
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author 



DESIGN AND VALIDATION OF A STRUCTURAL HEALTH MONITORING
SYSTEM FOR AERONAUTICAL STRUCTURES

by

Diego Alexander Tibaduiza Burgos

Supervised by
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Universitat Politècnica de Catalunya
Barcelona, Spain
September, 2012





UNIVERSITAT POLITÈCNICA DE CATALUNYA
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Structural Health Monitoring (SHM) is an area where the main objective is the verification
of the state or the health of the structures in order to ensure proper performance and mainte-
nance cost savings using a sensor network attached to the structure, continuous monitoring and
algorithms. Different benefits are derived from the implementation of SHM, some of them are:
knowledge about the behavior of the structure under different loads and different environmental
changes, knowledge of the current state in order to verify the integrity of the structure and
determine whether a structure can work properly or whether it needs to be maintained or
replaced and, therefore, to reduce maintenance costs. The paradigm of damage identification
(comparison between the data collected from the structure without damages and the current
structure in order to determine if there are any changes) can be tackled as a pattern recognition
problem. Some statistical techniques as Principal Component Analysis (PCA) or Independent
Component Analysis (ICA) are very useful for this purpose because they allow obtaining the
most relevant information from a large amount of variables.

This thesis uses an active piezoelectric system to develop statistical data driven approaches
for the detection, localization and classification of damages in structures. This active piezo-
electric system is permanently attached to the surface of the structure under test in order to
apply vibrational excitations and sensing the dynamical responses propagated through the
structure at different points. As pattern recognition technique, PCA is used to perform the main
task of the proposed methodology: to build a base-line model of the structure without damage
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and subsequently to compare the data from the current structure (under test) with this model.
Moreover, different damage indices are calculated to detect abnormalities in the structure under
test. Besides, the localization of the damage can be determined by means of the contribution
of each sensor to each index. This contribution is calculated by several different methods
and their comparison is performed. To classify different damages, the damage detection
methodology is extended using a Self-Organizing Map (SOM), which is properly trained and
validated to build a pattern baseline model using projections of the data onto the PCA model
and damage detection indices. This baseline is further used as a reference for blind diagnosis
tests of structures. Additionally, PCA is replaced by ICA as pattern recognition technique.
A comparison between the two methodologies is performed highlighting advantages and
disadvantages. In order to study the performance of the damage classification methodology
under different scenarios, the methodology is tested using data from a structure under several
different temperatures.

The methodologies developed in this work are tested and validated using different struc-
tures, in particular an aircraft turbine blade, an aircraft wing skeleton, an aircraft fuselage,
some aluminium plates and some composite materials plates.
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por Diego Alexander Tibaduiza Burgos

DIRECTORES:
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La monitorización de daños en estructuras (SHM por sus siglas en inglés) es un área
que tiene como principal objetivo la verificación del estado o la salud de la estructura con
el fin de asegurar el correcto funcionamiento de esta y ahorrar costos de mantenimiento.
Para esto se hace uso de sensores que son adheridos a la estructura, monitorización continua
y algoritmos. Diferentes beneficios se obtienen de la aplicación de SHM, algunos de ellos
son: el conocimiento sobre el desempeño de la estructura cuando esta es sometida a diversas
cargas y cambios ambientales, el conocimiento del estado actual de la estructura con el fin de
determinar la integridad de la estructura y definir si esta puede trabajar adecuadamente o si por
el contrario debe ser reparada o reemplazada con el correspondiente beneficio del ahorro de
gastos de mantenimiento. El paradigma de la identificación de daños (comparación entre los
datos obtenidos de la estructura sin daños y la estructura en un estado posterior para determinar
cambios) puede ser abordado como un problema de reconocimiento de patrones. Algunas
técnicas estadı́sticas tales como Análisis de Componentes Principales (PCA por sus siglas en
inglés) o Análisis de Componentes Independientes (ICA por sus siglas en ingles) son muy
útiles para este propósito puesto que permiten obtener la información más relevante de una
gran cantidad de variables.

Esta tesis hace uso de un sistema piezoeléctrico activo para el desarrollo de algoritmos
estadı́sticos de manejo de datos para la detección, localización y clasificación de daños en
estructuras. Este sistema piezoeléctrico activo está permanentemente adherido a la superficie
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de la estructura bajo prueba con el objeto de aplicar señales vibracionales de excitación y
recoger las respuestas dinámicas propagadas a través de la estructura en diferentes puntos.
Como técnica de reconocimiento de patrones se usa Análisis de Componentes Principales para
realizar la tarea principal de la metodologı́a propuesta: construir un modelo PCA base de la
estructura sin daño y posteriormente compararlo con los datos de la estructura bajo prueba.
Adicionalmente, algunos ı́ndices de daños son calculados para detectar anormalidades en la
estructura bajo prueba. Para la localización de daños se usan las contribuciones de cada sensor
a cada ı́ndice, las cuales son calculadas mediante varios métodos de contribución y comparadas
para mostrar sus ventajas y desventajas.

Para la clasificación de daños, se amplia la metodologı́a de detección añadiendo el uso de
Mapas auto-organizados, los cuales son adecuadamente entrenados y validados para construir
un modelo patrón base usando proyecciones de los datos sobre el modelo PCA base e ı́ndices
de detección de daños. Este patrón es usado como referencia para realizar un diagnóstico
ciego de la estructura. Adicionalmente, dentro de la metodologı́a propuesta, se utiliza ICA
en lugar de PCA como técnica de reconocimiento de patrones. Se incluye también una
comparación entre la aplicación de las dos técnicas para mostrar las ventajas y desventajas.
Para estudiar el desempeño de la metodologı́a de clasificación de daños bajo diferentes escenar-
ios, esta se prueba usando datos obtenidos de una estructura sometida a diferentes temperaturas.

Las metodologı́as desarrolladas en este trabajo fueron probadas y validadas usando difer-
entes estructuras, en particular un álabe de turbina, un esqueleto de ala y un fuselaje de avión,
ası́ como algunas placas de aluminio y de material compuesto.
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Chapter 1

INTRODUCTION

1.1 Introduction
The currently daily passengers flow, merchandise and operations in airports in a global scale
suggest increasing the safety in the daily operations in all the elements involved. According to
the International Civil Aviation Organization (ICAO) in 2010 the total world volume of sched-
uled commercial flights began to edge over 30 million per year [89] and still increasing. To
ensure the safety, the ICAO promote the systematic implementation of Standards and Recom-
mended Practices (SARPs) for the aviation safety through the following activities:

• Policy and Standardization initiatives

• Monitoring of key safety trends and indicators

• Safety analysis

• Implementing programmes to address safety issues

At airports level, Safety Management Systems (SMS) are defined in order to contribute to the
airports to detect and correct safety problems before they result in aircraft accidents or incidents
[10], [89]. These management systems are very important because the risk and the probability
of an accident are presented in the daily tasks. In addition, there is an increment in this factor
due to the higher number of operations which are significative and still rising. As example, in
Spain airports during 2011, the total number of passengers was 204.373.288 and the number
of merchandise transportation was 671.722.190 according to AENA (“Aeropuertos Españoles
y Navegación Aérea”) [4]. These quantities associated with value of what is transported daily,
provide important reasons for increasing the safety in airport operations and in the involved
elements (airplanes, helicopters, etc.). In a low level, each flight company requires to ensure
the reliability of its aircrafts during the different phases of the flight (pre-flight, departure and
climb, enroute, cruise, descent and landing). To do that, the company needs to guarantee the
proper performance of their aircraft structures, navigation systems, communication systems,
among other elements. According to [6]: “when an aircraft is being designed and produced,
the aviation authority, the manufacturer, and selected industry participants form groups called
Maintenance Steering Groups (MSG) and industry steering committees (ISC). These groups,
through numerous meetings determine the frequency and scope of aircraft inspections to be pe-
formed. This information is provided to another group called the Maintenance Review Board

1



2 1. INTRODUCTION

(MRB) which will issue their final recommendations to the manufacturer on how an aircraft
should be maintained”. In general, the inspection of all civil aircraft is determined by the type
of operation. The aircraft must also be maintained in an airworthy condition (referred to as
continued airworthiness) between those required inspections [6]. Additionally, a preflight in-
spection is conducted before each flight in ramp, this consists of checking the aircraft by visual
examinations and operational tests to detect defects and maladjustments [5]. Many times these
inspections have revealed faults and damages in the structures. Recently, for instance some
small cracks were discovered in the world’s biggest passenger aircraft (Airbus A380) during
a routine inspection. To correct this possible problem 20 aircrafts were inspected and accord-
ing to the vice-president of AIRBUS (Tom Williams): “This is not a fatigue problem, but a
problem during the manufacturing process” [1]. Unfortunately, failures of this type have tradi-
tionally been detected during routine inspection periods and normally with the use of various
non-destructive techniques, but in the case of visual inspections, it is sometimes impossible
to detect small structural damages (for instance between each flight). In this sense, Structural
Health Monitoring (SHM) borns as a solution to provide tools for early structural damage de-
tection using non-destructive techniques and algorithms.
In a general way, it is possible to compare a SHM system with the human nervous system as
in Figure 1.1. In both cases a sensor network is connected to a central system which allows to
apply excitation signals and sense the responses from the sensors distributed along the structure.
Additionally there is a system for processing the data, which defines the state or the health of
the structure.

Figure 1.1: Comparison of a SHM system with the human nervous system.

In SHM different levels exist for damage diagnosis [148] in a general way, which can be
grouped in four levels (Figure 1.2). The first level corresponds to the damage detection. In
this level it is important to know whether there is any change in the structure and if this change
is due to a damage. In second level, after detecting a damage, using proper techniques, the
position of the damage can be determined. The third level considers the definition of the type
of damage and its size. Finally, in the level 4, the remaining lifetime is determined. Recently,
an extra level is considered in order to include the capability of auto-healing in smart structures
[90].
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Figure 1.2: Levels in SHM.

Most common applications in SHM are concentrated in the first three levels and there are
many applications using different techniques (see Chapter 3). The majority of these imple-
mentations include the use of Non-Destructive inspections by means of sensors attached to the
structure. These experimental setups normally require to know the structure in order to define
which sensor can be used and their distributions in the structure. The variety of sensors and
configurations for data acquisition is quite broad as will be shown in the literature review.

Figure 1.3: Fighter aircraft F-18 E/F. (a) F/A-18F Super Hornet [19] (b)Schematic diagram with
the percentage of structural weight [32].

In aeronautic and astronautic areas it is very common the use of aluminium and compos-
ite materials for building the structures [197]. Since some years ago (probably since the first
introduction into commercial use in 1944 as fuselage skin for Vultee BT-15 trainer plane [85]
[197]), the trend in the design of the structures has been directed towards the use of composite
materials because the advantages compared with traditional materials as the aluminum allow-
ing the weight-saving among others benefits. There are many examples very useful to show the
diversity of the materials currently used in military and commercial applications among others.
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For instance, in the U.S. Navy, the F-18 E/F fighter has 31 % of aluminium of the total weight,
while the carbon epoxy has the 19 % as can be seen in the Figure 1.3. Other example can be
found in the AIRBUS A380, which is one of the biggest commercial aircraft. Although the use
of composite materials has increased, the aluminum is still widely used (Figures 1.4 and 1.5).

Figure 1.4: Utility of composite structures on A380: monolithic CFRP and thermoplastics
[197].

The SHM systems are currently in state of development and the majority of the applications
are available in a research level, specially in the aeronautic and astronautic areas. To perform
the inspection of the structures in the majority of applications, the structure is isolated and the
monitoring is performed under special conditions. In areas as aeronautical and aerospace it is
really important to evaluate the health of the structures in normal operational conditions when
the element is integrated into the system (aircraft, helicopters, satellites, space shuttle, among
others). This reason has motivated the development of new methodologies. An additional moti-
vation is the reduction in the cost of maintenance to avoid that the aircraft goes out of operation
for periodical maintenance and to increase the security in the normal operation of the structures.
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Figure 1.5: Utility of composite structures on A380: materials distributions (weight breakdown)
[197].

1.2 Main contribution

As a contribution to the damage detection, localization and classification tasks in SHM, this
thesis presents the development of some methodologies that make use of a piezoelectric active
system and data driven approaches for the damage identification. The paradigm of damage
identification (comparison between the data collected from the structure without damages and
the current structure in order to determine if there are any changes) is tackled as a pattern
recognition application, where, some statistical techniques and some damage indices are used
for data processing and pattern recognition.

In general, a data acquisition system is used to inspect the structures using a BURST signal
in different phases. Each phase corresponds to the use of one PZT transducer as actuator and
others as sensors. Signals collected from experiments are preprocessed and techniques as
Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are used
for the analysis and the calculation of some indices in order to define if exist or not any damage,
where is it located, and which kind of damage is presented in the structure under test by each
phase. Data fusion is applied in the localization and the classification tasks in order to obtain a
final result by the combination of the particular analysis in each phase.

The developed methodologies have been subjected to extensive experimental validations:
an aircraft wing skeleton, an aircraft turbine blade, an aircraft fuselage, some aluminum plates
and some composite materials plates. All the results are included and discussed to demonstrate
the validity of the approaches.
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1.3 Objectives
The main goal of the current doctoral thesis is to develop a methodology for the detection,
localization and classification of damages in aeronautical structures using the paradigm that
any damage in the structure produces changes in the vibrational responses. These changes are
detected by means of the comparison between the data from the healthy and the current structure
under test using statistical techniques. To achieve this goal, the following specific objectives are
proposed:

1. To study the problem of monitoring and damage detection in structures.

2. To study the application of statistical techniques as tools for pattern recognition to detect
changes in vibrational responses of aircraft structures

3. To propose, implement and evaluate different statistical indices for the detection of dam-
ages in aircraft structures

4. To propose, implement and evaluate different methods based on the contributions of each
sensor to each index for the localization of damages in aircraft structures

5. To propose, implement and evaluate different methods for the classification of damages
in aircraft structures.

6. To validate the methodologies using aircraft and aerospace structures in real-scale as well
as small scale structures.

1.4 General results
According to each specific objective, some comments about the results are summarized below.
Most extensive descriptions are included in the document.

1. To study the problem of monitoring and damage detection in structures.

The Structural Health Monitoring problem, its applications and current develop-
ments were studied and discussed in various scenarios. First, the author participated
as assistant in a European course: “ Advanced course: Structural Health Monitoring”
performed in 2009 in Barcelona-Spain, where some of the most relevant topics and its
applications were presented by some of the relevant researchers in the area.

2. To study the application of statistical techniques as tools for pattern recognition to
detect changes in vibrational responses of aircraft structures

Several references on these topics were reviewed and organized in Chapter 3. This
review makes emphasis on the applications in Structural Health Monitoring that involve
statistical methods including PCA, ICA and damage indices.
Based on the previous works of the advisors of this thesis, the previous review and
studies by the author in the first stage of its doctoral studies, Principal Component
Analysis is defined as one of the methods used for data driven analysis. Additionally, the
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author includes the use of Independent Component Analysis(ICA) in order to compare
the results obtained with PCA and generalize the methodologies for the detection,
localization and classification.

3. To propose, implement and evaluate different statistical indices for the detection of
damages in aircraft structures

The damage detection problem was addressed by means of a general methodology
that allows to obtain some damage detection plots by each actuator phase. This
methodology is evaluated using two statistical methods. The first one makes use of
Principal Component Analysis or the Independent Component Analysis to build the
models using the data from the undamaged structure in different phases. In each phase,
a PZT transducer is used as actuator and the signals from the other sensors are collected
and organized in a matrix for representing the vibrational responses of the structure in
different points due to this actuator. To perform the detection, the data from the structure
in different states is projected into the models and after these projections are depicted.
This methodology was introduced previously by the advisors of this thesis using PCA
and now it is extended and applied using ICA as second statistical method for pattern
recognition. The methodology was also extended by using four damage indices which
are obtained from the models and the projections calculated through PCA.

Results from the application of this methodology were published in:

• D.A. Tibaduiza, L.E. Mujica, M. Anaya, J. Rodellar, A. Güemes. Independent
Component Analysis for Detecting Damage on Aircraft Wing Skeleton. Presented
in: EACS 2012-5th European Conference on Structural Control. Genoa-Italy, June
2012.

• D.A. Tibaduiza, L.E. Mujica, M. Anaya, J. Rodellar, A. Güemes. Principal Com-
ponent Analysis vs Independent Component Analysis for Damage Detection. Pre-
sented in: The 6th European Workshop on Structural Health Monitoring. Dresden-
Germany, July 2012.

• D.A. Tibaduiza, L.E. Mujica, J. Rodellar. Structural Health Monitoring based
on principal component analysis: damage detection, localization and classifica-
tion. In: Advances in Dynamics, Control, Monitoring and Applications, Universitat
Politècnica de Catalunya, Departament de Matemàtica Aplicada III, p. 8-17, 2011.

4. To propose, implement and evaluate different methods based on the contributions
of each sensor to each index for the localization of damages in aircraft structures

For damage localization, a methodology was developed using the contributions of
each variable to each index. In each index five contribution methods were tested in order
to compare the results in the localization of damages and to show the capabilities of the
approaches. The results obtained were published in:

• D.A. Tibaduiza, L.E. Mujica, J. Rodellar. Comparison of Several Methods for Dam-
age Localization Using Indices and Contributions Based on PCA. Presented to: The
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9th International Conference on Damage Assessment of Structures. Oxford-UK,
July 2011.

• D.A. Tibaduiza, L.E. Mujica, J. Rodellar. Comparison of several methods for dam-
age localization using indices and contributions based on PCA. Journal of Phisycs:
Conference Series, 305 012013 doi:10.1088/1742-6596/305/1/012013, 2011.

• D.A. Tibaduiza, L.E. Mujica, M. Anaya, J. Rodellar. Combined and I indices based
on Principal Component Analysis for damage detection and localization. Presented
to: The 8th International Workshop on Structural Health Monitoring. Stanford-
USA, September 2011.

• L.E. Mujica, D.A. Tibaduiza, J. Rodellar. Data-Driven Multiactuator Piezoelectric
System for Structural Damage Localization. Presented in: The Fifth World Confer-
ence on Structural Control and Monitoring (5WCSCM). Tokyo-Japan, July 2010.

5. To propose, implement and evaluate different methods for the classification of
damages in aircraft structures.

In the damage classification task, a methodology was developed by combining the
use of PCA or ICA, some damage indices and a Self Organizing Map to perform a
generalized analysis of the structure using data fusion with the results from each phase
to classify the different structural states of a structure. The results showed that the
methodology allows also to perform detection tasks.
Applications of this methodology were published in:

• D.A. Tibaduiza, L.E. Mujica, J. Rodellar. Damage Classification in Structural
Health Monitoring using Principal Component Analysis and Self Organizing Maps.
Accepted for publication in Structural Control and Health Monitoring.

• D.A. Tibaduiza, M.A. Torres Arredondo, L.E. Mujica, J. Rodellar, C.P. Fritzen. A
study of Two Unsupervised Data Driven Statistical Methodologies for Detecting and
Classifying Damages in Structural Health Monitoring. Submitted to Mechanical
Systems and Signal Processing.

• M.A. Torres Arredondo, D.A. Tibaduiza, L.E. Mujica, J. Rodellar, C.P. Fritzen. Data
Driven Multivariate Algorithms for Damage Detection and Classification: Evalua-
tion and Comparison. Submitted to Structural Health Monitoring An International
Journal.

• D. A. Tibaduiza, L. E. Mujica, A. Güemes, J. Rodellar. Active Piezoelectric Sys-
tem using PCA. Presented in: The Fifth European Workshop on Structural Health
Monitoring. Sorrento-Italy, June 2010.

6. To validate the methodologies using aircraft and aerospace structures in real-scale
as well as small scale structures.

Different structures were tested and used for the validation of the approaches. In
specific terms, three real-scale specimens were studied, the first two corresponds to an
aircraft wing skeleton and an aircraft turbine blade which were tested in the Center of
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Composites Materials and Smart Structures in the “Universidad Politécnica de Madrid”
in Madrid-Spain. The third structure corresponds to an aircraft fuselage which was
tested in a research visit in the Siegen University. More details of these structure can
be found in the Chapter 4 (case studies). The small-scale validation was performed by
means of simplified structures. Specifically, aluminum and composite plates in different
configurations were used.

1.5 Research framework

This thesis has been supported in general through the projects: DPI2008-06564 and DPI2011-
28033 funded by the Spain Government. The first is: “Smart aircraft structures: Development
and validation of a system for monitoring and damage detection (EstAIn)” which is a coor-
dinated project with the Laboratory of Composite Materials and Smart Structures (LCMSS)
from “Universidad Politécnica de Madrid” which is leaded by Professor Alfredo Guemes
and had as main objective the development and the validation of a experimental monitoring
system for damage detection in aeronautical structures based on advanced signal processing
and pattern recognition. The second project is a continuation of the first one and included
a new partner, IKERLAN, a technological research center from the Vasc Country in Spain.
The project is: “Smart Structures: Development and Validation of Monitoring and Damage
Identification Systems with Application in Aeronautics and Offshore Wind Energy Plants
(AEROLICA)”. Its main objective is the development of new monitoring systems and data
processing methodologies for damage identification in smart structures, with emphasis in two
key industrial sectors: aeronautics and offshore wind energy plant. The project integrates basic
research on sensors and model-free, data-driven identification approaches with development of
practical algorithms and numerical and experimental validations.

The author was supported by the “Agència de Gestió dAjust Universitaris i de Recerca
(AGAUR) of Generalitat de Catalunya by means of a FI-contract for 3 years (Jul-2009 to Jul
2012). Additionally, to perform the research stay at Siegen University, the author was supported
by the Spain government by means of the plan: “Movilidad de estudiantes en programas de
doctorado con mención hacia la excelencia”.

1.6 Organization

In general, the present thesis is organized in seven chapters starting with this introduction where
the objectives, general results and research framework and the organization are described. The
second chapter includes a theoretical background which covers a brief definition of all the
methods used into the proposed methodologies. Afterwards, in the third chapter, a literature
review about SHM is presented in order to show the originality of the approaches proposed in
the following chapters. The review covers selected aspects of Structural Health Monitoring
focusing in statistical methods for pattern recognition. Fourth chapter presents a description
of all the structures used to validate the methodologies. The following three chapters are
concerning to the development of the methodologies for damage detection, localization and
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classification respectively. In detection, the methodology developed makes use of PCA or
ICA in order to build a model of the structure by each actuator-phase using data from the
structure when it is known as healthy. In a later stage, the data from the structure in different
states is projected into the models and these projections and some damage indices are used for
the detection. This chapter also includes a comparison between the results obtained by PCA
and ICA. In the damage localization chapter, the damage detection methodology is extended
using five contribution methods and data fusion to determine the position of the damage in the
structure. Each contribution method allows to calculate the contributions of each transducer in
the sensor network to each damage index.
For damage classification, in Chapter 7 the damage detection methodology is again extended
for classifying different states of a structure using a classifier. For this purpose a Self Organiz-
ing Map is used to merge the results of each phase and perform a generalized analysis based
on all the data from the sensor network. Finally, the last chapter presents the conclusions and
some comments about the methodologies developed and the results obtained.



Chapter 2

THEORETICAL BACKGROUND

2.1 Introduction
The methodologies presented in this thesis are based on data driven analysis. This means that
all the information and the analysis is performed by using directly data gathered from exper-
iments. No physical models are used to achieve the damage detection, classification and lo-
calization tasks, some statistical techniques for pattern recognition are adapted and applied in
order to identify changes in the structures based on their vibrational responses. In particular,
the experiments performed to the structures and the methodologies were performed by using
a multiactuator system. Lamb waves are produced into the structures through of vibrational
excitation signals generated by an active piezoelectric network. A brief description of this kind
of waves, the statistical methods and the different tools used in the methodologies are included
in this chapter. More details about how these methods are used are presented in the following
chapters.

2.2 Waves in plates

2.2.1 Sound wave propagation

Since molecules in solids can vibrate in different directions, there are different kinds of
sound waves. These can be characterized in space by oscillatory patterns that are capable of
maintaining their shape and propagating in a stable manner. These propagations are also called
wave modes [13]. There are different wave types in solids [147] [13] that can be summarized
in Table 2.1.

In ultrasonic inspection, the longitudinal and transverse modes are used. These modes can
show different types of elliptical or complex vibrations of the particles. Some examples can be
seen in [27], [176]. The use of Lamb waves in SHM is very common due to the advantages for
detection and the interaction with the structure. Some examples of its use can be found in [142],
[72]. For inspecting large structures, this kind of waves are potentially a good solution compared
with the conventional ultrasonic inspection. The advantage lies in that lamb waves can be
generated in one single point by means of a transducer such as a piezoelectric (PZT). Besides,
they can propagate by considerable distances. On the other hand, the use of a piezoelectric

11
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Wave Types in Solids Particle Vibrations
Longitudinal Parallel to wave direction
Transverse (Shear) Perpendicular to wave direction
Surface-Rayleigh Elliptical orbit-symmetrical mode
Plate Wave-Lamb Component perpendicular to surface (extensional wave)
Plate Wave-Love Parallel to plane layer, perpendicular to wave direction
Stoneley(Leaky Rayleigh Waves) Wave guided along interface
Sezawa Antisymetric mode

Table 2.1: Wave types in solids [13].

sensor network permanently attached to the structure allows to inspect any time all the structure,
while, ultrasonic inspection needs to scan over each point of the structure to assess[24].

2.2.2 Lamb waves
According to [13]: “Lamb waves are complex vibrational waves that propagate parallel to the
test surface throughout the thickness of the material. Propagation of Lamb waves depends on
the density and the elastic material properties of a component. They are also influenced a great
deal by the test frequency and material thickness. Lamb waves are generated at an incident
angle in which the parallel component of the velocity of the wave in the source is equal to the
velocity of the wave in the test material. Lamb waves will travel several meters in steel and so
are useful to scan plate, wire, and tubes”.

Figure 2.1: Vibration modes [13].
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Different vibration modes are possible with lamb waves, the most common are the symmet-
rical and asymmetrical modes (Figure 2.1 ). These modes describe elliptical orbits for surface
waves [13] and mathematically are defined by the equations 2.1 and 2.2 for the traction free
boundary conditions at the surface [94]:

tan(qh)

tan(ph)
= − 4k2pq

(q2 − k2)2
(2.1)

tan(qh)

tan(ph)
= −(q2 − k2)2

4k2pq
(2.2)

where, p, q and k are defined as:

p2 =

(
w

cL

)2

− k2 (2.3)

q2 =

(
w

cT

)2

− k2 (2.4)

and cL is the longitudinal wave velocity, cT the shear wave velocity, h is the half of the plate
thickness, w = 2πf and k is 2π

λ
where λ corresponds to the wavelength. The propagation of

this kind of waves can be described by the phase velocity and group velocity as shown in the
following section.

2.2.3 Dispersion curves
The velocity of propagation of the lamb waves depends of the frequency and other constants
of the material where these are propagated. By these reasons the lamb waves are considered
as dispersive. To represent the dispersion curves are used, this kind of plots shows how the
velocity changes according to the frequency and how the pulses tend to become stretched
or dispersed as they propagate [146]. Additionally, it can be used to determine the features
about the excitation conditions, such as frequency and angle of incidence, of a desired mode
[94]. These features can be calculated solving the wave equation with boundary conditions
(Equations 2.1 and 2.2). In addition, they have the advantage that can be generated for
all types of structures [146]. As example, Figure 2.2 shows the dispersion curves of one
aluminium plates as the described in the section: case studies. The dimensions of this plate are
250mm× 250mm× 2mm. In the Figure, the dispersion curves are labeled as S0, A0, S1, A1
and so forth, depending on whether the mode is symmetric or antisymmetric.
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Figure 2.2: Dispersion curves in an aluminium plate with traction free [114].

2.3 Principal Component Analysis (PCA)
Principal Component Analysis (PCA) is a technique of multivariable and megavariate analysis
[96] which may provide arguments for how to reduce a complex data set to a lower dimension
and reveal some hidden and simplified structure/patterns that often underlie it. It was devel-
oped by Karl Pearson in 1901 and integrated to the mathematical statistics in 1933 by Harold
Hotelling [123]. The goal of PCA is to discern which dynamics are more important in the
system, which are redundant and which are just noise. This goal is essentially achieved by
determining a new space (coordinates) to re-express the original data filtering that noise and
redundancies based on the variance-covariance structure of the original data. PCA can be also
considered as a simple, non-parametric method for data compression and information extrac-
tion, which finds combinations of variables or factors that describe major trends in a confusing
data set. Among their objectives it can be mentioned: to generate new variables that could ex-
press the information contained in the original set of data, to reduce the dimensionality of the
problem that is studied and to eliminate some original variables if its information is not rele-
vant. In order to develop a PCA model it is necessary to arrange the collected data in a matrix X.
This n ×m matrix contains information from m sensors and n experimental trials [124]. Since
physical variables and sensors have different magnitudes and scales, each data-point is scaled
using the mean of all measurements of the sensor at the same time and the standard deviation
of all measurements of the sensor. Once the variables are normalized, the covariance matrix Cx

is calculated as follows:
Cx =

1

n− 1
XTX (2.5)

It is a square symmetric m × m matrix that measures the degree of linear relationship within
the data set between all possible pairs of variables (sensors). The subspaces in PCA are defined



2.3. Principal Component Analysis (PCA) 15

by the eigenvectors and eigenvalues of the covariance matrix as follows:

CxP̃ = P̃Λ (2.6)

where the eigenvectors of Cx are the columns of P̃ and the eigenvalues are the diagonal terms of
Λ (the off-diagonal terms are zero). Columns of matrix P̃ are sorted according to the eigenvalues
by descending order and they are called as (by some authors) Principal Components of the
data set or loading vectors. The eigenvectors with the highest eigenvalue represents the most
important pattern in the data with the largest quantity of information. Choosing only a reduced
number r < n of principal components, those corresponding to the first eigenvalues, the reduced
transformation matrix could be imagined as a model for the structure. In this way, the new
matrix P (P̃ sorted and reduced) can be called as PCA model. Geometrically, the transformed
data matrix T(score matrix) represents the projection of the original data over the direction of
the principal components P:

T = XP (2.7)

In the full dimension case (using P̃), this projection is invertible (since P̃P̃
T

= I ) and the
original data can be recovered as X = TP̃

T
. In the reduced case (using P), with the given T, it

is not possible to fully recover X, but T can be projected back onto the original m-dimensional
space and obtain another data matrix as follows:

X̂ = TPT = (XP)PT (2.8)

Therefore, the residual data matrix (the error for not using all the principal components) can be
defined as the difference between the original data and the projected back.

E = X− X̂ (2.9)

E = X− XPPT (2.10)

E = X(I− PPT ) (2.11)

To perform PCA is simple in practice through the basic steps [124]:

1. Organize the data set as an n ×m matrix, where m is the number of measured variables
and n is the number of trials.

2. Normalize the data to have zero mean and unity variance.

3. Calculate the eigenvectors - eigenvalues of the covariance matrix.

4. Select the first eigenvectors as the principal components.

5. Transform the original data by means of the principal components (projection).
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2.4 Damage detection indices based on PCA
PCA is a well known statistical technique that has been used as a pattern recognition technique
by several years with excellent result. Its use allows to obtain pattern that often underlie from
the data by calculating the principal components and re-expressing the information in a new
space. In this thesis, PCA allows to define patterns from the structure when it is known as
healthy to define the baseline by each actuator phase as will be shown in the following chapters.

A comparison between dynamical responses of the structure to analyze and a baseline
(pattern) allows to determine if exist some changes and, besides, whether these changes can
be considered as a damage or not. Transforming or projecting data from different states of the
structure by using PCA would permit an easy comparison between them. Sometimes these
projections are not enough and it is necessary the use of some statistical measurements that can
be considered as damage indices.

There are several kinds of fault detection indices [23]. Two well-known indices are
commonly used to this aim: the Q− index (or SPE − index), the Hotelling’s T 2 − statistic
(D − statistic). The first one is based on analyzing the residual data matrix X̃ to represent the
variability of the data projection in the residual subspace [124]. The second method is based on
analyzing the score matrix T to check the variability of the projected data in the new space of
the principal components.

There exist another types of indices reported in the literature as combined index (φ− index)
[198] and I2 − index [84], which have been used in control process and clinical studies. The
first one is a combination of the Q− index and T 2 − index and was proposed as a convenient
alternative for merging information from both into a single value [198]. The second one is used
in meta-analysis and can be interpreted as a percentage of heterogeneity. In a general way, it is
possible to define any index [23] in the form:

Index = xTMx (2.12)

where the column vector x represents measurements from all the sensors at a specific experi-
ment trial (a row of x). Matrix M is a m×m squared matrix and depends of the type of index
as follows:

Q− index = xTMQx = xT (I− PPT )x (2.13)

T 2 − index = xTMTx = xT (PΛ−1PT )x (2.14)

φ− index = (Q− index) + (T 2 − index) = xTMφx = xT (I− PPT + PΛ−1PT )x (2.15)

I − index = xTMIx (2.16)

where:

MI =

{
0, for Q≤(k-1);
Q−(k−1)

Q ∗ 100%, for Q>(k-1).
(2.17)
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2.4.1 Contribution analysis based on PCA
All the indices presented in the previous section can determine whether there are damages and
distinguish between them. However, they do not provide more useful information. Contribution
analysis tries to find which variable or variables are the responsible of this distinction. The main
idea is to calculate the contribution of each sensor to each index.
In general, any index can be decomposed in the form:

Index =
n∑
j=1

(Contributions) (2.18)

where n is the number of sensors

According to [23], five methods can be used for fault detection in process monitoring. In
this thesis, these methods are used for damage localization in structures. These methodologies
are used to calculate the contribution of each sensor to each index in each experiment test. In
this way, it is expected that the damage is located between the actuator and the sensor that
contains the largest contribution.

1. Complete Decomposition Contributions (CDC)
Complete Decomposition Contributions, also called contribution plots by some authors,
are well known diagnostic tools for fault identification in processes [123]. In each index
indicate the significance of the effect of each variable on the index. In general, this is
based on the idea that the variables with the largest contribution to the damage detection
index defines the presence of abnormalities. The contribution of the variable (or sensor) j
to the index is defined as:

Index = xTMx = ‖M
1
2 x‖2 (2.19)

Index =
n∑
j=1

(ξTj M
1
2 x)2 =

n∑
j=1

CDCIndex
j (2.20)

CDCIndex
j = xTM

1
2 ξjξ

T
j M

1
2 x (2.21)

where ξj is the jth column of the identity matrix.

2. Partial Decomposition Contributions (PDC)
This method decomposes a damage detection index as the summation of variable contri-
butions.

PDCIndex
j = xTMξjξ

T
j x (2.22)

3. Diagonal Contributions(DC)
The diagonal contribution remove the cross-talk among variables. The DC is defined as:

DCIndex
j = xT ξjξTj Mξjξ

T
j x (2.23)
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4. Reconstruction Based Contributions (RBC)
The Reconstruction-Based Contribution [22] is an approach that uses the amount of re-
construction of a damage detection index along a variable direction as the contribution of
that variable to the index. The RBC is defined as:

RBCIndex
j = xTMξj(ξ

T
j Mξj)

−1ξTj Mx (2.24)

RBCIndex
j =

(ξTj Mx)2

(ξTj Mξj)
(2.25)

5. Angle-Based Contributions (ABC)

ξj = M
1
2 ξj (2.26)

x = M
1
2 x (2.27)

The ABC of Variable j is the squared cosine of the angle between

ABCIndex
j = (

ξTj x
‖ξj‖‖x‖

)2 =
(ξTj Mx)2

ξTj MξjxTMx
(2.28)

ABCIndex
j =

RBCIndex
j

Index(x)
(2.29)

Table 2.2 summarizes the contributions obtained by the above 5 methods to the four in-
dices(Equations 2.21-2.29).

Q T 2 φ I2

CDC xTM
1
2
Qξjξ

T
j M

1
2
Qx xTM

1
2
T ξjξ

T
j M

1
2
Tx xTM

1
2
φξjξ

T
j M

1
2
φx xTM

1
2
I ξjξ

T
j M

1
2
I x

PDC xTMQξjξ
T
j x xTMT ξjξ

T
j x xTMφξjξ

T
j x xTMIξjξ

T
j x

DC xT ξjξTj MQξjξ
T
j x xT ξjξTj MT ξjξ

T
j x xT ξjξTj Mφξjξ

T
j x xT ξjξTj MIξjξ

T
j x

RBC
(ξTj MQx)2

(ξTj MQξj)

(ξTj MT x)2

(ξTj MT ξj)

(ξTj Mφx)2

(ξTj Mφξj)

(ξTj MIx)2

(ξTj MIξj)

ABC
RBCIndex Q

j

xTMQx
RBCIndex T

j

xTMT x
RBCIndexφj

xTMφx
RBCIndex I

j

xTMIx

Table 2.2: Damage diagnosis methods.

According to [23] it is possible to group CDC and PDC in General Decompositive Contri-
butions.

The complete and partial decomposition can be defined as special cases of this formulation.
The General Decomposition Contribution (GDC) is defined as:

GDCIndex
j = xTM1−βξjξ

T
j Mβx, 0 ≤ β ≤ 1 (2.30)

When β = 0 PDC = GDC as is shown in the equations 2.31 -2.34.

GDCIndex
j = xTM1−0ξjξ

T
j M0x (2.31)
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GDCIndex
j = xTM1ξjξ

T
j (I)x (2.32)

GDCIndex
j = xTM1ξjξ

T
j x = PDCIndex

j , (2.33)

When β = 1:
GDCIndex

j = xTM1−1ξjξ
T
j M1x, ifβ = 1 (2.34)

Here, I = Σ(j = 1)nξjξ
T
j , then is possible to reorganize the equation to obtain:

GDCIndex
j = xTMξjξ

T
j x = PDCIndex

j (2.35)

In the same way, when β = 1
2

is possible to obtain CDC.

GDCIndex
j = xTM1− 1

2 ξjξ
T
j M

1
2 x (2.36)

GDCIndex
j = CDCIndex

j (2.37)

Since ABC is a scaled version of RBC, it is possible to use RBC as a general case for both
diagnosis methods.

2.5 Independent Component Analysis (ICA)
Independent Component Analysis is a statistic technique whose objective is to decompose a
data set X into factors by searching for components which are as statistically independent as
possible and not only uncorrelated, i.e. the values of one component provide no information
about the values of other components. This is a stronger condition than the pure non-correlation
condition in PCA, where the values of one component can still provide information about the
values of another component in case of non-Gaussian distributions [152]. In general terms, ICA
can be expressed as

X = AS (2.38)

where X is a n × m matrix that contains n observations in m variables, A is a n × r mixing
matrix with r statistically independent sources and S is the Independent Component matrix with
dimensions n× r , where each column is the vector of latent variables of each original variable.
Since A and S are unknown, it is necessary to find these two matrixes considering that only
the X matrix is known. The ICA algorithm finds the independent components by minimizing
or maximizing some measure of statistical independence [88]. To perform ICA, the first step
includes the application of pre-whitening to the input data X. The main idea is to use a linear
transformation to produce a new data matrix Z=VX whose elements are mutually uncorrelated
and their variances equal unity. A popular method to obtain the whitening matrix V is by means
of Singular Value Decomposition (SVD), such as the one used in Principal Component Analysis
(PCA). To perform PCA, as was explained in the Section 2.3, the first step is to calculate the
covariance matrix as follows:

Cx =
1

n− 1
XTX (2.39)
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It is a square symmetric m × m matrix that measures the degree of linear relationship within
the data set between all possible pairs of variables (sensors). The subspaces in PCA are defined
by the eigenvectors and eigenvalues of the covariance matrix as follows:

CxP̃ = P̃Λ (2.40)

where the eigenvectors of Cx are the columns of P̃ and the eigenvalues are the diagonal terms of
Λ (the off-diagonal terms are zero). Columns of matrix P̃ are sorted according to the eigenvalues
by descending order. Choosing only a reduced number of eigenvalues the data reduction can be
performed. Now, it is possible to express the PCA transformation [199] as follows:

X̃ = Λ−1P̃TX (2.41)

where X̃ is the data obtained by the projection in the PCA model. In this way, the whitening
transformation (V) corresponds to:

V = Λ−1P̃
T

(2.42)

and Z can be calculated as:
Z = Λ−1P̃

T
X (2.43)

The second step is to define a separating matrix W using the the fixed-point algorithm to trans-
form the matrix Z to the matrix S whose variables are non-Gaussian and statistically indepen-
dent:

S = WTZ (2.44)

There are several approaches to reach this goal. Maximizing the non-Gaussianity of WTZ
give us the independent components. On the other hand, minimizing the mutual information
between the columns of WTZ is equal to minimize the dependence between them. The non-
Gaussianity can be measured by different methods, kurtosis and negentropy being the most
commonly used. From this step, the W and S matrix are obtained. Finally, to calculate the
mixing matrix A, equation (2.38) can be used.

2.6 Self-Organizing Map (SOM)
A Self-Organizing Map (SOM) is a special kind of Artificial Neural Network (ANN) convert-
ing the relationships between high-dimensional data into simple geometric relationships of their
image points on a low dimensional display [101]. This type of network has the special property
of generating one organized map in the output layer based on the inputs allowing the group-
ing of the input data with similar characteristics into clusters. To do that, the SOM internally
organizes the data based on features and their abstractions from input data. In order to aid
the user in understanding the cluster structure, additional visualization techniques such as the
U-Matrix [179], cluster connections [121], or local factors [98] have been developed. In par-
ticular, these maps have been used in practical speech recognitions, robotics, process control,
and telecommunications, among others [103]. In general, the SOM works by assigning weights
to each relation between the input data and the each cluster in the map. The SOM algorithm
starts working with a random initialization of these weights. The training is done by comparing
the input data set with the weight vectors calculating their Euclidean distance in order to find
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Figure 2.3: Elements in a Self Organizing Map.

the best matching unit (BMU). The updating process takes into consideration a neighbourhood
set Nc around the cell mBMU , and by each learning step just the cells within Nc are updated (
Figure 2.3). This updating process is defined by equation (2.45).{

mi(t+ 1) = mi(t) + α(t)(x(t)−mi(t)) if i ∈ Nc(t)

mi(t) if i /∈ Nc(t)
(2.45)

where t denotes current iteration,mi is the current weight vector, x is the target input vector, and
α(t) is a scalar called adaptation gain which is between 0 and 1, and it is reduced by each time.
Finally, each incoming dataset could be presented to the map followed by the updating process
or all datasets are compared to the map before executing any updating. These methods are
known as the sequential and batch algorithms, respectively. After the training phase, different
groups will normally form in the map which can be distinguished according to their location on
the map. The U-Matrix, showing the average distance of a cell to its neighbouring cells, can be
used to depict the difference between the groups. The U-Matrix will normally contain visible
boundaries separating the different groups providing an idea of the extent of their difference.
The training algorithm used here is implemented in a Matlab-Toolbox created by [180].

2.7 Discrete Wavelet Transform
Wavelet analysis has proved to be a powerful tool in areas dealing with the analysis of transient
signals. The concept of wavelet analysis is not new and has been the scope of considerable re-
search over the past 30 years. The wavelet transform is a linear transformation that decomposes
a given function x(t) into a superposition of elementary functions derived from an analyzing
wavelet by scaling and translation [34]. The continuous wavelet transform (CWT) is defined as

W (a, b) =
1√
a

∫ ∞
−∞

x(t)ϕ∗
(
t− b
a

)
dt (2.46)

where a is the dilation or scale parameter, b is a translation indicating the time locality, ϕ is the
analysing mother wavelet and the asterisk superscript denotes complex conjugation. It is well
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known that the CWT is a highly redundant transformation representation. However, the dis-
crete wavelet transform (DWT), on the other hand, provides sufficient information for both the
analysis and synthesis of the original signal with a significant reduction in the computation time
[191]. Loosely speaking, the variability of the given function at a specified time and scale is rep-
resented by the transformation coefficients. In other words, each wavelet coefficient represents
time and frequency information of the regarded signal. The DWT analysis can be performed
by means of a fast, pyramidal algorithm related to a two-channel subband coding scheme us-
ing a special class of filters called quadrature mirror filters as proposed by Mallat [116]. In
this algorithm, the signal is analyzed at different frequency bands with different resolution by
decomposing the signal into a coarse approximation and detail information. This is achieved
by successive high-pass and low-pass filtering of the input signal. One of the most important
advantage of DWT is the ability to compute and manipulate data in compressed parameters
which are often called features [178]. The extracted wavelet coefficients give a compact rep-

Figure 2.4: DWT Decomposition Tree.

resentation that shows the energy distribution of the structural dynamic responses in time and
frequency [166]. The optimum number of level decompositions could be determined for exam-
ple based on a minimum-entropy decomposition algorithm [45]. Figure 2.4 shows the structure
of decomposing the signal and the corresponding frequency bandwidths for the details (Di) and
approximations (Ai). The approximations represent the high-scale, low-frequency components
of the signal. The details are the low-scale, high-frequency components. The frequency fmax
represents the maximum frequency contained in the recorded signal and n is the decomposition
level. The approximation and details coefficients can be calculated as follows:

An,k = 2−n/2Σj
i=1x(i)γ(2−nj − k) (2.47)

Dn,k = 2−n/2Σj
i=1x(i)ϕ(2−nj − k) (2.48)

where γ is called the scaling function, j is the number of discrete points of the input signal,
n and k are considered to be the scaling (dilation) index and the translation index, respectively.



2.8. Remarks and conclusions 23

Each value of n allows analyzing a different resolution level of the input signal. Scaling
functions are similar to wavelet functions except that they have only positive values and are
designed to smooth the input signal [115],[116]. It can be seen from the Figure 2.4 that the
DWT allows the decomposition of the input signal into several resolution scales. The idea
behind is to analyze the signal at different resolutions, i.e. coarse resolution to get a general
signal representation and fine resolution to get specific details [116].

2.8 Remarks and conclusions
This chapter has shown a brief description of waves in solids in order to introduce the concept
of Lamb Waves and its vibration modes. Also it has been briefly described the use of the
dispersion curves to represent the dispersive nature of the lambwaves including an application
in an aluminium plate. The chapter has also given a brief description of the methods that will
be used in the methodologies developed in this thesis. As will be shown in the next chapter,
each of these methods have been used separately and there is no references that show their use
together as is developed in this thesis for damage detection, localization and classification.





Chapter 3

A REVIEW OF STRUCTURAL HEALTH
MONITORING AS PATTERN
RECOGNITION

3.1 Introduction

The problem of structural monitoring can be tackled from different points of view. Some
authors have built physical models to describe the characteristics of the structure. In this
kind of approaches, a high-fidelity model of the structure is required to perform a reliable
damage identification. On the other hand, other authors use techniques based on data gathered
by experiments or by numerical simulations. These approaches usually require a statistical
model representation of the system to perform the structural state analysis [188]. In this
case, the system do not use physical models and the problem of damage identification can be
approached as a pattern recognition application, where some features of the collected signals
are used as pattern. In general, it exploits the fact that the vibrational response of a damaged
and undamaged structure are different. In this way, if some defect exists in the structure, its
vibrational response will change and these changes can be analyzed.

Several reviews have been carried out in Structural Health Monitoring (SHM). Among
them, in 2005, Fritzen presented an overview of the developments of vibration based methods.
The next year, Chang et al. [42] presented a review of SHM for civil infrastructures. Also in
2006, Lynch and Loh presented a summary review of wireless sensors and sensor networks
[113]. Farrar and Worden [57] in 2007 performed a brief historical review of SHM technology
development. The same year Brownjohn [39] presented a review of SHM applications to
various forms of civil infrastructure including a discussion about the damage diagnosis proce-
dure in terms of instrumentation, data acquisition, communication systems and data mining.
The next year, Ciang et al. [43] presented a review focused in damage detection methods for
a wind turbine system. In 2010, Mujica et al. [126] performed a review of impact damage
detection in structures using strain data which included sensors, specimens and impact sources
used for developing and testing strategies. Recently, in 2011 Fan and Qiao [53] presented a
review and comparative study of vibration-based damage identification methods. The review
included methods based on modal parameters, natural frequencies, mode shapes as well as
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curvature/strain mode and shape-based methods. These reviews have proved that the interest in
the development of algorithms and methodologies in SHM have been growing. As result of this
interest, SHM has been applied in different areas that include applications in civil, aeronautics
and astronautics structures. Many works has been reported for more than three decades [42]
with excellent results, for instance, tests in bridges ([31], [108], [145], [99], [137]), buildings
([70], [153]), wind turbine blades ([140], [51]) and other structures ([80], [131], [158], [93]).

This review, provide in Section 3.2 a brief overview of the SHM levels ([148]) in order to
show from a general point of view the wide range of methods and applications developed in
SHM. Later on, in Section 3.3 the review is focused on approaches using data driven methods
and specifically in pattern recognition applications. In this step, special sections are devoted to
the literature review of statistical approaches including Principal Component Analysis (PCA)
and Independent Component Analysis (ICA). Particular emphasis has been placed on these
two techniques because they are the most involved in the methodologies developed in this thesis.

3.2 Brief review of the Structural Health Monitoring levels
As was mentioned in the introduction, SHM includes different levels starting by the detection of
the damage and following with the localization, classification, identification and the prognosis
of damages (prediction) [188]. This section is organized according to these levels in order to
show some of the applications that have been developed at each level in different fields.

3.2.1 Damage detection
The damage detection corresponds to the first level in SHM, whose goal is to detect defects or
damages in structures when they are still in their nascent state using non-destructive techniques
and algorithms. As was previously introduced, the damage can be defined as changes in the
structure when it is compared with a baseline obtained from the structure in a healthy state.
These changes include variations in the material or in the geometric properties.

The need of damage detection a damage to prevent an accident is an essential factor to en-
sure the proper work of a structure in service. There are many applications in different areas but
it is necessary to note that in some areas as aeronautical and aerospace engineering is very im-
portant the continuous monitoring of the structural health to guarantee its proper performance.
Probably, the use of SHM in these two areas is more important than the applications in others
areas due that normally in areas as civil engineering some damages are really dangerous when
they start to have a considerable size. In aeronautical and aerospace engineering, some damages
that are imperceptible when are subjected to extreme changes in their working conditions
can cause catastrophes. In the aeronautical industry, for instance, the majority of inspections
are performed visually [38],[126]. However, many research groups around the world are
focusing efforts to develop techniques that allow the inspection of structures in service. These
investigations are focused on developing techniques for making the best detection of the dif-
ferent possible damages. Some developments at the damage detection level are reviewed below:
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In 1992, Kudva et al. [104], in 1993 Gunther et al. [79] and Hahn et al. [82], Sirkis et al.
[156] in 1994 and Schindler et al. [151] in 1995 worked on impact damage detection by using
advanced signal processing with Artificial Neural Networks (ANN).
Friswell et al. [65] in 1998 used a genetic algorithm for damage detection in vibration based
data in order to identify the position of one or more damage sites in a structure and to estimate
the extent of the damage at these sites. In the same year, Yap and Zimmerman [196] used
genetic algorithms for damage detection. In difference with the classical coding of the genetic
algorithm, this work proposed the use of two coding enhancement strategies.

In 2001, Ganguli [69] showed a fuzzy logic system for health monitoring of a helicopter
rotor blade when this is on ground. The rules of the fuzzy system were defined in order to
define four different levels of damages in the output. The measurements used were the first
four flap (transverse bending) frequencies of the rotor blade.

Hao and Xia [83] in 2002 used a genetic algorithm with real number encoding to identify
the structural damage by minimizing the objective function, which directly compares the
changes in the measurements before and after damage. They used three different criteria,
namely, the frequency changes, the mode shape changes and a combination of both. This
methodology was tested in a cantilever beam and a frame. The same year, Staszewski et
al. [163] used passive acousto-ultrasonic sensors to impact damage detection in composite
structures. In this work, a study of different signal processing methods for passive damage
monitoring is performed.

In 2004, Sun et al. [167] presented a methodology to classify some statistics patterns using
the wavelet packet transform (WPT). The vibration signal collected from the structure were
decomposed into wavelet packets. Later on, the signal energy of the packets were calculated
and ordered according to the magnitudes. The most important magnitudes were considered and
the rest were rejected, using these magnitudes and defining some thresholds and confidential
limits to detect abnormal behaviors the damage detection was performed. This methodology is
tested in a beam and four damage cases were applied involving line cuts of different severities
in the flanges at one cross section.

In 2006, Menéndez et al. [120] used an active piezoelectric system and Fibre Bragg Grating
(FBG) to detect de-bonding of subcomponents in monolithic composite parts. In the method-
ology, the power spectrum was used to find the damage. In the piezoelectric active system the
maximum of amplitude of every piezoelectric sensor is used in order to measure the energy loss
of the input pulse. The same year, Fernández et al. [62] performed a comparison between the
use of FBG and piezoelectric sensors for damage detection. To do that, the Hankel matrix is
used to obtain the damage indicator values. They proposed as alternative the use of a combined
hybrid piezoelectric/FBG sensors. Wildy et al. in 2007 [185] proposed a passive method of
damage detection based on the concept of strain field. Huang et al. in 2008 [87] used acous-
tic emission in thin glass/epoxy composites plates in order to detect damages. The same year,
Mujica et al. [134] used a hybrid methodology which combined Case Base Reasoning (CBR),
wavelet transform and Self Organizing Maps (SOM) in order to detect impact damages in a
wing flap. Piezoceramic sensors attached over the surface of the flap in order to collect time
varying strain response data were used.
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In 2009 Chandrashekhar et al. [40], applied a fuzzy logic system with a sliding window de-
fuzzifier using modal curvatures for damage detection. The methodology fuzzified the changes
due to a damage in modal curvature using Gaussian fuzzy sets and mapped to damage loca-
tion and size. This methodology was applied to a cantilever beam. Recently, Dervilis et al.
[47], presented a scheme for damage detection in carbon fiber materials using novelty detection
methods. These methods were applied to FRF measurements from a stiffened composite plate
which was subjected to incremental levels of impact damage.

3.2.2 Damage localization
The localization of damages is the next task after damage detection. Its complexity depends on
the structure, the type of sensors and their distribution. Some of the most common strategies
for the location of damages include triangulation processes [126]. According to Salehian
[150], three sensors are enough for determining impact location for isotropic materials, but in
anisotropic materials as composite materials these approaches must be different [126]. Other
researches have combined different strategies combined with the processing of sensor data for
locating damages. Some of them are discussed below.

Staszewski et al.[165] and Worden and Staszewski[190] in the year 2000, used ANNs as
regressor to predict the impact location and energy in composite materials. The approach used
a multilayer perceptron which was trained with experimental data using back propagation.
Additionally, these works presented the combined use of the genetic algorithms and ANN to
find near-optimal sensor distributions for damage detection.

In 2001, Chou and Ghaboussi [44] presented a methodology based on genetic algorithm
which uses static measures of displacement for damage localization. In 2003 Coverley and
Staszewski [46] showed a methodology for damage locating using triangulation methods and
genetic algorithms. In [76] Gorinevsky et al. presented the design as a subsystem to the Inte-
grated Vehicle Health Management (IVHM) system of an aircraft. This system used SMART
Layerr sensors from Acellent Technologies. Using the signals obtained from the sensors, the
mean signal amplitude was calculated and compared with the scatter signal to obtain a damage
Index for each actuator-sensor path. Using these values they obtained a representation of the lo-
cation structural changes and one measure of the damage size. In 2010 Mujica et al. [130] used
Principal Component Analysis and some statistic indices to localize different damages using
contribution plots in an aircraft turbine blade. Recently, Hackmann et al. [81] in 2012, pre-
sented a holistic approach for damage localization which integrated a decentralized computing
architecture using wireless sensor networks. In the approach the damage localization algorithm
used post-processed natural frequency data.

3.2.3 Damage classification
The damage classification corresponds to the level which, according to some characteristics
obtained from the structure in different structural states and some algorithms, a classification
of each state can be performed according to its features. In general, a typical classifier is used
to define which damage is present in the structure. Some examples are shown below.
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Using a combination of time series analysis, neuronal networks and statistical inference
techniques, Sohn et al. in 2002 [159] classifies damages under environmental changes. First, an
AR-ARX model is developed in order to extract damage-sensitive characteristics, then a neural
network was used to normalize the data and to separate the effect caused by the environmental
changes. Finally, a sequential probability ratio test was performed to define the state of the
system. The methodology was tested using a numerical example of a computer hard disk and
an experimental study of an eight degree-of-freedom spring-mass system.

In 2007 and 2008 Mujica et al. [125], [134] used Wavelet Transform in a hybrid method-
ology to detect, quantify and localize damages. This methodology used the wavelet transform
in order to extract different characteristics from the measured signal and subsequently apply
a neural network to classify the damages. In 2008, Zhou et al. [202] proposed an algorithm
for the classification of structural damage based on the use of continuous hidden Markov
modeling (HMM) technique. It was used to model time-frequency damage features extracted
from structural data using the matching pursuit decomposition algorithm.

Many works have shown the usefulness of neural networks for classification [33]. For
instance, clustering algorithms based on Self-Organizing Maps -SOM- (attempting to organize
feature vectors into clusters) have been used for the classification of acoustic emissions
[195][74] and for active sensing damage classification [170].

Dua et al. [52] in 2001 used an ANN with backpropagation algorithm and finite element
analysis (FEA) to classify impacts on composite plates. A 503,10,3 ANN was used for training
and simulating the data: 503 elements in the input layer which are excited by strain profiles
obtained from FEA, 10 neurons in the hidden layer and 3 neurons in the output layer. A total
of seven classifications groups were performed inspecting the composite plates and the kinetic
energy of the falling mass. This classification was coded using Gray Code.
In 2006 Kolakowski et al. [102] presented two approaches for damage identification. One of
them was based on Virtual Distortion Method (VDM). The other methodology involved the use
of Case Based-Reasoning (CBR) applying wavelet transform in order to extract features and
reduce the variables to introduce into a Self-organizing Map (SOM) for damage identification.
These techniques were tested in an aluminum beam. In 2007, Bakhary et al. [33] applied a
two-stage ANN system for damage location and damage severities. In the first stage an ANN
is used to identify the substructures with damage and the secondary ANN identify the damaged
elements and its severity. Inputs in the first ANN were modal frequencies and mode shapes of
the full structure and the outputs were modal frequencies of substructures, these were the inputs
to the second ANN where the final analysis to locate the damage was performed. For testing
the approach, a numerical example was used which consisted of a two-span concrete slab. Do-
brzanski et al. [48] used a multilayer perceptron 9-6-5 for the classification of internal damages
in steel during creep services using metallographic images. Also in 2007 and 2008 Mujica et al.
[131], [134] presented a methodology to detect, quantify and localize damages and impacts in
several structures, among them a wing aircraft section and an aluminum beam. This methodol-
ogy used wavelet transforms to extract different characteristics from the collected signal and a
SOM to classify them. In 2008, Kabir et al. [97] presented an algorithm for damage classifica-
tion using a multilayer perceptron. The methodology included the use of analysis of texture of
surface deterioration using optical imagery in concrete structures. The dataset in the perceptron
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included three different datasets: spatial, spectral and a combination spatial-spectral dataset.
Iskandakari [91] in 2010 applied neural networks to classify composite structure conditions.
Resin injection molded (RIM) samples response to impact damage was carried out using low
frequency tapping, visual imaging, low temperature thermo imaging and tensile strength. Re-
cently, Zhou et al. [203] presented an artificial inmune pattern recognition (AIPR) approach for
the damage classification in structures. The approach included the development of an immune
learning algorithm and a ARX algorithm to compress the data.

3.2.4 Type and extent of damage
The knowledge of the type of damage is a task that provides information the severity of damage.
This is performed after the detection and localization and provides information on whether the
structure can still do its job or must be replaced. Some works related to the definition of the
type and the extent of damages are outlined next.

Mares and Surace [119] in 1996 presented a strategy based on genetic algorithms and
residual force method (modal analysis theory) to detect, quantify and obtain the extent of
damages in elastic structures. Friswell et al. [65] in 1998 used a genetic algorithm for damage
detection in vibration based data in order to identify the position of one or more damages in a
structure and to estimate their length. Hao and Xia [83] in 2002 used a genetic algorithm with
real number encoding to identify the structural damage by minimizing the objective function,
which directly compares the changes in the measurements before and after damage. They
used three different criteria, namely, the frequency changes, the mode shape changes, and a
combination of them. This methodology was tested in a cantilever beam and a frame.

In 2003, Mujica et al. [132] showed the use of Case Based Reasoning as tool for damage di-
agnosis. A wavelet transform was also used to obtain some characteristics and a Self-Organizing
Map (SOM) was used as method for handling the casebase. This methodology was tested in a
cantilever truss. The same year, Chang and Sun [41] proposed a novel structural condition index
for locating and quantifying structure damage based on Wavelet Packet Signature (WPS). This
year, Shan and King in 2003 [155] presented a methodology to locate impacts and estimate im-
pact magnitud on smart composites using fuzzy clustering for feature selecting and adaptative
neuro-fuzzy inference system for impact locating and magnitud estimating. In 2005 Mujica et
al. [131] extended the methodology presented in 2003 to define the severity and the dimension
of the damage. Recently in 2011, Gul and Catbas [78] presented a time series methodology to
detect, locate and estimate the extent of the structural changes. The approach used ARX models
which are obtained for different sensor clusters by using the free response of the structure. The
approach considered also to obtain the ARX model fit ratios or the ARX coefficients as damage
features.

3.2.5 Damage prognosis (DP)
Damage prognosis is the last level in SHM, which includes the quantification of the damage to
determine the useful lifetime remaining for the structure and the conditions to continue operat-
ing. The publications in these kind of applications are lesser in number than those existing for
damage detection. Below are some of them.
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Staszewski in 2000 [162] presented a discussion focused to extraction and procedures for
data pre-processing in pattern recognition procedures in order to obtain the diagnosis of loca-
tion and severity of damage. In 2003, Farrar et al. [58] presented an approach for damage
prognosis by integrating advanced sensing technology, data interrogation procedures for state
awareness, novel model validation and uncertainty quantification techniques, and reliability-
based decision-making algorithms. Later on, in 2007 Farrar and Lieven [55] presented some
general concepts of Damage Prognosis some of them are: the definition of the problem, the
motivation and the process of DP. Also a review of emerging technologies that will have an
impact on the damage prognosis process was included.
In 2010, Zhang et al. [201] presented an approach that included the use of flexible piezo paint
sensor and a probabilistic fracture mechanics based framework for on-line assessment and up-
dating of the remaining fatigue life of steel bridges.
In 2012, Ling and Mahadevan [111] presented a Bayesian probabilistic methodology to inte-
grate model-based fatigue prognosis with online and offline SHM data, considering various
sources of uncertainty and errors. The methodology was tested in a numerical example, consid-
ering the surface cracking in a rotorcraft mast under service loading.

3.3 Structural health monitoring using statistical methods
The previous section has shown a literature review on the different levels of SHM. Although an
extensive literature exists, just some of the most relevant works were cited. As was previously
mentioned, the paradigm of SHM can be considered as a pattern recognition problem [59].
The review presented hereafter discusses some works that approach the subject in this way, but
using statistical techniques. Special attention is paid to PCA and ICA since they are used in the
methodologies proposed in this thesis.

3.3.1 Principal Component Analysis (PCA)
PCA has been extensively applied to measured structural dynamic response signals with the
purpose of dimensionality reduction studies [118] [133], to distinguish between changes due to
environmental and structural damage [117] [193] and for sensor validation [100], among others.

Trendafilova et al. [177] in 2000 used Proper Orthogonal Decomposition (POD) which
is another way to call PCA. This was used in combination with parameter identification
to identify nonlinear parameters of a structure, minimizing the difference between the bi-
orthogonal decomposition of the measured and the simulated data. This methodology allowed
the identification of the Coulomb friction at the end of a beam. Zang and Imregun [200] used
frequency responses and ANN for detecting damages. In order to include the analysis of the
frequency responses, they used PCA to reduce the data size. In 2003, Boe et al. [37] applied
PCA for the diagnosis of damages using vibrational responses. With the data from piezoelectric
sensor distributed in the structure it was possible to define the possible localization of the
damage. Authors also declared that this methodology can be used with other kind of sensors
as accelerometers. The same year, Sophian et al. [161] used PCA for feature extraction in the
response obtained from the application of Eddy current in two aluminum samples. In 2004,
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Nitta et al. [135] presented a two-stage-based methodology for detecting how the reduction in
story stiffness of damaged building is. POD was used to estimate the modal vector of a structure
in order to detect and locate damages. In the second step, a methodology for quantifying the
damage was carried out by means of system identification of subsystems. Golinval et al. [75]
used PCA and vibration-based signal for damage detection and localization in structures. The
excitation was generated by an electro-dynamic shaker, acelerometers were used as sensors.
The approach included the use of the angle between subspaces in the PCA subspace. In 2005
Yan et al. [193] [194] proposed a methodology for structural damage diagnosis which included
a two step-procedure, first, a clustering of the data space into several regions was performed.
Later on, PCA was applied in each region for damage detection. Galvanetto et al. in 2007 [68]
and after in 2008 [67] used POD for damage detection and localization based on vibrational
responses from the structures using accelerometers. The collected data were used to compare
the proper orthogonal modes of the undamaged structure and those of the damaged structure.

In 2008 Mujica et al. [129] explored the use of PCA with T 2 and Q-statistics in order to
detect and distinguish damages in structures. In this case, a PCA model was built for each ac-
tuator and the analysis of each model was performed in an individual form. This methodology
was tested in an aircraft turbine blade using piezoelectric transducers. In the same year, Mu-
jica et al. [133] presented another work that demonstrated the use of PCA, MPCA (Multiway
PCA), PLS (Partial Least Square) and MPLS (Multiway PLS) to localization of damages in
a part of a commercial aircraft wing flap. It includes also the use of Case-Based Reasoning.
Xu et al. developed an enhanced sensor fault detection, diagnosis and estimation strategy for
centrifugal chillers combining Wavelet analysis and PCA [192]. In 2009, Gryllias et al. [77]
presented a two-step approach for crack detection in beam structures, which includes in a first
step the extraction of Proper Orthogonal Modes (POMs) of a beam using Proper Orthogonal
Decomposition. Later on, morphological processing using four operators (dilation, erosion,
opening, closing) are applied for processing the POMs. Mujica et al. [127] included the effects
of changes in the temperature to the damage detection methodology by using PCA, T 2 and Q-
statistics. In 2010, Torres et al. used the Discrete Wavelet Transform (DWT) in combination
with Hierarchical Non-linear Component Analysis in order to create the feature vectors from
structural dynamic responses for the training of a Gaussian process for the purpose of impact
identification and for acoustic emission denoising [28][26]. In 2011, Salehi et al. [149] pro-
posed two damage detection techniques based on POD. The first approach used time responses,
where POD was applied for reducing data. The second method was based on Frequency Re-
sponse Functions (FRFs) where spatio-spectral FRF shape data were decomposed by means of
POD. Recently, in 2012 Kullaa [95] showed an approach for damage detection and localization
by modelling the sensor network as a Gaussian process and performing the generalized like-
lihood ratio test. In this study the discrimination between environmental, operational effects,
sensor faults and structural damage was considered. PCA was used for reducing the dimension-
ality and using the maxima and the minima of the first principal component scores, the Extreme
Value Statistics (EVS) was used to define the thresholds and define a damage. Hot et al. [86]
compared two methodologies for detection of non-linearity based on time responses of a me-
chanical structure. In the methodologies, first, the Singular Value Decomposition of the time
response matrix is calculated and later on the principal angle and the residual projection error
between subspaces are calculated and compared.
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3.3.2 Independient Component Analysis (ICA)

ICA is a technique also used in multivariate data analysis like PCA where the original data are
redefined using statistically independent random vectors.

In 2004 Zang et al. [199] combined data extraction in time domain using ICA and
neural networks. The methodology applied ICA to the time history measurements in order
to calculate the mixing matrix. This matrix represented the vibration features to build a
neural network model for damage detection. This methodology was tested in a numerical
model of a truss structure and a bookshelf structure, where 24 acelerometers were used to
gather the data. The next year, [160] presented an approach that includes the use of ICA
and Support Vector Machine (SVM) to identify types and levels of structure damages. The
approach applied ICA to the input data in order to calculate the independent components and
use them as input data for a SVM classifier. Ren et al.[143] in 2009 used FastICA based on
negentropy to extract and separate the vibration signal caused by human activity in transmission
towers for SHM. Using combined empirical mode decomposition technique with the adapta-
tive threshold method, the vibration pulses were extracted and the interference signals removed.

In 2011, Wang et al. [181] used constrained-ICA to extract desired faulty signal using some
prior mechanical information as reference. The constrains were defined as pulses or square
waves as reference signal from faulty states as shock sequence, inner race fault of the rolling
element bearing, etc. In 2012, Loutas et al. [112] presented an approach to detect and locate
damages in aerospace structures. The approach used dynamic strain measurements from four
fiber bragg grating which were preprocessed using Discrete Wavelet transform to calculate the
spectral density estimation and after used the Fast Fourier Transform to evaluate and, compute
an average over all segments. ICA is used for the reduction of feature space and the final
analysis was performed by using Support Vector Machines. The system was developed and
tested on a flat stiffened composite panel. Damage was simulated by slightly varying the mass
of the panel in different zones of the structure by adding lumped masses.

3.3.3 Other approaches

In 1998, Farrar et al. [54] showed the results of applying different methodologies such as:
damage index method, mode shape curvature method, change in flexibility method, change in
uniform load surface curvature and change in stiffness method, to the Bridge I-40 from Rio
Grande in Albuquerque. In all the methods, the identification of a damage using data from the
structure with and without damage is performed. They showed that all studied methods are
successfully locating the most severe damage but does not if a minor damage is presented. They
also concluded that the damage index provides better results when all the tests are included.

Worden et al. [189] in 2000, performed a study of a statistical method for detecting
defects based on the Mahalonobis distance. In this methodology, signal deviations from
normal conditions were used to detect damages using outlier analysis in order to indicate the
deviation from the norm. The method was applied in four case studies: a simulation, two
pseudo-experimental and one experimental. In 2001 and later in 2002, Sohn et al. [158], [157]
applied two pattern recognition techniques based on time series analysis to data obtained from
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two different structural conditions of a fast patrol boat. The first technique was based on an
analysis of two-stage series that combines a predictive model autoregressive (AR) and other
auto-regressive with exogenous input (ARX). The second technique used an analysis of outliers
by means of the Mahalanobis distance measure. Both techniques allowed to distinguish the
data obtained from the different structural conditions. In 2003, Lei et al. [109] used time series
analysis of vibration signals in order to consider the influence of the variability of excitation and
the orders of the ARX model prediction on the originally extracted damage-detection feature.
To determine the existence of damage, the residual error was obtained by comparison of the
signals from the structure under test with the structure without damage. The applicability of the
modified approach was investigated by using different acceleration responses generated with
different combinations of finite element structural models. Iwasaki et al. in 2004 [92] proposed
a diagnostic method for the damage that does not require data from the damaged structure. This
method used system identification and statistical similarity test of the identified system using an
F-test. This methodology was tested in a beam of composite material. Woo and Sohn [187] in
20006 used EVS (extreme values statistics) for damage detection in structures. This detection
is the comparison of data from a structure under test with the healthy structure. To perform the
detection, the tails of the distributions were analyzed to identify irregularities. In 2007, Park et
al. [139] presented a modified autoregressive model with exogenous inputs (ARX) in frequency
domain constructed from the measured impedance data to diagnose structural damage with
statistical confidence levels. Also a review of the methods developed in impedance-based
SHM were included. The authors presented a study to demonstrate how this experimental
techniques can be used to detect structural damage in real time. Methods of signal processing
and compression of data associated with the impedance method were showed. Moreover,
Fassois and Sakellariou [61] performed a review of the principles and methods of time series
analysis for detection, identification and estimation of damages. Similarly, they present new
methods based on time series, these methodologies are tested on 3 stages: a panel plane, a
skeleton at a plane and, a simulated nonlinear structure. In 2008, Wang et al. [182] used an
AR model based in vibrational responses. The coefficients of these AR models were extracted
to make a set of multivariate data known as vibration response data characteristics, and then
Hotelling’s T 2 control chart was applied to monitor these characteristics. The methodology was
demonstrated by numerically simulated acceleration time histories based on a progressively
damaged reinforced concrete (RC) frame, either with or without addressing the autocorrelation
in the characteristics data. Later on, in 2009 [60] they showed again the benefits of using
statistical time series for detecting damages in a time-varying arm, ie an arm that can change
its length.
Azarbayejani et al. [30] in 2008 and 2009 [29] presented a probabilistic approach in order to
identify the optimal number of sensors to localize damages. This work involved the use of a
neural network to establish the probability distribution, and therefore, to identify the optimal
localization of sensors to damage detection.

Mujica et al. [128] in 2009 applied Multiway Partial Least Square (MPLS) as a regression
tool to estimate the location of impacts on an aircraft wing. In this work, 574 experiments were
collected hitting the wing at the surface and receiving signals from nine sensors. The same
year, Bornn et al. [105] proposed to model the vibration data obtained from sensors using a
nonlinear time series model by means of support vector machines (SVM), and therefore, to
identify the different sensors that are more influenced by structural damage. In the same year,



3.3. Structural health monitoring using statistical methods 35

Leao et al. [107] compared different techniques to monitor the health state of aircraft flap
and slat systems. They applied T 2 and Ranger U2 statistics based on measurements of motor
command current and operational conditions.

Another approaches include the use of Bayesian models. For instance, in 2010, Lombaert
et al. [125] used Bayesian Finite Element (FE) model updating for damage identification of a
full-scale seven-story reinforced concrete building which was tested using a shake table. The
same year, Papadimitriou et al. [138] used a Bayesian model class selection and updating
framework for damage identification and quantification. Flynn and Todd [63] presented an
approach that include a Bayesian experimental design. It approach included five steps: evaluate
risk and cost, choose feature extraction process, calculate feature characteristics as a function of
design parameters, derive a detector and calculate detector performance. Bernal[35] examined
the importance in changes that statistical noise may have on the ability of the use of Kalman
filter as a damage detector.

Doebling et al. [49] in 2000 presented an algorithm to estimate the statistical distribution of
certain modal parameters determined on the basis of random errors associated with estimates of
the average frequency response function. In this paper, the modal parameters were assumed to
be random variables and the objective was to estimate the statistical distribution. The algorithm
used a classical approach in order to estimate the error in the average frequency response
function using the coherence function averaged over a set of samples measured. A Monte
Carlo simulation approach was used to propagate errors of the estimated spectral function
trough the process of identification of modal parameter. A Bootstrap estimation of the modal
parameters was used in all the individual samples to verify the Monte Carlo algorithm. In
2009, Adewuyani et al. [21] presented an algorithm to damage identification vibration based in
civil structures. This algorithm used the regression analysis of peak values of the magnitudes
of frequency response function (FRF) of target sensors relative to the reference wherein the
statistical features were used for data reliability assessment and damage localization. Strain
gauges and long gauge fiber Bragg grattings (FBG) are the sensors used in a flexible structure.





Chapter 4

CASE STUDIES

The methodologies developed and presented in this thesis have been subjected to different ex-
perimental tests using simplified structures and structures in real scale. In particular, eight
structures were tested: three aluminum plates, two composite plates and three real parts of air-
craft structures. More descriptions about the physical features, excitations signal and damages
applied are included in the following sections.

4.1 Aluminium plate with reversible damages

This structure corresponds to the most simple case studied. It is an aluminum plate with dimen-
sions (250mm × 250mm × 2mm) as can be seen in Figure 4.1. The plate was instrumented
with four PZT transducers bonded on the surface. The transducers dimensions are: diameter
26mm and thickness 0.4mm.

The excitation signal to the actuators was generated using a chassis PXI 1033 from National
Instruments, by means of a generator NI PXI-5412. The data acquisition was performed by
a NI PXI-5114 digitizer card inserted in the chassis. More details about this equipment are
included in the appendix section. Damage on the tested plate was simulated by adding masses
at different positions on the surface. The aim of this form of artificial damage is to introduce
reversible changes in the mechanical impedance in the structures along the wave propagation
paths [64]. Figure 4.2 shows the damage description and the position of each damage.

As excitation input, a BURST signal (Figure 4.3) is applied. To determine the carrier central
frequency for the actuation signal in the structure, a frequency sweep was performed and the
spectral analysis of each signal was explored. As result of this analysis a BURST signal with
50 KHz and 3 peaks was defined. Before applying the signal to the structure, it was amplified to
50 V using a wideband power amplifier. The collection of the data was performed in different
phases, in each phase, one PZT transducer was selected as actuator, the excitation signal was
applied to this PZT transducer and the vibrational response in different positions were collected
by the other piezoelectrics.

For the analysis, 750 experiments were performed and recorded: 150 with the undamaged
structure and 100 per damage. All data were averaged to obtain one signal for each 10
experiments in order to eliminate the possible noise in the data.

37
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Figure 4.1: Aluminium plate.

Figure 4.2: Damage description and location.

Figure 4.3: Excitation signal.
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4.2 Aluminium plate with real (non reversible) damage
This specimen corresponds to an aluminium plate (Figure 4.4a) with the same features and
dimensions as the previous structure. Equally to the previous case, this plate was instrumented
with four PZT transducers attached on the surface. The data acquisition was performed using
the chassis PXI 1033 from National Instruments applying a BURST signal of 3 peaks and
50KHz as carrier frequency. As in the previous case, the transducers dimensions were diameter
26mm and thickness 0.4mm.

In contrast with the previous case, a real damage was made between the PZT transducers
2 and 4 as shown in Figure 4.4b. In total, 300 experiments were performed and recorded: 100
using the undamaged structure, and 200 using the structure with different size of the damage
(increasing the depth).

(a) (b)

Figure 4.4: Aluminum plate and damage description.

4.3 Composite plate 1
This specimen corresponds to a CFRP plate and is one of the structures tested in the Siegen
University. Figure 4.5a shows this plate which is made of 4 equal layers and stacking of [0 90
90 0] with dimensions: 200mm× 250mm and a thickness of approximately 1.7mm. Nominal
material parameters of the unidirectional (UD) layers are E1 = 122GPa, E2 = 10GPa,
v12 = 0.33, v13 = 0.3, v23 = 0.34, G12 = G13 = 7.4GPa and G23 = 5.4GPa. The density is
about 1700kg/m3.

Nine PZT transducers PIC-151 from PI Ceramics were attached to the surface of the struc-
ture with equidistant spacing. The piezo transducers have a diameter of 10mm and a thickness
of 0.5mm. The excitation signal to the actuators was generated using the arbitrary signal
generation capability of a Handyscope HS3 (a combined signal generator and oscilloscope
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(a) (b)

Figure 4.5: CFRP plate and damages positions.

Figure 4.6: Damage 3 in the CRFP Composite Plate.

instrument manufactured by TiePie Engineering, The Netherlands). The excitation voltage
signal was a 12V Hanning windowed cosine train signal with 5 cycles and 200 experiments
were recorded per sensor-actuator configuration. The carrier frequency was found to be
30KHZ. The data acquisition is performed by some HS4-HandyScopes. To ensure a good
signal to noise ratio each signal was averaged 100 times. For this experiment, the transducers
were connected directly to the inputs of the oscilloscope. Damage on the tested composite
plate was simulated by adding masses at different positions and a total of seven structural states
were studied: six damages and the healthy structure. Figure 4.5b outlines the positions for the
simulated damage on the multilayered composite structure and Figure 4.6 shows one of these
damages.
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4.4 Composite plate 2
This structure was also tested in the Siegen University and corresponds to a plate made of
six equal layers with a total thickness of 3mm made of TEPEX dynalite 102-RG600(x)/47
% Roving Glass - PA 6 consolidated composite from Bond Laminates GmbH. The thickness
per layer is 0.5mm. The properties of the material were VFiber = 47%, E1 = 22.4GPa,
E2 = 21.5GPa, v12 = 0.17, v13 = 0.17, v23 = 0.3 and G12 = G13 = 4.9GPa. The density
was about 1800 kg/m3. As in the previous case, nine PZT transducers PIC-151 were bonded
to the surface and the inspection was performed by using the Handyscopes HS3 and HS4. The
time histories were digitized at a sampling frequency of 50 MHz and averaged 100 times to
ensure a good signal to noise ratio. The carrier frequency was found to be 30KHZ. Damage
on the multilayered composite plate was simulated by placing magnets with different masses at
random orientations on both faces of the structure as artificial damage. Figure 4.7 outlines the
positions for the simulated damage on the structure.

(a) (b)

Figure 4.7: Multilayered composite plate.

4.5 Aircraft turbine blade
This specimen corresponds to an aircraft turbine blade which was tested in the “Universidad
Politécnica de Madrid”. An important feature to highlight from this structure is that it has an
irregular form and includes a stringer in both faces. This blade was instrumented with seven
piezoelectric transducers attached on the surface: three of them were distributed in one face
and the others on the other face. The transducers dimensions are diameter 26mm and thickness
0.4mm. Dimensions and physical shape of this blade are depicted in figure 4.8.
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Figure 4.8: Aircraft turbine blade.

To assess the structure, a ScanGenier from Acellent technologies was used. As excitation
signal, a BURST signal with 250 KHz and 3 peaks was applied. Ten different structural states
were studied: the healthy structure and nine damages which were simulated adding two masses
in different locations as is shown in Figure 4.9. A total of 140 experiments were performed and
recorded: 50 with the undamaged structure, and 10 per damage. The dynamical response saved
by each experiment is the result of the average of ten repetitions. This was done to ensure a
good signal to noise ratio.

Figure 4.9: Damage distribution on the aircraft turbine blade.

4.6 Aircraft wing skeleton

This structure corresponds to an aircraft wing skeleton and is one of the structures tested in the
“Universidad Politécnica de Madrid”. This is divided in small sections by means of stringers
and ribs as is shown in Figure 4.10. For testing the approaches, two sections of this structure
were used. Dimensions of each section and damage description are depicted in Figure 4.11.
These sections were instrumented with 6 PZT transducers, two in the upper section, two in the
lower section and two in the rib. The transducers dimensions are diameter 26mm and thickness
0.4 mm.
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Figure 4.10: Sections tested with the PZT location.

(a) (b)

Figure 4.11: Damage description.

As excitation input, a BURST signal with 205 KHz as central frequency and nine peaks
was used. Four different states of the structure were analyzed: the healthy structure and the
structure with three different damages. Damages were simulated by adding a mass at three
different positions (Figure 4.11), two of them on the skin and the other on the stringer, 100
experiments were performed and recorded: 25 with the undamaged structure and 25 per
damage. To ensure a good signal to noise ratio each signal was averaged 10 times. To apply
and collect the signals to the PZT transducers, a chassis PXI 1033 from National Instruments
r was used. Due to the complexity and the size of this structure, a wideband power amplifier
model 7602M of Krohn-Hite corporation is used to amplify the signal applied to the actuators.
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4.7 Aircraft fuselage
This structure corresponds to an aircraft fuselage from an Airbus A320 and was one of the struc-
tures tested in the Siegen University during the research visit. The structure includes a curved
plate, four vertical stringers and seven horizontal ribs. The fuselage was instrumented with nine
broadband piezoceramics PIC-255 from PI Ceramics bonded on the curved plate surface with
the purpose of transmitting and receiving ultrasonic guided waveforms. The transducers dimen-
sions were diameter 10mm and thickness 0.25mm. The transducers configuration is illustrated
in Figure 4.12. The length, width and thickness of the fuselage are 2000mm, 1250mm and
2mm, respectively.

Figure 4.12: Airbus A320 Fuselage.

Figure 4.13: Damage distribution in the Airbus A320 Fuselage.
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(a) (b)

Figure 4.14: Damage 1 and 2 in the aircraft fuselage.

The excitation of the structure and the data acquisition were performed using the
Handyscope HS3 and HS4. To ensure a good signal to noise ratio, each signal was averaged
100 times. Due to the complexity and the size of this structure, as in the previous structure, a
wideband power amplifier model 7602M of Krohn-Hite corporation was used to amplify the
signal generated at the HS3. A gain of ten times the input amplitude was selected. Damage
on the tested fuselage was simulated by adding masses at different positions on the surface of
the curved plate. Figure 4.13 shows the positions for the simulated damage on the fuselage
structure and the Figure 4.14 shows two of these damages.

4.8 Aluminium plate with reversible damages and tempera-
ture variations

(a) (b)

Figure 4.15: Damages in the aluminum plate.

This structure corresponds to an aluminum plate with dimensions 200mm × 200mm
instrumented with 5 PZT transducers (PIC-151). This structure was one of the structures
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tested in the Siegen University in collaboration with the PhD student Maribel Anaya during
the research visit. Damages in the structure were simulated by adding masses at four different
positions on the surface as is shown in Figure 4.15.

To assess the structure, the Handyscopes HS3 and HS4 without pre-amplification were
used. As excitation, a BURST signal of 50KHz as central frequency was used and each
collected experiment was averaged 100 times to ensure a good signal to noise ratio.

This structure was subjected to temperature changes. To perform these experiments, the
structure was introduced in a oven with controlled temperature and data from the structure
under six different temperatures (24, 30, 35, 40, 45 and 50 ◦C) for each structural state were
collected. To avoid the contact between the metallic surfaces and eliminate the noise in the
experiments, some plastic elements are used. For each temperature, 100 experiments were
collected for each state.



Chapter 5

DAMAGE DETECTION SYSTEM

5.1 Problem statement
One of the most important tasks in Structural Health Monitoring (SHM) corresponds to the
damage detection. This is the first step of the process discussed in [148]. In this task, the
existence of damage should be determined, the aim is to know if there is damage in the structure.

In the literature it can be found several potentially useful techniques for damage detection,
and their applicability to a particular situation depends on the size of the critical damages
that are admissible in the structure. Almost all of these techniques follow the same general
procedure: the structure is excited using actuators and the dynamical response is sensed at
different locations throughout the structure. Any damage will change this vibrational response.
The state of the structure is diagnosed by means of the processing of these data. Several
studies have shown that the detection of changes in a structure depends on the distance from
the damage to the actuator as well as the configuration of the sensor network. This chapter
is concerned with the practical application of a methodology for the problem of detection of
damages in structures by using statistical data driven models built from structural dynamic
responses when the structure is know to be healthy. In the following sections, a detailed
description of the methodology is presented. The methodology is the basis of this thesis and it
can be adapted and extended to localize and classify damages as will be presented in the next
chapters.

5.2 Damage detection methodology

5.2.1 Overview
The damage detection methodology proposed in this thesis involves the use of a multiactuator
piezoelectric system (distributed piezoelectric active network), Principal Component Analysis
(PCA) and some damage indices. In general terms, the practical application of this approach is
performed in two stages:

1. Baseline modeling: In this stage, experiments of the structure are performed when is
well known that the structure is undamaged. Data gathered by sensors are organized and

47
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preprocessed to obtain the statistical data driven baseline models based on PCA. Scores
and indices obtained in this stage are also stored as the baseline indicators.

2. Data projections onto the models: In this stage, the structure to study is subject to
the same experiments performed to the healthy one. Data are organized, preprocessed
and projected onto the models obtained in the previous stage. Consequently, scores and
indices are calculated and compared with the obtained ones using the healthy structure.

Details about the multiactuator piezoelectric system and the way of performing the experiments
are presented in the next sections. Although the theoretical background about PCA was
introduced in Section 2.3, the procedure for: (i) organizing the data gathered by experiments,
(ii) building the baseline PCA model and, (iii) projecting the data from new experiments, are
described also in the following sections.

5.2.2 Experimental setup and data acquisition
The structure to test is instrumented with several PZT transducers bounded on the surface. It is
isolated in order to remove the environmental noise and the boundary conditions. To perform
the excitation and collect the vibrational responses from the structure, several actuator phases
are used. In every actuator phase, a single PZT transducer is used as actuator and the others
as sensors that receive the wave propagated across the structure at different points. Typically,
a BURST signal with a frequency defined for each structure is used as signal excitation. This
frequency is chosen once a sweep frequency response test is performed. In some structures,
depending on its complexity, this signal should be amplified by using a wideband power
amplifier. To remove the noise in the signals, one experiment consists of repetitions which
are averaged. Several structural states are studied for each structure. In general, these states
contain the healthy structure and the different damages.

5.2.3 Preprocessing
The dynamic responses collected from each actuator phase are stored by the data acquisition
system into a matrix with dimensions (I ×K), where I represents the number of experiments
and K the number of sampling times. Denoting J as the number of PZT transducers that are
receiving the dynamical responses for each experiment, J matrices with the information from
each sensor by each actuator phase are finally stored. Therefore, the whole set of the data
collected in each actuator phase can be organized in a 3D matrix (I × K × J) or in a 2D
unfolded matrix (I × JK) where data from each sensor are located besides the other sensors as
can be seen in Figure 5.1. This is a very common practice in multivariate statistical procedures
for monitoring the progress of batch processes [186], [136].

As a preliminary step to implement the PCA methodology, the pre-processing of the data
collected in each phase should be performed. For this kind of data sets (unfolded matrix),
several studies of scaling have been presented in the literature: continuous scaling (CS), group
scaling (GS) and auto-scaling (AS) [184]. According to these studies, GS is selected for this
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Figure 5.1: Unfolding the collected data in 3D to bi-dimensional matrix (I×JK).

work because it considers changes between sensors and does not process them independently.
Figure 5.2 shows the unfolded matrix of the actuator phase 1, where the data from the jth sensor
is highlighted to show how the normalization is applied. Using this normalization, each data
point is scaled according to equation (5.2) using the mean of all measurements of the sensor
at the same time (equation 5.1) and the standard deviation of all measurements of the sensor
(equation 5.3).

Figure 5.2: Group scaling pre-processing.
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where xijk is the kth sample of the jth sensor in the ith experiment, µjk is the mean of the all
kth samples of the jth sensor, µj is the mean of all measurements of the jth sensor, σj is the
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standard deviation of all measurements of the jth sensor, and xijk is the scaled sample (equation
5.4). Once the normalization is applied, the mean trajectories by sensor are removed and all
sensors are made to have equal variance.

5.2.4 Baseline model building and calculation of damage indices using
PCA

In a first stage, A PCA baseline model is built for each actuator phase (PZT1 as actuator,
PZT2 as actuator, and so on) using the signals recorded by sensors during the experiments
with the undamaged structure. The scheme showed in Figure 5.3 summarizes the procedure.
PCA baseline modelling essentially consists of calculating the matrix P for each phase as was
explained in the theoretical background chapter (Equations 2.7 - 2.11).

Figure 5.3: Baseline definition methodology.

In a second stage, experiments are performed using the structure in the different possible
states or scenarios (undamaged and different damages). Figure 5.4 illustrates the procedure.
These signals are pre-processed and organized according to the PCA modeling procedure. Af-
terward, they are projected on the corresponding PCA model (T = XP). A selected number
of the first principal components (scores-T) are obtained. In addition, some damage indices
are calculated by each baseline PCA model using the equations (2.13 - 2.16) introduced in the
theoretical background chapter. In this work, each PCA model is created using a percentage of
the whole dataset collected using the undamaged structure. Signals from the remaining data,
besides the data from the structure in different states are used in a second stage.
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Figure 5.4: Data projection into the PCA models.

5.3 Generalization of the methodology

Let us remark that the damage detection methodology can be implemented using any Multivari-
ate Statistical Method (MSM) in which it is possible to obtain a representation by components
and damage indices. Considering just one actuator phase, the general methodology is depicted
in Figure 5.5.

In this sense, a statistical method known as Independent Component Analysis (ICA)
is also used instead of PCA. As was explained in the theoretical background chapter, this
method allows to re-express the data in a new space by calculating the new components
that are mutually independent, uncorrelated but not necessary orthonormal. Additionally, in
other works [175], [173], [174] the author together with partners from the Siegen University
showed the use of this methodology as preliminary step for the classification of damages
using Hierarchical Non-linear PCA. These results are useful to demonstrate that is possible to
generalize the methodology.
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Figure 5.5: Generalization of the methodology for damage detection considering just one actu-
ator phase.

5.4 Experimental results

5.4.1 By using PCA baseline models
The validation of the damage detection methodology using PCA models is carried out by using
data from experiments performed to two different specimens: an aircraft turbine blade and
an aircraft wing skeleton. As is mentioned in sections 4.5 and 4.6 where the structures are
described, the aircraft turbine blade was instrumented with seven PZT transducers, therefore
seven actuator phases were accomplished. Besides, nine defects were simulated. On the other
hand, the wing skeleton was instrumented with six PZT transducers (6 actuator phases) and
three defects were simulated.

Distribution of variance

Once the baseline PCA models were built by using experiments from the healthy structure,
an analysis of the variance captured by each Principal Component (PC) was achieved. This
analysis is important in order to ensure that enough variance is retained in the model, which
allows performing an optimal reduction. The distribution of the retained variance in four of the
actuator phases of each structure is depicted in Figure 5.6 and 5.7. Just the components with a
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significant variance value are shown. The components with the highest variance represent the
most important pattern in the data with the largest quantity of information. Figures 5.6 shows
that, using the aircraft turbine blade, the first two components represent more than 80% of the
cumulative variance in each model. Similar results are obtained in the other phases.

Figure 5.6: Distribution of the variance in phase 1, 3, 4 and 7 in the aircraft turbine blade.

On the other hand, from Figure 5.7, it can be seen that the percentage of the variance of each
component in the aircraft wing skeleton is lesser than the obtained in the previous structure.
Although the two first components are the most significant, these just contain 37 % of the
cumulative variance. This difference can be explained by the differences between the structures.

In order to define a standard criteria for the comparison and for maintaining simplicity
in the analysis and the visualization tasks, just two scores are used in both cases in order
to show how this choice affects the results of each structure for each of the proposed approaches.

A previous work [124] showed the advantages and disadvantages in the use of the scores
plots for detecting damages. This chapter aims to show how the results in these plots can be
different in some cases, thus requiring additional analysis tools such as damages indices for
performing a good detection and classification task.
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Figure 5.7: Distribution of the variance in phase 1, 3, 5 and 6 in the aircraft wing skeleton.

PCA score plots

The projections of each experiment onto the principal components subspace are called scores.
Plotting two scores in a scatter plot allows to visualize the structure of the original data, and is
known as score plots.

Figures 5.8 and 5.9 show the score plots of the first and second principal components of
different actuator phases of the aircraft turbine blade and aircraft wing skeleton respectively. As
was previously mentioned in Section 5.2.2, each actuator phase corresponds to the experiments
performed when just one PZT transducer is defined as actuator and the rest are used as sensors.
Since the state or condition of the specimen (undamaged, damage 1, damage 2, etc.) is known
in each experiment, each projection is labeled in order to identify each group data. Different
shapes and colors represent the different conditions of the specimens.

As can be seen from Figure 5.8 corresponding to the aircraft turbine blade, all the damages
can be clearly distinguished from the undamaged structure state (green plus sign), similar
results are obtained in the other phases not showed. This separation can be used to confirm
changes in the structure and can be defined as an abnormal situation. This means that it is possi-
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Figure 5.8: Score 1 vs. score 2 in the aircraft turbine blade in the phases 1, 3, 4 and 7.

ble to detect the presence of damages. Besides, it is possible to distinguish some data sets which
are in some cases near between them, which means that the vibrational responses are similar.
This result is interesting because showing these plots can be used for damage classification in
a further analysis using, for instance, some additional pattern recognition technique [172],[124].

On the other hand, from Figure 5.9 it can be seen that in the aircraft wing skeleton is also
possible to identify the dataset gathered from the damaged structure. However, in contrast to
the turbine blade, this separation is not clear in all phases (phases 1 and 3). In this context it
is possible to admit that this result could be related to the complexity of the structure. This
result implies that it is necessary to use another type of measurement or statistic to obtain a
better discrimination of the presence of damage in any structure for each one of the phases. As
a solution to this problem, in this thesis, it is proposed the use of the damage detection plots by
means of the use of different indexes. The following subsections show the results obtained by
using the different indexes explained in Section 2.4.
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Figure 5.9: Score 1 vs. score 2 in the aircraft wing skeleton in the phases 1, 3, 5 and 6.

Damage index plots

As was mentioned in Section 2.4, there exist in the literature several statistical measurements
that can explain the behavior of the projected data into the model. If the original data and the
baseline data differ, it should be reflected in the score and/or these indices.

T 2 Index

From Figure 5.10, it can be seen the T 2 index by each experiment using the aircraft turbine
blade in four actuator phases. The results show that each actuator phase depict different ways
to visualize all the datasets with the information of the damages. In all these actuator phases,
the damages 1, 2 and 3 have values of T 2 Index similar to the undamaged state and therefore
can not be considered as damages. From the evaluation of the phases 1 and 4, it is possible
to define that the damage 4 has similar value to the undamaged state, but in difference with
these phases it is possible to identify a higher separation in the phases 3 and 7. The rest of the
damages are well separated from the undamaged state. Considering the aircraft wing skeleton,
Figure 5.11 shows the plots of the T 2 Index by each experiment. As it is disclosed, damage 1
is clearly separated from the undamaged state in all the phases, additionally, all the damages
are well identified by the phases 1 and 3. In difference with the phases 1 and 3, phases 5 and 6
show that damages 2 and 3 have similar value of T 2 Index as the undamaged state.
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Figure 5.10: T 2-index in the aircraft turbine blade.

Figure 5.11: T 2-index in the aircraft wing skeleton.
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Q Index

From Figure 5.12, it can be seen the Q index by each experiment using the aircraft turbine
blade in the actuator phases number 1, 3, 4 and 7. In difference with the T 2 index, the phase 1
allows to identify the damage 1. Additionally in all the cases, the damage 3 is well separated
from the undamaged state. The rest of the damages are not well identified.

Figure 5.12: Q-index in the aircraft turbine blade.

Figure 5.13 shows the results in the use of the Q Index with the aircraft wing skeleton. The
results in this structure show that in all the phases, the three damages are clearly separated from
the undamaged state and, additionally, these states are easily distinguishable between them.
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Figure 5.13: Q-index in the aircraft wing skeleton.

I2 Index

From Figure 5.14, it can be seen the I2 index allows to identify the damage 1 in the aircraft
turbine blade. Additionally, some experiments of the damages 3, 4, 5 and 8 allow to define
these states as damages. One important feature to highlight in comparison with the Q-index is
that in this plot just significant differences are visible. In this way, values near to the healthy
state are defined as zero.

Figure 5.15 shows the results in the aircraft wing skeleton with the I2 Index by each exper-
iment. Similar to the results obtained with the Q index, all the damages are clearly separated
from the undamaged state. This result confirm the big differences between each state and the
data from the healthy structure.

Combined Index (φ)

Figure 5.16 shows the results of the φ index in the aircraft turbine blade equally in four
actuation phases. These results show how the damage 3 is clearly identified in every actuation
phase. Additionally, the rest of the damages need to be identified by the analysis of the different
phases.

Applying this index to the aircraft wing skeleton, the results show in Figure 5.17 are ob-
tained. In this case, at the same manner as with theQ and I2 indices, all the damages are clearly
separated from the undamaged state.
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Figure 5.14: I2-index in the aircraft turbine blade.

Figure 5.15: I2-index in the aircraft wing skeleton.
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Figure 5.16: φ-index in the aircraft turbine blade.

Figure 5.17: φ-index in the aircraft wing skeleton.
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5.4.2 By using ICA baseline models
To validate the damage detection methodology using ICA models, the experiments performed
to the aircraft wing skeleton were used. This set of experiments is the same previously used in
Section 1.4.1.

ICA score plots

To perform the analysis, at the same manner as in the PCA case, the components are calculated
using the data from the undamaged structure by each actuator phase. The new data with the
information from the structure in different states are projected into each ICA model and two of
these projections are plotted by each phase. Since it is necessary to perform a reduction and it
is not possible with ICA, to determine which component is most relevant in the analysis, PCA
is used to apply this reduction as was explained in the theoretical background (Chapter 2).

Figure 5.18: ICA score plots in the aircraft wing skeleton.

In the results, it is expected that experiments using the structure without changes appear
grouped in the plot. Since the state of the structures in each experiment is known, each
projection is labeled in order to identify each grouped data. It can be seen from Figure 5.18,
which shows the score plots of four phases (1, 3, 5 and 6), that damages are clearly separated
from the healthy structure. Also, it is possible to observe that scales obtained in the phases are
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different. This is because some phases are more sensitive to the ICA model. In other words,
the location of the damage in reference to the location of the PZT transducers and its severity
is important.

The results obtained confirm that it is possible to use the methodology changing PCA as
pattern recognizer by other multivariate statistical method with excellent results for detecting
damages. Comparing the results of the score plots obtained with PCA and ICA, it is possible
to observe that using ICA the results are better. These results can be observed comparing
the different phases; in comparison, ICA needs several algorithm runs in order to achieve
optimal results. However, if the results are based on a one-shoot basis run, the results by ICA
can significantly change but in most of the cases it is possible to detect the damages. This is
because with PCA it is possible to ensure that these components contain the most relevant
information with maximal variance, while with ICA is not possible to define which components
are more relevant directly from the algorithm if a previous reduction is not performed with PCA.

Although, there is one damage in the stringer which is detected by the sensors attached
in the same stringer, this is also detected by using both methodologies for other phases as in
the phase 1. This means that the combined analysis of the sensors (using all phases) is a very
useful tool because allows to consider the dynamic responses in the whole sensor network.

5.5 Discussion
The performance of the methodologies presented for damage detection using PCA as pattern
recognition tool to build the baseline model, in which the projection to the principal components
(scores) and four statistic measurements (T 2, Q, φ and I2) are selected as damage indicators
has been tested using an aircraft wing skeleton and an aircraft turbine blade. The results have
revealed that the approaches have potential for real applications and can be used in a combined
way to evaluate the state of a structure.

Some important elements can be highlighted from the results in this chapter:

• The results showed that there are differences between the data from the undamaged
structure and the different damages, and these differences can be used to define the
presence of damages in the structures. Similarly, the presented plots allowed in most
cases to separate and distinguish damages between them.

• Comparing the results from the two specimens, it was shown that the score plots with
PCA are not very useful when the variance contained in the selected scores is not
significant. In these cases, the use of a combined analysis with the damage indexes plots
can be used for detecting damages with better results.

• It was shown that the score plots obtained by PCA or ICA in the aircraft wing skeleton
allowed detecting the damages, exhibiting in most cases a clear distinction between the
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data from undamaged structure and the other three damage states. The results can change
depending on the phase to being analyzed but in all cases it is possible to distinguish
the presence of damage. In addition, it was shown some differences between the results
using both methodologies, for instance the definition of the number of Components or
the possibility of defining different data set by identifying the kind of damage due to the
separation that is possible to see in some of the phases. An important difference between
PCA and ICA is related to the number of components used in each methodology. In the
PCA case this number can be determined by the variance criteria, but in the ICA case it
does not exist a criterion for determining how many components represent the dynamic
of the data. In spite of this, it was shown that the use of a previous reduction with ICA to
obtain just two components allowed to define the presence of damages. Of course, if this
reduction is not performed, it is necessary to evaluate all the combinations to determine
which components show better results. One way to improve the results with ICA could
be using another tool that includes all the Independent Components by each phase or
performing data fusion including the components from all phases.

In addition, it is also possible to distinguish some data sets which can be used for damage
classification in a further analysis using, for instance, some additional pattern recognition
technique.

In general it is possible to conclude that, in all the cases, the evaluation of all the
phases allow to define the presence of a damage in the structure. This full analysis is a
necessary step, because as it was shown in the results, each phase defines the states in
a different manner. In this way the results presented in this chapter motivate the need of a
more robust tool to perform a combined analysis of the phases and to simplify the final analysis.

Finally, it is necessary to highlight that the methodology will be used and extended in the
Chapters 6 and 7 to localize and classify damages.
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DAMAGE LOCALIZATION SYSTEM

6.1 Damage Localization

The damage localization task is the second step in the SHM levels as was mentioned before.
This task allows to locate the damage in the structure based on the measurements obtained by
a sensor network from the structure under test. Some clear advantages can be obtained from
its application, for instance, the simplification of the inspection and reparation of the damaged
component, specially in large and complex structures by using automated inspection and data
driven approaches.

6.2 Damage Localization Methodology

To localize damages, the damage detection methodology presented in the previous chapter is
extended using several methods to analyze the contribution of each sensor to each damage in-
dex. The theoretical background of these methods was also introduced in Chapter 3. Figure 6.1
shows the flow diagram of the general methodology for damage localization. When the struc-
ture needs to be analyzed, experiments are performed and the gathered data are projected onto
the PCA model. Finally, scores and damage indices are calculated according to the previous
chapter; Q-index, T 2-index, φ-index and I2-index can be considered as good features to detect
the damage. Selecting one of these indices (probably that which present a high value), the con-
tribution of each sensor to this index is calculated by each actuator phase. It is expected that
the damage is located between the actuator and the most influenced sensor. Therefore, in each
actuator phase, a region of the structure is selected as the region where the damage is located.
Considering all phases (data fusion), a general diagnosis could be performed by intersecting
all the regions. These data fusion is desirable because provides some positive elements to the
methodology such as: higher signal-to-noise-ratio, robustness and reliability, better informa-
tion regarding independent features, more complete picture of the monitored system, improved
resolution, increased hypothesis discrimination and reduced measurement times [164].

65
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Figure 6.1: Damage Localization Methodology.

6.3 Experimental Results
To validate the damage localization methodology, two specimens were used. The aircraft tur-
bine blade and the aluminum plate which are instrumented with several piezoelectric transduc-
ers as was described in the Sections 4.5 and 4.2 respectively. The results are set out in the
following sections.

6.3.1 Aircraft turbine blade
In this structure two damages were selected to be localized using the different methods of
contribution analysis to each index. Firstly, an extensive interpretation of the results using
Complete Decomposition Contribution (CDC) is presented by each damage index. Finally, a
comparison between the different methods is performed.

Using complete decomposition contribution to Q- index

This section shows the results concerning to the localization of the damage 3 in the aircraft
turbine blade using CDC analysis (Section 2.4.1) to the Q-index (Section 2.4). From Figure
4.9 it can be seen that the damage 3 is located over the PZT4.

Each plot in the Figure 6.2 depicts the contribution of each sensor (PZT 1 to 7) to the Q-
index in each actuator phase. Analyzing these plots it is possible to observe the following:
during the actuator phase 1 (PZT1 as actuator), the contribution of PZT1 is equal to zero (PZT1
does not contribute to the Q-index). On the contrary, the highest contribution is obtained by the
PZT4. Therefore, the analysis suggests that the damage is probably located between PZT1 and
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PZT4. A similar situation is found in phases 2, 3, 5, where the highest contribution is presented
in the PZT4. On the other hand, in phase 6 it can be seen that the highest contributions are
achieved by PZT4 and PZT5. This result implies that the damage could be located between the
PZT6 and PZT4, but equally it is probably that this damage is placed between PZT6 and PZT5.
Besides, in phase 4 the highest contributions are given by PZT2 and PZT5. Furthermore, in
phase 7 the highest contribution is presented in PZT2 followed by the contribution of the PZT5.

Figure 6.2: Contributions of each PZT transducer to the Q-index.

Although the analysis of the other damages is not included in this thesis, the obtained
results are similar to the previous one.

Using complete decomposition contribution to T 2- index

In this section, results concerning to the localization also of the damage 3 are presented,
using CDC but to the T 2-index. Figure 6.3 shows the contribution of each sensor to T 2-index.
In the same way as the previous index, the PZT corresponding to the one used as actuator in
each actuator phase is null. In all the phases, it can be seen that some contributions are negative.
Negative contributions do not have any physical sense and therefore, they are not considered in
the analysis. Phases 1, 2, 3, 5 and 7 show that the highest contribution is given by the PZT4,
which means that the damage is probably located between the actuator in the each actuator
phase and the PZT4. In contrast, the phase 6 shows the highest contribution in the PZT7.
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Figure 6.3: Contributions of each PZT to T 2-index.

Using complete decomposition contribution to φ- index

Keeping the same analysis but using φ-index, it can be seen that similarly to the case
where T 2-index is used, there are some negative contributions (Figure 6.4), which are discarded.

In Figure 6.4, phases 1, 2, 3, 5 and 7 show that the highest contribution is given by the
PZT4. Again, the phase 4 shows the highest contribution in the PZT2. In difference, phase 6
shows highest contribution in the PZT5 followed by the PZT7.

Figure 6.4: Contributions of each PZT to φ-index.
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Using complete decomposition contribution to I2- index

Finally, analyzing the contributions to the I2-index (Figure 6.5), results show that phases
1, 2, 6 and 7 has the highest contribution in the PZT 4. In the same way as the previous
cases, the phase 4 shows that the highest contribution is given by the PZT2. Additionally,
from the results in the phase 5, it is found that the highest contribution is obtained by
the PZT2. In difference with the results obtained with the previous indices, the phase 3
shows that any PZT transducer contributes to I2- index, which means that there is no signif-
icant contributions in this phase and there is no relevant information to consider from this phase.

Figure 6.5: Contributions of each PZT to I2-index.

Comparison between the contribution methods

In order to compare the results obtained by the different contribution analysis methods
(CDC, PDC, RBC, ABC, DC), two indices and one specific damage are used. Specifically
in this study, the φ and I2 indices are used to localize the damage 1. From Figure 4.9 it can
be seen that the damage is located over the PZT 1. Figures 6.6 to 6.12 show the comparison
between the five methods of contribution of each sensor to the corresponding index by each
actuator phase. In the plots, the methods are numbered as follows: method 1 corresponds to the
CDC method, method 2 to corresponds to PDC, 3 to RBC, 4 to ABC and 5 to DC. Sensors in
the figures are the corresponding PZT transducers. Additionally it is necessary to keep in mind
that the actuator in each phase is removed, this means that for instance in the actuator phase
1 the first PZT transducer corresponds to the PZT2, sensor 2 corresponds to the PZT3, and so on.

In general terms, the results show that all methods allow to locate the damage. In addition,
the contributions in most cases have similar results, although it may be noted that in some cases
the methods PDC, RBC, ABC and DC provide major contributions compared with the CDC
method.



70 6. DAMAGE LOCALIZATION SYSTEM

(a) (b)

Figure 6.6: Comparison between methods of contribution using PZT 1 as actuator to (a)I2-index
and (b)φ-index.

(a) (b)

Figure 6.7: Comparison between methods of contribution using PZT 2 as actuator to (a)I2-index
and (b)φ-index.
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(a) (b)

Figure 6.8: Comparison between methods of contribution using PZT 3 as actuator to (a)I2-index
and (b)φ-index.

(a) (b)

Figure 6.9: Comparison between methods of contribution using PZT 4 as actuator to (a)I2-index
and (b)φ-index.
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(a) (b)

Figure 6.10: Comparison between methods of contribution using PZT 5 as actuator to (a)I2-
index and (b)φ-index.

(a) (b)

Figure 6.11: Comparison between methods of contribution using PZT 6 as actuator to (a)I2-
index and (b)φ-index.
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(a) (b)

Figure 6.12: Comparison between methods of contribution using PZT 7 as actuator to (a)I2-
index and (b)φ-index.

Negative contributions such as those obtained to φ index in Figures 6.6, 6.9 and 6.12 have
no physical sense as was previously explained. Therefore, they are not included in the final
analysis. Another result to remark from the figures in the case of the I2-index is that the phase
7 have contributions equal to zero in all the sensors since in this case are far from the damage
and there is a stringer on the way between the actuator and the sensors.

Data fusion

The data fusion corresponds to the way that all the information obtained from the different
actuator phases is used to define a final combined diagnostic. As was previously explained, the
application of data fusion gives to the methodology some advantages and simplifies the final
diagnostic for the user.

In order to show the final diagnostic (considering contributions at all phases) it is necessary
to specify areas in the structure that consider paths between actuator and sensors. The contri-
bution of each sensor in each phase defines the weight of the path (region between actuator and
sensor). Finally, the sum of all the weighted regions establishes the region where the damage is
located. In a general way, the region or area can be defined as the intersection of the different
areas found by each actuator phase. As one example of this data fusion, Figure 6.13 depicts
the process for the damage 3, previously presented using CDC method. First, in the actuator
phase 1 the highest contribution is given by the PZT4, while also the sensors 2,3 and 5 give
contribution values. In this manner in the plot each path is depicted between the actuator and
the sensor with different color tone according to its value. This procedure is applied in all cases
for the actuation phases. Finally, in the lower part of the figure, the localization of the damage
is depicted as result of the combination of all the actuation phases.
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Figure 6.13: Data fusion in the damage localization methodology.

From Figure 6.14 it can be seen the software application developed in Matlab r. Here,
the image of the structure is loaded, and the position of every PZT is manually defined (using
the mouse). The algorithm find paths between sensors and define all the region with the
corresponding weight.

After defining the method of contribution analysis and the index, the software shows the
damage of the structure and indicates the region of the localization of the damage. For instance,
the final diagnostic of the structure with damage 3 by using CDC to Q-index is presented in
Figure 6.15 (the higher the value of the color, the more probability of the localization of the
damage). As it is expected, the damage is located near to PZT4.
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Figure 6.14: Interface for damage localization.

Figure 6.15: Localization of the damage 3 using CDC to Q-index.
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As additional example, Figure 6.16 presents the final localization of the damage 1 using
Q-index and CDC.

Figure 6.16: Damage localization for damage 1 using CDC to Q-index.

6.3.2 Aluminum plate
All the five methods for contribution analysis and Q and T 2 indices are used to localize dam-
ages in the aluminum plate with non reversible damages. This structure and the damages were
previously described in Section 4.2. The real damage corresponds to one hole located between
PZT 2 and PZT 4 with different depths. Figure 6.17 shows the more probability of the localiza-
tion of damage 1 using DC, CDC, PDC, ABC and RBC to the Q-index with the higher value of
the color. As it is expected, the damage is located between PZT2 and PZT4.

Figure 6.18 shows the contributions obtained for each path between the different PZT
transducers for the five methods. As shown, in each method, the path between PZT 2- PZT
4 contains the highest values of contribution, this is because the damage is located in this
path. With all the methods it is possible to locate the damage with different values, the lowest
contribution being found with CDC method. Additionally, it is possible to see that in all the
methods, the difference between the contributions of the path 2-4 and the rest is significantly
greater, except for CDC method where the values are similar.
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(a) (b)

(c) (d)

(e)

Figure 6.17: Damage localization with Q-index for the damage 1 using (a) DC, (b) CDC, (c)
PDC, (d) ABC, (e) RBC.

Figure 6.18: Comparison between the methods using Q-index.
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Changing Q-index by T 2 index, the same five contribution methods are applied to locate
the damage 2. This damage is similar to the damage 1 (same position ) but different depth.
Results are shown in Figure 6.19 with the higher the value of the color, the more probability
of the localization of the damage. As it is expected, the damage is located between PZT2 and
PZT4.

(a) (b)

(c) (d)

(e)

Figure 6.19: Damage localization with T 2-index for the damage 2 using (a) DC, (b) CDC, (c)
PDC, (d) ABC, (e) RBC.

Figure 6.20 shows the contributions obtained for each path for the five methods. As the
previous results (using Q-index), in each method, the path between PZT 2- PZT 4 contains the
highest values of contribution, it happens because the damage is locate in this path. In this case,
comparing with the previous results obtained with Q-index, more differences exist between the
different paths using CDC method.
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Figure 6.20: Comparison between the methods using T 2 − index.

6.4 Discussion
A new methodology for localization of damages has been developed. This approach combines
the use of data from a multiactuator piezoelectric system, which is attached to the structure and
data driven approaches to study: (i) the dynamic response of the structure at different exciting
and receiving points; (ii) the variation of these dynamical responses compared with a baseline
when some damage is present in the structure by using PCA and some statistical measures that
can be used as damage indices; and (iii) the influence of every sensor in the indices, so that
this contribution can be used to localize the origin of the change in the vibrational response
(damage).

It was shown that it is possible to extent the damage detection methodology for localizing
damages using contribution methods and data fusion. Its use allows to define the region
which contain the damage by finding the highest value area. For this purpose, the sum of
the contributions obtained for each sensor to each index in each actuator phase is calculated.
This result is important because it allows to integrate the results obtained from all the actuator
phases in the sensor network to provide robustness and reliability to the damage localization
task.

The five presented methods allowed to localize the damages in both structures. Results
showed that in some cases there are less contributions when the CDC method is used. Of
course, the results vary for each actuator and the best results were obtained in the piezoelectric
transducers closest to the excitation signal.

Although, as shown in the results, the damage was not properly detected in all the phases
with each index, the use of data fusion allowed to compensate the final result by considering
all the results obtained from the other phases. To improve the results in a future work, it
is necessary to evaluate in depth elements such as data fusion and the final representation.
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Similarly, a study of the parameters in the excitation signal and the acquired signals such as
frequency, amplitude and length should be performed, since, if a very large length signal is
selected, the influence of all possible wave reflections (due to edges or defects) can appear and
change the results in the localization.



Chapter 7

DAMAGE CLASSIFICATION SYSTEM

7.1 Damage classification
Damage classification is an important issue within Structural Health Monitoring going beyond
the purely damage detection. Among the big quantity of damages that can be presented in the
normal service of a structure it can be found [50] [56]:

• Gradual (e.g. fatigue, corrosion, aging).

• Sudden and predictable (e.g. aircraft landings, planned explosions in confinement ves-
sels).

• Sudden and unpredictable (e.g. foreign-object-impact, earthquake, wind).

At the same time, these different kinds of damages can be also classified depending of its sever-
ity in three big groups:

• Light damage: This corresponds to the initial stage of a damage, which can be relatively
easily-repairable and is not dangerous for the normal operation of the structure.

• Moderate damage: In comparison with the previous one, this damage requires major
repairs and need to be evaluated more carefully in order to define if the structure can
operate in normal conditions.

• Severe damage: This type of damage unlike previous damages requires big reparations or
the replacement of the structure.

In this thesis most of the damages in the structures are simulated (adding masses at different
positions) mainly because most of these structures were provided for testing with reversible
damages during research visits of the author to different laboratories.

7.2 Methodology for damage classification

7.2.1 General approach
In this chapter the damage detection methodology presented in Chapter 5 is extended in order
to classify damages in structures using data fusion of the results obtained by each actuator

81
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phase, considering a specific structure and several possible damage scenarios. The structure
can be experimentally tested by means of an active multiactuator system as was explained in
Chapter 5. The methodology is implemented in two different stages, which are referred to as:
1) baseline pattern building (training and validation); and 2) diagnosis (testing). The scheme
presented in Figure 7.1 summarizes the general approach. Within the baseline pattern building
stage, the methodology for damage detection explained in Chapter 5 is used to calculate the
scores and damage indices by each actuator phase. Afterwards, data fusion is applied to
combine the results from all the actuator phases and obtain a pattern with the information of the
classification using all the structural states. In the diagnosis step, new data from the structure
which is blindly tested are collected and entered into the Self Organizing Map (SOM) obtained
in the previous step in order to be classified.

Figure 7.1: Methodology for damage classification.

Baseline pattern building

In this stage, the methodology for damage detection is extended to build the baseline pattern
for damage classification. The additional task consists of merging all the data obtained from
different actuator phases and propose just a single pattern that will be used in the following
stage: diagnosis.

The structure to build the baseline pattern should be considered as undamaged. Several ex-
perimental actuator phases are performed. For each actuator phase, a single actuator is excited
and the time history responses of the whole set of sensors are recorded, organized and prepro-
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cessed as was explained in the Section 5.2.3. After, these data are used to build a PCA reference
model. This is repeated for each single actuator.

The structure is tested under different known damage states (damage scenarios). For each
state, the previous experimental actuator phases are performed, in the same way as the data were
collected. These data are organized and normalized following the steps defined for the damage
detection methodology. Results obtained for each phase: the projections of the data onto the
reference PCA models; and the damage indices will be used for damage classification.

The results obtained for each phase are combined and contrasted using a Self Organizing
Map (SOM). A SOM is chosen since its characteristics can provide a good support for the
classification and graphical representation, grouping input data with similar features in clusters.
One important characteristic of this kind of ANN is that it does not need previous knowledge
about the state of the structure (healthy or with some damage) to obtain the final clustering
(unsupervised algorithm). As a result, the SOM produces an organized map by grouping in
clusters data with similar characteristics. It is relevant to remark that until now the information
about the structural state has not previously used. The result is a map that includes the number of
experiments grouped together in each output neuron or cluster (Figure 7.2). In order to validate
the effectiveness of classification and to obtain the final baseline pattern, the known information
from the states of the structure at each experiment is used to label each cluster. According to
the experiments (or states), these are organized in each output neuron as is depicted in Figure
7.3. More details about the representation will be explained in the next sections.

Figure 7.2: SOM training.
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Figure 7.3: Final baseline damage pattern.

Classification and diagnosis

Once the baseline pattern building has been finished, the known damaged states under consid-
eration are used a posteriori to validate the effectiveness of the classification and to obtain the
final baseline pattern.

In the diagnosis stage, any structure is blindly tested. The different phases are performed
for each single actuator as in the baseline pattern building. The results are entered into the
trained SOM and the new pattern is obtained. Comparison with the baseline pattern allows the
damage detection and classification.

7.2.2 Discrete Wavelet Transform as feature extraction

From the previous analysis it is possible to define the basic parameters for performing a good
classification. Of course, some of these parameters as the normalization and the number of
scores need to be evaluated for each structure.

Since the methodology should be able to apply to any structure instrumented with an
active piezoelectric system with any number of sensors, it is necessary to bear in mind that
a big sensor network requires a large computational cost. Considering that, in some cases,
the computational cost is a critical parameter, it is suggested the inclusion of an extra tool
for reducing data. To do that, the DWT is selected in order to obtain the coefficients for
representing the time-frequency information of the recorded signals providing a more robust
methodology with less computational cost.

This approach includes a similar idea to the previous approach but making use of the DWT
to obtain approximations and detail coefficients (see Figure 7.4) allowing the analysis of fast
and slow changing features at different frequency scales. The two-channel subband coding
scheme is applied to the recorded structural dynamic responses in order to produce a signal re-



7.3. Experimental results 85

construction to the level in which the signal could be properly reconstructed from the calculated
coefficients with the minimum loss of information. Determining the optimal basis function,
i.e. mother wavelet, for signal decomposition is also a very important step in wavelet analysis
since it guarantees an accurate decomposition of the original signal into the different frequency
bands.

Figure 7.4: Damage detection and classification including the DWT within the Phase 1.

The use of the DWT is justified by two important points. Firstly, this modification to the
methodology presents advantages such as the reduction in the computational cost in comparison
with the original methodology. This is given by the fact that the size of the matrix that has to
be processed is considerably reduced since a small amount of compressed parameters are used.
On the other hand, the extracted wavelet coefficients give a compact representation that shows
the energy distribution of the structural dynamics not only in time but also in frequency.

After implementing the use of the DWT for preprocessing the data, the steps to follow are
the same as those just explained in the previous section.

7.3 Experimental results
The results in the validation of the methodology are organized in 5 subsections. The first two
subsections include the results in the training and diagnosis stages and its main objective is
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to define the configuration parameters and the definition of the pattern for the classification.
These results are obtained by using data from the aluminum plate defined in Section 4.1. After,
the results of the behavior of the DWT in the methodology are shown using data from the
aircraft fuselage and the CRFP plate. These structures were described in Sections 4.6 and 4.3
respectively. Later on, PCA is replaced by ICA in order to demonstrate the generalization of
the methodology using a multilayered composite plate. Also a comparison between the results
using PCA and ICA are discussed using the same specimen. Finally, to evaluate the behavior of
the methodology under temperature changes, an aluminum plate subjected to six temperatures
is used. The SOM Toolbox of Matlab [180] is used for the implementations.

7.3.1 Configurating the baseline pattern
To define the optimal set of parameters to configure the data fusion tool, several SOM’s were
trained and validated. To determine the cluster size, a study was previously performed. Larger
map sizes present more detailed patterns. On the contrary, smaller map sizes present more
general patterns. Maps smaller than 4× 4 show many overlapped clusters, big SOMs generate
too many empty clusters that add uncertainty to the classification of the damage. In this
structures, optimal results are obtained using a map of 6 × 6 clusters. Additional to the map
size, the map lattice and shape must be specified. The SOM lattice gives the local topology
of the map, i.e. the connectivity of the map units. The lattice can be either rectangular or
hexagonal in the SOM toolbox. For the present study, hexagonal lattice is used. Different
shapes such as sheet, cylinder or toroid can be chosen. For ease, a flat sheet shape is considered
here. Additionally, a Gaussian neighborhood function is used.

On the other hand, this study also analyzes in depth how the classification results are
affected by three issues: (i) the method used to normalize the input data; (ii) the number of
scores used in the input vector; and, (iii) the specific damage detection indices, which a priori
are T 2-statistic and Q-statistic. Six possible normalizations are implemented in the toolbox to
preprocess the input data: range, var, log, logistic, histD, histC [180]. According to [180]
the normalization type var, performs a linear transformation which scales the value such that
their variance is equal to one. Normalization type range scales the variable values between
[0,1] using also a linear transformation. Log normalization makes a logarithmic transformation
of the input variables. The logistic normalization is more or less linear in the middle range and
has a smooth nonlinearity at both ends, which ensures that all values (even in the future) are
within the range [0,1]. Normalization type histD is a discrete histogram equalization. It sorts
the values and replaces each value by its ordinal number. Finally, it scales the values such that
they are between [0,1]. Normalization type histC is a continuous histogram equalization. The
value range is divided into a number of bins and the values are linearly transformed in each bin.
All the normalizations were implemented using, as input vector, eight scores and both damage
indices (T 2- and Q-statistic) by each actuator phase. After validating the resulting maps
(labeling the cluster), it can be seen that the maps with least amount of clusters with different
state of the structure (overlapped clusters) are these such are normalized using histC, histD
and var normalization. These maps are depicted in Figure 7.5, each cluster (or output neuron)
of the SOM is represented by a hexagon. The color of the cluster shows the kind of damage
(Undamaged, Damage 1, D2, D3, etc), and the portion of the cluster shows the portion of the
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damage among the total of the experiments grouped in the cluster. Besides, the damage and the
number of experiments of this damage are shown (i.e. D3(2) means that 2 experiments with the
damage 3 are grouped in the cluster).

(a) (b) (c)

Figure 7.5: Classification of damages using eight scores, both damage indices (T 2 and Q-
statistic) and normalization type (a) histC, (b) histD, (c) var.

Since T 2-statistic is a measure calculated from the scores, including this damage index
together with the scores in the input vector to the SOM could be redundant. To analyze the
influence of T 2-statistic into the SOM, three maps were trained and validated using eight scores
and only Q-statistic as damage index by each actuator phase. These maps have a configuration
similar to that presented in Figure 7.5. After validating (see Figure 7.6) and comparing with
the maps from Figure 7.5, it can be seen that T 2-statistic does not influence so much in the
results, but does increase the number of elements in the input vector as actuator phases (PZT
transducers) has the system.
The size of the input vector is also a parameter to consider when a SOM is being trained. To

(a) (b) (c)

Figure 7.6: Classification of damages using eight scores, Q-statistic and normalization type
(a)histC, (b)histD, (c)var.
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study the number of scores to be used, several maps were trained and validated. The number
of scores was varied between 2 and 10 and the normalization methods were those chosen in the
previous analysis (histC, histD and var). In general, results show that the more scores are
used, the better classification, although not big differences are found. On the other hand, time
consuming is also greater. To see this disparity, the resulting maps after using 2, 7 and 8 scores
are depicted in Figures 7.7, 7.8 and 7.9.

(a) (b) (c)

Figure 7.7: Classification of damages using Q-statistic, normalization type histC and (a) 2
scores, (b) 7 scores, (c) 8 scores.

(a) (b) (c)

Figure 7.8: Classification of damages using Q-statistic, normalization type histD and (a) 2
scores, (b) 7 scores, (c) 8 scores.

From these figures, it may be observed that, using 7 and 8 scores and any normalization,
maps have less overlapped clusters than using just 2 scores. Moreover, comparing the
normalization methods, histC is the one that classifies better the damages.

Summarizing, there are certain important results to highlight here. First, it is possible to use
a reduced number of inputs in the SOM to obtain a good classification of the different structure
states. Furthermore, it is demonstrated that it is not necessary to include the T 2-statistic index.



7.3. Experimental results 89

(a) (b) (c)

Figure 7.9: Classification of damages usingQ-statistic, normalization type var and (a) 2 scores,
(b) 7 scores, (c) 8 scores.

Another important result is concerned to the relationship between the normalization method
and the inputs in the SOM, since, as shown the results there are differences between the results
with each normalization.

7.3.2 Using the baseline pattern for diagnosis
From the results obtained in the training and validation stage, a 6 × 6 map that uses histC
method for normalization and, 7 scores and T 2-statistic as input vector (Figure 7.7b) was se-
lected as the baseline pattern to be used in future diagnosis of structures. To assess the effec-
tiveness of such diagnosis, two new experiments for each state of the structure were performed,
which were not included in the training and validation stages. For each experiment, the data
matrix is projected into the reference PCA model for each actuator phase. The first seven scores
and Q-statistic from each model are the inputs to the baseline pattern SOM. Each experiment
activates one cluster of this SOM. Since the baseline is labeled, it is possible to identify which
damage has occurred if such damage was included in the training/validation stage. Figure 7.10
shows the clusters activated by each experiment. The direct visual comparison with Figure 7.7b
(baseline) clearly shows that each state of the structure is satisfactorily identified.
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Figure 7.10: Tested map using histC normalization, 7 scores and Q-index.

7.3.3 Analysis and discussion of the results using DWT
To test the benefits of using the DWT in the methodology, two structures are used: an aircraft
fuselage and a CFRP plate, which correspond to the structures explained in Sections 4.7 and
4.3 respectively. In both structures, six reversible damages were inspected.

The two-channel subband coding scheme was applied to the recorded structural dynamic
responses in order to produce a signal reconstruction to the level in which the signal could be
properly reconstructed from the calculated coefficients with the minimum loss of information.
The family of Daubechies wavelets (‘db8’) was chosen for this study. The optimum number of
level decompositions was determined based on a minimum-entropy decomposition algorithm
[45]. By using the minimum entropy criterion, the optimal basis that minimizes the number of
significant coefficients in the signal representation was selected. Once the optimal decomposi-
tion level is found, the approximation and details coefficients are calculated at different levels.
In this manner, the contributions of these coefficients can be studied in greater detail for the
purpose of robust damage detection and classification. In this way, the best encoding scheme of
the original signal showing robust features can be analyzed.

First, a preliminary analysis similar to the one explained in Section 5.4.1 about variances
retained in the components was performed in order to define the optimal number of principal
components required for building the PCA model. Figure 7.11 shows a plot of the cumulative
variance in one of the actuator phases, in particular in the phase 8 in the aircraft fuselage,
where only the first 46 components are shown to allow a better visualization. It can be seen that
this number of components comprises more than 95% of the total variance. Besides using the
three first components, around 80% of the variance is included into the model. This previous
analysis is important in order to ensure that enough variance is retained in the model that allows
performing an optimal reduction.



7.3. Experimental results 91

Figure 7.11: Percentage of cumulative variance in the actuator phase 8 in the aircraft fuselage.

Finally, three components were selected as a good representation of the input data. To
illustrate the application of the discrete wavelet transform for feature extraction, a series of
experiments were carried out in order to generate different signals at different levels from the
approximation and detail coefficients which could then be investigated using the proposed
methodologies. The objective of this investigation is to examine the suitability of coefficients
from the different levels of decomposition as robust features for the detection and classification
of damage. The full decomposition of each signal by the wavelet transform is carried out
and all the components up to the ninth level were calculated and analysed in order to find
the dominant energy levels. As previously mentioned, for the case under study, the family
of Daubechies wavelets ‘db8’ was selected with the index number referring to the number of
coefficients. The number of vanishing moments for each wavelet is equal to half the number
of coefficients, so ‘db8’ has 4 vanishing moments. A vanishing moment confines the ability
of the wavelet to represent polynomial behaviour in a signal. Figure 7.12 shows the level
wavelet decomposition of a structural dynamic response signal for the fuselage from the levels
number four to nine. Each signal at each level represents a specific frequency range, and the
frequency range increases with increasing the wavelet levels. Regarding the different details
decomposition it can be observed that identifiable waveforms emerge as the level number of
decomposition is increased. Approximation level nine was found to be the more appropriate
level for signal reconstruction from the approximation coefficients.

To evaluate the influence of the number of principal components and to validate the
selection of three scores and Q − statistics as inputs to the SOM using direct signals and
signals pre-processed by DWT, a preliminary study by training different SOMs was performed.
This study included the review of the results in the U-matrix by changing the number of scores.
The U-matrix is another representation of the Self-Organizing Map which allow to visualize
the distances between neurons by means of colors between adjacent neurons, in this way,
dark colors show large distances which is the same as big differences between the data in the
neurons. The results showed that 3 scores and Q− statistic by each actuator phase are enough
for a good representation in the SOM. Figures 7.13(a) and 7.13(b) show two of these results
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Figure 7.12: Wavelet decomposition.
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using the approximation coefficients obtained from the DWT applied to the data collected
directly from the aircraft fuselage using 3 and 199 principal scores respectively and including
the Q− statistic. As it is shown, in this case the use of 3 scores and the Q− statistic allows a
good classification by separating the regions of each state into the map. Even when the regions
are not labelled, it is possible to observe that the map is divided in seven regions. Further details
and discussion are given in the next section. In computational terms, this reduction implies to
work with smaller matrices by reducing the PCA models. As a result of the previous analysis,
a four dimension vector is selected as input to the SOM by each actuator phase (3 scores and
Q − statistic); this means that the inputs to the SOM are 200 vectors (number of exper-
iments) where each vector has 4 elements (3 Scores andQ−statistic)× (number of actuators).

Figure 7.13: Cluster maps varying the number of scores in the aircraft fuselage with the direct
signals.

To find the optimal map size, a control run is repeated by changing the map size. In order to
accomplish the selection of the optimal map size, two quantitative measures of mapping quality
known as the average quantization error (QE) and topographic error (TE) were analyzed. The
QE is the average distance between each data vector and the BMU. The TE gives the percentage
of the data vectors for which the first BMU and the second BMU are not neighbouring units.
Lower QE and TE values indicate better mapping quality. As a result of the analysis, a map size
of 30 × 10 is defined. Additional to the map size, the map lattice and shape must be specified.
The SOM lattice gives the local topology of the map, i.e. the connectivity of the map units.
The lattice can be either rectangular or hexagonal in the SOM toolbox. For the present study a
hexagonal lattice is used. Different shapes such as sheet, cylinder or toroid can be chosen. For
ease, a flat sheet shape is considered here. Additionally, a Gaussian neighbourhood function
is used. Figures 7.14 and 7.16 show the results obtained by means of the cluster map in the
aircraft fuselage and CFRP plate respectively. In addition, the U-matrix is used to show the
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results in the classification in both structures (Figures 7.15 and 7.17). The cluster map can be
used as a tool to show the different data set grouped with similar characteristics showing the
clustering tendency. In each figure, each output neuron of the SOM is represented by a hexagon
and the colors in the map represent the clustered areas, it means, each state of the structure
(Undamaged, D1, D2, D3,. . .). The size of the portion with color in each output neuron shows
the quantity among the total of the experiments grouped in each specific output neuron. In the
U-matrix, it is also shown the clustered groups and, additionally it is useful to show the sparser
regions between the clusters. More details on the results for these two structures are given
below.

Aircraft Fuselage

Figures 7.14 and 7.15 depict the results obtained with the aircraft fuselage case. The former
shows the clusters map using: the direct signal, the approximation coefficients and the detail
coefficients. In a similar manner, the latter shows the U-matrix using the direct signal, the
approximation coefficients and the detail coefficients. As it is possible to observe by means of
the separations between the groups in the cluster maps, the best classification is obtained from
the direct signals and the approximation coefficients. In this case, seven clusters seem to have
been well identified. The approximation coefficients can be then used for classification with
similar results to the ones obtained with the classification using the direct signals. Additionally,
the number of columns of the unfolded matrix for each actuator can be reduced approximately
18 times. In order to provide a quantitative figure, the number of columns is reduced from
19200 samples with the use of direct signals to 1056 coefficients with the use of approximation
coefficients, which results in a computational cost reduction.

Another important aspect is related to the treatment of the outliers. Although outliers are
present in the three cases, the number is less when the approximation coefficients are used.
This means that it is possible to perform a better classification by this approach. Additionally,
it is important to observe that in all the cases the U-matrix representation allows an isolation
of the outliers by the separation between the different areas. This separation represents the
different zones delimited by boundaries, where the lighter colors depict these zones. The darker
colors into these boundaries can be interpreted as the zones where the outliers are present into
the map representation. This is an important result because this allows avoiding the creation of
a new zone by the outliers. The U-Matrix realizes the emergence of structural features of the
distances within the data space. Outliers as well as possible cluster structures can be recognized
for high dimensional data spaces. However, the results obtained with the detail coefficients are
not satisfactory when they are compared with the results obtained with the previous discussed
approaches. In particular, it can be observed that the undamaged state cannot be properly
separated from the damage state 1. This also holds between state four and six. It is also possi-
ble to observe that the distributions of the clusters in the map are different for all the three cases.
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(a) (b) (c)

Figure 7.14: Cluster map for damage classification in the aircraft fuselage, using: (a) direct
signals, (b) approximation coefficients and (c) detail coefficients.

(a) (b) (c)

Figure 7.15: U-matrix for damage classification in the aircraft fuselage using: (a) direct signals,
(b) approximation coefficients and (c) detail coefficients.
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CFRP plate

Figures 7.16 and 7.17 depict the results obtained with the composite plate case. First, Figure
7.16 shows the clusters map using the direct signal, the approximation coefficients and the detail
coefficients respectively. In a similar manner, Figure 7.17 shows the U-matrix using the direct
signal, the approximation coefficients and the detail coefficients. As it is possible to observe
by means of the separations between the groups in the Figure 7.17, a similar classification
performance is obtained with the proposed approaches. In this case, seven clusters seem to
have been well identified. Additionally, the boundaries are more clearly depicted compared
with the previous example. Another significant difference is that there is no presence of outliers
in the cluster map. The approach of the approximation coefficients provides good results and it
is possible to replace the direct analysis of the signals by using these coefficients without losing
reliability in the analysis.

(a) (b) (c)

Figure 7.16: Cluster map for damage classification in the CFRP Plate using: (a) direct signals,
(b) approximation coefficients and (c) detail coefficients.

Contrasting the fuselage case, in this particular case, the coefficients of the details also pro-
vide good results. This could probably be explained by higher harmonic generation of guided
Lamb waves. It has been shown that nonlinear materials depict power-dependent transmission
and selective generation of higher harmonics [34], [154]. This topic requires further research.
In this case, the size of the unfolding matrix from each actuator with the direct signal is of 9600
samples × 150 experiments while using the approximation or details coefficients is of 584 co-
efficients 150 experiments. This implies a reduction in the unfolding matrix from each actuator
of approximately 16 times less columns in each matrix. Compared with the previous example,
the three cluster maps obtained by the different approaches have similar cluster distributions
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into the cluster map. In contrast with the U-matrix, the results obtained in the CFRP Composite
plate are more clearly separated. This can be explained by the fact that the aircraft fuselage is a
more complex structure which contains stringers, ribs and rivets.

(a) (b) (c)

Figure 7.17: U-matrix for damage classification in the CFRP plate using: (a) direct signals, (b)
approximation coefficients and (c) detail coefficients.

7.3.4 Damage classification using ICA
As was explained in the Section 5.3 any Multivariate Statistical Method that allows to represent
the data by components can be used in the damage detection methodology for replacing
PCA. Now in this subsection PCA is replaced by ICA in order to test the methodology and
compare the results. This comparison was performed in a multilayered composite plate which
corresponds to the structure described in Section 4.4.

Figures 7.18 and 7.19 show the results obtained by means of the cluster map and the
U-matrix using PCA and ICA respectively, in both cases, the results are obtained by including
the DWT to obtain the approximation coefficients.

The U-matrix shows similar results in both cases separating the different states. This can
be seen at the separation boundaries depicted in lighter colors. Another important aspect is
related to the treatment of the outliers that could be produced as a result of experimental errors
and/or any type of noise source. By analyzing the cluster maps in Figures 7.18 and 7.19, it
can be seen that outliers are only present in the ICA case. Additionally, it is important to
observe that in this case the U-matrix representation allows an isolation of the outliers by the
separation between the different areas. This is an important result because this allows avoiding



98 7. DAMAGE CLASSIFICATION SYSTEM

Figure 7.18: Damage classification using 3 Scores and Q-statistic. Figures (a) and (b) show the
Cluster Map and the U-matrix using approximation coefficients from DWT and PCA.

Figure 7.19: Damage classification using 3 Scores and SPE. Figures (a) and (b) show the Cluster
Map and the U-matrix using approximation coefficients from DWT and ICA.

the creation of a new zone by the outliers. It can be seen how the U-Matrix recognizes the
emergence of structural features of the distances within the data space. As a result, outliers as
well as possible cluster structures can be recognized for high dimensional data spaces. It is also
possible to observe that the distributions of the clusters in the map are different for all the cases.
By analyzing the previous results, it can be seen that none of the methods is outperforming the
other. This observation plays a critical role in the selection of the novelty detection algorithms.
This is given by the fact that every algorithm has its own computational cost for the processing
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of the input data to create the models. Regarding to the computational cost, PCA is the one
providing the lowest cost followed by ICA. In contrast, ICA needs several algorithm runs in
order to achieve optimal results, however, if the results are based on a “one-shoot” basis run,
the results by ICA can significantly change. This is reflected by the changes of the values at the
boundaries in the U-matrix, i.e. the values in some cases are smaller showing that the separation
between the states are not strong, and in some other cases these values are higher presenting
good separation between the groups. This result indicates some reservations about the use of
ICA for the purpose of the detection and classification tasks.

7.3.5 Analysis of changes in temperature

To determine the effect of the temperature in the damage classification approach, some ex-
periments were conducted using an oven with controlled temperature and an aluminum plate
instrumented with 5 piezoelectric transducers. More details about the structure and the experi-
ments can be found in Section 4.8.

Figure 7.20: Classification of the different baselines at different temperatures using 2 scores
and the Q-index.

To verify the sensitivity of the approach to the changes of the temperature and determine if it
is possible to classify the different states of the structure, two studies were conducted. First, the
classification of the different baselines at the different temperatures is evaluated. In particular,
data from the structure under six different temperatures (24 ◦C, 30 ◦C, 35 ◦C, 40 ◦C, 45 ◦C and
50 ◦C) were used to evaluate the approach. For the evaluation, the cluster map and the U-
Matrix are analyzed in order to find differences between the data from the healthy structure
under different temperatures scenarios. The results are depicted in Figure 7.20. In this case, six
clusters seem to have been well identified in the cluster map and the U-matrix. The analysis
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of the cluster map shows that the data from the structure when the temperature is 24 ◦C are
better organized, this can be observed by evaluating the number of output neurons occupied in
the cluster map. In the U-matrix the boundaries represent the separation between the clusters
and its color shows the differences between the clusters, in this sense darker colors implies big
separations in the normalized map. As it is possible to observe by the colors in the boundaries,
there are not big differences between the first four temperatures but this difference is increased
with the last two temperatures. Another important aspect is related to the treatment of the
outliers, as is shown in the cluster map presented in Figure 7.20, where there is an outlier in the
data from the structure when the temperature is 45 ◦C. In this case, it is important to observe
how the U-matrix allows an isolation of the outlier by the separation between the different
areas. This separation represents the different zones delimited by boundaries, where the lighter
colors depict these zones. The darker colors into these boundaries can be interpreted as the
zones where the outliers are present into the map representation. This is an important result
because this allows avoiding the creation of a new zone by the outliers. The U-Matrix realizes
the emergence of structural features of the distances within the data space. Outliers as well as
possible cluster structures can be recognized for high dimensional data spaces. The result of this
first study is useful to demonstrate that there are differences between the data from the healthy
structure in the different temperatures as was expected. Those differences were less significant
among the first temperatures.

Figure 7.21: Classification of the different baselines at 24 C using 2 scores and the Q-index.

In a second study, the maps were trained using the data from five different states (healthy
state and four damages). Damage on the tested plate was simulated by localized masses at
different positions on the surface as was presented in the experimental setup section. Figures
7.21 to 7.26 show the classification results when the structure is subjected to 24 ◦C, 30 ◦C, 35
◦C, 40 ◦C, 45 ◦C and 50 ◦C. In this case, six clusters seem to have been well identified. The
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boundaries between the clusters in the U-matrix show that there is a clear separation between
all the states. Additionally, according to the results in the cluster map there is no outliers.

Figure 7.22: Classification of the different baselines at 30 C using 2 scores and the Q-index.

Figure 7.22 shows again that six clusters seem to have been well identified. Again the
boundaries show clear separations between the different states. In difference with the result
when the temperature is 24 ◦C, there is one data separated more than two output neurons in
the cluster map from the rest of data in the undamaged state. This outlier is isolated by the
separation between the undamaged sate and the damage 2. Other difference to remark is the
distribution of the states in the cluster map and the U-matrix which is different to the distribution
when the temperature is 24 ◦C.

Figure 7.23 shows the results when the temperature is 35 ◦C. These results again showed
that six clusters seem to have been well identified. In difference, there is again a different
distribution in the cluster map and the U-matrix compared with the data from the structure with
24 ◦C and 30 ◦C. As to the results with 30 ◦C the smallest differences between the clusters are
between the damages 2 and 3. This can be seen by the lighter color in the boundary between
these two clusters.

Figure 7.24 shows the results with 40 ◦C, as is shown there are five clusters well identified.
Equally to the results obtained with 30 ◦C and 35 ◦C the boundary between the damage 2 and
damage 3 is in lighter color, this means less differences between these damages. By evaluating
the cluster map it is possible to see that there is one data separated by a distance of more than
two output neurons from the rest of the data; this possible outlier is isolated in the U-matrix by
the boundary line between the D4 and D1.
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Figure 7.23: Classification of the different baselines at 35 C using 2 scores and the Q-index.

Figure 7.24: Classification of the different baselines at 40 C using 2 scores and the Q-index.

Figure 7.25 shows the results with 45 ◦C, again, are shown five clusters clearly separated in
the cluster map and the U-matrix. Equally to the results obtained with 30 ◦C, 35 ◦C and 40 ◦C
the boundary between the damage 2 and damage 3 is in lighter color. It is worth underlining
that, while the data from the damage 4 and damage 3 are scattered compared with the other
damages, the U-matrix allows equally a good classification of these states.
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Figure 7.25: Classification of the different baselines at 45 C using 2 scores and the Q-index.

Figure 7.26: Classification of the different baselines at 50 C using 2 scores and the Q-index.

In difference with the previous results, with 50 ◦C (Figure 7.26) the lighter boundary are
between the data from damage 4 and 3. Equally, five states are clearly separated and the
classification of all the states is possible. Comparing the results in the classification from all
the temperatures studied, it is possible to assert that in all the cases the classification is possible
for all the states with a good treatment of the outlier. This treatment presents good results in
the sense that there is no creation of a new cluster. The undamaged state in all the temperatures



104 7. DAMAGE CLASSIFICATION SYSTEM

is clearly separated from the rest of the damages in spite of the number of output neurons in the
cluster map is different for each temperature.

7.4 Discussion
This chapter has proposed an approach for structural damage classification through the
integration of: a multiactuator system (several PZT’s working as actuator and sensors in
several phases), a statistical reference model based on Principal Component Analysis, a
damage index and a Self Organizing Map as classification tool to combine and contrast
the information obtained from each actuator phase. The approach has been experimentally
analyzed showing good results classifying different states of the structure in three different
specimens with different materials, properties and sizes showing the robustness of the approach.

Results indicate that the use of the approach enables one to detect and classify damages
even when the structure is subjected to a range of temperature changes. In the specific case
presented, the preprocessing with DWT, the use of two scores and the Q-index by each
phase and the data fusion by means of a Self-Organizing Map presented the best result in
the classification. The detection can be performed when the new data in the cluster map or
in the U-matrix is separated from the undamaged state. According to the results, in all the
cases evaluated, the undamaged state is clearly distinguished and the detection is possible.
In addition, with the application of this approach, the problem of evaluate all the phases to
define the existence of a damage, as was defined in Chapter 5, specially, in large structures
instrumented with several PZT transducers is solved. Now, the solution implies only the
evaluation of the cluster map or the U-matrix obtained by data fusion.

In the classification, each cluster represents one state of the structure. As was shown, the
classification was possible in all the cases (different temperatures) with similar results. There
are some changes in the final distribution in the cluster map and the U-matrix, mainly because
the organization in these plots depends on the input data, but these changes do not alter the
final result of the classification.

In the same manner, the methodology has been tested with partners from the Siegen
University with excellent results using Hierarchical Nonlinear PCA in different structures,
such as a simplified aircraft composite skin panel with reversible damages [175], [174] and a
pipe with real damages [173], showing the utility of the approach. All these results allow to
ensure that is possible to replace the use of PCA by other multivariate statistical method in the
methodology and obtain good results and that it is independent of the properties of the structure
such as shape or material.



Chapter 8

CONCLUSIONS AND FUTURE
RESEARCH

8.1 Observations and concluding remarks
This thesis has contributed with the development of a structural health monitoring system based
on pattern recognition techniques for tackling the SHM problem in aeronautical structures.
This development was focused on damage detection, localization and classification. From the
application of this system several advantages were obtained as shown by the results throughout
this manuscript.

In general, several conclusions can be drawn from this thesis. They are organized in six
subsections: instrumentation and data acquisition, preprocessing, model building, damage
detection, damage localization and finally, damage classification.

8.1.1 Instrumentation and data acquisition
Starting from the instrumentation level, it is possible to conclude that the use of the Piezo-
electric Transducers (PZT’s) is a viable solution for structural inspection. They provide the
following advantages:

• By its nature of transducer, they can work either as actuators or sensors

• They can work in a wide range of frequencies

• They can be easily attached to any structure and they are available in different sizes and
presentations.

• The price is relatively low compared with other sensors normally used in NDT inspection
and SHM applications.

As it has been shown in this thesis, an active piezoelectric system which consists of
several PZT transducers attached to the structure under test, was used in several actuator

105
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phases. In each actuator phase, one PZT transducer is used as actuator to excite the structure
and the rest are used as sensors to obtain the signals from different points of the structure.
This configuration allows to perform a global and robust inspection compared with the basic
inspection performed by a pair of piezoelectric transducers by working in pitch-catch mode. In
the other hand, it is not tied to the use of a data acquisition equipment from a specific company
to perform the experiments. This means that it is possible to use any equipment that meets the
requirements to inspect the structure (generation of signals defined by the user in the order
of KHz and data acquisition). A proof of this statement is that as shown in Chapter 4, three
different equipment from different companies were used in this work to inspect the structures.
The results showed that in all the cases it was possible to detect, localize and classify damages.

A strong advantage about the use of the proposed methodologies is that they can be used
indistinctly with other kind of transducers working in a similar configuration. This is possible
because all the proposed approaches just need the vibrational time responses for the different
actuation phases.

8.1.2 Data preprocessing

According to the obtained results, it is possible to conclude that an adequate preprocessing of
the original data adds some advantages to the methodologies such as:

First, the normalization allowed to scale the data set using the mean and standard deviation
of all measurements. This step provides the opportunity to treat in the same manner all the
data from each sensor, it is really important since data from different sensors have different
magnitudes and scales. These differences depend on factors such as the distance from the
actuator, the type of material in which the signal is propagated, stiffeners, and others.

Second, the unfolding of the original data allowed to organize them to perform a mul-
tivariate analysis, allowing to analyze the variability in each experiment, summarizing the
information in the data with respect both the sensor and the time variation.

Finally, the use of the DWT allowed to improve the computational efficiency. It was
included in the preprocessing step with the corresponding result of the reduction in the
computational cost by decreasing the size of the unfolding matrices for each phase. Equally,
the classification of the data set from different structural states was improved. Due to the fact
that DWT decomposes the signal in details and approximations, a study was performed to
evaluate which coefficients presented better results. This study showed that the approximation
coefficients can be used in place of the direct signal collected in the experiments and in some
cases outperform the traditional PCA features in securing the separability of the data classes
and allowing a lower dimensional representation. Though DWT was not included in the
analysis for damage localization, results are expected to be similar to those obtained in the
damage detection and localization with the corresponding time reduction.
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8.1.3 Data driven baseline modeling
After reviewing the literature and considering the previous experience of the author and
advisors, PCA and ICA were selected as techniques to build a baseline data driven model using
the healthy structure. The use of multivariate approaches allowed to perform a robust analysis
extracting the information from the data of all sensors in each actuation phase, and to project it
onto a lower dimensional space. In the case of PCA this new reduced space is defined by the
principal components, while in the ICA case is done by the independent components.

When PCA is used, an analysis of the variances retained in the components allowed to
define the optimal number of principal components required for building the PCA models. In
some cases, it was possible to reduce the dimension to 2 principal components allowing to
obtain a good representation of the data with less computational cost. In the ICA case, there is
no way to determine which component contains the most relevant information. To solve this
problem and perform the reduction of data, PCA was previously applied using the analysis of
the retained variance.

The application of PCA and ICA as multivariate statistical methods to create a model by
each phase presented several advantages:

• These baselines must be calculated only once using the data from the structure when this
is known as healthy.

• These baselines can be used in the three methodologies without any change. As was
showed throughout the thesis, the damage detection methodology is the basis for the
classification and localization tasks.

• These baselines are a reduced representation of the original data, therefore, the computa-
tional cost is also reduced.

8.1.4 Damage detection
The methodology presented in this thesis allowed to detect damages using PCA and ICA with
similar results. The advantage of this methodology is its simplicity, since to determine the
state of a structure only few steps are required: to collect new data, preprocess these data and
project them into the models. These projections by itself can be used to detect damages by
each actuator phase. The detection can be performed by analyzing the differences in the score
plots between the undamaged state and the new data by each phase.

The contribution of this thesis to solve the damage detection problem is the use of four
damage detection indices. Although two of these indices were known in SHM (Q and T 2), this
thesis introduce new alternatives. The other indices (φ and I2) are new in the SHM field and
was shown that in some cases the results are better. In general, it should be emphasized that the
detection of damages can be performed by using any of these five features (scores, T 2, Q, φ
and I2) independently.
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The performance of the damage detection methodology using the projections and the
indices were tested in different structures. In particular, results from aircraft turbine blade and
the aircraft wing skeleton revealed that the use of the scores and the damage indices allowed in
most cases the detection of the damages. Additionally, the approaches allowed to separate and
distinguish damages among them in most of the cases. These results allow to affirm that the
use of the scores and damage indices have potential for real applications and can be used in a
combined way to evaluate the state of a structure.

In general, the results showed that the score plots are not very useful when the variances
contained in the principal components are not significant. In these cases, the use of a combined
analysis with the damage indices can be used for detecting damages with better results.

8.1.5 Damage localization
A novelty system for the localization of damages was developed. The approach combined
some important elements such as:

(i) A piezoelectric active system working in different actuation phases.

(ii) The damage detection methodology to reduce the original data, obtain the baseline
models by each actuator phase and calculate the scores and damage indices.

(iii) The evaluation of the influence of every sensor to the damage index in each actuation
phase. This influence can be calculated by means of contribution analysis methods, which are
used to localize the origin of the change in the vibrational response (damage).

(iv) A data fusion technique to combine the results from each actuation phase in one result
to offer one generalized diagnostic about the position of the damage. The region that contains
the damage is obtained by finding the highest value area, for which the sum of the contributions
obtained for each sensor to each index is calculated.

Five contribution analysis methods (CDC, PDC, ABC, DC, RBC) were introduced in SHM
for calculating the contribution of each sensor to the index. Therefore, five different ways to
localize damages by each damage index are available. In particular, it was found that using T 2

and Q index, the lowest contributions were obtained applying CDC method. Specifically, in
the Q index case, the results obtained with the other methods presented similar results, but in
the T 2 index case best results were obtained using ABC method. In the case of the φ and I2 the
results were similar to the obtained with T 2 index and Q index, showing that all the methods
are useful to localize damages.

Results vary for each actuator. In this way, the use of data fusion allowed to consider the
results from each actuator phase and obtain a simplified final diagnostic.

Although ICA was not used for damage localization, results are expected to be similar as
those obtained ones by PCA.
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8.1.6 Damage classification
It was shown that the damage detection methodology can be extended for damage classification.
In the approach, a combination of: a multiactuator system working in several phases, PCA or
ICA, the projections to the components, the damage indices, and a SOM properly configured
were used.

The SOM was used as a classifier and data fusion tool to contrast the information obtained
from every phase, allowing the properly classification of different states of each inspected
structure ( from the healthy structure to different damages defined across the structure).

To demonstrate the effectiveness of the approach, two clear stages in the methodology
were performed: first, the baseline pattern building stage and second, the diagnosis stage
using different data. The first stage demonstrated how the results are highly influenced by
the inputs and the normalization method applied in the SOM. The information from the state
of the structure was used to verify the quality of the classification and the best parameters
of the approach: how many scores should be used, how many damage indices are necessary
and the configuration of the SOM ( structure, number of output clusters, normalization, etc).
Additionally, it was shown that the T 2-index (although is a good index for damage detection
by itself) can be avoided to reduce the number of inputs to the SOM. This result is potentially
useful in future applications when working with structures instrumented with a large sensor
network in order to optimize the computational cost. The second stage allowed assessing the
effectiveness of the proposed approach by using new data from each state of the structure
which were not included in the first stage.

Although all the steps can be generalized in the classification methodology to be used
with any multivariate statistical method, some elements such as the definition of the number
of components, type of normalization of the SOM input data and the size of the map should
be evaluated for each specific case. Particularly, in most cases studied in this thesis, the
normalization type histC presented the best results allowing to obtain a better classification.
This means that a better separation between vectors was obtained. Similarly, it was found that
the size of the SOM must be greater than 4x4: a smaller SOM means overlapped clusters,
while using a very big SOM generates too many empty clusters which adds uncertainty to the
classification.

In addition, it was shown how the SOM algorithm by means of the U-matrix detects and
isolates the outliers allowing the identification of the different structural states in different
zones. The results obtained from the structures showed that, in spite of the possible noise in the
experimental setup and the complexity of the structure, it was possible to classify and detect
damages doing a proper management of the outliers in the final representation (U-matrix). The
U-matrix allows to identify the sparser regions between the maps and to isolate the outliers.
Furthermore, the possible presence of high order harmonics in the spectrum of the transmitted
signals could be an indication of nonlinearity inside the material which potentially may lead to
significant enhancement in the sensitivity to structural defects.
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One of the challenges in structural health monitoring is the variability caused by variation in
operational and environmental conditions, producing changes in the signals propagated through
of the structure therefore. The results can generate false indications of damages. To avoid
these false alarms, the methodologies need robustness. This feature was evaluated inspecting
an aluminium plate using different changes in the temperature. As result, it was demonstrated
that the detection and classification was possible in all the cases.

8.2 General conclusions
Results showed the real practical potential of the proposed methodologies for detection,
localization and classification. This statement is supported by the fact that they can work
properly with any type of structure regardless of whether it is a simple aluminum plate or a
more complex part of an aircraft as a fuselage or a wing, which contain stiffeners in two direc-
tions. Additionally, the results in each SHM level (detection, localization and classification)
demonstrated that the goal is achieved independently of the type of material of the structure,
temperature changes, data acquisition system, etc. Although the inspection was performed
under controlled laboratory conditions, the results showed a potential use in real applications.

The applicability of the methodologies is enhanced by the following elements:

• The multi-actuator architecture. Since the final diagnosis is performed by analyzing the
results from the different actuator phases, it is possible to evaluate the abnormalities from
different points of view, this means, from different sensors in different locations of the
structure.

• The preprocessing step. This step allows to normalize and organize the signals in each
actuation phase in order to perform an adequate multivariate analysis of the data.

• The model building step. The use of multivariate statistical methods allows to obtain a
baseline data driven model in a reduced dimension space.

• The use of damage indices. These indices allows to identify abnormalities in the data
to define the presence of damages by comparing the data from different structural states
with the undamaged state.

• The data fusion. This step is really important in the presentation of the final results since
it allows to give one general diagnosis by combining the analysis from the different actu-
ation phases. This implementation provides a degree of reliability to the methodologies.

8.3 Future work
This thesis has contributed to SHM but many open issues still remain. The following subjects
are outlined as future works specifically related to the system developed in this thesis.
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8.3.1 Tests with different damages

In the majority of the cases in this thesis, the damages have consisted in adding masses at
specific locations. Although they are not real structural damages, they have allowed to evaluate
the methodologies without irreversibly damaging the available experimental specimens. Future
evaluations would be interesting to be performed with real typical damages.

8.3.2 Variation of the environmental conditions

Since a structure in normal operating conditions undergoes temperature variations and different
forces by the environmental conditions, it is necessary to test the methodologies using more
complex structures subjected to different loads and environmental conditions (variation in tem-
perature, random vibration, humidity, etc.) to continue the validation of the proposed method-
ologies.

Additionally, it is necessary to work in the development of more robust baseline models.
To achieve this objective, the data from the structure under different environmental conditions
when it is known as healthy need to be considered in the PCA modeling.

8.3.3 Sensor distribution Optimization

A good alternative to improve the results is related to the fact of an optimized sensor distribution.
In this sense, the study and development of a methodology to determine the optimal location
and the number of the sensors according to each structure is needed.

8.3.4 Sensor fault detection

The methodologies presented in this work assumed that the signals from the sensors were al-
ways right and there was no sensor failure. In real applications, this assumption is not ensured
all the time since the sensors and the structures are subjected to changes in environmental con-
ditions and different loads. To solve this problem, the active piezoelectric system needs to
incorporate a validation procedure to ensure the properly functioning.

8.3.5 Validation using more complex structures

Although the results from the experiments in two composite plates were included, it is
necessary to perform more experiments with more complex structures and different materials
in order to validate the scope of the methodologies.

As applications of composite materials in aeronautic and aerospace structures is growing, it
is very important to continue testing all these techniques to determine how they affect the results
depending on the class of material. Of course it is expected that all the results will be different,
but it is important to determine if this variation improves or gets worse results. Following this
direction, the author started to work at the end of this thesis and some new contributions to
journals and conferences are still in process with partners from Siegen University in Germany
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and the DTU Wind Energy, RIS∅ Campus in Denmark, where other composite materials in-
cluding sandwich composite materials were inspected using real damages such as cracks and
delamination.

8.3.6 Evaluation of different statistical methods
The methodologies presented in this thesis allow to use any multivariate statistical method to
reduce data and to calculate the components and indices. As a preliminary result, the damage
classification methodology was also tested in collaboration with partners of Siegen University
by using Hierarchical Non-Linear PCA with excellent results. These results have not been
included in this thesis since they are still under further studies.
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Appendix B

STRUCTURAL HEALTH
MONITORING LABORATORY

B.1 Commercial Solutions

In terms of companies that provide solutions to end users of SHM, there exist many systems
that include custom solutions for specific applications, or sale of equipments by separate to
configure according to the needs. Most of these companies are oriented to the civil engineering
sector [71].
In general terms, SHM systems usually includes three components. These are:

• a sensor and actuator system to produce the excitation and/or measure the response of the
structure

• The hardware to acquire and pre-processing the collected signals. It depends of the kind
and number of sensors, the kind of structure material and the excitation signal, among
others.

• The software with the different techniques according to the own application (damage
detection, impact detection, loads monitoring, etc.)

B.1.1 Sensor and actuator systems

There are different ways to apply and collect signals in structures. Nowadays several kind of
sensors are used in SHM [126], among them, the most used are: piezoelectrics transducers
([66],[73], [183], [130]) , Optical Fibre ([141],[169],[36], [106],[122]) and Strain sensors
([110] ,[106], [25]). On the other hand, they can be used in the structure in different manners.
For instance, the sensors can be neither attached to the surface or integrated within the structure.
As an example of this sensors, Accellent inc offers the SMART Layerrsensors. These sensors
are a thin, flexible and ultra-lightweight dielectric film with an array of durable networked
piezoelectric sensors (see figures B.1 and B.2). This layer can be adapted to any structure with
complex geometry.
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Figure B.1: Smart Layer sensors [3]. Figure B.2: Smart Layer sensors [3].

B.1.2 Hardware to acquire and pre-processing the collected signals

This hardware includes all the essential hardware to inspect the structures and depending on
the needs of the application can contain elements to generate signals and acquire signals. Ad-
ditionally, elements for transporting the signals from the sensors to the acquisition systems and
for transforming these signals into a interpretable set of data such as filters, amplifiers, etc. Of
course, the selection of a good hardware depends of the sensors and the application, since it is
necessary to consider features such as frequencies, amplitude, kind of signal to apply, sample
rate, etc. Some examples of hardware vendors are TiePie engineering, Trek, and National In-
struments. The first company for instance, is the distributor of the Handyscopes HS4 and HS5
which are a high resolution oscilloscope and generator [16]. The company Trek offers many
different piezo drivers and amplifiers which can work in a wide range of frequencies and volt-
ages [18]. National Instruments offers different equipment for data acquisition such as the NI
CompactRIO or the PXI chassis and software as Labview for developing applications. These
equipments can be configurated according to the needs of the application, one example can be
found in [168] where using Labview, System Identification and Advanced Signal Processing
Toolkits as software and PXI-4472B, PXI-6652, PXI-8187, PXI-6602 as hardware developed
an application for the monitoring of the Donghai Bridge in China. Using this system it is possi-
ble to calculate the extent of damages and deterioration using the frequency response from more
than 500 sensors including acelerometers and FBG optical sensors spread across each segment
of the bridge. Other application reported using national instruments equipment [144] included
the use of Labview, DIAdem and Labview Signal Express as software and NI 9237, NI 9205,
CompactRIO, NI CompactDAQ, NI 9219, NI 9211 as hardware in order to monitor by long-
and short-term a range of structural systems during and after construction.

B.1.3 Software

The specialized software for SHM should consider and include: (i) pre-processing data
techniques for de-noising, smoothing, normalization, etc; (ii) feature extraction and feature
selection methods for reducing the dimensionality of the problem and (iii) a strategy for apply
SHM levels in the strict sense. In commercial scale, there is no specialized software for
Structural Health Monitoring although as shown below there are some integrated solutions with
specialized software associated to a specific hardware.
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Integrated systems

Currently there are some companies that offers some specific solutions for SHM involving
sensors, hardware and software. For instance, Acellent technologies provide complete inte-
grated systems with a specialized software and hardware for impact detection and detection,
localization and quantification of damages [2]. Specifically for damage detection in compos-
ite structures, the company offers a system which consists of SMART Layer sensors, Portable
ScanGenie hardware, SmartComposite software (see figure B.3). According to the information
in the company web page, “this system is ideal for monitoring large composite structures such
as aircraft wings, fuselage, wind blades, and pressure vessels. The system identifies damages
such as delaminations, disbonds, and matrix cracking. It identifies the onset of damage in the
structure and also quantifies the damage size.”

Figure B.3: Composite Damage Detection System [3].

For impact monitoring, Acellent (see figure B.4 ) has a system to detect and monitor this
type of defects in real time, including the measure of the force and location of an impact
using a threshold. This system consists on the SMART Layer, IMGenie hardware, and AIM
software. Some applications of this system include: Thermal protection system, Smart bumper
for automobiles and Rocket motor testing.

Hot spots are specific geometric locations in a structure that are particularly prone to
damage during operation and under variable loading conditions. Accelent offers a system that
can be used for monitoring different kinds of joints, bearing/race assemblies, engine disks, and
other vulnerable components [3]. This system consists of SMART Layer sensors, ScanSentry
hardware, SmartPatch software(see figure B.5).
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Figure B.4: Impact Monitoring System [3].

Figure B.5: Hot-Spot Monitoring [3].

The company Digitexx Data System offers different solution for real-time SHM for moni-
toring different kind of structures with a width-range of sensors. Some of these solutions are
the portable systems PDAQ and the Digitexx RTMS. The last is a multi-channel real-time data
acquisition and structural analysis system with manual and event-driven triggering (see figure
B.6). This systems has 10 channels and a sampling rate of up to 1,000 samples per second burst
and features as broadcasting data to remote locations, localized recording, local and remote data
retrival and event-driver notifications [9].

Figure B.6: Digitexx SHM system [9].
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Digitexx also offers the Digitexx’s Server Software which broadcast and publishes real-time
data directly to remote client locations. The architecture can be seen in the figure B.7.

Figure B.7: Digitexx software for SHM [9].

The company CONDITION ENGINEERING- Condition & Structural Health Monitoring
Solutions [8] has a system called SensorRope, it is used to automatically assess the conditions
that lead to potential in-service failure of earthen infrastructure. This is a real-time system for
diagnostic and to produce alerts if a dangerous condition occurs or is predicted to occur and can
be used for local monitoring and widespread monitoring (see Figures B.8 and B.9).

Figure B.8: SensorRope [8] Figure B.9: SensorRope application [8].
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The company MAGEBA [12] provides RoborControl (see figures B.10, B.11 and B.12),
this system is used to detect the absence of machine specifications at the component and
conveys these to a central computer. Using this system it is possible to obtain data such as
loads, movements, stresses and vibrations of any part of a structure. All the data are processed
and made available through internet.

Figure B.10: RoborControl mageba [12]. Figure B.11: RoborControl mageba [12].

Figure B.12: RoborControl general scheme [12].

Bridge Diagnostics Inc.[7] offers a system that include the use of a wide variety of wireless
or hard wired sensors and two variety of systems for SHM, one of them for diagnostic and
dynamic testing which can be used for wireless load testing and high-speed loggers to capture
live loads. The other system is for tracking slow responses such as temperature-induced loads,
concrete crack width opening, and pier rotations due to scour (figures B.13 and B.14).

The company FIBERPRO [11] offers specialized systems in Fiber Bragg sensors. One
of his products is the Fiber Bragg Grating Interrogation (FBGI) which includes a laser and
sensors modules (Figure B.15), among their application, it is possible to perform monitoring
of large structures; overheat detection and special temperature monitoring as surveillance &
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Figure B.13: Diagnostic & Dynamic Testing Systems[7].

Figure B.14: Long Term Data Collection systems[7].

safety systems; temperature profile monitoring in lakes, sea, rivers etc; and strain distribution
monitoring for soil instabilities, ground slides and earthquake, etc. [17].

Figure B.15: Fiber Bragg Grating Interrogation (FBGI) [11].
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Virginia Technologies, INC.[20] offers an embedded corrosion instrument (Figure B.16)
that provides early warning of conditions that damage steel reinforcement leading to cracking,
spalling, and other deterioration of concrete structures.

Figure B.16: Embedded corrosion monitoring [20].

Strainstall company [15] offers solutions for monitoring of marine systems on board, on-
shore and offshore. Some of them are: STRESSALERT which enhances vessel safety by main-
taining a log of hull stresses throughout the life of a ship, and warning the master in real-time
of any overstress or bow slamming (see Figure B.17). This is achieved by continuous mea-
surement of the hull using deck-mounted long baseline strain gauges and a bow accelerometer
to provide displays of bending moments, alarms when unsafe levels of stress are experienced,
detection of bow slamming and long-term monitoring of fatigue.

Figure B.17: Stressalert software [15].
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Physical Acoustics Corporation [14] offers solution using acoustic emission (AE) among
others (see Figure B.18). They offers also the Sensor Highway II system which supports 16
high speed AE monitoring channels, the input range of sensors is ±10V and it has alarm and
remote web based monitoring.

Figure B.18: Sensor Highway II [14].

As has been shown throughout this section, there are several companies that offer specific
solutions for SHM, but these solutions are ever linked to the software and the hardware of a
specific company and do not allow to improve the software or add new elements from another
company. To solve this problem and create an open and reconfigurable hardware and software it
is neccesary to define a new system based on elements commercially available. The next section
presents a new proposal developed in the CoDAlab Group which uses Labview as software and
a PXI chassis which can be configurated according to the application.

B.2 Structural Health Monitoring Laboratory of the Co-
DAlab Group

The Structural Health Monitoring laboratory of the CoDAlab group was designed by the author
with his advisors in 2009. The acquisition of the elements was supported by the “Ministerio de
Ciencia e Innovación” of Spain through the coordinated research project DPI2008-06564-C02,
and the implementation was performed in collaboration with the PhD. student Fahit Gharib-
nezhad who is currently working in the group in the same area [171].
This laboratory allows to inspect structures by means of a signal generator, a switch matrix and
a digitizer card; which are inserted in a PXI chassis and can be configurated depending of the
needs of each experiment. In general, the SHM laboratory contains:

• A chasis of National Instruments (NI-PXI 1033): This chasis contains 5 slots, in each
slot it is possible to add cards of National Instruments, for instance, generation cards,
acquisition cards, switches cards and other elements. The chassis can be connected with
a laptop using the PXI port by an express card.

• A NI PXI-5114 card, it is a 8-bit Digitizer/oscilloscope of 250MS/s with 40mV to 40V
input ranges.
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• A card NI PXI-5412, it is an arbitrary waveform generator with 14-bit resolution and 100
MS/s sampling rate.

• A Crosspoint Matrix Switch card. Using this card, it is possible to define until 4 ×
32 matrix configuration. It is useful because depending of size of the structure and the
number of sensors it is possible to reconfigure the number of terminals to use.

• A laptop, to connect the chassis and to execute the algorithms of acquisition and process-
ing data.

• A wideband power amplifier to amplify the signals to apply to the sensors.

• A shelf to hang-up the elements to test.

In a general way, each experiment is performed as follows:

1. The instrumented structure is suspend using elastic ropes to isolate it from environment
disturbances.

2. By mean of the switch module, one of all PZT transducers attached to the surface is
chosen as the one which works as actuator .

3. An excitation signal is applied to the structure (vibrational input) throught the chosen
PZT and using the NI-generator card.

4. The excitation signal is amplified using a wideband power amplifier before to apply to
the structure.

5. The vibrational responses at different points are recorded by using the rest of PZTs (sen-
sors) and the digitizer card.

6. Actuator and sensors are changed using the switch module, and the steps 2 to 4 are re-
peated. These changes and repetitions are automatically applied by the algorithms devel-
oped in Labview.

7. Data in text based format is saved and organized.

8. The structure is damaged (real or simulated damages) and the experiments are repeated
(steps 2 until 6).

9. The strategies based on PCA to compare the vibrational responses of the current and
healthy structures are applied.
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Figure B.19: Laboratory in SHM.
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[19] The usa ś 2005-2009 multi-year hornet procurement contract. http :
//www.defenseindustrydaily.com/the − usas − 2005 − 2009 − multi − year −
hornet− procurement− contract− 03882/, July 2012.

[20] Virginia technologies, inc. http : //www.vatechnologies.com/eciindex.htm, July
2012.

[21] A.P. Adewuyi and Z.S. Wu. Vibration-based structural health monitoring technique using
statistical features from strain measurements. ARPN Journal of Engineering and Applied
Sciences, 4:38–47, 2009.

[22] C. Alcala and J. Qin. Reconstruction-based contribution for process monitoring. Auto-
matica, 45:1593–1600, 2009.

[23] C. Alcala and S.J. Qin. Unified analysis of diagnosis methods for process monitoring. In
7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes.
Barcelona, Spain., 2009.

[24] D. N. Alleyne and P. Cawley. The interaction of lamb waves with defects. IEEE Tran-
scation on Ultrasonics, Ferroelectrics, and Frequency Control, 39(3):381–397, 1992.

[25] A. Amditis, D. Bairaktaris, M. Bimpas, S. Camarinopolos, S. Frondistou-Yannas,
V. Kalidromitis, M. Pozzi, J. Santana, N. Saillen, Y. Stratakos, T. Torfs, D. Ulieru,
B. Wenk, and D. Zonta. Wireless sensor networks for seismic evaluation of concrete
buildings. In Fifth European Workshop on Structural Health Monitoring, 2010.

[26] M.A. Torres Arredondo and C.P. Fritzen. On the application of digital signal process-
ing techniques and statistical analysis for the localization of acoustic emissions. In 5th
European Workshop in Structural Health Monitoring, EWSHM 2011, Sorrento, Italy:
DEStech Publications, Inc., 2010, pp. 1017-1022.

[27] M.A. Torres Arredondo and C.P. Fritzen. A viscoelastic plate theory for the fast
modelling of lamb wave solutions in ndt/shm applications. ULTRAGARSAS (ULTRA-
SOUND), 66:7–13, 2011.

[28] M.A. Torres Arredondo, C.P. Fritzen, and C. Yang. On the application of bayessian
analysis and advanced signal processing techniques for the impact monitoring of smart
structures. In 8th International Workshop in Structural Health Monitoring, IWSHM 2011,
Stanford, CA: DEStech Publications, Inc., 2011, pp. 1062-1069.

[29] M. Azarbayejani. Optimal Sensor Placement in Structural Health Monitoring (SHM)
with a Field Application on a RC Bridge. PhD thesis, The University of New Mexico,
2009.



BIBLIOGRAPHY 131

[30] M. Azarbayejani, A.I. El-Osery, K.K. Choi, and M. M. Reda Taha. A probabilistic ap-
proach for optimal sensor allocation in structural health monitoring. Smart Mater. Struct,
17, 2008.

[31] S.G. Azevedo, J.E. Mast, S.D. Nelson, E.T. Rosenbury, H.E. Jones, T.E McEwan, D.J
Mullenhoff, R. E. Hugenberger, R. D. Stever, J. P. Warhus, and M. G. Wieting. Hermes:
A high-speed radar imaging system for inspection of bridge decks. nondestructive eval-
uation techniques for aging infrastructure and manufacturing. In SPIE 294(6), 195204.,
1996.

[32] A. Baker. Composite Materials for Aircraft Structures, chapter Indroduction and
overview, pages 1–21. AIAAA Education Series, 2004.

[33] N. Bakhary, H. Hao, and A. Deeks. Neural network based damage detection using sub-
structure technique. In 5th Australian Congress on Applied Mechanics (ACAM 2007),
Brisbane, Australia, December 2007.

[34] C. Bermes, J.Y. Kim, J. Qu, and L.J. Jacobs. Experimental characterization of material
nonlinearity using lamb waves. Applied Physics Letters, 90(2):021901–3, 2007.

[35] D. Bernal. Damage detection from correlations in kalman filter innovations: Difficulties
from variability in the noise statistics. In Fifth European Workshop on Structural Health
Monitoring. Sorrento-Italy, 2010.

[36] D.C. Betz, G. Thursby, B. Culshaw, and W. Staszewski. Acousto-ultrasonic sensing using
fiber bragg gratings. Smart Materials and Structures, 12:122–128, 2003.

[37] P. De Boe and J.C. Golinval. Principal component analysis of piezo-sensor array for
damage localization. Structural Health Monitoring: An International Journal, 2(2):137–
144, 2003.

[38] C. Brand and C. Boller. Identification of life cycle cost reductions in structures with
self-diagnostic devices. In NATO RTO Symposium on on Design for Low Cost Operation
and Support. Otawa, Canada. Pp. 1-8, 1999.

[39] J.M.W. Brownjohn. Structural health monitoring of civil infrastructure. Phil. Trans. R.
Soc. A, 365:589–622, 2007.

[40] M. Chandrashekhar and R. Ganguli. Structural damage detection using modal curvature
and fuzzy logic. Structural Health Monitoring. An international journal, 8:267–282,
2009.

[41] C.C. Chang and Z. Sun. Locating and quantifying structure damage using spatial wavelet
packet signature. In Shih-Chi Liu, editor, Smart Structures and Materials 2003: Smart
Systems and Nondestructive Evaluation for Civil Infrastructures, volume 5057, pages
97–105. SPIE, 2003.

[42] P. C. Chang, A. Flatau, and S.C. Liu. Review paper: Health monitoring of civil infras-
tructure. Structural Health Monitoring, 2:257–267, 2003.



132 BIBLIOGRAPHY

[43] C. C. Chiang, J.R. Lee, and H.J. Shin. Structural health monitoring for a wind turbine
system: a review of damage detection methods. Measurement Science and Technology,
19, 2008.

[44] J-H. Chou and J. Ghaboussi. Genetic algorithm in structural damage detection. Comput-
ers & Structures, 79(14):1335–1353, jun 2001.

[45] R.R. Coifman and M.V. Wickerhauser. Entropy-based algorithms for best basis selection.
IEEE Transactions on Information Theory, 38(2):713–718, 1992.

[46] P.T. Coverley and W.J. Staszewski. Impact damage location in composite structures using
optimized sensor triangulation procedure. Smart Materials and Structures, 12:795–803,
2003.

[47] N. Dervilis, R. Barthorpe, W. Staszewski, and K. Worden. Structural health monitoring
of composite material typical of wind turbine blades by novelty detection on vibration
response. Key Engineering Materials, 518:319–327, 2012.

[48] L.A. Dobrzanski, M. Sroka, and J. Dobrzanski. Application of neural networks to clas-
sification of internal damages steel working in creep service. Journal of Achievements in
Materials and Manufacturing Engineering, 20:Issues 1–2. 2007. Pp. 303–306, 2007.

[49] S. Doebling, F. Hemez, and W. Rhee. Statistical model updating and validation applied
to nonlinear transient structural dynamics. In European Cost F3 Conference on System
Identification & Structural Health Monitoring. Madrid, 2000.

[50] S.W. Doebling, C.R. Farrar, and M.B. Prime. A summary review of vibration-based
damage identification methods. The Shock and Vibration Digest, 30(2):91–105, 1998.

[51] K. Dragan, M. Mcgugan, S. Klimaszewski, T. Uhl, B. F. Sorensen, K.K. Borum, and
K. Martyniuk. Structural integrity monitoring of wind turbine composite blades with
the use of nde and shm approach. In Fifth European Workshp on Structural Health
Monitoring. Sorrento-Italy, 2010.

[52] R. Dua, S.E. Watkins, D.C. Chandrashekhara, and F. Akhavan. Detection and classifica-
tion of impact-induced damage in composite plates using neural networks. In IJCNN 01.
International Joint Conference on Neural Networks, 2001.

[53] W. Fan and P. Qiao. Vibration-based damage identification methods: A review and com-
parative study. Structural Health Monitoring, 10(1):83–111, 2011.

[54] C. Farrar and D. Jauregui. Comparative study of damage identification algorithms applied
to a bridge: I.experiment. Smart Mater. Struct, 7:704–719, 1998.

[55] C. Farrar and N. Lieven. Damage prognosis: the future of structural health monitoring.
Phil. Trans. R. Soc. A, 365:623–632, 2007.

[56] C. R. Farrar, S. W. Doeblng, and D. A. Nix. Vibration-based structural damage identi-
fication. Philosophical Transactions: Mathematical, Physical & Engineering Sciences,
359(1778):131–149, 2001.



BIBLIOGRAPHY 133

[57] C. R. Farrar and K. Worden. An introduction to structural health monitoring. Phil. Trans.
R. Soc. A, 365:303–315, 2007.

[58] C.R. Farrar, F. Hemez, G. Park, A.N. Robertson, H. Sohn, and T.O. Williams. A coupled
approach to developing damage prognosis solutions. Key Engineering Materials, 245-
246:289–306, 2003.

[59] C.R. Farrar, H. Sohn, and G. Park. A statistical pattern recognition paradigm for struc-
tural health monitoring. In 9th ASCE Specialty Conference on Probabilistic Mechanics
and Structural Reliability, 2004.

[60] S.D. Fassois. Statistical time series methods for structural health monitoring. In 8 th In-
ternational Conference on Damage Assessment on Structures (DAMAS). Beijing, China,
2009.

[61] S.D. Fassois and J.S. Sakellariou. Time-series methods for fault detection and identifica-
tion in vibrating structures. Phil. Trans. R. Soc., 365:411–448, 2007.

[62] A. Fernandez, A. Guemes, C.P. Fritzen, and G. Mengelkamp. Comparison of health
monitoring systems with fiber bragg grating and piezoelectric sensors. In Third European
Workshop on Structural Health Monitoring, 2006.

[63] E.B. Flynn and M.D. Todd. A bayesian experimental design approach to structural health
monitoring. In Fifth European Workshop on Structural Health Monitoring, 2010.

[64] E.B. Flynn and M.D. Todd. Optimal placement of piezoelectric actuators and sensors
for detecting damage in plate structures. Intelligent Material Systems and Structures,
21(1):265–274, 2010.

[65] M.I. Friswell, J.E.T. Penny, and S.D. Garvey. A combined genetic and eigensensitivity
algorithm for the location of damage in structures. Computers and Structures, 69(5):547–
556, dec 1998.

[66] H. Fukunaga, N. Hu, and F.K. Chang. Structural damage identification using piezoelec-
tric sensors. International Journal of Solids and Structures, 39(2):393, jan 2002.

[67] U. Galvanetto, C. Surace, and A. Tassoti. Structural damage detection based on proper
orthogonal decomposition: Experimental verification. AIAA Journal, 46, No.7:1624–
1630, 2008.

[68] U. Galvanetto and G. Violaris. Numerical investigation of a new damage detection
method based on proper orthogonal decomposition. Mechanical System and Signal Pro-
cessing, 21:1346–1361, 2007.

[69] R. Ganguli. A fuzzy logic system for ground based structural health monitoring of a
helicopter rotor using modal data. Journal of Intelligent Material Systems and Structures,
12:397–407, 2001.

[70] R. Garziera, M. Amabili, and L. Collini. Structural health monitoring techniques for
historical buildings. In IV Conferencia Panamericana de END Buenos Aires, 2007.



134 BIBLIOGRAPHY

[71] A. Gastineau, T. Johnson, and A. Schultz. Bridge health monitoring and inspections- a
survey of methods. Technical Report MN/RC 2009-29, Department of Civil Engineering.
University of Minnesota., 2009.

[72] V. Giurgiutiu. Lamb wave generation with piezoelectricwafer active sensors for structural
health monitoring. In SPIE’s 10th Annual International Symposium on Smart Structures
and Materials and 8th Annual International Symposium on NDE for Health Monitoring
and Diagnostics, 2-6 March 2002, San Diego, CA.

[73] V. Giurgiutiu, A. Zagrai, and J.J. Bao. Piezoelectric wafer embedded active sensors for
aging aircraft structural health monitoring. Structural Health Monitoring, 1:41–61, 2002.

[74] N. Godin, S. Huguet, R. Gaertner, and L. Salmon. Clustering of accoustic emission
signals collected during tensile tests on unidirectional glass/polyester composite using
supervised and unsupervised classifiers. NDT&E International, 37:253–264, 2004.

[75] J.C. Golinval, P.De Boe, A.M. Yan, and G. Kerschen. Structural damage detection based
on principal component analysis of vibration measurements. In 58th Meeting of the Soc.
for Mach. Failure Prevention Tech, Virginia Beach, 2004.

[76] D. Gorinevsky, G. Gordon, S. Beard, A. Kumar, and F. Chang. Design of integrated
shm system for commercial aircraft applications. In Fifth International Workshop on
Structural Health Monitoring, Stanford, CA., September 2005.

[77] K. Gryllias, I. Koukoulis, C. Yiakopoulos, I. Antaniadis, and C. Provatidis. Morpho-
logical processin of propoer orthogonal modes for crack detection in beam structures.
Journal of Mechanics of Materials and Structures, Vol 4. No. 6:1063–1088, 2009.

[78] M. Gul and N. Catbas. Structural health monitoring and damage assessment using a
novel time series analysis methodology with sensor clustering. Journal of Sound and
Vibration, 330:1196–1210, 2011.

[79] M.F. Gunter, A. Wang, R.P. Fogg, S.E. Starr, K.A. Murphy, and R.O. Claus. Fiber optic
impact detection and location system embedded in a composite material. In MA. (Eds.
Claus R.O. Rogowsky, R.S.)Boston, editor, Meeting on Fiber Optic Smart Structures and
Skins V, pages 262–269, 1993.

[80] K.H. Law H. Sohn. Application of load-dependent ritz vectors to bayesian probabilistic
damage detection. Probabilistic Engineering Mechanics, 15:139–153, 2000.

[81] G. Hackmann, Sun F, N. Castaneda, C. Lu, and S. Dyke. A holistic approach to de-
centralized structural damage localization using wireless sensor networks. Computer
Communications, 2012.

[82] H.T. Hann, B. Wilkerson, and J. Stuart. An artificial neuronal network for low-energy
impact monitoring. Journal of Thermoplastic Composite Materials, 7:344–351, 1994.

[83] H. Hao and Y. Xia. Vibration-based damage detection of structures by genetic algorithm.
Journal of Computing in Civil Engineering, 16(3):222–229, 2002.



BIBLIOGRAPHY 135

[84] J.P.T. Higgins and S.G. Thompson. Quantifying heterogenity in a meta-analysis. Statis-
tics in medicine, 21:1539–1558, 2002.

[85] BC Hoskin and AA Baker. Composite Materials for Aircraft Structures. New York:
American Institute of Aeronautics and Astronautics;, 1896.

[86] A. Hot, G. Kerschen, E. Foltete, and S. Cogan. Detection and quantification of non-linear
structural behavior using principal component analysis. Mechanical System and Signal
Processing, 26:104–112, 2012.

[87] Y. Huan, F. Ghezzo, P. Rye, and S. Nemat-Nasser. Pasive damage detection in composite
laminates with integrated sensing networks. In SPIE, 2008.

[88] A. Hyvrinen, J. Karhunen, and E. Oja. Independent Component Analysis. New York:
Wiley. ISBN 978-0-471-40540-5, 2001.

[89] International Civil Aviation Organization (ICAO). State of global aviation safety 2011.
http : //www.icao.int/safety/documents/icaostate−of−global−safetyweben.pdf .

[90] D. J. Inman and B. L. Grisso. Adaptative Structures: Engineering Applications, chapter
Adaptative Structures for Structural Health Monitoring, pages 1–30. John Wiley & Sons,
Ltd, 2007.

[91] M. Iskandarani. Application of neural network to damage classification in composite
structures. LATEST TRENDS on COMPUTERS, I:109–113, 2010.

[92] A. Iwasaki, A. Todoroki, Y. Shimamura, and H. Kobayashi. An unsupervised statisti-
cal damage detection method for structural health monitoring (applied to detection of
delamination of a composite beam). Smart Materials and Structures, 13, 2004.

[93] J. Jaques, D.E. Adams, D. Doyle, and W. Reynolds. Using impact modulation to identify
loose bolts in a satellite structure. In Fifth European Workshop on Structural Health
Monitoring, 2010.

[94] H. D. Jeong, H. J. Shin, and J. Rose. Detection of de-
fects in a thin steel plate using ultrasonic guided wave. http :
//www.ndt.net/article/wcndt00/papers/idn020/idn020.htm, July 2012.

[95] J.Kullaa. Distinguishing between sensor fault, structural damage, and environmental
or operational effects in structural health monitoring. Mechanical Systems and Signal
Processing, 25:2976–2989, 2011.

[96] I.T. Jolliffe. Principal Component Analysis. Springer, 2002.

[97] S. Kabir, P. Rivard, and G. Ballivy. Neural-network-based damage classification of bridge
infrastructure using texture analysis. Canadian Journal of Civil Engineering, V 35:(Re-
port), Source Issue: 3, March 2008.

[98] S. Kaski, J. Nikklia, and T. Kohonen. Methods for interpreting a self-organized map in
data analysis. In 6 th European Symposium of Artificial Neuronal Networks (E)SANN98.
Brussels, Belgium, pp. 185-190, 1998.



136 BIBLIOGRAPHY

[99] Y. Kawano, T. Mikami, and F. Katsuki. Health monitoring of a railway bridge by fiber op-
tic sensor (sofo). In Fifth European Workshop on Structural Health Monitoring. Sorrento-
Italy., 2010.

[100] G. Kerschen, P. De Boe, J.C. Golinval, and K. Worden. Sensor validation using principal
component analysis. Smart Materials and Structures, 14:36–42, 2005.

[101] T. Kohonen. Self Organizing Maps. Springer, 2001.

[102] P. Kolakowski, L.E. Mujica, and J. Vehı́. Two approaches to structural damage detection:
Vdm vs cbr. Journal of Intelligent Material Systems and Structures, 16:63–79, 2006.

[103] P. Kraemer, I. Buethe, and C.-P. Fritzen. Damage detection under changing operational
and environmental conditions using self organizing maps. In SMART 11, Saarbruecken,
Germany, 2011.

[104] J.N. Kudva, N. Munir, and P.W. Tan. Damage detection in smart structures uisng neuronal
networks and finite-element analysis. Smart Materials and Structures, 1:108–112, 1992.

[105] G. Park K. Farinholt L. Bornn, C. Farrar. Structural health monitoring with autoregressive
support vector machines. Journal of Vibration and Acustics, 131:Issue 2, 021004, 2009.

[106] K. Lau, L. Yuan, L. Zhou, J. Wu, and C. Woo. Strain monitoring in frp lamintaes and
concrete beams using fbg sensors. Composite Structures, 51:9–20, 2001.

[107] B. Leao, J. Gomes, R. Galvao, and T. Yoneyama. Aircraft flap and slat systems health
monitoring using statistical process control techniques. In Aerospace Conference IEEE.,
pages 1–8, 2009.

[108] J. W. Lee, J. D. Kim, C. B. Yun, J. H. Yi, and J. M. Shim. Health monitoring method for
bridges under ordinary traffic loadings. Journal of Sound and Vibration, 257:247–264,
2002.

[109] Y. Lei, A.S. Kiremidjian, K.K. Nair, J.P. Lynch, K.H. Law, T.W. Kenny, E. Carryer,
and A. Kottapalli. Statistical damage detection using time series analysis on a structural
health monitoring benchmarck problem. In 9 th Conference on Applications of Statistics
and Probability in Civil Engineering, San Francisco, CA. USA., 2003.

[110] Z.X. Li, T.H.T. Chan, and J.M. Ko. Fatigue analysis and life prediction of bridges with
structural health monitoring data: Part i methodology and strategy. International Journal
of Fatigue, 23:45–53, 2001.

[111] Y. Ling and S. Mahadevan. Integration of structural health monitoring and fatigue dam-
age prognosis. Mechanical System and Signal Processing, 28:89–104, 2012.

[112] T.H. Loutas, A. Panopoulou, D. Roulias, and V. Kostopoulos. Intelligent health moni-
toring of aerospace composite structures based on dynamic strain measurements. Expert
Systems with Applications, 39:8412–8422, 2012.

[113] J. Lynch and K. Loh. A summary review of wireless sensors and sensor networks for
structural health monitoring. The Shock and Vibration Digest, 38(2):91–128, 2006.



BIBLIOGRAPHY 137

[114] Torres Arredondo M.-A., M.M., Ramirez Lozano, and C.-P. Fritzen. DispWare Toolbox -
A scientific computer program for the calculation of dispersion relations for modal-based
Acoustic Emission and Ultrasonic Testing. University of Siegen, Siegen, Germany, 2011.

[115] S. Mallat. A Wavelet Tour of Signal Processing. Acedemic Press, 2nd edition, 1999.

[116] S.G. Mallat. A theory for multiresolution signal decomposition: the wavelet representa-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–693,
1989.

[117] G. Manson. Identifying damage sensitive, environmental insensitive features for damage
detection. In 3rd. Int. Conf. Identification in Engineeing Systems. University of Wales
Swansea, UK,, 2002.

[118] G. Manson, K. Worden, K. Holford, and R. Pullin. Visualisation and dimension reduction
of acoustic emission data for damage detection. Journal of Intelligent Material Systems
and Structures, 12:529–536, 2001.

[119] C. Mares and C. Surace. An application of genetic algorithms to identify damage in
elastic structures. Journal of Sound and Vibration, 195(2):195–215, aug 1996.

[120] J.M. Menéndez, A. Fernández, and A. Güemes. Shm with embedded fibre bragg gratings
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