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Abstract 

The dynamic response of any structure submerged in water is significantly modified by 

the effect of added mass. The inertia of the fluid that the body must accelerate during its 

vibrational motion decreases its natural frequencies. This frequency shift between the air 

and still water conditions must be taken into account during the design phase to foresee 

any resonance problems. 

However, if cavitation takes place, which is a rather common phenomenon when dealing 

with submerged systems or machinery, the variability in the structural response remains 

unknown. 

This thesis presents an experimental study of the influence of sheet cavitation and 

supercavitation on the added mass effects experienced by a 2-D NACA0009 hydrofoil. A 

High Speed Cavitation Tunnel was used to generate and control the cavitation, and an 

innovative non-intrusive excitation and measuring system based on piezoelectric patches 

mounted on the hydrofoil surface was used to determine the natural frequencies of the 

fluid-structure system. The appropriate hydrodynamic conditions were selected to 

generate a range of stable partial cavities of various sizes and to minimize the effects of 

other sources of flow-induced noise and vibrations. The main tests were performed for 

different sigma values under a constant flow velocity of 14 m/s and for incidence angles of 

both 1 and 2.  

Additionally, a series of complementary experiments and numerical simulations were 

performed to assure the validity of the results and to clearly separate the effects of 

cavitation from other factors that may also affect the hydrofoil’s natural frequencies. In 

this context, mode shape visualization was performed under different flow conditions to 
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guarantee the equivalence among the tests. In addition, the effects of the lateral wall in 

the test section and the pressure distribution over the hydrofoil surface were also studied.                                 

The obtained results indicate that the maximum added mass effect occurs under 

conditions of still water. When cavitation occurs, the added mass decreases as the cavity 

length is increased. Consequently, the added mass reaches a minimum under 

supercavitation conditions. This behavior is well characterized by the linear correlation 

found between the added mass coefficient and the entrained mass of fluid that accounts 

for the mean density of the cavity, its dimensions and its location relative to the specific 

mode shape deformation. 
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Nomenclature 

f- Frequency 

f1- First bending natural frequency; First bending mode shape 

f2- First torsion natural frequency; First torsion mode shape 

f3- Second bending natural frequency; Second bending mode shape 

t- Time 

a- Length; Generic coefficient 

b- Span; Generic coefficient 

T- Period 

A- Maximum amplitude; Cross sectional area; Constant 

Afluid - Added mass 

Bfluid- Added damping 

n- Integer 

D- Characteristic lenght 

M- Mass matrix 

m- Mass; Integer 

K- Stiffness matrix 

k- Stiffness; Integer; Increase frequency factor 

C- Damping matrix; Coefficient 

c- Coefficient of viscous damping: chord; sonic velocity 

F- Force 

CM - Added mass coefficient   

E- Young’s modulus 

I- Moment of inertia; Intensity 

y- Displacement; Volume ݕሶ-Lineal velocity ݕሷ- Lineal acceleration 
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L- Length; Length of signal 

l- Length; Longitudinal dimension 

V(x)- Generic function 

T(t)- Generic function 

x- Variable; longitudinal degree of freedom ݒ-Velocity 

C1, C2, C3, C4- General coefficients 

s- Roots, longitudinal degree of freedom`; Longitudinal dimension ܺ௢-Amplitude of vibration 

h1, h2- Longitudinal degree of freedom 

pV- Vapor pressure 

p∞- Infinite medium pressure 

R- Bubble radius ሶܴ -Interphase velocity ݌୥-Partial gas pressure 

p- Pressure 

u- Velocity ℱ-Froude number 

St- Strouhal number 

w- Weight 

h- Longitudinal dimension 

P- Pressure 

Greek symbols 

ρ- Density 

ωn- Natural angular frequency 

ωd- Damped angular frequency 

α- Incidence angle; Void ratio 

ω- Angular frequency 

δ- Logarithmic decrement 
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 Wavelength; Eigenvalue σ- Thoma coefficient or cavitation number -ߣ
θ- Angular displacement 

ϕ‐ Phase 

ϵ- Damping ratio ߠሷ-Angular acceleration ߴ-Kinematic viscosity 

ν- Poisson’s modulus 

Subscripts 

o‐ Initial condition 

e‐ External; Elemental matrix 

max‐ Maximum value 

static‐ Static condition 

n- nth repetition 

k- kth repetition 

i- ith repetition; Point i 

fluid- Relative to fluid domain 

θ- Angular magnitude 

v- Volume phase 

vacuum- Vacuum condition 

l- Liquid phase 

p- Fluid matrix 
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Abbreviations 

ADC- Analog Digital Converter 

CAE- Computer-Aided Engineering 

CFD- Computational Fluid Dynamics 

CSR- Cavity Surface Ratio 

DFT- Discrete Fourier Transform 

EM- Entrained Mass 

EPFL- Ecole Polytechnique Fédérale de Lausanne 

FEM- Finite Element Method 

FFT- Fast Fourier Transform 

FIR-Finite Impulse Response 

FSI- Fluid Structure Interaction 

IEPE- Integrated Electronics Piezo Electric 

JTFA- Joint Time Frequency Analysis 

LDV-Laser-Doppler Vibrometer 

LE- Leading edge 

LMH- Laboratory of Hydraulic Machinery 

NACA- National Advisory Committee for Aeronautics 

PZT- Lead Zirconate Titanate 

STFT- Short Time Fourier Transform 

TE- Trailing edge 
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PART I: INTRODUCTION 

In this first section, the reasons for and the scope of this work are detailed. Additionally, 

a complete background summary and a literature review are presented to assist the reader 

in contextualizing the problem. 

Motivation and objective 

A deep understanding of the fluid-structure interaction of submerged bodies is 

fundamental for the design of a large variety of systems. This problem, although not new, 

has undergone a recent growth in popularity due to the large number of applications for 

fluids. As in any engineering process, a solid knowledge of the phenomenon will lead to a 

more efficient and, consequently, more competitive system. However, any lack of 

understanding will eventually produce a limit or barrier to future development and 

performance. 

The current general interest among structural designers lies in seeking the limits of new 

materials or new structural configurations that offer improved, and more suitable, 

qualities to create thinner, lighter and more flexible structures. At the same time, the 

concentration of power and the off-design operation of fluid machinery results in an 

increase in the hydrodynamic loads applied to these structures. This general trend leads to 

more frequent material fatigue or resonance failures due to undesirable vibrations. 
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other(s) and vice versa, leading the system to a solution if, and only if, an overall 

equilibrium is reached. 

Understanding and predicting the response of a structure under any type of dynamic load 

has become a key factor in design. Nevertheless, this response depends significantly on its 

boundary conditions; a body submerged in a dense fluid exhibits different dynamic 

behavior than one surrounded by air due to the so-called “added mass effect”. If a net flow 

also exists around the body, hydrodynamic cavitation can take place, which could add 

additional uncertainties to the system because the new boundary conditions are not fully 

understood. 

From a structural point of view, the interest in cavitation stems from the fact that many 

submerged bodies suffer from this phenomenon. The mixture of liquid and vapor water 

phases that forms the macroscopic hydrodynamic cavities can create averaged properties 

that are difficult to quantify and that vary from the expected effects of pure liquid water 

flow. Moreover, the complex structure and morphology of such a two-phase flow 

enhances its scientific interest. 

Therefore, the aim of the current research project is to experimentally determine the 

effect of cavitation on the dynamic response of a hydrofoil in a high-speed cavitation 

tunnel. 

Background 

The basic physical phenomena relevant to the current research work are presented in this 

section to assist the reader in understanding the procedure that has been followed. These 

phenomena represent the core of this entire document and also act as the starting point 

for building a solid understanding of what and why has been done. The background 

information is presented in the order of relative importance to this work. First, typical 
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vibrational motions are described, the dynamic response of a structure is presented for 

simple load cases, and the resonance condition is introduced. Additionally, the topics of 

modal analysis theory and practice for detection of natural frequencies are also 

summarized. Next, the effects of a surrounding fluid on the natural frequencies of the 

structure are explained, and the added mass is defined. Finally, a brief description of 

cavitation and its different forms within a flowing fluid are also given. 

II.I- Structural dynamic response 

Structural dynamics is a key component of structural analysis when dynamic loads are 

applied to a body. To understand several concepts important to the following chapters, a 

detailed review of the theory is given in this section, beginning with the kinematics of a 

vibrating structure and following with the dynamics. A brief description of the main 

concepts is summarized; for a more extensive description, please refer to Moliner (1995) 

and Den Hartog (1985). Additionally, Appendix A presents a detailed explanation of the 

case of a cantilever beam due to its similarity to our studied system. 

Different types of motion can approximate the structural vibration under certain 

constraints. A vibration is a periodic motion or a motion that repeats itself after a 

determined period of time. 

II.I.I- Simple harmonic motion 

The simple harmonic motion is described by equation (2.1): 

ݕ = ܣ · cos(߱௡ · ݐ + ߮)       (2.1) 

where ݕ is the displacement at time t, A is the maximum amplitude of the motion, ωn is 

the angular frequency and ߮ is the phase. 
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include the mass, the spring, which determines the elastic behavior, and a damping or 

energy-dissipating term. 

The simplest case of an undamped system with free vibration is expressed by equation 

(2.5): 

ሷݕ݉ + ݕ݇ = 0     (2.5) 

where m is the system mass and k is the stiffness. 

The general solution of equation (2.5) is given by: 

ݕ = ௢ݕ cos ݐ߱ + ሶ௢߱ݕ sin ݐ߱      (2.6) 

where ݕ௢ and ݕሶ௢ are the initial conditions for the displacement and velocity, and the 

natural angular frequency is: 

߱ = ඨ ݇݉       (2.7) 

II.I.III.I- Angular vibrations 

The comparison of the general case to angular displacements, which result from torsional 

motion, is interesting. This particular system is analogous to the linear case (equation 2.5) 

by taking into account that the degree-of-freedom is now an angular magnitude: 

ሷߠܫ + ݇ఏߠ = 0     (2.8) 

where I is the moment of inertia and kθ is the angular stiffness, which is different from 

the linear stiffness, in general. Here, the angular frequency, ߱ఏ, is given by: 

߱ఏ = ඨ݇ఏܫ      (2.9) 
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II.I.III.II- Spring mass damper system 

As previously stated, the general mechanical system contains three different components: 

a mass, a spring and a damper. The governing equation is expressed in equation (2.10): 

ሷݕ݉ + ሶݕܿ + ݕ݇ = 0    (2.10) 

where c is the coefficient of viscous damping. From this general case, the natural angular 

frequency of the system, ߱ௗ, is obtained by: 

߱ௗ = ඨ ݇݉ − ܿଶ4݉ଶ     (2.11) 

which is analogous to equation (2.3), accounting for the damping coefficient: 

߳ = ܿ2݉߱௡     (2.12) 

If this system is excited by an external force (assumed to be periodic), the following 

differential equation of motion is applied: 

ሷݕ݉ + ሶݕܿ + ݕ݇ = ௢ܨ cos(߱௘ݐ + ߮௘)    (2.13) 

where Fo is the amplitude of the external force, ωe its angular frequency and ߮݁ is its 

phase. Equation (2.13) is known as the differential equation of motion of a forced single-

degree-of-freedom system. 

The general solution for equation (2.13) is a superposition of two different motions, i.e., a 

forced motion that persists as long as the external force is applied to the system and a 

transient motion that will die over a certain time due to the damping. Therefore, after a 

sufficiently long time, only the first term of equation (2.14) will drive the motion of the 

system. 
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ݕ = ݇)௢ඥܨ − ݉߱ଶ)ଶ + (ܿ߱)ଶ cos(߱ݐ + ߮)
+ ݁ି ௖ଶ௠௧(ܥଵ cos(߱ௗݐ) + ଶܥ cos(߱ௗݐ))     (2.14) 

where C1 and C2 are two general coefficients. 

II.I.III.III- Resonance 

For a certain external force, the amplitude of the motion and the phase depends on the 

frequency. In the case of an undamped system: 

ݕ = ݇ܨ − ݉߱ଶ     (2.15) 

In Figure 2.3, the resulting displacement has been plotted as a function of the frequency, 

, and it can be observed that at ߱ = ߱௡, a response of infinite amplitude is achieved that 

represents the so-called “resonance phenomenon”. Consequently, when the forced 

frequency coincides with the system’s natural frequency, small amplitude forces can 

produce notably large motion amplitudes because the external force is applied at exactly 

the right direction at the right time. 
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The modal analysis approach is frequently used to solve the dynamic properties of such 

systems. This analytic method is focused on systems whose motion can be expressed by 

means of non-homogeneous linear partial differential equations of second or higher order 

and that are subject to boundary and initial conditions. A two-step approach is required 

to solve these equations. In the first step, the non-homogeneous portion of the equation 

is neglected, and the homogenous portion is solved using a separation-of-variables 

technique. The solution consists of a set of infinite eigenvalues (ߣi) and eigenfunctions 

( ௜ܹ(ݕത)). To proceed to the next step, it is important to note that the eigenfunctions are 

orthogonal and form a basis in the space. Therefore, any function can be expressed as a 

linear combination of the eigenfunctions. In the second step, we make use of this 

property and assume that the solution of the non-homogeneous equation is a linear 

combination of the eigenfunctions and the time-dependent generalized coordinates. 

Finally, these equations are solved using the initial conditions. 

It is important to state that the eigenvalues of a system are related to the natural 

frequencies, as expressed in equation (2.18): 

௜ߣ = ߱௜ଶ   (2.18) 

The eigenfunctions are also referred to as the mode shapes, which determine the motion of 

the system. In fact, each mode shape governs the motion of the entire system vibrating at 

a particular natural frequency. 

 II.II- Added mass 

II.II.I- Definition 

The effect of a surrounding dense fluid on the natural frequencies and mode shapes of a 

structure can be of paramount importance. The physical phenomenon involved in these 

problems is that of inertial coupling. The natural frequencies and mode shapes of a 
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structure within a fluid must be determined from a coupled fluid-structural analysis. 

Strictly speaking, these natural frequencies and modes of vibration do not originate from 

the structure but from the fluid-structure system. In general, the fluid inertia can be 

modeled as an added mass operating on the degrees of freedom of the structure. 

Therefore, the fluid adds no additional degrees of freedom to the system. The added mass 

is conservative in nature and is highly directional and sensitive to the boundary 

conditions. 

When a structure vibrates in a dense fluid, the surface of the structure is loaded by the 

oscillating pressure that exists within the fluid, and at the same time, the fluid is loaded 

by the motion of the walls. Assuming a relatively small amplitude of vibration, the system 

is linear, and therefore, the pressure field is proportional to the normal acceleration of the 

wall. 

 In a general form, the added mass of a structure vibrating in a still fluid, ܣ௦௧௜௟௟ ௙௟௨௜ௗ,  is 

essentially a function of the geometry of its surface, its position relative to the boundary 

conditions, the amplitude and direction of its vibration and a Reynolds-like coefficient, as 

shown in the following formula proposed by Blevins  (1979): 

ୱ୲୧୪୪ ୤୪୳୧ୢܣ = ݃ߩ ቆgeometry, ܺ௢ܦ , ߴଶܦ݂ ቇ      (2.19) 

where Xo is the amplitude of vibration in a given direction, D is the characteristic length, f 

is the frequency of vibration and ߴ is the kinematic viscosity of the fluid. 

As presented in equation (2.13), the general equation of motion in matrix form for a body 

vibrating in a still fluid is: 

ܯ ሷܺ + ܥ ሶܺ + ܺܭ =  (2.20)      ܨ
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where M, C and K are the system mass matrix, damping matrix and stiffness matrix, 

respectively, and F is the force applied to the body by the entrained fluid. Assuming that 

the fluid force takes the form: 

ܨ = ܽ ݊݅ݏ ݐ߱ + ܾ ݏ݋ܿ  (2.21)     ݐ߱

then, the general equation of motion for a body vibrating in a fluid may be written as: 

൫ܯ + ௙௟௨௜ௗ൯ܣ ሷܺ + ൫ܥ + ௙௟௨௜ௗ൯ܤ ሶܺ + ܺܭ = 0    (2.22) 

where Afluid and Bfluid are the added mass and the added damping matrices, respectively. As 

shown in equation (2.22), the added mass is in phase with the acceleration of the 

structure and the added damping is in phase with the velocity. 

In general, the Afluid is a 6x6 matrix that relates the three rectilinear and the three angular 

accelerations to produce the six inertial force components of the fluid. Because the system 

is conservative, the added mass matrix is symmetric, and therefore, it consists of 21 

unknown coefficients. Further reductions can come only from geometric symmetries, 

which will be explained in detail in section II.II.IV. 

The natural frequency of an undamped system vibrating in vacuum conditions was 

expressed in equation (2.7). When submerged in a fluid, the dynamic response of a solid 

body is altered by the effect of the added mass of the fluid. Consequently, the ratio 

between the natural frequency of a given mode of vibration in water, f୤୪୳୧ୢ୧, and the 

natural frequency in air, f୴ୟୡ୳୳୫୧, is approximately: 

୤݂୪୳୧ୢ௜୴݂ୟୡ୳୳୫௜ ≅ ඩ 1൬1 + ୤୪୳୧ୢ௜݉௜ܣ ൰    (2.23) 
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where i subscript denotes each particular mode shape, and m is the modal mass. 

Consequently, the natural frequencies of vibration are lowered with respect to those in air 

(considered as a vacuum). If the added mass matrix is diagonal, the system mode shapes 

are equivalent to those of the structure vibrating in air. 

From equation (2.23), an added mass coefficient can be defined with equation (2.24). 

This coefficient will be of special interest throughout the present work because it can be 

used to quantify the added mass effects. 

ெ௜ܥ = ቆ ௩݂௔௖௨௨௠௜௙݂௟௨௜ௗ௜ ቇଶ − 1   (2.24) 

II.II.II- Wall effect 

As previously mentioned, the added mass is highly sensitive to the boundary conditions of 

the fluid-structure system. One particularly interesting boundary condition is presented 

by a rigid wall located near the vibrating structure. In this situation, the added mass 

matrix can be simplified with geometric symmetries if, and only if, the symmetries are 

applied to both the structure under study and the solid wall. 

The presence of a solid wall near a vibrating structure can cause a substantial increase in 

the added mass (Schiller 1971 and Yamamoto et al. 1973). In the region between the 

structure and the boundary, the fluid experiences an acceleration increase, which enhances 

the inertial forces exerted on the wetted surfaces. As the structure moves away from the 

boundary, the added mass rapidly decreases asymptotically to the value of an isolated 

body. 

 II.II.III- Free surface effect 

Another highly important boundary is the presence of a free surface, which refers to a 

water-air interphase in the present work. Unfortunately, a free surface boundary confers 
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large calculation difficulties and behaves differently depending on the geometry of the 

body and its relative movement. In fact, in certain cases, a free surface enhances the added 

mass effect, whereas a free surface reduces the added mass effect in other cases. Free 

surfaces are by definition nonlinear.   

Seldom do structure geometries allow us to numerically calculate the added mass value in 

the presence of a nearby free surface. Even in simplified situations, one can observe 

different behaviors in the added mass trend (Chung 1994). The effects of any boundary 

can usually be ignored if the boundary is located at a distance of a few characteristic 

lengths of the vibrating body. This length is related to the specific mode shape under 

study. 

Another effect involving free surfaces has been commonly neglected during these added 

mass quantifications (Blevins 1979 and Kennard 1967). When a floating body or a 

submerged body vibrates near a free surface, its movement produces surface waves in the 

interphase. These “gravitational waves” (to distinguish them from capillary waves) and 

their coupling are controlled by the Froude number, defined by: 

ℱ = ߱ଶ݃ܮ       (2.25) 

This issue has been of paramount importance for the naval industry for a long time 

(Ogilvie 1964). By means of potential flow theory, accurate approaches have been devised 

that can explain the train of waves produced by an oscillating body in a free surface. 

 II.II.IV- Plate cases  

As an interesting limiting case, the added mass of plates is reviewed in this section, 

including a free plate immersed in a liquid with boundaries and a cantilever plate. Most of 
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these results are part of a more extensive list, which are shown in publications such as 

Blevins (1979) and Axisa and Antunes (2007). 

 II.II.IV.I- Cantilever plates 

Several simple geometries allow the numerical calculation of the values of added mass. A 

large body of literature exists on this analytical approach. If we sufficiently reduce the 

thickness of the cantilever beam, we can consider it as a plate and calculate the added 

mass values for any particular mode shape of interest. Table 2.1 indicates the theoretical 

added mass values for the first mode shapes of a plate of length L and width c. These 

geometrical configurations assume an infinite fluid surrounding the unbounded structure. 

Mode shape Theoretical added mass value 

First bending mode ܣ୤୪୳୧ୢ = 4ߨ  ଶܿܮߩ

First torsion mode ܣ୤୪୳୧ୢ = 332  ଶܿܮߩߨ

Second bending mode ܣ୤୪୳୧ୢ = 4ߨ  ଶܿܮߩ

Table 2.1 - Theoretical expressions for the calculation of the added mass of a cantilever beam. 

 II.II.IV.II- Free plates with boundaries 

In this case, the plate is located at a distance h2 from a lower fixed wall and at a distance 

h1 from an upper free surface, as plotted in Figure 2.5. 
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For the opposite case, a plate surrounded by a thin layer of fluid is obtained by h1 and h2 

tending to 0. In this particular case, the mass of the upper fluid is neglected, but the lower 

part becomes quite important due to a confinement effect, and the following equation 

(2.28) is considered: A୤୪୳୧ୢ(m, n) = ρ(ab)ଶ4πଶඥ(bn)ଶ + (am)ଶ  ൬abhଶ൰     (2.28)    
It is important to mention that for a plate of such dimensions, the characteristic length is 

expressed as: 

,݉)ܮ ݊) = ඥ(ܾ݊)ଶߨܾܽ + (ܽ݉)ଶ      (2.29) 

II.III- Cavitation 

II.III.I- Definition 

Cavitation is the appearance of vapor cavities inside an initially homogeneous liquid when 

the pressure is decreased to a sufficiently low value at constant temperature (Knapp et al. 

1970). Therefore, this phenomenon intrinsically represents a liquid-vapor phase change, 

as shown in Figure 2.6.  
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Figure 2.7, a single bubble is indicated with an internal radius, R(t), that changes with the 

radial velocity of its interphase, u(r,t), as the infinite medium pressure is changed, p (t). 

  

 

Figure 2.7- Bubble diagram. 

For a Newtonian and incompressible liquid, the growth of a bubble is governed by the 

Rayleigh-Plesset equation (2.30). 

ߩ ൤ܴ ሷܴ + 32 ሶܴ ଶ൨ = ௩݌ − (ݐ)ஶ݌ + ௚଴݌ ൬ܴ଴ܴ൰ଷఊ − 2ܴܵ − ߤ4 ሶܴܴ        (2.30) 

where ̇ ሶܴ  is the bubble interface velocity, ሷܴ  is the acceleration, ݌୥଴ is the initial partial gas 

pressure inside the bubble, γ is the ratio of the heat capacities and S is the surface tension 

of the liquid.  This equation yields the temporal evolution of a bubble radius. The bubble 

collapse can be estimated by differentiating the radius expression and forcing it to 0. 

Pressures in thousands of bar, surface velocities close to sonic velocities and temperatures 

of thousands of Kelvin have been experimentally measured during this phenomenon 

(Dopazo 2008). 

 II.III.III- Hydrodynamic cavitation 

In a flowing system, the liquid particles can be subjected to positive local accelerations 

that will lead to static pressure reductions, as stated by Bernoulli’s equation (2.31), in 

which pi is the particle pressure, ui is its velocity and C is a constant value. This equation 

assumes that at any point i of the same streamline, the sum of the static term and the 

dynamic term are constant when the differences in the geometric head are negligible. 
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 (ݐ)ஶ݌

u(r,t) 
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 II.III.III.I- Attached cavitation 

As mentioned above, this type of cavitation is attached to solid surfaces. When dealing 

with submerged hydrofoils, attached cavitation also refers to sheet cavitation due to its 

shape. Usually, this type of cavitation detaches close to the leading edge of the profile and 

extends downstream as the cavitation number is lowered. The closure region produces u-

shaped vortices that collapse on the surface of the structure. 

There are several different methods used to classify sheet cavities. If the length of the 

sheet is increased (which is usually expressed by the ratio of the cavity length, l, to the 

hydrofoil chord, c), the behavior of the sheet tends to become unstable. This instability 

typically takes place for l/c ratios between 0.75 and 1 and is characterized by a periodical 

fluctuation of its length, which sheds macroscopic cavities that can turn into u-shaped 

vortices and collapse quite violently. This unstable cavitation is usually referred to as cloud 

cavitation. The unsteadiness is originated at the cavity closure region by the so-called re-

entrant jet. This water jet advances upstream towards the leading edge and cuts a portion 

of the cavity. This process results in a type of periodic shedding process of bubble clouds 

that are convected by the flow to the pressure recovery region, where they collapse 

violently. The shedding frequency is expressed by a dimensionless parameter known as 

the Strouhal number and is defined by equation (2.33): 

St = ஶݑ݈݂      (2.33) 

where l is the characteristic length of the cavity, ݑஶ is the free stream flow velocity and f 

is the shedding frequency. 

Another interesting distinction exists for sheet cavities that depends on the l/c ratio. If the 

cavity closure occurs on the suction side of the profile, it is referred to as “partial 
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where ݕv and ݈ݕ are the volumes of the cavity in the gas and liquid phases, respectively. 

There is a lack of knowledge of the internal composition of such macrocavities. Void 

ratios and internal cavity morphology in general have recently become important topics of 

research due to the impressive improvement in X-rays and endoscopes. (Stutz and 

Legoupil 2003 and Aeschlimann et al. 2011) 

 State of the art 

Prediction of the dynamic behavior of a structure during its design phase is a key issue. 

The calculation of modal parameters such as natural frequencies and mode shapes is 

necessary to predict the structural response to an external dynamic load. An extensive 

body of academic literature addresses the topics of theoretical, experimental and 

computational approximations to the dynamic response of solid bodies with multiple 

configurations. Blevins (1979) summarized many of the most important formulas and 

principles used in this field. 

As detailed in a preceding section, when a solid structure is partially or completely 

submerged in a high-density fluid, its dynamic response will differ from its response in a 

vacuum due to the added mass effect, which is the  result of the inertia of the surrounding 

fluid entrained by the accelerating structure. Kirchhoff (1869) set the mathematical basis 

for treatment of the solid-fluid system, and Lamb (1945) used it to study the motion of 

one or more solids in a frictionless liquid. Patton (1965), Blevins (1979) and Kennard 

(1967) numerically determined the added mass coefficient of an extensive quantity of 2D 

and 3D solid configurations under different boundary conditions. 

Due to their particular geometry (which greatly simplifies the added mass tensor), spheres 

and cylinders have been widely studied both theoretically and experimentally. Starting 

from unbounded solids, special attention has been focused on the interaction of several 

bodies. In this context, Jeffrey (1973) studied heat conduction through a stationary 
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random suspension of spheres with an original method known as the twin spherical 

expansion. This method inspired Van Wijngaarden (1976) to study the forces generated 

on a sphere by a near sphere in an impulsively accelerated fluid and to extract the added 

mass values for two different sphere distributions. If the sphere center plane was 

perpendicular to the velocity of the fluid, the added mass was increased, and if it was 

parallel, the added mass was reduced. Ragazzo (2002) calculated the hydrodynamic force 

and torque that a small amplitude/rapidly oscillating body induces on another body able 

to freely move in its vicinity in an ideal fluid. He stated that if the free body is located 

sufficiently far from the oscillating body, then the averaged interaction force is attractive 

if, and only if, the density of the free body is larger than the density of the fluid. The 

study of cylinders (which if sufficiently long can be treated as 2D bodies) allowed the 

development of Strip theory (Salvesen et al. 1970) for slender bodies partially or 

completely submerged in a fluid. With this tool, the solution to the three-dimensional 

problem is approximated by solving a series of two-dimensional problems in the cross-

flow plane. 

As previously discussed, the effect of surface waves has been commonly neglected in the 

currently available compilations of added mass coefficients for different body 

configurations (Patton 1965, Blevins 1979 and Kennard 1967). However, this particular 

field has been widely treated by those authors related to the navy industry, including 

Ursell (1948a, 1948b, 1953), Porter (1961), Frank (1967) and Kaplan and Kotik (1963). 

In their studies, the importance of surface waves to the added mass of bodies floating or 

submerged near a free surface was clearly demonstrated. These researchers together 

determined the importance of the vibration frequency using the Strouhal number. 

Using potential flow theory, the system of a solid wall near a body has also been studied 

by Lamb (1945) and Milne-Thomson (1968), who modified the kinetic energy of an 
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unbounded sphere to take into account the energy increase produced by the wall effect. 

This approach, which consists of truncating an infinite polynomial series of the non-

dimensional wall distance, has been widely accepted but produces great divergences when 

the sphere-wall gap drops to below half the radius of the sphere. For low Reynolds 

numbers, a new approach has been developed by Yang (2010) with significantly improved 

results. Recently, Motley et al. (2012) investigated the effects of surrounding boundaries 

on the response of cantilever composite beams by means of numerical simulation. They 

specifically studied the effects of the free surface in partially submerged structures as well 

as the effects of solid boundaries near the beam. 

Most of the referenced works attempt to numerically determine the added mass 

coefficients with what can be considered a direct approach. Nevertheless, another 

approach exists to study the added mass behavior of submerged bodies. Using structural 

dynamics theory, one can easily observe the relationship between the added mass and the 

natural frequencies of submerged bodies (equation 2.48); this is what we call an indirect 

method. Many of the following references use this type of approach to study the added 

mass. A systematic and detailed study was performed by Lindholm et al. (1965) on 

cantilever beams in air and submerged in water. Experimental results with natural 

frequencies showed reasonably good agreement with plate theory approximations. 

Consequently, empirical correction factors were obtained for the added mass by taking 

into account the beam aspect and thickness ratios. Sewall et al. (1983) successfully 

compared experimental and analytical data related to the vibration frequency of the 

fundamental mode of a three-sided membrane in air. They also found that the added 

mass effect on a cylinder was overestimated using the same analytical method. More 

recently, Kimber et al. (2009) studied the interaction between two cantilever structures 
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vibrating in air in various configurations. They verified that the resonance frequencies and 

aerodynamic damping depend on the vibrating phase difference between the plates. 

Furthermore, several analytical models have been also built to carefully analyze the 

dependency of the added mass effect on various parameters. Amabili (1996) presented a 

model to estimate the natural frequencies and mode shapes of partially filled shells. Conca 

et al. (1997) showed that the added mass matrix for a mechanical structure vibrating in an 

incompressible fluid does not depend on the viscosity. Yadykin et al. (2003) found that 

for a flexible plate oscillating in a fluid, either an increase of the order of the mode of 

vibration or a decrease of the aspect ratio leads to a decrease of the added mass effect. 

In the field of hydraulic machinery, fluid-structure interaction (FSI) phenomena 

involving hydrofoils are a major concern, and several investigations have been performed 

on this topic. Ducoin et al. (2010a) experimentally studied the vibrations induced in a 

hydrofoil by the laminar to turbulent boundary layer transition and determined their 

significance and dependence on the vortex shedding frequency. Olofsson (1996) 

experimentally studied the dynamic performance of partially submerged propellers. Using 

numerical simulations, Moussou (2005) developed methods and solutions for two coaxial 

cylinders with quiescent fluid between them. Additionally, Münch et al. (2010) developed 

numerical simulations for an oscillating hydrofoil under incompressible turbulent flow.  

The introduction of cavitation into the fluid-structure system greatly increases the 

complexity of the problem; however, FSI phenomena under cavitating flows have not yet 

been extensively studied. Previous studies have been mainly focused on analyzing the 

hydrofoil response. For example, Amromin and Kovinskaya (2000) analyzed the vibration 

of an elastic wing with an attached cavity in a perturbed flow. They found that two 

different frequency bands were excited: a low band associated with cavity oscillations and 

a high band associated with wing resonances. Numerical investigations have been also 
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performed on this particular topic. For example, Young (2007) performed a coupled 3D 

simulation to analyze the time-dependent hydroelastic response of cavitating propellers, 

and Young et al. (2011) compared the mechanical efficiency and the hydrodynamic and 

structural performance of various surface-piercing propeller designs. Finally, Ducoin et al. 

(2010b) presented a method to simulate FSI problems under cavitating flows. 

Although several effects caused by cavitation have been extensively reviewed, such as the 

modification of lift and drag (Amromin et al., 2003) and the risk of cavitation erosion 

(Escaler et al., 2007), few references addressing experimental studies on the effect of 

cavitation on the added mass or the hydrofoil natural frequencies were found by the 

author. Recently, Ducoin et al. (2012) experimentally studied the structural response of a 

flexible hydrofoil under cavitating flows and provided certain remarks on its effect on the 

natural frequencies of a profile. Nevertheless, his work was aimed at analyzing the 

displacement of the structure and the vibration levels rather than examining the effect on 

the added mass. However, a few numerical examinations of added mass effects under 

cavitating flows have been reported as well, such as that of Fine et al. (2001). A work 

closely related to the present study was presented by Benaouicha and Astolfi (2012). This 

group developed an extensive theoretical study on the added mass of different body 

configurations under cavitating flows. In their work, the authors analytically observed that 

the natural frequencies should increase with the length of the cavity. 

Understanding the morphology and the inner properties of cavitation is a fundamental 

step in this field. This research topic has recently experienced a great increase in interest 

due to the advances and improvements in available measuring equipment. In this context, 

Stutz and Reboud (1997), Stutz and Legoupil (2003), Coutier-Delgosha et al. (2006) and 

Aeschlimann et al. (2011) have performed experimental measurements on different types 

of cavitation to better characterize its inner structure. 



PART I: INTRODUCTION 
 

 Page 31 

 

The presence of cavitation and the associated added mass effects are relevant to 

applications in water turbines and pumps. Currently, only the effects of still water 

surrounding turbine runners have been investigated both experimentally and numerically, 

but these investigations have not considered the presence of cavitation on the blades (see, 

for example, the work of Rodriguez et al., 2006, and of Liang et al., 2007). It should be 

noted that the current trend of regular operation of these hydraulic machines beyond their 

design specifications renders them more prone to cavitation problems. It is therefore 

necessary to estimate their dynamic responses under such extreme conditions to reduce 

the damage suffered from material fatigue. 

In summary, the literature addressing the dynamic response of a structure under 

cavitating flows is clearly insufficient for carefully study of the effects of cavitation on the 

added mass of a body. This work is focused on the dynamic response of a hydrofoil under 

cavitating flows. In this context, the present thesis aims to produce valid experimental 

data that can be used to characterize the FSI under such conditions. In addition, because 

a bounded solid is studied, the effects of different boundary conditions are also studied. In 

fact, this work is the logical previous step to a study of the effect of similar conditions on 

an entire machine model or on a more complex configuration body in which the great 

quantity of independent variables would make its analysis unapproachable. 

Working plan 

To accomplish the main objective of the present investigation, a detailed plan was 

constructed. The goal was to determine the influence of cavitation on the natural 

frequencies of a NACA0009 hydrofoil, but to reach this goal, a preliminary path was 

required to address the necessary stages. 
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To extract the natural frequencies of a structure, one usually performs a modal analysis by 

means of an impact test, but because the hydrofoil was intended for installation in a 

closed test section, an alternative excitation system was required. Consequently, the first 

task consisted of developing and testing a suitable excitation and measuring system for 

submerged structures that could be used in a test section of a high-speed cavitation 

tunnel. 

Given that the air condition (assumed equivalent to “in vacuum”) would be taken as the 

reference used to quantify the effects on the natural frequencies, and taking into account 

that there exists a slight difference between the in-vacuum and submerged-in-water mode 

shapes, an important complementary step was required to verify the equivalence of the 

mode shapes. Therefore, mode shape visualization under different flow conditions was 

carried out. 

Because the test section is a confined space, one cannot assume that the hydrofoil is an 

unbounded body. In addition, the installation of the NACA0009 profile within the test 

section as a cantilever beam resulted in the existence of a small gap between its tip and the 

lateral wall, which could enhance the effect of the boundary. It was also decided to study 

the effects of the lateral walls on the natural frequencies of the hydrofoil to identify and 

separate them from the cavitation effects. In addition to the experimental tests, a 

numerical model was also built to further investigate this phenomenon and to understand 

it more deeply. 

Pressure loads can vary the natural frequencies of a body by altering its stiffness, and it is 

well known that the pressure within a hydrodynamic macro-cavity drops to a value close 

to the vapor pressure at that temperature. The effect of this load change should also be 
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considered. Therefore, a series of tests was designed to observe the effects of pressure 

distribution on the natural frequencies of the hydrofoil. 

As a consequence of the analysis and discussion of the main results, additional tests were 

required. Therefore, the natural frequencies of a partially submerged hydrofoil were 

experimentally and numerically investigated. 

Thesis organization 

The current document is organized in four parts: 

The first section or “Introduction” states the motivation and main objectives of the 

present work and also presents the main theoretical concepts dealt with in this thesis: the 

structural dynamic response, added mass and cavitation.  Additionally, a detailed review 

of the published literature on such topics is presented, and finally, the last section is 

devoted to a description of the working plan. 

The second part, titled “Experimental set up, methodology and numerical model”, 

describes all of the applicable experimental procedures with special attention given to the 

facilities required for the tests and the equipment used. The different performed tests are 

described, and a detailed explanation of the post-processing methods used to obtain the 

experimental data is presented.  The last section describes the numerical simulation. 

The third part, “Results and discussions”, summarizes the main results of the different 

experiments as well as the numerical simulation performed during the present work. The 

last section discusses, relates and compares these results. 

The thesis ends with part four, “Conclusions”. This section is devoted to summarizing 

the main conclusions and also presenting the reasoning behind them. In this section, 

future research directions are also proposed. 
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PART II: EXPERIMENTAL SET-UP, METHODOLOGY 

AND NUMERICAL MODEL 

Starting from an innovative excitation system and a series of preliminary tests to proof its 

reliability, in this part a detailed explanation of the equipment and facilities used during 

the experimental tests is given. Besides, a description of the tests performed and a step-

by-step comment of the post processing tools used to obtain the desirable results are 

made. At the end of the current part, a numerical model is presented along with the 

platform and the physical assumptions required to simulate all the scenarios. 

PZT Patches 

VI.I- Specifications 

Chronologically, the first but also the most important task of this work was to think, 

choose and proof a suitable excitation system which could be used to excite a hydrofoil 

installed in a cavitation tunnel and to measure its dynamic response. The main 

requirements it must have to fulfill are summarized in Table 6.1. 
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Requirements Reasons

‐ Enough excitation energy

 

‐ Adequate frequency range 

excitation 

‐ On board system 

 

‐ The flow must not be 

perturbed 

 

‐ Noisy environment, flow-

induced vibrations 

‐ Unknown frequencies 

 

‐ Structure located inside a 

tunnel test section 

‐ Flow conditions must be 

stable and known, 

cavitation cannot be 

affected 

Table 6.1- Requirements of the ideal excitation system for an installed hydrofoil in the LMH 

High speed cavitation tunnel. 

Plumbum (lead) Zirconate Titanate (PZT) patches were chosen as an excitation system. 

These patches are made of polycrystalline ceramic material with piezoelectric properties. 

The piezoelectric effect was discovered with quartz crystals in 1880 by Pierre and Marie 

Curie and refers to the electric potential that certain materials spontaneously generate 

when a pressure is applied to them. The inverse piezoelectric effect also occurs, in which a 

material changes its shape when exposed to an electric potential. Since the piezo effect 

exhibited by natural materials is very small, PZT with improved properties have been 

developed. (Figure 6.1) 
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PZT specifications

Piezoelectric material

Operating voltage 

Dimensions 

Blocking Force 

PIC 255

-100 to +400V 

61 x 35 x 0.5 mm 

265 N 

Table 6.2- PI Ceramic PZT patches specifications. 

Since the operating voltage is rather high and signal generators usually provides lower 

voltage, a signal amplifier with a gain factor of 25 was used to feed these patches. 

VI.II- Preliminary tests  

Different tests were performed to check PZT patches suitability to be used as an 

excitation system. As stated in previous sections, this technology can be used as either 

sensors or actuators. The following proofs were made: 

a) A natural frequencies identification of a cantilever beam in air and submerged in 

water using a patch as an exciter. 

b) A comparison between the response signals of the patch and an accelerometer. 

VI.II.I- Natural frequencies identification of a cantilever beam 

When used as an actuator, the patch must be able to sufficiently excite the structure to 

obtain measurable response signals. In this particular test, a patch was glue on the surface 

of a stainless steel beam which was clamped to a lateral wall of a plexiglass pool. The 

main objective of this test was to identify several mode shapes of the beam, bending and 

torsion modes. To do so, three accelerometers were installed in the positions indicated in 

Figure 6.3 to measure the beam response. Besides, a signal generator fed the patch 
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During the experiments the controlled flow parameters are the free stream velocity at the 

test section inlet, ݑஶ, and the cavitation number, ߪ = (௣ಮି௣ೡ)భమఘ௨ಮమ , where ݌ஶ is the pressure 

at the test section inlet. The mean flow velocity value is derived from absolute pressure 

measurements at both ends of the contraction nozzle. The temperature is also measured 

upstream of the contraction nozzle. One can set the desired pressure by controlling the air 

pressure over the free surface in the pressure vessel; the maximum static pressure is 16 bar. 

The whole installation is controlled by a programmable automaton with a Labview user 

interface. 

VII.I.II- Hydrofoil: NACA0009 

Dynamic response of an aluminum NACA0009 profile was studied under different flow 

conditions. A NACA0009 shape is defined by equation (7.1) where y stands for half the 

local thickness, x is the local position and c is the chord or the profile. Besides NACA 

nomenclature give us additional information about the profile itself. The first two digits 

refer to the maximum camber and the distance to it from the leading edge. It is therefore 

a symmetric profile. Two last digits give us the maximum thickness as a chord percentage 

which, in this case, is located at 45 % of the chord. This particular hydrofoil was 100 mm 

chord-originally was 110 mm but the trailing edge was truncated- and spanned all the 

cavitation tunnel test section. The first model with the truncated trailing edge is shown in 

Figure 7.2.  
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Low pass filter

High pass filter 

Working distance 

1, 5, 22 kHz digital FIR

100 Hz analog 

0.2 - 30 m 

Table 7.1- Polytec 100 LDV specifications. 

A specific mounting and displacement system was used to locate and fix the laser beam 

on the desirable position of the upper surface of the hydrofoil. It is important to mention 

that the measurements obtained in water have to be “recalibrated” as the refraction index 

of water is 1.33 times the one in air. Consequently, the resulting measurement had to be 

divided by the refractive index to obtain the actual displacement. 

The vibrometer set-up is straightforward as only the velocity ranges and the high and low 

pass filters had to be specified. In order to obtain the best possible resolution and decrease 

the signal-to-noise ratio it is important to set the velocity range as low as possible, 

checking that the actual measurements do not exceed that range. 

VII.II.II- Sensors 

VII.II.II.I- Accelerometers 

Two different accelerometers were used during this work depending on the test facility. 

During the preliminary tests with the cantilever beam two to three miniature piezoelectric 

B&K accelerometers of the type 4394 were used -PZ 23 lead zirconate titanate-. 

Designed with an integral preamplifier, these IEPE sensors require an external constant-

current power supply and operate as voltage sources. In the preliminary tests, the 

acquisition system itself could energize the accelerometers. This particular type of 

accelerometers is better suited for higher accelerations as can be seen in Table 7.2, even 
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though, their small dimensions and weight made them ideal for the purpose of the test as 

they minimize their effect on the response of the structure. 

B&K accelerometer specification 

Acceleration range 

Sensitivity 

Resonant Frequency 

Frequency range 

Mass 

±765 g 

9.807 mv/g ±2% 

52 kHz 

1-25000 Hz 

2.4 g 

Table 7.2- B&K 4394 accelerometer specifications. 

At the cavitation tunnel a piezoelectric accelerometer model Kistler K-shear 8702B25 was 

used with the specifications indicated in Table 7.3. This is a low impedance 

accelerometer, which utilizes a quartz shear sensing element and incorporates a 

miniaturized built-in charge-to-voltage converter. The main difference with those used in 

the preliminary tests is that this accelerometer type requires an external power supply 

coupler, Kistler Power Supply/Coupler 5134A, to energize it. 

 

Kistler accelerometer specification 

Acceleration range 

Sensitivity 

Resonant Frequency 

Frequency range 

Mass 

±25 g 

200 mv /g 

54 kHz 

1-8000 Hz 

8.7 g 

Table 7.3- Kristler 8702B25 accelerometer specifications. 

 

VII.II.II.II- Force transducer & Impact hammer 

A B&K 8230 type force transducer was used during the preliminary tests to characterize 

the force exerted by the patch. This kind of transducers are used for measuring applied 
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forces in modal applications as they are designed for dynamic, short-duration static or 

impact forces measurements. The transducers work on the piezoelectric effect of quartz, 

which when stressed, in this case compressed, gives an electrical charge proportional to 

the compressing force. The specifications of the force transducer are shown in Table 7.4. 

 

Force transducer specification 

Sensitivity 

Max Compression 

Max Tension 

Resonance Frequency 

Mass 

22 mV/N 

900 N 

900 N 

75 kHz 

30.2 g 

Table 7.4- B&K 8230 Force transducer specifications. 

An instrumented hammer was also used during preliminary tests. As mentioned in a 

previous section, an impact test was carried out to compare the responses measured with 

the accelerometers and the PZT patch. A KISTLER 9722A2000 hammer with a steel 

impact tip-protected with a Delrin cap- was used. This model produced a sufficiently flat 

excitation band along the desired frequencies. The hammer specifications are indicated in 

Table 7.5. 

Impact hammer specification 

Sensitivity 

Force range 

Max Force 

Resonance Frequency 

Output voltage 

Mass 

2 mV/N 

0-2000 N 

10000 N 

27 kHz 

±5 V 

100 g 

Table 7.5- Kistler 9722A2000 impact hammer specifications. 

VII.II.III- Signal generator 

In order to feed the PZT patches, a signal –function- generator was required. During all 

the tests performed at LMH a Wavetek 29 10MHz DDS function generator was used. 
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Standard and arbitrary functions can be generated and different operating modes are 

available. In this sense, the tests demanded the sweep mode which has the operating 

characteristics shown in Table 7.6 and could generate chirp signals. 

Wavetek sweep mode specification 

Sweep mode 

Frequency range 

Trigger source 

Linear / Logarithmic 

100μHz-10MHz/100kHz depending function 

External, Manual or Remote 

Table 7.6- Wavetek signal generator sweep operating mode specifications. 

The function generator output offers flexibility in terms of amplitude and shape as 

indicated in Table 7.7. Such flexibility allows us finding the best operating function with 

the more suitable parameters. 

Wavetek output specification 

Output impedance 

Amplitude 

 

DC Offset 

 

Accuracy 

Resolution 

50/600Ω Switchable 

2.5 mVpp- 10 Vpp into 50/600 Ω 

5 mVpp- 20 Vpp open circuit 

±5 V (offset+signal peak) into 50/600 Ω 

±10 V (offset+signal peak) open circuit 

3%+ 1 mV at 1 kHz 

3 digits (limited by 1 mV) 

Table 7.7- Wavetek signal generator output specifications. 

VI.II.IV- Data acquisition system 

The acquisition system to digitize and record the time signals was a NI-PXI 1033 chassis 

with several PXI 4472 modules connected to it with the specifications indicated in Table 

7.8. This particular module has 8 analog inputs with 24-bit resolution ADCs that are 

simultaneously sampled. In order to program the acquisition procedure a Labview 
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software routine had been previously implemented with a user-friendly environment 

which eases its use.  

NI-PXI specification 

Analog inputs 

Resolution 

Sampling rate 

Input range 

AC cutoff frequency 

8 

24 bits 

102.4 kS/s 

±10 V 

3.4 Hz 

Table 7.8- NI-PXI acquisition system specifications. 

During the acquisition of the desired signals and due to the large extensions of data 

recorded, the waveforms were stored as binary files. This format presents several 

advantages, namely, they have higher accuracy for floating point numbers, take up less 

space and perform faster than other types of files such as text-based. 

VII.II.V- Multi analyzer system 

In the preliminary tests the signal generator and the data acquisition system was 

substituted by an all-in-one analyzer. This type of multi analyzer with several output and 

input channels shows flexible configuration and can work as a signal generator and record 

simultaneously. In particular, it can produce different excitation types. Then, with a built 

in purpose software the signal processing is easily performed. This particular multi 

analyzer is the Pulse Multi analyzer system 3560D  of  Bruel and Kjaer. Its specifications 

are summarized in Table 7.9. 
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PULSE Multi channel analyzer 

Inputs Output 

Freq. Range 

Voltage Range 

 

High Pass Filter 

0 to 25.6 kHz 

7 ranges from 7.071mV 

to 7.071V 

DC; 0.7; 7; 22.4 Hz 

Freq. Range 

Voltage Range 

Impedance 

Waveforms 

0 to 25.6 kHz 

7.07μV to 7.07V 

50 Ω 

Sine, Dual sine, 

Random, User-defined  

Table 7.9- Pulse multi-channel analyzer specifications. 

Experiments 

A detailed description of the different experimental tests performed in the cavitation 

tunnel is given in this section. An extensive explanation of the post-processing methods 

and tools used to treat different data signals is also presented. 

VIII.I- Methodology 

VIII.I.I- Modal analysis of a cavitating hydrofoil 

The aluminum NACA0009 was mounted at the LMH High Speed Cavitation Tunnel. 

Before filling the tunnel, a modal analysis was performed to obtain the reference natural 

frequencies which will be assumed to be “Air” condition. Then, with the tunnel full of 

still water, the “Still water” conditions were also obtained  

To simplify the post-processing routine and avoid the introduction of other noise sources, 

the best hydrodynamic conditions (in terms of flow velocity and incidence angle) had to 

be found. Therefore, a systematic search was conducted by tuning both variables. It was 
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observed that the cavities were unstable for flow velocities between 15 and 20 m/s, and 

large vibrations were induced in the hydrofoil. In the range from 5 to 10 m/s, the stable 

cavities were non-uniform along the entire span, and the two-phase mixture was not 

sufficiently homogeneous. A lock-in phenomenon occurred for flow velocities of 

approximately 11 m/s; for incidence angles of between 3° and 5°, the cavity was not 

attached to the hydrofoil suction side, and unstable shear cavitation took place instead. 

For incidence angles lower than 1°, the vortex shedding was significant, and cavitation 

also appeared on the pressure side. Consequently, the cavitation tunnel upstream velocity 

was ultimately fixed at 14 m/s, and two incidence angles of 1 and 2 were selected for the 

experiments. 

Under these conditions, steady partial cavities were obtained by decreasing the value of 

sigma over lengths ranging from 2% to 44% of the chord for an incidence angle of 1° and 

from 2% to 75% for an incidence angle of 2°. Photographs were taken from the top and 

lateral sides of the test section during the tests, as shown in Figure 8.1. These images 

were obtained with a 50-μs duration flash lamp synchronized with a digital photo camera.  

The supercavitation condition was also investigated for both incidence angles. This type 

of cavitation occurs when the cavity length extends beyond the hydrofoil’s trailing edge. 

The bottom photograph in Figure 8.1 shows an example. 



 

 

 

The s

work 

excita

patch

struct

Thes

factor

range

depen

chirp

invest

PA

Figure 8.1 -

so-called mo

k requires a 

ation of the

hes. A 120-s

ture. At the 

e chirps cov

r of 2 Hz/s. 

e to detect 

nding on the

s were requ

tigated with 

ART II: EXPER

Detail of diff

odal analysis 

detailed ex

 natural freq

second linea

same time, t

vered a frequ

 It is obvio

the resonan

e mode soug

uired in cer

the chirp sig

RIMENTAL SE

ferent partial c

performed t

xplanation. A

quencies of 

al chirp was 

the trailing e

uency band 

usly necessar

nce. The fre

ht or the con

tain cases t

gnals for each

ET-UP. METH

cavity lengths

to determine

As commen

the profile 

 sent to the

edge patch m

of 240 Hz 

ry to locate 

equency ran

nditions in t

to identify t

h flow condi

HODOLOGY A

 (above) and s

e the natural

nted in the 

was perform

e leading ed

measured the

with a cons

the unknow

nge excited 

he test sectio

the natural 

ition are liste

AND NUMERI

supercavitatio

frequencies 

preliminary

med by mea

dge patch to

response of 

stant frequen

wn frequency 

in each chi

on, and sever

frequency. T

ed in Tables 8

CAL MODEL

P

on (below). 

during this 

y tests, the 

ans of PZT 

o excite the 

f the profile. 

ncy increase 

within this 

irp differed 

ral different 

The ranges 

8.1 and 8.2. 

Page 54 



PART II: EXPERIMENTAL SET-UP. METHODOLOGY AND NUMERICAL MODEL 
 

 Page 55 

 

It should be mentioned that the voltage level input was also varied depending on the 

noise conditions of the test section. 

Hz Air Water 

f1 140-380 0-240 

f2 880-1120 490-730 

f3 1500-1740 760-1000

Table 8.1 - Starting and ending chirp frequencies for tests with air and water in the absence of 

cavitation. 

 Normalized cavity length (l/c) 

 0,02 0,054 0,114 0,318 0,442 >1 

f1 

(Hz) 
70-310 70-310 70-310 70-310 70-310 70-310 

f2 

(Hz) 
490-730 570-810 570-810 570-810 570-810 880-1120 

f3 

(Hz) 

760-

1000 

810-1050; 

1050-1290 

810-1050; 

1050-1290 

810-1050; 

1050-1290; 

1290-1530 

810-1050; 

1050-1290; 

1290-1530 

1500-1740 

Table 8.2 - Starting and ending chirp frequencies for tests in the presence of cavitation. 

VIII.I.II- Hydrofoil-lateral wall gap  

Due to the existence of a small lateral gap between the NACA0009 and the plexiglass 

lateral wall of the tunnel, a detailed analysis of its influence on the natural frequencies of 

the hydrofoil was conducted because the published literature on the effects of solid 

boundaries on the added mass clearly indicates their significance. 

Three different experimental conditions with the hydrofoil mounted in the tunnel test 

section were tested: 
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 Tunnel empty of water (Air condition). 

 Tunnel full of still water (Still water condition) 

 Tunnel with flowing water at 9 m/s (9 m/s condition).  

In the last case, cavitation did not take place because the pressure within the test section 

was kept sufficiently high. The hydrofoil incidence angle was held at -2º to minimize 

vortex-shedding noise. 

For all the cases, the lateral gap was increased from a minimum value of 0.12 mm to a 

maximum of 2.12 mm by means of different metallic plates of calibrated thickness, which 

were placed between the hydrofoil subjection system and the tunnel wall. In this way, the 

inside lateral gap was increased, and its influence could be studied. For each gap distance, 

modal analysis was performed following the same procedure explained in the preceding 

section. 

VIII.I.III- Partially submerged hydrofoil 

A reproduction of the work of Lindholm et al. (1965) was performed with the 

NACA0009 in place of rectangular beams. The idea behind this test was to study the 

effect of the relative location of the free surface of the water on the different modes of 

vibration of the hydrofoil. 

The profile was located perpendicular to the free surface of the water, and the tunnel was 

filled in stages. A modal analysis was performed from 0% to 100% submergence for each 

10% submergence variation. Additionally, because the profile is non-symmetric, the two 

different orientations were taken into account by analyzing the body with the leading 

edge or the trailing edge submerged, as observed in Figure 8.2. 
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the noise level inside the test section) for a 60-second duration at the particular 

frequencies for each point of the response acquisition. For each condition, the position of 

the LDV was adjusted to sweep the 26 different points along the surface of the profile, 

and the responses were acquired for each mode of vibration and flow condition. 

The ME'ScopeVES, which stands for Mechanical Engineering Oscilloscope - Visual 

Engineering Series, is a post-processing tool that allows the user to analyze and visually 

observe the vibration data. The software is capable of working with multiple time- or 

frequency-domain channels and displaying spatially defined data such as mode shapes.  

As a result, the user can animate and observe the actual motion of the structure under 

study. 

The shape of the profile was simplified to a 0.15 x 0.1 m plate and drawn in 

ME’ScopeVES (Figure 8.3). The 26 point locations were also imported together with the 

time data acquired by means of the LDV. An animation of the plate motion allowed 

identification of the mode shape and its characteristics. 

VIII.I.V- Pressure distribution on the hydrofoil 

This experiment consisted of a systematic modal analysis of the hydrofoil under different 

pressure distributions in a non-cavitating flow. Four different incidence angles and eight 

different flow velocities were tested. All of the studied scenarios are summarized in Table 

8.3. 
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Incidence angle Flow velocity 

-1º 

-2º 

-5º 

-7º 

-10º 

0, 5, 7, 10, 12, 15, 18, 20 m/s 

0, 5, 7, 10, 12, 15, 18, 20 m/s 

0, 5, 7, 10, 12, 15, 18 m/s 

0, 5, 7, 10, 12, 15 m/s 

0, 5, 7, 10, 12 m/s 

Table 8.3 - Experimentally tested scenarios for the pressure distribution study. 

To avoid cavitation in any of the scenarios, the test section pressure was increased to 5 bar 

and maintained as a constant during all of the test cases. 

VIII.II- Post-processing of measured signals for natural frequency extraction 

Most of the experimental tests explained in the previous section are based on a modal 

analysis from which one expects to extract the natural frequencies of the structure under 

all of the different conditions. The identification of the hydrofoil natural frequencies from 

the measured responses was performed using two different signal-processing methods. 

These techniques should be capable of addressing the inherently transient nature of the 

excitation signal and the induced structural response. Both methods consisted of 

identifying the excitation frequency that provoked the maximum amplitude of the 

hydrofoil response resulting from the resonance with a natural frequency. Interested 

readers can find a brief description of the signal processing techniques in Appendix B, 

which gives the theoretical basis of the following explanation. 

With respect to our experience in the present work, under conditions with a still fluid, the 

response time signal alone is sufficient to find the maximum amplitude and 
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To prevent misinterpretation of the graphs, a mathematical tool was applied to 

approximate the real signal with a function. Several curve-fitting options were tested. In 

particular, an equally weighted third-degree spline showed good results for minimizing 

the residuals, as calculated by equation (8.1): 

Residue = 1L ෍ w୩ · [(x୩ − x୩ᇱ )ଶ + (y୩ − y୩ᇱ )ଶ]୐ିଵ
୩ୀ଴  (8.1) 

where L is the length of the signal, wk is the kth element of the weight, (xk, yk) is the signal 

kth pair of elements and (xk’, yk’) are the spline kth pair of elements. This particular routine 

is shown in Appendix C. As an example, Figure 8.6 shows several output plots generated 

by this routine with the third-degree spline approximation overlapped in red. 
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The Ansys software is based on the finite element method (FEM) of problem resolution 

(Gupta and Meek 1996). This method, which is a rather effective approach to complex 

engineering problems, is based on the approximation of a continuous domain by 

discretization into simpler elements with specific properties. These elements are 

connected by nodes, which determine the size of the system that must be solved. 

Additionally, the required boundary conditions must be defined and applied. This 

method approximates differential equations (continuous problem) to an algebraic system 

of equations (discrete problem) delimited by the number of nodes of the model. 

Zienkiewicz and Taylor (2000) applied this methodology to a vast number of examples in 

different fields with good results. 

Our particular case, the FSI problem, is defined as a coupled problem involving both the 

structural and fluid mechanics fields. Ansys allows us to model coupled problems, but 

several assumptions and approximations should be clearly explained in advance. Under 

the Acoustics field, as commented in previous sections, the structural dynamics equation 

must be considered together with the Navier-Stokes equations (White 1994). The fluid 

domain requires several assumptions that simplify the analysis: 

I- The fluid is compressible (due to pressure variations). 

II- The fluid is inviscid. 

III- There is no mean fluid flow. 

IV- The mean density and pressure are uniform throughout the fluid. 

In this way, we obtain the acoustic wave equation: 

1ܿଶ ߲ଶ߲ܲݐଶ − ∇ଶܲ = 0         (9.1) 

where c is the speed of sound in the fluid, P is the pressure and t is the time. This 

equation and the structural dynamic equation (equation 2.14) constitute the FSI system 
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solved by Ansys. Because the fluid is modeled as inviscid, a dissipation term is added to 

account for the dissipation of energy due to the damping effect in the fluid boundary. 

Next, the structural dynamic equation (2.14) and equation (8.1) are discretized, leading to 

a FSI system such as the following: 

൤ ௘ܯ ௙௦ܯ0 ௘௣൨ܯ ൤ݑሷ ௘ܲሷ௘ ൨ + ൤ܥ௘ 00 ௘௣൨ܥ ൤ݑሶ ௘ܲሶ௘ ൨ + ൤ܭ௘ 00 ௘௣൨ܭ ቂݑ௘ܲ௘ ቃ = ቂܨ௘0 ቃ      (9.2) 

where Me, Ce and Ke are the mass, damping and stiffness matrices, respectively, and Fe is 

the applied load vector. The super-index p denotes the fluid matrices, and the unknown 

variables are the displacement (ue) and pressure (Pe). 

The cases under study via numerical simulation are those involving still water, i.e., the 

lateral gap and the partially submerged hydrofoil tests. A numerical approach should 

allow us to analyze the effects of those boundaries on the added mass of a structure and 

therefore on the natural frequencies of the profile. If sufficiently accurate, the comparison 

of both results (numerical and experimental) should be able to extend the validity of the 

simulation to similar boundary conditions not yet experimentally tested. 

IX.II- Model and mesh 

Chronologically, the model setup was first performed to assure the validity of the results, 

and two different cases were subsequently simulated: 

a) Lateral gap analysis. 

b) Partially submerged hydrofoil. 

IX.II.I- Model set-up 

A NACA0009 profile of the same dimensions was modeled within the Ansys 

environment (Figure 9.1). The mesh, which determines the number of nodes of the 

model and hence the size of the system (equation 9.2), is an important parameter in any 
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Due to the mechanization of certain parts of the NACA0009 (i.e., locations of the PZT 

patches, drill holes to pass the wires and other sensors), the average structural properties 

of the material were modified. To force the results to converge to the experimental 

frequencies, the NACA0009 material was slightly modified by tuning its density, Young’s 

Modulus and Poisson coefficient. 

The selected structural elements were the SOLID45 type, which is an 8-node 3D 

element for solid structures with three degrees of freedom (displacements in the x, y and z 

directions). Different material properties are available, but in this particular study of 

modal analysis, only the density, the Young’s modulus and the Poisson coefficient were 

required. Moreover, the element SOLID45 is able to admit pressure loads. 

The selected fluid elements were the FLUID30 type, which is an 8-node 3D acoustic 

fluid element for modeling the fluid medium with four degrees of freedom (displacements 

in the x, y and z directions and pressure). For modal analysis, only the density and the 

sonic velocity are required as material properties to obtain equation (9.1). In addition, a 

special option is available to identify those fluid elements in contact with structural 

elements (interphase), producing an unsymmetrical element matrix. Surface loads (FSI) 

must also be applied at the interphase. 

IX.II.II- Lateral gap analysis 

The initial model dimensions for this case were 0.15012 x 0.15 x 0.13 m, and the definite 

mesh was composed of 53640 SOLID45 elements and 610406 FLUID30 elements. 

Experimentally, the lateral gap was increased from 0.12 mm to 2.12 mm by moving the 

profile backwards. In Ansys, this procedure was simulated by increasing the fluid volume 

in the gap dimension from 0.15012 to 0.15212 m. Because the mesh sensibility in the gap 

dimension had been previously studied, each increase of the gap distance was modeled as 
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indicated in Table 9.2 by increasing the number of element layers according to the 

distance. 

Gap distance (mm) Number of elements in gap direction 

0.12 1 

0.22 1 

0.32 2 

0.42 3 

0.62 5 

0.72 6 

0.82 6 

1.12 9 

2.12 17 

Table 9.2 - Gap distances and fluid elements used to model them. 

IX.II.III- Partially submerged hydrofoil 

The fluid volume dimensions and mesh are the same as the initial conditions of the gap 

analysis. 

Once the mesh had been verified, the numerical approach to simulating the step-by-step 

filling of the tunnel test section consisted of changing the material properties for a certain 

number of elements depending on the submergence level of the hydrofoil. In other words, 

if the profile was partially submerged in water, a modal analysis in Ansys was performed 
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PART III: RESULTS AND DISCUSSIONS 

This part is devoted to an exposition and discussion of the experimental and numerical 

results. Because these topics are all deeply related, the analysis is best performed in 

conjunction. Therefore, we first present the main results and postpone their discussion 

and comparison to the last chapter of the present section. 

Experiments 

First, the measurements and visualization of all mode shapes are presented to verify their 

similarity among the different tested scenarios. Next, the main results are given for the 

added mass effect under cavitation conditions. Additionally, results for certain other 

factors that may influence the main test (i.e., the lateral gap distance and flow condition) 

are also presented. 

X.I-Effects of experimental conditions on mode shapes 

The first three hydrofoil mode shapes are presented in 3D graphs in which the geometry 

of the hydrofoil is simplified to a cantilevered plate. In these plots, the yellow color 

denotes maximum displacement and the dark blue color denotes the minimum. Each 

mode shape is plotted separately under the different conditions for better comparison. 

Moreover, two images indicate the maximum deflection of each studied scenario. The 

corresponding numerical values (relative amplitude magnitude and phase) are 

summarized in Tables E.1, E.2, E.3 and E.4 of Appendix E. 

First bending mode (f1) 

The first bending mode is shown in Figure 10.1 under the four different tested 

conditions: Air (top two images), Still water (the following two images), Flowing 

conditions (next two images) and Cavitating conditions (bottom two images). 
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Consequently, in general terms, the mode shapes are considered equivalent in all the 

experimented conditions, and therefore, the results of the various tests can be compared 

in terms of natural frequencies. 

X.II-Added mass under cavitation conditions  

The results of the natural frequency behavior under a cavitating flow are presented in this 

chapter. First, it is important to recall the added mass coefficient, CM, obtained with 

equation (2.25). This coefficient allows us to represent the variation of the added mass 

due to the effects of other various parameters. The numerical values are summarized in 

Tables E.5 and E.6 of Appendix E. 

To simplify the later discussion, several relationships are shown. Additionally, the natural 

frequencies of the hydrofoil under static conditions (“Air”, “Still water” and “Half wetted”) 

and under non-cavitating flows are also given in Table 10.1 for use as reference values 

during the comparison. It must be mentioned that the “Half wetted” condition refers to a 

hydrofoil located horizontally in a half-filled tunnel test section. In this situation, the free 

surface level reaches the symmetric plane of the profile. 

It must be taken into account that the reference frequency, fvacuum, corresponds to the “Air” 

values for all modes. Among all the cases presented in the table, the highest added mass 

effect is found for the first bending mode, and the lowest is found for the first torsion 

mode. 
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σ 

1st bending 1st torsion 2nd bending 

f1 [Hz] CM1 f2 [Hz] CM2 f3 [Hz] CM3 

Air  270.2 0.00 1018.6 0.00 1671.0 0.00 

Half Wetted  163.0 1.75 755.0 0.82 1113.6 1.25 

Still Water  130.2 3.31 614.8 1.74 886.0 2.56 

7 m/s, 1 3.05 130.6 3.28 621.1 1.69 895.8 2.48 

7 m/s, 2 3.03 130.0 3.32 621.1 1.69 883.2 2.58 

14 m/s, 1 2.48 134.4 3.04 629.3 1.62 913.0 2.35 

14 m/s, 2 2.48 132.0 3.19 634.2 1.58 911.6 2.36 

Table 10.1- Natural frequencies and CM values of the hydrofoil in air, partially (half wetted) and 

completely submerged in still water, and with no cavitation flows at 7 and 14 m/s for incidence 

angles of 1º and 2º  (in the latter cases the sigma is also indicated). 

The added mass coefficients under cavitation conditions have been correlated with the 

non-dimensional parameter σ/2α in Figure 10.7. As stated previously, the highest added 

mass values were found for the first bending mode, and the lowest were found for the first 

torsion mode. This general trend is maintained between 1º and 2º, where we can clearly 

distinguish between two regions in the profile. For sufficiently high values of σ/2α 

(typically >0.3), the CM is nearly constant. Meanwhile, for σ/2α values lower than 0.3, the 

CM rapidly decreases. 
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As observed, no clear trend can be identified among the different modes. Only the 

torsion mode appears to show a decreasing profile with the flow velocity for all incidence 

angles under study. However, the large dispersion of these results complicates the 

analysis. 

Discussion and comparison 

This chapter discusses the results presented in chapter X to establish a link between them 

to simplify the comparison and analysis.  The effects of cavitation on the added mass and 

the main influencing factors will be outlined from this analysis. 

XI.I-Interpretation of added mass effects under cavitation conditions 

The experimental added mass coefficients obtained for the three modes of vibration 

under conditions of different attached cavities and supercavities (see Table 10.1 and 

Figures 10.7 and 10.9) prove that the presence of a two-phase flow around the hydrofoil 

has a significant effect on its dynamic response. Nevertheless, from the observation of the 

CM trends as a function of σ/2α and/or CSR, it can be concluded that the effects are not 

fully explained only by these variables. 

The added mass is a function of the fluid density and the amplitude and direction of its 

vibration, among other parameters (Blevins 1979, equation 2.44), which means that it is a 

function of the fluid density and the mode shape of vibration under study. In our 

particular test conditions, the relevance of the mode shape is expected to increase because 

the presence of the cavity acts partially over the structure surfaces. To study this 

assumption, the experiments of Lindholm et al. (1965) with partially submerged 

rectangular plates in still fluids could act as a starting point due to their strong analogy 

with the case of a partial cavity attached to a surface. Therefore, we decided to study these 

effects with an analogous experiment and a numerical simulation. 
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Partially submerged hydrofoil 

In this section, the results of step-by-step submergence of the profile are presented. 

Because the profile is not symmetric, a comparison of the hydrofoil is also given 

depending on the orientation. 

The added mass coefficient is plotted against the submergence percentage in Figures 11.1 

and 11.2. In the first figure, the profile is oriented with the leading edge (LE) towards the 

bottom of the tunnel test section, and in the latter, with the trailing edge (TE) towards 

the bottom of the tunnel test section. 

It is clear that as the hydrofoil is submerged, the added mass increases for all modes, but 

the evolution differs between the bending and torsion modes. For bending modes, a 

growing trend is observed for any submergence level whereas for the torsion mode, the 

added mass displays a nearly constant zone between 40% and 60%. In addition, the 

equations that best fit the experimental results are presented for both bending modes and 

orientations with high correlation, as observed in Table 11.1 and 11.2. 
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Similarly, it would be expected that for bending modes, the variation of CM is basically 

constant throughout the process due to the relative position of the hydrofoil. Surprisingly, 

the effects on the added mass are better captured with a second-order polynomial law (see 

Tables 11.1 and 11.2). As observed in Figures 11.1 and 11.2, for low submergence levels, 

the CM increase is quite weak whereas it is far steeper for high levels. 

For the numerical model in general, the trends are well simulated even if f3 is 

overestimated (Figures 11.4 and 11.5). In particular, the torsion mode shows its 

characteristic shape, and the effect of the orientation of the profile is correctly solved 

(Figure 11.6).  

The well-known fact that the added mass effect on a submerged structure depends on the 

particular mode shape that is excited, as proved by Yadykin et al. (2003), suggests that the 

hydrofoil deformation plays an important role in the added mass effect as we can also 

deduce from these results. Therefore, if cavitation occurs, it is not only the extent of 

surface covered by cavitation, accounted by the CSR, but also its location relative to the 

hydrofoil deformations that must be considered. Moreover, the mean density of the fluid 

inside the cavity in contact with the deforming structure should be also relevant. 

Consequently, the so-called entrained mass (EM) should be computed to better 

understand how the flow density and its location relative to the hydrofoil displacement 

influence the added mass effect. 

XI.II-Entrained mass (EM) 

The EM௜ is defined as the total fluid mass, ݉௜, displaced by the hydrofoil motion relative 

to the maximum normal surface displacement, ∆ ୫ܻୟ୶௜ , and is calculated as shown in 

equation (11.1) where j is the number of considered flow regions and i indicates the 

particular mode of vibration. This equation takes into account the mean density, ̅ߩ௝, and 
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the mean displacement of the contact surface, ݀̅௝, of each type of region that can be 

obtained after discretization of the fluid domain and the calculation of the local 

displacements at each node by equation (11.2), where N is the total number of nodes. 

EM௜ = ݉௜∆ ୫ܻୟ୶௜ = ෍ ௝൫݀̅௝ߩ̅ ∙ AREA௝൯௝    (11.1) 
݀̅௝ = ෍ |∆ ௞ܻ|ܰ|∆ ୫ܻୟ୶௜|ே

௞       (11.2) 
From the cavitation top views (Figure 11.7), the area covered by the whole sheet cavity 

can be adequately identified and delimited. However, two different cavity morphologies 

can be distinguished depending on the visual aspect. For instance, on the top view in 

Figure 11.7, the cavity appears to be quite transparent on both lateral sides while looking 

foamier in the central region. Increase transparency indicates a high void ratio that could 

be due to the 3D effects of the tunnel test section lateral walls. These effects suggest that 

the lateral sides of the cavity closure are not parallel to the spanwise direction, but 

oblique. Consequently, the reentrant jet direction is inclined towards the center of the 

leading edge and its component that is parallel to the flow is lower.  

Under such conditions, the cavity behavior is expected to exhibit a more stable behavior, 

and the amount of vapor phase is also increased (Franc and Michel, 2004). Therefore, 

these zones can be characterized with a higher void ratio. The central area where the 

cavity appears foamy is composed of the shedding of a mixture of small cavitating 

vortices/bubbles with water. This zone presents a more heterogeneous flow and a lower 

void ratio. The portion of the hydrofoil surface downstream of the closure region has 

been considered to be full of pure water, although some shed vortices can still be observed 
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averaged and normalized by the maximum normal displacement found for the total 

hydrofoil surface (Equation 11.2), which avoids the amplitude differences between the air 

and cavitating conditions. Finally, equation (11.1) was developed to calculate the 

approximate entrained mass EM୧ by considering the so-called “trans” (for transparent), 

“foamy” and “water” regions. The first two terms correspond to the cavity and the last 

corresponds to the flow outside the cavity. 

EM௜ = ௜ߩ̅ൣ · ݀̅௜ · AREA൧୲୰ୟ୬ୱ + ௜ߩ̅ൣ · ݀̅௜ · AREA൧୤୭ୟ୫୷+ ௜ߩ̅ൣ · ݀̅௜ · AREA൧୵ୟ୲ୣ୰        (11.3) 
Finally, only the results for f2 and f3 have been considered in the final discussion of the 

correlation between CM and EM shown in Figure 11.9. During the tests, it was observed 

that during f1 identification, the hydrofoil tip touched the lateral wall of the test section 

under certain flow conditions. 

XI.III-Final considerations 

From the results and based on the topics already discussed, the final considerations are 

separately examined in this section. 

XI.III.I-Entrained mass 

As previously explained, the added mass depends on several parameters. It was expected 

that the correlations of the added mass coefficients with σ/2α and CSR shown in Figures 

10.7 and 10.9 could not explain the phenomenon in detail. It seems reasonable that as the 

cavity increases (CSR), the added mass is decreased. The variation in the added mass is 

unknown because this process must take into account the mode shape, the location of the 

cavity and its inner morphology. The EM parameter explained previously attempts to 

take all of these variables into account by assuming an average density of the sheet formed 
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 Equation 

1º f2 ܥெଶ = ܯܧ0.427 − 0.0799
1º f3 ܥெଷ = ܯܧ0.448 − 0.1412
2º f2 ܥெଶ = ܯܧ0.3952 − 0.0574
2º f3 ܥெଷ = ܯܧ0.4317 − 0.037

Averaged ܥெ௜ = ܯܧ0.4255 − 0.0789
Table 11.3- CM regressions for different mode shapes and the averaged CM regression. 

It seems reasonable that if the added mass is the inertia of the fluid that the structure has 

to accelerate during its vibration motion; one should know the density properties of such 

fluid. It makes no difference when dealing with a biphasic fluid. As stated by Blevins 

(1979) that the added mass is not the mass of the fluid entrained by the motion of the submerged 

body which is true, we can now add: but they are lineally related. 

Observing Figures 10.7 and 10.9 and comparing f1 and f3, the added mass is greater for 

lower modes, as previously stated by Yadykin et al. (2003). This result is consistent with 

the EM approach because the lower the mode, the higher the total fluid displacement. 

A surprising result is the low value of the added mass for the supercavitation case for all 

mode shapes, assuming that most of the pressure side of the hydrofoil remains in contact 

with liquid phase water. In fact, compared with its static analogous situation (Half 

wetted), a reduction of 90% occurs for f1, 72% for f2 and 75% for f3. Such significant 

differences may be explained by the presence of surface waves in the static case. These 

surface waves observed during the experimental tests should be seen as an extra added 
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mass. Assuming that the work performed by the structure is transformed into kinematic 

energy within the fluid, potential energy also exists in the presence of surface waves, 

which plays a role in adding additional inertia to the balance. This observation is a 

possible reason why the increase in the natural frequencies of this case falls below the 

expected value of   
௙౗౟౨ି௙౭౗౪౛౨ଶ . 

XI.III.II- Gap effect 

The effect of the lateral gap has been studied to analyze its behavior and detect any 

possible effect that could be masked in the results of the main test. The lateral gap, as 

shown in Figure 10.10, has no significant effect in air. However, under both still and 

flowing water conditions, it has a measurable effect on the natural frequencies of the 

hydrofoil (Figures 10.11 and 10.12). This observation can be explained from an energetic 

point of view; the confined fluid within the gap experiences a greater increase in its 

velocity (kinematic energy) with respect to an unbounded fluid due to the presence of the 

wall, and consequently, the CM also increases. As the solid-wall distance is increased, the 

situation tends progressively to the unbounded case. 

The acceleration of the fluid in the gap is obviously dependent on the relative movement 

of the structure with respect to the wall (mode-shape-dependent). In our particular 

situation, the effects of the gap were expected to be low because the movement of the 

hydrofoil is positioned essentially parallel to the wall for all modes under study. However, 

we can observe from Figures 10.11 and 10.12 that the bending modes are affected to a 

greater extent than the torsion modes due to the higher fluid accelerations induced by the 

motion of the hydrofoil tip. This result is also highlighted by Figures 10.17 and 10.18 in 

which the slope of the CM profile is clearly steeper for the bending mode.  
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The CM values under flow conditions are slightly lower than those in static conditions 

(Figures 10.13, 10.14 and 10.15). This result might be explained by the fact that within 

the gap, the flow velocity could produce a local depression, which may act as an axial load 

over the hydrofoil and increase its natural frequencies (Parker and Mole Jr., 1991 and 

Bukaian, 1990). It was verified during the experiments that the test section walls could be 

deformed by the operating pressure; for this reason, in this particular study, the pressure 

was maintained as a constant to avoid including additional uncertainties. 

If we assume that the natural frequencies of the hydrofoil with a 2.1-mm gap are the 

same as those of an unbounded hydrofoil, the presence of the solid wall at lower distances 

increases the added mass for each mode shape, as observed in Table 11.4, in which the 

CM wall effect denotes the increase of the added mass from the unbounded case. It must be 

mentioned that the unbounded CM1 value under flow conditions seems anomalous 

because it is too low. This anomaly results in a greater increase of CM via the effect of the 

wall.  

In summary, it can be concluded that due to the gap effect, the actual CM-EM profiles of 

Figure 11.9 for an unbounded hydrofoil would appear as two parallel lines below those 

represented because the gap effect might also exist during the cavitation conditions.  
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 f1 f2 f3 

CM 

unbounded

CM 

wall 

effect 

ΔCM 

(%) 

CM 

unbounded

CM 

wall 

effect

ΔCM 

(%) 

CM 

unbounded 

CM 

wall 

effect 

ΔCM 

(%) 

Still 

water 

3.24 0.45 13.9 1.63 0.1 6.1 2.38 0.2 8.4 

9 

m/s 

2.94 0.71 24.1 1.61 0.09 5.6 2.36 0.14 5.9 

Table 11.4- CM’s for unbounded hydrofoil and the effect of the lateral wall on it. 

The effect of the gap has not been experimentally tested under cavitating conditions. 

Nevertheless, no significant differences from the observed effects under noncavitating 

conditions are expected unless the cavitation also takes place within the gap. This 

situation may greatly modify the results because the effect of the gap disappears when 

filled with gas, as shown in Figure 10.10. 

XI.III.III- Pressure distribution effect 

Because cavitation not only changes the flow field in terms of the phases but also changes 

the pressure distribution around the structure, we wanted to separate both phenomena 

and determine if the effects observed on the main test were due to the former effect, the 

latter effect or a combination of both effects. Moreover, the slight increase in the natural 

frequencies observed between the Still water and non-cavitating conditions of Table 10.1 

attracted our attention. 
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As observed in the behavior of the CM plotted against the mean flow velocity and 

incidence angle presented in Figures 10.19, 10.20 and 10.21, it is difficult to identify a 

general trend. In Figure 10.20, it appears that an increase of velocity induces a decrease of 

the CM. However, the dispersion of the results makes it difficult to verify this observation. 

In contrast, the results are undetermined for both bending modes. 

When the flow velocity is increased, both an increase in the added stiffness (Reese 2010) 

and in the damping (Seeley et al. 2012) could be expected. These two different 

phenomena produce opposite effects on the natural frequencies of a body, as deduced 

from equations 2.8 and 2.3, respectively. However, Seeley et al. (2012) previously stated 

that despite the linear increase of the damping ratio, this situation produced no 

substantial effect on the natural frequencies. Regarding the increase of stiffness, it has to 

be taken into account that bending and torsional stiffness are different properties of a 

body and maybe, due to the position of the hydrofoil with respect to the flow, the 

torsional stiffness is more affected and hence, we can observe a relationship. For instance, 

during the mode shape visualization, we were surprised to obtain higher amplitudes for f2 

under flow conditions than in still water. This phenomenon may indicate that the flow 

could vary the torsional stiffness of the hydrofoil (increasing it, in this case) and therefore, 

an effect would be observed in the CM vs. velocity plot shown in Figure 10.20. 
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PART IV: CONCLUSIONS 

In this part, the main conclusions of this study are discussed. Additionally, future research 

is also proposed to highlight the aspects of this work that should be improved for its 

logical continuation. 

Specific Conclusions 

Selected important conclusions can be drawn with respect to different issues that have 

appeared in the present work.   

XII.I-Excitation system 

The PZT patch technology has demonstrated reliable performance as both an excitation 

system and as a sensor device. Their geometry, physical properties and ease of installation 

make these devices suitable for an onboard solution. Although the excitation produced by 

the patches was sufficient for the planned tests, a more energetic solution may have been 

a better choice to produce cleaner results under the inherently noisy environment of the 

experiments with cavitation. 

XII.II-Experiments 

XII.II.I-Effects of cavitation on the added mass 

The effects of sheet cavitation and supercavitation on the added mass of a hydrofoil have 

been demonstrated. By measuring the dynamic response, the current work has shown 

how the natural frequencies of the structure are increased when the cavity size is enlarged. 

Moreover, a linear relationship has been found between the added mass and the mass of 

fluid entrained by the hydrofoil motion under vibration.  
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XII.II.II-Effects of the flow conditions on the structural mode shapes 

Mode shape identification, visualization and comparison have been performed under 

different flow conditions. The results show slight differences, primarily for the torsion 

and the second bending modes. These differences are related to the position of the nodal 

lines for the Air, Still water and Flowing conditions without cavitation. However, when 

an attached cavity of approximately 50% of the chord is present, the f3 animation 

resembled a bending-torsion coupled mode. Nevertheless, the expected bending 

movement still prevailed. 

XII.II.III-Effects of boundary conditions on the added mass 

The effect of a near solid wall on the added mass has been proven. The natural 

frequencies of the hydrofoil decreased due to the proximity of the lateral wall. In this 

context, we could also observe how this decrement depended on the mode shape and 

hence on the direction of vibration. Those modes that induced acceleration components 

in the direction perpendicular to the wall (the bending modes, in this case) experienced a 

steeper decrement in their natural frequencies. 

XII.II.IV-Pressure distribution effect on the added mass 

The effects of pressure distribution on the added mass are not yet clear. The proposed 

tests for this study could not clearly explain these results because they most likely involved 

other effects. However, because this variable is expected to influence the stiffness of the 

body and consequently the added mass coefficient within the velocity range under study, 

additional effort should be focused this topic in the future. 
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XII.III-Numerical simulation 

The model developed with Ansys software has demonstrated an ability to calculate the 

natural frequencies of a hydrofoil submerged in still water. Moreover, it was also able to 

capture the effects of two different boundary conditions: 

 A near solid wall 

 A free surface in a partially submerged hydrofoil 

For the first case, the proposed model showed good agreement in terms of the added 

mass trend but significantly under-predicted the second bending mode results. 

For the second case, an experimental test was also performed to reproduce the work of 

Lindholm et al. (1965) but with a partially submerged hydrofoil. In general terms, the 

numerical-experimental comparison showed good agreement. Nevertheless, for deep 

submergence levels, the second bending mode accuracy decays. In this case, such 

differences seem to be provoked by experimental uncertainties, and the numerical values 

appear more reliable. 

XII.IV-Summary results 

The most relevant experimental results are quantified in this section. 

When the profile is submerged in still water, the maximum CM value for the hydrofoil is 

3.31 for f1, 1.74 for f2 and 2.56 for f3. As the cavitation increases, the CM decreases. The 

reduction of CM (which is also mode-dependent) can reach up to 95% for f1, 87% for f2 

and 88% for f3 under supercavitation conditions. However, for the half-wetted case in 

static flow conditions, the reduction in terms of CM is 47% for f1, 53% for f2 and 51% for 

f3. 

The linear regression that predicts the CM in terms of the entrained mass of fluid under 

cavitation conditions for any mode shape of vibration results in: 
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ெ௜ܥ   = ௜ܯܧ0.4255 − 0.0789 

The presence of a nearby solid wall significantly increases the added mass of the structure. 

For a hydrofoil-wall distance of 0.12 mm, the increase of CM ranges from 5.6% for the 

torsion mode to 13.9% for the first bending mode, also depending on the flow conditions. 

Prospective 

With respect to the obtained results, several issues could be improved to better 

characterize the different phenomena investigated in the present work. Additionally, a 

proposal for a future project is also outlined to continue this research line. 

XIII.I-Improvements 

a) Measure the density of the cavity with precision by means of a densitometer. 

b) Measure the actual displacements of the entire hydrofoil surface by means of a 

scanning vibrometer with a sufficient density of measuring points. 

c) Measure the pressure on the hydrofoil surface. 

d) Perform a two-way coupled numerical simulation with a CFD tool. 

e) Perform a similar study on a 2D hydrofoil clamped on both sides (no gap) 

The density of a cavity varies significantly depending on its type, the flow conditions and 

the structure to which it is attached. Moreover, the local density within a cavity can adopt 

a wide range of values, according to Stutz and Reboud (1997), Stutz and Legoupil (2003) 

and Coutier-Delgosha et al. (2006). Although it takes into account the different regions 

within the cavity, the approximation performed in the present work uses averaged values, 

which could result in a lack of accuracy. The EM concept requires a well-defined inner 

structure of the cavity, which is only possible if the local density is known. 

In the present work, the (relative) displacements of the hydrofoil surface have been 

obtained by means of the numerical model. The difficulty of measuring the actual 
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hydrofoil displacements under cavitating flows has made it unfeasible to produce a 

sufficiently dense net of measuring points that could be assigned to the different cavity 

regions. In this context, the use of a multipoint or scanning LDV could be of major 

interest to obtain the absolute displacement magnitudes of a grid of points. The EM (in 

kg) could be subsequently calculated. 

The consequences of the flow velocity test for different incidence angles have not been 

determined because the test involves two phenomena that produce contrary effects from a 

frequency point of view. From one side, the damping is increased with the velocity, which 

should decrease the natural frequencies of the structure. On the other side, the forces that 

load the profile can increase its stiffness (bending and torsion) and also increase its natural 

frequencies. If the pressure distribution were known by means of pressure transducers 

located onboard, these values could be integrated, and the forces on the profile would be 

obtained. Structural theory would allow us to calculate the different stiffnesses (transverse 

and torsional), and hence the natural frequency variations. Moreover, an accurate pressure 

distribution could assist in proper validation of a future CFD simulation under cavitation 

conditions. 

The basic experimental work presented in this thesis on cavitation should be 

complemented with an effective numerical model. A more detailed model could be 

validated with the results presented in this document. A two-way coupled numerical 

simulation would allow us to approach the problem from an overall perspective. The 

procedure would first validate the cavitation simulation to obtain reliable loads on the 

structure. Next, these loads would be transferred to the mechanics module, which would 

calculate the nodal displacements. Such structural displacements would be sent to the 

CFD tool to recalculate the flow field and restart the process once again, until a solution 

is found by convergence. This numerical model could be highly useful when designing a 

structure that may suffer from cavitation. 
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The effects of the gap on the natural frequencies of the hydrofoil are measurable both 

under still and flowing water conditions. Problems may arise when the cavitation takes 

place within the gap. Under these circumstances, the increase of the added mass that the 

presence of the wall produces is no longer valid, and the slope of the CM-EM is expected 

to change. Because the presence of cavitation within the gap is difficult to detect and 

measure, an analogous study is proposed with a 2D hydrofoil clamped on both sides of 

the cavitation tunnel to avoid these problems. 

XIII.II- Future work proposal 

One of the main objectives of the present work was to develop an excitation and sensing 

system which could be used onboard and to validate an experimental procedure that allow 

us identifying the natural frequencies of a structure under different flow conditions-

cavitation included-. Since the system performed reliably, the extrapolation to more 

complex structures seems logical. Therefore, the use of PZT technology on a whole 

machine or on a more complex system appears as the next step forward in this research 

line. 

Additionally, with the obtained results, a direct extrapolation is proposed that could be of 

paramount interest for propeller or pump designers. If we expect a structure to suffer from 

sheet cavitation and seek to predict any potential resonance problems, we may need to 

identify these new natural frequencies. Therefore, taking the mode shapes of the designed 

structure as a starting point (obtained experimentally or by means of a FEM tool) and 

using a CFD simulation of the cavity (which could solve the composition in terms of void 

ratio), we could compute the EM. Once the EM is calculated, the new natural 

frequencies of the structure could be predicted using the relationship obtained from the 

current results using CM. 
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Where E stands for the Young’s modulus, I the area moment of inertia of cross section of 

the beam, A the cross-sectional area and ߩ the mass density. 

The boundary conditions, clamped at x=0 and free at x=l, are expressed as: 

ݔ = ,0)ݒ     0 (ݐ = .ܣ)        0 ݔ߲ݒ߲ (2 (0, (ݐ = .ܣ)       0 3) 

ݔ = ܫܧ     ݈ ߲ଶݔ߲ݒଶ (݈, (ݐ = .ܣ)     0 ݔ߲߲ (4 ቆܫܧ ߲ଶݔ߲ݒଶቇቤ(௟,௧) = .ܣ)     0 5) 

 

In order to obtain the natural frequencies and mode shapes of a uniform beam it is 

necessary to use a modal analysis approach. Let us study the free vibration case expressed 

by equation (A.6). 

,ݔ)݂ (ݐ = .ܣ)    0 6) 

 The partial differential equation is transformed to apply the method of separation of 

variables: 

,ݔ)ݒ (ݐ = .ܣ)     (ݐ)ܶ(ݔ)ܸ 7) 

Where ܸ(ݔ) and ܶ(ݐ) are two generic single variable functions. 

Substituting equations (A.6) and (A.7) into equation (A.1) we obtain: 

ܣߩܫܧ ݀ସܸ(ݔ)ܸ(ݔ)݀ݔସ = − ݀ଶܶ(ݐ)ܶ(ݐ)݀ݐଶ .ܣ)       8) 

Both terms of equation (A.7) depend on independent variables (x and t), therefore to 

accomplish the equation, it results in: 
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ܣߩܫܧ ݀ସܸ(ݔ)ܸ(ݔ)݀ݔସ = − ݀ଶܶ(ݐ)ܶ(ݐ)݀ݐଶ = ܽ = ߱ଶ     (ܣ. 9) 

Where a is a positive constant. Equation (A.8) is, itself, two different equations: 

ܣߩܫܧ ݀ସܸ(ݔ)݀ݔସ − ߱ଶܸ(ݔ) = .ܣ)   0 10) 

݀ଶܶ(ݐ)݀ݐଶ + ߱ଶܶ(ݐ) = .ܣ)    0 11) 

If we call:  

ସߚ = ߱ଶܣߩܫܧ .ܣ)        12) 

Assuming an exponential solution for equation (A.10) and substituting it, we can find the 

roots: 

ଵ,ଶݏ = ଷ,ସݏ               ߚ± = .ܣ)      ߚ݅± 13) 

Therefore, the assumed exponential equation solution can now be expressed as: 

(ݔ)ܸ = ଵܥ cos ݔߚ + ଶܥ sin ݔߚ + ଷܥ cosh ݔߚ + ସܥ sinh ݔߚ .ܣ)      14) 

Where Ci are constants.  As previously stated, V(x) are the mode shapes of vibration. The 

natural frequencies of the beam are obtained from: 

߱ = .ܣ)     ܣߩܫܧଶඨߚ 15) 

As can be seen, the previous analytical development is generic, if we want to study the 

cantilever beam system, we have to apply the boundary conditions to equation (A.14) and 

solve the mode shapes. Solving equation (A.15) we obtain the natural frequencies. 
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Equations from (A.2), (A.3), (A.4) to (A.5) can be translated to the new variables as: 

ܸ(0) = .ܣ)   0 ݔܸ݀݀ (16 (0) = .ܣ)   0 17) ݀ଶܸ݀ݔଶ (݈) = .ܣ)   0 18) ݀ଷܸ݀ݔଷ (݈) = .ܣ)  0 19) 

Replacing equations (A.16) and (A.17) in equation (A.14) we obtain: 

ଵܥ = ଷܥ = .ܣ)    0 20) 

When replacing equations (A.18) and (A.19) in equation (A.14): 

cos ݈ߚ cosh ݈ߚ = .ܣ)   1− 21) 

In order to obtain a solution for equation (A.21) it is convenient to take into account 

different aspects of the functions involved. cosh is always positive and greater than 1 with 

a hyperbolic growing trend. So for a sufficient large value of βl, cosh  takes a really ݈ߚ

large value. In order to accomplish the equation (A.21) cos  has to be small and ݈ߚ

negative, which in fact means: 

௡݈~(2݊ߚ − 1) 2ߨ .ܣ)    22) 

The higher the values of the integer n, the more accurate equation (A.22) will be. 

Therefore the natural frequencies of a cantilever beam are expressed by equations (A.15) 

and (A.22): 

߱௡ = ቆ(2݊ − 1) 2ቇଶߨ ඨ ସܮܣߩܫܧ .ܣ)    23) 
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Notation: 

E=Young modulus 

I= Moment of inertia of beam about neutral axis 

It=Moment of inertia about the torsion axis 

ν= Poisson modulus ߩ= Beam’s density 

C= Cross section constant 

c/h 1 2 4 ∞ 

C 0.281 0.286 0.299 1/3 

Table A.2- Cross section constant as a function of thickness-to-width ratio. 
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Signal processing background 

For a more detailed theoretical background the reader is referenced to Bendat and Piersol 

(1971) and Oppenheim and Schafer (1989). 

The Fourier transform (ℱ) of a time signal x(t) is defined as: 

ℱ[(ݐ)ݔ] = ܺ(݂) = න ஶݐଶగ௜௙௧݀ି݁(ݐ)ݔ
ିஶ .ܤ)     1) 

where f stands for the oscillation frequency. One can think about Fourier transform as the 

computation of the frequency content of the initial time signal x(t). An important 

disadvantage of such transform is that, as can be seen in (62), the integral calls for 

stationary or infinite (analog) signals which can be analyzed along the whole temporary 

range. Fourier transform of transient signals produces poor results as some frequency 

information is lost or hidden. Besides, in our tests, the signals acquired are transient and 

discrete (digital).  The transient nature of the signals acquired can be overcome by using 

the Discrete Fourier Transform (DFT) which is defined as: 

ℱ{ݔ[݊]} = ܺ൫݁௝ఠ൯ = ෍ ௝ఠ௡ஶି݁[݊]ݔ
௡ୀିஶ .ܤ)        2) 

Or for a finite length sequence of length N: 

ℱ{ݔ[݊]} = ܺ൫݁௝ఠ൯ = ෍ ௝ఠ௡ேିଵି݁[݊]ݔ
௡ୀ଴ .ܤ)     3) 

where x[n] is the value of the discrete signal in its nth sample. Again, ܺ൫݁௝ఠ൯ is an 

expression which determines how much of each frequency component is required to 
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recover x[n]. In general, as a complex function of frequency, the Fourier transform has a 

real part (magnitude) and an imaginary part (phase). There are several algorithms to 

compute the DFT, wide used ones due to their good computation efficiency are those 

based on the Fast Fourier Transform (FFT) (Cooley et al. 1967). These algorithms 

basically work factorizing the computation of DFT into smaller DFTs. 

It is usually of great interest in signal analysis to evaluate the energy carried by a signal. In 

terms of energy, the Plancherel theorem (Plancherel 1910) states that the energy 

comprised in a function is kept constant both in time and frequency domain. This 

theorem is expressed as: 

න ஶݐଶ݀|(ݐ)ݔ|
ିஶ = ߨ12 න |ܺ(߱)|ଶ݀߱ஶ

ିஶ .ܤ)        4) 

There are also two related measures in this field which must be defined due to their great 

importance in this field i.e.: cross-correlation and autocorrelation. The former is a 

measured of similarity between two signals (x[n], y[n]). It is expressed as: 

ݔ) ∗ [݊](ݕ = ෍ ݊]ݕ[݉]∗ݔ + ݉]ஶ
௠ୀିஶ .ܤ)        5) 

Where ݔ∗ is the complex conjugate of x. Similarly, the autocorrelation is defined as the 

cross-correlation of the same signal with itself.  

As commented above, in order to answer the question “How much of the signal x[n] is at 

a frequency f?” we need to compute the DFT. More precisely, we need to compute the 

DFT of the autocorrelation of x[n] which is called the Power Spectrum. In the same way, 

if one computes the DFT of the cross-correlation of two signals, a Cross Power Spectrum 

is obtained. 
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As mention above, the transient nature of some signals does not go really well with the 

DFT. Usually in these situations, there is a better approach than studying only the 

frequency domain. A Joint Time Frequency Analysis (JTFA) (Qian and Chen 1996) is 

particularly suitable when the transient nature of the studied signal provokes that not only 

the frequency content is interesting but also when each of those frequencies appears. 

JTFA studies the signal on both time and frequency domain at the same time. A very 

well-known JTFA is called Short Time Fourier Transform (STFT) where the DFT is 

applied systematically to short periods of the original signal which are delimited by a 

sliding window. The frequency content of each “time piece” of the signal is calculated and 

by repeating this procedure as the window is sweeping the total length of the signal, an 

estimation of the time-frequency content is obtained. STFT is expressed as: 

〈[݊]ݔ〉 ܶܨܶܵ = ෍ ݊]ݓ[݊]ݔ − ߬]݁ି௝ఠ௡ஶ
௡ୀିஶ .ܤ)      6) 

Where w is the applied window translated by ߬. As STFT is based in DFT, it is assumed 

that the signal is stationary in each window. Therefore, one tends to decrease the size of 

the windows to increase the accuracy. Unfortunately, the resolution in both time and 

frequency has to obey an uncertainty principle. 
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APPENDIX E 

Numerical results 

Effects of experimental conditions on mode shapes 

Point number Relative displacement magnitude Phase (º) 

f1 f2 f3 f1 f2 f3 

1 0.96 1.00 0.03 22.5 -46.3 53.5 

2 0.79 0.91 0.51 21.9 -46.8 120.7 

3 0.57 0.79 0.88 22.3 -47.1 124.7 

4 0.36 0.63 1.00 22.8 -46.8 125.2 

5 0.18 0.43 0.80 24.2 -46.5 126.9 

6 0.06 0.20 0.39 30.2 -45.8 130.7 

7 0.97 0.50 0.10 22.2 -47.5 -42.7 

8 0.78 0.46 0.37 21.8 -47.4 121.7 

9 0.58 0.41 0.73 22.0 -47.1 123.4 

10 0.39 0.33 0.84 22.4 -46.9 123.9 

11 1.00 0.02 0.15 22.3 -59.2 -48.5 

12 0.80 0.03 0.35 21.7 -54.8 121.2 

13 0.59 0.03 0.68 22.3 -53.4 122.3 

14 0.39 0.03 0.80 22.7 -57.7 121.4 

15 0.22 0.02 0.65 23.7 -67.2 119.4 

16 0.09 0.01 0.34 26.3 -67.9 117.6 

17 0.96 0.47 0.11 20.3 133.4 -52.1 

18 0.77 0.43 0.42 19.4 134.1 123.2 

19 0.58 0.36 0.75 20.6 134.3 122.8 

20 0.37 0.28 0.85 21.0 135.1 120.4 

21 1.00 0.91 0.01 19.6 134.1 -103.9 
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22 0.80 0.82 0.53 20.0 134.0 125.5 

23 0.54 0.71 0.91 21.1 133.9 125.0 

24 0.35 0.55 1.00 21.7 133.9 124.7 

25 0.19 0.37 0.79 20.5 133.9 124.3 

26 0.06 0.18 0.40 22.3 133.4 126.6 

Table E.1- Mode shape visualization: Relative displacement magnitude and phase under Air 

conditions. 

Point 

number 

Relative displacement magnitude Phase (º) 

f1 f2 f3 f1 f2 f3 

1 0.81 0.96 0.48 146.6 -34.4 65.5 

2 0.62 0.86 0.16 146.7 -36.5 -103.3 

3 0.44 0.71 0.66 146.8 -37.9 -109.4 

4 0.29 0.50 0.94 146.9 -41.6 -112.6 

5 0.16 0.31 0.82 147.5 -46.3 -113.3 

6 0.06 0.14 0.36 149.0 -47.6 -108.7 

7 0.70 0.33 0.41 146.4 -41.5 69.4 

8 0.55 0.26 0.14 146.5 -44.8 -112.6 

9 0.40 0.22 0.57 146.6 -47.2 -113.2 

10 0.26 0.17 0.83 146.7 -50.0 -115.0 

11 0.99 0.02 0.39 146.5 156.5 73.1 

12 0.76 0.01 0.18 146.5 171.8 -119.4 

13 0.56 0.02 0.49 146.6 -178.7 -115.3 

14 0.37 0.02 0.81 146.8 -129.9 -119.9 

15 0.21 0.03 0.71 147.3 -155.3 -124.6 

16 0.09 0.03 0.48 148.4 -166.4 -126.3 

17 1.00 0.53 0.25 146.4 141.6 75.9 

18 0.75 0.43 0.28 146.4 141.5 -117.7 

19 0.58 0.35 0.54 146.5 142.1 -114.3 



APPENDIX E 
 

 Page 138 

 

20 0.36 0.28 0.89 146.7 145.7 -121.8 

21 0.96 1.00 0.15 146.3 145.3 76.8 

22 0.75 0.82 0.22 146.3 143.9 -124.9 

23 0.57 0.66 0.75 146.3 142.3 -115.0 

24 0.35 0.51 1.00 146.3 141.5 -118.0 

25 0.16 0.36 0.89 146.3 141.1 -115.4 

26 0.07 0.17 0.48 146.3 140.4 -114.6 

Table E.2- Mode shape visualization: Relative displacement magnitude and phase under Still 

water conditions. 

Point 

number 

Relative displacement magnitude Phase (º) 

f1 f2 f3 f1 f2 f3 

1 1.00 1.00 0.26 67.2 100.8 18.2 

2 0.99 0.88 0.28 67.8 102.0 -136.2 

3 0.57 0.76 0.71 65.9 103.1 -146.3 

4 0.38 0.62 0.92 65.0 104.0 -148.0 

5 0.21 0.39 0.44 64.0 104.5 -147.7 

6 0.07 0.00 0.44 60.9 -23.7 -146.2 

7 0.97 0.34 0.29 67.8 147.1 26.1 

8 0.80 0.41 0.22 67.7 122.9 -139.3 

9 0.58 0.26 0.67 67.6 152.6 -148.4 

10 0.40 0.22 0.86 67.2 155.2 -148.7 

11 1.00 0.04 0.28 68.5 64.0 31.9 

12 0.79 0.03 0.24 68.8 65.7 -153.0 

13 0.59 0.03 0.63 68.7 62.3 -151.1 

14 0.39 0.03 0.82 69.7 50.1 -151.8 

15 0.22 0.05 0.37 72.3 58.6 -148.2 

16 0.09 0.00 0.22 77.4 -22.9 -151.8 

17 1.00 0.31 0.25 68.8 -22.6 37.2 
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18 0.79 0.29 0.32 69.1 -23.3 -156.4 

19 0.59 0.24 0.72 69.6 -21.8 -151.8 

20 0.37 0.22 0.90 71.7 -18.2 -153.1 

21 0.98 0.78 0.14 69.7 -27.9 52.7 

22 0.78 0.67 0.46 69.5 -47.7 -154.9 

23 0.65 0.55 0.86 76.0 -35.5 -152.3 

24 0.42 0.46 1.00 76.0 -41.1 -153.3 

25 0.20 0.35 0.51 76.3 -38.7 -146.0 

26 0.08 0.16 0.41 76.4 -38.7 -146.8 

Table E.3- Mode shape visualization: Relative displacement magnitude and phase under Flowing 

conditions. 

Point 

number 

Relative displacement magnitude Phase (º) 

f1 f2 f3 f1 f2 f3 

1 0.97 0.70 0.35 120.6 121.7 65.6 

2 0.79 0.62 0.41 114.0 108.5 -41.5 

3 0.53 0.54 1.00 126.8 120.1 -57.3 

4 0.39 0.41 0.85 116.4 124.6 -51.6 

5 0.21 0.29 0.92 121.1 128.5 -64.3 

6 0.07 0.15 0.57 114.9 137.2 -58.5 

7 0.94 0.35 0.32 125.7 97.1 99.6 

8 0.74 0.33 0.29 121.1 97.4 -57.9 

9 0.49 0.28 0.76 124.4 105.7 -65.1 

10 0.39 0.23 0.71 127.6 105.1 -66.1 

11 0.97 0.06 0.35 127.7 -8.2 122.8 

12 0.73 0.06 0.25 115.1 9.6 -92.2 

13 0.50 0.08 0.69 118.9 25.9 -80.6 

14 0.38 0.10 0.64 125.6 35.0 -90.9 

15 0.22 0.11 0.57 124.9 47.5 -103.8 
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16 0.07 0.08 0.35 132.0 43.5 -114.1 

17 1.00 0.45 0.34 120.2 -66.9 136.3 

18 0.68 0.40 0.30 119.0 -67.9 -108.8 

19 0.53 0.32 0.60 119.9 -61.8 -91.3 

20 0.38 0.24 0.64 117.0 -32.4 -99.1 

21 0.99 1.00 0.33 120.0 -79.0 149.3 

22 0.75 0.85 0.40 121.9 -82.2 -111.1 

23 0.60 0.60 0.64 124.8 -72.5 -84.3 

24 0.37 0.48 0.80 121.3 -71.3 -80.9 

25 0.19 0.32 0.52 121.3 -72.7 -75.6 

26 0.06 0.14 0.36 130.1 -66.2 -60.2 

Table E.4- Mode shape visualization: Relative displacement magnitude and phase under 

Cavitating conditions. 

Added mass of a cavitating hydrofoil 

 

l/c σ CSR CM1 CM2 CM3 

0.02 1.539 0.01 3.23 1.6 2.35 

0.054 1.006 0.027  1.82 2.08 

0.114 0.79 0.057  1.73 1.99 

0.318 0.6 0.159 3.4 1.61 1.92 

0.442 0.543 0.221 2.98 1.26 1.81 

>1 0.264 0.598 0.18 0.23 0.31 

Table E.5- CM’s for different cavity lengths for 1º incidence angle. 

l/c σ CSR CM1 CM2 CM3 

0.02 1.74 0.01 3.15 1.58 2.37 

0.054 1.327 0.027 3.4 1.72 2.07 

0.156 0.93 0.078 2.85 1.72 2.06 
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0.314 0.77 0.157 3.13 1.35 2.03 

0.526 0.66 0.263 2.42 1.14 1.85 

0.754 0.62 0.377 2.62 1 1.53 

>1 0.272 0.597 0.32 0.34 0.42 

Table E.6- CM’s for different cavity lengths for 2º incidence angle. 

Lateral gap analysis  

Gap (mm) f1 (Hz) f2 (Hz) f3 (Hz) CM1 CM2 CM3 

0.12 268.4 1020.9 1640.9 0.00 0.00 0.00 

0.22 270.2 1017.9 1633.1 -0.01 0.01 0.01 

0.32 269.0 1019.1 1637.3 0.00 0.00 0.00 

0.42 270.1 1019.7 1631.3 -0.01 0.00 0.01 

0.62 270.2 1019.7 1633.1 -0.01 0.00 0.01 

0.72 267.6 1020.9 1637.9 0.01 0.00 0.00 

0.82 270.2 1020.3 1631.9 -0.01 0.00 0.01 

1.12 269.0 1020.3 1633.1 0.00 0.00 0.01 

2.12 267.8 1019.7 1632.5 0.00 0.00 0.01 

Table E.7- Natural frequencies and CM’s for each gap distance in air conditions. 

 

 



APPENDIX E 
 

 Page 142 

 

Gap  (mm) f1 (Hz) f2 (Hz) f3 (Hz) CM1 CM2 CM3 

0.12 123.9 617.9 867.0 3.69 1.73 2.58 

0.22 124.5 619.7 868.2 3.65 1.71 2.57 

0.32 125.1 620.3 875.4 3.60 1.71 2.51 

0.42 125.6 620.9 879.6 3.57 1.70 2.48 

0.62 126.3 622.7 878.3 3.52 1.69 2.49 

0.72 126.8 624.5 884.3 3.48 1.67 2.44 

0.82 127.4 624.5 886.1 3.44 1.67 2.43 

1.12 128.1 625.6 884.3 3.39 1.66 2.44 

2.12 130.4 629.2 892.1 3.24 1.63 2.38 

Table E.8- Natural frequencies and CM’s for each gap distance in still water conditions. 

Gap  (mm) f1 (Hz) f2 (Hz) f3 (Hz) CM1 CM2 CM3 

0.12 124.5 621.5 877.2 3.65 1.70 2.50 

0.22 125.1 622.1 876.6 3.60 1.69 2.50 

0.32 128.7 624.5 879.5 3.35 1.67 2.48 

0.42 128.7 625.0 885.5 3.35 1.67 2.43 

0.62 128.1 626.9 886.7 3.39 1.65 2.42 
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0.72 129.3 627.4 886.7 3.31 1.65 2.42 

0.82 130.5 626.9 887.3 3.23 1.65 2.42 

1.12 130.5 629.3 893.9 3.23 1.63 2.37 

2.12 135.2 632.2 895.0 2.94 1.61 2.36 

Table E.9- Natural frequencies and CM’s for each gap distance in 9 m/s conditions. 

 

Gap  (mm) f1 (Hz) f2 (Hz) f3 (Hz) CM1 CM2 CM3 

0.12 122.2 621.5 911.1 3.76 1.63 2.20 

0.22 123 622.8 912.9 3.70 1.62 2.18 

0.32 123.7 623.9 914.4 3.65 1.61 2.17 

0.42 124.3 624.9 915.8 3.60 1.61 2.16 

0.62 125.4 626.5 918.2 3.52 1.59 2.15 

0.72 125.9 627.2 919.2 3.49 1.59 2.14 

0.82 126.3 627.9 920.1 3.46 1.58 2.13 

1.12 127.5 629.6 922.6 3.38 1.57 2.12 

2.12 130.3 633.4 928.2 3.19 1.54 2.08 

Table E.10- Natural frequencies and CM’s for each gap distance in still water conditions obtained 

with Ansys. 
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Effects of pressure distribution on added mass 

-1° 

Flow velocity (m/s) 

0 5 7 10 12 15 18 20 

CM1 3.66 3.36 3.20 3.01 3.20 3.20 3.52 2.87 

CM2 1.68 1.68 1.66 1.64 1.54 1.57 1.59 1.54 

CM3 2.32 2.31 2.29 2.31 2.29 2.29 2.20 2.22 

Table E.11- Pressure distribution: CM’s for different flow velocities at 1º incidence angle. 

-2° 

Flow velocity (m/s) 

0 5 7 10 12 15 18 20 

CM1 3.48 3.36 3.36 3.16 3.20 2.74 3.05 2.87 

CM2 1.68 1.66 1.66 1.64 1.56 1.51 1.59 1.57 

CM3 2.32 2.29 2.29 2.30 2.29 2.28 2.28 2.26 

Table E.12- Pressure distribution: CM’s for different flow velocities at 2º incidence angle 

-5° 

Flow velocity (m/s) 

0 5 7 10 12 15 18 

CM1 3.48 3.36 3.36 3.20 3.01 3.36 3.36 

CM2 1.68 1.68 1.68 1.63 1.59 1.55 1.54 

CM3 2.31 2.29 2.32 2.29 2.29 2.28 2.28 

Table E.13- Pressure distribution: CM’s for different flow velocities at 5º incidence angle. 

-7° 

Flow velocity (m/s) 

0 5 7 10 12 15 

CM1 3.48 3.36 3.36 3.36 3.52 3.52 

CM2 1.68 1.66 1.66 1.64 1.59 1.59 

CM3 2.32 2.32 2.32 2.29 2.29 2.33 

Table E.14- Pressure distribution: CM’s for different flow velocities at 7º incidence angle. 
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 Flow velocity (m/s) 

-10° 0 5 7 10 12 

CM1 3.48 3.36 3.32 3.36 3.20 

CM2 1.68 1.68 1.66 1.64 1.62 

CM3 2.32 2.29 2.29 2.29 2.32 

Table E.15- Pressure distribution: CM’s for different flow velocities at 10º incidence angle. 

 

Partially submerged hydrofoil 

Submergence (%) f1 (Hz) f2 (Hz) f3 (Hz) CM1 CM2 CM3 

100 139 637.2 843.2 2.73 1.57 2.79 

90 149.2 699.8 918.2 2.24 1.13 2.19 

80 161.8 750.6 1028.1 1.75 0.85 1.55 

70 172 776.4 1105.9 1.44 0.73 1.20 

60 188.8 806.2 1190.9 1.02 0.60 0.90 

50 200.2 806.2 1236.0 0.80 0.60 0.76 

40 217.8 813.6 1320.9 0.52 0.57 0.54 

30  844.8 1440.9  0.46 0.30 

20 251.4 910.0 1550.4 0.14 0.26 0.12 

10  981.8 1627.5  0.08 0.02 
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0  1021.4 1650.4  0.00 -0.01 

Table E.16- Experimental natural frequencies and CM’s for each submergence level. TE 

orientation. 

Submergence (%) f1 (Hz) f2 (Hz) f3 (Hz) CM1 CM2 CM3 

100 138.4 639.6 868.1 2.76 1.55 2.57 

90 148.6 715.4 933.2 2.26 1.04 2.09 

80 161.2 768.6 1033.2 1.77 0.76 1.52 

70 172 809.6 1118.5 1.44 0.59 1.15 

60 185.2 824.2 1203.1 1.10 0.53 0.86 

50 200.2 837.4 1270.9 0.80 0.49 0.67 

40 218.4 836.4 1355.9 0.51 0.49 0.46 

30  875.4 1475.4  0.36 0.24 

20 251.4 922.0 1565.4 0.14 0.23 0.10 

10  996.8 1645.8  0.05 -0.01 

0  1022.0 1650.4  0.00 -0.01 

Table E.17- Experimental natural frequencies and CM’s for each submergence level. LE 

orientation. 
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Submergence (%) f1 (Hz) f2 (Hz) f3 (Hz) CM1 CM2 CM3 

100 138.1 650.2 963.5 2.73 1.41 1.86 

90 147.8 705 1013.4 2.26 1.05 1.58 

80 159.3 750.8 1069.9 1.80 0.80 1.32 

70 172.6 780.2 1130.5 1.39 0.67 1.08 

60 187.3 794.6 1193.7 1.03 0.61 0.86 

50 203.5 802.3 1263.8 0.72 0.58 0.66 

40 219.6 813.4 1339.3 0.47 0.54 0.48 

30 237.3 840.7 1433.6 0.26 0.44 0.29 

20 252.3 891.8 1526.3 0.12 0.28 0.14 

10 263.1 966.6 1602.1 0.03 0.09 0.03 

0 266.6 1007.5 1628.2 0.00 0.00 0.00 

Table E.18-Natural frequencies and CM’s for each submergence level obtained by Ansys. TE 

orientation. 

 

Submergence (%) f1 (Hz) f2 (Hz) f3 (Hz) CM1 CM2 CM3 

100 138 654.7 963.9 2.73 1.37 1.86 

90 147.3 713.6 1013.1 2.28 1.00 1.58 
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80 159.3 769.9 1074.2 1.80 0.72 1.30 

70 172.3 804.9 1137.1 1.40 0.57 1.05 

60 187.3 822.5 1205.4 1.03 0.50 0.83 

50 202.7 829.9 1274.9 0.73 0.48 0.63 

40 220 839.2 1357.3 0.47 0.44 0.44 

30 237.1 861.7 1447 0.27 0.37 0.27 

20 252.3 906.8 1535.3 0.12 0.24 0.13 

10 262.7 968.7 1601.5 0.03 0.08 0.03 

0 266.7 1008.5 1628.7 0.00 0.00 0.00 

Table E.19-Natural frequencies and CM’s for each submergence level obtained by Ansys. LE 

orientation. 
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ABSTRACT 

The objective of the present paper is to show the effect of cavitation on the natural 

frequencies of a NACA0009 hydrofoil. The existence of large portions of the 

hydrofoil surface covered by vapor is expected to reduce the added mass effects of the 

surrounding flowing water. For that, a specific excitation and measuring system based 

on piezoelectric patches has been developed and validated. With this experimental 

setup, the three first natural frequencies of an aluminum NACA0009 truncated 

hydrofoil have been determined in various conditions. The hydrofoil has been tested 

with partial cavitation and with supercavitation at 14 m/s and two incidence angles of 

1° and 2°. Analogous tests have been carried out with the hydrofoil in air and 

surrounded by still water. The comparison of all the results has confirmed the 

significant role that cavitation plays in the modal response of the hydrofoil. 
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ABSTRACT 

The influence of leading edge sheet cavitation and supercavitation on the added mass 

effects experienced by a 2-D NACA0009 truncated hydrofoil has been experimentally 
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investigated in a hydrodynamic tunnel. A non-intrusive excitation and measuring system 

based on piezoelectric patches mounted on the hydrofoil surface was used to determine 

the natural frequencies of the fluid-structure system. The appropriate hydrodynamic 

conditions were selected to generate a range of stable partial cavities of various sizes and 

also to minimize the effects of other sources of flow noise and vibrations. The main tests 

were performed for different sigma values under a constant flow velocity of 14 m/s and 

for incidence angles of both 1 and 2. Additionally, a series of experiments in which the 

hydrofoil was submerged in air, partially and completely submerged in still water and 

without cavitation at 7 and 14 m/s were also performed. The maximum added mass effect 

occurs with still water. When cavitation appears, the added mass decreases because the 

cavity length is increased, and the added mass is at a minimum for supercavitation. A 

linear correlation is found between the added mass coefficients and the entrained mass 

that accounts for the mean density of the cavity, its dimensions and its location relative to 

the specific mode shape deformation. 

 


