.

13–15 Here, we
have chosen TagRFP as a PS, which, unlike other fluorescent
proteins such as KillerRed,16–19 is able to photosensitize the pro-
duction of 1O2 but not of other ROS,

15 and is therefore uniquely
suited to ascertain the role of 1O2 in bacterial cell death.

E. coli BL21 (DE3) cells readily expressed TagRFP, as judged
from the development of red color and its distinctive red fluor-
escence (Fig. S1, ESI‡). TagRFP seems to be evenly distributed
in the bacterial cytosol, and no clear accumulation in specific
locations, e.g. near the internal membrane, can be clearly
appreciated within the diffraction-limited spatial resolution of the
fluorescence images. Photodynamic inactivation experiments of
E. coli expressing TagRFP were subsequently carried out. Cell
cultures in exponential growing phase were induced with 50 μM
isopropyl β-D-1-thiogalactopyranoside (IPTG) for 1 h. After
replacing the growth medium with PBS or deuterated PBS
(D-PBS), depending on the experiment, the cells were trans-
ferred to an optical non-treated sterile glass chamber and ir-
radiated through the bottom of the chamber by means of a
532 nm CW laser (40 mW cm−2).

No remarkable damage was observed for light doses below
750 J cm−2. However, a population reduction of ca. 4-log10 in
colony-forming units (CFU) per milliliter was achieved after a
light dose of 3200 J cm−2 in D-PBS suspensions (ca. 2.5-log10
CFU mL−1 reduction in normal PBS; Fig. 1). It is well known
that solvent deuteration extends the 1O2 lifetime20,21 such that
the enhancement of oxidative damage upon deuteration has long
been used as a mechanistic test for the involvement of 1O2.

22

The light dose used is several orders of magnitude higher than
that used in typical aPDT treatments10 but comparable to that in
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chromophore-assisted light inactivation (CALI) assays,23 and is
consistent with the low quantum yield of 1O2 generation by
TagRFP (0.004 ± 0.0001).15

E. coli cells transformed with the control pET20b plasmid,
devoid of the TagRFP sequence, were tested under the same
experimental conditions. As depicted in Fig. 1, a CFU mL−1

reduction of less than 0.5-log10 units was observed in all cases.
Moreover, bacteria expressing TagRFP which were not irradiated
did not significantly lose viability (data not shown). These nega-
tive controls confirm that damage is inflicted by a photodynamic
reaction, i.e., by the combination of light, oxygen and TagRFP
acting as photosensitizer.

Our observation of ca. 1-log10 population reduction difference
between PBS- and D-PBS-suspended cells is consistent with a
1O2 lifetime of 3.5 μs in H2O and 65 μs in D2O.

24 This is also in
agreement with our previous report that TagRFP is a pure 1O2

PS15 and constitutes the first report showing that cytoplasmic
location of a 1O2 PS is sufficient to induce bacterial cell death
following light irradiation.

In order to obtain further insight regarding the mechanism of
cell death photosensitized by TagRFP, several additional assays
were performed. First, we focused on the cytoplasmic cell mem-
brane. Damage to the inner bacterial membrane is accompanied
by leaching-out of low molecular-weight species in addition to
DNA and RNA fragments, which are also able to permeate the
external membrane. The release of such intracellular components
can be conveniently monitored by spectroscopic means and the
onset of UV absorption at 260 nm in the supernatant is taken as
a strong indication of membrane damage.25,26 The results of
such assays in our TagRFP-tagged bacteria are shown in Fig. 2
(red circles), where the 260 nm absorbance of the supernatants
of irradiated bacteria suspensions is plotted as a function of the
light dose. The data have been normalized against the values for
non-irradiated samples. A clear growth in the 260 nm absor-
bance can be observed almost from the outset and a plateau
value is reached at a light dose of 1600 J cm−2. This indicates
that photodynamic damage to the inner cell membrane occurs in
our system. Leakage of TagRFP from the bacterial cytosol,
measured by fluorescence spectroscopy of supernatant solutions,
was observed only after light exposure and in a light-dose depen-
dent manner, consistent with increasing levels of photoinduced
bacterial membrane damage (not shown).

In a second series of assays we assessed the integrity of the
outer membrane. It is well known that Gram-negative bacteria
are markedly more resistant to photodynamic inactivation than
Gram-positive species, due to the highly organized structure of
its cell envelope.5 Specifically, many studies have shown that the
presence of an additional outer membrane prevents many PSs
from reaching and/or binding to the inner membrane, resulting in
lowered photosensitization efficiency.5 The outer membrane is
thus a typical target in Gram-negative bacteria.27,28 The fluor-
escent probe 1-N-phenylnaphthylamine (NPN), which increases
its fluorescence upon binding to cells with a damaged outer
membrane, was used to this end.26,29 As shown in Fig. 2 (black

Fig. 1 Photokilling effect of TagRFP in E. coli upon irradiation with
green laser light. Panel A: Example of viability results after photo-
dynamic treatments in D-PBS. Each column is a 1 : 10 dilution with
respect to the one on its right. The initial cell density for every sample
was ca. 108 CFU mL−1. Dark control (upper left); 2400 J cm−2

irradiation (upper right) and 3200 J cm−2 irradiation (bottom). Panel B:
Light-dose dependence on bacterial cell death in E. coli transformed
with pET20TagRFPhis or pET20b plasmids.

Fig. 2 Bacterial cell envelope integrity assays after different aPDT
light dose treatments. Red circles: absorbance of supernatants at 260 nm.
Black triangles: fluorescence of NPN. Data are normalized to values
measured for non-irradiated samples.

1412 | Photochem. Photobiol. Sci., 2012, 11, 1411–1413 This journal is © The Royal Society of Chemistry and Owner Societies 2012
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triangles), no increase in NPN fluorescence was observed relative
to dark control suspensions, suggesting that no significant
damage is inflicted on the outer membrane. NPN fluorescence
measurements in water and in lysed cells served as further con-
trols (Fig. S2, ESI‡).

Finally, damage to genomic DNA from E. coli cells was
studied, since some authors have reported photodamage to
genetic material in aPDT.30,31 DNA from irradiated cells was
extracted by standard procedures and electrophoresis of the
extracts was run in a 0.6% agarose gel. As shown in Fig. S3,
ESI,‡ no differences could be observed between samples ir-
radiated at the maximum light dose and dark controls. This indi-
cates that TagRFP-induced photodamage to genomic DNA does
not occur to any measurable extent. Our results are in line with
those of previous studies where it was concluded that DNA
damage is not the primary cause of bacterial cell photoinactiva-
tion.10,32 However, we cannot exclude that a lethal effect may be
produced by localized DNA damage that could not be detected
in our assay.33

Overall, TagRFP photodamage seems to occur mainly in the
inner membrane. No damage of the outer membrane or of
genomic DNA could be observed. These observations are mark-
edly different to those reported for an external photosensitizer.26

Thus, the site where 1O2 is primarily generated proves crucial for
inflicting different types of cell damage. It is relevant to recall
that the latest estimates of the radial diffusion distance of 1O2,
which represents its sphere of activity, are about 155 and 550 nm
in H2O and D2O, respectively.

21 These distances are below the
typical size of a bacterial cell.

In summary, killing of bacteria from purely endogenous 1O2

produced by a genetically-encoded photosensitizing protein has
been demonstrated for the first time. Our work provides insight
into the mechanism of singlet-oxygen mediated photodamage,
namely that cytoplasmic location of a photosensitizer is suffi-
cient for light-induced bacterial cell death. Moreover, this work
supports the potential of genetically-encoded strategies for treat-
ing bacterial infections with photodynamic therapy, which could
be realized by appropriate gene transfer methods.
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ABSTRACT   

Antimicrobial photodynamic therapy (aPDT) combines a photosensitizer, light and oxygen to produce reactive oxygen 
species (ROS), mainly singlet oxygen (1O2), to photo-oxidize important biomolecules and induce cell death. aPDT is a 
promising alternative to standard antimicrobial strategies, but its mechanisms of action are not well understood. One of 
the reasons for that is the lack of control of the photosensitizing drugs location. Here we report the use of genetically-
encoded fluorescent proteins that are also 1O2 photosensitizers to address the latter issue. First, we have chosen the red 
fluorescent protein TagRFP as a photosensitizer, which unlike other fluorescent proteins such as KillerRed, is able to 
produce 1O2 but not other ROS. TagRFP photosensitizes 1O2 with a small, but not negligible, quantum yield. In addition, 
we have used miniSOG, a more efficient 1O2 photosensitizing fluorescent flavoprotein that has been recently engineered 
from phototropin 2. We have genetically incorporated these two photosensitizers into the cytosol of E. coli and 
demonstrated that intracellular 1O2 is sufficient to kill bacteria. Additional assays have provided further insight into the 
mechanism of cell death. Photodamage seems to occur primarily in the inner membrane, and extends to the outer 
membrane if the photosensitizer’s efficiency is high enough. These observations are markedly different to those reported 
for external photosensitizers, suggesting that the site where 1O2 is primarily generated proves crucial for inflicting 
different types of cell damage. 

   

Keywords: antimicrobial photodynamic therapy, singlet oxygen, fluorescent proteins, miniSOG, photosensitization, 
TagRFP  
 

1. INTRODUCTION  
Fluorescent proteins are invaluable tools for fluorescence microscopy and related techniques to monitor cellular 
processes in living cells, owing to their ability to be genetically-fused to virtually any protein in a cell. They are mostly 
used as tags, sensors and reporters, but recently other interesting properties of fluorescent proteins are being exploited. In 
particular, their capability to act as singlet oxygen (1O2) photosensitizers is generating increasing interest.1 1O2 is 
produced when a photosensitizer (in this case the fluorescent protein) is excited by light, and transfers its excitation 
energy to molecular dioxygen. 1O2 is highly reactive, and can photo-oxidize substrates such as proteins, lipids and 
nucleic acids, which is relevant in the context of photodynamic therapy (PDT) and chromophore-assisted laser 
inactivation (CALI). 

We have previously shown that some variants from the green fluorescent protein (GFP) family are able to photosensitize 
1O2, although with very low efficiency.2-4 For example, TagRFP photosensitizes 1O2 with a quantum yield (ΦΔ) of 0.004,4 
similar to that of the free GFP chromophore.2 The photosensitizing protein KillerRed,5 although initially thought to 
produce 1O2, is now acknowledged to produce other ROS.6, 7 

Recently, efforts to produce genetically-encodable tags that generate 1O2 have turned to the engineering of flavin 
mononucleotide (FMN)-binding fluorescent proteins, since FMN is an efficient 1O2 photosensitizer (ΦΔ= 0.51).8 
MiniSOG (for “mini Singlet Oxygen Generator”) is a 15 kDa flavoprotein not structurally related to GFP.9 Although its 
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value of ΦΔ  had been initially reported as 0.47, this value has been recently revised to 0.03, still an order of magnitude 
higher than that of TagRFP.10 

 

Owing to the ability to genetically-encode them, fluorescent proteins that are able to photosensitize 1O2 offer an 
advantage in a number of applications where full control of the site for 1O2 generation is important (e.g. chromophore-
assisted laser inactivation, photodynamic therapy, or electron microscopy).1 In this paper, we take advantage of the 
genetic control of the photosensitizer location in mechanistic studies of antimicrobial photodynamic therapy (aPDT). 
aPDT is regarded as a very promising antimicrobial strategy because its mechanism of action involves non-specific 
photooxidation of cellular components, which strongly reduces the likelihood to develop resistance.11 Photodynamic 
action involves the photosensitization of reactive oxygen species (ROS) such as 1O2, superoxide radical anion, hydrogen 
peroxide, or hydroxyl radicals. Almost every cell component is a potential target for these ROS, as they react readily 
with proteins, carbohydrates, cell-membrane components, and nucleic acids.12 

Despite decades of research, the mechanistic details of cell death triggered by these early photochemical steps is poorly 
understood and it is not clear whether bacterial death requires damage to the external wall and/or of inner cell 
components.13, 14 Crucially, it has been difficult to establish the role of the photosensitizer location, and thus the primary 
site of photodamage, since the small size of bacteria precludes the use of fluorescence microscopy techniques due to 
their limited spatial resolution. On the other hand, time-resolved studies of the formation and decay of 1O2 have been 
instrumental in establishing the coexistence of externally-bound and internalized photosensitizer molecules in E. coli.15 
Because the photosensitizer is delivered from the cell exterior it has not been possible so far to separately study the 
contributions of external and internal damage, nor has it been possible to control the location of the photosensitizer. As a 
result, a sound understanding of the role of drug location in the mechanism of cell death has been elusive to date. In this 
paper, we use two different fluorescent proteins, TagRFP and miniSOG, as genetically-encoded 1O2 photosensitizer in 
aPDT. The proteins, which have very different structures and 1O2 photosensitizing efficiencies, are expressed in the 
bacterial cytosol. We quantify the extent of photoinduced cell death inflicted by both fluorescent proteins, and we 
perform mechanistic studies to better understand how photodynamic damage occurs in aPDT. 

 

2. MATERIALS AND METHODS 
2.1 Bacterial expression and culture conditions 

pET20bTagRFPHis1 or pET20b plasmids were transformed into competent E. coli strain BL21 (DE3). The pBAD-Myc-
HisA plasmid encoding miniSOG9 was transformed into E. coli DH5α cells. E. coli were aerobically grown overnight at 
37 ºC in an orbital shaking incubator (250 rpm) in luria-bertani (LB) broth (Fischer Scientific) in the presence of the 
appropriate amount of antibiotic (100 µg/mL disodium carbenicillin; Sigma) to stationary phase. A reinoculum was then 
grown in fresh LB medium at 37 ºC to an OD600 = 0.2 (start of log phase). TagRFPHis expression was induced with 50 
µM solution of isopropyl β-D-1-thiogalactopyranoside (IPTG; Sigma) and miniSOGHis expression with 0.1 % arabinose 
for 1 hour at 37°C to an OD600 ≈ 0.6-0.7  The suspensions were then centrifuged (10 min, 5000 rpm) and resuspended 
with sterile PBS or D-PBS at pH 7.4 to ca. 108 colony forming units per milliliter (CFU)/mLfor aPDT experiments. 
   
2.2 Photodynamic inactivation studies 

Cell suspension aliquots were placed in optical non-treated glass plates (Lab-Tek, Nalgene NUNC international, 
Rochester, New York). For Figure 1A, the wells with TagRFP-tagged samples were illuminated from the bottom of the 
plates by means of an expanded CW 532 nm laser beam (Cobolt Samba) at fluences ranging from 0 to 3500 J•cm-2. For 
Figure 1B, the wells containing miniSOG- and TagRFP-tagged bacteria were illuminated from the top by means of a 
LED light source (Sorisa Photocare) using a 35 mW•cm-2 fluence rate either in the green for TagRFP (535 ± 15 nm) or in 
the blue for miniSOG (470 ± 10 nm). No significant temperature increase was observed during the experiments. At 
different time intervals during the illumination, when the desired fluences had been delivered, aliquots were taken from 
the well (the suspensions were thoroughly mixed before sampling to avoid cell settlement). For determination of cell 
viability after treatments, aliquots were serially diluted (1:10 dilutions until single colonies could be observed), streaked 
on nutrient agar, and incubated in the dark for 18-20 h at 37 ºC.  
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2.3 Integrity of cell membrane  

After photodynamic treatments, samples were centrifuged (13000 rpm, 10 min) and the supernatant was monitored by 
UV—vis spectroscopy (Cary, Varian, Palo Alto) in order to measure the absorbance values at 260 nm, which indicates 
leakage of small cellular components due to inner membrane damage.16 To test the integrity of the outer membrane, the 
pellet was resuspended and 1-N-phenylnaphthylamine (NPN; sigma) was added to a final concentration of 15 µM.14, 17 
Fluorescence spectra were readily measured after NPN addition upon excitation at 350 nm (Figure S2). Cell lysate (3 x 1 
minute sonication) was used as a positive control. 
 

3. RESULTS  
3.1 Quantification of photodynamic bacterial inactivation 

When cells expressing TagRFP were irradiated no significant damage was observed for light doses below 750 J·cm-2.18 
However, a population reduction of ca. 4-log10 in colony-forming units (CFU) per milliliter was achieved after a light 
dose of 3200 J·cm-2 in D-PBS suspensions (ca. 2.5-log10 CFU/mL reduction in normal PBS; Fig. 1). It is well known that 
solvent deuteration extends the 1O2 lifetime19, 20 such that the enhancement of oxidative damage upon deuteration has 
long been used as a mechanistic test for the involvement of 1O2. The light dose used is orders of magnitude higher than 
that used in typical aPDT treatments11 but comparable to that in chromophore-assisted light inactivation (CALI) assays,21 
and is consistent with the low quantum yield of 1O2 generation by TagRFP (0.004±0.0001).4 E. coli cells transformed 
with the control pET20b plasmid, devoid of the TagRFP sequence, were tested under the same experimental conditions. 
As shown in Fig. 1, a CFU/mL reduction of less than 0.5-log10 units was observed in all cases. In addition, bacteria 
expressing TagRFP which were not irradiated did not significantly lose viability (data not shown). These negative 
controls confirm that damage is inflicted by a photodynamic reaction, i.e., by the combination of light, oxygen and 
TagRFP acting as photosensitizer. 
 
Our observation of ca.1-log10 population reduction difference between PBS- and D-PBS-suspended cells is consistent 
with a 1O2 lifetime of 3.5 µs in H2O and 65 µs in D2O.20 This agrees also with our previous report that TagRFP is a pure 
1O2 photosensitizer 4 and suggests that cytoplasmic location of a 1O2 photosensitizer is sufficient to induce bacterial cell 
death following light irradiation.  
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Figure 1. A) Photoinactivation of E. coli BL21 (DE3) expressing TagRFP in the cytosol upon irradiation with 532-nm laser light.        
Light-dose dependence on cell death transformed with pET20TagRFPhis in PBS (red circles) or D-PBS (blue triangles). Control 
with only pET20b in PBS (black diamonds) or dPBS (gray squares). B) Light-dose dependence (475 nm LED irradiation) on 
bacterial cell death in E. coli DH5α expressing miniSOG in the cytosol in PBS (red circles) and D-PBS (blue triangles).  

 
A similar experiment was performed with E. coli DH5α cells expressing miniSOG in the cytosol. A population reduction 
of over 1-log10 units was achieved even after a light doses as mild as 2.5 J·cm-2 and up to 3.5-log10 units was observed 

Proc. of SPIE Vol. 8596  859609-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/26/2013 Terms of Use: http://spiedl.org/terms



./c
on

tr
ol

 (
a.

u.
)

N
3:

2.

H
IH

H
H

/c
on

tr
ol

 (
a.

u.
)

IT
7

1
,A A.

Abs 260nm
Fluo NPN

Tag RFP
0

0 750 1500 2250 3000

Light dose / Jcm"2

w

;
I

cu 1N L
o

miniSOG
0'

0 15 30 45 60

Light dose / Jcm"2

 

 

after 12 J·cm-2 treatment. Such a light dose is orders of magnitude lower than that used in previous aPDT treatments with 
red fluorescent proteins and comparable to the dose of KillerRed.22 As above, an enhancement of photoinduced cell 
death was observed when the experiment was performed in D-PBS.No damage was observed at maximum light dose 
without miniSOG, nor for E. coli BL21 (DE3) transformed with pET20TagRFPhis plasmid (irradiated at 535 ± 15 nm) 
even at doses of 70 J•cm-2. Moreover, no damage could be effected to bacteria expressing miniSOG in the absence of 
light (data not shown). 
 
3.2 Mechanistic studies of photodynamic damage 

In order to obtain further insight into the mechanism of cell death photosensitized by both fluorescent proteins, several 
additional assays were performed. First, we focused on the cytoplasmic cell membrane. Damage to the inner bacterial 
membrane is accompanied by leaching-out of low molecular-weight species and DNA and RNA fragments, which are 
also able to permeate the external membrane. Release of such intracellular components can be conveniently monitored 
by spectroscopic means, and the onset of UV absorption at 260 nm in the supernatant is taken as a strong indication of 
membrane damage.14, 16 The results of this assay are shown in Fig. 2 (red circles), where the 260-nm absorbance of the 
supernatants of irradiated bacteria suspensions is plotted as a function of the light dose. The data have been normalized 
against the values for non-irradiated samples. In both cases, TagRFP- and miniSOG-expressing bacteria, a clear growth 
in the 260-nm absorbance can be observed almost from the outset, which indicates that photodynamic damage to the 
inner cell membrane occurs in both types of cells. 
 
In a second series of assays, the integrity of the outer membrane was assessed. It is well known that gram-negative 
bacteria are markedly more resistant to photodynamic inactivation than gram-positive species, due to the highly 
organized structure of its cell envelope.11 Specifically, many studies have shown that the presence of an additional outer 
membrane prevents many photosensitizers from reaching and/or binding to the inner membrane, resulting in lowered 
photosensitization efficiency.11 The outer membrane is thus a typical target in gram-negative bacteria.23 The fluorescent 
probe 1-N-phenylnaphthylamine (NPN), which increases its fluorescence upon binding to cells with a damaged outer 
membrane, was used to this end.14, 17 As shown in Fig. 2 (blue circles), there is a markedly different behaviour between 
TagRFP- and miniSOG-expressing bacteria. For TagRFP, no increase in NPN fluorescence was observed relative to dark 
control suspensions. However, over 2-fold increase in NPN fluorescence was observed in miniSOG-tagged bacteria. This 
indicates that the more efficient photosensitizing properties of miniSOG result in a significant amount of 1O2 being able 
to reach the outer membrane and inflict damage, which is not the case for TagRFP-tagged bacteria. NPN fluorescence 
measurements in water and in lysed cells served as further controls.18 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Bacterial cell envelope integrity assays after different aPDT light dose treatments. Red circles: absorbance of 
supernatants at 260 nm. Blue triangles: fluorescence of NPN. Data are normalized to values measured for non-irradiated samples. 
A)TagRFP in E. coli BL21 (DE3), laser irradiation at 532 nm; B) miniSOG in E. coli DH5α. LED irradiation at 475 nm. 
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Finally, damage to genomic DNA from E. coli cells was studied, since some authors have reported photodamage to 
genetic material in aPDT.13, 24 DNA from irradiated cells was extracted by standard procedures and electrophoresis of the 
extracts was run in a 0.6 % agarose gel.  No differences could be observed between samples irradiated at the maximum 
light dose and dark controls (not shown). This indicates that TagRFP- or miniSOG-induced photodamage to genomic 
DNA does not occur to any measurable extent. Our results are in line with those of previous studies where it was 
concluded that DNA damage is not the primary cause of bacterial cell photoinactivation.25 However, we cannot exclude 
that a lethal effect may be produced by localized DNA damage that could not be detected in our assay.26  
 

 

4. CONCLUSIONS 
Purely endogenous 1O2 produced by genetically-encoded photosensitizing proteins expressed in the bacterial cytosol is 
able to induce bacterial cell death. Photodamage seems to occur mainly in the bacterial membrane, the extent of which 
correlates with the photosensitizing efficiency of the protein. Both TagRFP and miniSOG can induce damage the inner 
membrane, but only miniSOG in the outer membrane. No damage of genomic DNA could be observed. Our observations 
are markedly different to those reported for an external photosensitizer.14 Thus, the site where 1O2 is primarily generated 
proves crucial for inflicting different types of cell damage.  
This work supports the potential of genetically-encoded strategies in mechanistic studies of aPDT, and using appropriate 
gene transfer methods could be extended to therapeutic strategies. 
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ABSTRACT: Antimicrobial photodynamic therapy (aPDT) is
an emerging treatment for bacterial infections that is becoming
increasingly more attractive because of its effectiveness against
multi-antibiotic-resistant strains and unlikelihood of inducing
bacterial resistance. Among the strategies to enhance the
efficacy of PDT against Gram-negative bacteria, the binding to
a cationic antimicrobial peptide offers the attractive prospect
for improving both the water solubilty and the localization of
the photoactive drug in bacteria. In this work we have
compared a number of free and apidaecin-conjugated
photosensitizers (PSs) differing in structure and charge. Our
results indicate that the conjugation of per se ineffective highly hydrophobic PSs to a cationic peptide produces a photosensitizing
agent effective against Gram-negative bacteria. Apidaecin cannot improve the phototoxic activity of cationic PSs, which mainly
depends on a very high yield of singlet oxygen production in the surroundings of the bacterial outer membrane. Apidaecin−PS
conjugates appear most promising for treatment protocols requiring repeated washing after sensitizer delivery.

■ INTRODUCTION

The global diffusion of new antimicrobial infections as well as
the continuously increasing resistance of pathogens against
many of the commonly used antibiotics imposes a considerable
effort to develop alternative therapies to the use of classical
drugs. In this area antimicrobial photodynamic therapy (aPDT;
also termed photodynamic antimicrobial chemotherapy,
PACT) represents a very promising strategy, particularly for
the treatment of superficial and localized infectious diseases.1

The PDT concept comprises the action of three components: a
photosensitizer (PS), a light source of appropriate wavelength,
and oxygen. The interaction between light and the PS leads to
the generation of reactive oxygen species (ROS), e.g., singlet
oxygen, by two possible mechanisms involving either electron-
transfer (type I) or energy-transfer (type II) reactions.2 These
ROS are highly reactive and can damage a variety of cellular
components, e.g., proteins, nucleic acids, and lipids, resulting in
cytotoxicity.3−5 Advantages of aPDT over traditional antibiotics
include a broad-spectrum activity, also against antibiotic-
resistant species,6 and the lack of development of resistance
mechanisms due to the multitarget process.7,8

Porphyrins, commonly used as PSs in PDT, can efficiently
kill Gram-positive bacteria, whereas only cationic PSs, or
noncationic PSs in combination with agents that permeabilize
the highly organized outer membrane of Gram-negative

bacteria, are able to kill Gram-negative species.9−11 An
alternative approach to improve the susceptibility of Gram-
negative bacteria to the photodynamic action of neutral
porphyrins involves the covalent attachment of the PS to a
polymer molecule containing basic amino groups12 or, as we
recently proposed, to a cationic antimicrobial peptide.13

Cationic antimicrobial peptides (CAMPs) are components of
the innate defense of many organisms, and they are being
considered a promising source of new antibiotics.14 In addition
to exerting direct antimicrobial effects, many studies have
documented their ability to affect various host cell activity and
to have a key modulatory role in the innate immune
response.44,45 Their overall positive charge ensures accumu-
lation at the polyanionic microbial cell surfaces that contain
acidic polymers, such as lipopolysaccharides, and wall-
associated teichoic acids in Gram-negative and Gram-positive
bacteria, respectively. Beyond the presence of several cationic
amino acids, a substantial proportion of hydrophobic amino
acid residues permit most of the CAMPs to fold into an
amphipathic structure, which allows them to insert into the
phospholipid bilayer of the cell membranes. After insertion,
antimicrobial peptides act by either disrupting the physical
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integrity of the membrane or translocating across the
membrane to hit internal bacterial targets. This multitarget
mode of action promises both low susceptibility to antibiotic
resistance and a broad spectrum of activity against a variety of
microorganisms. Among CAMPs, the family of short proline−
arginine-rich peptides attracts particular interest because of
some unique features, such as a higher activity against Gram-
negative bacteria, a relative stability against proteolysis, and a
very low toxicity against mammalian cells.15 Apidaecin 1b, an
insect 18-residue-long peptide belonging to this family, is
effective against a large number of Gram-negative bacteria and a
few Gram-positive bacteria,16 where it acts by a non-pore-
forming mechanism only partially elucidated.17,18 Mutagene-
sis19,20 and structure−activity relationship studies21−24 have
identified the C-terminal half of apidaecin as essential for its
antimicrobial activity, and several studies have shown that the
peptide is able to translocate a fluorescent tag into a bacterial
cell.22,24−26 In a preliminary communication we have shown
that the conjugation of apidaecin to 5-(4′-carboxyphenyl)-
10,15,20-triphenylporphyrin affords a new water-soluble PS (1c
in Figure 1) that, upon light activation, is able to kill both
Gram-positive and Gram-negative bacteria at concentrations at
which the antimicrobial peptide and, on Gram-negative
bacteria, the porphyrin alone are not effective.13 Herein we
report the synthesis, characterization, and phototoxicity studies
against Escherichia coli and methicillin-resistant Staphylococcus
aureus (MRSA) of new conjugates in which apidaecin and its C-
terminal octapeptide were modified at the N-terminus with
neutral or charged porphyrin and porphycene PSs.

■ RESULTS

Synthesis and Characterization of the Conjugates.
Porphyrins 1b and 3b, properly functionalized for the covalent
binding to the peptide, were prepared by established methods
using the Lindsey27 and Adler−Longo conditions,28 respec-
tively. We synthesized three new PS−peptide conjugates in
which the porphycene 2b or the cationic porphyrin 4b was
covalently linked to the N-terminal end of the antimicrobial
peptide apidaecin and 5-(4′-carboxyphenyl)-10,15,20-triphenyl-
porphyrin (1b) to its C-terminal segment (Figure 1). The
trimethylated porphyrin 4b was prepared from 3b by treatment
with an excess of methyl iodide in DMF, whereas alkaline
hydrolysis of the porphycene 2a released the functional group
from the subsequent conjugation. The synthesis of 2a has been
reported elsewhere.29 The side-chain-protected peptide se-
quences were automatically synthesized on a solid phase by the
standard Fmoc protocol,30 and after removal of the N-terminal
amino protecting group, the selected PS (1−4b, 2.5 equiv) was
coupled to the peptide chain using diisopropylcarbodiimide/N-
hydroxybenzotriazole as the activating agent. The yields of the
coupling reactions were in the range of 75−80% (based on
HPLC) except in the case of the cationic porphyrin 4b, which
apparently did not react with the peptide even using different
coupling reagents and reaction conditions. The conjugate
between apidaecin and this cationic PS was obtained from 3c,
side-chain-protected and still attached to the solid support, by
treatment with an excess of methyl iodide. Besides on pyridine
nitrogens, methylation also occurred on the π-nitrogen of the
histidine side chain, which usually remains unprotected during

Figure 1. Structures of the photosensitizers and their peptide conjugates.
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the peptide chain assembly. After cleavage and deprotection
from the solid support, the conjugates 1c, 1d, 2c, and 4e were
purified by reversed-phase HPLC and characterized by
analytical HPLC, electrospray mass spectrometry, and UV−
vis absorption spectroscopy.
Absorption and Fluorescence of the Conjugates. The

spectroscopic and photophysical properties of the PSs and their
conjugates were measured in aqueous and organic media and in
cell suspensions to assess the structural and environmental
effects as well as their correlation with antibacterial activity.
Methanol. Figures 2 and 3 show the absorption and

fluorescence spectra of the free PSs and of their peptide
conjugates in methanol. While the spectra of porphyrins are
essentially insensitive to conjugation (panels A, C, and D), clear
changes can be observed for the porphycene (panel B). In turn,
the fluorescence quantum yield does not change appreciably for
the porphyrins, while it drops by ca. 50% for the porphycene
(Table 1). Finally, all porphyrins show monoexponential
fluorescence decay kinetics, and conjugation does not change
the lifetime values either (Supporting Information, Figure
S1A,C,D). Again, the situation is different for the porphycenes
in that the conjugate 2c shows biexponential kinetics unlike the
free porphycene 2a (Figure S1B), and on average the singlet
state decays faster (Table 1).
Aqueous Solutions (PBS). Porphyrin 4b is water-soluble as a

consequence of its positively and negatively charged groups. It
remains water-soluble after conjugation (4e) with small but
clear shifts in the position of the Soret and Q absorption bands
and changes in their relative intensities (Figure 2E). The
fluorescence spectrum of 4b shows a single, structureless broad
band (Figure 3E), a behavior strikingly different from that in
methanol but in line with that of the related tetracationic meso-
tetrakis(N-methylpyridinium-yl)porphyrin (TMPyP).32 Conju-
gation to the peptide (4e) leads to partial recovery of the two
well-resolved fluorescence bands observed in methanol. The
fluorescence decay kinetics of 4b is monoexponential, albeit
with a lifetime much shorter than that in methanol. For the
conjugate 4e two decay components can be observed, whose
lifetimes are close to those of 4b in methanol and in PBS,
respectively (Figure S1E, Supporting Information, and Table
1). The kinetics is independent of concentration over 3 orders
of magnitude (Figure S2A and Table S1, Supporting
Information).
On the other hand, porphyrin 1b and porphycene 2a are

insoluble in water, and therefore, no fluorescence can be
recorded in this solvent. Conjugation to the peptides (1c, 1d,
and 2c, respectively) renders them water-soluble, but the
spectroscopic and photophysical properties change substantially
relative to those in methanol: the absorption spectra show
broadening of the Soret band and loss of structure in the Q
region (Figure 2F−H), and the fluorescence is dramatically
quenched. In addition, the fluorescence spectra of 1c and 1d
are slightly red-shifted (Figure 3G,H), and the decays are
biexponential (Figure S1G,H, Supporting Information, and
Table 1) and show a clear concentration trend (Figure S2B,C
and Table S1, Supporting Information).
E. coli Suspensions. The conjugate 4e shows in cell

suspensions the same absorption and fluorescence properties
as it does in PBS (Figures 2I and 3I and Table 1). On the other
hand, there are evident changes for conjugates 1c and 1d in cell
suspensions relative to PBS, particularly in the absorption
spectrum and in the fluorescence kinetics, which shows a third
decay component not present in PBS or in methanol (Table 1).

Finally, the porphycene conjugate 2c shows very similar
absorption spectra in PBS and in E. coli suspensions (Figure
2J). However, while we could record no fluorescence in PBS,
we were nevertheless able to observe extremely weak
biexponential fluorescence decay in the cells (Figure 3, Figure
S1J, Supporting Information, and Table 1).

Singlet Oxygen Production and Decay. All free and
conjugated PSs were able to photosensitize the formation of
1O2 in methanol as evidenced by its phosphorescence at 1275
nm. The quantum yields of 1O2 production (ΦΔ) were in the
0.6−0.7 range for the porphyrins and the 0.1−0.3 range for the

Figure 2. Absorption spectra in methanol (A−D), PBS (E−H), and E.
coli suspensions (I−L), normalized to facilitate their comparison. The
concentration is 5 μM for all compounds. Methanol: (A) 4e (red) and
4b (blue); (B) 2c (red) and 2a (blue; dichloromethane as solvent);
(C) 1d (red) and 1b (blue); (D) 1c (red) and 1b (blue). PBS: (E) 4e
(red) and 4b (blue); (F) 2c (red) and 2a (blue); (G) 1d (red) and 1b
(blue); (H) 1c (red) and 1b (blue). E. coli suspensions (green): (I)
4e; (J) 2c; (K) 1d; (L) 1c. Spectra in methanol (red) and PBS (blue)
are given for comparison.
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porphycenes (Table 2). The kinetics of 1O2 production
matched the results of laser flash photolysis experiments for
the triplet PS decay (see the Supporting Information, Table
S2). Likewise, an excellent match was found between the
observed lifetime of 1O2 and the literature values. In PBS, only
porphyrins 4b and 4e retained their high ability to produce
1O2; all other compounds experienced a decrease of the ΦΔ
value by 20−30-fold (porphyrins 1c and 1d) or even 100-fold
(porphycene 2c; Table 2). Inspection of the kinetics of 1O2

(Figure S3, Supporting Information) reveals that production of
singlet oxygen by conjugate 4e is as fast as that by the free
porphyrin 4b (Table 2), yet for the conjugates 1c, 1d, and 2c it
is 1 order of magnitude slower. On the other hand, the lifetime
of 1O2 for all conjugates in deuterated PBS is shorter than the
value expected in this solvent (67 μs),34 which is actually
observed only for the free porphyrin 4b. When E. coli
suspensions were studied, the 1O2 signals showed essentially
the same pattern as that in PBS solutions (Figure S4,
Supporting Information, and Table 2).

Circular Dichroism (CD) Studies. The conformational
properties of the conjugates were investigated by CD
spectroscopy in different environments, including water and
membrane-mimicking solvents, and compared to those of the
parent peptide. As a consequence of the high proline content (6
out of 18 residues), in water apidaecin assumes a prevalently
disordered, extended structure (Figure 4A), and in membrane-
mimicking environments it exists as a mixture of conformers
with a high percentage of nonrepetitive bent structures, most
probably β-turns (Figure 4C,D).23,25 The CD spectra of the
conjugates in water are characterized by a broad negative band
around 200 nm, much more intense for those with the cationic
porphyrin than for those with the neutral PS (Figure 4A).
Moreover, 1c and 2c showed a split Cotton effect in the Soret
band region (Figure 4B), indicating that porphyrins are chirally
oriented and close to one another in space.35 These results
suggest that while 4e can assume in water a fully extended
structure, conjugates 1c and 2c show the tendency to form
aggregates with the peptide chain probably folded over the
hydrophobic porphyrin platform36 and the porphyrins close to
one another to reduce the exposure to the solvent. Aggregation
was confirmed by a change in the UV spectra of these
conjugates moving from methanol to water. In organic solvent
(2,2,2-trifluoroethanol, TFE) and in the presence of SDS
micelles, the CD spectrum of the conjugates is similar to that of
the parent peptide, with a broad band at 202 nm, a shoulder at
220 nm, and comparable intensities (Figure 4C,D). This
suggests that in membrane-mimicking environments the
conformational preferences of the peptide are minimally
affected by the intramolecular interactions with the PS.

Photoinactivation of E. coli. To determine the photo-
sensitizing efficiency of our PSs and peptide−PS conjugates
against Gram-negative bacteria, E. coli suspensions were
incubated in the dark for 60 min with different concentrations
(1.5, 5, 10, and 15 μM) of the agents and then illuminated
(light dose of 36 J/cm2 of red light for 2a and 2c, 13.5 J/cm2 of
blue light for all other compounds) with or without washings.
At the concentrations used, apidaecin alone did not cause any
decrease of E. coli survival,13as did its C-terminal segment 1d, in
both the dark and light conditions (Table S3, Supporting
Information). In addition, neither 1b nor 2a caused any
bacteria photokilling in their unconjugated form. All conjugates
exhibited markedly concentration-dependent abilities to kill E.
coli under illumination with an efficiency that largely depended
on the type of conjugate (Figure 5A). Indeed, considering the
unwashed samples, 4b and 4e caused complete killing of
bacteria at 5 and 10 μM concentrations, respectively, while all
other agents were considerably less potent and at 15 μM
reduced the survival of E. coli by 4 log at maximum. Moreover,
it is interesting to notice that 1c was slightly more efficient than
1d and caused a bacterial mortality similar to that of 2c.
However, when illumination was carried out after three
washings of the cells to remove the unbound PS (Figure 5B;

Figure 3. Emission spectra in methanol (A−D), PBS (E−H), and E.
coli suspensions (I−L), normalized to facilitate their comparison. The
concentration is 5 μM for all compounds. Methanol: (A) 4e (red) and
4b (blue); (B) 2c (red) and 2a (blue; dichloromethane as solvent);
(C) 1d (red) and 1b (blue); (D) 1c (red) and 1b (blue). PBS: (E) 4e
(red) and 4b (blue); (F) 2c (red) and 2a (blue); (G) 1d (red) and 1b
(blue); (H) 1c (red) and 1b (blue). E. coli suspensions (green): (I)
4e; (J) 2c; (K) 1d; (L) 1c. Spectra in methanol (red) and PBS (blue)
are given for comparison.
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Figure S5, Supporting Information), only 1d retained an
efficacy similar to that observed in unwashed samples, while all
other PSs were considerably less potent. In particular, the loss
of efficacy of 4b and 4e in killing bacteria was drastic, with a
decreased killing ability of 6 log at the 10 μM concentration.
On the other hand, 1c and 2c, which were less photoactive
without washings, were less hampered by the washing
treatment. We also studied the photoinactivation of E. coli as
a function of the incubation times and using a concentration of
5 μM for 4b and 4e and 10 μM for all other compounds
(Figure S6, Supporting Information). The results showed that
the time of dark incubation of the cells with the PSs and their
conjugates before irradiation does not affect to a great extent
the photokilling efficiency of E. coli. Incubation times ranging
from 15 to 120 min gave very similar decreases of bacterial
survival when irradiation was carried out leaving the unbound
PS in solution. Only with 4b and 4e was the photoinactivation
ability slightly improved by increasing the incubation time, but
this effect was lost after the repeated washing treatment.
Photoinactivation of MRSA. The photoinactivation of

MRSA was studied by using the same experimental approach

used for E. coli. Contrary to E. coli, both 1b and 4b were highly
photoactive against MRSA; they caused complete killing of
unwashed bacteria at, respectively, 50 nM and 0.5 μM
concentrations (Figure 6A). These findings are in agreement
with the well-known susceptibility of Gram-positive bacteria to
many cationic and neutral PSs. However, the photoactivities of
the two porphyrins were differently affected by the washing
treatments: 1b did not show any appreciable change, while the
potency of 4b was dramatically reduced (Figure S7A,
Supporting Information). Both 1b and 4b lost part of their
activity when conjugated to apidaecin or its C-terminal
segment. In particular, at a 0.5 μM concentration the
unconjugated porphyrins caused complete cell killing, while
4e, 1c, and 1d caused only about a 3 log reduction of survival
(Figure 6A). The washing of S. aureus before illumination did
not appreciably reduce the killing efficiency of 1c and 1d, while
it significantly affected that of 4e, as was observed with E. coli
(Figure S7A). 2a and its apidaecin conjugate 2c were less
effective than the porphyrin counterparts, being active in the
range of 1.5−15 μM, i.e., at 10-fold higher concentrations
(Figure 6B). However, conjugation with apidaecin strength-
ened the action of the PS (Figure S7B). As for E. coli, also with
S. aureus the photoinactivation experiments were performed as
a function of the incubation time, and no major differences in
the efficiency of S. aureus photoinactivation with conjugated
and unconjugated PSs were found by changing the incubation
times from 15 to 120 min (Figure S8, Supporting Information).

Uptake Experiments. Flow cytometry experiments were
carried out to evaluate the interaction of the PSs (free or
conjugated to apidaecin) following incubation with E. coli and
S. aureus cells under the same experimental conditions as in the
photoinactivation experiments. The measurements showed that
1b does not associate with E. coli cells very efficiently. As shown
in Figure 7, after incubation with 5 μM 1b, only a small fraction
of E. coli cells exhibited a fluorescence signal higher than the
basal value in both washed and unwashed cells. On the
contrary, MRSA cells incubated with 1b exhibited a
fluorescence signal whose intensity was orders of magnitude
higher than the background signal, suggesting efficient
porphyrin association/binding either before or after the
washings. The conjugation of 1b to apidaecin or its C-terminal
segment did not affect to a great extent the association of 1b
with MRSA, while it increased the association with E. coli, as

Table 1. Fluorescence Properties of the Peptide Conjugates and Model Compounds in Methanol, PBS, and E. coli Suspensions
(Fractional Amplitudes in Parentheses)

λF,max/nm ΦF τS/ns

compd MeOH PBS E. coli MeOHa PBSb MeOH PBS E. coli

1b 647 nsc 0.040 ns 10.1 ns
1c 647 651 651 0.050 0.006 9.8 10.7 (0.82) 10.5 (0.46)

3.1 (0.18) 7.5 (0.33)
3.1 (0.21)

1d 646 652 652 0.044 0.006 9.8 6.1 (0.61) 5.9 (0.11)
2.6 (0.39) 4.9 (0.48)

2.5 (0.41)
2a 715 ns 0.030d 1.46d

2c 697 0.016 <0.0001 0.9 (0.94) 0.9 (0.75)
9.6 (0.06) 5.2 (0.25)

4b 656 675 0.022 0.008 7.9 4.2
4e 655 660 660 0.024 0.018 8.1 4.2 (0.49) 4.2 (0.48)

7.1 (0.51) 7.1 (0.52)
aCresyl violet as standard (ΦF(methanol) = 0.54).31 bTMPyP as standard (ΦF(PBS) = 0.017).9 cNot soluble. dIn toluene.

Table 2. Kinetics of Singlet Oxygen Production (ΦΔ) and
Decay (τΔ) of the Peptide Conjugates and Model
Compounds in Air-Saturated Methanol, PBS, and E. coli
Suspensions

ΦΔ τΔ/μs

compd MeOHa PBSb MeOHc PBSd E. colie

1b 0.63 nsf 9.8 ns
1c 0.70 0.020 9.8 3.0 2.3

43g

1d 0.66 0.036 9.5 45g

2a 0.26h ns ns
2c 0.14 0.001 9.8 42g

4b 0.69 0.73 9.6 3.6 3.6
60g

4e 0.67 0.89 9.6 3.6 3.6
36g

aTMPyP as standard (ΦΔ(methanol) = 0.74).3 bTPPS as standard
(ΦΔ(water) = 0.69).3 cLiterature value 10.4 μs.33 dLiterature value 3.3
μs in PBS and 67 μs in D-PBS.33 eIn PBS. fNot soluble. gIn D-PBS.
hToluene as solvent.
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clearly shown by the higher fluorescence signals exhibited by a
large fraction of cells incubated with 1c and 1d. Both free and
apidaecin-conjugated 4b did not appreciably interact with E. coli
since only in unwashed cells was the measured mean
fluorescence intensity slightly higher than the background
signal. Similar results were observed with MRSA cells,
suggesting that 4b and its conjugate exhibit a very poor ability
to interact with both Gram-positive and Gram-negative
bacteria.

■ DISCUSSION
In our previous paper13 we have already shown that the
conjugate 1c is endowed with antibacterial activity following
light activation. In this paper we have extended our
investigations to other PS−apidaecin conjugates, containing
either a neutral porphycene or a cationic porphyrin
(respectively 2a and 4b in Figure 1) to assess the effects of
structural modifications. Porphycene, a structural isomer of
porphyrin, was chosen for its larger absorption coefficients in
the red part of the spectrum, where light can deeply penetrate
into tissues.37 Because positively charged PSs are effective in
PDT against Gram-negative bacteria without the addition of
outer-membrane-disrupting agents,38 we hypothesized that a
conjugate between apidaecin and a cationic porphyrin could
further promote the uptake of the PS in Gram-negative
bacteria, thereby reducing the minimum effective dose.
Moreover, to establish whether the antimicrobial peptide is
able to direct the PS against specific bacterial targets, we also
synthesized a conjugate between porphyrin 1b and a short
cationic peptide (PRPPHPRL) corresponding to the C-
terminal segment of apidaecin. Although the mode of action
of apidaecin has not been determined in detail, several points of
evidence suggest that this peptide enters E. coli cells by a non-
pore-forming mechanism and, once inside the cell, interacts

with components of the protein synthesis machinery, impairing
protein synthesis and folding.17,18 The full-length apidaecin
sequence is very important, and the C-terminal octapeptide
does not possess any antibacterial activity,21 nor is it able to
translocate a fluorescent cargo into bacterial cells.24 Thus, most
probably, the conjugate with this cationic peptide (1d) can
effectively bind to the bacterial cell wall without being able to
reach the cytosol.
Efficient PSs for PDT must have appropriate photophysical

properties, such as an intense red-light absorption band and a
high quantum yield of generation of both the long-lived excited
triplet state and cytotoxic ROS, in particular singlet oxygen,
1O2. To establish whether the peptide moiety negatively affects
the PS photosensitizing efficiency, the porphyrin−peptide
conjugates were submitted to a detailed photophysical
characterization. The fluorescence properties and the singlet
oxygen production ability of the peptide conjugates 1c−d and
4e in methanol (Tables 1 and 2) are essentially identical to
those of free PSs, demonstrating that the peptide moiety exerts
no influence on the PS photosensitizing efficiency in this
solvent. Only in the case of porphycene 2a did we observe
changes in the absorption spectrum and a reduction by about
50% of the fluorescence quantum yield of the PS and in 1O2

production after conjugation to the peptide, which may be
ascribed to interactions between the peptide and the macro-
cyclic core. The situation is different in an aqueous environ-
ment (PBS) where the photophysical data change considerably
relative to those in methanol for all conjugates and particularly
for those containing a neutral PS. The decrease in the
fluorescence quantum yield, the concentration dependence of
the fluorescence kinetics, and the slow kinetics of 1O2

production in 1c−d and 2c reveal the presence of
intermolecular interactions, as observed also by CD spectros-

Figure 4. CD spectra of apidaecin and its conjugates in 10% methanol (A, amide region; B, Soret region), TFE (C), and 30 mM aqueous SDS (D).
The peptide concentration is 10 μM.
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copy (Figure 4B). Such interactions account also for the 20-fold
lower production of 1O2 in PBS relative to methanol (Table 2).
Nevertheless, following illumination (with blue light for 1c−

d and red light for 2c), the conjugates were phototoxic against
E. coli cells, inducing a decrease of survival of 3−4 log at a 15
μM concentration (Figure 5). On the other hand, the
unconjugated PS 2a was completely ineffective toward E. coli
(data not shown), consistent with data previously reported for
1b13 and other neutral porphyrins, which are unable to diffuse
through the highly organized outer membrane of Gram-
negative bacteria.39 Peptide conjugates 1c−d and 2c associate
efficiently with E. coli cells, as suggested by the observation that
repetitive washing of bacteria treated with conjugates, before
illumination, caused only a moderate reduction of phototoxicity
(Figure 5B; Figure S5, Supporting Information). In the case of
1c−d this is also supported by the flow cytometry results
(Figure 7). Porphycene was not fluorescent enough for
cytometry studies, but the detection of fluorescence by time-
resolved techniques in the E. coli suspensions, but not in PBS
(Table 1), must be taken as proof of binding. A deeper
understanding of the type of binding/association of 1c−d to E.
coli cells was obtained by analyzing the fluorescence decay
kinetics: unlike PBS or methanol, three decay components were
observed in cell suspensions, which suggest multiple binding
sites (Table 1). The match between two of the three observed
lifetimes with those detected in PBS indicates that one binding
site is located in an aqueous-like environment. Thus, the third
decay component suggests that an additional binding site exists
where the conjugates experience a less hydrophilic environ-
ment.
However, the phototoxicity and the photophysical and flow

cytometry results for the apidaecin conjugate 1c and its
truncated analogue 1d are so similar that it is difficult to
propose a different localization of these conjugates in E. coli
cells. Most probably both conjugates can diffuse through the
outer membrane and localize in different environments, but
since the C-terminal apidaecin fragment is unable to translocate
a PS across the cytoplasmic membrane, we are led to conclude
that the apidaecin conjugate is also not able to reach the
bacterial targets of apidaecin in cytosol.
The conjugate between the cationic porphyrin 4e and

apidaecin possesses a +6 net positive charge, well-distributed
along the whole molecule, that is expected to discourage the
aggregation phenomena observed in conjugates 1c and 2c. In

Figure 5. (A) E. coli photoinactivation with different concentrations
(1.5−15 μM) of 2c, 1c, 1d, 4b, and 4e. E. coli cells were incubated for
60 min with the PS and irradiated with a fixed light dose (36 J/cm2 of
600−750 nm red light for 2c, 13.5 J/cm2 of 390−460 nm blue light for
all other compounds). (B) E. coli photoinactivation with a 5 μM
concentration of apidaecin or the tested PSs. Irradiation with a fixed
light dose, as described above, was carried out without washing (black
bars) or after three washings with PBS (red bars); the asterisk means a
sterile solution.

Figure 6. MRSA photoinactivation with different concentrations of (A) 1b, 1c, 1d, 4b, and 4e (1 nM to 1.5 μM) and (B) 2b and 2c (1.5−15 μM).
MRSA cells were incubated with the PS for 60 min and irradiated with a fixed light dose (36 J/cm2 of 600−750 nm red light for 2b and 2c, 13.5 J/
cm2 of 390−460 nm blue light for all other compounds).
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confirmation of this, the far-UV CD spectrum of 4e in water is
very similar to that of the free peptide and no dichroic signal,
indicative of porphyrin−porphyrin interactions, was detected in
the Soret band region (Figure 4 A,B). Aggregation can also be
ruled out by the lack of concentration effects on the decay
kinetics (Figure S2A and Table S1, Supporting Information). It
can therefore be safely concluded that the major differences
observed between 4b and 4e (Table 1) are due to interactions
between apidaecin and the porphyrin within the conjugate.
Comparison of the fluorescence spectrum, quantum yield, and
kinetics for 4b and 4e reveals that two populations of
conjugates coexist, in which the porphyrin is either exposed
to water or shielded from it by the peptide. This conclusion is
consistent with the well-known solvent-polarity effects on the
fluorescence of tetrapyridinium porphyrins.32 Nevertheless, the
production of 1O2 was very high in PBS, comparable to or even
higher than that in methanol (Table 2). In fact, the conjugate
4e caused total photokilling of E. coli cells at a concentration
(10 μM) at which 1c induced a strong (4 log) but incomplete
reduction of cell survival (Figure 5A). The cationic porphyrin

4b proved to be even more potent than its apidaecin conjugate
4e (Figure 5A). The 1O2 lifetime data in Table 2, particularly in
deuterated PBS, indicate that apidaecin is able to quench 1O2.
Thus, because 1O2 molecules are generated in the vicinity of
apidaecin, some of them will be quenched by the peptide
during their lifetime rather than by cell components.
The washing of the cells before illumination, to remove the

unbound or weakly associated PS, caused a tremendous
reduction of photokilling of E. coli cells, and under these
conditions 4b became the least efficient PS (Figure 5B; Figure
S5, Supporting Information). Flow cytometry measurements
showed that only unwashed cells exhibited red fluorescence
slightly above the background after incubation with these
compounds (Figure 7). Thus, the results indicate that 4b and
4e associate very weakly with E. coli cells and the killing of
unwashed cells is caused mainly by singlet oxygen generated by
the PS molecules not associated with or loosely associated with
the bacteria. Several reports of PDT on Gram-negative bacteria
have pointed out that if singlet oxygen can be generated in
sufficient quantities near the bacterial outer membrane, it will

Figure 7. Uptake of the peptide conjugates and model PSs in E. coli and MRSA. The cells were incubated with the compounds for 60 min and then
analyzed by flow cytometry. Concentrations of the compounds: 5 μM for E. coli and 1.5 μM for MRSA.
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be able to diffuse into the cell to inflict damage to the vital
structure.1,40 Our photophysical data thus support this
hypothesis.
Testing the above PS against MRSA reveals a number of

differences relative to E. coli. First, except for the porphycene,
the concentration needed to inactivate bacteria was 1 order of
magnitude lower. Interestingly, the porphycene conjugate was
almost equally active against both kinds of bacteria. The higher
susceptibility of Gram-positive bacteria to photodynamic
damage has long been known for a large number of PSs.41

Second, it is interesting to recall that washings did not
appreciably remove 1b and its conjugates (1c and 1d) from the
cells (Figure 7), nor did it decrease the photodynamic
inactivation of MRSA (Figure S7, Supporting Information).
In addition, the nonconjugated porphyrin 1b was the most
active PS. This probably can be related to its more hydrophobic
character, which helps in penetration of the cell wall and the
cytoplasmic membrane of Gram-positive bacteria. The
porphycene 2a was probably too hydrophobic, and its strong
aggregation in the external medium prevented cell entrance.
Concerning PSs 4b and 4e, the observations are similar to
those of E. coli: the nonconjugated PS 4b is more active than 4e
on account of its lower ability to quench 1O2, and both lose
their activity after washings due to the very poor binding to the
bacterial cells (Figure 7).

■ CONCLUSIONS
The search for more effective antimicrobial PSs has led to a
number of strategies. Among them, binding to an antimicrobial
peptide offers the attractive prospect of enhancing both the
water solubility of the PS and the efficiency of the PDT
treatments through a synergistic effect. In this work we have
compared a number of free and apidaecin-conjugated PSs
differing in structure and charge. Our results confirm previous
findings that the conjugation of per se ineffective highly
hydrophobic PSs to a cationic peptide produces a photo-
sensitizing agent effective against Gram-negative bacteria.
MRSA are even more susceptible to the action of conjugates,
which produce the same reduction of bacterial growth at one-
tenth the concentration. The apidaecin ability to penetrate
Gram-negative bacteria is unfortunately lost after conjugation
to a bulky PS, but the amphiphilic character conferred by the
peptide enforces the binding of the PS to the bacterial outer
membrane. Apidaecin−PS conjugates appear most promising
for treatment protocols requiring repetitive washing after
sensitizer delivery, where the most active cationic PSs, such
as 4b and its apidaecin conjugate 4e, are rapidly washed out.
On the other hand, apidaecin cannot improve the phototoxic
activity of the cationic porphyrin, which is mainly determined
by a very high yield of singlet oxygen production in the
surroundings of the bacterial outer membrane.

■ EXPERIMENTAL SECTION
General Methods. All chemicals were commercial products of the

best grade available, and unless otherwise indicated, they were used
directly without further purification. The starting porphyrins, 5-(4-
carboxyphenyl)-10,15,20-triphenylporphyrin (1b),42 9-(glutaric meth-
ylesteramide)-2,7,12,17-tetraphenylporphycene (2a),29 and 5-(4-car-
boxyphenyl)-10,15,20-tris(4-pyridyl)porphyrin (3b) and its tris-N-
methylpyridinium iodide (4b),28 were prepared according to literature
procedures. 9-Fluorenylmethoxycarbonyl (Fmoc)-amino acids and all
other chemicals for the solid-phase synthesis were supplied by Sigma-
Aldrich. Fmoc-Leu-Wang resin was purchased from Novabiochem
(Merck Biosciences). Analytical HPLC separations were carried out on

a Dionex Summit dual-gradient HPLC instrument, equipped with a
four-channel UV−vis detector, using a Vydac 218TP54 column (250 ×
4.6 mm, 5 μm, flow rate at 1.5 mL/min). Mobile phases A (aqueous
0.1% trifluoroacetic acid (TFA)) and B (90% aqueous acetonitrile
containing 0.1% TFA) were used for preparing binary gradients. All
analyses were carried out under gradient conditions (10−50% B in 20
min, except as otherwise indicated). All crude peptides were purified to
95% or more homogeneity for analytical and other experimental
purposes. Semipreparative HPLC was carried out on a Shimadzu series
LC-6A chromatograph, equipped with two independent pump units, a
UV−vis detector, and a Vydac 218TP1022 column (250 × 22 mm, 10
μm, flow rate at 15 mL/min). Elutions were carried out by the same
mobile phases described above. All the purified peptides were analyzed
again by HPLC and HRMS. Mass spectral analyses were carried out on
a Mariner API-TOF workstation (PerSeptive Biosystems Inc.),
operating with ESI techniques in positive mode. NMR spectra were
recorded on a Varian Gemini 300 spectrometer (300 and 75.5 MHz
for 1H and 13C, respectively). UV−vis spectra were recorded at rt on a
Shimadzu UV-2501PC spectrophotometer or on a Lambda 5
spectrophotometer (Perkin-Elmer), in 0.1 or 1 cm quartz cells.

Chemical Synthesis. 19-Glutaramide-2,7,12,17-tetraphenylpor-
phycene (2b). A 44 mg (0.1 mmol) sample of 2a was dissolved in 14
mL of THF and combined with 14 mL of methanol, and 9 mL of 4 N
aqueous sodium hydroxide was added dropwise with stirring at rt
within 5 min. The reaction was stirred for an additional 45 min,
neutralized, and then precipitated under acidic conditions with the
complete addition of 50 mL of ice-cold 5% acetic acid. The flaky
precipitate was filtered, washed with water and then with water/
methanol (1:1), and dried. The title compound was obtained in the
form of a dark green powder. Yield: 27 mg (70%). 1H NMR (400
MHz, DMSO-d6): δ = 12.10 (br s, 1H), 10.96 (s, 1H), 10.08 (s, 1H),
10.07 (s, 1H), 10.05 (s, 1H), 9.93 (d, J = 12, 1H), 9.91 (d, J = 12, 1H),
9.85 (s, 1H), 9.82 (s, 1H), 8.37 (m, 6H), 7.98 (d, J = 8, 2H), 7.88 (m,
5H), 7.74 (m, 5H), 7.60 (m, 2H), 4.29 (s, 1H), 3.93 (s, 1H), 2.25 (t, J
= 8, 2H), 2.16 (t, J = 8, 2H), 1.72 (q, J = 8, 2H). 13C NMR (100 MHz,
DMSO-d6): δ = 174.1, 171.9, 158.0, 144.7, 143.7, 142.8, 142.7, 141.3,
139.1, 137.7, 135.6, 135.4, 135.3, 134.8, 134.3, 133.3, 132.8, 131.1,
131.0, 130.3, 129.2, 129.2, 129.1, 128.0, 127.4, 127.1, 123.1, 125.0,
124.5, 116.0, 115.5, 113.9, 33.9, 33.06, 19.8. HRMS (ESI-TOF): m/z
calcd for C49H38N5O3 744.2969 [M + H]+, found 744.2970.
Synthesis of PS−Peptide Conjugates (General Procedure). The

peptide sequences were prepared on an automated Advanced
Chemtech 348Ω peptide synthesizer, on a 0.25 mmol scale, starting
from Fmoc-Leu-Wang (substitution 0.6 mmol/g of resin). The tert-
butyl group and 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl
group were used to protect tyrosine and arginine side chains,
respectively, and the trityl group to protect asparagine and histidine
side chains. Fmoc deprotection was achieved with 20% piperidine in
DMF (5 + 15 min). Couplings were performed in the presence of O-
(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophos-
phate/N-hydroxybenzotriazole/N,N-diisopropylethylamine (reaction
time 45−60 min), using an excess of 4 equiv of the carboxyl
component. After the coupling of the last amino acid and removal of
the Fmoc group, the resin was washed with DMF and CH2Cl2 and
then dried under vacuum. The dried resins containing the protected
amino acid sequences were used in the coupling reaction to the
porphyrin derivatives. The H-peptide-resin (0.025 mmol) was swelled
in DMF for 1 h and then washed with DMF. To the peptidyl resin was
added 600 μL of a DMF−CH2Cl2 (1:1, v/v) solution containing 0.05
mmol of porphyrin (1b, 2b or 3b), 0.05 mmol of diisopropylcarbo-
diimide, and 0.05 mmol of 1-hydroxybenzotriazole. The reaction
mixture was shaken overnight and then filtered to remove the excess of
reagents. The resin was repeatedly washed with DMF and CH2Cl2,
until the filtrate was colorless, and then dried under vacuum. Cleavage
and deprotection was carried out by treatment of the resin with a
mixture of TFA−triisopropylsilane−water (95:2.5:2.5 by volume) for
1.5 h at rt. The resin was filtered and washed with TFA, and the
filtrates were combined and reduced under vacuum to a small volume.
Addition of cold ether yielded a green precipitate, which was
repeatedly washed with ether and dried under vacuum. The conjugates
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1−3c and 1d were purified by semipreparative HPLC (linear gradient
50−80% B in 20 min), and the fractions containing the conjugate were
collected and lyophilized to yield the pure compound. The purity was
≥95% as determined by analytical HPLC (isocratic 10% B for 3 min;
linear gradient 10−90% B in 30 min). The conjugates were
characterized as follows:
(1c) Yield: 75%. HPLC: tR = 22.0 min. UV−vis (methanol): λmax/

nm (log ε/M−1 cm−1) 414 (5.48), 513 (4.05), 546 (3.70), 591 (3.45),
642 (3.35). HRMS: m/z calcd for C140H179N36O24 2748.38 [M + H]+,
found 2748.39.
(1d) Yield: 80%. HPLC: tR = 24.3 min. UV−vis (methanol): λmax/

nm (log ε/M−1 cm−1) 413 (5.41), 512 (4.02), 548 (3.68), 589 (3.54),
644 (3.34). HRMS: m/z calcd for C91H104N21O11 1666.82 [M + H]+,
found 1666.84.
(2c) Yield: 50%. HPLC: tR = 30.3 min. UV−vis (methanol): λmax/

nm (log ε/M−1 cm−1) 378 (4.99), 583 (4.40), 628 (4.53), 650 (4.54).
HRMS: m/z calcd for C144H186N37O25 2833.44 [M + H]+, found
2833.39.
(3c) Yield: 50%. HPLC: tR = 13.7 min. UV−vis (methanol): λmax/

nm (log ε/M−1 cm−1) 413 (5.11), 510 (3.81), 544 (3.30), 586 (3.27),
642 (2.89). HRMS: m/z calcd for C137H176N39O24 2751.37 [M + H]+,
found 2751.39.
Conjugate 4e. The porphyrin−peptide conjugate 3c (0.02 mmol),

still attached to the solid support, was swelled in DMF, and a 10%
solution of methyl iodide in DMF (2 mL) was added to the peptidyl
resin. The reaction mixture was shaken overnight at rt and then filtered
to remove the excess of reagents. The resin was repeatedly washed
with DMF and CH2Cl2 and then dried under vacuum. After
detachment from the resin, as described above, the conjugate was
purified by semipreparative HPLC (linear gradient 17−30% B in 25
min). Yield: 50%. HPLC: tR = 12.4 min. UV−vis (methanol): λmax/nm
(log ε/M−1 cm−1) 424 (5.15), 515 (3.98), 556 (3.63), 590 (3.51), 647
(3.03). HRMS: m/z calcd for C141H187N39O24 702.615 [M4+], found
702.874.
Spectroscopic Measurements. Absorption spectra were re-

corded on a double-beam Cary 6000i spectrophotometer (Varian),
equipped with a 110 mm diameter integrating sphere and a high-
performance photomultiplier tube for diffuse transmittance measure-
ments. Absorption coefficients were derived from the slopes of
Lambert−Beer plots. Fluorescence emission spectra were recorded in
a Spex Fluoromax-4 spectrofluorometer. Fluorescence decays were
recorded with a time-correlated single-photon-counting system
(Fluotime 200) equipped with a red-sensitive photomultiplier.
Excitation was achieved by means of a 405 nm LED working at a
10 MHz repetition rate. The counting frequency was always below 1%.
Fluorescence decays were analyzed using the PicoQuant FluoFit 4.0
data analysis software. 1O2 phosphorescence was detected by means of
a customized PicoQuant Fluotime 200 system described in detail
elsewhere.43 Briefly, a diode-pumped pulsed Nd:YAG laser (FTSS355-
Q, Crystal Laser) working at a 10 kHz repetition rate at 532 nm (12
mW, 1.2 μJ per pulse) was used for excitation. A 1064 nm rugate notch
filter (Edmund Optics) was placed at the exit port of the laser to
remove any residual component of its fundamental emission in the
near-IR region. The luminescence exiting from the side of the sample
was filtered by a cold mirror (CVI Melles Griot) to remove any
scattered laser radiation and focused on the entrance slit of a Science
Tech 9055 dual-grating monochromator. A near-IR-sensitive photo-
multiplier tube assembly (H9170-45, Hamamatsu Photonics) was used
as the detector at the exit port of the monochromator. Photon
counting was achieved with a multichannel scaler (Becker&Hickl MSA
300 or PicoQuant’s Nanoharp 250). The time-resolved emission
signals were analyzed using the FluoFit software to extract lifetime
values. Laser flash photolysis measurements were carried out using a
Q-switched Nd:YAG laser (Surelite I-10, Continuum) with a right-
angle geometry and an analyzing beam produced by a Xe lamp (PTI,
75 W) in combination with a dual-grating monochromator (model
101, PTI) coupled to a photomultiplier (Hamamatsu R928). Kinetic
analysis of the individual transients was performed with software
developed in our laboratory. All spectroscopic measurements were
carried out in 1 cm quartz cuvettes (Hellma) at rt. For the

measurements in bacterial suspensions, bacteria were incubated in
the dark at the conditions employed for the photoinactivation
experiments, namely, 5 μM PS for 1 h. When required, the cells
were washed once and resuspended in PBS to a final concentration of
∼1 × 107 cfu mL−1, and 3 mL volumes of the suspensions were
irradiated with 3 million laser pulses at 532 nm under gentle stirring.
CD measurements were carried out on a Jasco-715 spectropolarimeter,
using a quartz cell of 0.1 cm path length. The spectra were recorded at
298 K and were the average of a series of six scans made at 0.1 nm
intervals in the 250−190 and 350−550 nm regions. Sample
concentrations in water (pH 7), TFE, and aqueous 30 mM SDS
were in the range of 10−13 μM. Ellipticity is reported as the mean
residue ellipticity [θ]R (deg cm2 dmol−1).

Bacteria Culture. E. coli ATCC 25922 and the methicillin-resistant
strain of S. aureus ATCC BAA-44 were purchased from LGC
Promochem (Teddington, U.K.). Cultures were maintained by two
weeks of subcultures in brain heart infusion (BHI; Difco, Detroit, MI)
agar. For spectroscopic measurements we used instead the E. coli ECT
strain, purchased from the Spanish-type cell culture collection.

Bacteria Photoinactivation. For the photoinactivation experi-
ments, the bacteria were grown overnight in BHI at 37 °C, harvested
by centrifugation, washed twice, and resuspended in PBS (10 mM
phosphate, 0.14 M NaCl, 2.7 mM KCl, pH 7.3) at a density of ∼2 ×
107 cells/mL. The cell density was evaluated by measuring the
turbidity of the suspension in a Perkin-Elmer spectrophotometer
(model Lambda 5). The bacteria used in the experiments were
collected from cultures in the stationary phase of growth.

The bacteria were incubated with different concentrations of the
PSs in the dark at rt for 60 min or with a fixed PS concentration for
different times. After incubation, the suspensions were (i) directly
exposed to light with the unbound PS left in the suspension (no
washing) or (ii) centrifuged (10000g for 5 min), the pellet
resuspended in 1 mL of PBS, and washed two additional times with
PBS before illumination (three washings). For illumination, aliquots of
cell samples obtained as described above were transferred into 96-well
plates (200 μL/well). Samples incubated with porphycene and its
conjugate with apidaecin 1b were irradiated with red light (600−750
nm) with the Waldmann PDT 1200 lamp supplied by Waldmann
MedizintechNnik; the cells were illuminated from the top of the plates
with a fluence rate at the level of the samples of 40 mW/cm2, as
measured with an International Light power meter, and for a total light
dose of 36 J/cm2. Bacteria incubated with porphyrins and their
conjugates were irradiated with blue light (390−460 nm, with a
maximum at 420 nm) emitted by a UV 236 lamp supplied by
Waldmann Eclairage SA; the cells were illuminated from the bottom of
the plates with a fluence rate of 15.2 mW/cm2, as measured with the
Waldmann UV-meter, and for a total light dose of 13.5 J/cm2. After
illumination, aliquots of bacteria suspensions were serially 10-fold-
diluted in PBS, and 50 μL volumes of the appropriate dilutions were
plated in duplicate onto BHI agar to determine colony-forming units
(cfu). Treated and untreated cells were incubated overnight at 37 °C
to allow colony formation. Suspensions of bacteria exposed to PSs but
kept in the dark and subjected to the same procedure applied to the
irradiated suspensions were also plated onto BHI agar after the
appropriate serial dilutions. Controls also included bacteria not
exposed to any agent and bacteria exposed to light or peptide only.
Each experiment was performed at least three times with independent
bacterial suspensions.

Flow Cytometry. The interaction of PSs with bacteria was
evaluated by flow cytometry. For these experiments, the bacteria were
subjected to the same treatments used for photoinactivation
experiments, but instead of being illuminated after incubation and
washings, they were analyzed with a FACSCanto II flow cytometer.
Samples were excited with the 488 nm laser, and fluorescence emission
signals were recorded at wavelengths higher than 670 nm. The bacteria
population was isolated from the instrument noise by setting
electronic gates on the dual-parameter dot plots of forward scatter
against side scatter. For each sample, 20 000 events were acquired and
analyzed with the FACSDiva software (BD). Samples not incubated
with the PSs were used to determine the cell background fluorescence.
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ABSTRACT

1 In this study, we report the synthesis and photochemical

behavior of a new family of photoactive compounds to assess

its potential as singlet oxygen (1O2) probes. The candidate

dyads are composed by a 1O2 trap plus a naphthoxazole moi-

ety linked directly or through an unsaturated bond to the ox-

azole ring. In the native state, the inherent great fluorescence

of the naphthoxazole moiety is quenched; but in the presence

of 1O2, generated by the addition and appropriate irradiation

of an external photosensitizer, a photooxidation reaction

occurs leading to the formation of a new chemical entity

whose fluorescence is two orders of magnitude higher than

that of the initial compound, at the optimal selected wave-

length. The presented dyads outperform the commonly used

indirect fluorescent 1O2 probes in terms of fluorescence

enhancement maintaining the required specificity for 1O2

detection in solution.

INTRODUCTION

Reactive oxygen species (ROS) are present and participate in

many biological processes. Among them, singlet oxygen (1O2),

also well known because its use as a synthetic reagent, plays a

key role in the pathological and physiological processes. It can

oxidize various kinds of biological molecules (i.e. proteins, DNA

and lipids), leading to a plethora of deleterious effects that can

result in e.g. cell death or degenerative diseases (1). Over the

years, insight has been gained in the rules that obey its genera-

tion, the characters involved and the energy requirements, which

has led, among others, to the development of 1O2-based therapies

such as photodynamic therapy, in which a drug referred to as the

photosensitizer (PS) produces 1O2 upon exposure to light of the

appropriate wavelength (2). Despite the major progress made, a

better understanding of 1O2 behavior in biological systems is still

needed. Of critical importance, techniques and/or methods able

not only to detect but also to quantify the concentration of 1O2

both in solution and in vivo are still needed (3,4).

Singlet oxygen can be detected through its intrinsic phospho-

rescence with maximum centered at 1275 nm (5). This is a

robust, specific, noninvasive and direct method; but it suffers

from weak sensitivity due to the low efficiency for 1O2 emission,

particularly in biological media, where the lifetime of 1O2 is very

short (3.1 ls) (6) and the phosphorescence quantum yield is very

small, ca 10�7 (7).

Trapping 1O2 with suitable chemical acceptors is also exten-

sively used, as such traps and/or their oxidation products, can be

monitored more easily through absorption (8,9), fluorescence (3)

or ESR (10,11). Fluorogenic probes that develop a bright fluores-

cence upon reaction with 1O2 have attracted much interest lately

as they offer excellent sensitivity and convenience, given the

widespread use of fluorescence microscopy techniques. Thus, a

two-component system comprised a 1O2 trapping moiety and a

suitable fluorophore covalently bound to it is the current para-

digm underlying fluorogenic 1O2 probes. In their native state, the

luminescence of the emitting moiety is quenched by the trap.

Oxidation of the trap by 1O2 eliminates this quenching channel

and the luminescence of the fluorophore is recovered.

Several probes have been developed following this principle:

DPAX and DMAX (12,13), MTTA-Eu3+ (14) and, more

recently, SOSG (15–17). All use an anthracene moiety as 1O2

trap that quenches the luminescence of the fluorophore by an

electron transfer process. The same concept has been recently

used to develop a near-infrared probe, His-Cy, where anthracene

has been replaced by a histidine and a cyanine is chosen as flu-

orophore (18). A common drawback for all the above probes is

that the fluorescence increases only moderately after reaction

with 1O2, e.g. from less than two-fold for His-Cy (18) to ca 10-

fold for SOSG. Moreover, as electron transfer reactions are

strongly dependent on solvent polarity, false-positive signals

arise that merely reflect location of the probe in a less polar

microenvironment rather than reaction with 1O2, e.g. when the

probe is in hydrophobic pockets of proteins (16). In addition, the

presence of an anthracene moiety in the structure is potentially

misleading as anthracene is itself a 1O2 PS that may autooxidize

the probe, which further complicates its use (19).

We reasoned that the above problems could be overcome by

designing a probe with distinct absorption and fluorescence spec-

tra for the native and oxidized forms. This would allow enhanc-

ing the fluorescence of the oxidized form relative to the native

probe to an unprecedented level. We report herein the synthesis

and characterization of representative members of a new family

of 1O2 fluorescence probes based on furan trapping moieties

linked to naphthoxazole fluorophores (Fig. 1). Four naphthoxaz-

ole derivatives have been synthesized. 2-(2-(Furan-2-yl)ethyl)

naphtho[1,2-d]oxazole, FN-I1, contains a naphthoxazole linked
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to a furan through a saturated ethyl bridge. In 2-(furan-2-yl)naph-

tho[1,2-d]oxazole, FN-I2, the furan moiety is bonded directly to

the position 2 of the oxazole ring, whereas in (E)-2-(2-(furan-2-

yl)vinyl)naphtho[1,2-d]oxazole, FN-4, the naphthoxazole and the

furan are conjugated through an unsaturated ethylidene link. In

the control molecule, (E)-2-(4-methylstyryl)naphtho[1,2-d]oxaz-

ole, FN-7, the furan ring of FN-4 has been replaced by a nonre-

active tolyl group. Two candidates could be used as 1O2 sensors

namely FN-I2 and FN-4, as their fluorescence is boosted by a

factor of ca 135 and 300, respectively, upon reaction with 1O2.

MATERIALS AND METHODS

Materials. Perinaphthenone, new methylene blue (NMB), anthracene and
naphthalene were purchased from Sigma and used as received. All sol-
vents used were UV grade.

(E)-2-(2-(furan-2-yl)vinyl)naphtho[1,2-d]oxazole, FN-4. To a mixture

of 2-methylnaphthoxazole (1 mM, 0.15 mL) and furylcarboxaldehyde
(0.09 mM, 0.075 mL) in 6 mL of dimethyl sulfoxide, 0.15 mL of aque-
ous KOH 50% was added. The mixture was stirred by 12 h at room tem-
perature. Addition of 15 mL of water afforded a yellow precipitate which
was washed with cold water and cold methanol. Recrystallization from
acetonitrile afforded 135 mg of the yellow product, yield 57%,
m.p. = 124–126°C. 1H-NMR (CDCl3); d: 8.51 (d, J = 8.1 Hz, 1H); 7.96

(d, J = 8.1 Hz, 1H); 7.79 (d, J = 9.0 Hz, 1H); 7.69–7.64 (m, 2H); 7.60–
7.53 (m, 3H); 7.08 (d, J = 15.9 Hz, 1H); 6.62 (d, J = 3.3 Hz, 1H); 6.51
(m, 1H). MS(ESI) m/z: 262.11 [M+H]+, 261.11 [M]+.

2-(2-(furan-2-yl)ethyl)naphtho[1,2-d]oxazole, FN-I1. A quantity of
100 mg (0.38 mmol) of (E)-2-(2-(furan-2-yl)vinyl)naphtho[1,2-d]oxazole,

FN-4, in 50 mL of dry methanol, was reduced under hydrogen employ-
ing 50 mg of Pd-C catalyst. The mixture was stirred during 4 h at room
temperature, then, the catalyst was removed by filtration and the solution
concentrated in vacuo. Recrystallization of the solid residue from petro-
leum ether 40–60°C, afforded 32 mg of white crystals, 32% yield,
m.p. = 120–123°C. 1H-NMR (CDCl3); d: 8.49 (d, J = 8.0 Hz, 1H); 7.96

(d, J = 8.1 Hz, 1H); 7.76 (d, J = 9.0 Hz, 1H); 7.64 (d, J = 14.2 Hz, 2H);
7.51 (d, J = 14.2 Hz, 1H); 7.33 (s, 1H); 6.27 (d, J = 3.6 Hz, 1H); 6.07 (d,
J = 3.6 Hz, 1H); 3.38 (d, J = 7.8 Hz, 2H), 3.30 (d, J = 7.9 Hz, 2H); ppm.

2-(furan-2-yl)naphtho[1,2-d]oxazole, FN-I2. A mixture of 1-amino-2-
naphthol (1 mmol), 2-furylcarboxaldehyde (1 mmol) and triethylamine
(2 mmol) in 10 mL of dry ethanol was refluxed 3 h under nitrogen. The
end of reaction was monitored by thin layer chromatography up to disap-

pearance of the aldehyde. After being cooled to room temperature, the
solution was concentrated in vacuo, and the crude product recrystallized
from acetonitrile to obtain 25% of the product, m.p. 134–136°C. 1H-
NMR (CDCl3); d: 8.54 (d, J = 8.2 Hz, 1H); 8.16 (d, J = 8.2 Hz, 1H);
7.98 (d, J = 8.8 Hz, 1H); 7.81 (d, J = 8.9 Hz, 1H); 7.62–7.54 (m, 3H);
6.66 (d, J = 3.6 Hz, 1H); 6.57 (m, 1H). MS(ESI) m/z: 236.09 [M+H]+,

235.09 [M]+.
(E)-2-(4-methylstyryl)naphtho[1,2-d]oxazole, FN-7. A quantity of

0.15 mL (1 mmol) of 2-methylnaftoxazole, 2 mL of KOH 50% aqueous
and 0.11 mL (0.93 mmol) de 4-methyl-benzaldehyde in 6 mL of
dimethyl sulfoxide were stirred at room temperature during 12 h to
obtain of a greenish yellow. Recrystallization from acetonitrile afforded
145 mg, 56% of the product, m.p. = 127–129°C. 1H-RMN (CDCl3); d:
8.51 (d, J = 8.1 Hz, 1H); 7.94 (d, J = 8.1 Hz, 1H); 7.77 (d, J = 9.0 Hz,
1H); 7.77 (d, J = 16.2 Hz, 1H); 7.68–7.63 (m, 2H); 7.55–7.49 (m, 3H);
7.22 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 16.2 Hz, 1H); d 2.38 (s, 3H)
ppm.13C-RMN (CDCl3) d = 162.36, 147.63, 139.86, 138.29, 137.63,
132.61, 131.14, 129.68, 128.58, 127.39, 126.98, 126.29, 126.03, 125.32,
122.07, 113.02, 110.58, 21.44 ppm.

Figure 1. Structure of studied naphthoxazole derivatives.
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Spectroscopic measurements. Absorption spectra were recorded on a
Cary 6000i spectrophotometer (Varian, Palo Alto, CA). Fluorescence

emission spectra were recorded on a Spex Fluoromax-4 spectrofluorome-
ter (Horiba Jobin-Ybon, Edison, NJ) or on a PC1 spectrofluorimeter (ISS,
Champaign-Urbana). Fluorescence quantum yields (ΦF) were measured
by the comparative method described by Eaton and Demas (20,21),
using quinine sulfate in 0.1 N sulfuric acid (ΦF = 0.55) or naphthalene
in ethanol (ΦF = 0.21) as references (22). The absorbance of sample

and reference solutions was set below 0.1 at the excitation wavelength
and the fluorescence spectra were corrected using rhodamine G as refer-
ence. Sample quantum yields were evaluated using the following
Eq. (1):

Ux ¼
Gradx

GradAct

� �

g2x
g2Act

� �

UAct ð1Þ

where GradX and GradAct are the slope of integrated fluorescence vs

absorbance plots for the sample and the actinometer and gx and gAct are
the refractive index of sample and actinometer solutions respectively. All

measurements were carried out in nitrogen-purged solutions at
(20.0 � 0.5)°C. Fluorescence decays were recorded with a time-corre-
lated single photon counting system (Fluotime 200; PicoQuant GmbH,
Berlin, Germany) equipped with a red-sensitive photomultiplier. Excita-
tion was achieved by means of a 375 nm picosecond diode laser working
at 10 MHz repetition rate. The counting frequency was maintained

always below 1%. Fluorescence lifetimes were analyzed using PicoQuant
FluoFit 4.0 software. Light irradiations were performed by means of a
SORISA Photocare LED light source applying a power of 25 mW cm�2

for every tested wavelength.
Singlet oxygen measurements. The phosphorescence of 1O2 was

detected by means of a customized PicoQuant Fluotime 200 system
described in detail elsewhere (23). A diode-pumped pulsed Nd:YAG laser

(FTSS355-Q; Crystal Laser, Berlin, Germany) working at 10 kHz repeti-
tion rate was used for excitation. A 1064 nm rugate notch filter (Edmund
Optics, UK) was placed at the exit port of the laser to remove any resid-
ual component of its fundamental emission in the near-IR region. The
luminescence exiting from the side of the sample was filtered by two
long-pass filters of 355 and 532 nm (Edmund Optics, York, UK) and

two narrow bandpass filters at 1275 nm (NB-1270-010, Spectrogon, Swe-
den; bk-1270-70-B, bk Interferenzoptik, Germany) to remove any scat-
tered laser radiation. A near-IR sensitive photomultiplier tube assembly
(H9170-45; Hamamatsu Photonics Hamamatsu City, Japan) was used as
the detector at the exit port of the monochromator. Photon counting was
achieved with a multichannel scaler (PicoQuant’s Nanoharp 250). Time-

resolved emission signals St were analyzed using the PicoQuant FluoFit
4.0 data analysis software to extract lifetime (sT and sD) and amplitude
(a) values. Quantum yields for 1O2 production (ΦD) were calculated from
the amplitudes using the following Eqs. (2)–(4):

St ¼ a�
sD

sD � sT
� e�t=sD � e�t=sT
� �

ð2Þ

a / UD ð3Þ

UDðsampleÞ ¼ UDðrefÞ �
asample

aref
ð4Þ

Perinaphthenone was used as reference for which ΦD = 1 was taken
(24).

The rate constant for 1O2 quenching by the dyads (kq) was determined
by measuring the 1O2 lifetime as a function of the dyad concentration.
1O2 was generated by 50 lM NMB and the concentration of the dyads
was varied in the range (0.1–1 mM). A plot of the reciprocal lifetime vs

the concentration of the dyad afforded kq as the slope of the linear-fit

Eq. (5),

1

sD
¼

1

s0
D

þ kq½Dyad� ð5Þ

where sDº is the
1O2 lifetime in the neat solvent.

RESULTS

Photophysical characterization

FN-4 is a dyad composed by a furan ring linked to a naphthox-

azole moiety through an ethylidene group. The absorption

spectrum is dominated by a main band with maximum at

367 nm and a second weaker band at 314 nm (Fig. 2a) that

compares reasonably well with the values of 387 and 314 nm

obtained from TD-DFT calculations using G09W. The position

of the bands follows no obvious trend with the solvent polarity

(Table S1). The high values of molar absorptivity, ca

3 9 104 M
�1 cm�1 in all solvents except in water, and the

molecular orbital analysis of the minimum energy structure

obtained from DFT calculations, indicate a p, p* transition. A

similar behavior of the absorption properties was observed for

FN-I2 (Table S2), in which the furan ring is linked directly to

the naphthoxazole moiety, and for FN-7, in which a nonreactive

tolyl substituent replaces the furan moiety. When the linker is

saturated (FN-I1) spectral bands shift substantially to the blue

(kmax = 322 nm) and become more structured. These results cor-

relate with the distinct degree of electronic coupling between the

aromatic moiety and the naphthoxazole fluorophore. Similar

trends are observed in the maximum of the fluorescence spectra

(Fig. 2b) consistent with the reports for related benzoxazole

derivatives (25).

Figure 2. Normalized absorption (a) and fluorescence (b) spectra of FN-I1
(dashed), FN-I2 (dotted), FN-4 (solid) and FN-7 (light solid) in methanol.
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Aryl oxazoles typically exhibit a very high fluorescence quan-

tum yield (ΦF), in the 0.7–1.0 range (26,27). Among all studied

compounds, this is observed only for FN-I1 ([ΦF = 0.93] in

methanol). In contrast, FN-4 and FN-7 show high ΦF values in

low-polarity solvents only, the quantum yield decreasing by 1–2

orders of magnitude as the solvent polarity increases (Tables S1

and S3). However, for (E)-4-(2-(naphtho[1,2-d]oxazol-2-yl)vinyl)

benzonitrile, an FN-7 analogue in which the methyl group is

replaced by the strong electron-attractor cyano group, the fluores-

cence quantum yields are close to one in all solvents, irrespective

of their polarity (A. L. Zanocco, unpublished). Finally, FN-I2 is

scantly fluorescent even in nonpolar solvents (Table S2). These

results indicate that electron-rich aromatic moieties can act as

effective quenchers of naphthoxazole fluorescence in conjugated

dyads and, particularly, in polar protic environments, likely due

to a charge–transfer interaction. Thus, furyl-oxazole dyads fulfill

the first condition requested for a potential 1O2 probe namely

that the fluorescence is severely quenched in their native form,

thus deserving further scrutiny.

Reactivity toward singlet oxygen

The ability of the dyads to react with 1O2 has been studied by

monitoring changes in their absorption and fluorescence proper-

ties. No changes could be recorded for FN-I1 and FN7, as

expected. In the case of FN-4, reaction with 1O2 in methanol

caused bleaching of the main band at 367 nm and the growth of

a new band in the 325–350 nm region (Fig. 3a). The clear isos-

bestic point at 348 nm suggests a clean transformation to a sin-

gle photoproduct (hereafter FN-4OX). This was confirmed by

HPLC experiments that, after 95% FN-4 (tr = 14.3 min) con-

sumption, show the formation of a main product at tr = 8.3 min

and several minor secondary products (Figure S1). Experiments

to identify reaction products are in progress; however, furan is

well known to selectively react with 1O2 through an endoperoxi-

dation reaction, whereby the primary endoperoxide evolves to

different end products depending on the structure of the furan

derivative and the solvent (28–30). Involvement of 1O2 in the

process was unequivocally demonstrated by the inhibitory effect

of selective 1O2 quenchers (Figure S2). Most effective were

a-terpinene and sodium azide that inhibited the FN-4 photooxi-

dation by ca 90%. DABCO was able to diminish the FN-4 con-

sumption to a lesser extent. A strong fluorescence increase and a

concomitant shift of the fluorescence peak to the blue could also

be observed (Fig. 3c), the excitation spectra of the original and

final fluorescence bands being markedly different, implying that

they correspond to different chemical species (Fig. 3a, inset).

The spectral overlap is minimized at 330 nm, which suggests

that this excitation wavelength should be chosen to maximize the

fluorescence of FN-4OX. As shown in Fig. 4, the fluorescence

intensity at 378 nm is enhanced by more than 300-fold. Com-

pared with SOSG, the fluorescence enhancement of FN-4 is 30-

fold larger.

In a similar fashion to that observed for FN-4, emission of

FN-I2 also increases considerably upon reaction with 1O2 in

methanol (Fig. 3d), concomitant with the bleaching of the low-

energy absorption band at 367 nm (Fig. 3b). Both the absorption

and fluorescence spectra reveal the appearance of new bands

shifted to the blue. The absorption spectra show a clear isosbe-

stic point at 352 nm, suggesting the formation of a single photo-

product as for FN-4. Excitation at 333 nm maximizes the system

emission, which increases by a factor ca 135 at 363 nm (Fig. 4).

The results above demonstrate that the new family of naphth-

oxazole dyads represented by compounds FN-4 and FN-I2

outperform any other fluorescent probe currently available for

monitoring 1O2. The key novelty of the system relies on the fact

that the fluorophore in the photooxidation adduct is different

from that in the initial species. Thus, spectral changes arise that

elicit the selection of optimal excitation wavelengths to enhance

the fluorescence of the photoproducts.

Figure 3. Absorption (a,b) and fluorescence (c,d) spectra of FN-4 (a,c) and FN-I2 (b,d) before (solid line) and after (dashed lines) reaction with 1O2.
The photosensitizer was new methylene blue 1 lM, the irradiation wavelength was 635 � 15 nm and the experiments were carried out in aerated metha-
nol. Insets show normalized excitation (a,b) and fluorescence (c,d) spectra to facilitate their comparison.
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The rate constant for 1O2 quenching by the dyads (kq) was

determined by time-resolved detection of 1O2 phosphorescence at

1275 nm (5,23). Increasing concentrations of the dyads enhanced

the decay rate of 1O2 in a linear fashion. The slope of the plots

afforded the kq values, which are collected in Table 1. Interest-

ingly, the value for FN-4 (vinyl bridge) is 20-fold smaller than

that for FN-I1 (ethyl bridge) and for FN-I2 (direct link), and

about 40-fold smaller than for isolated 2-methylfuran:

kq = 9.9 9 107 M
�1 s�1 in methanol (31), which confirms the

strong electronic delocalization of the furan ring across the vinyl

bridge in FN-4. Notice that the fluorescence enhancements do

not correlate with kq. Finally, the low kq value for FN-7 confirms

that naphthoxazole derivatives lacking the furyl substituent are

essentially unreactive toward 1O2.

Self-sensitization of 1O2 by the dyads and reactivity toward

other ROS

A drawback of SOSG is the growth of fluorescence due to self-

sensitization of 1O2 (19). Other dyads lack selectivity toward 1O2

and react also with different ROS. We investigated whether the

naphthoxazole dyads suffered from the same problems. All dyads

sensitized the production of 1O2, although with very small quan-

tum yields (ΦD, Table 1 and Figure S3). Nevertheless, Fig. 4 and

Figure S4 show that the fluorescence of FN-4 does not increase

upon cumulative irradiation in methanol and that of FN-I2 actu-

ally decreases.

Reactivity toward other ROS was also tested for FN-I2 and

FN-4. Negative results for both dyads vs both superoxide (KO2)

and H2O2 were encountered (Figure S5) indicating a high degree

of specificity for 1O2

CONCLUSIONS

FN-4 and FN-I2 are two examples of successful naphthoxazole-

based dyads capable of monitoring 1O2 in solution with unprece-

dented sensitivity. Photooxidation of the trapping moiety leads to

the formation of a new chemical entity whose fluorescence is

spectrally different from that of the nonirradiated conjugate. Flu-

orescence enhancement factors up to 300-fold have been

observed taking advantage of the change in spectral properties

upon photooxidation. Its added selectivity toward 1O2 and the

negligible effects of self-sensitization make naphthoxazole dyads

worth of further development as 1O2 fluorescent probes.
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Figure S5. Selectivity of FN-4 and FN-I2 toward other reactive
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solution.
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