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Chapter II 

STATE OF THE ART 

 

⨳⨳⨳ 
 

The state of the art corresponding to this investigation has been separed into 
four different Sections. The first two refer to the acquired knowledge about the 

behavior of the two components forming concrete-filled tubes. 
 

The third Section refers to the axial compressive response of concrete-filled 
tubes generally, by describing the process of confinement and the influence of 

the way of loading. Two different simplified methods are also described in 
order to obtain the maximum compressive plastic load.   

 
And finally, the fourth Section is devoted to summary the most relevant 
numerical and experimental studies about concrete-filled tubes under 

compression. Thus, a short review of the existing literature about CFT sections 
and their derived typologies is presented in this Chapter. 

 
⨳⨳⨳ 
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2.1 Behavior of steel. 
 
2.1.1 General considerations about elemental behavior. 
 
Steel is an almost elastic perfectly-plastic material that shows a constant behavior independently of 
the hydrostatic state. Its mechanical properties are currently well-known by the engineering 
community, as a result of its applicability in many different industrial and civil fields. Since there 
are lots of different steel qualities depending on their utility and requirements, this investigation 
has been only focused on the structural steel considered by the Eurocodes [see Chapter IV]. 
 
Independently of the yield and the ultimate stress in each case, all different steels share two elastic 
properties, capable of describing their initial behavior: these properties are the elastic modulus [퐸 ] 
and the elastic Poisson’s ratio [휈 ]. The values of these two parameters for the elastic range are 
always the same, with the following values: 
 

퐸 = 210000 푀푃푎 (2.1) 
 

휈 = 0.283 (2.2) 
 
2.1.2 The von Mises yield criterion for steel. 
 
Plasticity in metals -especially in steel- is characterized by a significant ductility and by not being 
affected by the hydrostatic state. This is the reason why shear stress is the major cause of yielding 
in these materials; the problem then is to determine which function of shearing stress governs, 
according to an isotropic yield criterion. Yielding occurs when: 
 

푓(푠 , 푠 , 푠 ) = 0      or       푓(퐽 , 퐽 ) = 0 (2.5) 
 
Being: 

푠 , 푠 , 푠  Principal stress deviators 
퐽 , 퐽 , 퐽  Invariants of stress tensor 

 
For that purpose, two yield criteria are used: the Tresca yield criterion, and the von Mises yield 
criterion. The first one proposes that steel starts yielding when the maximum shearing stress 
reaches a critical value, k, equal to a half part of the tensile stress fy; and the latter -dated in 1913- 
works with the octahedral shearing stress, as an alternative to the maximum shearing stress. This 
value comes from the physical interpretation of the stress invariants: 
 

휏 =
2
3 퐽 =

2
3푘 

(2.6) 

 
which can be reduced to the form: 
 

푓(퐽 ) = 퐽 − 푘 = 0 (2.7) 
 
where k in this case, is the yield stress in the state of pure shear. Yielding will occur in a uniaxial 
tension test, when 휎 = 휎 ;  휎 = 휎 = 0. By replacing these two values into this last equation, it can 
be derived: 
 

휎 = √3 · 푘 = 1.732 · 푘 (2.8) 
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Equation (2.7) clearly describes a circular cylinder circumscribed on the Tresca hexagon. For 
pressure-independent materials, the yield criterion has the following general form: 푓(퐽 , 퐽 ) = 0; 
then, the simplest mathematical expression, compatible with this condition, is equation (2.8). The 
intersection of the von Mises yield surface with the coordinate 휎3 = 0 draws a perfect ellipse, which 
corresponds to the following equation [see figure II.3]: 
 

휎 + 휎 − 휎 · 휎 = 휎 = 3푘  (2.9) 
 

 
Fig. II.3  Von Mises cylindrical surface and its intersection with the (흈ퟏ,흈ퟐ) plane. 

The radius of the cylinder is equal to 푟 =  휎  

 
The intersection of the mentioned surface with the (휎 , 휏 ) plane also gives an ellipse as a result, 
whose equation is: 
 

휎 + 3휏 = 3푘  (2.10) 
 
In conclusion, in order to describe the yield criteria of steel it is important to highlight four basic 
assumptions: 
 

1. The material is isotropic. 
2. The material behavior is independent of hydrostatic pressure. [휎ℎ = 휎1 + 휎2 + 휎3] 
3. Yield stresses in uniaxial tension and in compression are equal. 
4. Surfaces obtained are convex. 

 
In concrete-filled tubes, steel is usually subjected to a biaxial state with a positive value for the 
component of hoop stress. Then, the resulting maximum vertical stresses 푓  and 푓  could be 
obtained through the following expressions, (Hatzigeorgiou, 2008): 
 

푓 = 0.5 · 휎 + 4푓 − 3휎  
(2.11) 

 

푓 = 0.5 · 휎 − 4푓 − 3휎  
(2.12) 

 
 
 
 
 



Chapter II 
State of the art 

 

 
23 

2.1.3 Uniaxial stress state. 
 
The description of the uniaxial stress-strain diagram, obtained from a pure compression test or a 
pure tension test is quite explicit to understand the global behavior of the material. The difference 
between the maximum axial load of the compressive and the tensile response is about 10%, and 
usually is not considered in literature. The steel behaves as a perfectly elastic material until 
reaching the limit stress value -known as yield limit stress, 흈풚; in addition, the material behaves 
linear up to the 80% of this yield stress, knowing this point as the proportionally limit, 흈풑풍 [see 
figure II.1]. 
 

 
Fig. II.1  Idealized uniaxial stress-strain curve of steel. 

The elastic region is linear until 휎 , and elastic until 휎 . 
 
Beyond the yield limit stress, the material shows a residual strain in case of being unloaded. This 
phase is known as the plastic plateau or the “yielding” period, during which the steel deforms 
almost without stress increment. The plastic period lasts over ten times more than the elastic one. 
For steel S355, the yield stress corresponds to a value of strain of 0.0017, and the end of the yield 
plateau coincides with a value of strain of 0.017. Once this value of plastic strain has been reached, 
the material starts a hardening period until reaching its ultimate stress; this behavior is typical of 
metals, and it consists in increasing the load-bearing capacity a 40% more before collapsing. 
 
This last period after the ultimate stress is not usually considered in most structural analyses, since 
it deals with a clear descent of the mechanical strength until the final collapse. 
 
The two elastic parameters described in Section 2.1.1 –the elastic Young’s Modulus and the elastic 
Poisson’s ratio- are relatively constant before the proportionality limit. Beyond this point, and up to 
the yield limit stress, their values evolve according to the following expressions, (Kuranovas, et al., 
2009): 
 

퐸 =
푓 − 휎 · 휎
푓 − 푓 · 푓

· 퐸  
(2.3) 

     

휈 = 0.167 ·
휎 − 푓
푓 − 푓

+ 0.283 
(2.4) 
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2.1.4 Biaxial and Triaxial stress states. 
 
It is important to consider that the behavior of steel under a biaxial state is slightly different from 
its behavior under a uniaxial stress state. The value of the maximum vertical yield stress under 
compression [−휎  in igure II. 2] can be enhanced through an increase of lateral compressive stress 
[−휎2]1; in the same manner, it can be reduced by introducing lateral tension [+휎2]. All the possible 
values of yield limit stress in the biaxial plane (휎 ,휎 ) describe a perfect elliptical curve; this curve 
coincides with the intersection of the normal plane to 휎  with the cylindrical surface of the von 
Mises yield criterion –widely explained in the next Section. 
 

  
Fig. II.2  Elliptical curve of von Mises in the biaxial plane. 

It corresponds to the intersection of the cylindrical surface with the (휎 ,휎 ) plane. 
 
The von Mises yield criterion governs the stress state of cylindrical shells in CFT sections -which 
are usually biaxially stressed. This is the reason why they are not capable of reaching the maximum 
vertical stress, since part of this component is converted into hoop stress. In case of having also a 
third component, 흈ퟑ, the structural response in the biaxial plane (흈ퟏ,흈ퟐ) would exactly the same. 
 
 
2.2 Behavior of concrete. 
 
2.2.1 General considerations about elemental behavior. 
 
Contrary to steel, concrete is not an elastic perfectly-plastic material clearly. The “elastic” behavior 
of concrete is really limited to the 50% of its maximum compressive strength, and the stress-strain 
curve is far from being linear. However, the consideration of a first elastic and linear period until 
ퟎ.ퟓ · 풇풄풌 is widely accepted; after this linear period, there is another elastic-plastic nonlinear phase 
until the value of 풇풄풌. Beyond this point, concrete starts yielding through a surprising growth of 
strains with small or even negative stress increments. 
 
The cohesive character of the material leads to analyze its plastic performance really different from 
that of steel. The assumption that concrete is a continuum material involves the use of a pressure-
sensitive plasticity criterion such as the Drucker-Praguer -it will be widely explained in further 
Sections. Lateral expansion –and therefore, its consequent decrement of vertical stress- is caused 

                                                             
 

1 See point A in figure II.2. 
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by the crushing of the cement paste between the aggregates of concrete, when it is subjected to high 
compressive stresses. We know that concrete expands much more than the value provided by 
Theory for its plastic range2, and this phenomenon is due to crushing. 
 
However, two mechanical parameters are also accepted for the elastic range; on the one hand, the 
initial elastic modulus, [푬풄], and, on the other hand, the elastic Poisson’s ratio, [흂풄]. The first one can 
be calculated by using the accepted expression (2.12) from the ACI code (ACI, 1999), and the 
second one is a constant value which varies from 0.15 to 0.20, (Klink, 1975); a value of 0.18 has 
been considered in this work: 
  

퐸 = 4700 · 푓  (2.13) 
  

 
 

Fig. II.4  Initial elastic modulus of concrete. 
The elastic modulus corresponds to stresses up to the 50% of 푓 . 

 
From a value of a 50% of the maximum compressive stress, the stiffness of concrete starts an 
evolutionary damage process and the upslope is progressively relaxed, until reaching the final value 
of 풇풄. A new softer proportional modulus is defined, instead of the initial one, and corresponding to 
the maximum compressive stress: the Secant Young Modulus –this value is commonly used in some 
applicative codes. 
 
2.2.2 Uniaxial stress state. 
 
The complete uniaxial stress-strain diagram for plain concrete is summarized in Fig. II.5: concrete 
behaves really different under tension than under compression. While under tension its behavior is 
almost completely elastic until the failure point F [see figure II.5], under compression, the material 
behaves elastic until stresses of 50% of the 푓  [point A]; from this point, the material shows a 
plastic behavior until the maximum compressive strength [at point C]. The compressive response 
beyond point C depends on concrete strength and hydrostatic conditions; usually, this response can 
be considered perfectly-plastic up to the beginning of the softening period in point D.  
 

                                                             
 

2 The maximum theoretical value for the Poisson’s ratio is 휈ʹ = 0.499 
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Fig. II.5  Idealized uniaxial stress-strain curve for plain concrete. 
Tensile behavior is really different from compressive one. 

 
Total strain at any point of the curve is obtained as a sum of the elastic strain [휀 ] and the plastic 
strain [휀 ]. The difference between the nomenclature “perfectly plastic” and “work-hardening” for a 
material is its tolerance to the variation of permanent strain under a state of constant stress. In 
professional practice and applicative codes, it is assumed that concrete behaves perfectly-plastic 
under compression and elastic-brittle under tension. Thus, a yield criterion for plasticity under 
compression and a maximum stress for tension cutoff are assumed in order to define the failure 
surface. It is well-known that concrete shows a distinct behavior under states of high hydrostatic 
pressure; this consideration is really important in this study 
 
The evolution of these curves is closely related with the volumetric expansion process, coming from 
the microcracking of the material. Before stresses of 30% of the f_c, microcracks do not take place; 
this is the reason why the available internal energy is less than the required energy in order to 
create new cracks. For stresses between the 30 and 50% of the 푓 , first cracks appear between the 
aggregate of concrete, and keeping the load constant propagation of these cracks goes on clearly. In 
that case, internal energy of the material is larger than that required for cracking. 
 
If concrete is unloaded from stresses about 50-70% of the 푓 , the obtained stress-strain curve is 
clearly nonlinear and a slight hysteresis loop can be clearly observed, in case of reloading. Beyond 
the 70% of the maximum compressive stress, the unloading curve becomes strongly nonlinear and 
stiffness of the material becomes clearly damaged from this point. 
 
By analyzing the volumetric strain, 휖 = 휖 + 휖 + 휖 , the change in volume is linear up to the 75% 
of 푓 , (Babu, et al., 2005). From that point, the growth of volumetric expansion is nonlinear up to 푓 , 
from where the direction of the volume increment reverses, starting a clear descent. 
 
Concrete has an almost constant elastic Poisson’s ratio up to the 70% of 푓  (Persson, 1999). In this 
period, this value ranges from 0.15 to 0.22, as it has been commented before; beyond this point, 
lateral strains start growing quite quickly, by defining a new transversal ratio known as “apparent 
Poisson’s ratio”. This new ratio can reach values from 0.80 to 0.90, even 1.0 (Loo, et al., 1990). 
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An approximated analytical expression to define the stress-strain curve shown before in figure II.5, 
was defined by (Popovics, 1973):  
 

푓 = 푓 ·
휀 · 푟

휀 · 푟 − 1 + 휀
휀

 (2.14) 

 
where: 
 

휀  Strain corresponding to the maximum value of compressive stress. 
푓  Maximum compressive strength of concrete. 
푟 Proportional ratio. 

 
by obtaining the parameter r through the following expression: 
 

푟 =
퐸

퐸 − 푓
휀

 (2.15) 

 
being  퐸 , the initial modulus of elasticity of concrete mentioned in Fig. II.4. 
 
 
 
2.2.3 Biaxial stress state. 
 
In the past decades, various investigations have been carried out in reference to biaxial loading of 
concrete and microcrack propagation under this assumption: (Nelissen, 1972), (Tasuji, et al., 1978), 
etc. The first effect of being subjected to a biaxial state, is that all resistant capabilities become 
modified; for example, it has been proven that compressive maximum strength increases up to 25% 
more, in case of having a biaxial compressive state equivalent to 휎2/휎1 = 0.5. Contrarily, this 
percentage is reduced when that proportion tends to a ratio of 휎2/휎1 = 1. Thus, in those cases with 
a combined state of compression on one axis and tension on the other, the maximum compressive 
strength decreases linearly according to the applied tensile stress. 
 
Another change in material properties refers to the ductility. Concrete subjected to a biaxial 
compressive state is clearly more ductile than under other assumptions, like under a uniaxial stress 
state only. Furthermore, in the nearby of the collapse, the material suffers a clear increase of 
volume; this inelastic volume growth is known as dilatancy. The maximum-strength envelope tends 
to be independent of the load path; for proportional loading, the failure of concrete under a biaxial 
state takes place according to the maximum-tensile-strain criterion. 
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Fig. II.6  Biaxial stress envelope for 50MPa concrete. 
Representative stresses are represented in the (휎2,휎1) plane. 

 
 
2.2.4 Triaxial stress state. 
 
Richart (Richart, et al., 1928) and Balmer (Balmer, 1949) carried out lots of different experimental 
tests of concrete subjected to triaxial compressive states.  From all these experiments, the confined 
behavior of the material can be easily obtained, depending on hydrostatic state: quasi-brittle, 
plastic-softening or plastic-hardening. These behaviors are justified by the reduced possibility of 
bond cracking in situations of lateral pressure, and failure comes from crushing of the cement 
paste. Under triaxial state, concrete has a consistent failure surface which depends on the three 
principal stresses, and this surface, together with the elastic limit surface, can be represented in the 
three dimensional tensional space. A generalized expression for the stress-strain curve of confined 
concrete has been proposed by (Popovics, 1973), coming from function (2.14) [see figure II.7]: 
 

푓 = 푓 ·
휀 · 푟

휀 · 푟 − 1 + 휀
휀

 (2.16) 

 
where: 
 

휀  Strain corresponding to the maximum value of confined stress. 
푓  Maximum confined strength of concrete. 
푟 Proportional ratio. 

 
The parameter r can be obtained through: 
 

푟 =
퐸

퐸 − 푓
휀

 (2.17) 
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Fig. II.7  Stress-strain curves of plain and confined concrete. 

(Susanta, et al., 2000) 
 
However, also other researchers have proposed different approximate expressions in order to 
describe the behavior of confined concrete. One of them is Saenz (Saenz, 1964), who proposed the 
following approximation: 
 

푓 =
퐸 · 휀

1 + (푅 + 푅 − 2) 휀
휀 − (2푅 − 1) 휀

휀 + 푅 휀
휀

 
(2.18) 

where: 

푅 =
푅 (푅 − 1)
(푅 − 1) −

1
푅  

(2.19) 

 

푅 =
퐸 · 휀
푓  (2.20) 

 
being   푅 = 4  and 푅 = 4. 
 
In order to obtain the values of the maximum compressive strength in case of confined concrete, 푓 , 
there are lots of different criteria, too. The most used criterion is the one proposed by Richart in the 
beginning of the XXth Century (Richart, et al., 1928): 
 

푓 = 푓 + 푚 · 푝 (2.21 
 
being 푝 the lateral hydrostatic pressure and 푚 a coefficient which can be approximated to 4.1 
(Campione, et al., 2003). Mander (Mander, et al., 1988) also proposed an alternative formula for 
calculating the maximum confined compressive strength, modified some time later by O’Shea 
(O'Shea, et al., 1997):  
 

푓 = 푓 · −1.288 + 2.172 1 +
7.46 · 푝
푓 − 2

푝
푓  

(2.22) 

 
And finally, Attard (Attard, et al., 1996) also proposed another function for the same value: 
 

푓 = 푓 ·
푝
푓 + 1  

(2.23) 
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푘 = 1.25 · 1 + 0.062 ·
푝
푓 · 푓 .      ;         푓 = 0.558 · 푓  

(2.24) 
(2.25) 

 
To obtain the value of the ultimate confined strain, the most used formula is the one given by 
Popovics (Popovics, 1973): 
 

휀 = 휀 · 1 + 5 ·
푓
푓 − 1  

(2.26) 

 
In addition, Attard (Attard, et al., 1996) proposed also a different expression to get the same value, 
according to his investigations: 
 

휀 = 휀 · 1 + (8 + 0.05 · 푓 )
푝
푓  

(2.27) 

 
 
2.2.5 Yield criteria for concrete. 
 
Under low hydrostatic states, concrete behaves according to the failure criteria, while under high 
pressures its response tends to follow the yield criteria. As it has been mentioned before in Section 
2.2.4, concrete subjected to high hydrostatic stress states is capable of flowing and behaving as a 
perfectly-plastic material (Turgay, et al., 2009), while under uniaxial stress states the response is 
clearly governed by the failure criterion. In general, the existing literature refers to the term 
“failure” for the yielding behavior, as in case in reference to the fracture. For intermediate stress 
states, the failure criterion is sensitive to the hydrostatic pressure; this is the reason why the failure 
surface in concrete clearly differs from a cylinder on the hydrostatic axis. Thus, the shape of this 
surface will tend more to a cone, with its cross-sections completely symmetrical to the hydrostatic 
axis and not necessarily identical along this direction. The simplest mathematical surface to define 
this behavior is the perfect circular cone proposed by Drucker-Praguer, and it will be explained in 
the following sections.  
 
2.2.5.1 Failure surface 
 
The failure surface is represented by the three variables 휉, 푟,휃 in the three-dimensional stress 
space (휎 ,휎 ,휎 ). The general form of this surface corresponds to the following expression: 
 
 

푓(퐼 , 퐽 , 퐽 ) = 0 (2.28) 
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Fig. II.8  Geometrical interpretation of (흃,풓,휽) and (흈풐풄풕,흉풐풄풕,휽) 

 
The conical form can be described by the shape of the surface in the meridian planes. The cross-
sections of the failure surface coincide with the intersection curves between this surface and a 
deviatoric plane, normal to the hydrostatic axis with 휉 = 푐표푛푠푡푎푛푡. The meridians of the failure 
surface are the intersection curves between this surface and a plane [called meridian plane, with 
휃 = 0]. Normally, only the sector between 휃 = 0º and 60º is determined, and the other two are 
obtained by symmetry [see figure II.8]. Main characteristics of the failure surface of concrete are: 
 

 Smoothness. 
 Convexity for compressive stresses. 
 Triangular shape for small compressions and circular for higher compressive stresses. 

 
The two planes corresponding to 휃 = 0º and 60º are called the tensile and compressive  meridians. 
The first corresponds to the case of having a concrete cylinder subjected to hydrostatic pressure in 
the radial direction, and a force in the vertical direction: 
 

휎 = 휎 = 휎 > 휎 = 휎  (2.29) 
 
This state corresponds to the compressive meridian, with a superimposed hydrostatic stress state 
and a higher compressive strength in the other direction as a result. Most resistant parameters of 
concrete are defined in this meridian [for example, 푓  for a cylindrical specimen]. Another case is 
the tensile meridian, with a tensile force in the axial direction together with lateral pressure: 
 

휎 = 휎 = 휎 < 휎 = 휎  (2.30) 
 
There is a third meridian which is also used, known as the shear meridian [when  휃 = 30º]. 
 
Generally: 

 Failure surfaces are curved, convex and smooth, and they depend directly on the 
hydrostatic component of stress 퐼 3 or 휉4. 

 
                                                             
 

3 퐼  is the first stress invariant, coinciding with 퐼 = 휎 + 휎 + 휎 . 
4 휉 is the axis where 휎 = 휎 = 휎 . 
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 푟 /푟 < 1, where t and c are the tensile and compressive meridians. 
 The value of 푟 /푟  increases with increasing hydrostatic pressures. It is about 0.5 near the π 

plane and 0.8 about a hydrostatic pressure of 휉 = −7푓′ . 
 In case of having pure hydrostatic loading, failure cannot occur. 

 

 
Fig. II.9  Deviatoric section of the failure surface. 

 
 
2.2.5.2 Associated and Nonassociated Flow Rule 
 
The concept of plastic-potential function, 푔(휎 )  allows expressing the plastic flow in the following 
form: 

푑휖 = 푑휆
휕푔
휕휎  

(2.31) 

 
where 푑휆 is a positive scalar factor that determines whether plastic deformations occur; if 푑휆 is 
different from zero, plastic deformation takes place. The equation 푔 휎 = 푐표푛푠푡 defines the 
surface of plastic potential, and the expression shown for 푑휖  implies that this vector is normally 
directed to the surface of plastic potential. 
 
There is a case where the yield function and the plastic potential coincide in the following manner: 
 

푓 = 푔 (2.32) 
 
then, the plastic-strain-increment can be rewritten as: 
 

푑휖 = 푑휆
휕푓
휕휎  

(2.33) 

 
In this case, plastic flow takes place normally on the yield surface 휕푓 휕휎푖푗⁄  and it is called associated 
flow rule since the first becomes closely related to these surface; thus, under this assumption the 
yield criterion and the flow rule go hand in hand. This relation is valid for irreversible plastic 
materials, where plastic work cannot be recovered. 
 
On the contrary, when the yield function does not coincide with the flow rule: 
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푓 ≠ 푔 (2.34) 
 
The case described by the relation (2.34) is known as non associated flow rule. 
 
2.2.6 Elastic perfectly plastic models. 
 
2.2.6.1 Mohr-Coulomb Criterion. 
 
The Mohr-Coulomb criterion is based on the Mohr’s criterion [1900], which postulate is derived 
from expression (2.35): 
 

|휏| = 푓(휎) (2.35) 
 
where the limit shearing stress 휏 in a plane is only dependent on the normal stress, 휎, in the same 
plane at a specific point, and where the equation (2.36) is the failure envelope of the Mohr’s circles - 
experimentally determined. According to this criterion, the failure of the material will occur for 
those states of stress in which the circle of Mohr is tangent to the envelope. The simplest form of 
the Mohr envelope is a straight line, known as the Coulomb’s equation [Fig. II.10]: 
  

|휏| = 푐 − 휎 · 푡푎푛휙 (2.36) 
 

 
Fig. II.10  Coulomb’s equation 

 
where c is the cohesion of the material and 휙, the internal-friction angle. By combining the Mohr’s 
criterion with the Coulomb’s equation, it can be derived the Mohr-Coulomb failure criterion. This 
postulate is very useful for approximating the failure of brittle-ductile materials like concrete, 
subjected to intermediate stress levels. Equation (2.36) can be expressed as: 
 

휎
1 + 푠푖푛휙
2푐 · 푐표푠휙 − 휎

1− 푠푖푛휙
2푐 · 푐표푠휙 = 1      for  휎 ≥ 휎 ≥ 휎  

(2.37) 

 
or, what is the same: 
 

휎
푓′ −

휎
푓′ = 1 (2.38) 

 
where: 
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푓′ =
2푐 · 푐표푠휙
1− 푠푖푛휙  

(2.39) 

 

푓′ =
2푐 · 푐표푠휙
1 + 푠푖푛휙  

(2.40) 

 
The Mohr-Coulomb’s criterion is a two-parameter model, defined by the combination of two 
different parameters, (푐,휙), 푓 ,푓  or 푓 ,휙 , etc. Sometimes to use the parameter m is useful, 
and it is defined by: 

푚 =
1 + 푠푖푛휙
1 − 푠푖푛휙 =

푓′
푓′  

(2.41) 

 
The use of m is helpful to obtain the value of the maximum compressive stress for concrete through 
the following expression: 
 

푚 · 휎 − 휎 = 푓′         휎 ≥ 휎 ≥ 휎  (2.42) 
 
This means that the maximum value of compressive confined stress [휎 ] is the result of adding the 
value of lateral pressure affected by a scalar coefficient m to the yield compressive stress [푓′ ]. This 
coefficient has to be determined experimentally; from tests carried out by Richart (Richart, et al., 
1928), a value for coefficient m can be approximated to 4.1. 
 
By writing the Mohr-Coulomb’s equation in terms of parameters 푟, 휉,휃: 
 

푓(푟, 휉, 휃) = √2 · 휉 · 푠푖푛휙 + √3 · 푟 · 푠푖푛 휃 +
1
3 · 휋 + 푟 · 푐표푠 휃 +

휋
3 푠푖푛휙 − 

−√6 · 푐 · 푐표푠휙 = 0 
 

with 0 ≤ 휃 ≤
1
3휋 

(2.43) 

 
In the 휎 ,휎 ,휎  coordinate system, this expression is represented by an irregular hexagonal 
pyramid with straight linear meridians and cross sections in the π plane, only defined by two 
dimensions, 푟  and 푟   [corresponding to 휃 = 0º and 휃 = 60º]. These two values can be easily 
obtained by replacing the following set of parameters, 휉 = 0, 푟 = 푟 , 휃 = 0º and 휉 = 0, 푟 = 푟 ,휃 =
60º , in the expression of the failure surface. Alternatively, we have for the π plane: 
 

푟 =
2√6 · 푐 · 푐표푠휙

3 + 푠푖푛휙 =
√6 · 푓′ · (1 − 푠푖푛휙)

3 + 푠푖푛휙  

 

(2.44) 

 

푟 =
2√6 · 푐 · 푐표푠휙

3− 푠푖푛휙 =
√6 · 푓′ · (1− 푠푖푛휙)

3− 푠푖푛휙  

 

(2.45) 

It is well-known that the value 푓′  does not coincide with the true value of the maximum tensile 
stress for concrete. For that reason, the Mohr Coulomb’s criterion is usually extended with a 
tension cutoff in order to limit the maximum response of concrete subjected to tension. 
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2.2.6.2 Drucker-Praguer Criterion. 
 
The Drucker-Praguer criterion consists in a smoother approximation of the Mohr-Coulomb surface, 
expressed as a simple modification of the von Mises yield Criterion5: 
 

푓(퐼 , 퐽 ) = 훼 · 퐼 + 퐽 − 푘 = 0 
 

(2.46) 

or in a similar way, by using the (흃, 풓) system: 
 

푓(휉, 푟)  = √6 · 훼 · 휉 + 푟 − √2 · 푘 = 0 
 

(2.47) 

knowing that: 
 

휉 = 퐼 √3⁄      and     푟 = 2 · 퐽  (2.48) 
 
One of the described ways to adjust the Mohr-Coulomb’s hexagonal surface is by using the two 
parameters 휶 and k. In case of considering 휶 = ퟎ, then the latter expression can be reduced to the 
Drucker-Praguer one. Constants 휶 and k are related to cohesion and internal-friction angle of 
concrete through the following expressions, according to the theory of the flow rule of the Theory 
of Perfect Plasticity: 
 

훼 =
푡푎푛휙

9 + 12 · 푡푎푛 휙
        and       푘 =

3푐
9 + 12 · 푡푎푛 휙

 (2.49) 

 
It is curious to note how the failure function presented above, according to the Drucker-Praguer 
Criterion, is reduced to the Mohr-Coulomb Criterion for plane strain [with only two parameters]. 
 

 

Fig. II.11  Graphical representation of the Drucker-Praguer yield surface. 
This conical surface is the generalization of the Mohr-Coulomb’s hexagonal surface. 

 

                                                             
 

5 퐽  is the second invariant of a state of pure shear. 퐽 = 1 6⁄ · [(휎 − 휎 ) + (휎 − 휎 ) + (휎 − 휎 ) ] 
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There are three criteria to define the general behavior under complex stress states for those 
materials which are considered perfectly-plastic. The first one consists in assuming that concrete 
behaves elastic until reaching its yield limit stress, and it is known as the yield function:  
 

푓(휎 ) = 푘 (2.50) 
 
The second one is based on considering that plastic strain is infinite after yielding; in that situation, 
the stress state must always remain on the yield surface, and it is known as the criterion of loading: 
 

푑푓 =
휕푓
휕휎 푑휎 = 0 (2.51) 

 
And the third criterion is the one in which the flow becomes permanent; it stops only when stresses 
are removed or have decreased below the yield limit stress. This last one is known as the criterion 
of unloading: 
 

푑푓 =
휕푓
휕휎 푑휎 < 0 (2.52) 

 
The yield function 푓(휎 ) is really significant when it is understood as a three-dimensional surface. 
This surface is defined in the three-dimensional stress space for isotropic materials, assuming that 
in those cases the fact of considering only principal stresses 휎1,휎2 and 휎3 is allowed . This way, for a 
perfectly-plastic material, the yield function 푓(휎1,휎2 ,휎 ) = 푘 is a fixed surface in the stress space; 
in other words, each point inside the surface represents an elastic stress while each point on the 
surface represents a plastic stress. 
 
Due to the unlimited character of plastic strain [휀 ] during flow, it is necessary to talk in terms of 
infinitesimal variations of strain [or strain increments, 푑휖 ]. As it has been explained before, the 
total strain increment is the result of the sum of elastic and plastic strain increments. The concepts 
of loading, unloading and neutral loading can be easily understood when 푓 is interpreted as a 
surface in the 3-D space, and 휎  and 푑휎  the stress, and the stress increment vectors. For a 
perfectly-plastic material, this surface is completely fixed, while for a work-hardening material it 
expands and changes the shape depending on hardening. For a solid made of a work-hardening 
material in a plastic stress state, any additional infinitesimal loading 푑휎  will produce only elastic 
strain if the vector 푑휎  is directed inwards from the surface 푓 [unloading]. Otherwise, it will 
produce both plastic and elastic strains, if that vector is directed outwards from that surface 
[loading]. If the increment 푑휎  lies in the tangent plane to the loading surface, it produces only 
elastic strain [neutral loading]. For a perfectly-plastic behavior of a material, this stress point 
cannot be outside the yield surface. For that reason, the condition that defines the appearance of 
plastic flow [criterion for loading] is: 
 

푓 휎 = 푘   and    푑푓 =
휕푓
휕휎 푑휎 = 0 (2.53) 

 
And the criterion for unloading is: 
 

푓 휎 = 푘   and    푑푓 =
휕푓
휕휎 푑휎 < 0 (2.54) 
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For a work-hardening material, at any stage of loading beyond the initial yield surface, a 
subsequent yield surface is developed. So, the case of perfect-plasticity is the limiting case of no 
work hardening. 
 
2.2.7 Elastic-Hardening Plastic Models. 
 
2.2.7.1 Concrete Damage Plasticity Model [CDP] 
 
There are other material models for concrete based on a plastic hardening rule, combined with a 
damage criterion. These models reproduce the softening behavior after the peak of load faithfully, 
and they are known as CDP [Concrete Damage Plasticity]. This idea was introduced by Kachanov 
(Kachanov, 1958) and further was developed by Rabotnov (Rabotnov, 1969) and other researchers 
(Jankowiak, et al., 2005); it is based on a constitutive equation with scalar isotropic damage, 
adopting the following form: 
  

휎 = (1− 푑) · 퐸 : (휀 − 휀 ) = 퐸 : (휀 − 휀 ) (2.55) 
 
where: 

휎 Cauchy stress tensor 
푑 Scalar stiffness degradation 
휀 Strain tensor 
퐸  Undamaged (initial) elastic stiffness 

 
Therefore, 푬풆풍 is the damaged elastic stiffness tensor. The effective stress tensor is defined as: 
 

휎 = 퐸 : (휀 − 휀 ) (2.56) 
where: 

휀  Plastic strain 
 
The variable which represents the degradation of the material is expressed as: 
 

푑 = 푑(휎, 휀̃ ) (2.57) 
 
And it is governed by a stress tensor 흈 and a hardening (softening) variable 휺풑풍. The Cauchy stress 
tensor is related to the effective stress tensor 흈, through the same scalar degradation parameter 
(ퟏ − 풅): 
 

휎 = (1− 푑) · 휎 (2.58) 
 
Damage states in tension and compression are characterized independently by two hardening 
variables, 휺풕

풑풍 and 휺풄
풑풍, in reference to equivalent plastic strains under tension and under 

compression, respectively. Cracking and crushing in concrete are represented by increasing values 
of the hardening (softening) variables. These variables control the evolution of the yield surface 
and the degradation of the elastic stiffness. 
 
The yield function represents a surface in the effective stress space which determines the states of 
failure or damage. For the plastic-damage model, the yield function arrives at: 
 

푓(휎, 휀̃ ) ≤ 0 (2.59) 
 
And plastic flow is governed by a flow potential function 품(흈), according to the nonassociative flow 
rule: 
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휀̇ = 휆̇
휕푔(휎)
휕휎  

(2.60) 

 
The fundamental group of the constitutive parameters consists in four values which identify the 
shape of the flow potential surface and the yield surface. In the CDP model, the Drucker-Praguer 
hyperbolic function is accepted for the flow potential g in the following form: 
 

퐺 = (푓 −푚 · 푓 · 푡푎푛훽) + 푞 − 푝̅ · 푡푎푛훽 − 휎 (2.61) 
 
where: 

푓  Cauchy stress tensor 
푓  Scalar stiffness degradation 
훽 Strain tensor 
푚 Undamaged (initial) elastic stiffness 
푞 Mises equivalent effective stress. 
푝̅ Effective hydrostatic stress 

  
and knowing that: 
 

푝̅ = −
1
3 · 휎 · 퐼          and        푞 =

3
2 푆̅ · 푆̅ 

(2.62) 
(2.63) 

where: 
푆̅ Deviatoric part of  the effective stress tensor 

 
The nonassociative flow rule, which is used here, requires the definition of a loading surface; the 
plastic-damage model uses a yield condition, based on the loading function proposed by Lubliner 
and Oller (Lubliner, et al., 1989) in the following form: 
 

푓 =
1

1− 훼 · (푞 − 3 · 훼 · 푝̅ + 휃(휀̃ )〈휎 〉 − 훾〈−휎 〉)− 휎 (휀̃ ) (2.64) 

 
The shape of the loading surface in the deviatoric plane is determined by the parameter 휸, while the 
determination of the parameter α is based on the Kupfer’s curve in the biaxial plane (Kupfer, et al., 
1979). 흈풎풂풙 is the algebraically maximum eigenvalue of 흈, and the Macauley bracket 〈풙〉 is defined 
by: 

〈푥〉 =
1
2

(|푥| + 푥) (2.65) 

and the function of 휽 휺풑풍 : 

               휃(휀̃ ) =
휎 휀̃
휎 휀̃

(1− 훼)− (1 + 훼) 
(2.66) 

 
Where 흈풄 and 흈풕 are the effective tensile and compresive cohesion stresses. The parameter α is 
defined by: 
 

                                                           훼 =
(푓 푓⁄ )− 1

2(푓 푓⁄ )− 1 
(2.67) 

 
being: 

푓  Compressive strength under biaxial loading 
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As the parameter α depends on the biaxial compressive stress, this factor will be necessarily 
obtained experimentally. Thus, the behavior of concrete depends only on four constitutive 
parameters, together with the tensile and compressive uniaxial or biaxial curves. In addition, a 
value for parameter 휸 has to be also defined, based on the existing triaxial compressive tests of 
concrete. According to Lubliner (Lubliner, et al., 1989), the value of 휸 can be approximated through: 
 

                                                            훾 =
3(1 − 휌)
2휌 + 3  

(2.68) 

where: 

       휌 =
( 퐽 )
( 퐽 )

  at a given state 푝̅ 
(2.69) 

being: 
 

퐽  Second invariant of stress 
푇푀 Tensile Meridian   휎1 > 휎2 = 휎3 
퐶푀 Compressive Meridian  휎1 = 휎2 > 휎3 

 
Typical values of 흆 range from 0.64 to 0.80. 
 
From experimental curves, it is possible to determine the dependence between stress-cracking 
strain (휺풕풄풌) in uniaxial tension and stress-crushing strain (휺풄풊풏)  in uniaxial compression.  In order to 
define the material behavior, it is necessary to identify the shape of the flow potential and the 
loading surfaces; these two surfaces can be determined completely by the four parameters 
commented before: 휷,풎, 풇 퐚퐧퐝 휸: 
 

푓(훽,푚,푓,훾) (2.70) 
 
Apart from all previous considerations concerning to the plastic range, it is also supposed an elastic 
period until the 30% of 퐟퐜 under compression, and the 70% of 퐟퐭 under tension. 
 
The evolution of 풅풄 and 풅풕 depending on cracking and crushing strains, has to be determined 
separately. On the one hand, the stress degradation under compression is linear or parabolic while 
the plastic descent under tension is clearly exponential. The two figures shown below, illustrate the 
two plastic hardening behaviors: 
 

    
 

a)                                                                                              b) 
Fig. II.12  Degradation of concrete under compression [a] and under tension [b]. 

The first one tends to be parabolic, while the second one is exponential. 
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2.2.8 Experimental determination of the stress-strain curve and the evolution of damage. 
 
2.2.8.1 Uniaxial stress state. 
  
In order to determine the stress-strain curves under tension and compression for plain concrete, 
cylindrical specimens of 300 mm height and 150 mm width are usually used. In substitution, cubic 
specimens of 150x150x150 mm can also be employed, by applying some correlative equivalent 
expressions. The accepted value for the maximum compressive strength 풇풄풌 corresponds to the 
maximum compressive stress by using these mentioned cylindrical specimens; in case of testing 
cubic specimens instead, the maximum compressive strength would be calculated by using the 
following expression proposed by (Viso, et al., 2008): 
 

푓 = 휎 , · 훽 = 휎 , ·
퐿

퐿 + 퐿  
(2.71) 

 
where: 
 

휎 ,  Principal vertical stress of the cubic specimen. 
훽 Corrective factor 
퐿 Width of the cubic specimen tested. 
퐿  Constant value depending on material. From experiments,  퐿 = 300 푚푚  

 
On the one hand, a value of 0.913 has been assumed for the corrective factor 휷, coming from 
experimental tests. On the other hand, an approximate value of 300 mm has been used for the 
parameter 푳풄, assuming this value for plain concrete.  
 
 
The experimental uniaxial stress-strain curves, used in this research to determine the evolution of 
stress up to 풇풄풌, are the ones defined by (Kaar, et al., 1978) for all kind of concrete strengths. In 
diagrams of figure II.13, it can be observed how sharper is the failure of each specific concrete, as 
higher is its compressive strength. This is the reason why ductility is directly related to the 
maximum compressive strength; however, it is also important to highlight that the significant 
descending slope of the softening period [with almost no residual stress] occurs only in those 
uniaxial stress states. Softening behavior depends on the hydrostatic stress state directly, and the 
plastic hardening evolutionary law behaves really different depending on lateral pressure [this 
effect will be widely explained in the following Section, corresponding to triaxial stress states]. 
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Fig. II.13  Uniaxial stress-strain curves for different concrete strengths. 

These are the curves considered by the American ACI, (Kaar, et al., 1978). 
 
Apart from defining the uniaxial stress-strain curves in order to determine the input parameters for 
the damaged plasticity model for concrete [DPC], it is also necessary to consider two evolutionary 
laws for compressive and tensile evolutionary damage ratios. These parameters represent the 
stiffness degradation of concrete during the loading process, from a stress point corresponding to 
the 50% of the 풇풄풌. The parameter known as damage ratio [풅풄] ranges from 0 to 1 [being 1, 
undamaged, and 0, completely damaged]. This value can be obtained through a set of cyclic 
compressive tests, based on loading and unloading. From experimental curves, it can be clearly 
observed how the ascending branch is degraded as reloading progresses. Obviously, the stiffness 
degradation depends not only on the axial plastic strain, but also on the hydrostatic stress state, as 
it is expressed by the expression (2.57): 
 

푑 = 푑(휎, 휀̃ ) (2.57) 
 
 
In uniaxial stress states, this degradation depends only on axial plastic strain, and it can be easily 
standardized according to the concrete strength, depending on ductility and residual stress. From 
the experimental tests carried out by Karsan and Jirsa (Karsan, et al., 1969), the stiffness 
degradation corresponding to a 30MPa concrete at the peak of load is about a 20%, growing up to a 
60% in the period corresponding to residual stress -with values about 0.45풇풄풌. 
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Fig. II.14  Uniaxial evolutionary damage ratio laws for 30MPa concrete. 

Curves obtained experimentally by (Karsan, et al., 1969) 
 

In figure II.14, it can be clearly seen how concrete core is affected by a process of degradation; the 
proportional modulus decreases progressively according to the mentioned scalar ratio, 풅풄, and by 
following the expression: 
 

퐸′ = (1 − 푑) · 퐸  (2.72) 
 
where 푬′풄 is the damaged elastic modulus of concrete. 
 
2.2.8.2 Triaxial stress state.  
 
Very different from the uniaxial case is the triaxial stress state. The evolution of stress up to the 
maximum compressive limit 풇풄풌 for plain concrete -or 풇풄풄 for confined concrete- is determined by 
the shape of the failure surface; the confined curve is similar to the first one. From the peak of load, 
the evolution and the shape of the stress-strain curve during the softening period depends on the 
hydrostatic stress state basically. The values of the descending branch slope [Z] and the residual 
stress [α] have to be experimentally determined, in order to be capable of describing the post-peak 
behavior. 
 
Depending on lateral pressure, compressive strength of concrete after the peak of load can decrease 
linearly or by following a parabolic function instead -as it has been previously explained in Section 
2.2.9.1. In order to make the model much simpler, a basic linear function proposed by Susantha 
(Susanta, et al., 2000) has been used to represent the softening period in this investigation. Under 
high hydrostatic states, concrete does not suffer from softening thanks to the lateral pressure -this 
case would be the one with no descending branch, corresponding to a state of perfect plasticity, 
휶 = ퟏ.ퟎ. The lower is lateral pressure, higher is the strength loss. 

 
Fig. II.15  Determination of [Z] and [α] from experimental tests.  

(Susanta, et al., 2000) 
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Confinement effect on concrete has a clear effect on the softening period, since lateral pressure 
clearly minimizes and delays the process of microcracking:  

 
Fig. II.16  Influence of lateral pressure on softening.  

Hydrostatic pressure minimizes the degradation process of concrete during the softening period. 
 

Several investigations have focused their efforts on describing a general model, capable of 
reproducing the post-peak descending branch with accuracy. Susantha (Susanta, et al., 2000) 
obtained some universal experimentally-based expressions, with the clear objective of providing 
designers some simple criteria to predict softening in confined concrete. These expressions were all 
based on experimental tests done by other researchers before, in reference to circular and square 
concrete-filled tubes. Values of [Z] and [α] were obtained from the regularization of a set of 
experimental curves, as it is shown in figure II.17: 

 
Fig. II.17  Determination of [Z] and [α] from experimental tests.  

(Susanta, et al., 2000) 
 
In general, the linear function corresponding to the descending slope: 
 

푍 =
(1 − 훼) · 푓′

(휀 − 휀 )  
(2.73) 

 
Final expressions proposed by Susantha and Ge, and based on experiments, are the following: 
 
For circular-shaped sections: 
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푍 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 0                        푠푖  푅 푓′ 푓⁄ ≤ 0.006

1.0푥10 · 푅 푓′ 푓⁄ · 600          푠푖 푅 푓′ 푓⁄ ≥ 0.006  푦   푓 ≤ 283푀푃푎

1.0푥10 · 푅 푓′ 푓⁄ · 6000          푠푖  푅 푓′ 푓⁄ ≥ 0.006  푦   푓 ≥ 336푀푃푎

푓
283

.

1.0푥10 · 푅 푓′ 푓⁄ · 600    푠푖  푅 푓′ 푓⁄ ≥ 0.006 푦 283 ≤  푓 ≤ 336푀푃푎
⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

 

 
 
 

(2.74) 

being  푅 = 3(1 − 휈 ) · 푓 퐸⁄ · (퐷 2푡⁄ )  for circular steel tubes. 
 
and the ultimate plastic strain always coincides with an approximated value of 휀 = 0.025. 
 
For rectangular and square-shaped sections: 
 

푍 =
0                                                          푠푖  푅 푓′ 푓⁄ ≤ 0.0039

23400 · 푅 푓′ 푓⁄ − 91.26          푠푖  푅 푓′ 푓⁄ > 0.0039
 

 

  
(2.75) 

 

휀 =

⎩
⎪
⎨

⎪
⎧0.04                                                     푠푖  푅 푓′ 푓⁄ ≤ 0.0042

23400 · 푅 푓′ 푓⁄ − 91.26          푠푖  푅 푓′ 푓⁄ > 0.0039

23400 · 푅 푓′ 푓⁄ − 91.26          푠푖  푅 푓′ 푓⁄ > 0.0039⎭
⎪
⎬

⎪
⎫

 

 

 
 

(2.76) 

being this case 푅 = (푏 푡⁄ ) · 12 · (1− 휈 ) 4휋⁄ · 푓 퐸⁄     for rectangular steel tubes. 

Softening period is also related with the evolution of damage during the loading process. While the 
stiffness degradation advances quickly in uniaxial states [hand in hand with the loading process], in 
confined concrete this increment is clearly delayed. Actually, Luccioni together with his 
collaborators (Luccioni, et al., 2005) demonstrated that under high hydrostatic states damage is 
postponed or kept almost constant. These researchers carried out several tests with FRP-encased6 
specimens, comparing the obtained results with those coming from experiments about CFT 
sections. The conclusion is that the damage evolutionary law obtained from a cyclic loading test of 
CFT sections is much more severe than in FRP-encased concrete. This is caused by the elastic 
rigidity of FRP composites: these polymeric shells perform really well under circumferential tensile 
stresses, preventing concrete from early microcracking (Karabinis, et al., 2002). 
 
In figure II.18, the experimental curve obtained from a cyclic loading uniaxial compression test is 
shown, corresponding to a FRP-encased tubular section; this experiment has been carried out by 
Mirmiran (Mirmiran, et al., 2000). In figure II.18, this curve is compared with that coming from a FE 
analysis, based on the Drucker-Praguer yield criterion. It can be easily noted that the difference 
between the two curves is not significant; the divergence lies basically in the evolution of damage, 
since the FE model follows an elastic perfectly-plastic model in which stiffness degradation is not 

                                                             
 

6 FRP: Fiber Reinforced Polymer shells. 
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considered. Similarity between the two curves has much to do with the high confinement effect on 
concrete core confined by FRP-composites, in comparison with the unconfined. 

 
Fig. II.18  Comparison between the curves from the FE model and the experimental test.   

2.3 Structural response of CFT sections under compression. 
 
2.3.1 Confinement effect. 
 
In circular concrete-filled tube sections, the horizontal component of the maximum lateral pressure 
provided by the tube to the core is equal to the maximum tensile force that steel can resist. 
Contrarily, vertical components of pressure are compensated themselves thanks to the circular 
geometry. According to Timoshenko [(Timoshenko, 1970), pages 28 to30], and Figure II.19:   
 

푓 · (퐷 − 2푡) = (휈 − 휈 ) · 2푡 · 푓  (2.77) 
   
Therefore: 

푓 = 훽 ·
2푡

퐷 − 2푡 · 푓  (2.78) 

 
As it is shown in figure II.19, circular sections distribute lateral pressure uniformly along the 
perimeter of the core. This way, and owing to geometrical reasons, the tube becomes subjected to a 
biaxial state of circumferential tensile stress, and vertical compression (Bergman, et al., 1995). 

    
 

Fig. II.19  Stress distribution on concrete core due to confinement effect. 
Distribution of pressure is different, depending on the shape. 
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A circular shape changes the uniform distribution of pressure into a pure tensile stress in the wall-
thickness of the tube, with no bending stresses; this fact optimizes the performance of the tube and 
maximizes the confinement effect on the core. On the contrary, lateral pressure on rectangular 
plates of square-shaped tubes implies the appearance of bending stresses; needless to say that axial 
rigidity of the plates is much higher than its flexural stiffness. Therefore, the difference in the 
distribution of pressure on the core leads to lower confinement levels in square-shaped tubes. 
 
2.3.2 Available simplified design methods. 
 
There are several simplified methods to determine the maximum compressive strength of concrete-
filled tubes. Some of them come from applicative codes and others from specialized researchers: 
from the first group, Simplified Method proposed by Eurocode 4 (EN1994-1-1, 1990) is presented 
below; belonging to the second group, the most representative method is the Unified Theory 
proposed by Shantong Zhong in 1998, (Zhong, et al., 1998).  
 
 
2.3.2.1 Simplified Method of Eurocode 4. 
 
The maximum plastic design load of a composite section in general -or “squash” load, (Bergman, et 
al., 1995), can be calculated through the expression provided by Eurocode 47: 
 

푁푝푙,푅푑 =
퐴푎푓푦
훾푎

+
퐴푠푓푠푘
훾푠

+
퐴푐푓푐푘
훾푐

 
(2.79) 

 
Or the same expression in terms of design strengths: 
 

푁푝푙,푅푑 = 퐴푎푓푦푑 + 퐴푠푓푠푑 + 퐴푐푓푐푑 (2.80) 
 
being: 
 

퐴푎,퐴푠,퐴푐  Area of the different components 
푓푦, 푓푠푘,푓푐푘  Characteristic material strengths. 
훾푎, 훾푠,훾푐 Safety factors for materials [1.1 for steel, 1.15 for reinforcements and 1.50 for 

concrete]  
 
In circular concrete-filled tubes, concrete strength can be increased as a consequence of the 
confinement effect provided by the tube; in the same manner, axial capacity of steel has to be 
slightly reduced, owing to its biaxial stress state. Generally, the axial response of a CFT section can 
be enhanced about a 15% more than its nominal strength, only thanks to consider the effects 
derived from confinement. Slenderness is a decisive factor in order to determine the magnitude of 
this increment; for columns with a non-dimensional slenderness over 0.50, this enhancement 
should be neglected. Eccentricity is the second decisive parameter in determining the maximum 
axial load; this eccentricity cannot exceed the value of 푑 10⁄ , in order to consider confinement, 
being 푑 the outer diameter of the tubular section. 
 
Then, the maximum load of a circular concrete-filled tube is defined by EC-4 (EN1994-1-1, 1990): 
 
                                                             
 

7 only for short columns. 
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푁 , =  퐴 휂 푓 + 퐴 푓 + 퐴 푓 1 + 휂
푡
퐷
푓
푓    (2.81) 

 
being: 
 

                                         퐼푓   0 < 푒 ≤ 퐷
10  →  휂 =  휂 · 1−

10푒
퐷   (2.82) 

                                                                                 휂 = 휂 + (1− 휂 ) ·
10푒
퐷    (2.83) 

 
                                         퐼푓   푒 > 퐷

10         →  휂 =  0 (2.84) 
 

                                                                                 휂  =  1 (2.85) 
 
knowing that8: 
 
                                              휂 = 4 9− 18 5휆̅ + 17휆̅        but    휂 ≥ 0 (2.86) 
 
                                              휂 = 0 25 3 + 2휆̅                        but    휂 ≤ 1 (2.87) 
 
The squash load of a composite section, 푁푝푙,푅푑, is the maximum plastic load resisted by a short 
column. Nevertheless, buckling effects in slender columns may be significant; in this case, the 
maximum axial capacity can be calculated by following two different procedures. The first is based 
on analyzing the column by considering second-order effects and imperfections; the second uses 
the simplified method proposed by the Eurocodes which obtains the maximum load capacity of the 
column through a coefficient 휒, as in case of steel sections [in Eurocode 3].  
 
 
2.3.2.2 Unified Theory [Zhong] 
 
The Unified Theory proposed by Zhong, (Zhong, et al., 1998) is based on the assumption that both 
materials forming a composite section work together as new material. Thus, concrete and steel are 
not considered with their own mechanical properties, since a new theoretical composite material is 
introduced. This way, the properties of these new materials and all its correlations come from 
experimental tests done by several researchers. It can be said that the behavior of CFT sections has 
unity, continuity and relativity. 

                                                             
 

8 Being 휆 the non-dimensional slenderness ratio of the composite section, 휆 = 푁푝푙,푅푘 푁푐푟⁄ ≤ 0.5 
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Fig. II.20  Idealization of the composite stress-strain curve.  
The Unified Theory considers a new “composite” material, made of steel and concrete. 

 
The Unified Theory for compression states can be summarized through the following equation, in 
order to determine the validity of a section: 
 

  푁 ≤ 1,4휑푁        
(2.88) 

where: 

푁  Applied Axial Load 
푁  Axial plastic capacity of the section 
휑 Buckling coefficient 

 
The expression proposed by (Zhong, et al., 1998) to obtain the value of the initial axial load is the 
following: 

    푁0 = 퐴 · 푓        (2.89) 
being: 

퐴푎푐 The total area of the composite section,   퐴 = 퐴 + 퐴  
 
and the composite compressive strength: 
 

    푓 = (1.212 + 퐵푘 휉 + 퐶푘 휉 ) · 푓      (2.90) 
 

    휉 =
퐴 · 푓

1.1 · 퐴 · 푓     (2.91) 

 
for circular sections: 

    퐵 = 1.1759푓 /235 + 0.974    (2.92) 
 

    퐶 = −0.1038푓 /20 + 0.309   (2.93) 
 

    푘 = 1.0  (2.94) 
 
for rectangular sections: 

    퐵 = 1.131푓 /235 + 0.723    (2.95) 
 

    퐶 = −0.07푓 /20 + 0.0262   (2.96) 
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    푘 = from 0.71  to  0.74  (2.97) 

 
The determination of coefficient 휑 is directly related to the slenderness of the column, ranging from 
0.35 to 1.09. 
 
2.3.3 Influence of the loading process. 
 
In the determination of the maximum plastic squash load, the fact of considering the way of loading 
is strictly necessary. Although in the Eurocodes this consideration is not directly mentioned, the 
axial response of a CFT section can be very different depending on the way of applying the load. In 
the European code only the general expression (2.81) is presented, assuming that both components 
are loaded simultaneously. In the following figure II.21 three different possible hypotheses of 
loading are represented: [a] only the concrete is loaded, [b] both components are simultaneously 
loaded, and [c] only the steel is loaded. 

 
                                             a)                               b)                            c) 

Fig. II.21  Different ways of loading.  
The way of loading the composite section is crucial to determine the compressive squash load. 

 
To reproduce the value of the maximum axial load predicted by the Eurocodes using the expression 
(2.81), it is necessary to load both components at the same time [case b]. Under this assumption, 
both materials expand laterally according to their respective Poisson’s ratios [first elastic, 
afterwards plastic]. While the elastic Poisson’s ratio of steel is higher than that of concrete, 
confinement effect does not take place; once concrete starts to expand laterally beyond the value of 
its plastic Poisson’s ratio [0.49] due to dilatancy, the core becomes quickly triaxially compressed. In 
the first case [a] of figure II.21, concrete expands laterally more than steel from the beginning, as 
the latter is loaded thanks to the friction forces of the interface only. As it can be derived from 
figure II.22, the maximum axial load in this first case is slightly higher than in the second one [as 
concrete is confined from the first instant]. Finally, in the third case [c], only the outer steel tube is 
strictly loaded, starting its lateral deformation independently from the core. This fact leads to act by 
separately; thus, concrete is not involved in loading unless shear stresses could be transferred 
through inner connectors.  
 

                                                             
 

9 for short columns, it takes the value of 1.0. 
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Fig. II.22  Load-deformation curves according to different ways of loading.  
Curves shown come from experimental results carried out by Schneider (Schneider, 1998) 

 
In figure II.22, the difference between the maximum values of axial load becomes explicit. The 
curves corresponding to cases [a] and [b] go hand in hand until the plastic hardening period; 
otherwise, case [c] reaches a low value of compressive load, decreasing until a value of vertical 
deformation about 20 mm. The fact that specimen [c] does not involve concrete until this advanced 
percentage of strain clearly shows that shear transference on the interface cannot be supposed 
without connectors. In a situation like this, it is necessary to calculate specific shear connectors to 
guarantee the load transference between the two components:  
 

 

Fig. II.23  Practical example of shear connectors.  
They must be placed preferably in the nearby of the loaded face. 

 
To guarantee a correct bond and the load transference between components, and assuming that 
steel is only component loaded, it is necessary to introduce shear connectors on the interface, being 
the chemical and physical adherence not enough. Contrary, even being friction forces sufficient to 
guarantee the load transfer [by considering a maximum of 0.55 N/mm2 of tangential stresses in 
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circular CFT sections], the sliding of the tube respect to the core could be really significant in the 
nearby of the loaded face. Dunberry (Dunberry, et al., 1987) demonstrated that this sliding could 
occur in a specific equivalent length from the loading face, which value coincides approximately 
with: 
 

퐿 ≤
2퐷

퐿 3⁄
 

(2.98) 

 
being D the diameter of the tube, and L its length. 
 
Then, the shear force which will be absorbed through the interface is the difference between the 
axial capacity of concrete and the axial capacity of steel: 
 

푉 , = 푁 , − 푁 , =
푁
푁 ,

· 푁 , −푁 ,  (2.99) 

 
The maximum tangential stress which can be resisted by the interface according to EC-4, goes from 
휏 = 0.40 푁/푚푚  in rectangular CFT sections up to 휏 = 0.55 푁/푚푚  in circular sections, 
(Hicks, et al., 2002). Therefore, the maximum shear force per column meter which can be absorbed 
is the product of this value by the inner surface of the tube: 
 

푉 = 2 · 휏 · 휋 · (푅 − 푡) (2.100) 
 
And the shear force absorbed by mechanical connectors [푉 , ] can be easily calculated by 
subtracting the value of 푉  from 푉 , , and knowing the capacity of a single connector. This way, it 
is possible to determinate the number of necessary connectors, 푛: 
 

푉 , = 푉 , − 푉  (2.101) 
 

푛 = 푉 /푃  (2.102) 
 
where 푛 is the number of connectors, and 푃  the load resisted by a single connector. 
 
2.4 Experimental and Numerical investigations about CFT sections under compression.  
 
In the past recent decades, several experimental and numerical studies have been carried out in 
reference to concrete-filled tubes and other derived typologies, due to their improved ductility and 
strength, especially in seismic areas. Their complex behavior has motivated several researchers to 
further in them, supported by a growing interest shown by the engineering community and 
industry. 
 
2.4.1 Studies about circular and rectangular concrete-filled tubes. 
 
As explained in the previous paragraph, a wide collection of experimental and numerical results has 
been published in reference to the behavior of concrete-filled tubes. Most studies deal with the 
response under pure compression of these sections, since this is one of their most important 
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strengths. Numerous papers in reference to compression of CFT sections10 are presented in the list 
shown below, chronologically from the eighties: 
  
 
Researcher Year Main Purpose 

   
(Morino, et al., 1984) 1984 Eccentricity of applied load, CFT experimental. 
(Sakino, et al., 1985) 1985 Axial response, CFT experimental analysis 
(Ge, et al., 1992) 1992 Geometric proportions in axial response, CFT experimental. 
(Kilpatrick, 1994) 1994 Geometric proportions in axial response, CFT experimental. 
(Uy, et al., 1996) 1996 Eccentricity of applied load, CFT experimental. 
(Muñoz, et al., 1997) 1997 Eccentricity of applied load, CFT experimental. 
(Schneider, 1998) 1998 Large strain response, CFT experimental tests. 
(O'Shea, et al., 2000) 2000 Axial response of thin-walled CFT, exsperimental analysis. 
(Susanta, et al., 2000) 2000 Axial response of circular/rectangular CFT, experimental. 
(Elremaily, et al., 2002) 2002 Cyclic loading, CFT experimental analysis- 
(Hu, et al., 2003) 2003 Axial response, CFT experimental tests. 
(Naguib, et al., 2003) 2003 Creep, CFT numerical analysis. 
(Han, et al., 2003) 2003 Pre-load on steel tubes, CFT experimental analysis-  
(Liu, et al., 2003) 2003 Axial response of rectangular CFT, experimental analysis. 
(Hu, et al., 2003) 2003 Axial response of circular/rectangular CFT, experimental. 
(Fujimoto, et al., 2004) 2004 Eccentricity of applied load, CFT experimental. 
(Giakoumelis, et al., 2004)       2004 Axial response of circular, CFT experimental analysis-. 
(Liu, 2005) 2005 Axial response of rectangular CFT, experimental-. 
(Kwon, et al., 2005) 2005 Long-term behavior, CFT experimental tests. 
(Eid, et al., 2006) 2006 Confinement effectiveness, CFT numerical analysis. 
(Ellobody, et al., 2006) 2006 High-strength concrete behavior, CFT numerical analysis. 
(Liu, 2006) 2006 Axial response of rectangular CFT, experimental analysis. 
(Yu, et al., 2007) 2007 Axial response, CFT experimental analysis- 
(Choi, 2007) 2007 Axial response of circular, CFT experimental analysis-. 
(Kuranovas, et al., 2007) 2007 Axial response of Hollow CFT, analytical 
(El Fattah, 2008) 2008 Eccentricity of applied load, CFT experimental. 
(Andrade de Oliveira, et al., 2009) Confinement effectiveness, CFT experimental tests. 
(Gajalakshmi, et al., 2011)       2011 Axial response of circular CFT, experimental. 
(Almadini, 2011) 2011 Axial response of circular/rectangular CFT, experimental. 
 
All these studies refer to short columns only, without considering slenderness effects. To achieve 
the maximum load-bearing capacity of columns, slenderness is a crucial factor to take into account; 
since this work refers only to short columns under pure compression in order to simplify and focus 
the analysis, the list of investigations presented before only deals with this hypothesis. As a 
consequence of the inherent complexity of these sections, their structural response has been 
progressively comprehended during these last decades, mainly thanks to experimental tests. 
Thanks to the available numerical tools and the large amount of published experimental tests, 
today it is already possible to describe the behavior of CFT sections only numerically, with quite 
accurate precision. 
 
Derived from the extended use of these sections in some of the tallest structures of seismic areas, 
such as Hong Kong, Singapore or San Francisco, an increasing interest about the specificities of 
their behavior has emerged. This is the reason why we can find so much varied studies, ranging 
from local buckling to pre-loading effects or the influence of geometry and shape on confinement 

                                                             
 

10 some of them used in this investigation for calibration purposes 
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effect. It can be said that, nowadays, the behavior of CFT sections under compression is really well 
understood by the engineering community; now the interest focuses on describing the performance 
of new typologies derived from CFT, capable of improving their structural response. 
 
Some of the investigations presented before have become authentic references for new researchers, 
for their renowned quality and precision. This is the case of (Hu, et al., 2003),  (Schneider, 1998), 
(O'Shea, et al., 2000) and (Susanta, et al., 2000). Due to the importance of the behavior of concrete 
in the global compressive response, two of the previously mentioned studies deal with concrete 
strength and its softening period. O’Shea, Bridge and Susantha focused their efforts on describing 
the increment of strength and ductility of the concrete filling, in case of circular and rectangular 
steel tubes. As it can be observed in figure II.24, the results obtained by O’Shea contribute to know 
about the confinement ratio on high-strength concretes [of 50 and 100 MPa strengths, suitable for 
heavily loaded columns]. Some years after, also (Liang, 2009) investigated about the performance 
of high-strength concrete-filled tubes specifically.  
 

 
Fig. II.24  Stress-strain experimental curves of high-strength concrete specimens. 

(O'Shea, et al., 2000) 
 

On the contrary, Susantha and Ge studied the post-peak behavior of the triaxially loaded concrete of 
the filling. Their conclusions are really interesting not also for describing and understanding the 
axial response of CFT sections, but also for defining the plastic softening behavior of concrete under 
states of high hydrostatic pressures [Figure II.25]. 

 
Fig. II.25  Analysis of the post-peak behavior of concrete. 

(Susanta, et al., 2000) 
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Susantha superimposed the experimental curves from other researchers with those coming from 
his own numerical model of concrete behavior, in order to determine the descending branch slope 
after the peak of load [Z], and the residual stress after softening [α]. These two values were defined 
depending on geometry and material strengths, since these two variables clearly govern the 
hydrostatic state of the core. Curiously, from Susantha’s results, it can be observed that really thick-
walled tubes do not show almost descending branch; in consequence, the softening period does not 
take place. 
 
The two mentioned works related with the behavior of concrete deal with short deformation axial 
loading, enough to describe and calculate the confinement effect provided by the tube; other 
researchers were also interested in reaching the collapse of these sections, in order to describe 
their complete ductility. This is the case of (Schneider, 1998), (Choi, 2007), (Yu, et al., 2007) or (Liu, 
2006), who carried out several tests with the main purpose of getting the collapse. 

 
a)      b)                  c)                 d) 

Fig. II.26  Failure modes of different circular CFT sections. 
(Yu, et al., 2007) 

 
Yu (Yu, et al., 2007) carried out different experimental tests according to diverse ways of loading. 
For each case, different failure modes were clearly described by following always the same process: 
the failure of steel first and the collapse of concrete afterwards -by forming a plane of 45º. Figure 
II.26 shows a set of four different specimens after the collapse, assuming different ways of loading: 
[a] both materials simultaneously loaded, [b] concrete loaded first, [c] steel loaded first and [d] only 
concrete loaded -as it is represented in Fig. II.27.  

 
                                   b)                                                        c)                                                   d) 

Fig. II.27  Scheme of the loading ways used in the test. 
(Yu, et al., 2007) 
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As it has been explained in Section 2.3.3 before, the way of loading is really decisive not only for the 
failure mode, but also for the maximum axial strength. This influence was well quantified by (Yu, et 
al., 2007) and others, as it is shown in figure II.28; the elastic modulus, the peak of load and also the 
softening period are affected by the way in which load is applied. The curves shown in figure II.28.a 
represent the load-strain diagrams for one single specimen, loaded in different ways: 
 

 
a) Load-strain curves                                           b)    Poisson’s ratio curves 

Fig. II.28  Load-strain diagrams depending on the way of loading. 
(Yu, et al., 2007) 

 
Using a collection of experiments, (Choi, 2007) described the mode of failure of CFT sections, 
depending on the mentioned different ways of loading; in the nearby of the collapse of all CFT 
sections and independently on the D/t ratio, the steel of the tube tends to suffer from local buckling 
during the hardening period. In case of having one or two embedded faces, the failure mode of 
circular-shaped CFT sections follows always the same pattern: the well-known “elephant foot” 
mode of failure [Fig. II.29]:  
 

 
Fig. II.29  Failure mode known as “elephant foot”, typical in circular CFT sections. 

(Choi, 2007) 
 
Besides, lots of specific studies have been also done, related with rectangular and square-shaped 
CFT sections, such as that carried out by (Liu, et al., 2003). He tested 22 rectangular high-strength 
specimens under compression. In this case, the investigation focused not only on the increment of 
compressive strength, but also on the failure modes of different shaped sections. As it has been 
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explained before, rectangular CFT sections suffer from local buckling effects much earlier than 
circular sections. An important lack of bending stiffness of the plates leads to a significant 
deformability in the two cross-sectional axes, a fact that clearly defines the failure mode of the tube; 
these buckling modes are really different in square-shaped than in rectangular sections, as it was 
clearly demonstrated by (Liu, et al., 2003) [Fig. II.30].  

 
Fig. II.30  Failure modes of different rectangular and square-shaped CFT sections. 

Case [a]: B/H=1, Case [b]: B/H=1.5, Case [c]: B/H=2.0. (Liu, et al., 2003) 
 
Needless to say, that the failure mode not only depends on the geometry of the section, but also on 
boundary conditions. In case of having the specimen pinned at the two loading faces, the failure 
appears at the middle of its height; in case of embedding only the supporting face, failure then takes 
place in the nearby of the base. 
 
One of the researchers who have focused his efforts on large deformation axial loading of CFT 
sections, apart from studying the failure mode, is Schneider (Schneider, 1998). In his paper dated in 
1998, there is a collection of different curves coming from large deformation axial loading analyses. 
To carry out studies of load-strain curves beyond the peak of load is not usual in the existing 
literature, but nevertheless it is extremely useful to understand the structural capacity of these 
sections. Figure II.31 shows a set of different load-strain curves published by Schneider, with all 
singular points where local buckling occurs before the collapse. 
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Fig. II.31  Large deformation axial loading tests of CFT sections. 

(Schneider, 1998) 
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2.4.2 Studies about improved typologies derived from CFT sections. 
 
2.4.2.1 Concrete-filled Double Skin Tubes [CFDST11] 
 
A first variation of concrete-filled tubes was the introduction of an extra tube inside the core, by 
generating a new typology: “concrete-filled double skin tubes”. This recent typology shows several 
advantages in comparison with traditional CFT sections, in terms of load-bearing capacity and 
prevention from buckling. Furthermore, the sandwiched concrete filling becomes also severely 
confined by the two steel tubes. As in case of single CFT sections, these new sections have been 
investigated by numerous researchers in these recent years; some of them are (Elchalakani, et al., 
2002), (Tao, et al., 2004), (Zhao, et al., 2010) and (Uenaka, et al., 2012). The crescent interest in this 
typology is derived from their extraordinary applicability, especially in case of heavily loaded 
columns or bridge piers, located in seismic areas. 
 

 
Fig. II.32  Different CFDST typologies proposed. 

(Uenaka, et al., 2012) 
 
Researchers from the Monash University were the first to propose and analyze these typologies; 
Mohammed Elchalakani (Elchalakani, et al., 2002) and Xiao-Ling Zhao (Zhao, et al., 2010) carried 
out the first numerical and also experimental studies about concrete-filled double skin tubes. One 
of the most important strengths of CFDST sections is their improved ductility, as the stiffness 
degradation of the sandwiched concrete is clearly delayed. This is the reason why some of the 
existing literature about these sections focused on compression tests under large deformation axial 
loading. As an example, figure II.33 reproduces the behavior of a CFDST until the collapse, carried 
out by Elchalakani: 
 

                                                             
 

11 Concrete-Filled Doube Skin Tubular sections. 



Chapter II 
State of the art 

 

 
59 

 
Fig. II.33  Large deformation axial loading test of a CFDST section. 

(Elchalakani, et al., 2002) 
 

The analysis done by (Elchalakani, et al., 2002) does not only consist in double skin circular 
concrete-filled tubes, but also in rectangular-shaped sections and their combinations. The tensional 
state of components is really different under the assumption of combining a circular outer tube and 
a rectangular inner tube, than the other way around. It is important to point out that the hoop 
stress of the inner tube is completely opposite to that of the outer: while the first becomes 
circumferentially compressed, the latter is circumferentially tensioned according to figure II.34: 
 

 
a) Outer tube                                           b)   Inner tube 

Fig. II.34  Hoop stress in outer tube [a] and inner tube [b]. 
Elchalakani et al. (2003). 

 
From experimental tests done by Kojiro Uenaka (Uenaka, et al., 2012), it is evident that tensional 
states of the inner and the outer tube are opposite. In the biaxial diagrams shown below, it can be 
observed how 흈휽 stresses are negative in the first case12 [figure II.35.a], and positive in the second 
case [Fig. III.35.b]. The fact of being compressed makes the inner tube susceptible of inward 
buckling, especially in case of rectangular-shaped sections. This effect was studied by (Elchalakani, 
et al., 2002) and others, as the principal mode of failure of these sections. Just for this reason, it is 
convenient to propose the inner profile always thicker than the outer one in order to prevent from 
buckling. 
 

                                                             
 

12 As in case of simple CFT sections, where circumferential stress is negative, owing to volumetric 
expansion of concrete. 
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a)                                                                                   b) 

Fig. II.35  Stress path in the biaxial plane (흈흑,흈풛) of the outer tube [a] and inner tube [b]. 
(Uenaka, et al., 2012) 

 
One of the most interesting qualities of CFDST sections is the natural fire protection of the inner 
tube provided by sandwiched concrete, in contrast to the outer tube. In unstiffened CFT sections, 
the steel is located on the perimeter of the section, being not completely protected against fire as a 
consequence; this is the reason why many applicative codes require the introduction of 
reinforcement bars in concrete filling. Thus, what is an apparent disadvantage for CFT sections, can 
be partially solved by CFDST sections. 
 

 
[a]                                                                                         [b] 

Fig. II.36  Local buckling of the inner tube, owing to biaxial compression. 
(Elchalakani, et al., 2002) 

 
While inward buckling is relatively clear in case of rectangular CFDST sections [case a) of figure 
II.36], this effect is more complex in case of circular sections [case b) of figure II.36]. Failure takes 
place in the tube which is more vulnerable -normally the inner, owing to its compressive biaxial 
state. However, in most cases where both loading faces are completely embedded, the failure 
follows also the mentioned mode known as “elephant foot” [see figure II.37]. 
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Fig. II.37  Collection of tested CFDST specimens with circular and square inner tubes. 

(Elchalakani, et al., 2002) 
 

In figure II.37, it can be seen how the collapse goes always after plastic buckling, by following the 
“elephant foot” mode. Depending on the thickness of the tubes, local buckling appears in the nearby 
of the base or in the middle-height of the samples. 
 
2.4.2.2 Concrete-filled tubes stiffened with bars. 
 
Since one of the most determining factors in reaching the maximum axial load of CFT sections is the 
deformability of the plates [especially in case of rectangular and square-shaped sections], several 
derived solutions have appeared in order to improve their flexural stiffness. By improving the 
rigidity of the plates, concrete of the core becomes more confined, enhancing at the same time the 
load-bearing capacity of the composite section. This is the reason why different proposals in the 
line of improving the stiffness of the plates have been proposed these recent years; the first 
typology is summarized in this Section: CFT sections stiffened with bars. 
 
One of the most studied ways of improving the confinement of concrete filling in a rectangular CFT 
section is the introduction of stiffening bars in the core. The most important problem of square and 
rectangular concrete-filled tubes is the excessive deformability of the plates, which clearly limits 
the confinement effect on concrete core. In order to improve the confinement effect, several 
researchers have proposed different solutions, based on introducing some individual steel bars at 
the four edges of the section, fixed at the mid-span of the plates. 
 

 
[a]                               [b] 

Fig. II.38  Square-shaped CFT section with and without stiffening bars.  
[case a) and b) respectively] 

Sections proposed by (Hu, et al., 2003) 
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Some of the most outstanding researchers who have studied the influence of stiffening bars inside 
concrete-filled tubes, numerically and experimentally, are: (Huang, et al., 2002), (Hu, et al., 2003), 
(Liu, et al., 2002), (Nassem Baig, et al., 2006) and (Cai, et al., 2009). The first four have carried out a 
set of experimental tests on square concrete-filled tubes, with and without stiffening bars; the last 
one has done a wide analytical study about elastic deformability of the plates, assuming that the 
four edges are completely restricted against rotation. Results of all these investigations clearly 
show an important increment in axial load, as a result of the stiffening effect over the plates: 

 
Fig. II.39  Load-Strain diagrams coming from  

experimental compression tests. 
Square-shaped CFT sections, CU-070 and CU-150,  

without stiffening bars, (Hu, et al., 2003).  

 
Fig. II.40  Load-Strain diagrams coming from experimental compression tests. 

The same sections from figure II.36, but stiffened with bars: 
 SS-070-187(3)/187(4) and SS-150-050(2)/100(29), (Hu, et al., 2003). 

 
From the results presented by (Liu, et al., 2002), it is derived that the structural response of 
rectangular CFT sections with stiffening bars tends to be similar to the behavior of circular sections. 
The confinement effect on concrete through the increment of rigidity of the plates has a 
considerably influence on its maximum resistant strength, as it can be noted in figures II.39 and 
II.40. The only important disadvantage of introducing these plates is the execution process: as it has 
been exposed by (Liu, et al., 2002), welding of the bars at the inner face of the plates becomes a 
complex and slow process, especially for those sections relatively small. 
 



Chapter II 
State of the art 

 

 
63 

 
 

 

 
[a]                                                                                                  [b] 

 
    Fig. II.41 Concrete-filled tubes stiffened with plates 

[a]  Welding of the proposed stiffening bars at the edges of the tube. 
                                      [b] Load-strain curves obtained from experimental tests, with and without 

stiffening bars, (Liu, et al., 2002) 
 

Obviously, the introduction of these bars in the tube not only improves the confinement effect on 
the core, but also increases the ductility of the whole section as it can be observed in the curves of 
figure II.41.b. The softening of concrete after the peak of load is really less important in those cases 
which include the bars, and also the stiffness degradation of the material diminishes as a 
consequence. This effect can be observed in figure II.41.b: the red curve corresponds to the 
specimen SU-150, a square-shaped concrete-filled tube of 300 mm width and 2mm thick, while the 
blue curve corresponds to a circular specimen of 300 mm diameter, and also 2mm thick. These two 
tubular specimens are clearly thin-walled, with a B/t ratio over the specified limit of ퟗퟎ · 휺ퟐ 
proposed by the Eurocodes in order to avoid local buckling effects in the plates. The two other 
curves refer to other specimens stiffened with bars, welded at different heights of B/3 and B/6 
from the supporting face. The reduction of the softening period in concrete is explicit in both cases, 
being much more important in the case of SS-150 [B/6]. 
 
Other studies exist in reference to the effects of introducing stiffening bars in partially encased 
composite columns in order to enhance the confinement effect of the concrete filling. One of these 
relevant studies is the one carried out by Prickett and Driver in the University of Alberta, Canada 
(Prickett, et al., 2006). 
 
2.4.2.3 Concrete-filled tubes stiffened with plates 
 
Other new typology derived from CFT sections and much less investigated than those based on 
stiffening bars, is the one known as reticulated concrete-filled tubes: CFT sections with transversal 
stiffening plates embedded in the core. In addition, these extra plates are usually restricted to 
buckling by concrete, simultaneously. These sections have not been widely investigated, although 
they seem to provide exceptional qualities in terms of strength, but especially of ductility. The 
researchers who have carried out investigations about these typologies are the Japanese T. Yamao 
(Yamao, et al., 2002) and Wang Zhanfei (Zhanfei, et al., 2011). They propose the introduction of 
cruciform stiffening plates in the bases of circular and square concrete-filled tubes of bridge piers, 
especially those located in seismic areas. The existing investigations are numerical and 
experimental, in reference to dynamic forces by using hysteretic and monotonic tests. The 
importance of these stiffened sections, according to these two Japanese engineers, comes from the 
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important increase in ductility. They are especially thought for heavily loaded columns -really 
useful for those pillars of civil structures like bridges. 
 

 
    

 Fig. II.42  Circular cruciform sections in the base of bridge piers, with stiffening plates. 
(Zhanfei, et al., 2011) 

 
As it has been previously commented, these studies refer to cyclic loading tests of combined axial 
and lateral forces, with the aim of determining the behavior of these sections in front of seismic 
loading. The observed ductility in all cases is considerable, and the stiffness degradation of concrete 
remains almost constant during the loading-unloading process, beyond the peak of load. This 
behavior is exceptionally useful in order to lengthen the collapse of large columns subjected to 
dynamic forces, especially those of seismic areas. The minimization of damage in concrete provided 
by cruciform sections is a direct consequence of its condition of being contained in individual cells.  
Obviously, this solution is proposed for the bases of importany columns, since most important 
appear just in this point. 

 
Fig. II.43  Horizontal loading regime applied to specimens.  

(Zhanfei, et al., 2011) 
 
In the diagrams shown in figure II.44 below, it can be clearly seen how degradation of the stiffness 
of concrete beyond the peak of load in case (a) is almost inexistent, while in case (b) and especially 
in case (d), it takes a significant role. These four cases presented in figure II.41 represent four 
different solutions to improve the ductility of the connection of bridge piers to foundations, in order 
to improve the structural response in front of seismic forces. The first one (a) corresponds to the 
reticulated concrete-filled tube section [with two plates embedded in the core]; the second one (b) 
corresponds to the case of several short stiffening plates on the internal perimeter of the tube, with 
the aim of preventing the shell from local buckling; the third one (c) corresponds to a concrete-
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filled tube section, surrounded by a thicker steel tube; and the last one [case d)], the simplest case, 
refers to a concrete-filled tube without reinforcement. 

 
Fig. II.44  Curves of horizontal load depending on horizontal strain of four different 

specimens experimentally tested. 
(Zhanfei, et al., 2011) 

 
This solution based on the introduction of stiffening plates has been studied recently by (Yamao, et 
al., 2002). They have carried out an experimental investigation, based on cyclic hysteretic tests, by 
subjecting the specimens to axial and lateral forces simultaneously similar to the procedure used by 
Zhanfei. The difference between circular and rectangular sections is that the increment of ductility 
of the second group is less important than this increment in the first one. Although plates of 
rectangular tubes become stiffened by inner plates, ductility in this case is poorer compared to the 
ductility observed in circular tubes. 
 
Other possible option would be to achieve the stiffening of the plates through a set of reduced 
buttresses, welded to the inner surface of the tube, as it was proposed by (Yamao, et al., 2002) [see 
figure II.45]. This proposal has a clear influence on the degradation of stiffness of the core, as it is 
derived from diagrams of figure II.46, but it does not improve the shear response of the composite 
section. 
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Fig. II.45  Different typologies of rectangular sections with stiffening plates. 
Failure mode of a CFT section, stiffened with plates at the base. 

(Yamao, et al., 2002) 

 
Fig. II.46  Curves of horizontal load depending on strain obtained for typologies shown in 

figure II.45 
(Yamao, et al., 2002) 
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Chapter III 

ELASTIC ANALYSIS OF CONCRETE-FILLED TUBES UNDER COMPRESSION 

 

 

⨳⨳⨳ 
 
 

This Chapter pretends to present an elastic and analytical analysis of concrete-
filled tubes under compression. Obviously, its content does not constitute main 
body of this work, but it has played a necessary role to develop this research; 

thus, this is the reason why this study has been included in the text. 
 

The analysis has been separated into two different Sections, one in reference to 
circular CFT sections and the other related with square-shaped concrete-filled 

tubes. 
 

An analytical approach is presented for circular sections, according to the 
Theory of Classical Elasticity; in addition, the obtained expressions have been 
calibrated thanks to the incremental method, by updating material properties 

and strengths at each loading step. 
 

This approach is accompanied in the following Sections by the elastic buckling 
analysis of cylindrical shells and rectangular plates subjected to uniform axial 
loading. This analysis has been decisive to understand the results provided by 

the FE models later, although in most cases the plates are thick-walled.  
 

⨳⨳⨳ 
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3.1 Concrete filled tubes under compression. 
 
3.1.1 Nature of the problem 
 
The final purpose of this Chapter is to carry out an analytic and elastic approach of circular and 
rectangular-shaped concrete-filled tubes subjected to compression, according to the Classical 
Theory of Elasticity. The problem is clearly tridimensional, involving non-linear behaviors coming 
from materials and geometry; consequently, some elemental expressions have been proposed, with 
the final purpose of approximating the maximum compressive load of these sections analytically.  
 
As it can be derived from the Theory of Elasticity, the problem in rectangular and circular sections 
is clearly characterized by its axial-symmetry. This fact implies double symmetry on the two axes of 
the section, by reducing considerably the complexity of the elastic formulation. This is the reason 
why this problem can be condensed into a bi-dimensional analysis, assuming that the column is 
infinite and that both materials remain always in contact1. This assumption makes possible to carry 
out an analytic study of these typologies, starting with two of the three coordinates involved in the 
3-D problem only.  
 
As instability plays a crucial role on results in thin-walled plates, an elastic buckling approach of 
cylindrical shells and rectangular plates will be also presented in this Chapter. Needless to say that 
boundary conditions and the way of loading have also a decisive influence in the buckling response.  
 
3.1.2 “Composite section” means “symbiosis” of two materials.  
 
There is no doubt that the term “composite” is applied to sections which are formed by two or more 
different materials. This means that both components have to work together to give a unique global 
response in front of specific forces. In case of composite sections made of concrete and steel 
generally, it is evident that both materials need to be located so that their resistant qualities can be 
maximized; in concrete-filled tubes, not only their compressive strengths are  fully exploited, but 
also they can be even improved in case of concrete. This is a clear example of a mechanical 
symbiosis between two materials, appealing to the coalition between two different organisms in 
wild nature, in where both parts make profit of it. 
 
When we talk about composite sections, we assume that mechanical properties of these sections 
differ from those of concrete or steel: composite sections behave really different. The combination 
of both parts generates new mechanical properties, such as a new elastic modulus or a new 
Poisson’s coefficient. Consequently, we can say that a conjunction of two materials generates “new 
constitutive behaviors”, being considered as “new theoretical materials” (Martínez Calzón, et al., 
1978). This investigation pretends to describe the behavior of these two materials acting together, 
especially the case of concrete contained by a recipient made of steel. 
  
 
3.1.3 Influence of contact properties. 
 
In order to guarantee the advantages provided by this mechanical symbiosis, it is crucial to have a 
perfect interaction between the two materials involved. Providing that both materials have to work 
together, the responsibility of assuring a global response lies entirely on contact surfaces. This 
contact is composed by two different components: one normal component which defines whether 

                                                             
1 This aspect will be commented in further Sections. 
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concrete is in contact or not to the tube, and a tangential component which defines the value of 
friction forces of the interface. 
   
With the aim of proposing a simplified and analytic resolution to the problem, it is necessary to 
neglect the possibility of frictional sliding, as well as any initial gap between components. This way, 
both materials are supposed as working together from the beginning, independently of the method 
used to guarantee this contact -thanks to simple adherence or by using physical connectors. 
 
3.1.4 Influence of the way of loading. 
 
Other decisive factor on the compressive response of composite sections -especially in concrete-
filled tubes- is the way of loading, going hand in hand with the capacity of transferring load through 
the interface, as it has been widely commented in Section 2.3.3. 

 
It is radically different to load only the concrete of the core [case a) of Fig. II.21] than loading both 
materials simultaneously [case b) of figure II.21] or loading only the steel tube [case c) of Fig. 
III.21]. In the second and the third cases, contact properties of the interface become crucial in order 
to guarantee the transference of tangential stresses, while in the first case this contact is relatively 
less important. Loading only the concrete core [a] guarantees a correct bond between concrete and 
steel from the beginning, owing to lateral expansion of the first. This is not so evident in the second 
case [b], where both materials are loaded simultaneously by resisting different percentages of axial 
load; this is basically the reason why tangential stresses of the interface are really important under 
this assumption. Finally, in case [c] the transference of load becomes even more decisive, since the 
unique material which is loaded is the steel. In that case, the tube expands laterally according to its 
Poisson’s ratio, and the core is loaded only if connectors are finally disposed. 
 
3.1.5 Influence of boundary conditions. 
 
In the list of starting conditions to carry out this analysis, we can find also boundary conditions, 
obviously. As it has been commented in Section 4.1.1, the proposed typologies accomplish the 
condition of axial-symmetry; this condition allows solving the problem through a bi-dimensional 
“slice” of the column, capable of deforming on the radial axis but completely restricted against 
displacement and rotation on the symmetry plane. In conclusion, far from considering the two 
loading faces completely embedded, this analysis proposes the study of a theoretical slice of the 
section, as a part of a theoretical infinite column. 
 
3.1.6 Influence of geometry. 
 
The behavior of circular CFT sections is really different from the behavior of those square-shaped, 
as it is widely explained in Chapter VI of this text. Assuming that a bi-dimensional elastic 
simplification is enough accurate for the case of circular sections, the irregular distribution of stress 
in a square-shaped cross-section implies a much more complex analysis. This is basically the reason 
why the analytical approach is presented for circular CFT sections only. 
 
3.1.7 Influence of the coordinate system. 
 
With the final objective of reducing the complexity of the problem, it is convenient to work with a 
specific coordinate system which can work efficiently with the needs of the process. For square and 
rectangular sections, it is obvious that the coordinate system used is the Cartesian, with the three 
coordinates 푥, 푦, 푧. In contrast, for those geometries generated by a revolution axis, the most 
suitable coordinate system is the Cylindrical [Fig. III.1], where the three Cartesian coordinates, 
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푥, 푦, 푧, are replaced by 푟 [radial], 휃 [circumferential] and 푧 [vertical]. This way, all circular stresses 
and strains can be expressed in a simpler way. Then, the cylindrical coordinate system has been 
used only for circular CFT sections, while the Cartesian system has been used for the rest. 

 
Fig. III.1  Cylindrical coordinate system. 

A cylindrical coordinate system has been used for circular-shaped CFT sections. 
 

3.2 Elastic analysis of circular concrete-filled tubes under compression. 
   
3.2.1 Description of behavior. 
 
In circular concrete-filled tube sections, the transference of load from one component to the other 
during the loading process plays a decisive role in the comprehension of their structural 
compressive behavior. As it has been commented in other Chapters before, the behavior of each 
material forming the composite section is considerably different: on the one hand, steel behaves 
completely linear until the 80% of its yield limit stress, whereas concrete shows basically a non-
linear response, with the initiation of its plastic hardening period at a value of the deformation of 
the 50% of its characteristic compressive strength. 
 
3.2.2 Approach to the problem [according to Theory of Classical Elasticity]. 
 
According to the criteria commented in the previous Section, three analytical approaches have been 
proposed in this Chapter, regarding the loading cases [a], [b] and [c] of figure II.21 presented 
before. In all cases, friction forces have not been considered: the first case is simple, as it considers 
that concrete is the only loaded component, while steel is circumferentially stressed. Contrarily, the 
second case is much more complex, since it requires considering the compatibility of deformations, 
being both materials simultaneously loaded. And in the third case, the steel is the only loaded 
component. 
 
For the three different hypotheses of loading, two different assumptions can be done: the first 
considers that no friction forces and adherence exist between the steel tube and the core. Thus, 
perfect longitudinal sliding of components is allowed, but without no possibility of transferring 
load. Under the second assumption, contact in the interface between both materials is considered 
perfect, so that they work together with full compatibility of deformations, independently of how 
this contact is achieved. 
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3.2.2.1 Elastic approach to the squash load in case [a]: to load the concrete core only.  
 
In case [a] of loading circular CFT sections [see Fig. III.2], where the only loaded component is 
concrete, a simplified bi-dimensional analysis in the cross-sectional plane is possible thanks to the 
axial-symmetry of the problem and to the uniformity of lateral pressure provided by the tube. This 
analysis can be easily done only under the assumption that friction forces do not act on the 
interface and that both materials are perfectly in contact. Otherwise, both components would be 
quickly loaded, and the analysis would become really more complex. 
 

 
Fig. III.2  Case [a] of loading, only concrete core is loaded 

No friction forces on the interface have been considered. 
 
Under this loading assumption, and considering no friction forces on the interface, we can say that 
the horizontal component of lateral pressure is equal to the maximum circumferential tensile force, 
resisted by the tube [equation (3.1)]. Contrarily, vertical components of this pressure are 
compensated themselves thanks to the effect of circular geometry. This way, concrete expands 
laterally owing to dilatancy, providing to the tube a tensile circumferential stress state. According 
to (Susantha, et al., 2000), the apparent Poisson ratio [휈′ ] of damaged concrete at the peak of load 
can be obtained by using the following expressions (3.1) and (3.2) [both expressions have been 
obtained experimentally]: 
 

휈 = 0.2312 + 0.3582 · 휈′ − 0.1524 ·
푓
푓 + 4.843 · 휈′ ·

푓
푓 − 9.169 ·

푓
푓  

 

(3.1) 

휈′ = 0.881 · 10 · (퐷 푡⁄ ) − 2.58 · 10 · (퐷 푡⁄ ) + 1.953 · 10 · (퐷 푡⁄ ) + 0.4011 (3.2) 
 
Thus, and according to figure III.3, lateral pressure of the core to the tube is expressed by:   
 

푓 = 훽 ·
2푡

퐷 − 2푡 · 푓  (3.3) 

 
Where 훽 is defined as the difference between the Poisson’s ratio of concrete and steel: 
 

훽 = 휈 − 휈  (3.4) 
 
being: 

푓  Lateral pressure on concrete core. 
휈  Apparent Poisson’s ratio of concrete [normally between 0.80 and 1.00] 



Chapter III 
Elastic Analysis of Concrete Filled Tubes under Compression 

 
 

 73 

휈  Plastic Poisson’s ratio of steel [0.50] 
퐷 Outer Diameter 
푡 Thickness of the steel tube. 
훽 Coefficient of lateral expansion, (휈 − 휈 ). 

 
This assumption can only be done, assuming that pressure is uniformly distributed over the 
perimeter of the core as a consequence of the circular geometry: 
 

 
 

Fig. III.3  Pressure is uniformly distributed on concrete core. 
The uniformity and the axial-symmetry of the problem make this 2-D analysis possible. 

 
In case of CFT sections with large D/t ratios [formed by relatively thin plates] this approach is not 
valid, as local buckling of the tube occurs. Knowing the value of the maximum lateral pressure on 
the core, the increment of compressive strength experimented by concrete can be calculated 
through the expression (2.19), proposed by Richart (Richart, et al., 1928). Then, the maximum 
compressive strength of concrete can be obtained through: 
 

푓 = 푓 +푚 · 푓  (2.19) 
 
being m a scalar coefficient ranging from 4.0 to 4.1, and defined experimentally by Richart. 
 
In this case, concrete of the core is triaxially compressed, while the steel of the tube becomes only 
circumferentially tensioned2, so that the axial response of the first could be calculated through the 
previous expression; the axial response of steel is neglected, since no friction forces are considered. 
Then, the squash load of the composite section would be: 
 

푁 , = 퐴 · 푓  (3.5) 
 

푁 , = 퐴 · 푓 + 푚 · 훽 ·
2푡

퐷 − 2푡 · 푓  (3.6) 

 
In case of disposing connectors on the interface or considering friction forces between components 
instead, the previous analytical approach would not be valid since the steel would resist also part of 
the axial load from the beginning. In case of assuming a perfect bond between components, it would 
be necessary to propose another more complex analysis, closer to case [b] of loading, as it has been 
commented before. 
 
 
 
 
 
                                                             
2 Thanks to not considering friction forces between components. 
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3.2.2.2 Elastic approach to the squash load in case [b]: to load both components together. 
 
By analyzing the situation of loading the two components simultaneously, it is also convenient to 
consider a perfect bond on the interface; however, a perfect compatibility of vertical deformations 
must be also assumed, contrarily to the case commented in the previous Section. Nevertheless, all 
the expressions proposed in this approach are obtained so that sliding or friction forces are not 
considered; otherwise, few differences on results would be detected. 

 
Fig. III.4  Case [b] of loading, both components loaded simultaneously. 

A perfect bond between components is assumed. 
 

The proposed approach starts with the assumption of two cylinders, one solid [concrete] and the 
other hollow, but thick-walled [steel tube]; the two cylinders are axially loaded as it is shown in Fig. 
III.4. They are not subjected to radial pressures, and temperature is considered constant or without 
significant influence on the system. Assuming that the initial Poisson’s ratio is different for each 
component, contact pressure quickly appears on the interface as a consequence of the existing 
difference in radial and circumferential strains of both materials. Therefore, the concrete core 
becomes subjected to a triaxial stress state: apart from vertical stress, radial and circumferential 
components also appear, owing to its perfect unity with the tube. The criterion for determining if a 
stress state is triaxial or not is based on the proportion between components: if radial and 
circumferential stresses are infinitely small compared with those vertical, it deals with a uniaxial 
case. 
 
The height of both cylinders [퐿 ,퐿 ] is known and at the same time, equivalent. They are axially 
loaded, considering that heights and strains are completely identical. This way, the axial strain of 
both materials is equivalent, by following the principle of compatibility of deformations: 
  

휀 , = 휀 ,  (3.7) 
 
In a triaxial stress state and according to the Hooke’s Law, axial strains of the two cylinders take the 
following form: 
 

휀 , =
휎 , − 휈 휎 , + 휎 ,

퐸  
(3.8) 

 
replacing the particularized expression (3.8) in the equation (3.7): 

휎 , − 휈 휎 , {휌} + 휎 , {휌}
퐸 =

휎 , − 휈 휎 , {휌} + 휎 , {휌}
퐸  

(3.9) 
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where: 

휎 , {휌}  Radial stress in the 휌 coordinate 
휎 , {휌}  Circumferential stress in the 휌 coordinate 

 
From Classical Theory of Elasticity3, it can be derived that radial and circumferential stresses in a 
cylinder take the following form [according to the Lamé equations]: 
 

휎 {휌} = 퐴 − 퐵 ·
1
휌           and           휎 {휌} = 퐴 + 퐵 ·

1
휌            (3.10) 

 
being the coefficients A and B: 

퐴 =
푝 · 푟 − 푝 · 푅

(푅 − 푟 )           and           퐵 =
(푝 − 푝 ) · 푟 · 푅

(푅 − 푟 )                     
(3.11) 

 

푝  Inner pressure of the cylinder 
푝   Outer pressure of the cylinder 
푅 Outer radius 
푟  Inner radius 

 
and the sum of radial and circumferential stresses is independent of the radius: 
 

휎 {휌} + 휎 {휌} = 2 · 퐴 (3.12) 
 
Since stresses are independent of the radius, the expression shown before is valid for any value of 
the radius {휌}. Assuming that during the construction process the system is not subjected to 
internal or external pressures, a new equation can be obtained through introducing expressions 
(3.11) and (3.12) in equation (3.9),:  
 

휎 ,

퐸 +
2 · 휈 · 푝 · 푅
퐸 · (푅 ) =

휎 ,

퐸 −
2 · 휈 · 푝 푟
퐸 · (푅 − 푟 ) 

(3.13) 

where: 
푝  Contact pressure. 

In equation (3.13) there are three unknown values: 휎 , , 휎 ,  and  푝 . This is the reason why it is 
necessary to look for two more equations, in order to convert this undetermined system into 
determined. The second equation can be obtained from the static equilibrium, by considering that 
axial stresses are distributed uniformly in the cross section:  
 

퐹 = 휋 · 휎 , · 푅 + 휋 · 휎 , · (푅 − 푟 ) (3.14) 

 
using this last equation, two different expressions can be obtained: 

                                                             
3 (Timoshenko, et al., 1961) 
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휎 , =
퐹 · 퐸 − 2 · 휋 · 푝 · 휈 · 푅 · 퐸 · 퐴퐴 + 휈 · 푟 · 퐸

(퐴 · 퐸 + 퐴 · 퐸 )  

(3.15) 

 

휎 , =
퐹 · 퐸 − 2 · 휋 · 푝 · 휈 · 푅 · 퐸 + 휈 · 푟 · 퐸 · 퐴퐴

(퐴 · 퐸 + 퐴 · 퐸 )  

(3.16) 

 
Up to now, axial stresses have been obtained depending on one unknown variable only, 푝  [contact 
pressure], since the other parameters are already known. This is the reason why to obtain a third 
equation will be necessary to solve the problem. This third equation will be obtained by using the 
assumption that contact before deformation persists -in the ideal system to which we are referring. 
While the gap between both materials is zero in the beginning,(R = r ), after deformation we 
have: 

Δ푟 = Δ푅  (3.17) 
 

Δ푟   Increment of inner radius, steel tube. 
Δ푅  Increment of  outer radius, concrete core. 

 
In case of losing the contact bond between the two surfaces, contact pressure would vanish and the 
triaxial stress state would be converted into a uniaxial state.  
According to Partaukas (Partaukas, et al., 2007): 
 

Δ휌 = 휌 · 휀 {휌} (3.18) 
 

휌 Radius 
Δ휌 Increase of radius 
휀 {휌} Circumferential strain in the coordinate 휌  

 

 

 

Fig. III.5 Deformational scheme of a loaded hollow cylinder. 
In the presented analysis, inner and outer pressures have been neglected. 

From the argument shown before: 
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휀 =
퐴 퐵 − 퐴퐵

퐴퐵 =
휌 · 푑Θ − ρ · dΘ

휌 · 푑Θ =
Δ휌
휌  

(3.19) 

 
Then, by replacing the value 휌 = 푅  and 휌 = 푟  for each case in the equation (3.17): 

Δ푅 = 푅 · 휀 , {푅 }      and      Δ푟 = 푟 · 휀 , {푟 }        (3.20) 
 
being  휀 , {푅 }   and   휀 , {푟 }  the circumferential strains in the coordinates 푅  and  푟 : 
 

푟 · 휀 , {푟 }−푅 · 휀 , {푅 } = 0 (3.21) 
 
Then, by replacing the circumferential strains by their specific values, and according to the 
tridimensional Hooke’s law, we can obtain: 
 

푟
퐸 · 휎 , {푟 }− 휈 · 휎 , {푟 } + 휎 , −

푅
퐸 · 휎 , {푅 }− 휈 · 휎 , {푅 } + 휎 , = 0 

(3.22) 

 
And both radial and circumferential stresses in the two cylinders can be defined by using the Lamé 
equations (3.10): 
 

휎 , {푅 } = −푝  (3.23) 

 

휎 , {푅 } = −푝  (3.24) 

 

휎 , {푟 } =
−푝 · 푟 · 푅

(푅 − 푟 ) · 푟 −
푝 · 푟
푅 − 푟 = −푝  

(3.25) 

 

휎 , {푟 } =
푝 · 푟 · 푅

(푅 − 푟 ) · 푟 −
푝 · 푟
푅 − 푟 = 푝 ·

푅 + 푟
푅 − 푟  

(3.26) 

 
and introducing these expressions in equation (3.22): 
 

푟
퐸 ·

푝 · (푅 + 푟 )
푅 − 푟 + 휈 · 푝 − 휈 · 휎 , −

푅
퐸 · −푝 + 휈 · 푝 − 휈 · 휎 , = 0 

(3.27) 

 
Finally, a system composed by 3 equations and 3 unknown variables can be obtained: 
 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧휎 , =

퐹 · 퐸
휋 · (푏 + 푏 )−

2 · 푝 · 퐸 · 푏
푏 + 푏 · 푑

휎 , =
퐹 · 퐸

휋 · (푏 + 푏 ) +
2 · 푝 · 퐸 · 푏

푏 + 푏 · 푑

푝 =
−푎 · 휎 , + 푎 · 휎 ,

푐 + 푐 ⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 

    (3.28) 
 
 

(3.29) 
 
 

(3.30) 
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Where parameters a, b, c and d are defined by: 
 

푎 =
휈 · 푅
퐸      ;       푎 =

휈 · 푟
퐸     ;       푏 = 퐸 · (푅 − 푟 ) 

(3.31) 
(3.32) 
(3.33) 

 

푐 , =
푅 + 푟
푏 −

휈
퐸     ;     푐 = 푐 , · 푅     ;      푐 = 푐 , · 푟     ;    푑 =

휈 · 푅
푏 +

휈 · 푟
푏  

(3.34) 
(3.35) 
(3.36) 

 
Finally, the previous system can be expressed depending on the force F and the set of variables 
shown before, by replacing the value of 푝 : 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧휎 , =

퐹 · 퐸 · [2 · 푎 · 퐸 · 푑 − (푐 + 푐 )]
2 · 휋 · 푑 · (푎 · 퐸 · 푏 + 푎 · 퐸 · 푏 )− 휋 · (푏 + 푏 ) · (푐 + 푐 )

휎 , =
퐹 · 퐸 · [2 · 푎 · 퐸 · 푑 − (푐 + 푐 )]

2 · 휋 · 푑 · (푎 · 퐸 · 푏 + 푎 · 퐸 · 푏 )− 휋 · (푏 + 푏 ) · (푐 + 푐 )

푝 =
퐹 · [퐸 · 푎 − 퐸 · 푎 ]

2 · 휋 · 푑 · (푎 · 퐸 · 푏 + 푎 · 퐸 · 푏 )− 휋 · (푏 + 푏 ) · (푐 + 푐 ) ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

 
(3.37) 

 
 

(3.38) 
 
 

(3.39) 
 

 
The equations of vertical stress in both components [휎 , ,휎 , ] and the equation of contact pressure, 
푝 , have been expressed depending on a set of different known parameters. It is important to point 
out that these expressions are strictly based on an elastic formulation, so that the application of 
these equations for concrete implies accepting an elastic approach for a problem, essentially plastic.  
 
Finally, the expressions of circumferential and radial stresses can be also easily obtained, by 
replacing the value of 푝  in equations (3.23) to (3.26): 
 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧휎 , =

−퐹 · [퐸 · 푎 − 퐸 · 푎 ]
2 · 휋 · 푑 · (푎 · 퐸 · 푏 + 푎 · 퐸 · 푏 )− 휋 · (푏 + 푏 ) · (푐 + 푐 )

휎 , =
−퐹 · [퐸 · 푎 − 퐸 · 푎 ]

2 · 휋 · 푑 · (푎 · 퐸 · 푏 + 푎 · 퐸 · 푏 )− 휋 · (푏 + 푏 ) · (푐 + 푐 )

휎 , =
−퐹 · [퐸 · 푎 − 퐸 · 푎 ]

2 · 휋 · 푑 · (푎 · 퐸 · 푏 + 푎 · 퐸 · 푏 )− 휋 · (푏 + 푏 ) · (푐 + 푐 )

휎 , =
퐹 · 푘 · [퐸 · 푎 − 퐸 · 푎 ]

2 · 휋 · 푑 · (푎 · 퐸 · 푏 + 푎 · 퐸 · 푏 )− 휋 · (푏 + 푏 ) · (푐 + 푐 )⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 

 
(3.40) 

 
 

(3.41) 
 
 

(3.42) 
 
 

(3.43) 
 
 

 
being 푘  a proportional ratio between the radiuses of the steel tube: 

푘 =
(푅 + 푟 )
(푅 − 푟 ) 

(3.44) 

 
푟 Inner radius. 
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Finally, and with the objective of calibrating the obtained expressions, the unknown variables can 
be particularized for solid circular concrete-filled tubes, assuming that both components are 
initially in contact: 

푟 = 푅  (3.45) 
 

푟 = 0 (3.46) 
 

푡 = 푅 − 푅  (3.47) 
 

This way, the maximum compressive load of a concrete-filled tube by supposing both components 
simultaneously loaded and with no sliding forces on the interface, could be calculated through the 
expressions (3.37) to (3.38), in reference to the vertical stress of components. 

3.2.2.3 Elastic approach to the squash load in case [c]: to load the steel tube only.  
 
By assuming the last case [c] and also neglecting friction forces on the interface, two options are 
possible. First possibility is to have both components initially together, without connectors on the 
interface: under this assumption, each material deforms separately [more steel that concrete] and 
confinement effect never occurs. The second possibility is to suppose a perfect bond between the 
two components, without sliding on the interface, so that both materials work absolutely together. 

 
Fig. III.6 Case [c] of loading, only the steel tube is loaded 

A perfect bond between the two components is assumed. 
 
By considering the first assumption, only the steel tube is loaded with no confining pressure or load 
transference to the core; steel expands according to its Poisson’s ratio [0.289], while concrete 
remains completely unloaded. This way, the contact between the two components vanishes from 
the beginning. Thus, the maximum axial load of the section would be the plastic compressive 
capacity of the steel tube only, as it works alone. 
 
Otherwise, under the second assumption, both materials are simultaneously loaded thanks to the 
perfect interaction between them, so that the composite section behaves similar to the case [b], 
where both materials are loaded together from the beginning. Thus, the maximum compressive 
load would be obtained by following the same approach. 
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Different would be the hypothesis of assuming a friction coefficient and a certain capacity of sliding 
between components. Then, the elastic analysis would become really more complex, and the FE 
method would be a necessary alternative.    
 
3.2.3 Practical application of the incremental method to verify the analytical method. 
 
For calibration purpose, an incremental iterative manual analysis has been carried out for a specific 
CFT section in order to validate the expressions proposed before. This way, although concrete 
clearly has a plastic behavior, an elastic manual approach is presented below by updating its 
mechanical properties depending on hydrostatic pressure and strain. 
 
With the objective of describing the axial response of CFT sections analytically, and to calibrate the 
expressions of Section 3.2.2.2, experimental results of specimen CC4-A-44 have been used. This 
specimen is a circular-shaped CFT section with 148.9 mm diameter and 2.96 mm wall-thickness. 
Experimental results have been compared to the analytical ones, coming from an incremental 
elastic procedure. Material nonlinearities and effects of confinement on concrete core have been 
updated at each load increment in order to obtain the most accurate results as possible, close to 
those results obtained experimentally. 
 

Table III.1. Material and geometrical features of CC4-A-4 

Section  D* t* 풇풄** 풇풚** 

 
CC4-A-4 148.9 2.90 40.5 283 

                        All values expressed in mm* and N/mm2**. 

It is important to point out that all the expressions proposed before come from the assumption that 
both components are jointly bound, and that sliding does not occur in the interface as it has been 
mentioned in several occasions before: 
 

휀 = 휀 , = 휀 ,  (3.48) 
 
The constitutive laws for materials used in this analysis correspond to those simplified models 
explained in Chapter II; the behavior of the triaxially compressed concrete has been replaced by a 
simple pressure-sensitive curve (2.16) proposed by Popovics (Popovics, 1973), and mentioned in 
Section 2.2.4. Contrarily, for the behavior of steel, the uniaxial stress-strain curve together with the 
evolution of the Poisson’s ratio and the Young’s modulus in the elastic-plastic range have been used 
[expressions (2.3) and (2.4)] proposed by Kuranovas (Kuranovas, et al., 2009). The behavior of 
steel has been considered elastic perfectly-plastic: until the 80% of its yield limit stress, the 
material is governed by a linear function from which point it changes to parabolic up to yielding 
[expression (2.4)]. To simulate the plastic flow of steel, the von Mises yield criterion has been 
implemented, according to equation (2.9). 
 
The value of 푓  corresponding to the maximum confined compressive strength of concrete in 
expression (2.19) has been modified at each load step, depending on lateral pressure provided by 
the tube and according to the Poisson’s ratio of concrete, which is given by the expression (3.49) 
proposed by Susantha and Ge (Susantha, et al., 2000): 
 

휈′ = 0.881 · 10 · (퐷 푡⁄ ) − 2.58 · 10 · (퐷 푡⁄ ) + 1.953 · 10 · (퐷 푡⁄ ) + 0.4011 (3.49) 
 
                                                             
4 Results presented by (Susantha, et al., 2000). 
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With the objective of solving a nonlinear problem through an incremental elastic approach, the load 
has been applied in 40 different partial steps. These steps have been introduced as vertical strain 
increments in order to control the tensional state of the components. The increments have been 
considered larger at the beginning [as it corresponds to a linear period] and smaller later, in order 
to be as much accurate as possible [ranging from 0.00022 to 0.000055]. The objective is to update 
the mechanical properties of materials as often as possible to get a realistic curve. In the table III.2, 
the results of this incremental analysis are shown by different steps. 
 
To obtain the parameter F [Axial Force] in equations (3.37) to (3.43), the following expression has 
been calculated by updating also the values of 퐸 , 퐸  and 휀  at each different load step: 
 

퐹 = 퐴 · 휀 · 퐸 + 퐴 · 휀 · 퐸  (3.50) 
 
Table III.2. Results obtained from the implementation of the incremental method. 

STEP 휺풊 pc0 Δpc pc Δσz,c σz,c Δσz,a σz,a Δσθ,a σθ,a σmises 
Eq.   

 
 [3.37]   [3.35]    [3.36]     [3.41]   

 1 0.000220 0.00 0.21 0.21 6.57 6.57 44.90 44.90 -5.51 -5.51 42.41 
2 0.000440 0.21 0.21 0.43 6.47 13.04 44.68 89.58 -5.49 -11.00 84.61 
3 0.000660 0.21 0.21 0.64 6.18 19.22 43.87 133.44 -5.39 -16.39 126.05 
4 0.000880 0.21 -0.19 -0.19 5.67 24.89 40.15 173.60 4.80 4.80 176.05 
5 0.000990 -0.19 -0.19 -0.37 2.20 27.09 18.15 191.75 4.76 9.56 196.70 
6 0.001045 -0.19 -0.11 -0.48 0.85 27.94 7.78 199.53 2.81 12.37 205.99 
7 0.001100 -0.11 -0.13 -0.61 0.93 28.88 7.15 206.68 3.28 15.65 214.93 
8 0.001155 -0.13 -0.15 -0.76 0.86 29.74 7.02 213.70 3.97 19.62 224.15 
9 0.001210 -0.15 -0.18 -0.94 0.79 30.53 6.62 220.33 4.50 24.11 233.32 

10 0.001265 -0.18 -0.15 -1.09 0.75 31.27 5.24 225.56 3.81 27.92 240.74 
11 0.001320 -0.15 -0.13 -1.22 0.76 32.03 4.33 229.89 3.33 31.25 247.00 
12 0.001375 -0.13 -0.12 -1.33 0.75 32.79 3.61 233.50 2.97 34.22 252.35 
13 0.001430 -0.12 -0.10 -1.44 0.74 33.53 2.97 236.47 2.65 36.87 256.90 
14 0.001485 -0.10 -0.09 -1.53 0.73 34.26 2.43 238.91 2.37 39.25 260.75 
15 0.001540 -0.09 -0.08 -1.61 0.71 34.97 1.99 240.89 2.13 41.38 264.02 
16 0.001595 -0.08 -0.07 -1.69 0.69 35.67 1.61 242.51 1.92 43.30 266.80 
17 0.001650 -0.07 -0.07 -1.76 0.68 36.34 1.31 243.82 1.74 45.04 269.18 
18 0.001705 -0.07 -0.06 -1.82 0.66 37.00 1.06 244.88 1.58 46.62 271.21 
19 0.001760 -0.06 -0.06 -1.87 0.64 37.64 0.86 245.73 1.45 48.07 272.96 
20 0.001815 -0.06 -0.05 -1.93 0.62 38.25 0.69 246.42 1.33 49.39 274.47 
21 0.001870 -0.05 -0.05 -1.97 0.60 38.85 0.55 246.98 1.22 50.61 275.79 
22 0.001925 -0.05 -0.04 -2.02 0.58 39.42 0.44 247.42 1.13 51.74 276.94 
23 0.001980 -0.04 -0.04 -2.06 0.56 39.98 0.35 247.77 1.05 52.79 277.95 
24 0.002035 -0.04 -0.04 -2.10 0.54 40.51 0.28 248.05 0.98 53.76 278.84 
25 0.002090 -0.04 -0.04 -2.13 0.52 41.03 0.21 248.26 0.91 54.68 279.64 
26 0.002145 -0.04 -0.03 -2.16 0.50 41.53 0.16 248.42 0.86 55.54 280.35 
27 0.002200 -0.03 -0.03 -2.20 0.48 42.01 0.12 248.55 0.82 56.36 281.00 
28 0.002255 -0.03 -0.03 -2.23 0.46 42.48 0.09 248.63 0.79 57.14 281.59 
29 0.002310 -0.03 -0.03 -2.26 0.45 42.92 0.06 248.69 0.77 57.91 282.14 
30 0.002365 -0.03 -0.03 -2.29 0.43 43.36 0.03 248.72 0.78 58.70 282.68 
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31 0.002420 -0.03 -0.04 -2.33 0.42 43.77 0.01 248.74 0.98 59.68 283.33 
32 0.002475 -0.04 -0.03 -2.35 0.41 44.18 -0.01 248.72 0.70 60.37 283.77 
33 0.002530 -0.03 -0.02 -2.38 0.39 44.57 -0.02 248.70 0.58 60.95 284.12 
34 0.002585 -0.02 -0.02 -2.40 0.37 44.94 -0.03 248.67 0.50 61.45 284.41 
35 0.002640 -0.02 -0.02 -2.41 0.35 45.30 -0.04 248.63 0.43 61.88 284.66 
36 0.002695 -0.02 -0.01 -2.43 0.34 45.64 -0.04 248.58 0.38 62.27 284.87 
37 0.002750 -0.01 -0.01 -2.44 0.32 45.96 -0.05 248.54 0.34 62.61 285.05 
38 0.002805 -0.01 -0.01 -2.45 0.31 46.27 -0.05 248.49 0.31 62.92 285.20 
39 0.002860 -0.01 -0.01 -2.46 0.30 46.57 -0.05 248.44 0.28 63.20 285.34 
40 0.002915 -0.01 -0.01 -2.47 0.28 46.85 -0.05 248.40 0.25 63.45 285.46 

 
The values which are in red correspond to those steps where the contact pressure is compressive, 
so that confinement effect over the core can occur. Being: 

p   Contact pressure 
휀 Axial strain 

훥휎 ,  Increment of vertical stress in concrete. This value is obtained from equation (3.35) 
휎 ,  Vertical stress in concrete.  
훥휎 ,  Increment of vertical stress in steel. This value is obtained from equation (3.36) 
휎 ,  Vertical stress in steel. This value is obtained from equation (3.35) 
훥휎 ,  Increment of circumferential stress in steel. This value is obtained from equation (3.41) 
휎 ,  Circumferential stress in steel 

 
From the analytical study presented before, the following stress-strain curve [Fig. III.7] is obtained 
up to the yield limit stress of 283 MPa for steel [specimen CC4-A-4]. Note the difference in the 
sensibility of the steps as strain increases, in order to be capable of describing the nonlinear 
compressive response. Nonlinearity appears at approximately about the 70% of the maximum yield 
stress, from which point the Poisson’s ratio of concrete grows and the proportional modulus 
decreases. The final value of the yield limit stress [equivalent stress] of steel is slightly higher than 
the maximum known value, 283 MPa, mainly owing to the impossibility of assuming a proportional 
modulus for steel completely zero [it has been considered a really small value instead].  

 

Fig. III.7  Evolution of the equivalent stress in the steel tube. 
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Steps are reduced when plasticity takes place. 
 
In the diagram of figure III.8, the evolution of the Poisson’s ratio adopted for both materials in the 
analysis is shown, although in case of concrete this value is known as the apparent Poisson’s ratio. 
Before stresses of approximately the 50% of the maximum compressive stress of concrete, the 
material expands transversally according to its elastic Poisson’s ratio [0.18-0.20]. Beyond this 
point, the volumetric expansion grows even more, by increasing this ratio and reaching values 
higher than 0.50, even 0.80-1.00 of apparent Poisson’s ratio. Volumetric expansion of concrete is 
caused by internal micro-cracking of the cement paste [see Chapter IV of this text and also 
literature as (Susantha, et al., 2000)]. 
 
During this process, steel expands laterally by following its elastic Poisson’s ratio [0.289] until a 
value of 0.5 during plasticity [blue curve]. Since lateral deformation of concrete is more significant 
than that of steel, the first becomes triaxially compressed by the tube [red curve]. 

 

Fig. III.8  Evolution of Poisson’s ratio considered for both materials. 
(Apparent Poisson’s ratio in concrete) 

 
As a consequence of the lateral expansion of concrete, the steel tube becomes biaxially stressed. 
The tube is circumferentially tensioned and axially compressed simultaneously; this fact reduces its 
maximum vertical strength owing to the von Mises yield criterion [see figure III.9]. The appearance 
of circumferential stresses in the tube wall-thickness coincides with the initiation of compressive 
stresses [푝 < 0] in the interface [step 5 of Table III.2]. The reason, why before the 5th step the 
pressure in the interface is positive, is that in the first stages of loading the tube expands more than 
concrete of the core. At this stage, the latter becomes circumferentially tensioned.  
 
It is important to point out that the maximum vertical stress of steel does not coincide with its yield 
limit yield stress [stopping approximately at the 85% of its value], owing to the biaxial state of the 
tube [휎1 < 0,휎2 > 0]. Instead of considering some circumferential compressive stresses in steel 
during the first stage of loading, owing that steel deforms laterally more than concrete, no chemical 
or physical adherence has been assumed in the interface. 
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In figure III.10, the confined stress-strain curve considered in the analysis for concrete is 
represented, coming from the postulates of Richart. A triaxial stress state on concrete implies an 
improvement of its maximum compressive strength, according to the well-known expression 
proposed by Richart (Richart, et al., 1928) and mentioned before. Up to the 50% of its maximum 
compressive stress, the material can be considered almost linear and elastic; from that point, the 
proportional modulus decreases progressively and the material behaves completely plastic. 

                

Fig. III.9  Circumferential and vertical stresses obtained in steel. 
Curves obtained from the incremental analysis, updating the mechanical parameters. 

          

Fig. III.10  Stress-strain curves used for plain and confined concrete of 40 MPa strength. 
The curve for confined concrete is pressure-dependant, according to (Richart, et al., 1928). 
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The maximum compressive confined strength reached by concrete must be determined by the 
formula of Richart, by using the maximum lateral pressure obtained on the core. Main part of the 
effective confinement effect on concrete core takes place when steel is already yielding, and this 
fact implies considering a proportional modulus for steel of zero during this period; since this 
assumption is not possible in an incremental analysis, the stepping process has been stopped at the 
40th. Lateral pressure at this step tends to 2.50 MPa derived from the analysis, being each 
increment zero or almost zero. Thus, the strength of confined concrete would go on enhancing up to 
its maximum value  푓 , while the von Mises stress of steel would remain constant. Therefore, to 
determine the maximum vertical strength reached by concrete in the incremental analysis, the 
formula provided by Richart (Richart, et al., 1928) has been used [as a consequence, vertical stress 
of concrete will reach a value of 50.60 MPa by keeping the steel tube yielding, instead of the value 
46.85 shown in the 40th step of Table III.2].  
 
Finally, the results obtained from this incremental analysis are summarized below:  
 

Table III.3 Comparison of the obtained results.  

Method Axial 
load* 

풇풛,풄풄** 풇풛,풚** ϕ 

 
Incremental  1080.0 50.60 243.0 1.25 Albert Albareda, 2012 
Experimental 1147.7 53.46 226.4 1.32 (Susantha, et al., 2000) 

                        Values expressed in kN* and  N/mm2**. 

Being: 
푓 ,  Maximum confined vertical stress of concrete 
푓 ,  Maximum vertical stress of steel 
ϕ Coefficient of confinement, 푓 /푓  

 
 
The maximum deviation observed between the value of axial load obtained by the incremental 
method and that coming from the experimental test is about 5.89 %. The maximum analytical 
compressive strength of confined concrete [푓 , ] is slightly lower than the experimental one; 
consequently, the circumferential stress of the tube is higher. According to the von Mises yield 
criterion for steel, as higher is 휎2 lower is 휎1 [circumferential and vertical stresses, respectively]. 
This deviation can be justified by the approximate apparent Poisson’s ratio of concrete considered 
in the analysis: this value has been determined experimentally from literature, and it has a crucial 
influence of the final squash load of the specimen. 
 
In the following figure III.11, it is shown the comparison between the load-strain curve obtained 
experimentally, and the curve coming from the application of the incremental method. The analysis 
has been done until reaching the yielding of steel [this means a proportional modulus almost 
horizontal]. The truth is that a Young modulus equal to zero is impossible in a manual approach 
through an elastic formulation. This is mainly the reason why the analysis has been stopped once 
the curve has reached a significant flatness. Main divergences between the experimental and the 
analytical curves come probably from the secant modules considered for concrete in the manual 
approach. 
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Fig. III.11  Load-strain curve obtained analytically. 
This curve belongs to the specimen CC4-A-4, tested by (Susantha, et al., 2000) 

 
 
3.2.4 Influence of local buckling in circular CFT sections. 

Although most part of the specimens analyzed in this investigation do not show local instability 
problems owing to evident reasons of practical design, an accurate description of this phenomenon 
is crucial in order to understand and analyze the results obtained from the FE models. Most 
specimens proposed for the analysis in Chapter VI are clearly thick-walled, although some of them 
accomplish this condition only considering the stiffening plates inside. However, local buckling also 
can occur in the plastic period of thick-walled sections beyond the elastic range, by following a 
similar formulation. 
 
Circular CFT sections are more unlikely to buckle than rectangular ones, as it can be observed from 
results presented in further Sections. In thick-walled tubes, buckling effects appear only in the 
plastic range. Instability takes place at advanced stages of loading, becoming a useful warning about 
the proximity of the collapse. According to the Classical Theory of Elasticity5, buckling of cylindrical 
shells follows a sinusoidal function [Fig III.12, a)], talking about the mode of collapse of these 
sections. For specimens completely embedded in the two loaded edges, the usual mode of failure is 
the mentioned “elephant foot” [Section 2.4.1, Chapter II].  
 
It is important to take into account that elastic buckling occurs only in those thin-walled cylindrical 
shells. The limit stablished by the Eurocode for thick-walled tubes is: 
 

≤ 90 · 휀 = 59.57,     for steel  S275 
(3.51) 

 

                                                             
5 (Timoshenko, et al., 1961) 
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[a]                                                                       [b] 

 
Fig. III.12  Buckling in cylindrical shells 

[a] elastic local buckling of thin-walled shells,  [b] plastic local buckling, “elephant foot” 

For usual thicknesses6, cylindrical tubes do not show buckling problems, and instability does not 
appear until advanced plastic strains. In this case, it is caused by plastic buckling, becoming much 
more unpredictable than the elastic one. Commonly, plastic buckling in thick-walled tubes follows a 
deformed shape known as “elephant foot”, which usually precedes the collapse of the section [case 
b) in figure III.12]. Although only the case of elastic buckling is analyzed here, instability of 
cylindrical shells in plasticity follows a similar pattern, by varying the flexural stiffness of the shell, 
D. 
 
The case of cylindrical shells in CFT sections is clear and completely determined: the tube is 
subjected to a biaxial stress state, as a result of a combination of axial loading and lateral pressure. 
Since it is a situation of combined stresses, the mode of buckling will depend on the two 
components, the way of loading and also the boundary conditions. In case of loading the steel and 
concrete simultaneously, buckling is caused basically by axial loading. Anyway, the shell remains 
cylindrical until a critical value of lateral pressure combined with vertical load, from where the 
equilibrium becomes instable. In the following Sections, the Classical Theory of Elasticity has been 
used in order to obtain the critical load of cylindrical shells in the elastic range. 
 
3.2.4.1 Analysis of buckling of thin-walled cylindrical shells owing to axial loading. 

Firstly, the analysis of buckling is presented by supposing that the cylindrical shell is only axially 
compressed; under this assumption, the prediction of critical stress is relatively easier than 
supposing a combined state. The expressions obtained through this simplified analysis are quite 
accurate, since vertical stresses of the steel tube in CFT sections are really higher than the 
circumferential ones [approximately 5 times higher]; however, the obtained results overestimate 
the value of the critical load slightly, as they do not take the effects of lateral pressure into account. 
 
To well understand the origin of the differential equation that governs buckling of a cylindrical shell 
only subjected to axial loading, the elastic analysis of an infinitesimal cut of a shell subjected to a 
biaxial state7 is necessary before all. By using a cylindrical shell of radius 푟 [measured to the middle 
surface], thickness 푡 and length 푚푛, a unitary strip of a height 푑푥 subjected to a force 푁  in the [x] 

                                                             
6 With a D/t ratio, smaller than the value provided by expression (3.46) 
7 Composed by axial load and lateral pressure. 
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axis and a force 푞푑푧 normal to the surface, is analyzed. The parameter q represents the value of the 
internal pressure of the cylinder. All the system is represented in figure III.14; it is important to 
point out that the force 푁  and pressure 푞 are considered both constant. In these conditions, the 
cylindrical shell is subjected to a uniform compressive stress in the [x] axis, and also a tensile stress 
in the circumferential axis, represented by the force 푁 ; the latter will depend on radial strains 
during the axial shortening and, obviously, on the value of lateral pressure.  

 
Fig. III.13  Static analysis of a cylindrical shell subjected to a biaxial stress state. 

A unitary strip with a length of mn, radius r and thickness t has been considered. 

Radial displacements in the shell are represented by the term 푤, axial displacements by 푢, and 
circumferential displacements by 휐, according to figure III.13. Thus, by defining axial strains as 휖  
(휖  =휖 ) and circumferential strains as 휖  (휖 = 휖 ),  the latter can be calculated through: 
 

휖 = 휖 =
−푤
푟  

 
(3.52) 

 
From the Classical Theory of Elasticity8, we know that being 휎  constant across the shell thickness, 
forces in shells are equal to: 
 

푁 = 휎 푑푥
⁄

⁄
=

퐸푡
1− 휈

(휖 + 휈휖 ) 
 

(3.53) 

 

푁 = 휎 푑푥
⁄

⁄
=

퐸푡
1− 휈

(휖 + 휈휖 ) 
 

(3.54) 

 
then, using these last expressions, and replacing the value of 휖 : 
 

푁 =
퐸푡

1 − 휈 휖 − 휈
푤
푟  

 
(3.55) 

 

                                                             
8 (Timoshenko, et al., 1961) 
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푁 =
퐸푡

1 − 휈 −
푤
푟 + 휈휖  

 
(3.56) 

 
where: 

r Radius to the middle of the shell 
t Thickness 

 
and combining both expressions, we obtain the following expression: 
 

푁 = 휈푁 −
푤
푟 퐸푡 (3.57) 

 
 
 
 

 

 
                    a)                                                                                                b) 

Fig. III.14  Obtention of 푵풚,풘 and 푵풙,풘 components 
 
Through a bending analysis of the mentioned strip, the force 푁  generates a radial component, 푁 , , 
whose value per unit length is determined by (see Fig. III.14): 
 

푁 , =
푁
푟 =

1
푟 · 휈푁 −

푤
푟 퐸푡   (3.58) 

 
being 1/푟 the curvature. Axial force 푁  also generates a radial component, 푁 , , as a result of the 
curvature of the shell in the [xz] plane. Knowing that the change of curvature in the axial plane is: 
 

휒 =
휕 푤
휕푥  

 

(3.59) 

The mentioned component of 푁   can be obtained through the following expression: 
 

푁 , =  푁
푑 푤
푑푥  

(3.60) 
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Finally, by adding all these transversal forces per unit length together with lateral pressure, it can 
be derived the following expression: 
 

푞 =
푑 푤
푑푥 = 푞 +

1
푟 · 휈푁 −

푤
푟 퐸푡 + 푁

푑 푤
푑푥  

(3.61) 

 
Therefore, the differential equation that governs the bending of a cylindrical shell is: 
 

퐷
푑 푤
푑푥

= 푞 +
1
푟 · 휈푁 −

푤
푟 퐸푡 +푁

푑 푤
푑푥  

(3.62) 

 
where coefficient 퐷 refers to the flexural rigidity of the mentioned strip, 퐷 = 퐸푡 12(1− 휈 )⁄ . Using 
this last expression, the deflection of a cylindrical shell can be easily calculated, assuming that axial 
load and internal pressure are known variables, and supposing that they remain constant. 
 

 
Fig. III.15  Mode of buckling of a cylindrical shell owing to axial loading (q=0). 

Similarities between the mode of buckling of cylindrical shells subjected to axial loading  
and bars embedded in elastic media is observed. 

 
Through the expressions obtained from the static analysis of a biaxially stressed cylindrical shell, 
the buckling mode can be easily derived assuming that the shell is only subjected to axial loading. 
Through equation (3.62), and considering that 푞 tends to 0 initially and measuring the 
displacement  휔 from the middle surface after having applied the compressive force, the differential 
equation that governs buckling of a cylindrical shell can be obtained: 
 

퐷 ·
푑 푤
푑푧 + 푁 ·

푑 푤
푑푧 + 퐸푡

푤
푟 = 0 

(3.63) 

 
The fact of considering the displacement 휔 after applying the axial load requires to replace 
displacement 휔 by 휔 + (휈 · 푁 · 푟) (퐸 · 푡)⁄  and to consider 푁  positive, even in compression. From 
the Theory of Elastic Stability, we know that lateral displacements of a deformed shell follow a 
sinusoidal equation with amplitude “A”, similar to: 
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푤 = 퐴 · 푠푖푛
푚휋푧
푙  

(3.64) 

 
By replacing 휔 for its value in equation (3.63), and equating to zero the coefficient 푠푖푛푚휋푧 푙⁄ , we 
can obtain the critical stress of a cylindrical shell under axial pressure: 
 

휎 =
푁
푡 = 퐷

푚 휋
푡푙 +

퐸
퐷푟

푙
푚 휋  

(3.65) 

 
Then, by considering that local buckling can occur at several points along the length of the cylinder, 
and that 휎  is a continue function of 푚휋 푙⁄ , the minimum value of this expression [critical stress] 
can be obtained: 
 

휎 =
2
푟푡 √퐸퐷푡 =

퐸푡
푎 3(1 − 휈 )

 
(3.66) 

 
And it occurs at: 

푚휋푧
푙 =

퐸푡
푟 퐷 

(3.67) 

 
Thus, the half wavelength where the shell buckles [assuming, 휈 = 0.3] coincides with:  
 

푙
푚 = 휋

푟 퐷
퐸푡 = 휋

푟 푡
12(1 − 휈 ) ≈ 1.72√푟푡 

 
(3.68) 

 
It can be noted that results obtained for symmetrical buckling of cylindrical shells are really similar 
to those corresponding to a single bar embedded in an elastic media [as it is shown in figure III.15]. 
It is important to point out again that cylindrical shells are unlikely to buckle in the elastic range, 
unless they were thin-walled [as it is shown in results presented by Timoshenko (Timoshenko, et 
al., 1961)]. Besides, the half wavelengths are smaller than one-tenth of the radius, and this means 
that for a cylinder with a length equal to the diameter, there would appear more than 20 waves. 
This fact leads to conclude that buckling of circular CFT columns is quite unusual. 
 
Although expression (3.66) provides a good approximation to the critical stress of a cylindrical 
shell in a CFT section, lateral pressure derived from volumetric expansion of concrete has not been 
taken into account. It is obvious that the presence of this pressure has a direct effect on the critical 
stress described above; any existing lateral pressure clearly diminishes this value, since the steel 
tube becomes biaxially loaded. To determine the differential equation that governs the instability of 
a cylindrical shell under a combined state of axial loading and lateral pressure, it is necessary to 
carry out a more accurate analysis [see the following Section]. 
 

3.2.4.2 Analysis of buckling of cylindrical shells owing to axial loading and lateral pressure. 

As it has been mentioned in the previous Section, to determine a more accurate value of the critical 
stress of cylindrical tubes in CFT sections, it is also possible to analyze the problem by considering 
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the combination of uniform axial loading and lateral pressure. To solve this problem, it is necessary 
to establish first the complete equilibrium of an element cut of a shell [as it is shown in figure 
III.16]. Before deformation, the Cartesian axes have the directions of the normal axis of the cylinder 
[x], the tangent to the circumference [y] and the normal to the middle surface of the shell [z]; after 
deformation9, these directions change into the tangent to the generator [x], the perpendicular to the 
xz plane [y] and the normal to the deformed middle surface [z].  
 
The process will be based on calculating the angular motions produced by each one of these 
displacements, and afterwards on calculating the resultant angular displacement by superposition 
on the element OABC. Rotations of the sides OA and BC with respect to the [x] axis are due to the 
displacements 휐 and 푤; as displacements 휐 correspond to motion of the sides OA and BC in the 
circumferential directions and r is the radius of the middle surface, the corresponding rotation of 
the side OA with respect to the x axis is 휐 푟⁄ , and the rotation of the side BC according to figure III.16 
is: 
 

1
푟 휐 +

휕휐
휕푥 푑푥  

 
(3.69) 

 

 
Fig. III.16  Forces and moments in bending of an infinitesimal cylindrical shell cut. 

An infinitesimal element cut of a shell from a cylindrical tube of a CFT has been considered.  

Owing to displacement 휐, the relative angular motion of BC with respect to AO about the [x] axis can 
be obtained through: 
 

1
푟
휕휐
휕푥 푑푥 

 
(3.70) 

 
And owing to the displacement 푤, the side OA rotates with respect to the [x] axis by following the 
angle 휕푤 푟휕휃⁄ , and the side BC by following the angle: 
 

휕푤
푟 휕휃 +

휕
휕푥  

휕푤
푟 휕휃  푑푥 

 
(3.71) 

                                                             
9 Assumed very small. 
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Due to displacements 푤, the relative angular displacement is: 
 

휕
휕푥  

휕푤
푟 휕휃 푑푥 

 
(3.72) 

 
By adding the two relative displacements obtained before about the [x] axis: 
 

1
푟

휕휐
휕푥 +

휕 푤
휕푥 휕휃 푑푥  

 
(3.73) 

 
The rotation about the [y] axis of the side BC with respect to the side OA is caused by bending of 
generators in axial planes, and it can be obtained through: 
  

−
휕 푤
휕푥 푑푥 

 
(3.74) 

 
The rotation about the [z] axis of the side BC with respect to the side OA is caused by bending of the 
generators in tangent planes: 
 

휕 휐
휕푥 푑푥 

 
(3.75) 

 
These last three expressions give the three components of rotation of the side BC with respect to 
the side OA. It is necessary to obtain also the angular displacement of the side AB with respect to 
OC. Due to the initial curvature of the shell, there is an initial angle to be considered: 푑휃. However, 
this initial angle will be changed due to the displacements 휐 and 푤; then, the rotation of the lateral 
side OC with respect to the [x] axis will be: 
 

휐
푟 +

휕푤
푟 휕휃 

 
(3.76) 

 
and the rotation of the lateral side AB will be10: 
 

휐
푟 +

휕푤
푟 휕휃 +

휕
휕휃

휐
푟 +

휕푤
푟 휕휃 푑θ 

 
(3.77) 

 
Therefore, instead of considering the initial angle 푑휃 for the curvature of the shell, it is necessary to 
replace this value by adding the rotation of the side AB: 
 

푑θ + 푑θ
∂휐

r∂휃 +
∂ 푤
r∂θ  

 
(3.78) 

 
The angular displacement about the [y] axis of the side AB, with respect to the side OC: 
 

                                                             
10 The signs of the angles with respect to the Cartesian axes are supposed according to the right-hand 

screw rule. 
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−
∂ 푤
∂휃 ∂푥 +

∂휐
∂푥 푑θ 

 
(3.79) 

 
The rotation about the [z] axis of the side AB with respect to OC is caused by displacements 휐 and 
푤; the rotation of the side OC, owing to displacement 휐, is 휕휐 휕푥⁄  and that of the side AB is: 
 

∂휐
∂푥 +

∂
r ∂θ

∂휐
∂x  r 푑θ 

 
(3.80) 

 
so that the relative angular displacement is the second term of the last expression: 
 

∂
r ∂θ

∂휐
∂x  r 푑θ 

 
(3.81) 

 
And, owing to displacement 푤, the side AB rotates in the axial plane by following the angle 휕푤 휕푥⁄ . 
The component of this rotation with respect to the [z] axis is: 
 

−
∂푤
∂x 푑θ 

 
(3.82) 

 
and adding the relative rotations of the side AB respect to the [z] axis, caused by the displacements 
휐 and 푤: 

∂ 휐
∂θ ∂x−

∂푤
∂x 푑θ 

 
(3.83) 

 

Once all the angles have been already defined through the proposed expressions, the equilibrium of 
the element OABC can be obtained by projecting the forces on the [x],[y],[z] axes. The forces parallel 
to the resultant forces 푁  and 푁  become into (휕푁 휕푥⁄ )푑푥푟푑휃 and 휕푁 푑휃⁄ 푑휃푑푥. Thanks to the 
expression obtained for the rotation of the side AB respect to the [z] axis [equation (3.83)], the 
forces parallel to 푁  in the x direction become: 

−푁
∂ 휐
∂θ∂x−

∂푤
∂x 푑θ 푑x 

 
(3.84) 

 
And, caused by the rotation about the [z] axis of the side BC with respect to the OA, the forces 
parallel to the resultant forces 푁  give the following component in the [x] direction: 
 

−푁
∂ 휐
∂x  푑x 푟 푑θ 

 
(3.85) 

 
In order to finalize, and thanks to the rotation angles about the [y] axis of the side BC with respect 
to the side OA, and about the [y] axis of the side AB with respect to the side OC, the forces parallel to 
푄  and 푄  give in the [x] axis the following components: 
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−푄
∂ 푤
∂x  푑x  푟 푑θ − 푄

∂ 푤
∂θ∂x +

∂휐
∂x  푑θ 푑x 

 
(3.86) 

 
In the previous elastic analysis, it is assumed that the unique external force acting on element OABC 
is normal pressure, 푞, which projection on the [x] axis is zero. By adding all the projections 
previously calculated: 
 

휕푁
휕푥  푑푥 푟 푑휃 +  

휕푁
휕휃  푑휃 푑푥 −  푁

휕 휐
휕휃 휕푥 −

휕푤
휕푥 푑휃 푑푥 − 

−푁  
휕 휐
휕푥  푑푥 푟 푑휃 − 푄

∂ 푤
∂x  푑x  푟 푑θ − 푄

∂ 푤
∂θ∂x +

∂휐
∂x  푑θ 푑x = 0 

 
(3.87) 

 
And by following the same procedure, two other equations are obtained from the equilibrium of the 
element. After simplifying terms, it is obtained the following system: 
 

푟 
휕푁
휕푥 +

휕푁
휕휃  –  푟 푄

∂ ω
∂x −  푟 푁

휕 휐
휕푥 − 푄

∂휐
∂x +

∂ 푤
∂θ ∂x −푁

휕 휐
휕휃 휕푥 −

휕푤
휕푥 = 0 

 

 
(3.88) 

휕푁
휕휃 + 푟 

휕푁
휕푥  +  푟 푁

∂ 휐
∂x −  푄

∂휐
∂x +

∂ 푤
∂θ ∂x +푁

휕 휐
휕휃 휕푥 −

휕푤
휕푥

−  푄 1 +
∂휐

r ∂θ +
∂ 푤

r ∂θ = 0 

 

 
 

(3.89) 

푟 
휕푄
휕푥 +

휕푄
휕휃  +푁

∂휐
∂x +

∂ 푤
∂θ ∂x + 푟 푁

∂ 푤
∂x +푁 1 +

∂휐
푟 휕휃 −

∂ 푤
r ∂θ

+푁
∂휐
∂x −

∂ 푤
∂x∂θ + 푞 푟 = 0 

 
(3.90) 

 
And finally, it is convenient to obtain the three expressions for moments with respect to the [x],[y] 
and [z] axes, by taking the angular displacements mentioned before into account: 
 

푟 
휕푀
휕푥 −

휕푀
휕휃  –  푟 푀

휕 휐
∂x −  푀

휕 휐
휕휃 휕푥 −

휕푤
휕푥 − 푟 푄 = 0 

 

 
(3.91) 

휕푀
휕휃 + 푟 

휕푀
휕푥  +  푟 푀

∂ 휐
∂x −  푀

휕 휐
휕휃 휕푥 −

휕푤
휕푥 − 푟 푄 = 0 

 

 
(3.92) 

푀
∂휐
∂x +

∂ 푤
∂θ ∂x + 푟 푀

∂ 푤
∂x +푀 1 +

∂휐
푟 휕휃 −

∂ 푤
r ∂θ −푀

∂휐
∂x −

∂ 푤
∂x∂θ

+ 푟 푁 − 푁 = 0 

 
(3.93) 

 
 
Through the first two equations, it is possible to eliminate 푄  and 푄  from the equations of the 
equilibrium of forces; this way three equations with six variables left: forces 푁 ,푁 ,푁 , and 
moments 푀 ,푀  and 푀 . 
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Using the equations obtained above for the equilibrium of a cylindrical shell cut, it is possible to 
define the equations that determine buckling in cylindrical shells subjected to combined axial 
loading and lateral pressure [Fig. III.17]. For that purpose, it is necessary to assume that all forces 
tend to zero except the vertical 푁  component and the circumferential 푁  component; then, all the 
products of these forces by the derivatives of the displacements u,v and 푤  will be neglected.  
 

 
Fig. III.17  Buckling of a cylindrical shell under a combined state of  

 axial loading and lateral pressure.  
 
The resulting equations which govern this problem come from expressions (3.88) to (3.90): 
  

푟 
휕푁
휕푥 +

휕푁
휕휃  − 푁

휕 휐
휕휃 휕푥 −

휕푤
휕푥 = 0 

 

(3.94) 

휕푁
휕휃 + 푟 

휕푁
휕푥 +  푟 푁

∂ 휐
∂x −  푄 = 0 

 

 
(3.95) 

푟 
휕푄
휕푥 +

휕푄
휕휃  + 푟 푁

∂ 푤
∂x +푁 1 +

∂휐
푟 휕휃 −

∂ 푤
r ∂θ + 푞 푟 = 0 

 
(3.96) 

 
From the equilibrium equations of bending moments [equations (3.91) to (3.93)], it is considered 
that bending and twisting moments are really small in this case. Just for that reason, the products of 
these moments by the derivatives of the displacements 푢, 휐 and 푤 are also neglected. By applying 
this procedure, the first two equations lead to: 
 

 푄 =
휕푀
푟 휕휃 +

휕푀
휕푥   

 

 
(3.97) 

 푄 =
휕푀
푟 휕휃 +

휕푀
휕푥   

 
(3.98) 

 
and replacing the obtained values for  푄  and  푄  in the equations (3.94) to (3.96): 
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푟 
휕푁
휕푥 +

휕푁
휕휃  − 푁

휕 휐
휕휃 휕푥 −

휕푤
휕푥 = 0 

 

(3.99) 

휕푁
휕휃 + 푟 

휕푁
휕푥 + 푟 푁  

휕 휐
휕푥 −

휕푀
푟 휕휃 +

휕푀
휕푥 = 0 

 

 
(3.100) 

휕 푀
휕휃 휕푥 + 푟 

휕 푀
휕푥 +

휕 푀
푟 휕휃 −

휕 푀
휕휃 휕푥 +푁 1 +

푟 ∂ 푤
휕푥 +

∂휐
푟 휕휃 −

∂ 푤
r ∂θ + 푞 푟 = 0 

 
(3.101) 

 
In reference to the buckling of the shell, it is necessary to considerate those deflections which are 
capable of perturbing its equilibrium. The value of 푁  will be slightly different, and this increment 
will be expressed as 푁′ : 
 

푁 = −푞 푟 +  푁′   
 

(3.102) 

For this analysis, it is necessary to consider also the stretching of the middle surface of the shell by 
replacing 푁  and 푞 by 푁  (1 + 휖 ) and 푞(1 + 휖 )(1 + 휖 ), respectively in the equations (3.99), 
(3.100) and (3.101). Knowing that: 
 

휖 =
휕푢
휕푥      and     휖 =

휕휐
푟 휕휃 −

푤
푟  

 

(3.103) 
(3.104) 

퐷 =
퐸 · 푡

12 · (1 − 휈 ) 

 

 
(3.105) 

 
by using the expressions (3.53), (3.54) and (3.56) proposed in the first part of this Section, together 
with the following notations: 
 

휙 =
푞 푟 (1 − 휈 )

퐸 푡    ;    휙 = −
푁 (1− 휈 )

퐸 푡      and    훼 =
푡

12 푟  
(3.106) 
(3.107) 
(3.108) 

 
According to (Flügge, 1932), equations (3.99), (3.100) and (3.101) can be expressed depending on 
displacements 푢, 휐,ω by using the parameters 휙 ,휙  and 훼, in the following form: 
 

푟  
휕 푢
휕푥 +

1 + 휈
2  

푟 휕 휐
휕푥휕휃  – 휈 푟 

휕푤
휕푥 + 푟 휙  

휕 휐
휕푥휕휃 −

휕푤
휕푥 +

1− 휈
2  

휕 푢
휕휃 = 0 

 

 
(3.109) 

1 + 휈
2  

푟 휕 푢
휕푥 휕휃 +

1 − 휈
2  푟

휕 휐
휕푥 +

휕 휐
휕휃 −

휕푤
휕휃 +                                                     

                                          +훼 
휕 휐
휕휃 +

휕 푤
휕휃 + 푟

휕 푤
휕푥 휕휃 + 푟 (1− 휈)

휕 휐
휕푥 − 푟  휙  

휕 휐
휕푥 = 0 

 

 
(3.110) 

푟 · 휈 
휕푢
휕푥 +

휕휐
휕휃 −푤 − 훼 

휕 휐
휕휃 + (2 − 휈) 푟

휕 휐
휕푥 휕휃 + 푟  

휕 푤
휕푥 +

휕 푤
휕휃 + 2푟

휕 푤
휕푥 휕휃 = 

 
 

(3.111) 
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                                                                                                              = 휙  푤 +
휕 푤
휕휃 + 휙  푟  

휕 푤
휕푥  

 
Then, to obtain the critical value under a state of combined vertical stress and lateral pressure, it is 
necessary to solve the three differential equations proposed above, by satisfying also the boundary 
conditions of the shell. For a generic cylinder, simply supported in the loaded edges, the boundary 
conditions can be introduced by assuming that 푤 and 휕 푤 휕푥⁄  are zero at the ends. The solution 
for displacements 푢, 휐 푎푛푑 푤 is in this case: 
 

푢 = 퐴 sin푛 휃 cos
휋 푥
푙  

 
(3.112) 

 

휐 = 퐵 cos푛 휃 sin
휋 푥
푙  

 
(3.113) 

 

푤 = 퐶 sin푛 휃 sin
휋 푥
푙  

 
(3.114) 

 
By replacing equations (3.112) to (3.114) in the three previous differential equations, a system of 
three linear equations for A, B and C coefficients can be obtained. The equation for calculating the 
critical value of vertical stress or lateral pressure comes from equating to zero the determinant of 
these three equations. According to (Flügge, 1932), the final equation can be simplified to: 
 

 
퐶 + 퐶 훼 = 퐶 휙 + 퐶 휙  

 
(3.115) 

where: 
퐶 = (1 − 휈 )휆  

 
(3.116) 

퐶 = (휆 + 푛 ) − 2[휈 휆 + 3휆 푛 + (4− 휈)휆 푛 + 푛 ]+2(2− 휈)휆 푛 + 푛  (3.117) 
 

퐶 = 푛 (휆 + 푛 ) − (3휆 푛 + 푛 ) (3.118) 
 

퐶 = 휆 (휆 + 푛 ) + 휆 푛  (3.119) 
 
being: 

훼 =
푡

12 푟            휆 =
푚 휋 푟
푙  

(3.120) 
(3.121) 

 
 
By assuming specific values for m and 2n [referred to the number of axial and circumferential 
wavelengths, respectively], the equation (3.115) can be represented in the bidimensional plane 
formed by the coordinates (휙 ,휙 ). Keeping constant the value of m, a collection of linear curves 
can be determined corresponding to 푛 = 2,3,4,5 …; the smaller values of 휙  for a given value of 휙  
at each range generates the line which determines the critical stress, depending on axial load and 
lateral pressure [see Fig. III.18]. 
 
As it can be observed, the prediction of critical stress under a combined state of axial loading and 
lateral pressure is much more complex than the case where only axial load is considered. Besides, 
the approximation given by the latter is enough accurate to predict the critical stress and the mode 
of buckling of CFT sections, as vertical stress is usually much higher than the circumferential. 
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Fig. III.18  Linear curves in the (흓ퟏ,흓ퟐ) plane, defining the buckling stresses under combined 

axial loading and lateral pressure. 
휙  refers to lateral pressure and 휙  refers to axial load, (Timoshenko, et al., 1961). 

 
 

3.2.5 Resistant advantages of introducing stiffening plates in circular CFT sections. 

The main objective of this investigation is to analyze the behavior of concrete-filled tubes stiffened 
with plates, assuming a state of pure compression; the purpose is to compare their behavior with 
the compressive response of non-stiffened tubes. As it has been explained before, these typologies 
have the clear vocation of increasing the confinement effect and the ductility of the composite 
section, thanks to the restriction to buckling of the plates.  
 
In case of thick-walled circular CFT sections, the fact of replacing part of the steel of the tube by 
these plates seems to not have a clear influence on ductility and confinement effect. The case of 
thin-walled tubes is clearly different, since the fact of stiffening restrains local buckling of the shell. 
This will be demonstrated in further chapters, especially in Chapter VII.  
 
Referring to thick-walled tubes, the maximum pressure on concrete core is determined by the 
maximum circumferential tensile force resisted by the tube wall. This annular force is determined 
by the scheme of case a) in figure III.19. Cylindrical shells in CFT sections are not subjected to 
bending in the cross-sectional plane, since they become strictly tensioned circumferentially. By 
assuming the introduction of stiffening plates in the core as in the model shown in case b) of the 
following figure III.19, the tensile stress of the wall is combined with bending, as a consequence of 
the high rigidity provided by stiffening plates to the tube in the points of their concurrence [some 
parasit moments appear as a result of stiffening specific points of the tube]. 
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Only Shell forces                     Shell Forces + bending moment 

 
a)                                                      b)                                                      

 
Fig. III.19  Distribution of pressure on the steel tube: a) unstifffened, b) stiffened tube. 

The horizontal component of lateral pressure is converted into tensile forces in the tube wall. 

For circular shapes, it will be easily demonstrated that 푓 ≪ 푓  [see Fig. III. 22], as a result of the 
efficiency of circular geometry of the tube. Thus, stiffening plates do not contribute actively to 
absorb this internal pressure derived from volumetric expansion of concrete core. 
  
By following this assumption, the horizontal component of pressure is equal to the product of the 
thickness by the yield limit stress of steel. In cases b) and c), the same equivalence cannot be 
supposed [by adding the thickness of the internal plates to the tube], since the intersection points 
are much more rigid than the rest. If stiffening plates are stiffer in the axial direction, the welded 
shell between them becomes subjected to slight parasite bending moments, apart from the axial 
tensile stress. Then, the introduction of stiffening plates could be even prejudicial, as circular shells 
behave better subjected to annular tension than under combined tension and bending.  
 

 
           a)                                            b)                                           c)                                             d) 

 
Fig. III.20  Static analysis of the cross-section, assuming a uniform distribution of pressure. 

Bidimensional analysis of the steel tube in circular CFT sections. 
[a] Considered uniform pressure  [b] Axial force  [c]  Bending moments  [d] Deformed shape 

In figure III.20, it can be noted how those points of the tubes which intersect with stiffening plates 
are really stiffer than the rest, and how bending moments are more important in these intersection 
points and in the mid-span of the derived sectors. Then, the tube tends to fail owing to the 
conjunction of tension and bending in these areas, being not capable of reaching the full yield limit 
stress of steel in the whole section. Bending moment diagrams shown in figure III.20 [c] are caused 
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by the simplification of the circular geometry of the tube into a finite number of individual bars, just 
for modeling reasons. A more credible distribution of bending moments in the cross-sectional plane 
will be something similar to figure III.21: 

 
Fig. III.21  Idealization of bending of the tube in the cross-sectional plane, owing to the 

rigidity of the stiffening plates. 
The cylinder is subjected to a combined state of tension and slight bending in the [yz] plane. 

Lateral pressure fr is considered constant in this assumption. 
 
From this simple and elastic analysis, we can conclude that this phenomenon leads to a low 
effectiveness in confinement effect of cruciform shapes, in comparison with circular geometries. Of 
course, concrete of central areas will be more severely confined, but the efficacy of this confinement 
in relative terms will be poorer compared with that shown by a circular shape.  Besides, it seems 
that the presence of stiffening plates does not have a positive effect on the ductility of CFT sections; 
however all these assumptions will have to be validated by the FE model [see Chapters VI and VII]. 
 
The plates which are embedded in concrete seem to be completely restricted to buckling, by giving 
to the section an important increment of load-bearing capacity [this effect will be also analyzed 
from results of the FE analysis]. In addition, their distribution in the cross-sectional could play a 
decisive role in resisting shear forces, so that they become useful for those columns located in 
ground floors of tall buildings. 
 
A 2-D elastic analysis has been carried out, by comparing the influence of different thicknesses of 
stiffening plates. From this analysis, it can be seen how thickness is not really significant on results; 
once stiffening plates are welded to the tube, the deformed shape quickly changes from a circular 
geometry into cruciform, almost independently of their thickness [see figure III.22]. Note that force 
푓  of figure III.20 is infinitely smaller than 푓 , owing to circular geometry. This means that most part 
of the pressure is absorbed by the tube wall. However, in case a), the tube is completely tensioned 
[thanks to be circular-shaped], while in case b) it is also slightly bended. 
 
In unstiffened circular concrete-filled tubes, the pressure derived from volumetric expansion of 
concrete is fully absorbed by a tensile stress on the tube wall-thickness. Thus, no bending moments 
appear in the cross-sectional plane thanks to the efficiency of the circular shape; this effect is 
represented by case b) of the first row in figure III.22, although in this simplified bidimensional 
analysis the stiffening bars have been considered with an area almost zero instead of zero, strictly 
for numerical reasons. Therefore, the parasit bending moments have been omitted in the figure 
presented below. 
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   a)  Deformed shape                b) 휎                   c) 휎                 d) 휎 ,  

 
Fig. III.22  Influence of the thickness of stiffening plates on the deformed shape of the tube. 

No significant influence is observed, derived from the thickness of the inner plates. 
[a] Deformed shape  [b] Stress from Axial Force  [c]  Stress from Bending Moment    

[d] Total Max Stress   
 
3.3 Elastic analysis of rectangular concrete-filled tubes under compression. 
 
In case of rectangular and square-shaped CFT sections, the stress distribution of the core is much 
less uniform than in case of circular sections. The fact of disposing the plates one perpendicular to 
the other, and being completely planar, involves the appearance of bending moments and 
important deflections, with the consequent decrement of confinement effect on concrete core. 
 
These deflections appear especially in central areas of the plates of the tube, so that in the nearby of 
the edges concrete becomes more confined than in the mid-span of the plates. This effect is well 
illustrated in figure III.23, where the core has been modeled by using a set of individual and 
bidimensional bars, with different lengths depending on the position. This model was firstly 
introduced by Susantha (Susantha, et al., 2000) in its investigation about the confinement effect on 
concrete and the importance of the softening period. 
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Fig. III.23  Theoretical discretization of concrete core in individual linear bars. 

Model proposed by Susantha and Ge (Susantha, et al., 2000) 

Thus, lateral pressure on concrete core is not constant along the perimeter, depending on the 
orientation. Using the simplification shown in figure III.23, it would be possible to calculate an 
“equivalent pressure” as a result of integrating all forces generated by each individual bar. For that 
purpose, it would be necessary to do a non-linear analysis and bidimensional, since the model 
corresponds to an idealization of a slice of the theoretical column and concrete does not behave 
linearly. The expression which summarizes the idea of calculating an equivalent value of pressure 
on the core is the following: 
 

푓 , =
∑ 퐹
∑ 푆  

 
(3.122) 

 
where: 
 

퐹  Reactions at the ends of the fictitious bars. 
푆   Corresponding area of each individual bar. 

 
The averaged transversal strain of the plates could be calculated using the following integration: 
 

푤 , =
∑(푈 퐿⁄ )

푛  
 

(3.123) 

where: 
퐿  Length of each individual bar 
푈   Transversal displacement of each individual bar. 
푛 Number of bars. 

 
Using these expressions, it would be possible to analyze the confinement effect of rectangular CFT 
sections analytically. By replacing the value of 푓 ,  in equation (2.19), it is possible to approximate 
the confinement effect in these cases, by loading only the core and without considering friction 
forces. To analyze these individual bars, and assuming that pressure is far from being constant 
along the plates, the following expression can be used for lateral stiffness of each concrete bar: 
 

푘 =
퐴 · 퐸
퐿  

 
(3.124) 

being: 
퐴  Cross-sectional area of the idealized element. 
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퐸  Tangent modulus of elasticity of concrete in the lateral direction. 
 

 
 

Fig. III.24  Idealized concrete element. 
Model proposed by Susantha and Ge (Susantha, et al., 2000) 

However, results obtained through this theoretical method come from an approximation of the real 
3-D problem, far from being an accurate approach. The plates in rectangular-shaped tubes bend in 
the two axes, and boundary conditions are decisive to determine the maximum deflection and 
confinement effect on the core. This is the reason why this analytical approximation is not enough 
accurate to provide reliable results.  
 
3.3.1 Differences in behavior from circular-shaped sections. 
 
The compressive behavior of rectangular and square-shaped CFT sections is really different from 
that of circular sections, in many aspects. Main divergence lies in the capacity of the tube of 
confining the core: while in circular tubes this effect is uniform and really significant, in square 
sections it is more heterogeneous and consequently, smoother.   
 
However, the loading process is similar in both cases, with a first elastic period during which the 
core becomes slightly tensioned circumferentially by the tube, and a second elastic-plastic period in 
which the concrete starts expanding laterally. During this second phase, concrete becomes triaxially 
compressed thanks to be contained by the tube. Contact of the interface is subjected to lateral 
strains coming from bending of the plates and from the difference in Poisson’s ratio of both 
materials. The difference between lateral displacements of steel and concrete at each point 
determines the severity of hydrostatic pressure on the core, far from being uniform. 
 
Owing to the low confining pressure shown by rectangular and square-shaped sections, all 
application codes worldwide, dealing with CFT sections, limit the transference of tangential 
stresses between components in square sections to values of 0.40 N/mm2, instead of 0.55 N/mm2. 
The latter corresponds to the limit allowed for circular sections, assuming that contact pressure is 
really higher in those cases.  
 
 
3.3.2 Influence of local buckling in square-shaped CFT sections. 
 
The lack of uniform pressure on the core is not only a phenomenon of the cross-section in thin-
walled tubes, but also of the height of the column -since the plates bend in their two possible axes. 
This fact confers to the system a third dimension, giving more complexity to the problem and 
converting into impractical an analytical resolution if accurate results are wanted. Thin plates could 
be more effective than thick plates from the point of view of cost, although buckling effects have to 
be controlled accurately. To avoid instability problems, the Eurocode gives some basic expressions 
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referring to the B/t ratio, in a similar way than for circular sections (Hicks, et al., 2002). Rectangular 
and square-shaped tubes do not buckle, providing that the following proportion is satisfied: 
 

퐵
푡 ≤ 52 · 휀             [in steel S275, this value is 42.30] 

 
(3.125) 

 
On the one hand, the plates forming the faces of the tube have two stiffened edges [assumed as 
embedded edges], and on the other hand, the other two show continuity in the [x] axis as a virtual 
infinite column. This condition of continuity generates a mode of deformation in double curvature 
that tends to reduce the wavelengths of the plates, compared with other hypothetical analyses 
based on isolated column slices. The deformation of the plates takes a sinusoidal shape, and this 
fact implies to have some areas more confined than the others; for that reason, local buckling of the 
plates in rectangular and square thin-walled CFT sections becomes something decisive, in order to 
determine the maximum load bearing capacity of the section. 
 

 
Fig. III.25  Mode of buckling of the plates in thin-walled square CFT sections. 

 
Logically, the value of the wavelength will depend on the thickness basically, but also on the 
buckling length [corresponding always to the widest side in case of rectangular sections]. Thus, as 
smaller is the width of the tube, higher is the confinement effect which can be considered. In 
rectangular tubes, the deformed shape is mostly governed by the wider plate as it can be observed 
in results presented in Chapter VI. 
 
3.3.2.1 Buckling analysis of rectangular plates owing to axial loading. 
 
Although this study only proposes a complete analytical model for circular CFT sections subjected 
to compression11, the elastic buckling analysis of the tubes has been done for both typologies. The 
fact of considering buckling of the plates in square sections is decisive in order to understand their 
compressive behavior.  
  
Thus, it is known that as a consequence of axial loading, the plates of square thin-walled CFT 
sections are subjected to second-order effects. The deflection takes place always outwards, since 
these plates are restricted by concrete of the core. Regarding to boundary conditions, the plates 
have two edges restricted against rotation, and two edges clamped in order to simulate the effect of 

                                                             
11 The analytical approach for square-shaped tubes under compression sections has not been proposed 

analytically, owing to its complexity. 
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continuity of the column according to the figure III.25. Different from circular-shaped sections, 
buckling of square tubes is analyzed by considering axial loading only since the influence of lateral 
pressure is really much less important in this case [lateral pressure in circular sections can reach 
significant values being uniformly distributed].  
 
First of all, to describe the problem it is necessary to propose the static equilibrium of a cut of a 
plate under a combined state of axial loading, N, and lateral uniform pressure, q. The element is 
formed by the cut of two pairs of planes parallel to the xz and yz planes. The forces resulting are 
those represented in figure III.26: 

 
                                       [a]                                                             [b] 

Fig. III.26  Static analysis of a cut of plate subjected to axial loading and lateral pressure. 
 
By projecting the forces represented in figure III.26.a on the [x] and [y] axes, and considering that 
there are no body forces acting in these directions: 
 

휕푁
휕푥 +

휕푁
휕푦 = 0 

 
(3.126) 

 
휕푁
휕푦 +

휕푁
휕푥 = 0 

 
(3.127) 

 
then, by considering the projection of the mentioned forces on the [z] axis, owing to the curvature 
of the plate: 
 

−푁  푑푦 
휕푤
휕푥 + 푁 +

휕푁
휕푥 푑푥

휕푤
휕푥 +

휕 푤
휕푥 푑푥 푑푦 

 
(3.128) 

 
the small quantities of higher order can be neglected from the last expression: 
 

푁  
휕 푤
휕푥  푑푥 푑푦 +

휕푁
휕푥  

휕푤
휕푥  푑푥 푑푦 

 
(3.129) 
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Fig. III.27  Equilibrium of a cut of plate subjected to combined bending and compression. 

 
 
and for 푁 , we obtain expression (3.130), by following the same procedure: 
 

푁  
휕 푤
휕푦  푑푥 푑푦 +

휕푁
휕푦  

휕푤
휕푦  푑푥 푑푦 

 
(3.130) 

 

 
Fig. III.28  Deflection of an element 풅풙 풅풚 of the middle plane 

 
Through the analysis of the deflection of an infinitesimal element 푑푥 푑푦, according to figure III.28, 
and projecting the shearing force 푁  on the [z] axis, the following expression is obtained: 
 

푁  
휕 푤
푑푥 푑푦  푑푥 푑푦 +

휕푁
휕푥  

휕푤
휕푦  푑푥 푑푦 

 
(3.131) 

 
owing to the two angles represented in the previous figure: 
 

휕푤
휕푦       and     

휕푤
휕푦 +

휕 푤
휕푥 휕푦 푑푥 

 
(3.132) 

 
by following the same procedure for 푁 , and adding all the projections: 
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2푁  
휕 푤
푑푥 푑푦  푑푥 푑푦 +

휕푁
휕푥  

휕푤
휕푦  푑푥 푑푦 +

휕푁
휕푦  

휕푤
휕푥  푑푥 푑푦 

 
(3.133) 

 
By adding the expressions obtained for projections on the [z] axis of 푁 , 푁  and 푁 + 푁  to the 
transversal load [result of the product of the pressure q by the infinitesimal area 푑푥푑푦], we obtain 
the expression for the equilibrium of the element: 
  

휕 푀
휕푥 − 2

휕 푀
푑푥 푑푦 +

휕 푀
휕푦 =  − 푞 +푁

휕 푤
휕푥 +푁

휕 푤
휕푦 + 2푁

휕 푤
푑푥 푑푦  

 
(3.134) 

 
In plates of square-shaped tubes, it is obvious that bending occurs in double curvature. To analyze 
those moments of the plates, it is necessary to consider an infinitesimal element cut as it is shown 
in figure III.27.  We assume that during bending, lateral sides of the element remain plane and 
rotate about the neutral axes n-n, so as to remain normal to the deflection surface; then we can 
conclude that the middle surface of the plate does not suffer any deformation and it can be called 
neutral surface. The unitary elongations in the [x] and [y] axes at distance z from the neutral surface 
can be obtained as in case of a beam: 
 

휖 =
푧
휌    and    휖 =

푧
휌     

(3.135) 

 
where: 

1/휌  Curvature of the neutral surface in sections parallel to the [zx] planes 
1/휌  Curvature of the neutral surface in sections parallel to the [yz] planes 

 
By applying the Hook’s law, we can obtain the following expressions: 
 

휖 =
1
퐸 휎 − 휈휎      and    휖 =

1
퐸 휎 − 휈휎   (3.136) 

 
And then, the stresses in the infinitesimal cut of lamina are the following: 
 

휎 =
퐸

1− 휈
1
휌 + 휈

1
휌      and    휎 =

퐸
1 − 휈

1
휌 + 휈

1
휌   

(3.137) 

 
The distributed normal stresses over the lateral sides of the element can be reduced to couples 
which must be equal to the external moments: 
 

휎
/

/
 푧 푑푦 푑푧 = 푀  푑푦       and    휎

/

/
 푧 푑푥 푑푧 = 푀  푑푥 

(3.138) 

 
By replacing the expressions obtained for stresses in these last expressions, we get the value of the 
bending moments in the two axes: 
 

푀 = 퐷
1
휌 + 휈

1
휌       and    푀 = 퐷

1
휌 + 휈

1
휌  

(3.139) 

 
where:  
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퐷 =
퐸

1− 휈  푧  푑푧
/

/
=

퐸
12(1 − 휈 ) 

(3.140) 

 
Finally, 퐷 corresponds to the flexural rigidity of the plate. 
The assumption that there is no strain in the middle plane of a plate during bending is true if the 
deflections are really small compared with the thickness, t. Assuming that 푤 is the deflection of the 
plate, we can express the curvature of the plate through the well-known expression: 
 

1
휌 =

휕 푤
휕푥       and    

1
휌 =

휕 푤
휕푦  

(3.141) 

 
we obtain the expressions for bending moments in a rectangular plate: 
 

푀 = −퐷
휕 푤
휕푥 + 휈

휕 푤
휕푦       and     푀 = −퐷

휕 푤
휕푦 + 휈

휕 푤
휕푥  

(3.142) 
(3.143) 

 
Then, by replacing these expressions for the bending moments in the equation (3.134): 
 

휕 푤
휕푥 − 2

휕 푤
휕푥 휕푦 +

휕 푤
휕푦 =  

1
퐷 푞 +푁

휕 푤
휕푥 +푁

휕 푤
휕푦 + 2푁

휕 푤
푑푥 푑푦  

(3.144) 

 
In order to finalize the analysis, it is also necessary to study the strain energy in bending of plates. 
By having a rectangular plate under bending by uniformly distributed moments 푀  and 푀 , the 
strain energy accumulated in an element can be obtained by calculating the work done by the 
moments 푀 푑푦 and 푀 푑푥  on the element. As the sides of the element remain plane, the work done 
by these moments is obtained by taking one half of the product of the moment and the angle 
between the sides of the element after bending. Assuming that the curvature of the plate in the [xz] 
plane can be expressed as −휕푤 휕푥⁄ , the corresponding angles to the moments 푀 푑푦 and 푀 푑푥 
are – (휕푤 휕푥⁄ )푑푥 and – (휕푤 휕푦 )푑푥, and the work done by these moments is: 
 

−
1
2푀  

휕 푤
휕푥 푑푥 푑푦      and     −

1
2푀  

휕 푤
휕푦 푑푥 푑푦       

(3.145) 

 
Then, the work produced by these two moments will be the result of adding the two expressions, 
and this will be the potential energy of the element: 
 

푑푈 = −
1
2 푀  

휕 푤
휕푥 +푀  

휕 푤
휕푦 푑푥 푑푦        

(3.146) 

 
Finally, by replacing the moments 푀  and 푀  for their respective expressions [eq. (3.142) and 
(3.143)], we obtain: 
 

푑푈 = −
1
2  퐷  

휕 푤
휕푥 +

휕 푤
휕푦 + 2휈

휕 푤
휕푥  

휕 푤
휕푦 푑푥 푑푦        

 
(3.147) 

 
And the total strain energy of the plate can be obtained by integrating the previous expression: 
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푈 = −
1
2  퐷 

휕 푤
휕푥 +

휕 푤
휕푦 + 2휈

휕 푤
휕푥  

휕 푤
휕푦 푑푥 푑푦     

 
(3.148) 

 
By considering an element of the plate, and also neglecting the strain energy due to shearing forces 
푄  and 푄 , it derives that the strain energy of the element is equal to the work done on it by the 
bending moments 푀 푑푦 and 푀 푑푥 and by the twisting moments 푀 푑푦 and 푀 푑푥. The total strain 
energy done by the pure bending moments has been obtained in (3.148). In order to take also into 
account the strain energy done by the twisting moments 푀  and 푀  the corresponding twisting 
angle shown in figure III.27 is used,(휕 푤 푑푥 푑푦⁄ )푑푥, and the expression for the strain energy is: 
 

1
2푀  

휕 푤
푑푥 푑푦 푑푥 푑푦 =  

1
2  퐷 (1 − 휈)

휕 푤
푑푥 푑푦 푑푥 푑푦    

(3.149) 

 
As in the case described before, the work produced by 푀  will be the same as for 푀 , therefore: 
 

푑푈 = −
1
2  퐷  

휕 푤
휕푥 +

휕 푤
휕푦 + 2휈

휕 푤
휕푥  

휕 푤
휕푦 푑푥 푑푦 +  퐷 (1− 휈)

휕 푤
푑푥 푑푦 푑푥 푑푦      

 
(3.150) 

 
And the total strain energy of the plate will be: 
 

푈 =
퐷
2

휕 푤
휕푥 +

휕 푤
휕푦 − 2 · (1− 휇) ·

휕 푤
휕푥

휕 푤
휕푦 −

휕 푤
휕푥휕푦 휕푥휕푦 

 

 
(3.151) 

According to Cai together with Long (Cai, et al., 2009), the four edges of a rectangular tube can be 
considered elastically restrained against rotation due to the assumption of high rigidity. The rest of 
loaded edges must be considered clamped, in order to simulate the continuity of the column. The 
model to analyze the effects of buckling under axial loading in rectangular plates is the following, 
shown below: 

 
 

Fig. III.29  Boundary conditions of a buckling analysis of a plate in a rectangular CFT section.  
The four edges are considered elastically restrained against rotation, assuming q=0. 
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Using the mentioned equation (3.151) obtained to calculate the strain energy of a plate, U, and the 
expression of the energy produced by the applied load, V, with the form12: 
 

푉 =
1
2 푁

휕푤
휕푥 + 2푁

휕푤
휕푥

휕푤
휕푦 + 푁

휕푤
휕푦 휕푥휕푦 

 
(3.152) 

 
and knowing that in rectangular CFT sections subjected to pure axial loading, boundary stresses of 
the plates are 휎 = 휏 ,  then: 
 

푁 = 휎 · 푡 = 푁 = 휏 · 푡 = 0 (3.153) 

푁 = −푝 · 푡 = −휎 · 푡 (3.154) 

 
In point   푥 = 0  or  푥 = 푎, the displacement in the [z] axis is zero, due to the sinusoidal shape: 
 

푤 =
휕푤
휕푥 = 0 

 
(3.155) 

 
On the contrary, when 푦 = 0  or   푦 = 푏, then: 
 

푤 = 0,     푀 =

⎩
⎪
⎨

⎪
⎧ −퐷

휕 푤
휕푦 = −휁

휕푤
휕푦      (푦 = 0)

−퐷
휕 푤
휕푦 = +휁

휕푤
휕푦          (푦 = 푏)

 

⎭
⎪
⎬

⎪
⎫

 

 
(3.156) 

 
 

(3.157) 

 
where deformation must be positive 푤 ≥ 0, and 휁  is the twisting stiffness of the unloaded edges. 
By assuming that the deformed shape of the plate on the [x] axis is a cosine function, and that the 
deformed shape on the [y] axis is a biquadrate function, according to Cai and Long (Cai, et al., 2009): 
 

푤 = 퐶 · 푎 ·
푦
푏 · 1−

푦
푏 + 푎 ·

푦
푏 · 1−

푦
푏 + 푎 ·

푦
푏 · 1−

푦
푏 + 푎 ·

푦
푏 ·

· 1−
푦
푏 · 1− 푐표푠

2휋
푎  

 
(3.158) 

 
This last function satisfies both boundary conditions as well as compatibility of deformations. By 
replacing the derivative respect [y] of the last equation (3.158) in equations (3.156) and (3.157), it 
can be observed how coefficient 푎  is equal to the coefficient 푎  in equation (3.158). Assuming this 
equivalence, the expression (3.158) can be simplified in the following form: 
 

푤 = 퐶 ·
푦
푏 · 1−

푦
푏 +푚 ·

푦
푏 · 1−

푦
푏 · 1− 푐표푠

2휋
푎  

 
(3.159) 

 
Replacing the derivative in first order and the partial derivative in second order in respect to [y] of 
equation (3.159) in equations (3.156) and (3.157), the following expression can be obtained: 
 

푚 = 휒 + 1 (3.160) 

                                                             
12 (Cai, et al., 2009) 
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where 휒 is the coefficient of elastic restraint against rotation of the unloaded edges, defined by the 
following expression: 
 

휒 =
휁 · 푏
2 · 퐷  

 
(3.161) 

 
Equation (3.159) can be rewritten in the following form: 
 

휔 = 퐶 ·
푦
푏 + ∅ ·

푦
푏 + ∅ ·

푦
푏 + ∅ ·

푦
푏 · 1− 푐표푠

2휋푥
푎  

(3.162) 

 
where 퐶 is a constant and factors ∅ , ∅ , ∅  are: 
 

∅ = 휒 (3.163) 

∅ = −2 (휒 + 1) (3.164) 

∅ = 휒 + 1 (3.165) 

 
The final potential energy of a plate, Π, in a rectangular tube is defined by: 
 

Π = 푈 + 푈 + 푉 (3.166) 

Terms 푈 [strain energy of the plate] and V [energy corresponding to axial load] are defined by the 
expressions mentioned before (3.151) and (3.152). Finally, 푈  is the energy associated to the elastic 
restriction against rotation along the unloaded edges: 
 

푈 =
휁
2

휕푤
휕푦 +

휕푤
휕푦 휕Γ 

 
(3.167) 

 
According to the analysis carried out by (Cai, et al., 2009), by adding all the components of energy 
and using equation (3.162), it can be easily derived: 
 

Π =
퐷
2

8휋 퐶 푏
푎 퐴 +

3퐶 푎
2푏 퐴 + 2(1− 휇)

2휋 퐶
푎푏 퐴 −

4휋 퐶
푎푏 퐴 + 

+
3퐶 · 휁 · 푎 · (1 + 퐴 )

4푏 −
푝 · 푡 · 휋 · 퐶 푏

푎 퐴  

 
(3.168) 

 
where coefficients 퐴 ,퐴 ,퐴 ,퐴  and 퐴  are: 
 

퐴 =
1
3 +

휙
2 +

휙 + 2휙
5 +

휙 + 휙 휙
3 +

휙 + 2휙 휙
7 +

휙 휙
4 +

휙
9  

 
(3.169) 

 

퐴 = 4휙 + 12휙 + 12휙 휙 +
144

5 휙 + 16휙 휙 + 36휙 휙  
 

(3.170) 

 
퐴 = 1 + 3휙 + 2휙 + 4휙 + 5휙 + 5휙 휙 + 6휙 휙 + 7휙 휙 + 3휙 + 4휙  (3.171) 
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퐴 = 휙 +
2휙 + 6휙

3 + 3휙 + 2휙 휙 +
14휙 휙 + 6휙

5 + 3휙 휙 +
12휙

7  
 

(3.172) 

 
퐴 = 1 + 2휙 + 3휙 + 4휙  (3.173) 

 
and according to the principle of minimum potential energy: 
 

휕Π
휕퐶 = 0 

 
(3.174) 

 
equations (3.169) to (3.174) lead to: 
 

휎 · 푡 =
휋 퐷
푏

4
훾 +

3훾 퐴
4휋 퐴 +

2(1 − 휇)퐴 − 2퐴
휋 퐴 +

3휒훾 (1 + 퐴 )
2휋 퐴 = 푘

휋 퐷
푏  

 
(3.175) 

 
where 훾 is a parameter that correspond to half wavelength, or 훾 = 푎/푏, being  푘 the coefficient of 
elastic local buckling defined as: 
 

푘 =
4
훾 +

3훾 퐴
4휋 퐴 +

2(1 − 휇)퐴 − 2퐴
휋 퐴 +

3휒훾 (1 + 퐴 )
2휋 퐴  

 
(3.176) 

 
When 휕푘 휕훾⁄ = 0, the minimum value of 푘 is obtained, and it is known as 푘 . By deriving the 
equation (3.176) respect 훾 and optimizing the function, we can obtain the value of the critical half 
wavelength: 

훾 = 2휋 ·
퐴

3퐴 + 6휒(1 + 퐴 )

/

 

 
(3.177) 

 
This way, and replacing this last equation in (3.176), the value of 푘  can be derived. The critical 
stress of local buckling of the plate, clamped in the two loaded edges and restricted to buckling in 
the other two, can be defined by: 
 

휎 =
푘 휋 퐸

12(1 − 휇 )(푏/푡)  
 

(3.178) 

 
When the rotational stiffness of the unloaded edges tends to zero (휁 = 0), then 휒 is also zero and 
consequently, the half wavelength is equal to 1.52  [case a) of Fig. III.30]: 
 

휒 = 0 
 

휙1 = 0;   휙2 = −2;   휙3 = 1 
 

퐴 =
1
3 +

−4
5 +

1
3 +

4
7 +

−2
4 +

1
9 = 0.049 

 

퐴 = 48 +
144

5 − 72 = 4.8 

 
퐴 = 1− 6 + 4 = −1 
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훾 = 2휋 ·
0.049
14.4

/

= 1.52 

 

 
a)                             b) 

Fig. III.30  Critical stress depending on boundary conditions.  
 
This would correspond to the case of a plate loaded in two of the four edges and simply supported 
in the other two, so that the restriction against rotation of these last edges of the tube would not be 
considered. The value obtained before means that the distance called “a” in figure III.28 would be 
equal to 1.52 · 푏, being b  the width of the tube. On the contrary, when the rotational rigidity of the 
two unloaded edges is assumed infinite, (휁 → ∞), then [case b) of Fig. III.30]: 
 

휒 = ∞ 
 

휙1 = ∞;   휙2 = −∞;   휙3 = ∞ 
 

퐴 = 퐴 = 퐴 = ∞ 
 
And solving the limit of the function that expresses the critical half wavelength, it is derived that13: 
 

lim
→

훾 = 1.00 

 
In this case, the magnitude “a” coincides with the width of the tubular section, a=b. 
 
3.3.3 Influence of the slenderness of the plate on the amplitude of local buckling. 
 
The importance of local buckling effects in determining the confinement effect of rectangular CFT 
sections has been widely explained before. This fact is due to the influence of transversal rigidity of 
the plates on the deformability of the tube, and the derived pressure to the core. The decisive 
variable in order to determine the amplitude of the wavelength in transversal deformation is the 
length of the widest side of the tube. As larger is the length between the two rigid edges, larger is 
the deflection of the mid-span area. Besides, this increase of deformation is clearly non-linear. 
 
As it has been mentioned before, the deformability of the plate has a clear influence on the capacity 
of the tube of providing confinement to the core. As larger is the B/t ratio, lower is the critical 
stress.  
 
According to Bleich (Bleich, 1952), the parameter of the rotational restriction of the unloaded edges 
in square-shaped CFT sections can be obtained through the following expression: 
 

휒 =
훼 · 푡
푡 ·

푟′
휌  

 
(3.179) 

 
                                                             
13 The first who propose this value was Uy and their collaborators (Uy, et al., 1996) 
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where: 

푟′ = 2 −
푡 · 푏
푡 · 푏  

 
(3.180) 

 

휌 =
1
휋 · tanh

휋 · 푏
4 · 푏 · 1 +

휋 · 푏 2 · 푏⁄
sinh 휋 · 푏 2 · 푏⁄  

 
(3.181) 

 
By following the condition: 
 

푡 · 푏
푡 · 푏 ≤ 1.0 

 

 

(3.182) 

 
푡  Thickness of the transversal plate to the analyzed one. 
푡  Thickness of the analyzed plate 
푏  Width of the transversal plate to the analyzed one. 
푏  Width of the analyzed plate 
훼 Experimental coefficient, with an approximated value of 0.80 

 
Thus, for instance, in case of a square-shaped section of 400x400 mm width and 3 mm thick: 
 

휌 =
1
휋 · tanh

휋
4 · 1 +

휋 2⁄
sinh(휋 2⁄ ) = 0.351 

 

 

휒 = 훼 ·
푟′
휌 = 0.80 ·

1
0.351 = 1.458 

 

 
∅ = 1.458     ;     ∅ = −2(휒 + 1) = −4.916     ;      ∅ = 휒 + 1 = 2.458 

 
퐴 = 0.079    ;     퐴 = 8.832    ;     퐴 = 0.000    ;     퐴 = −0.776    ;    퐴 = −1.000 

 
훾 = 1.289     ;       흈풄풓 = ퟏퟔퟐ.ퟒퟐퟎ  푵/풎풎ퟐ    

The critical stress of the plate is about 162.42 N/mm2, a value clearly below the yield limit stress. 
And in a similar square-shaped section of 3 mm thick, but this time 200 mm width [as a result of 
introducing stiffening plates inside the core]: 
 

휌 =
1
휋 · tanh

휋
4 · 1 +

휋 2⁄
sinh(휋 2⁄ ) = 0.351 

 

 

휒 = 훼 ·
푟′
휌 = 0.80 ·

1
0.351 = 1.458 

 

 
∅ = 1.458     ;      ∅ = −2(휒 + 1) = −4.916     ;      ∅ = 휒+ 1 = 2.458 

 
퐴 = 0.079    ;     퐴 = 8.832    ;     퐴 = 0.000    ;     퐴 = −0.776    ;    퐴 = −1.000 

 
훾 = 1.289     ;      흈풄풓 = ퟔퟒퟗ.ퟔퟖퟎ  푵/풎풎ퟐ 
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The critical stress grows up to 649.68 N/mm2. 
The critical stress –used to determine the point from where the plate starts to buckle- has been 
increased almost four times, although the half wavelength ratio is still the same. While the width 
has been reduced only to a half-part, the critical stress has been enhanced 4 times and buckling 
clearly starts after the yield limit stress of the plate. This is the reason why geometric proportions 
of the plate [width to thickness] are crucial in order to determine the effects of buckling; in figure 
III.31 presented below, the influence of combining different widths and thicknesses on the value of 
the critical stress is shown.  

 
Fig. III.31  Comparison of critical stresses between tubes of different widths and thicknesses.  

All the combinations under the dashed line are susceptible of buckling in the elastic range. 

 
3.3.4 Resistant advantages of introducing stiffening plates in square CFT sections. 
 
As it has been explained in previous Sections, the final purpose of this study is to valorize the 
behavior and advantages of stiffening CFT sections. Different from circular concrete-filled tubes, the 
fact of introducing stiffening plates in concrete core of rectangular sections seems to provide to the 
tube more than one mechanical advantage. To determine the influence of stiffening plates on the 
compressive behavior of square CFT sections, it is also convenient to differentiate thin-walled tubes 
from thick-walled ones.  
 
In the first case, from conclusions obtained in Section 3.3.3, it can be derived that as larger is the 
slenderness of the plates in rectangular sections, wider is also the transversal deformation and 
therefore, lower is its global strength. The fact of stiffening these sections reduces the buckling 
length and increases the global strength of the composite section automatically. The aim of 
“stiffening” square-shaped sections is to reduce the slenderness of the plates involved and to 
standardize the behavior of these sections through an individual response of different alveoli. By 
reducing the buckling length of loading cells, it is also possible to diminish the second order effects 
notably.   
 
This effect can be observed through the diagram of figure III.31 in the previous Section. This figure 
shows how the critical stress of the plates is dizzily increased, as its size diminishes. As an example, 
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a square-shaped tube of 400mm width and 3 mm thick never reaches the yield limit stress of steel, 
since its plates start buckling before; contrarily, another section of equivalent thickness with 
reticulated alveoli of 200 mm width can take full advantage of the yield stress of steel. This fact 
justifies itself the introduction of stiffening plates in square-shaped tubes. By disposing internal 
plates, thin-walled tubes can be converted into thick-walled tubes; besides, the plates which are 
embedded in the core are restricted to buckling and therefore, they could be assumed really thin. 
 
Analyzing now the effect of introducing stiffening plates with different thicknesses, it can be 
observed how the half wavelength parameter decreases as the thickness of the contiguous plate 
grows. In thin-walled square tubes, the introduction of these plates is really decisive. From the 
figure shown before, it can be derived that for equivalent plate thicknesses [both inner and outer 
plates of 5 mm], the half wavelength of the deformed shape is approximately 1.30 times the length 
of the widest side of the section [Fig. III.32]. Contrarily, it is also shown how the result of disposing 
these plates two times thicker than the tube leads to an equivalent result as the one obtained from a 
plate embedded by the four edges [훾 = 1.05 ≈ 1]. 
 

 
Fig. III.32  Evolution of the half wavelength depending on the thicknesses of the plates, in a 

5mm-thick reticulated square tube.  
The half wavelength diminishes dizzily with the growth of the thickness of the stiffening plate. 

This diagram belongs to a square-shaped tube of 5 mm wall-thickness. 
 

The “contiguous plate” in the previous diagram refers to the stiffening plate. 
For the second group corresponding to thick-walled rectangular sections, the presence of stiffening 
plates is also important: they reduce the deflection at the mid-span of the outer plates. This way, 
the confinement effect can be also clearly enhanced. Bending of the plates in a thick-walled 
rectangular tube only occurs in the cross-sectional plane, as it is shown in figure III.33 a).  
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                            a)                                                         b) 
 

Fig. III.33  Distribution of pressure on the steel tube: a) unstiffened, b) stiffened.  
The introduction of these plates reduces considerably the deflections of the deformed shape. 

It will be demonstrated later that, contrarily to circular sections, in stiffened square-shaped tubes 
tensile forces of the stiffening plates are usually larger than tensile forces of the tube walls,  푓 > 푓 . 
This fact is caused by the stiffening provided by these inner plates and the poor efficiency of the 
square geometry in distributing the pressure coming from concrete expansion.  

Through a bidimensional elastic analysis of square-shaped sections, and by applying a uniform 
distributed pressure, we can clearly note the benefits of introducing stiffening plates in thick-
walled rectangular and square-shaped CFT sections. The stiffening plates introduced in concrete 
core absorb most part of the pressure axially, coming from volumetric expansion of concrete. Thus, 
the span of the tube plates is reduced in a half part, and the curvature of the deformed shape also 
diminishes [see figure III.34].  

 
a)                                       b)                                        c)                                          d) 
 

Fig. III.34  Influence of stiffening plates on lateral deformability. 
The introduction of stiffening plates improves the confinement effect also in thick-walled tubes, 

since it reduces the deformability of the plates in the cross-sectional plane. 
[a] Uniform pressure  [b] Axial load  [c] Bending moments  [d] Deformed shape 

The influence of the ratio between the thicknesses of the plates is not decisive in order to restrain 
the deformability of thick-walled tubes, but it is in thin-walled sections. A simple elastic analysis in 
the cross-sectional plane has been done with different thicknesses of the stiffening plates [the first 
case with both thicknesses equal to 0, a second case with the inner plate 50% thinner than the 
outer and a third case with the inner plate two times thicker]. Note that in the two latter cases, the 
axial load absorbed by the stiffening plates is much higher than that of circular sections, owing to 
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the inefficiency of the square geometry [Fig. III.21]. Benefits in this case are not only significant, but 
also decisive to guarantee the confinement effect on concrete core. 

 
  a)  Deformed shape              b) 휎                   c) 휎                d) 휎 ,  

 
Fig. III.35  Influence of the thickness of the stiffening plates on the deformability of the tube.  
The introduction of these plates reduces considerably the half wavelength of the deformed shape. 

[a] Deformed shape  [b] Stress from Axial Force  [c]  Stress from Bending Moment    
[d] Total Max Stress   

 
The surprise was to discover how the plate thickness does not have a decisive importance on the 
deformed shape of thick-walled tubes. Once the tube is stiffened, internal plates become axially 
tensioned by restricting the deflection of the plates, independently of their thickness [deflections 
from bending are much higher than elongation of the stiffening plate, see Fig. III.36]. As a result, 
ductility may be also clearly enhanced, since the collapse seems to be clearly delayed [see the 
results presented in Chapter VI].  
 

 
Fig. III.36  Influence of the thickness of the stiffening plates on the deformability of the tube.  
The introduction of these plates reduces considerably the half wavelength of the deformed shape. 
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