

Análisis de la herencia epigenética en trastornos neurológicos

Susana Iraola Guzmán

ADVERTIMENT. La consulta d'aquesta tesi queda condicionada a l'acceptació de les següents condicions d'ús: La difusió d'aquesta tesi per mitjà del servei TDX (**www.tdx.cat**) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d'investigació i docència. No s'autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d'un lloc aliè al servei TDX. No s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (**www.tdx.cat**) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the TDX (**www.tdx.cat**) service has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized neither its spreading and availability from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the TDX service is not authorized (framing). This rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate the name of the author.

Departamento de Biología Celular

ANÁLISIS DE LA HERENCIA EPIGENÉTICA EN TRASTORNOS NEUROLÓGICOS

Memoria presentada por **Susana Iraola Guzmán** para optar al grado de Doctora por la Universidad de Barcelona

Dr. Xavier Estivill Pallejà

Dra. Raquel Rabionet Janssen

Dr. José Antonio del Río Fernández

Centro de regulación Genómica (CRG)

A vosotros, -Siempre estaréis a mi lado

Agradecimientos

No es fácil sintetizar en pocas palabras lo que han supuesto estos cinco años de trabajo en el laboratorio de Xavier Estivill. Tanto a nivel personal como profesional han sido muchas las personas que me han apoyado en este largo camino, contribuyendo en cada uno de los pequeños pasos que he ido dando. En primer lugar quería destacar el apoyo prestado por mis directores de tesis, Raquel Rabionet y Xavier Estivill–gracias por ofrecerme la oportunidad de crecer científica y personalmente a vuestro lado–.

Xavier, quiero darte las gracias por confiar en mí, por tu apoyo, tus buenos consejos y por las oportunidades que me has brindado. Gracias, por tu cercanía, sentido del humor y por hacer de la ciencia un espacio crítico, político y humano.

Kelly, gracias por zambullirte conmigo, hace ya cinco años, en el "maravilloso mundo de la Epigenética". Ha sido un continuo descubrimiento, de técnicas, teorías y trabajos. Gracias por tu rigor y sabiduría científica.

Por otra parte, quería agradecer a todos aquellos que han contribuido de alguna manera a la realización de este trabajo, en especial, a los donantes y a sus familias. Gracias al Dr. Isidre Ferrer y a su equipo de investigación por su enorme disponibilidad e interés y por su preciado banco de muestras! A Eulàlia Martí, por todo el seguimiento que ha realizado, tanto en las numerosas reuniones como con sus ideas y opiniones.

A todos aquellos que me han ayudado desde el comienzo de este proyecto cuando poco se sabía de las técnicas que íbamos a emplear. Silvia Carbonell, gracias por todo el interés y el esfuerzo invertido en arrancar este proyecto, por tus sabios consejos y tu infinita voluntad. Carles, Anna C. y Pili por los"piros" y "bisulfitos" compartidos, y a Justo y Anna P. por vuestra disponibilidad. Mariona por tus críticas constructivas y por responder a todas mis preguntas sobre metilación. A Magda, "por dejarnos hacer" el 450K y a Nadia por nuestras largas charlas sobre el "piro" y factores ambientales. A Anna F. y a Heidi por las hibridaciones, a Sergi, por el dominio del MLPA y a la "reina" de los Taqman, Elena. A Georgia, por ayudarme a entender un poco mejor la estadística y por las clases "express" de *R*!

A mi familia científica, el antiguo P13. Desde el principio me recibisteis con los brazos abiertos, siempre dispuestos ayudar en lo que fuera necesario y a compartir mil y una anécdotas y 'riallas'. Comer con vosotros cada día ha sido maravilloso! Siempre recordaré los cafés temáticos en la terraza, en los que se rememoraban viejas historias, desde el IRO hasta el CRG, pasando por el CMIMA. A Marta, Yolanda, Eva, Carre, Birgit, Mónica B., Silvia P., Elisa, Ester, Maya, Bruni *jesteu totes bollas!* (Manel, tú eres el único cuerdo). Y a las incorporaciones posteriores Johanna, Elisabet, Justo (bueno, "Manitas") y Dani. Por todos los vídeos, cenas, calçotadas, excursiones, y todas las excusas posibles para reunirnos. Ha sido un

enorme placer compartir este etapa con vosotros. También gracias a las estrellas invitadas, los sabáticos del lab. Jean-Jaques, al principio me costó aceptar que ocuparás el sitio de Ester, pero mereció la pena. Gracias por compartir tus puntos de vista, por las conversaciones sobre ciencia y por tus consejos. A Tim, por revolucionar el laboratorio con tu spanglish y las divertidas teorías poco convencionales sobre la influencia de la epigenética en todos los ámbitos de la vida y la ratio entre la longitud del dedo corazón y el anular.

A Elisa y Ester, mis "hermanas científicas", siempre pendientes de que todo vaya bien. Un enorme gracias, sois increíbles y un ejemplo a seguir por vuestra calidad profesional y personal. Por vuestra empatía y por saber ver siempre el "bright side of life", por todas las meriendas científicas en las que digeríamos los miedos, inquietudes y dificultades. Habéis sido unas compañeras excepcionales y unas mejores amigas. A Bruni, por abrirme las puertas de su casa, literalmente, a Marta, por ser única, por nuestras conversaciones cíclicas sobre la vida, el té, la música y el "Puig Castellar". A Maya, por tu alegría y sentido del humor, que suerte que estés de vuelta! Y a Eva, por tu sinceridad y tesón. A Mónica, "con el sur a cuestas", gracias por tu ánimo, tus buenos consejos y por los de tus amigas!

Gracias al grupo de inglés del CRG, Óscar, Mariana, Gari, Roser y Baldu, porque formamos un grupo mítico que nos ha unido a lo largo de,....i6 años! Gracias por todo el apoyo y por los preciosos regalos que quedan para la posteridad. Ah, y a Adonis, mi compañero infatigable de Cistella, somos lady halcón, uno va de noche y otro de día, pero mantenemos la cesta activa.

Remontándome a los inicios de mi andadura científica, debo agradecer a Lauro Sumoy todo el apoyo prestado, por contar conmigo y por ayudarme a continuar con mi carrera científica. A Franc, por enseñarme tantas cosas sobre la biología molecular, y a todo el equipo de microarrays de la época, sobre todo a Eva y Anna. A mis compañeros del libB, que me acogieron justo cuando me acaba de instalar. Daniel, gracias por enseñarme los trucos de los cultivos primarios, por ser tan buena persona y itan divertido! Zoila y Yolanda, por explicármelo todo sobre Barcelona, la historia del instituto, la del grupo y por toda vuestra comprensión. A mis niñas, un enorme gracias, por estar ahí y ayudarme a sentirme como en casa, Mercedes, Lu y Noe.

En el terreno personal, desde fuera del laboratorio, son muchas las PERSONAS –en mayúsculas– que me han ayudado en este largo camino. Mi cuchipandi preferida, Irene, Cinzia, Jessica, Laia, Diana, Laura,... icada cual mas preciosa!, y Marta, Renato y Giovanni. Me encanta contar con vosotros para cualquier cosa! Gracias por animarme, por aguantar mis rollos sobre ciencia, por todos los "tronkas day" y los que vendrán, y las clases de yoga-masajes-cena improvisadas. A "mi Sara", por llevarme el seguimiento exhaustivo de la escritura y entrega, porque "representa" que esto se acaba. A Carmela, Teté, Jordi, Liby, Sara y Floyd, por vuestra alegría y entusiasmo compartido. Volviendo los pasos hacia mi tierra querida, a pesar de la distancia, Almu, Estefi y Elena, siempre me hacéis sentir en "casa" y como si el tiempo no hubiese pasado. Gracias por vuestro amor, por preocuparos por mí, por compartir tantos momentos inolvidables de verdadera amistad. A Nerea, Eva, Amayita y Jesús, gracias por ser como sois, por mantener vivo el espíritu y por vuestra forma de ver la vida. Gracias por todo los momentos que hemos compartido y por todo el apoyo que me habéis dado. Ya no tengo excusa para no ir a hacer de tía más a menudo!!! Eso sí, de momento yo estoy vacunada.

Y finalmente gracias a mi familia (y a Skype!!). Marta, Miguel, podría escribir cien páginas hablando de los millones de recuerdos que me unen a vosotros, cómo me conocéis, queréis, comprendéis y aceptáis. Sin vuestro apoyo, claramente, nada de esto hubiera sido posible, gracias por EXISTIR! A mis sobrinos "preferidos", Iker y Nerea, por todo el cariño del mundo, por vuestras ocurrencias, espontaneidad y por ayudarme a recordar cuáles son las cosas importantes de la vida. A Pila y Gele, Ingrid y Félix, Juanma y Marian por todo vuestro cariño, apoyo y por los buenos consejos en momentos cruciales.

Raúl, todo empezó un día de septiembre de hace seis años...tú clavaste la mirada en mí y yo la devolví...has sido un compañero excepcional, me has apoyado en mis decisiones, en mis aventuras y descalabros, dejándome aprender y experimentar a mi manera. Juntos hemos aprendido muchas cosas, el uno del otro, de la vida y de nosotros mismos. Lecciones irrepetibles y necesarias. Para tí, el más profundo de los agradecimientos, por estar ahí, a mi lado siempre "...mirando con los ojos de un niño que mira sin juzgar y cada paso advierte que para cada problema hay una solución, queriendo que los demás se sientan tan felices como él se siente, aprovechando el tiempo al máximo, llorando y riendo con la misma disponibilidad, perdonando y luego jugando como si nada hubiese sucedido, diciendo lo que siente cuando lo siente y como lo siente..."

Prefacio

Las enfermedades neurodegenerativas, como la enfermedad de Alzheimer (EA) y la enfermedad de Parkinson (EP), representan un grave problema de salud pública, sobre todo en los países occidentales, donde el envejecimiento creciente de la población augura un incremento sustancial de la prevalencia de estas patologías. A pesar de que ciertos tratamientos proporcionan una disminución de las manifestaciones clínicas, el avance del proceso neurodegenerativo es irreversible. La identificación de los mecanismos, como la interacción entre factores genéticos y medio-ambientales, implicados en la etiología y evolución de estas patologías es de importancia capital. En el presente trabajo de tesis se explora el papel de la metilación del ADN genómico y el mosaicismo genético en enfermedades neurodegenerativas. El análisis del perfil de metilación del ADN se realizó empleando dos arrays de metilación: 'HumanMethylation' (27K y 450K, Illumina), cuyas sondas distribuidas estratégicamente por todo el genoma, permiten detectar cuantitativamente el estado de metilación de unos 27.000 y 450.000 dinucleótidos CpG, respectivamente. La comparación de un total de 60 individuos (28 con enfermedad de Alzheimer, 3 con enfermedad de Parkinson y 29 controles) ha permitido identificar el perfil de metilación del genoma de distintas áreas del sistema nervioso central (SNC) (corteza, amígdala, hipocampo, hipotálamo, protuberancia, sustancia negra y cerebelo), mostrando la existencia de un patrón diferencial entre hombres y mujeres, asociado a la inactivación del cromosoma X, un patrón independiente para cerebelo, y un patrón de metilación de un conjunto de dianas característico de los estadíos 3 y 4 de Braak de la EA. Asimismo, se observaron diferencias significativas de metilación (1.112 CpGs, p<0,01) en el cerebelo asociadas a la EA, confirmando su implicación en la enfermedad. El análisis del mosaicismo somático del cerebro se realizó empleando el "SurePrint G3 human CGH array 400K" (Agilent). Tomando como área de referencia el cerebelo se detectaron ganancias o pérdidas de material genómico entre áreas del cerebro de un mismo individuo. Dos muestras de corteza, pertenecientes a dos controles, presentaron una ganancia de material genómico en el gen WWOX, mientras que tan solo una muestra mostró una ganancia de material genómico en el gen ADAM5P3A. La elevada frecuencia de variantes en el número de copia en WWOX y su posible implicación en EA llevó a genotipar un mayor número de individuos, aunque ninguno mostró mosaicismo somático. El análisis del estado de metilación de las sondas ubicadas en WWOX permitió observar una disminución significativa de la metilación entre pacientes y controles en 14 sondas (T-student, p<0.05), sugiriendo que la regulación epigenética de WWOX puede estar alterada en la EA. En conjunto, estos resultados muestran la alteración de los perfiles de metilación del SNC en relación con la EA tardía (estadíos 3 y 4 de Braak). Principalmente, en una de las regiones cuya afectación patológica en la EA ha sido más controvertida, cerebelo. Es especialmente interesante remarcar que la aparición de las lesiones características de cerebelo tienen lugar en estadíos más avanzados, indicando la posibilidad de que la alteraciones epigenéticas observadas podrían corresponder a un evento prematuro en la progresión de la patología.

Abstract

Neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD), represent a major issue of public health in developing countries where the aging of the population is leading to a progressive increase of its prevalence rates. Currently, several therapeutic strategies help to palliate clinical symptoms, but the neurodegeneration is progressive and irreversible. Identification of underlying mechanisms leading to these disorders is essential to improve patient's life expectancy and quality. In this context, many efforts have been focused on identifying genetics and environment causes of these disorders with little success, highlighting the need to evaluate new mechanisms and factors involved. The present thesis project has explored the implication of new mechanisms, such as DNA methylation and somatic mosaicism in AD and PD. The analysis of DNA methylation was performed with a new methylation array technology: 'HumanMethylation' (27K and 450K, Illumina), whose probes strategically distributed along the human genome, enables to quantify the methylation state of around 27,000 and 450,000 CpG sites, respectively. The pattern of methylation of 60 subjects (28 AD, 3 PD and 29 unaffected) with four to seven brain regions (cortex, amygdala, hippocampus, hypothalamus, pons, substantia nigra and cerebellum) has been assessed. The study has shown three main clusters depending on gender (female/male), brain area (cerebellum vs others) and disease stage (AD3 vs AD4). In addition, a differential analysis performed in individual CpG sites proved the presence of significant differences associated to AD patient's cerebellum (1112 CpG sites, p<0.01). Somatic mosaicism analysis has been carried out with a 'SurePrint G3 human CGH array 400K' (Agilent) to detect intra-individual genomic gains and losses compared to cerebellum. A total of two cortex samples showed a genomic gain in the WWOX gene, whereas only one sample showed a gain on ADAM5P3A. WWOX has been considered as a potential candidate gene in previous AD studies, and was further analyzed in a larger cohort of human brain samples. Genotyping assays did not confirm the presence of new somatic mosaicism cases, but it was possible to determine the genotype distribution and compared data between samples. A significant hypomethylation of the WWOX promoter region was observed in AD patients compared to controls subjects (T-test, p<0.05) in 14 probes, suggesting a potential regulation of expression by methylation. Overall, these results highlight the implication of epigenetic mechanisms in neurodegenerative disorders, as AD. In particular, it is remarkable the specific pattern of methylation in the cerebellum in intermediate stages of AD, suggesting an overlap with early modifications, which could contribute to unraveling new mechanisms implicated in AD.

Tabla de contenido

Prefacio xi Abstract xii Tabla de contenido xiii 1. Introducción 1 1.1. Enfermedades Neurodegenerativas 3 1.1.1. Diagnóstico y clasificación de las enfermedades neurodegenerativas 4 1.1.2. Neurobiología de las enfermedades neurodegenerativas 12 1.1.3. Bases genéticas de las enfermedades complejas 18 1.2. Nuevas fuentes de variabilidad genómica 24 1.2.1. Variantes estructurales 25 1.2.2. Mecanismos epigenéticos en enfermedades neurodegenerativas 30 2. Objetivos 41 3. Materiales y métodos 45 3.1. Muestras humanas de cerebro obtenidas de individuos donantes 47 3.2. Extracción de material genético de muestras humanas de cerebro 48 3.2.1. Ácido desoxirribonucleico (ADN) 48 3.2.2. Ácido ribonucleico (ADN) 50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro 53 3.4. Detección de variantes estructurales de número de copias 55 3.4.1. Array de hibridación genómica comparada: aCH 55 3.4.2. Validación de cambios estructurales en el número de copias 56
Abstract xii Tabla de contenido xiii 1. Introducción 1 1.1. Enfermedades Neurodegenerativas 3 1.1.1. Diagnóstico y clasificación de las enfermedades neurodegenerativas 4 1.2. Neurobiología de las enfermedades neurodegenerativas 12 1.3. Bases genéticas de las enfermedades complejas 18 1.2. Nuevas fuentes de variabilidad genómica 24 1.2.1. Variantes estructurales 25 1.2.2. Mecanismos epigenéticos en enfermedades neurodegenerativas 30 2. Objetivos 41 3. Materiales y métodos 45 3.1. Muestras humanas de cerebro obtenidas de individuos donantes 47 3.2. Extracción de material genético de muestras humanas de cerebro 48 3.2.1. Ácido desoxirribonucleico (ADN) 48 3.2.2. Ácido ribonucleico (ARN) 50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro 53 3.4. Detección de variantes estructurales de número de copias 55 3.4.1. Array de hibridación genómica comparada: aCGH 55 3.4.2. Validación de cambios estructurales en el número de copia 56 3.5.1. Conversión de bisulfito de ADN genómico 64
Tabla de contenido xiii 1. Introducción 1 1.1. Enfermedades Neurodegenerativas 3 1.1.1. Diagnóstico y clasificación de las enfermedades neurodegenerativas 4 1.1.2. Neurobiología de las enfermedades neurodegenerativas 12 1.1.3. Bases genéticas de las enfermedades complejas 18 1.2. Nuevas fuentes de variabilidad genómica 24 1.2.1. Variantes estructurales 25 1.2.2. Mecanismos epigenéticos en enfermedades neurodegenerativas 30 2. Objetivos 41 3. Materiales y métodos 45 3.1. Muestras humanas de cerebro obtenidas de individuos donantes 47 3.2. Extracción de material genético de muestras humanas de cerebro 48 3.2.1. Ácido desoxirribonucleico (ADN) 50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro 53 3.4. Detección de variantes estructurales de número de copias 55 3.4.1. Array de hibridación genómica comparada: aCGH 55 3.4.2. Validación de cambios estructurales en el número de copia 56 3.5. Detección de metilación del ADN mediante conversión de bisulfito 64 3.5.2. Identificación global de la metilación del ADN en el genoma humano 66
1. Introducción 1 1.1. Enfermedades Neurodegenerativas 3 1.1.1. Diagnóstico y clasificación de las enfermedades neurodegenerativas 4 1.1.2. Neurobiología de las enfermedades complejas 12 1.1.3. Bases genéticas de las enfermedades complejas 18 1.2. Nuevas fuentes de variabilidad genómica 24 1.2.1. Variantes estructurales 25 1.2.2. Mecanismos epigenéticos en enfermedades neurodegenerativas 30 2. Objetivos 41 3. Materiales y métodos 45 3.1. Muestras humanas de cerebro obtenidas de individuos donantes 47 3.2. Extracción de material genético de muestras humanas de cerebro 48 3.2.1. Ácido desoxirribonucleico (ADN) 48 3.2.2. Ácido ribonucleico (ARN) 50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro 53 3.4.1 Array de hibridación genómica comparada: aCGH 55 3.4.2. Validación de cambios estructurales en el número de copias 56 3.5. Detección de metilación del ADN mediante conversión de bisulfito 64 3.5.1. Conversión de bisulfito de ADN genómico 64 3.5.2. Identificación global de la metilación del ADN en el genoma humano 66
1.1. Enfermedades Neurodegenerativas 3 1.1.1. Diagnóstico y clasificación de las enfermedades neurodegenerativas 4 1.1.2. Neurobiología de las enfermedades neurodegenerativas 12 1.1.3. Bases genéticas de las enfermedades complejas 18 1.2. Nuevas fuentes de variabilidad genómica 24 1.2.1. Variantes estructurales 25 1.2.2. Mecanismos epigenéticos en enfermedades neurodegenerativas 30 2. Objetivos 41 3. Materiales y métodos 45 3.1. Muestras humanas de cerebro obtenidas de individuos donantes 47 3.2. Extracción de material genético de muestras humanas de cerebro 48 3.2.1. Ácido desoxirribonucleico (ADN) 48 3.2.2. Ácido ribonucleico (ARN) 50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro 53 3.4. Detección de variantes estructurales de número de copias 55 3.4.1. Array de hibridación genómica comparada: aCGH 55 3.4.2. Validación de cambios estructurales en el número de copia 56 3.5. Detección de metilación del ADN mediante conversión de bisulfito 64 3.5.1. Conversión de bisulfito de ADN genómico 64 3.5.2. Identificación global de la metilación del ADN en
1.1.1. Diagnóstico y clasificación de las enfermedades neurodegenerativas 4 1.1.2. Neurobiología de las enfermedades neurodegenerativas 12 1.1.3. Bases genéticas de las enfermedades complejas 18 1.2. Nuevas fuentes de variabilidad genómica 24 1.2.1. Variantes estructurales 25 1.2.2. Mecanismos epigenéticos en enfermedades neurodegenerativas 30 2. Objetivos 41 3. Materiales y métodos 45 3.1. Muestras humanas de cerebro obtenidas de individuos donantes 47 3.2. Extracción de material genético de muestras humanas de cerebro 48 3.2.1. Ácido desoxirribonucleico (ADN) 48 3.2.2. Ácido ribonucleico (ARN) 50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro 53 3.4.1. Array de hibridación genómica comparada: aCGH 55 3.4.2. Validación de cambios estructurales en el número de copia 56 3.5. Detección de metilación del ADN mediante conversión de bisulfito 64 3.5.1. Conversión de bisulfito de ADN genómico 64 3.5.2. Identificación global de la metilación del ADN en el genoma humano 66
1.1.2. Neurobiología de las enfermedades neurodegenerativas 12 1.1.3. Bases genéticas de las enfermedades complejas 18 1.2. Nuevas fuentes de variabilidad genómica 24 1.2.1. Variantes estructurales 25 1.2.2. Mecanismos epigenéticos en enfermedades neurodegenerativas 30 2. Objetivos 41 3. Materiales y métodos 45 3.1. Muestras humanas de cerebro obtenidas de individuos donantes 47 3.2. Extracción de material genético de muestras humanas de cerebro 48 3.2.1. Ácido desoxirribonucleico (ADN) 48 3.2.2. Ácido ribonucleico (ARN) 50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro 53 3.4. Detección de variantes estructurales de número de copias 55 3.4.1. Array de hibridación genómica comparada: aCGH 55 3.4.2. Validación de cambios estructurales en el número de copia 56 3.5.1. Conversión de bisulfito de ADN genómico 64 3.5.1. Identificación global de la metilación del ADN en el genoma humano 66
1.1.3. Bases genéticas de las enfermedades complejas 18 1.2. Nuevas fuentes de variabilidad genómica 24 1.2.1. Variantes estructurales 25 1.2.2. Mecanismos epigenéticos en enfermedades neurodegenerativas 30 2. Objetivos 41 3. Materiales y métodos 45 3.1. Muestras humanas de cerebro obtenidas de individuos donantes 47 3.2. Extracción de material genético de muestras humanas de cerebro 48 3.2.1. Ácido desoxirribonucleico (ADN) 48 3.2.2. Ácido ribonucleico (ARN) 50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro 53 3.4. Detección de variantes estructurales de número de copias 55 3.4.1. Array de hibridación genómica comparada: aCGH 55 3.4.2. Validación de cambios estructurales en el número de copia 56 3.5. Detección de metilación del ADN mediante conversión de bisulfito 64 3.5.1. Conversión de bisulfito de ADN genómico 64 3.5.2. Identificación global de la metilación del ADN en el genoma humano 66
1.2. Nuevas fuentes de variabilidad genómica 24 1.2.1. Variantes estructurales 25 1.2.2. Mecanismos epigenéticos en enfermedades neurodegenerativas 30 2. Objetivos 41 3. Materiales y métodos 45 3.1. Muestras humanas de cerebro obtenidas de individuos donantes 47 3.2. Extracción de material genético de muestras humanas de cerebro 48 3.2.1. Ácido desoxirribonucleico (ADN) 48 3.2.2. Ácido ribonucleico (ARN) 50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro 53 3.4. Detección de variantes estructurales de número de copias 55 3.4.1. Array de hibridación genómica comparada: aCGH 55 3.4.2. Validación de cambios estructurales en el número de copia 56 3.5. Detección de metilación del ADN mediante conversión de bisulfito 64 3.5.1. Conversión de bisulfito de ADN genómico 64 3.5.2. Identificación global de la metilación del ADN en el genoma humano 66
1.2.1. Variantes estructurales 25 1.2.2. Mecanismos epigenéticos en enfermedades neurodegenerativas 30 2. Objetivos 41 3. Materiales y métodos 45 3.1. Muestras humanas de cerebro obtenidas de individuos donantes 47 3.2. Extracción de material genético de muestras humanas de cerebro 48 3.2.1. Ácido desoxirribonucleico (ADN) 48 3.2.2. Ácido ribonucleico (ARN) 50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro 53 3.4.1. Array de hibridación genómica comparada: aCGH 55 3.4.2. Validación de cambios estructurales en el número de copia 56 3.5. Detección de metilación del ADN mediante conversión de bisulfito 64 3.5.1. Conversión de bisulfito de ADN genómico 64 3.5.2. Identificación global de la metilación del ADN en el genoma humano 66
1.2.2. Mecanismos epigenéticos en enfermedades neurodegenerativas 30 2. Objetivos. 41 3. Materiales y métodos. 45 3.1. Muestras humanas de cerebro obtenidas de individuos donantes. 47 3.2. Extracción de material genético de muestras humanas de cerebro. 48 3.2.1. Ácido desoxirribonucleico (ADN) 48 3.2.2. Ácido ribonucleico (ARN) 50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro. 53 3.4. Detección de variantes estructurales de número de copias 55 3.4.1. Array de hibridación genómica comparada: aCGH 55 3.4.2. Validación de cambios estructurales en el número de copia 56 3.5. Detección de metilación del ADN mediante conversión de bisulfito 64 3.5.1. Conversión de bisulfito de ADN genómico. 64 3.5.2. Identificación global de la metilación del ADN en el genoma humano 66
2. Objetivos. 41 3. Materiales y métodos. 45 3.1. Muestras humanas de cerebro obtenidas de individuos donantes. 47 3.2. Extracción de material genético de muestras humanas de cerebro. 48 3.2.1. Ácido desoxirribonucleico (ADN) 48 3.2.2. Ácido ribonucleico (ARN) 50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro 53 3.4. Detección de variantes estructurales de número de copias 55 3.4.1. Array de hibridación genómica comparada: aCGH 55 3.4.2. Validación de cambios estructurales en el número de copia 56 3.5. Detección de metilación del ADN mediante conversión de bisulfito 64 3.5.1. Conversión de bisulfito de ADN genómico. 64 3.5.2. Identificación global de la metilación del ADN en el genoma humano 66
3. Materiales y métodos
3. Materiales y metodos
 3.1. Muestras humanas de cerebro obtenidas de individuos donantes
 3.2. Extracción de material genético de muestras humanas de cerebro
3.2.1. Acido desoxirribonucleico (ADN) .48 3.2.2. Ácido ribonucleico (ARN) .50 3.3. Determinación del genotipo APOE en muestras humanas de cerebro .53 3.4. Detección de variantes estructurales de número de copias .55 3.4.1. Array de hibridación genómica comparada: aCGH .55 3.4.2. Validación de cambios estructurales en el número de copia .56 3.5. Detección de metilación del ADN mediante conversión de bisulfito .64 3.5.1. Conversión de bisulfito de ADN genómico .64 3.5.2. Identificación global de la metilación del ADN en el genoma humano .66
 3.2.2. Acido ribonucleico (ARN)
 3.3. Determinación del genotipo APOE en muestras humanas de cerebro
 3.4. Detección de variantes estructurales de número de copias
 3.4.1. Array de hibridación genómica comparada: aCGH
3.4.2. Validación de cambios estructurales en el número de copia
3.5. Detección de metilación del ADN mediante conversión de bisulfito64 3.5.1. Conversión de bisulfito de ADN genómico
3.5.1. Conversión de bisulfito de ADN genómico64 3.5.2. Identificación global de la metilación del ADN en el genoma humano66
3.5.2. Identificación global de la metilación del ADN en el genoma numano
3.5.3. Amplificación del genoma completo y cuantificación de la metilación del ADN por
pirosecuenciación de fragmentos de PCR72
3.6. Detección de la expresión de ARN76
3.6.1. Secuenciación de ARN de última generación (RNA-sequencing)
3.6.2. Cuantificación de la expresión génica por transcripción reversa y PCR semicuantitativa en tiempo real (RT-qPCR)
4. Resultados
4.1. Estudio del patrón de metilación del sistema nervioso central entre individuos
afectados por enfermedad de Alzheimer de aparición tardía, enfermedad de
Parkinson esporádica
4.1.1. Detección global de metilación: array Infinium HumanMethylation2785
4.1.2. Validación de los resultados de metilación mediante pirosecuenciación90
4.1.3. Análisis exploratorio del perfil de expresión de ARN mensajero en amígdala.
Correlación de la expresión génica con la metilación del ADN91
4.2. Estudio global de las alteraciones de metilación asociadas a estructuras del
sistema nervioso central en enfermedad de Alzheimer
4.2.1. Ensayo de genotipación de APOE para la determinación de la predisposición genética
de los individuos a padecer EA tardía

4.2.3. Cuantificación de la correlación entre los niveles de expresión génica de dianas CpG
con alteraciones en la metilación del ADN en muestras de cerebelo107
4.3. Detección de mosaicismo somático en el sistema nervioso central
4.3.1. Identificación de variantes estructurales por array CGH
4.3.2. Validación de mosaicismo somático de CNVs en el sistema nervioso central109
4.3.3. Genotipado de WWOX en muestras de enfermos de Alzheimer e individuos control
5. Discusión
6. Conclusiones
7 Bibliografía 139
O Alexa tale and a factorial and a second and a
8. Abreviaturas y símbolos
9. Anexo

Introducción

1.1. Enfermedades Neurodegenerativas

Las enfermedades neurodegenerativas se pueden definir como un conjunto de condiciones patológicas que afectan a la función y/o estructura de las células nerviosas, y que, a diferencia del envejecimiento fisiológico, presentan un sustrato neuropatológico común: la atrofia neuronal y la gliosis¹. La heterogeneidad de las manifestaciones clínicas dificultan el establecimiento de una definición médica precisa de las enfermedades neurodegenerativas. No obstante, éstas comprenden un vasto grupo de enfermedades neurológicas de causa desconocida e inicio insidioso, que tienen como atributo común el curso progresivo de los síntomas, reflejo de la desintegración paulatina de una parte o partes del sistema nervioso¹.

La mejora de las condiciones socio-sanitarias de los países desarrollados y en vías de desarrollo ha propiciado una mejora en la calidad de vida, aumentando de manera considerable la esperanza de vida. Este hecho, unido a la disminución de la natalidad, ha conducido en los últimos diez años a la inversión de la pirámide demográfica (se estima que el 30% de la población mundial será mayor de 60 años en el 2050)². El progresivo envejecimiento de la población es uno de los factores de riesgo más consistente en las enfermedades neurodegenerativas³, representando un serio problema de salud pública a nivel mundial. Según la Organización mundial de la salud (OMS), en el año 2005, los trastornos neurológicos fueron la causa de mortalidad de aproximadamente el 12% de la población, siendo la demencia, especialmente la enfermedad de Alzheimer, la segunda causa más frecuente (0,73%) tras los accidentes cerebrovasculares (9,9%)⁴ (www.who.int/mental_health/neurology/neurodiso/en/index.html).

La demencia es una de las patologías que despierta mayor preocupación a nivel clínico-sanitario. Por un lado, es la mayor causa de incapacitación y muerte geriátrica, y por otro, representa un gasto sanitario tan importante que es difícil de asumir por los países. La principal causa de demencia es la enfermedad de Alzheimer (EA), aunque otras enfermedades neurodegenerativas también presentan o pueden presentar demencia: enfermedad de Parkinson (EP), enfermedad de Pick o enfermedad de Huntington. Recientes estudios epidemiológicos, en base a datos de 2001, han situado la prevalencia mundial de demencia en un 3,9%, con una incidencia de 7,5 por 1000 habitantes y año en la población mundial mayor de 60 años⁵. Considerando las proyecciones del envejecimiento de la población, se calcula que en el año 2040 cerca de 81,1 millones de personas mayores de 60 años padecerán demencia en todo el mundo⁵. En consecuencia, existe un gran interés en elucidar las causas y mecanismos moleculares subyacentes a las enfermedades neurodegenerativas especialmente, aquellas que presentan una mayor prevalencia en la población, como EA y EP. La mejora en la caracterización molecular de estas enfermedades puede contribuir a frenar la progresión de estas patologías, paliar sus manifestaciones clínicas y mejorar la calidad de vida de los pacientes.

1.1.1. Diagnóstico y clasificación de las enfermedades neurodegenerativas

La descripción de las enfermedades neurodegenerativas es un concepto en continua evolución. Aunque en la actualidad se han descrito más de 200 entidades, no existe un criterio preciso a la hora de establecer los límites de cada entidad nosológica. Los principales problemas son, fundamentalmente, la presencia de manifestaciones clínicas y mecanismos moleculares neurodegenerativos comunes entre el envejecimiento fisiológico y la neurodegeneración (estrés oxidativo y daño mitocondrial), así como la variabilidad sintomatológica inter-individual. Este hecho, unido al desconocimiento de las causas que las originan, ha dificultado el establecimiento de criterios rigurosos para su detección y diagnóstico precoz⁶⁻ ⁸. Habitualmente el diagnóstico clínico se realiza por exclusión de otras patologías que cursan con una sintomatología similar.

Actualmente, el diagnóstico de las enfermedades neurodegenerativas va acompañado de una entrevista clínica, del seguimiento del transcurso de la enfermedad⁹ y de la respuesta al tratamiento. Para casi todas las patologías neurodegenerativas, la prueba diagnóstica concluyente se obtiene a partir de la información extraída de los estudios neuropatológicos realizados en tejido *post-mortem*, hecho que ha dificultado enormemente el diagnóstico precoz. A nivel internacional, existen principalmente dos sistemas de clasificación de las enfermedades neurodegenerativas: la 'International Classification of Disease' (ICD), publicada por la OMS y el 'manual estadístico y de diagnóstico de enfermedades mentales' (DSM), publicado por la Asociación Americana de Psiquiatría, siendo la ICD-10 (1993) y la DSM-IV-TR (2001) las versiones más actualizadas¹⁰. Sin embargo, algunas patologías escapan a los criterios de clasificación propuestos en estos compendios.

En los últimos años se ha puesto de manifiesto el solapamiento entre distintas patologías neurodegenerativas y la dificultad de separar cada enfermedad⁸. Entre los criterios de clasificación más aceptados, se encuentran: a/ la naturaleza de las manifestaciones clínicas y la ubicación de las lesiones neuropatológicas (Tabla 1); y b/ los mecanismos moleculares que median el proceso degenerativo (Tabla 2).

A su vez, se ha propuesto la clasificación de las patologías neurodegenerativas en base al tipo de células nerviosas afectadas, como la degeneración glial en parálisis progresivas, la atrofia múltiple y la degeneración cortico-basal. Debido a su reciente incorporación este criterio no está todavía muy extendido en la praxis clínica.

	Tabla 1. Clasificación de las enfermedades neurodegenerativas según sus manifestaciones clínicas y la ubicación de las lesiones neuropatológicas ¹¹			
Síndromes en los que predomina la demencia				
»	Enfermedad de Alzheimer			
»	Enfermedad de Pick			
» co	Otras enfermedades neurodegenerativas (enfermedad de Creutzfeldt-Jakob, degeneración ortico-basal, demencia con gránulos argirófilos)			
Sí	ndromes de los ganglios basales			
»	Síndromes Parkinsonianos			
•	Enfermedad de Parkinson			
•	Parálisis supranuclear progresiva			
•	Atrofias multisistémicas			
»	Síndromes discinéticos			
•	Enfermedad de Huntington			
•	Distonías de torsión y focales			
•	Síndrome de Gilles de la Tourette			
•	Temblor esencial			
•	Enfermedad de Hallervorden-Spatz			
Sí	ndromes espinocerebelosos			
»	Ataxia congénita			
»	Ataxia de Friedreich			
»	Ataxias progresivas no-Friedreich			
»	Ataxia progresiva del adulto			
»	Ataxia periódica			
»	Paraplejia espástica hereditaria			
Enfermedades de la motoneurona				
»	Esclerosis lateral amiotrófica			
»	Síndromes de motoneurona inferior			
•	Atrofias musculares espinales			
•	Parálisis bulbares			
»	Síndromes de motoneurona superior			
•	Esclerosis lateral primaria			
Polineuropatías degenerativas				
»	Síndrome de Guillain-Barré-Landry			
»	Neuropatía diabética			
»	Distrofia muscular de Duchenne			
»	Poliomielitis			

Tabla 2. Clasificación de las enfermedades neurodegenerativas según los mecanismos moleculares que evalúan el proceso neurodegenerativo ⁸				
Tauopatías				
•	Enfermedad de Alzheimer			
-	Demencia fronto-temporal tipo I			
-	Enfermedad de Pick			
•	Degeneración cortico-basal			
-	Enfermedad de las moto-neuronas con demencia			
-	Demencia fronto-temporal y enfermedad de Parkinson ligada al cromosoma 17			
•	Parálisis supra-nuclear progresiva			
Alta-sinucleinopatias				
•	Enfermedad de Parkinson			
•	Demencia de cuerpos de Lewy			
•	Atrofia multisistémica			
Neu				
Neu	rofilamentopatia			
•	Demencia con inclusiones neurofilamentosas			
Enfermedad priónica				
•	Enfermedad de Creutzfeldt-Jakob			
•	Síndrome Gerstmann-Straussler-Scheinker			
•	Insomnio familiar fatal			

Diagnóstico y clasificación de las demencias

Una de las entidades nosológicas más frecuente entre las enfermedades neurodegenerativas es la demencia. Esta se define como "un síndrome adquirido, producido por una causa orgánica capaz de provocar un deterioro persistente de las funciones mentales superiores, y que conlleva a una incapacidad funcional, tanto en el ámbito social como laboral, en personas que no padecen alteraciones a nivel de conciencia"¹². La demencia se diagnostica en base a criterios establecidos (DSM-IV TR, ICD-10), los cuales requieren la presencia de un déficit de memoria, la concurrencia de una o más alteraciones cognitivas en otras áreas del sistema nervioso central (SNC) –afasia, apraxia, agnosia, disfunción ejecutiva–, y la limitación en las capacidades ocupacionales y/o sociales con respecto a la situación previa.

Las causas que conducen al desarrollo de demencia son heterogéneas. Principalmente, son debidas a trastornos neurodegenerativos subyacentes o a trastornos vasculares, aunque también es posible encontrar una mezcla de ambas causas. Las demencias primarias se originan por hipofunción o pérdida de la sinapsis y de neuronas por alteraciones intrínsecas al metabolismo celular. Por el contrario, en las demencias secundarias, la pérdida neuronal se debe a causas ajenas al metabolismo celular, como por ejemplo, trastornos vasculares, lesiones traumáticas, infecciones, intoxicaciones o procesos tumorales.

Estas últimas son las primeras en ser evaluadas en el diagnostico diferencial, puesto que son de fácil identificación y, generalmente, cuando cesa la causa de enfermedad la patología remite. Las demencias primarias se diferencian topográficamente según el origen de la histopatología en: corticales (enfermedad de Alzheimer, demencia con cuerpos de Lewy, enfermedad de Pick, etc), subcorticales (enfermedad de Huntington, demencia en enfermedad de Parkinson, etc), focales, cuando se produce una afectación cortical o subcortical y a nivel histopatológico se constata una atrofia focal o circunscrita (enfermedad de Pick, atrofia cortical posterior, apraxia primaria progresiva, etc), y globales (cuando coinciden de forma intensa y generalizada las alteraciones corticales y subcorticales, generalmente, en estadíos avanzados de demencia que cursan con un déficit cerebral profundo, desconexión e indiferencia). Las demencias vasculares representan la segunda causa más frecuente de demencia después de las corticales primarias, y entre ellas se incluyen: la demencia multi-infarto y la hemorragia e isquemia-hipoxia, entre otras¹².

1.1.1.1. Enfermedad de Alzheimer

Los síntomas y lesiones de la enfermedad de Alzheimer fueron descritos por el neurólogo *Alois Alzheimer* en 1907¹³, tras realizar el análisis clínico y anatomopatológico de una paciente con alteraciones neurológicas. La identificación de un número creciente de casos que presentaban la misma sintomatología y marcas anatomopatológicas, llevó a pensar que se trataba de una enfermedad y no de un caso aislado de demencia, siendo el Dr. Kraepelin, en 1910, quien acuñó el término de la enfermedad en honor a su descubridor^{14,15}.

En la actualidad, la EA es la primera causa de demencia en el mundo, representando un grave problema de salud pública por la incapacidad social que conlleva. Desde la década de los años 80 se han llevado a cabo diversos estudios, muchos de ellos en consorcios multinacionales, encargados de analizar los factores epidemiológicos de esta patología. No obstante, la alternancia en los métodos de análisis, la ausencia inicial de criterios internacionales de diagnóstico y la presencia de comorbilidad, han dado como resultado una gran variabilidad de resultados. A pesar de ello, los estudios más recientes estiman la prevalencia de EA en los países desarrollados en el 1,9%, dato que asciende a un 13% en las personas mayores de 65 años¹⁶ (www.alzhttp://www.alz.org/documents_custom/report_alzfactsfigures2010).

La EA, clasificada como demencia cortical, se caracteriza por un deterioro progresivo cognitivo y funcional, de inicio insidioso, al que se asocian progresivamente cambios en el estado de ánimo con alteraciones psicóticas y de la conducta. Las alteraciones neuropatológicas subyacentes se sitúan fundamentalmente en la corteza cerebral, sobre todo en el área temporo-parietal, donde se observan depósitos de proteína β -amiloide, degeneración neurofibrilar, pérdida neuronal, gliosis y atrofia cerebral¹⁷⁻²⁰. La progresión de la patología comprende una primera fase *predemencial o preclínica*, donde se produce una acumulación lenta de las lesiones sin sintomatología. En la etapa *predemencial*

sintomática o prodrómica aparecen cambios clínicos sutiles, como el deterioro cognitivo leve-amnésico. La fase *demencial*, característica de la EA, se manifiesta por alteraciones cognitivas y funcionales (pérdida de memoria, afasia, apraxia, etc), junto con síntomas psico-conductuales (depresión, ansiedad, psicosis, etc) y manifestaciones neurológicas clásicas (parkinsonismo, discinesias, crisis epilépticas, etc).

Las pruebas diagnósticas definitivas se obtienen a partir de los exámenes neuropatológicos basados en criterios consensuados (Tabla 3)²¹⁻²⁴. Si bien las *placas seniles* se acumulan lentamente a lo largo de los años durante la fase preclínica de la enfermedad, los depósitos de *ovillos neurofibrilares* (NFTs) están sujetos a una distribución espacio-temporal paralela a la progresión de la patología. En 1991, *Braak et al.*²⁵ describieron en tejidos *post-mortem* los seis estadíos en los que podía dividirse la patología atendiendo a la progresión en la severidad, la distribución de las NFTs y las áreas del SNC afectadas. Posteriormente, otro estudio ha contrastado dichos hallazgos mediante técnicas bioquímicas¹⁸. El diagnóstico neuropatológico continúa vigente y resulta de gran utilidad en investigación biomédica donde el sistema de estudio de enfermedades neurodegenerativas es el tejido humano *post-mortem*.

Tabla 3. Criterios diagnósticos clínicos de <u>EA probable</u> resumidos de los criterios del grupo NINCDS-ADRDA ^{21,26}			
Criterios clínicos para el diagnóstico			
 » Demencia diagnosticada mediante examen Examen clínico 			
 Test generales (MMSE, Blessed, etc) 			
 Examen neuropsicológico 			
» Déficits confirmados en al menos dos áreas cognitivas			
» Empeoramiento progresivo de la memoria y de otras funciones			
» Ausencia de trastornos de la conciencia			
» Comienzo entre los 40-90 años, por lo general después de los 65 años			
» Ausencia de otras enfermedades relacionadas con la demencia			
El diagnóstico es apoyado por			
» Deterioro progresivo de funciones específicas: afasia, apraxia, agnosia			
» Hay una incapacidad para desarrollar las tareas cotidianas			
» Existe una historia familiar, especialmente de EA confirmada			
» Los resultados de los exámenes complementarios son normales (EEG, punción lumbar, etc) y se aprecia atrofia cerebral progresiva en la TC			

La EA se clasifica como una patología multifactorial, en la que se pueden distinguir casos hereditarios y casos esporádicos. La EA hereditaria representa menos del 1% de los casos observados y, generalmente, corresponde a mutaciones transmitidas de forma autosómica dominante²⁷. A la forma esporádica o no familiar se le atribuye un origen multifactorial, en el que interaccionan diversos factores de riesgo dando lugar al 99% de los casos de EA. Entre estos factores de riesgo se encuentran los ambientales (Tabla 4), los genéticos y los epigenéticos, recogidos en el apartado correspondiente.

La mayor parte de los casos de EA (95%) muestran una edad de inicio tardía, iniciándose la aparición de los síntomas después de los 65 años (EA tardía). En aproximadamente un 5% de los casos la edad de inicio es anterior a los 65 años, y se consideran de inicio precoz (EA precoz). De forma general, se ha observado que un 25% de casos de EA tardía presentan un componente familiar, mientras que en las formas tempranas de la enfermedad, un 60% de los casos tienen algún familiar afectado y un 13% muestran agregación familiar, siguiendo una herencia autosómica dominante²⁸

El factor de riesgo ambiental más importante en la EA es la edad²⁹. Además se ha sugerido que la importancia de los factores ambientales en el desarrollo de EA incrementan con la edad de inicio³⁰, siendo las formas de inicio temprano las más agresivas. La influencia del sexo en la incidencia y prevalencia de la patología deber considerada con cautela. Se ha observado un incremento de la tasa de prevalencia^{31,32} y de incidencia en mujeres, aunque a lo largo de diferentes estudios los datos han resultado inconsistentes³³. Entre las posibles causas de este sesgo podemos encontrar la supervivencia selectiva de las mujeres de edad avanzada, factores metabólicos –como bajos niveles de estrógenos– o que el sexo femenino presente una susceptibilidad genética y/o medioambiental mayor.

Otros factores de riesgo ambientales relacionados con la patología son: la exposición a metales y pesticidas, las carencias alimenticias (vitamina B12 y ácido fólico), la hiperhomocisteinemia, infecciones sistémicas e inflamaciones crónicas³⁴⁻⁴⁰. Numerosos estudios se han encargado de analizar los efectos de estos factores en la patología, proporcionando resultados muy variados y en ocasiones poco concluyentes. Entre los factores ambientales con un efecto protector se encuentran, sobre todo, los relacionados con una dieta saludable (ingestión de fruta, verdura, ácidos omega-3 y antioxidantes), en combinación con ejercicio físico moderado⁴⁰ (Tabla 4).

Tabla 4. Factores medioambientales y su implicación con las enfermedades neurodegenerativas				
Enfermedad de Alzheimer	Efecto			
Antioxidantes	Protector ⁴⁰			
Dieta rica en ácidos omega-3, pescado	Protector ⁴⁰			
Dieta rica en fruta, verdura y fibra	Protector ⁴⁰			
Restricción calórica	Protector ⁴⁰			
Analfabetismo	Riesgo moderado ⁴¹			
Campos electromagnéticos	Riesgo moderado ⁴²			
Disolventes orgánicos	Riesgo moderado ⁴²			
Carencias alimenticias (déficit vitamina B12, ácido fólico)	Riesgo ⁴³			
Infecciones, inflamaciones	Riesgo ³⁹			
Metales (cobre, cinc, mercurio, aluminio y plomo)	Riesgo ^{42,44}			
Pesticidas	Riesgo ^{33,45}			
Traumatismo craneal	Riesgo ⁴⁶			
Tabaquismo y alcoholismo	Resultados no concluyentes ⁴⁷⁻⁴⁹			
Enfermedad de Parkinson	Efecto			
Consumo de alcohol	Protector ⁵⁰			
Consumo de cafeína	Protector ⁵¹			
Consumo de pescado	Protector ⁵²			
Dieta rica en fruta, verdura, legumbres y frutos secos	Protector ⁵²			
Tabaquismo	Protector ^{50,53}			
Entorno rural (exposición a herbicidas y pesticidas)	Riesgo ⁵³⁻⁵⁵			
Metales (cobre, manganeso)	Riesgo ^{53,56}			
Traumatismos encefálicos con pérdida de conocimiento	Riesgo ⁵³			

1.1.1.2. Enfermedad de Parkinson

El concepto de enfermedad de Parkinson (EP) ha sufrido una enorme evolución desde su primera descripción en el año 1817 por el Dr. James Parkinson hasta nuestros días⁵⁷. Inicialmente, sólo se describieron los síntomas motores característicos de la patología, sin embargo, actualmente se ha referido la afectación de las capacidades cognitivas y psico-conductuales.

Con una prevalencia general de 0,3% (1% en la población mayor de 60 años)⁵⁸ y una incidencia de 8-18 afectados por 1.000 habitantes y año¹⁶, la EP es la segunda causa de incapacidad y mortalidad de la población mundial mayor de 65 años por enfermedad neurodegenerativa. Entre los factores que influyen en la prevalencia de la patología destacan la edad¹⁶ y las diferencias interculturales, asociadas a la exposición a factores ambientales⁵⁹. La proporción de personas que sufren esta patología es mayor en los países industrializados o en vías de desarrollo, sin que exista una especial afinidad por poblaciones concretas. Por otro lado, numerosos estudios han reportado un incremento de la prevalencia y de la incidencia de EP en hombres, sugiriendo un posible papel neuroprotector de los estrógenos. De la

misma manera que en EA los resultados son heterogéneos y no todos los estudios encuentran diferencias significativas sobre la incidencia de la EP entre hombres y mujeres¹⁶.

La EP es una patología compleja de origen multifactorial. La mayoría de casos consisten en formas esporádicas de la enfermedad, aunque también se encuentran formas familiares. Al igual que en la EA, el inicio de la enfermedad está determinado por factores de riesgo genéticos, epigenéticos, y ambientales. Numerosos estudios se han centrado en el análisis de los factores de riesgo medioambientales asociados a la EP, debido a que en sus inicios era considerada una enfermedad ligada a esta causa. Entre los factores de riesgo más relevantes se encuentran, la edad (con una media de inicio de 55 años y un incremento progresivo de personas afectadas al avanzar la edad), y la exposición a insecticidas y herbicidas en el entorno rural⁵³⁻⁵⁵, mientras que la dieta mediterránea y el consumo de tabaco o cafeína parecen tener efectos protectores^{50,51} (Tabla 4).

La EP se engloba dentro de un grupo de enfermedades conocidas como Parkinsonismo, que cursan con una sintomatología común, pero difieren en las causas que la originan. Así pues, según la etiología, se diferencia entre parkinsonismo primario o EP de origen idiopático, parkinsonismo secundario o sintomático originado por causas conocidas como fármacos, tumores, infecciones, etc, y parkinsonismo plus, cuando en el contexto de otra enfermedad neurológica aparecen síntomas motores de tipo parkinsoniano.

La EP se define como una α -sinucleopatía de transcurso progresivo e irreversible de aparición esporádica, aunque en ocasiones presenta un componente hereditario. Las lesiones características de EP son unas inclusiones citoplasmáticas globulares y elongadas -cuerpos de Lewy y neuritas de Lewyque comienzan en los núcleos bajos del tronco cerebral y ascienden hasta la corteza cerebral siguiendo los seis estadíos morfopatológicos descritos por Braak et al.⁶⁰ (Figura 2). Los tres primeros estadíos corresponden a la fase asintomática de EP, donde se inicia el proceso neurodegenerativo con la acumulación de cuerpos y neuritas de Lewy en el tronco del encéfalo y asciende hasta alcanzar la substantia nigra y la amígdala en el tercer estadio. A partir de este momento, se considera que comienza la fase sintomática, donde se ven afectados el tálamo y el mesocórtex (estadio cuarto) y finalmente el neocórtex (estadíos quinto y sexto). La sintomatología motora característica de esta patología es la afectación de la vía dopaminérgica nigroestriada a causa de la pérdida de las neuronas pigmentadas de la substantia nigra, lo que da lugar a temblor en reposo, rigidez y bradicinesia, signos que suelen ser asimétricos, junto con alteraciones posturales. La demencia asociada a algunas formas de la EP se instaura solapadamente y constituye un momento crucial en el transcurso de la patología, ya que implica que las lesiones alcanzaron la corteza cerebral y por tanto pueden afectar la conducta del paciente.

De forma análoga a la EA, el diagnóstico clínico de la EP se basa en criterios estándar obtenidos a partir de las manifestaciones clínicas⁶¹ (Tabla 5). Los signos cardinales de esta patología son las alteraciones motoras, mientras que las pruebas de imagen complementarias sirven para completar el diagnóstico. La confirmación definitiva del diagnóstico se obtiene a través de exámenes histopatológicos en tejido *post-mortem*.

Tabla 5. Criterios diagnósticos de la enfermedad de Parkinson ⁶¹				
Grupo A: Aspectos característicos de la enfermedad de Parkinson				
•	Temblor en reposo			
-	Bradicinesia			
-	Rigidez			
-	Comienzo asimétrico			
Grupo B: Aspectos sugestivos de diagnósticos alternativos				
•	Características inusuales tempranas en el curso clínico			
•	Inestabilidad postural prominente en los primeros 3 años posteriores al comienzo de los síntomas			
•	Fenómeno de congelamiento en los primeros 3 años			
•	Alucinaciones no relacionadas a medicamentos en los primeros 3 años			
•	Demencia precediendo a los síntomas motores o en el primer año			
•	Parálisis supranuclear de la mirada (otro que la restricción de la mirada ascendente) o enlentecimiento de los movimientos verticales de los ojos			
•	Síntomas severos de disautonomía no relacionadas a medicamentos			
	Documentación de una condición conocida que produce Parkinsonismo y posibilidad de conectarlos con los síntomas del paciente (como consecuencia de lesiones cerebrales focales localizadas o uso de neurolépticos en los pasados 6 meses)			

La utilización de estos criterios, junto con los resultados histopatológicos, permiten clasificar el diagnóstico en *posible, probable* o *definitivo*. Los signos principales para el diagnóstico definitivo son la depleción sustancial de células nerviosas acompañado de gliosis, la presencia de al menos un cuerpo de Lewy en la *substantia nigra* o en el *locus coeruleus* y la ausencia de de otras patologías causantes de Parkinsonismo, como parálisis supranuclear progresiva, atrofia sistémica múltiple o degeneración cortico-basal.

1.1.2. Neurobiología de las enfermedades neurodegenerativas

Los mecanismos biológicos por los cuales se produce la degeneración del SNC son procesos lentos y progresivos en los que intervienen factores de diversa índole. Al igual que en el envejecimiento fisiológico, la neurodegeneración está caracterizada por la pérdida gradual de neuronas que conduce a la disfunción de los circuitos neuronales. Entre los mecanismos neurodegenerativos más comunes se encuentran: la formación aberrante de agregados proteicos y protofibrilares; el daño mitocondrial y

disfunción del sistema ubiquitina-proteosoma; la alteración homeostática de metales; el *estrés oxidativo* y *nitrosativo*; la *excitotoxicidad*; y el fallo sináptico, axonal y del transporte dendrítico^{62,63}. Gracias a los datos aportados por estudios de imagen (RMN funcional) y de modelización *in silico,* se ha propuesto un nuevo modelo de propagación neurodegenerativa, basado en la interacción neurona-neurona a través de los circuitos neuronales establecidos entre regiones del cerebro. Según este modelo, la progresión de la enfermedad no difundiría a las regiones colindantes del SNC, sino que emplearía las proyecciones axonales. De esta manera, las proteínas acumuladas en enfermedades neurodegenerativas, como la EA y la EP, podrían emular, en su propagación, el mecanismo priónico⁶⁴. La confirmación de esta hipótesis representaría un gran avance en la comprensión del mecanismo neuropatológico, facilitando el desarrollo de dianas terapéuticas eficaces contra su progresión. A continuación, se comentarán en detalle los mecanismos neurobiológicos conocidos que están implicados en la EA y la EP .

Enfermedad de Alzheimer

La EA se caracteriza por la presencia de acúmulos extracelulares de proteína β-amiloide, ovillos neurofibrilares intracelulares, neuritis distrófica y angiopatía amiloide (Figura 1a). La proteína β-amiloide (Aβ) es un derivado del precursor amiloide (APP), codificada por el gen APP. Aunque se desconoce el papel biológico de APP, recientemente se ha propuesto su implicación en procesos de sinaptogénesis, plasticidad neuronal y transporte de hierro en la célula⁶⁵⁻⁶⁷. El metabolismo intracelular de APP tiene lugar en el aparato de Golgi, gracias a dos procesos bien diferenciados: la vía amiloidogénica y noamiloidogénica. La modificación amiloidogénica da lugar a las dos isoformas de β -amiloide, $A\beta_{40}$ y $A\beta_{42}$, a través de las reacciones consecutivas de los enzimas β - y γ -secretasa. Esta proteína (A β) participa en diversos procesos, incluyendo la activación de quinasas^{68,69}, protección frente al estrés oxidativo^{70,71}, regulación del transporte de colesterol⁷² y actividad antimicrobiana⁷³. La proteína A β puede encontrarse en la célula en forma de monómero, oligómero o fibrilla, siendo la isoforma A β_{42} la que mayor tendencia presenta a formar fibrillas. Si bien los monómeros no presentan efectos tóxicos per se, su desdoblamiento favorece la formación de fibras con efectos nocivos. La vía no-amiloidogénica tiene lugar por la acción del enzima α -secretasa y da lugar a un producto soluble, sAPP α . Uno de los mecanismos que mejor explica el proceso neuropatológico de EA es la hipótesis de la cascada amiloide⁷⁴. Según este modelo, un desequilibrio entre la producción y la degradación de la proteína amiloide generaría un exceso de la proteína. Ésta se acumularía y daría lugar a una cascada de reacciones, entre las que se incluye la fosforilación anormal de la proteína Tau que, por un lado, imposibilita el ensamblaje de los microtúbulos del citoesqueleto de las neuronas, la disrupción funcional del proteosoma y de la mitocondria, y, por el otro, provoca la alteración del metabolismo de calcio causando disrupción sináptica. La ausencia de pruebas sobre si se trata de una causa primaria o secundaria en la patología, junto con la baja eficacia de los tratamientos dirigidos contra los agregados, representan las principales limitaciones de este modelo^{75,76}.

La proteína Tau está codificada por el gen *MAPT*. De expresión casi exclusivamente neuronal, Tau se ubica en la región distal de los axones, donde, en condiciones normales, favorece el transporte y la flexibilidad sináptica, gracias a la estabilización de los microtúbulos del citoesqueleto. El incremento de su forma fosforilada tiene como resultado la agregación de la proteína en filamentos pareados helicoidales (PHF) que forman los ovillos neurofibrilares (NFT). La proteína Tau hiperfosforilada se desensambla de los microtúbulos del citoesqueleto y secuestra a la proteína Tau normal y a las proteínas MAP1, MAP2 y Ubiquitina para formar los agregados de PHF y NFT, impidiendo el transporte axonal y la supervivencia neuronal. Entre las causas de esta alteración se encuentran ciertas mutaciones génicas, la acción de proteasas y la exposición a polianiones⁶².

Otras mecanismos observados en la patogenia de EA son: procesos inflamatorios⁷⁷, estrés oxidativo⁷⁸, riesgo cardiovascular⁷⁹, metabolismo alterado del colesterol⁸⁰, acumulación de metales en el interior celular⁸¹ y desregulación del ciclo celular⁸², entre otros. En concordancia con la hipótesis amiloide, la acumulación de Aβ puede desencadenar una respuesta inflamatoria y del sistema inmune a través de la activación de citoquinas. Ésta estimularía la liberación de aminoácidos en las células gliales, como el glutamato, iniciando los mecanismos de *excitotoxicidad* celular. A su vez, la activación de los receptores NMDA (*N-methyl-D-Aspartate*) glutamatérgicos induciría la liberación de Ca²⁺ en el interior neuronal, iniciando la formación de especies reactivas de nitrógeno y oxígeno, causantes del estrés oxidativo/nitrosativo que, en última instancia, puede interferir con el metabolismo mitocondrial. Por otra parte, los agregados de Aβ, en combinación con GSK3 y NFTs, alterarían el transporte axonal de las terminales sinápticas debido a interferencias estéricas no específicas.

La acción citotóxica del agregado Aβ es heterogénea y puede comprometer la supervivencia celular, interfiriendo en varios mecanismos, entre ellos, el equilibrio neuroquímico del SNC. En los estadíos iniciales de la patología, los oligómeros Aβ pueden provocar la alteración y pérdida de la transmisión sináptica. En concreto, en las regiones más afectadas por la EA –hipocampo, corteza entorrinal y amígdala– se ha observado déficit colinérgico e hiperactividad glutamatérgica, pudiendo ser responsables de las manifestaciones clínicas –deterioro cognitivo y pérdida de memoria– previas a la aparición de placas amiloides. No obstante, la pérdida neuronal generalizada, característica del avance de la neurodegeneración, comporta la disminución de las neuronas serotoninérgicas, dopaminérgicas y noradrenérgicas, causando las manifestaciones psicológicas y conductuales que acompañan a la patología en los estadíos más avanzados⁸³ (Figura 1b, Figura 1c).

Figura 1. a. Principales lesiones neuropatológicas de la enfermedad de Alzheimer. a.1. Placa amiloide o senil (tinción de plata), **a.2.** Ovillos neurofibrilares (tinción de plata), **a.3.** proteína Tau fosforilada (inmunohistoquímica). Adaptado de *Bossy-Wetzel E. et al.*⁸⁴ **b. Progresión de la neurodegeneración asociada al envejecimiento y a la enfermedad de Alzheimer.** Distribución neuroanatómica de las placas seniles (SP) o *amyloid plaques*, ovillos neurofibrilares (NFT) y la pérdida neuronal (*neuronal loss*) que acompaña el envejecimiento ('normal aging'), trastorno cognitivo leve ('MCI') y enfermedad de Alzheimer ('AD')⁶². **c. Mecanismos neurodegenerativos en la enfermedad de Alzheimer.** Los depósitos de Aβ inducen: la alteración del equilibrio neuroquímico de los neurotransmisores, inhibiendo la recaptación de glutamato (GLU) en los astrocitos y la activación de la apoptosis celular junto con el daño mitocondrial. La hiperfosforilación y acumulación de tau en NFTs, puede desestabilizar los microtúbulos impidiendo el transporte axonal y el correcto funcionamiento sináptico. Adaptado de *Yanker BA. et al.*⁶².

Enfermedad de Parkinson

El origen de la neurodegeneración en la EP sigue siendo un enigma para los investigadores, a pesar de la identificación y descripción completa de las características neuropatológicas principales y de su correlación con la progresión de la patología y las manifestaciones clínicas⁸⁵. Del mismo modo que en la EA, la característica neuropatológica principal de la EP es la pérdida neuronal y la formación de

agregados proteicos --los cuerpos de Lewy y las neuritas de Lewy-- cuyo componente principal es, en este caso, la α-sinucleína (Figura 2a). Entre los mecanismos neurodegenerativos implicados en EP destacan el daño mitocondrial, el estrés oxidativo, la degradación del proteosoma y la alteración neuroquímica del SNC, como consecuencia de la pérdida neuronal difusa^{86,87}. Inicialmente, la EP se caracteriza por una pérdida selectiva de neuronas dopaminérgicas de la substantia nigra pars compacta, la cual induce a una alteración de la vía dopaminérgica de estimulación de los ganglios basales, concretamente del núcleo estriado. A su vez, el núcleo estriado incrementa la liberación de acetilcolina al globo pálido, favoreciendo la hiperactividad del mismo, lo cual conlleva la inhibición del movimiento voluntario conocida como "temblor en reposo"⁸⁸. A medida que la patología avanza, el déficit neuronal se extiende a regiones del tronco del encéfalo, la protuberancia y la corteza, provocando un desequilibrio homeostático de acetilcolina, adrenalina y serotonina, que da lugar a la aparición de los síntomas clínicos 'no-motores', como depresión, ansiedad, cuando las alteraciones alcanzan la corteza cerebral, alteración cognitiva⁸⁹. Asimismo, la formación de cuerpos de Lewy se origina en los núcleos dorsales y se extiende progresivamente por el tronco del encéfalo y la protuberancia hasta la substantia nigra y la amígdala, alcanzando en los estadíos finales la corteza cerebral, solapando con los síntomas clínicos no-motores⁸⁵ (Figura 2b). Los principales mecanismos neurodegenerativos que afectan a la substantia nigra^{86,90} se esquematizan en la Figura 2c (defectos en el complejo mitocondrial de tipo I, daños en proteínas y lípidos mediados por radicales libres, disfunción del proteosoma y alteraciones inflamatorias). Estos procesos están estrechamente relacionados, de forma que la alteración de uno o más factores puede influir o modificar al resto.

Figura 2. a. Preparaciones histológicas de pacientes afectados por enfermedad de Parkinson esporádica. a.1. y a.2. Identificación inmunohistoquímica de cuerpos de Lewy y neuritas de Lewy, respectivamente. Adaptado de *Bossy-Wetzel E. et al*⁸⁴. **b. Clasificación de los estadíos de la enfermedad de Parkinson por Braak et al.: caracterización neuroanatómica de la progresión y distribución de los signos patológicos.** La patología se divide en estadíos pre-sintomáticos (I-III) y sintomáticos (IV-VI), separados por un valor umbral (flecha negra), basado en la presencia de cuerpos de Lewy en las diferentes regiones del SNC afectadas, adaptado de *Braak et al.*⁸⁵. A cada signo y área afectada se le ha atribuido un color, de manera que al avance de la patología se le atribuye una localización neuroanatómica. **c. Esquema representativo de los mecanismos neurodegenerativos establecidos en neuronas dopaminérgicas de la substantia nigra en enfermedad de Parkinson.** En síntesis, la muerte celular puede ser producida por: agregados de sinucleína, disfunción del proteosoma y reducción de la actividad mitocondrial, que pueden dar lugar a procesos inflamatorios y de excitotoxicidad claves en la progresión de la degeneración neuronal⁹¹.

1.1.3. Bases genéticas de las enfermedades complejas

El origen de las enfermedades que afectan al ser humano ha sido motivo de estudio desde el principio de la humanidad. La aparición de los primeros estudios genéticos y su aplicación a la medicina han supuesto una verdadera revolución en la manera de abordar el estudio de las enfermedades. Si la interpretación de las leyes de Mendel (1822-1884), a principios del siglo XX, sentó las bases de la Genética como disciplina, ha sido con la secuenciación del genoma humano (1990-2005)^{92,93}, cuando esta disciplina ha experimentado un profundo cambio.

Atendiendo a su etiología, las enfermedades pueden clasificarse como exógenas, genéticas o multifactoriales. Se consideran enfermedades exógenas aquellas causadas por la interacción del organismo con factores del medio ambiente como patógenos, tóxicos, elementos físicos o mecánicos, por ejemplo, el escorbuto o la tuberculosis (Figura 3).

Figura 3. **Clasificación etiológica de las enfermedades humanas**. Espectro de representación de las enfermedades humanas clasificadas según la causa que las origina. Las enfermedades complejas o de origen multifactorial se definen como aquellas cuyo origen se fundamenta en la interacción de factores genéticos, generalmente poligénicos, con factores ambientales. Modificado de, *'Emery, elementos de genética médica', 2009*⁹⁴.

Las enfermedades de origen genético engloban un gran número de patologías de índole muy diversa. Entre las características comunes a un gran número de casos se encuentran las alteraciones de uno o más genes en su secuencia, regiones reguladoras o de sus productos génicos. Podemos clasificarlas como enfermedades genéticas *monogénicas,* cuando es suficiente la alteración de un único gen para causar la enfermedad, como en el caso de la hemofilia, o bien *poligénicas*, cuando es necesario que se produzca una variación deletérea en al menos dos genes distintos, como por ejemplo en algunas formas de la *Retinitis pigmentaria*⁹⁵ o del *Síndrome de Bardet-Biedl*⁹⁶.

Paralelamente, existe un gran número de enfermedades comunes como la diabetes, el cáncer, las enfermedades cardiovasculares y coronarias, los trastornos psiquiátricos y las enfermedades neurodegenerativas, cuyo origen se sitúa en la interacción de factores genéticos y ambientales. Estas enfermedades se conocen como complejas o multifactoriales y están caracterizadas por la ausencia de herencia mendeliana clásica. En este caso, la acción de múltiples genes interactúa con factores ambientales, dando lugar a un gradiente de susceptibilidad genética a padecer la enfermedad⁹⁷. Las enfermedades complejas están caracterizadas por presentar una elevada incidencia en la población, pero una baja penetrancia, con tan sólo una pequeña proporción de casos familiares asociados a genes específicos. Este tipo de patologías, al igual que algunos rasgos fenotípicos como la altura o el color del cabello, se pueden entender como rasgos cuantitativos. La representación fenotípica de los rasgos cuantitativos en la población origina una distribución normal, de forma que el fenotipo producido se asemeja a una variable continua en la que la mayoría de los casos se sitúan en el centro de la curva (Figura 4a). Un modelo para explicar la aparición de las enfermedades complejas o multifactoriales es el modelo de predisposición/umbral. Según este modelo, las enfermedades complejas pueden entenderse como un rasgo cuantitativo (la susceptibilidad a padecer la enfermedad lo es), que, a partir de un cierto valor umbral, desencadena la enfermedad. De este modo, tanto los factores genéticos como los ambientales actuarían en bloque, generando la predisposición o susceptibilidad a padecer la enfermedad, que una vez superado genera un desequilibrio entre los factores y la enfermedad (Figura 4.b).

Figura 4. Distribución normal de la herencia poligénica o multifactorial. a. Distribución de un carácter continuo en una población determinada, por ejemplo, la altura o el color de la piel. b. A partir de la distribución normal en la población de un carácter de herencia compleja, se determina un valor umbral por encima del cual tiene lugar la incidencia de una patología.

Si bien el modelo anterior parte de la asunción de que la acción de dos o más genes participan de manera aditiva en la formación de un determinado fenotipo, cabe destacar la importancia de situaciones alternativas en las que el efecto de un gen puede depender de uno o más genes, de forma que la interacción entre ellos puede generar diversas situaciones: originar un nuevo fenotipo, enmascar la acción de ciertos productos génicos o modular la actividad de otro locus. Este fenómeno, conocido como *epistasis*, puede ayudar a explicar la variabilidad en la penetrancia y en la susceptibilidad a padecer ciertas patologías^{98,99}. Para su estudio se han empleado diversos modelos estadísticos de interacción gen-gen y gen-ambiente^{100,101}. De este modo, por ejemplo, se han identificado cientos de *eQTLs*, *loci* que regulan la transcripción y la expresión génica a nivel del genoma completo y que han sido de gran utilidad para priorizar las variantes génicas con un posible efecto funcional real^{102,103}.

Se han desarrollado diferentes teorías que pretenden explicar la heredabilidad en las enfermedades neurodegenerativas. La hipótesis más aceptada hasta el momento es la denominada "enfermedad común-variante común"¹⁰⁴. Esta teoría sostiene que los factores genéticos que regulan las enfermedades complejas son polimorfismos comunes en la población, con una moderada contribución individual (5% de la susceptibilidad total), en contraste con las variantes raras y de alta penetrancia que darían lugar a las enfermedades Mendelianas. Para identificar estas variantes se han empleado polimorfismos de un solo nucleótido o SNPs, responsables de gran parte de la variabilidad genética entre individuos. Los estudios de SNPs a nivel genómico (Genome-wide association studies, GWAS) han permitido la identificación de variantes implicadas en enfermedades complejas, aunque no todas ellas han sido suficientemente replicadas. Algunas variantes comunes plenamente aceptadas como factores de riesgo de enfermedades complejas son: APOE E4 en la enfermedad de Alzheimer¹⁰⁵, PPAR en la Diabetes de tipo 2¹⁰⁶ y un minisatélite en el locus *INS* en la Diabetes de tipo 1¹⁰⁷. Asimismo, existen otras variantes como CLU, PICALM y ACE¹⁰⁸, replicadas en numerosos estudios, aunque tan solo permiten explicar una limitada susceptibilidad genética, indicando la existencia de otros factores responsables de la patología. De manera no excluyente, la hipótesis de "alelos raros con gran efecto"^{109,110} propone que, en algunos individuos, la presencia de variantes muy poco frecuentes (<1%), cada una de ellas con una penetrancia relativamente alta, es responsable de las formas familiares de las enfermedades complejas. Finalmente, el "modelo infinitesimal" plantea que las enfermedades y los rasgos fenotípicos complejos se deben a la suma de la acción de cientos o miles de variantes genéticas, cada una con un riesgo relativo bajo (<1,2).

En conjunto, la suma de los tres modelos permiten dar una respuesta limitada al problema de la denominada *heredabilidad perdida*. De forma que, tras las primeras decepciones provocadas por la imposibilidad de determinar las causas genéticas de las patologías complejas mediante GWAS, urge explorar las combinaciones de variantes raras y comunes para evaluar su contribución a la susceptibilidad genética a las enfermedades complejas.

1.1.3.1. Identificación de genes asociados a enfermedad de Alzheimer

El estudio de las causas genéticas de la EA ha permitido identificar ciertas mutaciones génicas en EA familiar (10% de la incidencia total de la patología). Las variantes identificadas se encuentran recogidas en bases de datos públicas, como la disponible en <u>http://www.molgen.ua.ac.be/ADMutation.</u> Los principales genes en los que se han identificado variantes causales son *APP*, *PSEN1* y *PSEN2*, responsables del 30-50% de los casos de herencia autosómica dominante de EA (Tabla 6). La proteína APP se metaboliza por los complejos β - y γ -secretasa, y *PSEN1* y *PSEN2* codifican para componentes del complejo γ -secretasa. Las mutaciones en estos genes provocan una metabolización anómala de APP con el consiguiente incremento de la producción de péptido amiloide¹¹¹. Por otro lado, las duplicaciones del locus *APP* causantes de la EA¹¹² pueden generar una sobreexpresión de la proteína y, por tanto, dar lugar a su acumulación, contribuyendo al desencadenamiento de la patología¹¹³. Por esta razón las alteraciones de estos tres genes, que codifican para proteínas implicadas en la misma vía, están en concordancia con la hipótesis de la cascada amiloide⁷⁴.

La búsqueda de factores de susceptibilidad en la EA esporádica o de inicio tardío (EA tardía) no ha proporcionado resultados tan fructíferos. La identificación del alelo ϵ 4 de la APOE¹⁰⁵ y su replicación en numerosos estudios ha supuesto un hito para la investigación de la EA, pero tan solo el 50% de los casos de EA tardía presentan el alelo *APOE-* ϵ 4, circunstancia que indica que existen otros factores de riesgo implicados. Gracias a los estudios de GWAS, se han identificado otros genes candidatos (Tabla 6, <u>http://www.alzgene.org</u>), de los que tres han sido replicados significativamente: *CLU, CR1* y *PICALM*^{114,115} siendo considerados factores de riesgo *bona fide* a pesar de los discretos valores de odd ratio (OR ~ 1,15). Recientemente se ha identificado una asociación significativa del gen *MTHFD1L* con una OR de ~2¹¹⁶. El producto de este gen está implicado en el metabolismo del ácido fólico, mediando la conversión de homocisteína a metionina. Dado que la deficiencia de ácido fólico y el aumento de homocisteína en sangre representan factores de riesgo para EA^{117,118}, *MTHFD1L*, se presenta como un candidato interesante en futuros análisis, aunque, su asociación no ha sido claramente replicada¹¹⁹⁻¹²¹.
Tabla 6. Factores genéticos de las enfermedades neurodegenerativas: enfermedad de Alzheimer ¹²²							
Locus	Gen	Cromosoma	Aspectos Clínicos	OR	Referencias Bibliográficas		
Herencia dominante			Clinicos		Dibliograficas		
	APP	21q21.2	EA familiar	-	Goate et al., 1991 ¹²³		
	PSEN1	14q24.3	EA familiar	-	Rogaev et al., 1995; Sherrington et al., 1995 ^{124,125}		
	PSEN2	1q31-q42	EA familiar	-	Levy-Lahad et al., 1995 ¹²⁶		
Locus de alto riesgo							
	ΑΡΟΕ-ε4	19q13.2	EA tardía	3.97	Corder et al., 1993 ¹⁰⁵		
Loci de bajo riesgo							
	CLU	8p21-p12	EA tardía	0.85	Harold et al., 2009; Seshadri et al., 2010 ^{43,114}		
	PICALM	11q14	EA tardía	0.87	Harold et al., 2009 ¹¹⁴		
	CR1	1q32	EA tardía	1.18	Lambert et al., 2009 ¹¹⁵		
	MTHFD1L	6q25.1	EA tardía	-	Naj et al., 2010 ¹¹⁶		
	TNK1	17p13.1	EA tardía	0.86	Grupe et al., 2007 ¹²⁷		
	ACE	17q23.3	EA tardía	0.83	Kehoe et al., 1999 ¹²⁸		
	TFAM	10q21.1	EA tardía	0.82	Gunther et al., 2004 ¹²⁹		
	CST3	20p11.21	EA tardía	1.13	Crawford et al., 2000 ¹³⁰		
	SORL1	11q23.2-q24.2	EA tardía	1.21	Scherzer et al., 2004 ¹³¹		
	CHRNB2	1q21.3	EA tardía	0.67	СооК et al., 2004 ¹³²		
	SORCS1	10q23-q25	EA tardía	1.24	Grupe et al., 2006 ¹³³		
	BIN1	2q14	EA tardía	-	Harold et al., 2009; Biffi et al., 2010 ^{114,134}		
	EXOC3L2	19q13	EA tardía	-	Seshadri et al., 2010 ⁴³		
	GAB2	11q14	EA tardía	-	Reiman et al., 2007 ¹³⁵		

1.1.3.2. Identificación de genes asociados a enfermedad de Parkinson

De forma análoga, en la EP se han descubierto ciertas mutaciones causales de la enfermedad (Tabla 7), aunque en algunos casos, los resultados entre réplicas no han sido concluyentes, como para *UCHL1*. Por otro lado, se han identificado cuatro factores de riesgo en la EP esporádica (Tabla 7)¹³⁶⁻¹³⁹.

La primera mutación descrita en la EP familiar de herencia autosómica dominante es el cambio de un aminoácido detectado en α -sinucleína (*SNCA*)¹⁴⁰, una proteína que forma parte de los cuerpos de Lewy. Además de esta mutación 'missense', se han encontrado otras mutaciones causales en SCNA (duplicaciones y triplicaciones)¹⁴¹⁻¹⁴³ y LRRK2¹⁴⁴. Entre las mutaciones con herencia recesiva confirmadas en EP familiar se encuentran: *PARK2*¹⁴⁵, *DJ*-1¹⁴⁶ y *PINK1*¹⁴⁷ (Tabla 7). Se puede encontrar un listado completo de las variantes asociadas a EP en www.pdgene.org.

Los factores de riesgo de la EP esporádica han resultado más difíciles de precisar. Entre los genes con variantes responsables de EP familiar se han identificado ciertas mutaciones asociadas a EP esporádica, como SNCA y LRRK2. Por otro lado, también se han identificado variantes asociadas a EP esporádica en genes con implicación funcional en otras enfermedades neurodegenerativas, por ejemplo, *MAPT*¹³⁷, relacionado con EA, o *GBA*¹³⁹, el gen causante de la enfermedad de Gaucher. En este último caso, la asociación no es con una variante en concreto sino que lo observado es una mayor frecuencia de mutaciones en este gen en pacientes de PD.

Tabla 7. Factores genéticos de las enfermedades neurodegenerativas: enfermedad de Parkinson ¹²²							
Locus	Gen	Cromosoma	Aspectos Clínicos	OR	Referencias Bibliográficas		
Herencia dominante							
PARK1/4	SNCA	4q21	EP esporádica	-	Polymeropoilos et al., 1997 ¹⁴⁰		
PARK5	UCHL1*	4p14	EP esporádica	-	Leroy et al.,1998;Marago al., 1999 ^{148,149}		
PARK8	LRRK2	12q12	EP esporádica	-	Paisán-Ruiz et al., 2004 ¹⁵⁰		
PARK11	GIGYF2	2q37.1	EP esporádica	-	Lautier et al., 2008 ¹⁵¹		
PARK13	HTRA2/OMI	2p13	indeterminado	-	Strauss et al., 2005; Kruger et al., 2009 ^{152,153}		
Herencia recesiva							
PARK2	PARK2	6q25.2-q27	EP juvenil	-	Kitada et al., 1998 ¹⁴⁵		
PARK6	PINK1	1p35-p36	EP precoz	-	Valente et al., 2004 ¹⁴⁷		
PARK7	DJ-1	1p36	EP juvenil	-	Bonifati et al., 2003 ¹⁴⁶		
PARK9	ATP13A2	1p36	EP agresiva	-	Ramirez et al., 2006 ¹⁵⁴		
PARK14	PLA2G6	22q13.1	EP agresiva	-	Morgan et al., 2006 ¹⁵⁵		
PARK15	FBXO7	22q12-q13	EP infantil	-	Di-Fonzo et al., 2009 ¹⁵⁶		
Locus de alto riesgo							
Gaucher's locus	GBA	1q21	EP esporádica	5.43	Lwin et al., 2004 ¹³⁹		
Loci de bajo riesgo							
	SNCA	4q21	EP esporádica	1.23	Kruger et al., 1999 ¹³⁶		
	MAPT	17q21.1	EP esporádica	0.77	Skipper et al., 2004 ¹³⁷		
	LRRK2	12q12	EP esporádica	1.14	Simon-Sanchez et al., 2009 ¹⁵⁷		
	HLA-DRA	6p21.3	EP esporádica	1.31	Hamza et al., 2010 ¹⁵⁸		

*UCHL1**: réplicas entre estudios no concluyentes. EP juvenil: EP de aparición muy temprana; EP precoz: ep de aparición temprana; EP agresiva: forma agresiva de la EP de evolución muy rápida; EP infantil: aparición en la infancia.

La caracterización de las mutaciones en ciertos genes ha permitido explicar una considerable cantidad de casos familiares de EA y EP, sin embargo, no aportan las evidencias necesarias para dar respuesta a la compleja heredabilidad de estas patologías, sobre todo en lo que respecta a las formas de inicio tardío o

esporádicas. Por ello, se pone de manifiesto la necesidad de encontrar nuevos factores de riesgo que permitan desenmascarar la llamada *heredabilidad perdida*. En este contexto, el estudio de nuevas fuentes de variabilidad genómica podría dar respuesta a este problema.

1.2. Nuevas fuentes de variabilidad genómica

A lo largo de los años se han empleado diversas técnicas para la identificación de factores genéticos que predisponen a enfermedad. En su mayoría, estas técnicas se han basado en marcadores genéticos, desde los polimorfismos de fragmentos de restricción (RFLPs), las variantes del tipo mini y microsatélites a los polimorfismos de secuencia única (SNPs). La secuenciación del genoma humano supuso un salto cualitativo en la investigación de la variabilidad del genoma humano y de su implicación en enfermedades complejas. En 2007, pocos años después de la divulgación de la secuencia completa del genoma^{92,93}, se dio a conocer el primer genoma humano diploide, basado en la secuencia de un único individuo¹⁵⁹. Desde entonces se ha analizado la secuencia génica de diversos individuos empleando técnicas de secuenciación masiva o *next generation sequencing* (NGS), que permiten obtener la secuencia completa de ADN en pocos días y de forma relativamente económica¹⁶⁰. Este proceso ha culminado con el proyecto '1000 Genomes', cuyo objetivo es la caracterización completa del genoma de 2500 individuos de diferentes poblaciones mundiales para describir de manera más precisa las variaciones interindividuales e inter-poblacionales que caracterizan el genoma humano^{161,162}.

El estudio de las bases genéticas de las enfermedades complejas se ha centrado en los últimos años en la identificación de variantes comunes, generalmente mutaciones puntuales. Sin duda, la identificación de variantes comunes ha permitido el estudio de nuevas rutas de señalización y la identificación de genes candidatos implicados en la patofisiología de enfermedades complejas, como las neurodegenerativas. No obstante, los resultados de estos estudios han arrojado datos menos prometedores de lo esperado, mostrando ciertas limitaciones a la hora de explicar las causas subyacentes de las patologías de origen complejo. La mayoría de SNPs que muestran asociación con enfermedades tienen un efecto pequeño en el fenotipo y explican un porcentaje reducido de la heredabilidad de estas enfermedades^{163,164}. Por consiguiente, toda la atención recae en identificar las causas responsables de la llamada *heredabilidad perdida*. Para ello, se han formulado distintas hipótesis que permiten explicar esta *heredabilidad perdida*, abarcando desde la implicación en enfermedades complejas de múltiples variantes raras (MAF<1%)^{109,110} con una penetrancia relativamente alta, al modelo infinitesimal pasando por las variantes poco frecuentes (MAF 1-5%), para las que las nuevas tecnologías de secuenciación del genoma o *Next Generation Sequencing* suponen un método alternativo de análisis¹⁶⁵.

Además del estudio de las variantes raras aplicado a las enfermedades neurodegenerativas, se han descrito otros factores que podrían contribuir a la variabilidad del genoma y que presenta una nueva fuente de conocimiento poco explorada y con una alta potencialidad. Entre estos factores se encuentran los cambios epigenéticos, los elementos móviles del genoma, las variantes estructurales y el mosaicismo somático, entre otros. El presente trabajo de tesis tiene como objetivo evaluar la contribución de los cambios epigenéticos del sistema nervioso central en las EA y EP y el mosaicismo somático entre regiones del cerebro.

1.2.1. Variantes estructurales

Las variantes estructurales se definen como alteraciones genómicas de tamaño superior a una kilobase (kb) respecto al genoma de referencia, incluyendo la pérdida, ganancia o cambio de localización de material genético mediante inserciones, duplicaciones, deleciones, inversiones o translocaciones (con o sin pérdida o ganancia de material en los dos últimos casos) (Figura 5). Las variaciones en el número de copia o CNVs, son fragmentos de ADN con un tamaño variable entre 1 kb a varias megabases (Mb) que representan una ganancia o pérdida de material genético entre dos genomas de la misma especie¹⁶⁶.

Figura 5. Tipos de variantes estructurales. Cambios estructurales posibles definidos respecto al genoma humano de referencia, adaptado de *Hurles et al., 2008*¹⁶⁷.

La variabilidad genética y las interacciones entre las diversas variantes dan lugar a los rasgos complejos característicos de cada individuo. El efecto de esta variabilidad representa un mecanismo muy valioso de adaptación al medio (cuando una determinada variante o conjunto de variantes suponen un cambio ventajoso), mientras que la alteración de la correcta transcripción o de la dosis génica pueden presentar efectos deletéreos.

Los primeros ensayos de citogenética convencional permitían detectar variantes estructurales de gran tamaño (>3 Mb), como heteromorfismos cromosómicos, translocaciones recíprocas, deleciones, duplicaciones, inserciones e inversiones. Más tarde, la aparición de la técnica de hibridación fluorescente *in situ* (FISH)¹⁶⁸ posibilitó, por primera vez, el mapeado de secuencias específicas de ADN con una alta resolución. Ello permitió describir la existencia de variantes estructurales y reorganizaciones cromosómicas de gran tamaño y su vinculación con patologías del neurodesarrollo y neurodegenerativas. Entre las variantes estructurales patológicas mejor caracterizadas se encuentran: una microdeleción del cromosoma 15q11-q12 causante del síndrome de Prader-Willi¹⁶⁹, una microduplicación con cambio en el número de copia del gen PMP22 responsable de la enfermedad de Charcot-Marie-Tooth tipo I¹⁷⁰, una microdeleción en la región 22q11.2 que causa del síndrome de DiGeorge/velocardiofacial¹⁷¹, y una microdeleción en la región 7q11.23 relacionada con el síndrome de Beuren-Williams¹⁷².

La aparición, en 2004, de los dos primeros estudios de distribución de CNVs en el genoma humano de individuos sanos, representó un importante avance^{173,174}. Durante los años siguientes numerosos estudios completaron los datos mostrados inicialmente, hasta que en el año 2006 se publica el primer mapa de CNVs del genoma humano¹⁷⁵ (revisado en *Beckmann et al., 2007*¹⁷⁶), culminando en 2010 en la base de datos de variantes genómicas, tras diversos estudios en individuos control (http://projects.tcag.ca/variation/).

En los últimos años ha crecido el interés en el estudio de las variantes estructurales como una posible respuesta a la heredabilidad perdida, puesto que con la mejora de las técnicas, especialmente con la aparición del aCGH, se ha observado que este tipo de variantes eran más frecuentes de lo que se suponía inicialmente¹⁷⁷. El progreso en las técnicas a gran escala y la secuenciación del genoma de referencia han incrementado la resolución de la detección de las variantes estructurales. Entre las nuevas técnicas de análisis de variantes de número de copia, a nivel del genoma completo se desarrolló la hibridación genómica comparada mediante arrays (aCGH). Los aCGH pueden detectar ganancias o pérdidas de material genético de una manera rápida y precisa, a partir de la hibridación de ADN de muestras problemas y de referencia con las sondas de ADN inmovilizadas en una matriz o array. Las sondas empleadas pueden provenir de cromosomas artificiales bacterianos (BACs), productos de la reacción en cadena de la polimerasa (PCR), u oligonucleótidos sintéticos. Los arrays que emplean BACs presentan una baja resolución, puesto que el tamaño mínimo de variantes detectado es de 50 kb. A pesar de esta limitación, estos arrays resultaron muy útiles para la detección de variantes de gran tamaño¹⁷⁸. Posteriormente, se desarrollaron aCGH que contenían sondas de oligonucleótidos repartidas de manera regular por todo el genoma, entre los que se encuentran las aCGH especialmente indicados para la detección de CNVs. Los aCGH emplean sondas sintéticas de oligonucleótidos saturadas en las regiones contenidas en la base de datos de CNVs y permiten estimar los puntos de rotura de una manera más exacta. Entre los más fiables se encuentran los 'SurePrint G3 human

26

microarrays' comercializados por Agilent, con una cobertura máxima de un millón de sondas (1x1M). Asimismo, se ha visto que es posible extraer información sobre las variantes estructurales de número de copia a partir de los datos de los microarrays de genotipado de SNPs utilizados para los estudios de GWAS^{179,180}, aunque son menos fiables que los resultados de aCGH¹⁸¹.

Por otra parte, se han desarrollado técnicas de detección de CNVs que se aplican a la detección de regiones concretas en estudios de validación, como la PCR cuantitativa en tiempo real (RT-qPCR), la amplificación de múltiples sondas dependiente de ligación (MLPA), y la amplificación de múltiples sondas dependiente de hibridación (MAPH). Estas técnicas representan una alternativa asequible y relativamente simple para validar la presencia de CNVs en nuevas poblaciones, o bien para determinar con mayor exactitud puntos de rotura. Las técnicas basadas en la amplificación de sondas múltiples (MAPH y MLPA) son métodos semi-cuantitativos que permiten detectar ganancias o pérdidas de hasta tres copias de un mismo gen y cerca de 50 regiones genómicas en un único experimento¹⁸²⁻¹⁸⁴. Entre ellas, el MLPA destaca por la simplicidad técnica y la poca cantidad de ADN que requiere, aunque cualquier variación en el genoma diana, como la presencia de SNPs, disminuye la eficacia de las sondas debido a su tamaño limitado. La PCR cuantitativa se presenta como una técnica de cuantificación relativa basada en la amplificación en tiempo real de una región genómica por ensayo. Esta técnica permite identificar ganancias o pérdidas de hasta cinco copias génicas. A pesar de que el límite de resolución es menor (detecta regiones diana de tamaños mayores que 500 kb hasta un máximo de 1200 kb) y el coste más elevado, esta técnica resulta especialmente útil para validar regiones concretas con alta precisión.

Por último, cabría destacar la importante labor que los métodos informáticos han desempeñado en la detección y análisis de las variantes estructurales. En primer lugar, Tuzun et al. (2005)¹⁸⁵ analizó la variabilidad estructural presente en un individuo mediante la alineación frente al genoma de referencia de cerca de 1,1 millones de secuencias apareadas, correspondientes a librerías de fósmidos de alta densidad, identificando parejas discordantes en tamaño y orientación, circunstancia que indicaría la presencia de variantes estructurales. Más adelante, Korbel et al. (2007)¹⁸⁶, creó un nuevo sistema denominado PEM (mapeo de extremos pareados) que consiste en la fragmentación del ADN genómico (aproximadamente 3 kb), la secuenciación de los extremos de los fragmentos y el mapeo de los mismos en el genoma humano de referencia. El umbral de detección de este método está determinado por la variabilidad del tamaño del inserto, permitiendo identificar inserciones simples de entre 2-3 kb. Los algoritmos de mapeo de extremos apareados han demostrado ser una herramienta útil en el mapeo de variantes estructurales a partir de datos de secuenciación masiva; sin embargo no se han manifestado como infalibles. Varios grupos continúan trabajando en el desarrollo de mejores algoritmos que integren el mapeo de extremos apareados, la identificación y alineación de secuencias partidas, el contaje de secuencias, y la construcción de secuencias de novo para una mejor resolución de las variantes estructurales.

1.2.1.1. Variaciones en el número de copia

Las variaciones en el número de copia pueden tener importantes consecuencias biológicas. Se ha estimado que el 20% de la regulación de la expresión génica está mediado por la acción de CNVs, dando una idea del impacto funcional de los CNVs en el organismo¹⁸⁷⁻¹⁹⁰. La acción de los CNVs implica un mecanismo complejo de actuación basado fundamentalmente en dos tipos: la alteración de elementos funcionales del genoma (promotores, enhancers, genes y microRNAs, entre otros), y la modulación de genes a larga distancia, separados varias kb e incluso ubicados en cromosomas distintos¹⁹¹.

Los CNVs representan una importante fuente de variabilidad del genoma que dan lugar a cambios fenotípicos y que influyen, no solo en las enfermedades de origen Mendeliano, sino también en las enfermedades complejas, modificando la susceptibilidad a padecer ciertas patologías. La mejora en la resolución de las técnicas de detección de variantes estructurales ha permitido determinar las causas de múltiples patologías esporádicas, reconociendo las variantes estructurales originadas *de novo*. La mayoría de los CNVs con impacto clínico se encuentran recogidos en la base de datos pública DECIPHER (DatabasE of Chromosomal Imbalance and Phenotype in Human using Ensembl Resources, https://decipher.sanger.ac.uk)¹⁹². Entre los trabajos de investigación más relevantes que muestran la implicación de los CNVs en enfermedades complejas, cabe destacar los realizados en enfermedades neurológicas, cardiovasculares, autoinmunes, metabólicas y en cáncer entre otras^{193,194}. Respecto a enfermedades neurodegenerativas se han identificado CNVs asociados a la EA, como la duplicación del gen *APP*¹¹², a la EP, como la duplicación o triplicación del gen *SNCA*¹⁴³, a la atrofia espinal muscular, donde se ha identificado la deleción y conversión génica de *SMN1* y *SMN2*¹⁹⁵, a la leucodistrofia autosómica dominante, con una duplicación del gen *LMNB1*¹⁹⁶ y, finalmente, a la enfermedad de Charcot-Marie-Tooth de tipo I en la que se ha observado la duplicación y deleción de *PMP22*^{197,198}.

En algunos casos, si el CNV se origina *de novo* en mitosis avanzadas del desarrollo, o incluso, en la vida adulta del individuo, es posible que la variante estructural esté presente exclusivamente en un grupo celular concreto, de modo que un organismo puede contener distinto número de copias de un fragmento génico. Este fenómeno, conocido como *mosaicismo*, ha despertado un gran interés en los últimos años instando a explorar la presencia de CNVs causantes de patología en los tejidos diana.

1.2.1.2. Mosaicismo somático en enfermedades neurodegenerativas

Técnicamente, el mosaicismo somático ha sido definido como la coexistencia de líneas celulares somáticas genéticamente diferentes en un mismo organismo derivado de un único cigoto¹⁹⁹. En general, el mosaicismo entre células de un mismo individuo es un fenómeno relativamente frecuente en el organismo. Un claro ejemplo de ello, es el mosaicismo endógeno (diferente del somático) basado en la inactivación del cromosoma X en mujeres. Durante este proceso, básicamente, en cada célula del

organismo, el cromosoma X paterno o materno es inactivado funcionalmente gracias a un proceso estocástico mediado por la metilación del ADN durante la embriogénesis^{200,201}. El mosaicismo somático puede generarse en estadíos iniciales del organismo, en la edad adulta y durante el envejecimiento, sin embargo, sólo las mutaciones que afectan a células totipotenciales pueden propagarse a los linajes celulares durante el desarrollo^{202,203}.

Entre las causas más frecuentes que contribuyen a la formación de mosaicismo somático se encuentran las inducidas de forma exógena –infecciones y agentes mutagénicos²⁰⁴⁻²⁰⁷– y las que se generan de forma endógena, como consecuencia de las características de las propia estructura genómica. Entre la variabilidad genómica que se genera, ya sea por causas exógenas o endógenas, y que puede estar presente o no en forma de mosaicismo somático, se encuentran las alteraciones cromosómicas (aneuploidias y translocaciones)^{208,209}, pero se ha descrito también la presencia de mosaicismo somático para SNPs y polimorfismos de inserción/deleción (indels)²¹⁰, variación en el número de copia de fragmentos del genoma^{211,212}, transposición de elementos repetitivos y móviles del genoma (SINEs y LINEs)^{213,214}, y expansión de secuencias repetitivas de pocos nucleótidos²¹⁵. La magnitud de las consecuencias del mosaicismo somático depende del tipo de mutación y de la proporción y tipo de células afectadas. Si bien las células sanguíneas y de la piel han sido las estudiadas durante años, últimamente, se han realizado estudios en los que se ha visto la afectación de otros órganos, como el riñón, el sistema nervioso central y la vejiga (revisado en Erickson, et al., 2010²¹⁶).

De esta forma, el mosaicismo somático representa una importante fuente de variabilidad genómica presente en individuos sanos²¹⁷, pero que, en ocasiones, puede dar lugar a alteraciones fenotípicas que se manifiesten en forma de enfermedad. A partir de los casos estudiados en determinadas patologías en las que se ha observado mosaicismo, se ha estimado que entre un 6-20% de las mutaciones genéticas están presentes en mosaicismo²¹⁶. A lo largo de los años los estudios citogenéticos han demostrado la presencia de mosaicismo cromosómico y genético en cáncer²¹⁸ y en enfermedades genéticas como la neurofibromatosis de tipo 1²¹⁹ o la distrofia muscular de Duchenne²²⁰, entre otras. Además, se ha propuesto que este mecanismo podría contribuir al desarrollo de enfermedades neurológicas como el autismo, la esquizofrenia o la EA²²¹⁻²²⁵. La mejoría en la detección de SNPs y CNVs (aCGH, NGS, exomesequencing) ha permitido incrementar la detección del mosaicismo somático en individuos sanos²¹¹, en relación al envejecimiento y al cáncer²²⁶, en enfermedades neurológicas^{227,228}, incluyendo la EA²²⁹. Estos estudios sugieren un papel importante del mosaicismo somático en la etiopatología de enfermedades neurológia o variantes estructurales del genoma.

1.2.2. Mecanismos epigenéticos en enfermedades neurodegenerativas

La etiopatogenia de las enfermedades multifactoriales o complejas, como las neurodegenerativas, depende de la complicada interacción entre la carga genética de un individuo y los factores ambientales que lo afectan. Se ha planteado que la exposición a factores adversos durante la gestación o el desarrollo puede modificar la susceptibilidad a padecer enfermedades neurodegenerativas^{230,231}. Uno de los mecanismos a través del cual puede tener lugar este efecto es a través de las modificaciones epigenéticas del ADN durante el desarrollo y a lo largo de la vida²³².

Por epigenética se entiende aquellas modificaciones del ADN, heredables, que pueden inducir a un cambio en el fenotipo de un individuo sin alterar la secuencia de ADN en si misma²³³. Entre las modificaciones epigenéticas que afectan al genoma y al funcionamiento de los genes podemos encontrar el posicionamiento nucleosómico, las modificaciones post-translacionales de histonas, la acción de los RNAs pequeños y la metilación del ADN (ADNm)²³⁴⁻²³⁸. Estos mecanismos, interrelacionados entre sí, llevan a cabo una hábil regulación de la expresión génica, destacando la cooperación entre la metilación del ADN y la modificación de las histonas. La ADNm es uno de lo mecanismos epigenéticos que mayor interés ha despertado en los últimos años, y con diferencia, el más estudiado.

Una parte del trabajo de esta tesis se ha centrado en la descripción de mecanismos de metilación en el contexto de las enfermedades neurodegenerativas. Como se exponía anteriormente, los estudios de susceptibilidad genética han identificado ciertas variantes causantes de enfermedad, y otras que predisponen a padecerla. Sin embargo, en el cómputo general, las asociaciones encontradas no permiten explicar completamente el inicio y desarrollo de estas patologías^{239,240}. Por consiguiente, surge la necesidad de identificar otros factores que estén contribuyendo a su desarrollo, ya sean genéticos, epigenéticos y medioambientales, o bien, el resultado de la interacción de ellos mediada por mecanismos epigenéticos.

La naturaleza dinámica de las modificaciones epigenéticas y su implicación en procesos de adaptación celular como la diferenciación²⁴¹, el envejecimiento²⁴² y la respuesta a estímulos exógenos²⁴³, dejan patente la idoneidad de su naturaleza en relación a la etiopatología de las enfermedades complejas. Por ejemplo, se han observado diferencias en la ADNm en gemelos monocigóticos, que aumentan con el envejecimiento de los individuos analizados²⁴⁴. Estos hallazgos podrían dar respuesta a la discordancia frente a enfermedad observada entre gemelos con una carga genética idéntica (monocigóticos), constituyendo una de las múltiples hipótesis proporcionadas a la hora de explicar la variabilidad genómica y la *heredabilidad perdida*²⁴⁵. Por otro lado, varios estudios han mostrado la influencia del medio ambiente en los individuos a través de modificaciones epigenéticas. La mayor evidencia encontrada, hasta el momento, es el efecto a largo plazo del comportamiento materno durante la

infancia. Weaver et al.²⁴⁶ realizaron un estudio en ratas en el que demuestran que un patrón de comportamiento ansioso durante el cuidado de las crías (licking/grooming behavior) induce un comportamiento defensivo de las crías en la edad adulta. Este efecto se produce a través de mecanismos epigenéticos como la metilación del gen NR3C1 y la consiguiente alteración de la expresión de la proteína que codifica²⁴⁶. En seres humanos, se ha visto que la alteración epigenética de este mismo gen, causada por estímulos adversos en la infancia, como los abusos sexuales, está asociada a una mayor incidencia de suicidio en la edad adulta²⁴⁷. Otros estudios en ratones han mostrado que la exposición a ciertas toxinas pueden alterar las modificaciones epigenéticas y, en último termino, conducir a un fenotipo característico²⁴⁸. En este caso se observó que la exposición de ratones agutis a Bisfenol A está asociada a la aparición de pelaje amarillo y a un aumento de obesidad, a través de un proceso de hipometilación. Por último, diversos estudios han mostrado el efecto de la dieta en los individuos y en su descendencia, a través de mecanismos epigenéticos. El caso más representativo es la "hambruna holandesa", que afectó al país entre 1944 y 1945. Un estudio que ha analizado este fenómeno muestra como el déficit nutricional mantenido en el tiempo puede originar alteraciones metabólicas y mentales en la descendencia, incluso mucho años después de que cese el estímulo inicial. Ello es debido a alteraciones en el patrón general de metilación de los individuos expuestos^{249,250}.

También se han identificado alteraciones epigenéticas ligadas a la aparición de enfermedades que afectan al ser humano, como alteraciones del neurodesarrollo y trastornos cognitivos²⁵¹. Uno de los ejemplos más importantes es el del síndrome de Rett. Este trastorno neurológico causado por la presencia de mutaciones en *MECP2* (methyl-CpG binding domain 2) produce pérdidas cognitivas, de la habilidad social y motora, y conlleva un retraso mental severo²⁵². MeCP2 reconoce regiones metiladas del genoma, por las que presenta una gran afinidad, y recluta proteínas que se unen para modular la conformación de la cromatina, afectando de esta manera la transcripción génica. Las mutaciones en *MECP2* implican una alteración de los mecanismos epigenéticos que regulan el genoma. Las variaciones del perfil de ADNm también están implicadas en el síndrome del cromosoma X frágil. La expansión de trinucleótidos causante de esta enfermedad induce la metilación del promotor del gen *FMR1*, lo que conlleva a una disminución de su expresión génica²⁵³. Los mecanismos epigenéticos han sido especialmente asociados a trastornos del aprendizaje y de la memoria²⁵⁴, así como, a alteraciones del neurodesarrollo, cognitivas y a enfermedades neurodegenerativas²⁵⁵, aunque también están implicados en otras patologías complejas como el cáncer²⁵⁶, la diabetes²⁵⁷ y las enfermedades cardiovasculares²⁵⁸ (Tabla 8).

Tabla 8. Alteraciones del patrón de metilación del ADN asociadas a enfermedad complejas							
Enfermedad	Alteración	Efecto	Genes	Referencias			
Cáncer	hipermetilación CGI	represión transcripción	MLH1, BRCA1, MGMT, p16	Esteller et al., 2007 ²⁵⁹			
Cáncer	hipometilación CGI	activación transcripción	MASPIN, S100P, SNCG, MAGE	Wilson et al., 2007 ²⁶⁰			
Cáncer	hipermetilación CGI shore	represión transcripción	HOXA2, GATA2	Doi et al., 2009 ²⁶¹			
Cáncer	hipometilación secuencias repetitivas	transposición, recombinación e inestabilidad genómica	L1, IAP, Sat2	Esteller et al., 2007; Fraga et al., 2005 ^{259,262}			
Enfermedad de Alzheimer	hipermetilación CGI	represión transcripción	NEP	Urdinguio et al., 2009 ²⁶³			
Esclerosis múltiple	hipometilación CGI	activación transcripción	PADI2	Urdinguio et al., 2009 ²⁶³			
Alfa-talasemia ligada al cromosoma X	metilación aberrante de secuencias repetitivas	transposición, recombinación e inestabilidad genómica	repeticiones subteloméricas	Urdinguio et al., 2009; De Sario et al.,2009 ^{263,264}			
Artritis reumatoide	hipermetilación CGI	represión transcripción	DR3	Javierre et al., 2008; Karouzakis et al., 2009 ^{265,266}			
Lupus eritematoso sistémico	hipometilación CGI	activación transcripción	PRF1, CD70, CD154, AIM2	Javierre et al., 2010 ²⁶⁷			
Inmunodeficiencia, inestabilidad centromérica y anomalías faciales; Artritis reumatoide	metilación aberrante de secuencias repetitivas	transposición, recombinación e inestabilidad genómica	Sat2, Sat3, L1	Jin et al., 2008; Karouzakis et al., 2009 ^{266,268}			

CGI, islas CpG; CGI shores, cercanas a islas CpG.

En conclusión, las modificaciones epigenéticas representan un mecanismo muy importante en el contexto de las enfermedades complejas. Por lo que la investigación de los factores que alteran los perfiles epigenéticos y, en particular, las alteraciones del perfil de ADNm en el genoma humano, puede descubrir nuevas vías en la etiopatología de enfermedades neurodegenerativas, así como identificar nuevas dianas de modulación terapéutica.

1.2.2.1. Cambios epigenéticos en el sistema nervioso central

La metilación del ADN en vertebrados consiste en la adición de grupos metilo (-CH₃) al carbono que ocupa la quinta posición del anillo de citosina, generalmente en dinucleótidos CpG. El dinucleótido CpG presenta una distribución irregular en el genoma, y tiende a estar infrarrepresentado, en un fenómeno referido como supresión CG, generalmente atribuido a la elevada mutabilidad de las citosinas. No obstante, existen regiones del genoma ricas en dinucleótidos CpG²⁶⁹. Estas regiones, denominadas *islas CpG* (CGIs), están caracterizadas por una longitud de unos 500 nucleótidos y un contenido en guanina y citosina mayor del 55%, presentando una proporción de CpG observados respecto a los esperados por

encima de 0,65²⁷⁰. En el genoma humano cerca del 40% de los promotores solapan con CGIs según las definiciones estándar y alrededor del 70% presentan un enriquecimiento en CpG. Las CGIs de las regiones promotoras, en condiciones normales, suelen presentar un estado de baja metilación o hipometilación²⁷¹.

La función principal de las CGIs está asociada a la regulación de la transcripción. El estado de hipometilación favorece una estructura abierta de la cromatina facilitando la expresión de génica²⁷². Por el contrario, la metilación de CGIs está relacionada con el silenciamiento génico, bien a través del reclutamiento de proteínas *methyl-CpG-binding domain* (MBD) que promueven la unión de "complejos remodeladores de cromatina"²⁷³, o bien por inhibición directa de la transcripción impidiendo la unión de factores de transcripción²⁷⁴. Recientemente, se ha mostrado que la regulación de la transcripción por mecanismos de ADNm no se restringe a las CGIs, sino que también tiene lugar en regiones denominadas *CGIs shores*, a las que también se le atribuyen patrones de metilación específicos de tejido²⁷⁵. También se ha observado metilación de CpG en los cuerpos génicos, lo que podría desempeñar un papel fundamental, previniendo un inicio alternativo de la transcripción y aumentando su eficiencia²⁷⁶. Finalmente, se ha observado una cuarta función de la ADNm en los elementos repetitivos del genoma, en donde la hipermetilación de dinucleótidos CpG desempeñaría un papel fundamental en la inactivación de secuencias endoparasíticas, evitando la inestabilidad cromosómica, las translocaciones y la disrupción génica que los elementos transponibles del genoma pueden ocasionar^{272,277}.

La presencia de patrones de metilación específicos de tejido junto con el interés funcional que despierta la investigación del SNC ha conducido a la exploración de patrones de metilación de las diversas estructuras del cerebro. El primer estudio, realizado por Ladd-Acosta et al., 2007²⁷⁸, muestra la presencia de una correlación entre los patrones de ADNm y las estructuras neuroanatómicas del cerebro. En concreto, a partir de las muestras de cerebro de un grupo de individuos, se demuestra que las diferencias de metilación entre corteza cerebral, protuberancia y cerebelo son mayores que las diferencias interindividuales. Investigaciones posteriores han replicado resultados similares empleando diferentes técnicas para determinar la ADNm^{279,280}. Paralelamente, diversos estudios se han centrado en determinar el papel de la metilación en las funciones superiores del SNC, como el aprendizaje, la formación de la memoria a largo plazo y el comportamiento condicionado como el miedo contextualizado. No obstante, al tratarse de mecanismos complejos, no se ha determinado con exactitud cómo se producen estos procesos. A pesar de ello, ciertos experimentos han contribuido a mejorar su caracterización. Por ejemplo, se ha observado un bloqueo de la respuesta al miedo contextualizado tras la inactivación en ratas de los enzimas encargados de la ADNm (DNMTasas, ej.-DNMTasa 1-3), mientras que genes como PP1, RELN y BDNF sufren cambios en el grado de metilación en el proceso de formación de la memoria^{254,281-283}. Estos estudios ponen de manifiesto la implicación de los mecanismos epigenéticos de ADNm en un proceso dinámico que responde a los cambios del entorno y a la experiencia²⁵⁴.

La implicación de los cambios de metilación en relación al envejecimiento ha sido motivo de investigación en varios estudios. En general se ha detectado una pérdida global y progresiva de las marcas de metilación²⁸⁴⁻²⁸⁶, principalmente en las secuencias repetitivas del genoma^{287,288}, especialmente *Alu* y *HERV-K*. Por otro lado, se han observado cambios de metilación asociados al envejecimiento, dependientes de tejido, que generalmente comportan incrementos de la metilación en regiones concretas^{289,290}. La complejidad de este proceso incluye una hipometilación generalizada de las regiones fuera de CGIs, junto con un incremento de la metilación de CGIs²⁹¹. Los cambios de metilación pueden estar influidos por estímulos medioambientales, como toxinas²⁴⁸, el cuidado materno²⁹² o el estrés²³². En resumen, mientras factores externos pueden inducir cambios de metilación asociados a sitios CpG concretos, que pueden ser críticos en la regulación de la transcripción, el envejecimiento puede alterar de manera estocástica los patrones de metilación a nivel del genoma completo.

Estudios recientes han demostrado la existencia de metilación en citosinas que no pertenecen a dinucleótidos CpG. En células madre humanas, se ha observado la metilación en sitios CHG y CHH – donde H puede ser una adenina, una citosina o una timidina–, con un enriquecimiento en los cuerpos génicos²⁹³. El grado de metilación de estos sitios *no-CpGs* disminuye durante la diferenciación celular y se restablece cuando se induce un estado totipotencial en las células, hecho que sugiere un papel regulador en el origen y mantenimiento de este estado²⁹⁴. Por otro lado, se ha descubierto la existencia de una nueva modificación del ADN, *5-hidroximetil-2'-deoxicitidina*, un radical *hidroximetilo* (-CH₃OH) que se añade a la posición quinta del anillo de carbono de la citosina. Esta modificación ha sido observada en células de Purkinje y granulares de cerebelo²⁹⁵. Aunque la función biológica de estas modificaciones no es bien conocida, se ha sugerido que la *5-hidroximetil-2'-deoxicitidina* podría ser un metabolito intermedio en la degradación de la citosina metilada²⁹⁶.

1.2.2.2. Métodos de detección y análisis de la metilación del ADN

A lo largo de los años se han empleado muchos métodos para determinar el estado de ADNm. Los primeros se basaron en el uso de enzimas de restricción sensibles a metilación (*HpaII*, *HhaI*, entre otros) y en el mapeo de los fragmentos generados por estos enzimas, hasta que se desarrolló el método de modificación del ADN con bisulfito²⁹⁷. Este método consiste en el tratamiento químico del ADN con una mezcla de bisulfito e hidróxido de sodio, que induce la conversión de las citosinas no metiladas a uracilo, de forma que, al secuenciar el ADN modificado, es posible diferenciar las citosinas metiladas (C) de las no metiladas (convertidas a T). Entre las limitaciones de esta técnica se encuentran, por un lado, la degradación del material de partida, cuyo efecto más evidente es la inducción de errores en la secuenciación, y por otro, la limitación en cuanto a las regiones del genoma analizadas en un único experimento. El desarrollo de tecnologías que acoplan sistemas de detección a nivel genómico –los microarrays o la secuenciación masiva– con estrategias clásicas, como inmuno-precipitación de

secuencias metiladas (MIRA, MeDIP, MEDIP-seq), o enzimas de restricción sensibles a metilación (HELP, DMH, MCA, MSDK), ha supuesto una verdadera revolución en el campo (revisado en *Iraola-Guzmán et al.*, 2011¹²²). Entre las técnicas más eficientes de detección se encuentran la genotipación del ADN tratado con bisulfito mediante microarrays (Illumina Infinium® assay)²⁹⁸; la combinación de enzimas de restricción, tratamiento con bisulfito y secuenciación masiva (RRBS)²⁴¹; y la secuenciación masiva del DNA tratado con bisulfito, ya aplicada a la secuenciación del metiloma de *Arabidopsis Thaliana*²⁹⁹ y fibroblastos humanos²⁹³ (Figura 6). Estas técnicas permiten una detección de la metilación a nivel global del genoma con variaciones en el grado de resolución. La mejor resolución corresponde a los métodos de secuenciación basados en conversión con bisulfito. Entre las desventajas de éstos últimos se encuentra la dificultad en el alineamiento de las secuencias que requieren programas especiales de análisis y una mayor cobertura de secuencias.

Figura 6. Resumen de las estrategias de identificación de alteraciones de metilación en enfermedades complejas: enfermedades neurodegenerativas. La interacción del medioambiente, junto con el componente genético de los individuos, afectan el estado de los mecanismos epigenéticos en el envejecimiento fisiológico y en las enfermedades neurodegenerativas. Las estrategias actuales de detección de los mecanismos epigenéticos y su contribución a la patología incluyen el perfil de la metilación del ADN y de la expresión del ARN¹²².

1.2.2.3. La metilación del ADN en enfermedades neurodegenerativas

El papel de los mecanismos epigenéticos como mediadores entre el medioambiente y el genoma resulta de gran interés en la investigación de las causas que conducen a la aparición las enfermedades complejas. En los últimos años, se ha mostrado un creciente interés por elucidar los mecanismos que intervienen en la ADNm en la patofisiología de la enfermedades neurodegenerativas, como la EA y la EP. La mayoría de los estudios se han llevado a cabo en la EA y, sobre todo, se han centrado en identificar variaciones de metilación en genes concretos cuya implicación en la patología era conocida, como el gen *APP*.

Cambios en la metilación del ADN y enfermedad de Alzheimer

Dado que la duplicación del gen APP ha sido descrito como un factor de riesgo para la EA por el aumento en la expresión de la proteína que conlleva¹¹², teóricamente, parece factible que aquellos cambios epigenéticos que afecten al promotor de APP y que induzcan un aumento de la expresión del gen puedan representar factores de riesgo para la patología. No obstante, entre los numerosos estudios enfocados en la identificación de alteraciones epigenéticas en el gen APP no se han encontrado pruebas concluyentes de su alteración en EA. El primer estudio realizado identificó un estado de hipometilación del promotor en muestras de cerebro de un individuo sano³⁰⁰. West et al. compararon el estado de metilación del gen APP de un individuo con EA frente a una individuo con demencia sin EA, encontrando un estado generalizado de hipometilación del promotor en EA³⁰¹. Este dato fue apoyado por nuevas evidencias de hipometilación en el promotor de APP en un estudio realizado en pacientes de EA mayores de 70 años respecto a pacientes menores de 70 años³⁰², sugiriendo una asociación entre la hipometilación del promotor y la acumulación de Aβ en el SNC de los ancianos. Mas recientemente tres estudios han investigado los cambios de metilación en APP en relación a enfermedad de Alzheimer. El primer estudio comparaba el patrón de metilación entre corteza y cerebelo de seis pacientes de EA familiar³⁰³, mientras que, dos estudios de mayor envergadura, analizaron el patrón de metilación de APP en el tejido cerebral de 26 controles y 43 pacientes de EA³⁰⁴ y el cerebro y los linfocitos de 10 controles y 24 casos de EA⁴⁴, respectivamente. En ningún caso se encontraron diferencias de metilación en el promotor de APP entre casos y controles, sin embargo, en el último estudio se descubrieron variaciones globales de la metilación entre casos y controles, proponiendo que la EA podría estar relacionada con una variabilidad epigenética global⁴⁴.

A la luz de estos resultados se pone de manifiesto la necesidad de ampliar el estudio de la metilación de *APP* en un mayor número de individuos controles y afectos. Una posible explicación para la falta de concordancia entre estudios es el uso de diferentes tejidos (sangre vs cerebro) y técnicas, un número de casos variable y el estudio de CpGs diversas dentro de la misma secuencia del promotor. En modelos animales se ha observado que la alteración de la metilación de *PSEN1* puede producir una alteración de los niveles de β -amiloide y la deposición en placas neuríticas^{305,306}, no obstante, los resultados de *PSEN1* y otros genes relacionados con la patología en casos y controles no son concluyentes o no han podido ser replicados^{44,304,306}.

Otro gen que participa en el metabolismo de la proteína amiloide es el gen *NEP*, cuya proteína está implicada en la degradación de los depósitos de A β . Diversos estudios han observado una disminución de su expresión en envejecimiento y en casos de EA³⁰⁷⁻³¹⁰ (Tabla 8), por lo que representa un candidato idóneo para la búsqueda de alteraciones de la metilación de su promotor. Algunos estudios han analizado las diferencias de metilación de este gen en relación a patología^{311,312}, aunque en células de neuroblastoma (SH-SY5Y) se ha demostrado que su expresión depende de la acetilación de histonas³¹³.

Estudios adicionales realizados en sangre periférica han encontrado cierta correlación entre los valores de metilación de muestras de tejido cerebral y sangre periférica en pacientes de EA y controles, aunque como se indicaba anteriormente, las diferencias entre casos y controles no resultaron significativas⁴⁴. Por otro lado, un estudio piloto realizado en sangre de pacientes de EA y controles identificó más de 20 genes expresados de forma diferencial entre casos y controles³¹⁴. Finalmente, otro trabajo analizó la metilación en los promotores de cinco genes candidatos en un grupo reducido de pacientes de EA frente a controles, detectando un estado de hipermetilación del promotor del gen *HTERT* en EA³¹⁵, que contrariamente a lo esperado, induce un incremento de su expresión, posiblemente debido a la interacción de los diversos mecanismos epigenéticos mencionados previamente.

La implicación de la metilación como mecanismo probable de EA se ve apoyada por la hiperhomocisteinemia observada en esta patología. En este contexto, varios estudios han propuesto una interacción entre deficiencias de ácido fólico y niveles de homocisteína en EA, a través de cambios de metilación y de expresión de genes implicados en la patofisiología de la enfermedad^{255,316}. Se ha determinado una bajada de los niveles de ácido fólico, vitamina B12 y S-Adenosil-metionina (SAM) en EA, mientras que los niveles de homocisteína libres en plasma están aumentados³¹⁷. Esta hiperhomocisteinemia puede aumentar los niveles de S-adenosilhomocisteina (SAH) -un potente inhibidor de metiltransferasas, como la DNMTasa, encargada de regular la metilación del ADN-. Estos niveles están relacionados con marcadores de la progresión de la enfermedad de Alzheimer y de la alteración cognitiva^{318,319}. Por otro lado, nuevos estudios en modelos animales han demostrado que la dieta y bajos niveles de homocisteína están relacionados con la alteración en los patrones de ADNm en genes asociados a EA, induciendo diferencias en la expresión de los mismos^{306,320} (Figura 7). Además, se han propuesto nuevos mecanismos que implican a la hiperhomocisteinemia en EA a través de procesos de estrés oxidativo o mediante la interacción directa con APOE-e3³²¹. En cualquier caso, no se ha realizado ningún estudio completo que relacione los niveles de homocisteína en sangre con los patrones de metilación global y los datos de expresión génica en muestras de cerebro de EA y controles.

El efecto de los estímulos medio-ambientales en los mecanismos epigenéticos es de gran interés en la patofisiología de la EA. Por ejemplo, en primates, se ha descrito el efecto a largo plazo en la metilación causado por la exposición a plomo en estadíos iniciales del desarrollo en la metilación mediada por DNMT1 de varios genes relacionados con la patología de EA (*APP*, *BACE1*, *Sp1*)³²². Del mismo modo, estudios *in vitro* han mostrado la alteración del patrón de metilación a agentes causantes de estrés oxidativo y EA, mediado por alteraciones aberrantes de la ADNm causadas por oxidación de la G en CpGs y por la inhibición de la metilación de C, induciendo un estado generalizado de hipometilación de promotores de diversos genes, entre los que se incluyen genes relacionados con EA³²⁴.

Pese al impacto que parece tener en numerosos procesos el mecanismo de la ADNm, los estudios enfocados a identificar los cambios globales del patrón de metilación asociados a enfermedades neurodegenerativas son limitados. Uno de los pioneros en este tipo de análisis, *Mastroeni et al.*, realizó dos estudios globales de metilación^{325,326}. En el primero, se analizaron patrones de metilación en tejido cerebral de gemelos afectados de EA mientras que, en el segundo estudio se cuantificó la metilación de la corteza entorrinal en 20 casos de EA frente a 20 controles. Ambos estudios determinaron una disminución significativa de los niveles de 5-metil-citosina en EA frente a los controles, aunque la técnica de inmunoafinidad empleada no permitió identificar regiones específicas del genoma en las que se producía dicha disminución^{325,326}.

Figura 7. Factores ambientales y metilación del ADN. Algunos componentes de la dieta, como el ácido fólico, la colina y la vitamina B12, pueden modular el metabolismo de *S-adenosilmetionina* (SAM). SAM es un donante de grupos metilo que regula la metilación global del ADN, mientras que el catabolismo de SAM a *S-adenosilhomocisteína* (SAH) inhibe la metilación. Una baja proporción de la relación SAM/SAH esta asociada a una hipometilación global en el envejecimiento y en procesos deletéreos. (Adaptado de *Iraola-Guzmán et al.*¹²²)

Cambios en la metilación del ADN y enfermedad de Parkinson

En general, la implicación de la ADNm en la EP ha sido mucho menos estudiada. En este caso, la hiperhomocisteinemia también se ha propuesto como factor de riesgo de EP. En algunos casos se ha detectado un aumento de homocisteína en sangre^{327,328}, y se ha observado que la deficiencia de ácido fólico aumenta el efecto citotóxico de ciertos pesticidas en cultivos neuronales³²⁹, pero no se ha identificado la alteración de la metilación de ningún gen concreto. Al igual que en la EA, algunos estudios se han centrado en la identificación de cambios en la metilación de genes cuya implicación en la patología estaba ya descrita. Por ejemplo, un estudio reciente realizado en el tejido cerebral de 12 pacientes de EP y 14 controles ha detectado un estado de hipometilación del promotor de *SNCA*³³⁰, lo cual concuerda con los hallazgos realizados por otros grupos, en los que se encuentra un incremento de los niveles de expresión de *SNCA* en la *substantia nigra* de pacientes de EP^{331,332}. Otro estudio ha reportado diferencias de metilación entre la corteza cerebral y la *substantia nigra* del promotor de *TNFA*, con una ligera tendencia a la hipometilación en las muestras de *substantia nigra* de EP³³³. No obstante, en el estudio de *Barrachina et al.*, donde se analizan diferencias en los promotores de varios genes tanto en EA como en EP y en otros casos de demencia, no se ha encontrado ninguna diferencia

En conclusión, la epigenética se muestra como un campo emergente en el estudio de las enfermedades neurodegenerativas y complejas en general. Los mecanismos que modulan las modificaciones epigenéticas, y más concretamente, la ADNm, pueden ser de gran utilidad en la descripción de las bases moleculares responsables de estas enfermedades. La perspectiva de incluir estudios que abarquen el genoma completo en la detección de la ADNm, de la modificación de histonas y de las variantes genéticas puede proporcionar una estrategia integrada en la que los factores medioambientales puedan estar representados en relación al fenotipo. No obstante, uno de las enigmas que entraña el mecanismo de la ADNm en relación a patología es cómo comprobar si los hallazgos corresponden a una causa primaria o bien a una consecuencia de la activación de mecanismos patológicos. En este respecto es importante señalar ciertos aspectos importantes en el diseño de los experimentos, como el uso de tejidos diana de las patologías en estudio y poblaciones celulares homogéneas. Para ello, se han desarrollado una técnicas de captura celular por láser que en un futuro permitirá analizar perfiles epigenéticos celulares. Gracias al desarrollo de nuevas tecnologías para el análisis de la metilación del genoma completo basadas en NGS y arrays de alta densidad, este tipo de estudios son ahora más factibles y de gran interés. En este sentido, las enfermedades neurodegenerativas representan unos candidatos idóneos para la identificación de factores de susceptibilidad epigenéticos y la integración de las distintas capas de información disponibles permitirán la identificación de nuevas dianas terapéuticas.

Objetivos

El trabajo de investigación de la presente tesis tiene los siguientes objetivos:

- Caracterización del patrón global de metilación del ADN en el sistema nervioso central humano en muestras de tejido cerebral;
- a) Evaluación de la viabilidad de identificar cambios de metilación globales asociados a enfermedades neurodegenerativas en muestras humanas de cerebro;
- b) Identificación de patrones específicos de metilación de regiones del sistema nervioso central representativas e implicadas en la enfermedad de Alzheimer;
- c) Identificación de cambios de metilación de dianas CpG, asociados a enfermedad de Alzheimer tardía en estadíos intermedios de la patología;
- d) Valoración del impacto funcional de las variaciones en el estado de metilación de dianas CpG, asociadas a enfermedad de Alzheimer tardía en estadíos intermedios de la patología, mediante cuantificación de la expresión génica del ARN mensajero en muestras humanas de cerebro;
- Identificación de variantes de número de copia en estado de mosaicismo somático en el sistema nervioso central en pacientes de enfermedades neurodegenerativas, con un posible efecto en la diferenciación entre regiones del cerebro.

Materiales y métodos

3.1. Muestras humanas de cerebro obtenidas de individuos donantes

Los estudios del presente trabajo de tesis fueron realizados a partir de un total de 230 muestras de tejido, pertenecientes a 60 donantes; de los cuales, 29 eran individuos de avanzada edad no afectados por patologías neurodegenerativas, 28 eran donantes diagnosticados de EA tardía y 3 eran individuos diagnosticados de EP esporádica. El listado completo de donantes, el diagnóstico neuropatológico – basado en la clasificación de Braak^{25,60}–, junto con las áreas del SNC disponibles de cada individuo se detalla en la Tabla 9, y que las características demográficas y clínicas están resumidas en la Tabla 10.

ID de muestra	Patología	Sexo	Edad	PMI	BraaK EA	BraaK EP	Areas SNC
A04/00146	C	M	81	12.45	0	0	С, А, НС, СВ
A04/00179	C	F	82	7.75	0	0	C, A, HC, CB
A05/00057	С	М	82	4	0	0	C, A, HC, CB
A06/00107	С	М	84	14	0	0	C, A, HC, CB
A06/00110	С	F	86	19.3	0	0	С, А, НС, СВ
A06/00112	С	M	71	4.3	0	0	С, А, НС, СВ
A06/00203	С	М	74	4	0	0	С, А, НС, СВ
A06/00210	С	F	71	11.3	0	0	С, А, НС, СВ
A07/00005	С	M	56	5	0	0	A, HT
A07/00011	С	F	66	7	0	0	С, А, НС, СВ
A07/00043	С	M	81	4	0	0	С, А, НС, СВ
A08/00015	С	F	79	3.35	0	0	С, А, НС, СВ
A08/00023	С	F	81	4	0	0	С, А, НС, СВ
A08/00041	С	F	67	5.2	0	0	С, А, НС, СВ
A08/00070	С	F	79	6.25	0	0	С, А, НС, СВ
A08/00081	С	M	72	3.35	0	0	С, А, НС, СВ
A08/00095	С	M	52	9.25	0	0	А, НТ, Р, СВ, NA
A08/00107	С	M	64	11.4	0	0	С, НС, НТ
A08/00113	С	F	79	4.45	0	0	С, А, НС, СВ
A08/00132	C	M	66	3.05	0	0	C, HC, CB
A08/00132	С	M	66	3.05	0	0	C, HC, CB
A09/00020	C	F	71	6	0	0	С, А, НС, СВ
A09/00027	С	M	66	9.45	0	0	С, А, НС, СВ
A09/00125	C	M	/3	7.05	0	0	С, А, НС, СВ
A10/00027	C	M	68	10.55	0	0	C, A, HC, CB
A09/00145	C	M	44	6.4	0	0	CB
A10/00017	C	IVI	52	3	0	0	CB
A10/00026	C	IVI	61	3.55	0	0	CB
A11/00025	C FA	IVI	52	4.4	0	0	CB
AU7/00132	EA	IVI	90	2.3	3	0	C, A, HC, CB
A07/00157	EA		03 75	6.1	5	0	
A07/00142	EA	IVI NA	75 01	0.1	4	0	
A07/00100	EA		01 01	2 / 5	2	0	
A08/0001/	EA	E	76	0.45	2	0	
A08/00004 A08/00088	EA	F	70	7 1 5	3	0	
A08/00008	ΕΔ	M	69	13.1	3	0	
A08/00117	ΕA	F	90	9.55	4	0	
A08/00131	FA	M	64	6	3	0	
A08/00152	FA	F	67	61	3	0	C A HC CB
A09/00005	FA	F	90	4	3	0	C. A. HC. CB
A09/00021	EA	M	77	11.15	3	0	C. A. HC. CB
A09/00030	EA	М	86	3.1	3	0	C. A. HC. CB
A09/00053	EA	F	69	8.1	4	0	C, A, HC, CB
A09/00068	EA	F	79	5.45	3	0	C, A, HC, CB
A09/00086	EA	F	79	3.35	3	0	С, А, НС, СВ
A09/00111	EA	M	77	13.45	3	0	С, А, НС, СВ
A09/00124	EA	M	77	5.4	3	0	С, А, НС, СВ
A09/00136	EA	F	68	4.45	3	0	С, А, НС, СВ
A10/00011	EA	F	81	5	4	0	С, А, НС, СВ
A10/00022	EA	F	82	4.5	3	0	С, А, НС, СВ
BK-816	EA	F	77	9.3	6	0	С, А, НС, СВ
BK-873	EA	M	85	4.3	6	0	C, A, HC, HT, P, SN, CB, NA
BK-999	EA	F	76	10	5	0	C, A, HC, HT, P, SN, CB
A09/00009	EA	М	93	3	5	0	СВ
A09/00016	EA	F	81	5.15	5	0	СВ
A10/00014	EA	М	82	3.45	5	0	СВ
BK-1049	EP	F	81	4	0	6	HT, CB, NA
BK-1082	EP	M	80	7.3	0	6	A, HC, HT, P, CB
BK-962	EP	F	85	7	0	5	C, A, HC, P, SN

Tabla 9. Individuos donantes incluidos en el presente trabajo de tesis

EA: enfermedad de Alzheimer, EP: enfermedad de Parkinson, F: sexo femenino, M: sexo masculino, PMI (horas): intervalo *post-mortem*, tiempo transcurrido desde la recogida del órgano hasta su conservación, Braak EA/EP: clasificación del estado de progresión neuropatológico, A: amígdala, C: corteza, HC: hipocampo, HT: hipotálamo, P: protuberancia, SN: sustancia negra, CB: vermis cerebeloso, NA: área sin determinar.

Todas las muestras de tejido se obtuvieron del *Banco de Tejidos del Hospital Clínico de Barcelona*, en colaboración con el Banco de Tejidos Neurológicos del *Instituto de Investigación Biomédica de Bellvitge* (IDIBELL-Hospital Bellvitge), con la aprobación del Comité Ético de Evaluación de dichas instituciones. Según el protocolo del Banco de Tejidos Neurológicos, las muestras de cerebro de los donantes se recogen en el momento de la autopsia y se dividen en dos mitades –cada una compuesta por un hemisferio cerebral y la mitad del cerebelo–, que seguirán un tratamiento paralelo. Un hemisferio es conservado íntegramente en formol para su posterior análisis morfológico e inmuno-histoquímico, mientras que el otro hemisferio es seccionado en cortes coronales y congelado a -80°C para su uso en estudios bioquímicos y genéticos. A continuación, se realiza un examen neuropatológico, para la clasificación y diagnóstico de los donantes, que comprende el análisis histoquímico de los siguientes marcadores proteicos de neurodegeneración: *proteína acídica fibrilar glial* (GFAP), *microglía, β amiloide, Tau fosforilada, α-sinucleína, aB-cristalina, ubiquitina* y *TAR DNA-binding protein 43* (TDP-43). Las muestras de tejido control provienen de individuos sin historial neurológico ni lesiones observadas en el examen neuropatológico realizado.

Tabla 10. Características demográficas y clínicas de los individuos incluidos en el trabajo de tesis

Diagnóstico	Ν	Edad (años)	PMI (horas)	Ratio Sexo (F/M)	Estadio Braak
Enfermedad de Alzheimer	28	78.82±7.32	6.34±3.03	1/1	III-VI
Enfermedad de Parkinson	3	82±2.16	6.10±1.49	2/1	III-VI
Controles	29	69.86±10.85	6.79±3.91	10/19	5

Ratio sexo: cociente de mujeres frente a hombres.

3.2. Extracción de material genético de muestras humanas de cerebro

Para la realización de los estudios genéticos, epigenéticos y de expresión génica, se llevaron a cabo las extracciones de ácido desoxirribonucleico (ADN) y ácido ribonucleico (ARN).

3.2.1. Ácido desoxirribonucleico (ADN)

La extracción de ADN genómico se realizó empleando tres técnicas en función de los requerimientos del análisis al que iban a ser sometidos. El *set1* de muestras corresponde al estudio del perfil de metilación del SNC en 10 individuos (*HumanMethyl27K*); el *set2* al análisis de variantes estructurales y mosaicismo somático; el *set3* a la identificación de diferencias globales de metilación asociadas a enfermedad de Alzheimer (*HumanMethyl450K*). El resultado de todas las extracciones está contenido en la Tabla Suplementaria 1. Para el *set1* se empleó el kit comercial *MasterPure™ Complete DNA and RNA Purification Kit* (Ecogen; www.ecogen.com/ upfiles/A27147.pdf). El ADN obtenido no resultó ser de

suficiente calidad para el experimento de aCGH, por lo que para el *set2* se empleó el método tradicional de extracción con fenol-cloroformo, con ciertas modificaciones adaptadas al tipo de tejido y su conservación³³⁴ (Anexo). Para la tercera aplicación se intentó ver si otro sistema de kit era viable, y se decició emplear el kit *Dneasy Blood & Tissue Kit* (Qiagen; www.qiagen.com/hb/dneasyblood tissuekit_en), siguiendo el protocolo de los fabricantes.

Para determinar la pureza y concentración exacta del ADN se empleó una combinación de tres técnicas complementarias: *Nanodrop ND-1000* (The NanoDrop[®] ND-1000, NanoDrop Technologies), *Qubit* (Quant-iT[™] dsDNA BR Assay) y *SYBR Green*. Las dos primeras técnicas miden la concentración del ADN total (Nanodrop ND-1000) y de doble cadena (Qubit), mediante espectrofotometría y marcaje con fluorescencia, respectivamente. La tercera técnica permite visualizar el ADN en gel de agarosa mediante tinción SYBRgreen, determinando la integridad del ADN de doble cadena y la contaminación por ARN.

NanoDrop•*ND*-1000 consiste en un espectrofotómetro conectado a un sistema informático que a través de la emisión de un haz de luz en el espectro UV-visible (λ = 220-750 nm), permite medir la absorbancia de ácidos nucleicos y proteínas, proporcional al número de moléculas en solución bajo de determinadas condiciones (*Ley de Lambert-Beer*). El ADN presenta un máximo de absorbancia a 260 nm, y a esta longitud de onda, se ha establecido la siguiente relación: 1 A260nm = 1 OD DNA = 50 µg/ml, que permite calcular la concentración del ADN de una solución problema. Para determinar la pureza de una muestra de ADN, se mide la absorbancia de una muestra a diferentes longitudes de onda (230, 260 y 280 nm) y se calculan los cocientes 260/280 (valor óptimo de 1,8) y 260/230 (valor óptimo >2). Valores inferiores a los señalados pueden indicar la presencia de contaminantes, como fenoles o proteínas.

La cuantificación por *Qubit* consiste en el marcaje de la doble cadena de ADN mediante un fluoróforo (Quant-iT[™] dsDNA BR Assay) y su posterior cuantificación fluorimétrica (Qubit[®] Fluorometer). A continuación, se describe el protocolo de cuantificación:

- 1.- Preparación de solución fluorescente 1/200 del reactivo fluorescente en una solución tampón.
- Preparación de solución de calibrado: añadir 10 μL de solución de calibrado de concentración conocida a 190 μL de la solución fluorescente (para la puesta a punto del aparato).
- Preparación de la solución problema: añadir 2 μL de muestra problema a 198 μL de solución fluorescente.
- 4.- Mezclar con vórtex, transferir a tubo de 0,5 μL adaptado a la lectura de fluorescencia e incubar 2 min. a temperatura ambiente, protegido de la luz.
- 5.- Calibrado del lector. Seleccionar el ensayo a realizar e introducir una a una las muestras de calibrado.
- 6.- Lectura de la concentración de las muestras problema, expresadas en QF (μg/mL)
- 7.- Cálculo de la concentración inicial de las muestras antes de la dilución de trabajo:

Concentración (μ g/mL)= QF (μ g/mL) x (200/v); ^ v: volumen de muestra añadido (μ L).

La integridad de las muestras, así como la posible contaminación con ARN, se determinó por electroforesis de la muestras de ADN en gel de agarosa (1,3%), teñido con SYBR Green (SYBR® Green I Nucleic Acid Gel Stain, Invitrogen), agente intercalante con alta afinidad por el ADN doble cadena, capaz de teñir también el de cadena simple y el ARN. Por ello, permite observar aquellas muestras degradadas o contaminadas con ARN, como observamos en la Figura 8:

Figura 8. Control de degradación de ADN genómico en gel de agarosa (1,3%) teñido con SYBR Green. A-F: Muestras de cerebro degradadas, G: Muestra de cerebro íntegra de alta pureza, C-F: contaminación de ARN de bajo peso molecular.

Algunas muestras, principalmente de los *set1* y *set3*, incumplieron repetidamente los criterios de calidad estipulados para las ratios de absorbancia. A pesar de ello, cuando la curva de absorbancia y los valores de Qubit eran aceptables, estas muestras se incluyeron en los análisis debido a la falta de disponibilidad de tejido de mayor calidad para los ensayos de metilación.

3.2.2. Ácido ribonucleico (ARN)

La extracción de ARN se realizó en un total de 39 muestras de cerebelo, pertenecientes a donantes control y pacientes de EA tardía. La extracción de ARN total se realizó empleando un kit apropiado para tejido cerebral (*RNeasy Tissue Lipid Mini kit* (Qiagen)). El fundamento de esta extracción de ARN se basa en la solubilidad diferencial de las moléculas (ácidos nucleicos y contaminantes) entre dos fases no miscibles. Las muestras, preservadas a -80°C, fueron trasladadas a un contenedor con nitrógeno líquido para ser cortadas y pesadas (50-100 mg de tejido), e introducidas en tubos *eppendorf* con 1 mL de reactivo *Qiazol* (Qiagen).El *Qiazol* está compuesto por una mezcla de fenol (donde los ácidos nucleicos son insolubles) y tiocianato de guanidinio (agente desnaturalizante de proteínas e inhibidor de proteasas) a pH 4,5. Así, la integridad del ARN se mantiene durante la extracción. Para conseguir una lisis completa del tejido se realizó una disgregación mecánica mediante la aplicación de "micropistilos" – émbolos plásticos acabados en punta de flecha que se ajustan perfectamente a la base del tubo– en eppendorf de 1,5 µL. La adición de cloroformo, seguida de una centrifugación permite separar la fase

acuosa superior, que contiene el ARN, de la fase orgánica. El ARN se recupera mediante una precipitación con isopropanol (www.qiagen.com/literature/render.aspx?id=170).

La cuantificación de ARN se realizó por espectrofotometría mediante *Nanodrop ND-1000* (The NanoDrop•ND-1000, NanoDrop Technologies). Análogamente al cálculo de la concentración de ADN, la siguiente relación permite estimar la concentración de ARN en una solución problema: 1 A260nm = 1 OD DNA = 40 µg/ml. Para determinar la posible contaminación de las muestras se calcularon las ratios 260/280 (valor óptimo >2) y 260/230 (valor óptimo >2.2). La calidad global de las muestras de ARN se evaluó mediante un chip microfluido *Agilent RNA 6000 nano Kit* para la plataforma *Agilent Bioanalyzer 2100*, que basado en una reacción de electroforesis capilar fluorescente, permite separar los fragmentos analizados en base al peso molecular. Como indicador de calidad se ha utilizado el RIN (RNA integrity number) o valor de integridad del ARN, derivado del cociente entre el ARN ribosomal *285* y *185*³³⁵. Este valor varía entre 1-10, siendo 6 el valor mínimo necesario considerado para nuestro estudio (Tabla 11).

A04/00146 CB 204,59 2,06 2,23 7,7 A05/00057 CB 605,55 2,1 2,28 6,5 A06/00107 CB 678,68 2,13 2,29 6,6 A06/00102 CB 729,58 2,13 2,23 6,2 A06/00112 CB 333,61 2,09 2,25 8,3 A06/00203 CB 464,51 2,07 2,23 6,2 A07/00005 A 900,55 2,1 2,22 6 A07/00005 CB 801,64 2,14 - 6,3 A07/00005 CB 801,64 2,14 2,27 6,5 A07/00003 CB 838,33 2,14 2,26 6,2 A08/00012 CB 838,33 2,14 2,26 7,3 A08/00002 CB 630,25 2,11 2,16 7,2 A08/00002 CB 307,75 2,09 - 7 A08/00107 CB 307,75 2,09 - 7 A08/00102 CB 317,74 2,1 - 6,3 </th <th>ID de muestra</th> <th>C (ng/ul)</th> <th>INDICE 260/280</th> <th>INDICE 260/230</th> <th>RIN</th>	ID de muestra	C (ng/ul)	INDICE 260/280	INDICE 260/230	RIN
A05/00057 CB 605,55 2,1 2,28 6,5 A06/00107 CB 678,68 2,13 2,29 6,6 A06/00110 CB 729,58 2,13 2,33 6,5 A06/00120 CB 464,51 2,07 2,23 6,2 A06/00210 CB 656,88 2,09 2,25 6,8 A07/00005 A 900,55 2,11 2,22 6 A07/00043 CB 888,01 2,14 2,27 6,5 A07/00043 CB 838,33 2,14 2,26 6,2 A08/00015 CB 603,73 2,12 2,26 7,3 A08/00016 CB 317,74 2,1 - 7 A08/00107 CB 307,75 2,09 - 7 A08/00117 CB 278,21 2,1 - 6,5 A08/00113 Z 1453,27 2,02 2,13 6,40 A09/00005 CB 635,47 2,1 1,93 6,1 A09/00005 CB 354,51 2,07 2,1 8,4	A04/00146 CB	204,59	2,06	2,23	7,7
A06/00107 CB 678,68 2,13 2,29 6,6 A06/00110 CB 729,58 2,13 2,33 6,5 A06/00210 CB 333,61 2,09 2,25 6,8 A06/00210 CB 656,88 2,09 2,25 6,8 A07/00005 A 900,55 2,11 2,22 6 A07/00014 CB 888,01 2,14 2,27 6,5 A07/0003 CB 883,01 2,14 2,26 6,2 A07/00142 CB 282,56 2,11 1,98 7,4 A08/00015 CB 838,33 2,14 2,26 6,2 A08/00017 CB 603,73 2,12 2,26 7,3 A08/00016 CB 317,74 2,1 - 7 A08/00107 CB 307,75 2,09 - 7 A08/00132 A 1453,27 2,02 2,13 6,40 A09/00132 CB 307,45 2,11 1,93 6,1 A09/00005 CB 635,47 2,1 1,93 6,6	A05/00057 CB	605,55	2,1	2,28	6,5
A06/00110 CB 729,58 2,13 2,33 6,5 A06/00203 CB 464,51 2,07 2,23 6,2 A06/00203 CB 464,51 2,07 2,22 6 A07/00005 A 900,55 2,11 2,22 6 A07/00005 CB 801,64 2,14 - 6,3 A07/00043 CB 888,01 2,14 2,26 6,2 A07/00043 CB 888,01 2,14 2,26 6,2 A08/0015 CB 838,33 2,14 2,26 6,7 A08/00002 CB 630,25 2,11 2,16 7,2 A08/00003 CB 439,5 2,06 2,25 7,4 A08/00107 CB 307,75 2,09 - 7 A08/00132 CB 1448 2,02 2,18 6,9 A08/00132 CB 1448 2,02 2,18 6,9 A08/00132 CB 1448 2,01 - 7,3 A09/00005 CB 635,47 2,11 1,96 7,3 <th>A06/00107 CB</th> <th>678,68</th> <th>2,13</th> <th>2,29</th> <th>6,6</th>	A06/00107 CB	678,68	2,13	2,29	6,6
A06/00112 CB 333,61 2,09 2,25 8,3 A06/00203 CB 464,51 2,07 2,23 6,2 A06/00210 CB 656,88 2,09 2,25 6,8 A07/00005 A 900,55 2,11 2,22 6 A07/0003 CB 801,64 2,14 - 6,3 A07/00043 CB 888,01 2,14 2,26 6,2 A08/0012 CB 838,33 2,14 2,26 6,2 A08/00023 CB 630,25 2,11 2,16 7,2 A08/00070 CB 603,73 2,12 2,26 7,3 A08/00107 CB 307,75 2,09 - 7 A08/00107 CB 307,75 2,09 - 7 A08/00132 CB 1448 2,02 2,13 6,40 A08/00132 CB 1448 2,02 2,13 6,73 A09/00005 CB 635,47 2,1 1,96 7,3 A09/00005 CB 635,451 2,07 2,1 8,1 <	A06/00110 CB	729,58	2,13	2,33	6,5
A06/00203 CB 464,51 2,07 2,23 6,2 A06/00210 CB 666,88 2,09 2,25 6,8 A07/00005 A 900,55 2,1 2,22 6,8 A07/00005 CB 801,64 2,14 2,27 6,5 A07/00043 CB 888,01 2,14 2,26 7,3 A08/00015 CB 630,25 2,11 2,16 7,2 A08/00003 CB 630,25 2,11 2,16 7,2 A08/00007 CB 630,73 2,12 2,26 7,3 A08/00107 CB 307,75 2,09 - 7 A08/00107 CB 307,75 2,09 - 7 A08/00132 A 1453,27 2,02 2,13 6,40 A08/00132 CB 1448 2,02 2,18 6,9 A08/00132 CB 307,45 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 1,93 6,6 A09/00005 CB 331,1 2,1 2,12 6,2	A06/00112 CB	333,61	2,09	2,25	8,3
A06/00210 CB 656,88 2,09 2,25 6,8 A07/00005 A 900,55 2,1 2,22 6 A07/00043 CB 888,01 2,14 2,27 6,5 A07/00143 CB 888,01 2,14 2,26 6,2 A07/00142 CB 282,56 2,11 1,98 7,4 A08/00015 CB 838,33 2,14 2,26 6,2 A08/00023 CB 603,73 2,12 2,26 7,3 A08/00070 CB 603,73 2,12 2,26 7,4 A08/0016 CB 317,74 2,1 - 7 A08/00107 CB 307,75 2,09 - 7 A08/00132 CB 1448 2,02 2,18 6,9 A08/00132 CB 307,45 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 1,93 6,1 A09/00005 CB 354,51 2,07 2,1 8,4 A09/00016 CB 1260,52 2,13 - 6,3 <th>A06/00203 CB</th> <th>464,51</th> <th>2,07</th> <th>2,23</th> <th>6,2</th>	A06/00203 CB	464,51	2,07	2,23	6,2
A07/0000S A 900,55 2,1 2,22 6 A07/0000S CB 801,64 2,14 - 6,3 A07/00043 CB 888,01 2,14 2,27 6,5 A07/00143 CB 282,56 2,11 1,98 7,4 A08/00015 CB 838,33 2,14 2,26 6,2 A08/00023 CB 630,25 2,11 2,16 7,2 A08/0007 CB 603,73 2,12 2,26 7,3 A08/00107 CB 307,75 2,09 - 7 A08/00107 CB 307,75 2,09 - 7 A08/00132 CB 1443,27 2,02 2,13 6,40 A08/00132 CB 1443,27 2,02 2,18 6,9 A09/0005 CB 655,47 2,1 1,93 6,1 A09/00016 CB 1260,52 2,13 - 6,3 A09/00002 CB 458,34 2,1 2,14 8,4 A09/0003 CB 313,1 2,1 2,1 8,2 <th>A06/00210 CB</th> <th>656,88</th> <th>2,09</th> <th>2,25</th> <th>6,8</th>	A06/00210 CB	656,88	2,09	2,25	6,8
A07/0000S CB 801,64 2,14 - 6,3 A07/00043 CB 888,01 2,14 2,27 6,5 A07/00142 CB 282,56 2,11 1,98 7,4 A08/00015 CB 838,33 2,14 2,26 6,2 A08/00023 CB 630,25 2,11 2,16 7,2 A08/00081 CB 439,5 2,06 2,25 7,4 A08/00107 CB 307,75 2,09 - 7 A08/0017 CB 278,21 2,1 - 6,5 A08/00132 A 1453,27 2,02 2,13 6,40 A08/00152 CB 307,45 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 1,93 6,1 A09/00005 CB 354,51 2,07 2,1 8,4 A09/00005 CB 354,51 2,07 2,1 8 A09/00020 CB 458,34 2,1 2,12 6,2 A09/00030 CB 354,51 2,07 1,84 6,6 A09/00030 CB 583,22 2,11 2,08 7	A07/00005 A	900,55	2,1	2,22	6
A07/00043 CB 888,01 2,14 2,27 6,5 A07/00142 CB 282,56 2,11 1,98 7,4 A08/00015 CB 838,33 2,14 2,26 6,2 A08/00023 CB 630,25 2,11 2,16 7,2 A08/00070 CB 603,73 2,12 2,26 7,3 A08/00107 CB 317,74 2,1 - 7 A08/00107 CB 307,75 2,09 - 7 A08/00132 A 1453,27 2,02 2,13 6,40 A08/00132 CB 1448 2,02 2,18 6,9 A08/00132 CB 307,45 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 1,96 7,3 A09/00000 CB 758,11 2,1 1,96 7,3 A09/00000 CB 354,51 2,07 2,1 8 A09/00000 CB 354,51 2,07 2,1 8 A09/00000 CB 596,44 2,1 2,16 2 <th>A07/00005 CB</th> <th>801,64</th> <th>2,14</th> <th>-</th> <th>6,3</th>	A07/00005 CB	801,64	2,14	-	6,3
A07/00142 CB 282,56 2,11 1,98 7,4 A08/00015 CB 838,33 2,14 2,26 6,2 A08/00023 CB 630,25 2,11 2,16 7,3 A08/00070 CB 603,73 2,12 2,26 7,3 A08/00081 CB 439,5 2,06 2,25 7,4 A08/00107 CB 307,75 2,09 - 7 A08/00117 CB 278,21 2,1 - 6,5 A08/00132 A 1453,27 2,02 2,13 6,40 A08/00132 CB 1448 2,02 2,18 6,9 A08/00152 CB 307,45 2,1 1,96 7,3 A09/00005 CB 635,47 2,1 1,96 7,3 A09/00005 CB 354,51 2,07 2,1 8 A09/00021 CB 354,51 2,07 2,1 8 A09/00021 CB 397,33 2,09 2,39 6,6 A09/00030 CB 397,33 2,09 - 7,2 </th <th>A07/00043 CB</th> <th>888,01</th> <th>2,14</th> <th>2,27</th> <th>6,5</th>	A07/00043 CB	888,01	2,14	2,27	6,5
A08/00015 CB 838,33 2,14 2,26 6,2 A08/00023 CB 630,25 2,11 2,16 7,2 A08/00081 CB 439,5 2,06 2,25 7,4 A08/00016 CB 317,74 2,1 - 7 A08/00167 CB 307,75 2,09 - 7 A08/0017 CB 278,21 2,1 - 6,5 A08/00132 CB 1448 2,02 2,13 6,40 A08/00152 CB 307,45 2,1 1,93 6,1 A09/0005 CB 635,47 2,1 1,93 6,1 A09/0005 CB 758,11 2,1 - 8,4 A09/0005 CB 158,11 2,1 - 8,4 A09/0002 CB 758,11 2,1 1,93 6,1 A09/0002 CB 354,51 2,07 2,1 8 A09/0002 CB 358,32 2,11 2,12 6,2 A09/0005 CB 313,1 2,1 2,12 6,2 A09/0005 CB 596,44 2,1 2,31 7 A09/0005 CB<	A07/00142 CB	282,56	2,11	1,98	7,4
A08/00023 CB 630,25 2,11 2,16 7,2 A08/00070 CB 603,73 2,12 2,26 7,3 A08/00081 CB 439,5 2,06 2,25 7,4 A08/00106 CB 317,74 2,1 - 7 A08/00107 CB 307,75 2,09 - 7 A08/00132 A 1453,27 2,02 2,13 6,40 A08/00132 CB 1448 2,02 2,18 6,9 A08/00152 CB 307,45 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 - 8,4 A09/00005 CB 758,11 2,1 - 8,4 A09/00020 CB 458,34 2,1 2,14 6,7 A09/00020 CB 354,51 2,07 2,1 8 A09/0020 CB 397,33 2,09 2,39 6,6 A09/00053 CB 313,1 2,1 2,12 6,2 A09/00068 CB 596,44 2,1 2,31 7 <t< th=""><th>A08/00015 CB</th><th>838,33</th><th>2,14</th><th>2,26</th><th>6,2</th></t<>	A08/00015 CB	838,33	2,14	2,26	6,2
A08/00070 CB 603,73 2,12 2,26 7,3 A08/00081 CB 439,5 2,06 2,25 7,4 A08/00106 CB 317,74 2,1 - 7 A08/00107 CB 307,75 2,09 - 7 A08/00117 CB 278,21 2,1 - 6,5 A08/00132 A 1453,27 2,02 2,13 6,40 A08/00152 CB 307,45 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 1,96 7,3 A09/00009 CB 758,11 2,1 - 8,4 A09/00000 CB 158,11 2,1 - 8,4 A09/00016 CB 1260,52 2,13 - 6,3 A09/00020 CB 397,33 2,09 2,39 6,6 A09/0003 CB 397,33 2,09 2,39 6,6 A09/00053 CB 313,1 2,1 2,12 6,2 A09/00053 CB 583,22 2,11 2,08 7,1	A08/00023 CB	630,25	2,11	2,16	7,2
A08/00081 CB 439,5 2,06 2,25 7,4 A08/00106 CB 317,74 2,1 - 7 A08/00107 CB 307,75 2,09 - 7 A08/00132 A 1453,27 2,02 2,13 6,40 A08/00132 CB 1448 2,02 2,18 6,9 A08/00152 CB 307,45 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 1,96 7,3 A09/00006 CB 758,11 2,1 2,14 6,7 A09/00016 CB 1260,52 2,13 - 6,3 A09/0002 CB 458,34 2,1 2,14 6,7 A09/0003 CB 354,51 2,07 2,1 8 A09/0003 CB 313,1 2,1 2,12 6,2 A09/00053 CB 313,1 2,1 2,31 7 A09/00053 CB 58,22 2,01 2,08 7,1 A09/00053 CB 58,44 2,11 2,28 7 A	A08/00070 CB	603,73	2,12	2,26	7,3
A08/00106 CB 317,74 2,1 - 7 A08/00107 CB 307,75 2,09 - 7 A08/00117 CB 278,21 2,1 - 6,5 A08/00132 A 1453,27 2,02 2,13 6,40 A08/00132 CB 1448 2,02 2,18 6,9 A08/00152 CB 307,45 2,1 1,96 7,3 A09/00005 CB 635,47 2,1 1,96 7,3 A09/00005 CB 1260,52 2,13 - 6,3 A09/00020 CB 458,34 2,1 2,14 6,7 A09/00020 CB 354,51 2,07 2,1 8 A09/00030 CB 397,33 2,09 2,39 6,6 A09/00030 CB 313,1 2,1 2,12 6,2 A09/00030 CB 583,22 2,11 2,08 7,1 A09/00068 CB 583,22 2,11 2,08 7,1 A09/00124 CB 262,65 2,07 1,84 6,6 A09/00125 CB 528,54 2,11 2,28 7	A08/00081 CB	439,5	2,06	2,25	7,4
A08/00107 CB 307,75 2,09 - 7 A08/00117 CB 278,21 2,1 - 6,5 A08/00132 A 1453,27 2,02 2,13 6,40 A08/00132 CB 1448 2,02 2,18 6,9 A08/00152 CB 307,45 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 1,96 7,3 A09/00009 CB 758,11 2,1 - 8,4 A09/00016 CB 1260,52 2,13 - 6,3 A09/00020 CB 458,34 2,1 2,14 6,7 A09/00021 CB 354,51 2,07 2,1 8 A09/00030 CB 397,33 2,09 2,39 6,6 A09/00053 CB 313,1 2,1 2,12 6,2 A09/00066 CB 583,22 2,11 2,08 7,1 A09/00124 CB 262,65 2,07 1,84 6,6 A09/00145 CB 348,94 2,09 - 8,2	A08/00106 CB	317,74	2,1	-	7
A08/00117 CB 278,21 2,1 - 6,5 A08/00132 A 1453,27 2,02 2,13 6,40 A08/00132 CB 1448 2,02 2,18 6,9 A08/00152 CB 307,45 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 1,96 7,3 A09/0000 CB 758,11 2,1 - 8,4 A09/00016 CB 1260,52 2,13 - 6,3 A09/0002 CB 458,34 2,1 2,14 6,7 A09/0003 CB 397,33 2,09 2,39 6,6 A09/00053 CB 313,1 2,1 2,12 6,2 A09/00068 CB 583,22 2,11 2,08 7,1 A09/00086 CB 596,44 2,1 2,31 7 A09/00124 CB 262,65 2,07 1,84 6,6 A09/00125 CB 528,54 2,11 2,28 7 A09/00145 CB 348,94 2,09 - 8,2 A10/00027 CB 362,59 2,08 - 8,1 <	A08/00107 CB	307,75	2,09	-	7
A08/00132 A 1453,27 2,02 2,13 6,40 A08/00132 CB 1448 2,02 2,18 6,9 A09/00005 CB 307,45 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 1,96 7,3 A09/00006 CB 758,11 2,1 - 8,4 A09/00016 CB 1260,52 2,13 - 6,3 A09/00021 CB 354,51 2,07 2,1 8 A09/0003 CB 397,33 2,09 2,39 6,6 A09/00053 CB 313,1 2,1 2,08 7,1 A09/00068 CB 583,22 2,11 2,08 7,1 A09/00068 CB 596,44 2,11 2,28 7 A09/00124 CB 262,65 2,07 1,84 6,6 A09/00125 CB 528,54 2,11 2,28 7 A09/00125 CB 362,7 2,08 - 7,9 A10/00017 CB 362,7 2,08 - 8,1 A10/00027 CB 362,59 2,09 2,23 6,4	A08/00117 CB	278,21	2,1	-	6,5
A08/00132 CB 1448 2,02 2,18 6,9 A08/00152 CB 307,45 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 1,96 7,3 A09/00009 CB 758,11 2,1 - 8,4 A09/00020 CB 458,34 2,1 2,14 6,7 A09/00020 CB 458,34 2,1 2,14 6,7 A09/00020 CB 354,51 2,07 2,1 8 A09/00030 CB 397,33 2,09 2,39 6,6 A09/00035 CB 313,1 2,1 2,12 6,2 A09/00053 CB 313,1 2,1 2,08 7,1 A09/00068 CB 583,22 2,11 2,08 7,1 A09/00124 CB 262,65 2,07 1,84 6,6 A09/00125 CB 528,54 2,11 2,28 7 A09/0014 CB 988,41 2,11 - 7,2 A10/00017 CB 362,77 2,08 - 7,9 A10/00027 CB 362,59 2,09 2,23 6,4	A08/00132 A	1453,27	2,02	2,13	6,40
A08/00152 CB 307,45 2,1 1,93 6,1 A09/00005 CB 635,47 2,1 1,96 7,3 A09/00016 CB 758,11 2,1 - 8,4 A09/00020 CB 458,34 2,1 2,14 6,7 A09/00020 CB 458,34 2,1 2,14 6,7 A09/00020 CB 354,51 2,07 2,1 8 A09/00030 CB 397,33 2,09 2,39 6,6 A09/00053 CB 313,1 2,1 2,12 6,2 A09/00068 CB 583,22 2,11 2,08 7,1 A09/00124 CB 262,65 2,07 1,84 6,6 A09/00125 CB 528,54 2,11 2,28 7 A09/00145 CB 348,94 2,09 - 8,2 A10/00014 CB 988,41 2,11 - 7,2 A10/00022 CB 442,31 2,11 1,48 7,1 A10/00027 CB 362,79 2,08 - 7,9 A10/00027 CB 362,59 2,09 2,23 6,4	A08/00132 CB	1448	2,02	2,18	6,9
A09/00005 CB 635,47 2,1 1,96 7,3 A09/00009 CB 758,11 2,1 - 8,4 A09/00016 CB 1260,52 2,13 - 6,3 A09/00020 CB 458,34 2,1 2,14 6,7 A09/00021 CB 354,51 2,07 2,1 8 A09/00030 CB 397,33 2,09 2,39 6,6 A09/00053 CB 313,1 2,1 2,12 6,2 A09/00068 CB 583,22 2,11 2,08 7,1 A09/00086 CB 596,44 2,1 2,31 7 A09/00124 CB 262,65 2,07 1,84 6,6 A09/00125 CB 528,54 2,11 2,28 7 A09/00145 CB 348,94 2,09 - 8,2 A10/00017 CB 362,7 2,08 - 7,9 A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6	A08/00152 CB	307,45	2,1	1,93	6,1
A09/0009 CB 758,11 2,1 - 8,4 A09/00016 CB 1260,52 2,13 - 6,3 A09/00020 CB 458,34 2,1 2,14 6,7 A09/00021 CB 354,51 2,07 2,1 8 A09/00030 CB 397,33 2,09 2,39 6,6 A09/00053 CB 313,1 2,1 2,12 6,2 A09/00068 CB 583,22 2,11 2,08 7,1 A09/00086 CB 596,44 2,1 2,31 7 A09/00124 CB 262,65 2,07 1,84 6,6 A09/00125 CB 528,54 2,11 2,28 7 A09/00145 CB 348,94 2,09 - 8,2 A10/00017 CB 362,7 2,08 - 7,9 A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-087	A09/00005 CB	635,47	2,1	1,96	7,3
A09/00016 CB1260,522,13-6,3A09/0020 CB458,342,12,146,7A09/0021 CB354,512,072,18A09/0030 CB397,332,092,396,6A09/00053 CB313,12,12,126,2A09/00068 CB583,222,112,087,1A09/00124 CB262,652,071,846,6A09/00125 CB528,542,112,287A09/00145 CB348,942,09-8,2A10/0017 CB362,72,08-7,9A10/0002 CB415,512,08-8,1A10/0025 CB675,922,12-7,2BK-0816 A482,152,021,766BK-0816 CB323,422,036,3BK-0873 CB477,321,982,026,2BK-1049 A1267,082,11,436,40BK-1082 A836,972,032,16,10	A09/00009 CB	758,11	2,1	-	8,4
A09/00020 CB458,342,12,146,7A09/00021 CB354,512,072,18A09/00030 CB397,332,092,396,6A09/00053 CB313,12,12,126,2A09/00068 CB583,222,112,087,1A09/00124 CB262,652,071,846,6A09/00125 CB528,542,112,287A09/00145 CB348,942,09-8,2A10/0014 CB988,412,11-7,2A10/0017 CB362,72,08-7,9A10/0022 CB442,312,111,487,1A10/0025 CB525,592,092,236,4A11/00025 CB362,592,021,766BK-0816 A482,152,021,766BK-0816 CB323,422,036,3BK-0873 CB477,321,982,026,2BK-1049 A1267,082,11,436,40BK-1082 A836 972.032.16.10	A09/00016 CB	1260,52	2,13	-	6,3
A09/00021 CB354,512,072,18A09/00030 CB397,332,092,396,6A09/00053 CB313,12,12,126,2A09/00068 CB583,222,112,087,1A09/00086 CB596,442,12,317A09/00124 CB262,652,071,846,6A09/00125 CB528,542,112,287A09/00145 CB348,942,09-8,2A10/0014 CB988,412,11-7,2A10/0017 CB362,72,08-7,9A10/0022 CB442,312,111,487,1A10/0025 CB675,922,12-7,2BK-0816 A482,152,021,766BK-0816 CB323,422,036,3BK-0873 A595,822,032,065,90BK-0873 CB477,321,982,026,2BK-1049 A1267,082,11,436,40BK-1082 A836,972,032,16,10	A09/00020 CB	458,34	2,1	2,14	6,7
A09/00030 CB 397,35 2,09 2,39 6,0 A09/00053 CB 313,1 2,1 2,12 6,2 A09/00068 CB 583,22 2,11 2,08 7,1 A09/00086 CB 596,44 2,1 2,31 7 A09/00124 CB 262,65 2,07 1,84 6,6 A09/00125 CB 528,54 2,11 2,28 7 A09/00145 CB 348,94 2,09 - 8,2 A10/00017 CB 362,7 2,08 - 7,9 A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-1087 CB 477,32 1,98 2,02 6,2 BK-1087 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2,03 2,1 1,04	A09/00021 CB	354,51	2,07	2,1	8
A09/00033 CB 513,1 2,1 2,12 6,2 A09/00068 CB 583,22 2,11 2,08 7,1 A09/00086 CB 596,44 2,1 2,31 7 A09/00124 CB 262,65 2,07 1,84 6,6 A09/00125 CB 528,54 2,11 2,28 7 A09/00145 CB 348,94 2,09 - 8,2 A10/00014 CB 988,41 2,11 - 7,2 A10/00017 CB 362,7 2,08 - 7,9 A10/00022 CB 442,31 2,11 1,48 7,1 A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836,97 2,03 2,1 6,10	A09/00030 CB	212 1	2,09	2,39	6,0
A09/0008 CB 505,22 2,11 2,03 7,1 A09/0008 CB 596,44 2,1 2,31 7 A09/00124 CB 262,65 2,07 1,84 6,6 A09/00125 CB 528,54 2,11 2,28 7 A09/00145 CB 348,94 2,09 - 8,2 A10/00014 CB 988,41 2,11 - 7,2 A10/00017 CB 362,7 2,08 - 7,9 A10/00022 CB 442,31 2,11 1,48 7,1 A10/00026 CB 415,51 2,08 - 8,1 A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082	A09/00053 CB	583.22	2,1	2,12	0,2
A09/00124 CB 262,65 2,07 1,84 6,6 A09/00125 CB 528,54 2,11 2,28 7 A09/00145 CB 348,94 2,09 - 8,2 A10/00014 CB 988,41 2,11 - 7,2 A10/00017 CB 362,7 2,08 - 7,9 A10/00022 CB 442,31 2,11 1,48 7,1 A10/00026 CB 415,51 2,08 - 8,1 A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2,03 2,1 6,10	A09/0008 CB	596 11	2,11	2,08	7,1
A09/00125 CB 528,54 2,11 2,28 7 A09/00125 CB 528,54 2,11 2,28 7 A09/00145 CB 348,94 2,09 - 8,2 A10/00014 CB 988,41 2,11 - 7,2 A10/00017 CB 362,7 2,08 - 7,9 A10/00022 CB 442,31 2,11 1,48 7,1 A10/00026 CB 415,51 2,08 - 8,1 A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2,03 2,1 6,10	A09/00080 CB	262.65	2,1	1.84	66
A09/00125 CB 348,94 2,09 - 8,2 A10/00014 CB 988,41 2,11 - 7,2 A10/00017 CB 362,7 2,08 - 7,9 A10/00022 CB 442,31 2,11 1,48 7,1 A10/00026 CB 415,51 2,08 - 8,1 A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2,03 2,1 6,10	A09/00124 CB	528 54	2,07	2.28	0,0
A10/00014 CB 988,41 2,11 - 7,2 A10/00017 CB 362,7 2,08 - 7,9 A10/00022 CB 442,31 2,11 1,48 7,1 A10/00026 CB 415,51 2,08 - 8,1 A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2.03 2.1 6.10	A09/00125 CB	348 94	2,11	-	82
A10/00017 CB 362,7 2,08 - 7,9 A10/00022 CB 442,31 2,11 1,48 7,1 A10/00026 CB 415,51 2,08 - 8,1 A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2.03 2.1 6.10	A10/00145 CB	988.41	2,00	-	7.2
A10/00022 CB 442,31 2,11 1,48 7,1 A10/00026 CB 415,51 2,08 - 8,1 A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2.03 2.1 6.10	A10/00017 CB	362.7	2.08	-	7,9
A10/00026 CB 415,51 2,08 - 8,1 A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2,03 2,1 6,10	A10/00022 CB	442,31	2,11	1,48	7,1
A10/00027 CB 362,59 2,09 2,23 6,4 A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2,03 2,1 6,10	A10/00026 CB	415,51	2,08	-	8.1
A11/00025 CB 675,92 2,12 - 7,2 BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2.03 2.1 6.10	A10/00027 CB	362,59	2,09	2,23	6,4
BK-0816 A 482,15 2,02 1,76 6 BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2,03 2,1 6,10	A11/00025 CB	675,92	2,12	-	7,2
BK-0816 CB 323,4 2 2,03 6,3 BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2.03 2.1 6.10	BK-0816 A	482,15	2,02	1,76	6
BK-0873 A 595,82 2,03 2,06 5,90 BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2,03 2,1 6,10	BK-0816 CB	323.4	2	2.03	6.3
BK-0873 CB 477,32 1,98 2,02 6,2 BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836 97 2.03 2.1 6.10	BK-0873 A	595,82	2,03	2,06	5,90
BK-1049 A 1267,08 2,1 1,43 6,40 BK-1082 A 836.97 2.03 2.1 6.10	BK-0873 CB	477.32	1.98	2.02	6.2
RK-1082 Δ 836 97 2.03 2.1 6.10	BK-1049 A	1267.08	2 1	1 43	6 40
	BK-1082 A	836.97	2.03	2.1	6.10

Tabla 11. Muestras de ARN extraídas

La concentración y el ratio de calidad (260/280; 260/230) fueron medidos con *Nanodrop ND-1000* y el RIN con *Agilent Bioanalyzer 2100*.

Tan solo siete muestras presentaron una ratio 260/230 nm inferior a los límites recomendados (2,0 - 2,2), sin embargo el rango de concentración y el correcto perfil de la curva de absorbancia permitió incluir estas muestras en los análisis posteriores.

3.3. Determinación del genotipo APOE en muestras humanas de cerebro

La caracterización de los alelos de APOE de los individuos empleados en este estudio se realizó mediante ensayos Taqman de genotipación de SNPs (Taqman SNP Genotyping Assay, Applied Biosystems; http://www3.appliedbiosystems.com/) en la plataforma de detección Applied Biosystems 7900HT. Los SNPs seleccionados para genotipación fueron los extensamente descritos: rs7412 (C/T) (Cat. #4351379) y rs429358 (C/T) (Cat. #4351379)³³⁶. El sistema Taqman consiste en la detección de marcadores fluorescentes liberados por la amplificación por PCR del alelo correspondiente. De este modo, para cada SNP, el ensayo contiene dos oligonucleótidos de amplificación de la región de interés y dos sondas TaqMan® MGB específicas para cada alelo. Cada sonda está formada por un fluoróforo o "reporter" en posición 5' y un "quencher" o desactivador de la fluorescencia (NFQ) en la posición 3' que en condiciones normales apantalla la fluorescencia del "reporter". Para cada alelo se emplea un fluoróforo diferente, como VIC o FAM, de forma que la detección de uno u otro fluoróforo permita distinguir entre los alelos presentes. Durante las sucesivas fases de anillado y extensión de la PCR se produce el anillado de los oligonucleótidos y la hibridación de las sondas específicas del alelo. Al generarse el ADN copia la enzima polimerasa entra en contacto con la sonda y libera el "reportero" (Figura 9), que una vez alejado de NFQ emite fluorescencia. De manera que solo las sondas hibridadas e hidrolizadas por la enzima polimerasa emiten fluorescencia, confiriendo al ensayo una elevada especificidad.

Figura 9. Fundamento básico de la reacción de genotipación de polimorfismos mediante el ensayo *Taqman SNP Genotyping Assay*, extraído de Taqman SNP Genotyping Assay, product bulletin (Applied Biosystems).

La discriminación alélica se realiza utilizando el software *Sequence Detection System* (SDS). Este programa utiliza los valores de fluorescencia (Rn) medidos para cada muestra y los representa gráficamente. Un aumento de FAM en una muestra dada, supone la verificación de la presencia del alelo 1, y viceversa, un incremento de la fluorescencia de VIC indica la presencia del alelo 2, mientras que si obtenemos una mezcla de ambos, concluiremos que la muestra es heterocigótica. Un total de 192 muestras fueron normalizadas (20 ng/µL) y 20 ng de cada una fueron distribuidos en dos placas de 96 pocillos. La reacción se llevó a cabo en un volumen total de 5 µL, añadiendo 2,5 µL de tampón Taqman Universal PCR (2X) No Amperase UNG , 0,125 µL de 40X SNP genotyping assay mix y 1,375 µL de agua (libre de DNasa). Una vez añadida la mezcla en las placas de muestras, se sellaron, se mezclaron con un agitador vórtex y se centrifugaron. Se realizó una lectura de la placa (pre-PCR) en el dispositivo *Applied Biosystems Real Time PCR 7900HT* para determinar la fluorescencia basal, se procedió con la reacción de PCR en un termociclador *Gene AMP PCR System 9700* (Applied Biosystems) y se volvió a leer la fluorescencia de la placa para su análisis. El genotipo de ApoE (ϵ_2 , ϵ_3 , ϵ_4) se determinó según las siguientes combinaciones de los dos marcadores estudiados representadas en la Figura 10.

Figura 10. Esquema del gen APOE y de las isoformas proteicas originadas a partir de polimorfismos puntuales en rs429358 y rs7412. Adaptado *de Rubin J et al. (2002)*³³⁷.

La variante ApoE3 esta determinada por la presencia de una timina en rs429358 y una citosina en rs7412; ApoE2, presenta una timina en cada posición; ApoE4 presenta una citosina en cada posición. Siendo esta última, la variante genética asociada al incremento del riesgo de aparición EA y enfermedades cardiovasculares entre otras afecciones. Por el contrario, a la variante ApoE3 se le atribuye un riesgo normal en la incidencia de EA y a la variante ApoE2 se le atribuye efecto protector¹⁰⁵.

3.4. Detección de variantes estructurales de número de copias

3.4.1. Array de hibridación genómica comparada: aCGH

La identificación de variantes estructurales del genoma humano, con cambios en el número de copia, se realizó con el array de hibridación genómica comparada (aCGH) SurePrint G3 Human (Agilent). Se trata de un método de citogenética molecular que permite detectar ganancias o pérdidas de material genético de una muestra problema respecto a otra considerada muestra de referencia. Para ello, la muestra de referencia y la muestra problema se marcan con dos fluorocromos que emiten en longitudes de onda diferentes, de forma que pueden ser detectados individualmente (rojo y verde) o en conjunto cuando ambas muestras están presentes (amarillo). Para ello, se prepara una mezcla equimolar de cada ADN marcado y se hibrida frente a un array que contiene sondas sintéticas de 60 oligómeros, representativas de todo el genoma, separadas una media de 5,3 kb entre sí. En este estudio, se compararon una a una las distintas regiones del cerebro de 10 individuos (muestras problema), frente al cerebelo (CB) del mismo individuo (muestra de referencia). Para identificar la presencia de falsos positivos, cada muestra de cerebelo se hibridó frente a ella misma, en lo que se denomina self-to-self hybridization. Las hibridaciones de aCGH se realizaron en la "core facility" de microarrays del Centro de Regulación Genómica (CRG), siguiendo el protocolo del kit de aCGH. Para cada muestra, se digirieron 1 μg de ADN genómico problema y de referencia, con los enzimas de restricción Alu1 y Rsa1, se marcaron con los fluoróforos Cy3-dUTP (verde; muestra de referencia) y Cy5-dUTP (rojo; muestra problema) empleando el kit DNA enzymatic Labeling Kit (Agilent). Posteriormente, las dos muestras se mezclaron, se hibridaron en el array Sureprint G3 Human CNV 2x400K array (Agilent), seguido de los correspondientes lavados y escaneado de los chips. Los valores de intensidad fueron obtenidos con el software Feature Extraction software (Agilent) y los resultados con Genomic Workbench Software 5.0 (Agilent) (Figura 11). El análisis engloba: la normalización de los datos, su segmentación y la detección de regiones con variantes en el número de copia o regiones aberrantes. A partir de los datos normalizados, se obtuvo el valor de log2ratio y su significación estadística (p-valor), siendo log2ratio el cociente entre el log₂ de las intensidades registradas por la muestra problema respecto a la de referencia, con un rango de variabilidad de -1 a 1. La segmentación de los datos suaviza el ruido de fondo a la vez que permite la detección de aberraciones genómicas y puntos de rotura en el genoma, que pueden dar lugar a CNVs, mientras que la detección de CNVs, permite clasificarlos en ganancias o pérdidas de material genético. Para ello, se cargaron los archivos 'FE' con el valor de las intensidades en el programa Genomic Workbench Software 5.0. En primer lugar, se realizó un control de calidad de cada hibridación con la función QCmetrics, que calcula la ratio entre la intensidad de la señal (rojo y verde), el ruido de fondo para determinar la calidad de cada hibridación y la desviación estándar (SD) de cada hibridación, que según la información de los fabricantes, debe ser entre 0,20 y 0,25. A continuación, se aplicaron una serie de parámetros estándar para el análisis de los datos como la centralización (Threshold: 6,0, Bin size: 10), el *fuzzy zero* (activado), se estableció una *moving average* de 1 Mb, para el cálculo de la normalización y se seleccionó el algoritmo *ADM-2* (Aberrant Detection Method 2)³³⁸ con un *threshold* o valor umbral de 6,0. Este algoritmo detecta aquellas regiones que presentan un *log2 ratio* significativamente distinto de cero, teniendo en cuenta la calidad de las sondas para el cálculo. *ADM-2* también calcula el tamaño más correcto de la aberración, sin basarse en un tamaño de ventana fijo. La información completa sobre el análisis de ésta plataforma se encuentra disponible en: http://www.chem.agilent.com/Library/usermanuals/Public /CGH_Interactive.pdf).

El criterio empleado para filtrar las regiones aberrantes del genoma una vez detectadas fue: obtener valores de *log2ratio* superiores a tres veces el valor de la desviación estándar de cada hibridación, en al menos cuatro sondas.

Figura 11. Ensayo array de hibridación genómica comparada. Se aisló el ADN de cada región del cerebro a analizar, se marcó con fluorescencia (Cy5, Cy3) y se hibridó en el array de Agilent *Sureprint G3 Human CNV 2x400K array* para detectar las ganancias y/o pérdidas de material genético.

3.4.2. Validación de cambios estructurales en el número de copia

Caracterización de las duplicaciones encontradas en los locus ARHGEF10 e IGFN1

Para confirmar la presencia y caracterizar las variantes de número de copia encontradas en *ARHGEF10* e *IGFN1*, se secuenciaron por el método Sanger de terminación de cadena los fragmentos de ADN comprendidos entre los puntos de rotura predichos por aCGH. Primero se intentó la amplificación de un fragmento de ADN que incluye la región detectada por aCGH a partir de varios pares de cebadores

externos. Una vez lograda la amplificación, se procedió a la secuenciación de los fragmentos obtenidos para confirmar la secuencia e identificar la variación.

La reacción de PCR se realizó en un volumen total de 25 µL añadiendo una concentración final de:

- 50 ng de ADN (controles y muestras cerebro)
- 2,5 μ L de tampón (10X con Mg²⁺) (Roche)
- 200 µM de dNTPs (Invitrogen)
- 0,4 µM de cada cebadores, directo y reverso (Sigma-Aldrich) (ver Tabla 12)
- 0,1 U de Taq-polimerasa (Roche)
- q.s. agua Braun 'PCR grade'

La mezcla de PCR se colocó en un termociclador siguiendo un programa *Touchdown³³⁹* para aumentar la especificidad de los productos de reacción:

- 2 min. a 94ºC, desnaturalización
- 35 ciclos totales de amplificación:
- 30 seg. a 94°C
- 30 seg. a 68°C hasta 60°C, bajando 1-2°C cada 5 ciclos
- 1 min. a 72ºC de extensión
- 10 min. a 72ºC de extensión final

Los productos de PCR se purificaron (*PCR purification kit*, Qiagen), cuantificaron (*Nanodrop ND-1000*) y se añadieron a la reacción de PCR de secuencia que se realizó en un volumen total de 10 µL:

- 20-50 ng de PCR
- 1 µl de tampón de secuencia (5X) BIG DYE[™] V3.1 (Applied Biosystems)
- 3 µL de *BIG DYE[™] V3.1* (Applied Biosystems)
- 3,2 pmoles de cebador, directo o inverso, para cada gen (Invitrogen)
- q.s. agua Braun 'PCR grade'

Las reacciones de secuencia se realizaron bajo condiciones estándar de amplificación:

- 3 min. de desnaturalización a 94ºC
- seguidos de 25 ciclos de:
 - 10 seg a 96°C
 - 5 seg a 50°C
 - 4 min. a 60ºC
- ∞ a 4ºC

El producto de reacción se purificó empleando *SephadexTM G-50* (GE Healthcare, UK) en columnas *Centri-Sep* (Applied Biosystems):
- se preparó una solución de Sephadex añadiendo 10 g de G-50 a 150 mL de agua destilada
- se disolvió por calor durante 15 min. y se conservó a 4ºC hasta su uso
- las columnas de purificación se prepararon añadiendo 800 μL de Sephadex (solución homogénea y sin burbujas), en las columnas acopladas a un tubo colector
- las columnas se centrifugaron durante 1 min. a 1000 g eliminando el eluido
- se añadieron 800 μL de agua destilada, se centrifugó 1 min. a 1000 g y se eliminó el eluido
- se añadieron 10 μL el producto de la reacción de PCR de secuencia y se centrifugó 1 min. a 1000 g recuperando del tubo colector las secuencias purificadas, libres del exceso de cebadores y dNTPs.

Una vez purificadas las secuencias se procesaron en un analizador de secuencia *Genome analyzer 3130xl* (Applied Biosystems). Los datos de las secuencias, contenidos en *trace files* fueron filtrados y analizados con el programa *4Peaks* (www.mekentosj.com). Una vez obtenida la secuencia del fragmento de ADN amplificado, comparamos los resultados frente al genoma de referencia (NCBI36/hg18), utilizando la herramienta 'blat' disponible en el navegador de *UCSC* (genome.UCSC/edu)³⁴⁰.

Genotipado de las duplicaciones detectadas en ADAM5P3A y WWOX por PCR múltiple.

El genotipado de las variantes de número de copia en *ADAM5P3A* y *WWOX* se realizó mediante PCR múltiple. En esta técnica se añaden dos pares de cebadores, un par que amplifica el alelo no delecionado, y el otro que amplifica el alelo delecionado, detectando 0, 1 o 2 copias génicas.

Para validar la duplicación en **ADAM5P3A** se preparó una mezcla de PCR de 25 µL que contenía:

- 50 ng de ADN
- 2,5 μL de 10X tampón (Mg²⁺ 2 mM) (Biotherm)
- 100 μM de dNTPs (Invitrogen)
- 0,08 μM de cebadores BP1 y 0.24 μM de BP2 (Sigma-Aldrich)(Tabla 12).
- 0,02 U de taq-polimerasa (BioTherm)
- q.s. agua Braun 'PCR grade'

Las condiciones de amplificación fueron:

- 3 min. a 95°C
- 40 ciclos de:
 - 30 seg. a 95°C
 - 30 seg. a 60°C
- 1,30 min. a 72°C
- extensión final de 7 min a 72°C

La mezcla de PCR de **WWOX** se preparó en un volumen de 25 µL, añadiendo una concentración final de:

• 50 ng de ADN molde

- 2,5 μ L tampón (10X con Mg²⁺) (Roche)
- 125 μM de dNTPs (Invitrogen)
- 0,4 µM de cada cebador (Tabla 12) (Sigma-Aldrich)
- 0,1 U de taq-polimerasa (Roche)
- q.s. agua Braun 'PCR grade'

Las condiciones de reacción fueron:

- desnaturalización de 2 min. a 94ºC
- seguido de 30 ciclos de:
 - 30 seg. a 94°C
 - 30 seg. a 61ºC
 - 30 seg. a 72ºC
- con una extensión final de 5 min a 72ºC

Los productos finales de las PCRs se analizaron en un gel de agarosa (3%), marcando el ADN con SYBR SAFE (Invitrogen) para comprobar el tamaño de los fragmentos (ADAM5P3A, BP1: 288 pb, BP2: 427 pb y deleción: 397 pb; WWOX, deleción: 192 pb y No-deleción: 217 pb).

Locus	Secuencia (5'-3')
ARHGEF10	F-GATGAAGCCGAAAACCAAAA
	R-GCAGGAGGAAAACAAAATCG
IGFN1	F-GAGGAGGGTCTGGGAGAGTT
	R-CGTGTCACCCTCTGATGCTA
ADAM5P3A (genotipado)	BP1-F-CGGATCATGAGGTCAGGAGA
	BP1-R1-TACGAACTGGTATAAAAGGCAATC
	BP2-F2-TTAAACTAAGATGGGATTGGGATTA
	BP2-R2-GAAGTATGTTCTCCTTTCCTTTTAAG
WWOX (genotipado)	F-ATCTGGCCATGTCCTCATTT(Del)
	R-TGTGACCTGATAACCGCTGA(Del)
	F-AATGGGAATCTTTGCCTGTG(No-del)
	R-ATGGCAACTGACTTGGGAAG(No-del)

 Tabla 12. Secuencias de oligonucleótidos empleados en la validación de los resultados obtenidos en aCGH

Validación de regiones mediante amplificación de sondas dependiente de ligación (MLPA)

La técnica de MLPA ha sido empleada en este trabajo para la validación de 10 regiones del genoma que presentaron en el aCGH alteraciones en el número de copia (deleciones o duplicaciones), en al menos dos áreas del cerebro y en más de un donante. Para ello, se diseñaron un total de 50 sondas (L y R), entre regiones problema y de referencia, analizadas con dos marcadores fluorescentes (FAM y VIC).

La amplificación simultánea de sondas dependiente de ligación o *Multiplex ligation-dependent probe amplification* (MLPA) fue descrita por primera vez por *Schouten et al., 2002*³⁴¹. MLPA ha sido definida

como una técnica semi-cuantitativa, basada en una amplificación por PCR, capaz de detectar cambios en el número de copias génicas de entre 0-3, en múltiples regiones del genoma (hasta 50 regiones) en una única reacción³⁴².

a) Diseño y preparación de las sondas

Para cada región del genoma a analizar, se prepararon dos sondas: izquierda (L) y derecha (R). Las sondas son oligonucleótidos de origen sintético (Sigma-Aldrich), con una longitud de entre 60-90 nucleótidos (hasta un máximo de 140 nt). A su vez, las sondas, están formadas por: un cebador universal o secuencia común entre todas las sondas del experimento (directo e inverso); una secuencia opcional de relleno o "stuffer" no complementaria al genoma humano, que se introduce para conferir a las sondas de un mismo ensayo un longitud total única, permitiendo así separar cada sonda (con una diferencia de tamaño de al menos 4 nt) y por último, la secuencia de hibridación, complementaria a la región diana (21-30 nt) (Figura 12).

Figura 12. Diseño de las sondas de MLPA.

Para el diseño de las sondas (Tabla 13) se siguieron los criterios estándar definidos en el protocolo de MRC-Holland Amsterdam (www.mrc-holland.com). Para cada región de interés se seleccionó una diana de 60 pb y se dividió en dos secuencias (secuencias de hibridación), cada una única en el genoma. Las secuencias de hibridación deben cumplir los siguientes requisitos:

- ✓ Longitud mínima de 21 nt
- Evitar la presencia de polimorfismos genéticos puntuales en toda la sonda y especialmente en el punto de unión de las sondas L y R
- ✓ Contenido aproximado de GC < 50%</p>
- ✓ Un máximo de 2 nt G/C en los 5 últimos nt del extremo 3' de la sonda L (punto de ligación)
- ✓ Un máximo de 3 nt G/C en el extremo 5' de la secuencia de hibridación, adyacente a la región del cebador universal
- ✓ Temperatura de fusión (T_m) > 71ºC

Para el cálculo del % GC y T_m se utilizó el programa *Raw data* (www.mlpa.com), mientras que para el diseño de las secuencias de hibridación se empleó la herramienta bioinformática *ProSeeK* (<u>http://davinci.crg.es/estivill_lab/mlpa/</u>), optimizada para la búsqueda sistemática de sondas³⁴³.

Finalmente, se procedió a la inserción de las secuencias de relleno y del cebador universal, y a añadir un grupo fosfato en la posición 5' de la sonda R, necesario para la ligación.

b) Protocolo de hibridación, ligación y amplificación

Se preparó una solución madre de todas las sondas PROBEMIX añadiendo 2,4 pmoles de cada alícuota (1 μ M) en agua hasta un volumen total de 400 μ L. Para cada reacción de MLPA se añadieron 1,5 μ L de PROBEMIX a 5 μ L de ADN (30-40 ng/ μ L) previamente desnaturalizados. La mezcla se hibridó a 60°C, durante 16 hrs. La ligación de las sondas se realizó durante 20 min a 54°C. El producto de ligación fue amplificado en dos reacciones de PCR paralelas, una para cada fluorocromo (FAM y VIC), añadiendo entre 5-5,5 μ L de la ligación en un volumen total de 25 μ L, junto con el tampón de PCR, cebadores marcados, dNTPs, tampón SALSA PCR y Taq polimerasa (Roche), en condiciones estándar de reacción: temperatura de anillado de los cebadores de 60°C durante 33 ciclos (protocolo completo en Anexo).

c) Análisis de los resultados

El producto de PCR fue analizado por electroforesis capilar en un secuenciador *DNA Analyzer 3730XL* (Applied Biosystems), con el patrón estándar de tamaño *Rox 500* (Applied Biosystems). Los resultados fueron evaluados empleando el programa *Genemapper v3.7* (Applied Biosystems). La información sobre la altura de los picos se exportó a una hoja de cálculo para su normalización. Inicialmente, se estimó la variabilidad de las sondas control en el experimento. Para ello, en cada muestra se calculó el valor promedio de la altura de pico de todas las sondas control incluidas en la PROBEMIX. A continuación, se normalizaron las alturas de pico de cada muestra y sonda determinando el cociente entre la altura de pico de cada muestra y sonda determinando el cociente entre la altura de pico de cada una te ellas respecto al valor promedio para cada sonda que permitió calcular el Dosage Quotient (DQ). El DQ consiste en el cociente de cada uno de los valores normalizados respecto al valor promedio de los datos normalizados (DQ)³⁴⁴. Este valor se calculó para cada experimento y cada experimento fue replicado al menos tres veces. Para determinar la presencia de ganancia o pérdida en el número de copias del material genético, se establecieron los puntos de corte en 1,25 y 0,65, respectivamente. Los valores de *DQ* que se encuentran entre estos puntos de corte, corresponden a muestras que no presentan ninguna variación.

Una vez obtenidos los primeros resultados se comprobó el tamaño real de las sondas respecto al cálculo teórico. La diferencia en la eficacia de amplificación de cada región, favorable a fragmentos de menor tamaño, se corrigió calculando la concentración necesaria de cada sonda en la PROBEMIX, permitiendo obtener una señal homogénea para cada sonda empleando unas muestras control de HapMap con igual número de copias en las regiones analizadas (valores contenidos en la Tabla 14). La Figura 13 muestra el resumen del protocolo de trabajo de MLPA.

61

Tabla 13. Sondas de MLPA para la validación de 10 regiones del genoma que presentaban ganancia o

Cardits FAM, L GGGTTCCTAAGGGTTGGArCATCACGCGTTAGTGATGCATCC control Cardits FAM, R [Phos]CTCCTTGGACTCTGGATCCGCCCCCCCCCCCCCCCCCCC	Sonda MLPA	Secuencia	Тіро
CardBS_JFAM_R [Phos]CATCCCTTCGAGTCTCGATGTCATAAACGCCTCTAGATTGGATCTGCTGCAC control CARBES_VIC_R [Phos]GATCCCTTGGACGGCGTCAGAGTGTTAGATTGGATCTGCTGGCAC control CARPAZ_FAM_R [Phos]GATCGGTGGACGCGGATCCCCGGACTTAACGCCCCCGTTTATC control CARPAZ_FAM_R [Phos]GATCGGTGGACGCGGACCCCGGACTTAAATGGACTTGCTGGCAC control CARPAZ_FAM_R [Phos]GATCGCTTGGACTGGCGTGACCCCGACTTTAACGAGTCTGCTGGCAC control CARPAZ_VIC_L GGGTAGGGAATCCCTTGGACGCGGGACTTCAAGGAGTCTTGCTGGCGAC control Charl_193_FAM_R [Phos]GTGCCTAAGGGTGGACCTGGCGTCTCAATGTCACTGCGGCAC control Charl_193_FAM_R [Phos]TGCCCAAGGGTGGACGTGCGTGCGTCTGGCGACCC control Charl_10155_FAM_L GGGTTCCCTAAGGGTGGACGCGGGTGGACGTCGGGTGGGT	C2orf85_FAM_L	GGGTTCCCTAAGGGTTGGAccCATCACGGTTAGTGAGGGCTGCATCAC	control
C20R85, V/C, L GGTAGGGAATCCCTTGGACTATATAGGASTATAGGASGGAGTATCGGGGTCCCAT control CADR85, V/C, L GGGTAGGGAATCCCTTGGACTGGCACCGGACCGCACCGGACTGGACCGCACGTGACTGGAGTTGGGGAC control CAPN2, FAM, L GGGTAGGGAATCCCTTGGACGGGACGCGCACGGACGGACG	C2orf85_FAM_R	[Phos]CATCCCCTTCGCAGTCTTCGATGTCATAAAGCGCTCTAGATTGGATCTTGCTGGCAC	control
C20R85_VIC_R [Phos]6ACCGTTGCGCTCTTGGCTGATGGTGTTAAGTGGATCTTGCGCGCC control CAPR3_FAM_R [Phos]6ACCGTTGGAGGCGACCCGCGATAGTGGATTTGCTGCGGCCC control CAPR3_FAM_R [Phos]6ACCGTTGGAGGCGACCCCGCATGGACTATTGCA control CAPR3_VCL_L GGGTAGGGAATCCCTTGGAGGCTGCACCGCCCGATGGACTATTGCA control CAPR3_VCL_R [Phos]1ACGCTTGGAGGTGGGACTTGCGTGTCTGCATTGGAGTTGCGGCCC control Ch1_133_FAM_L GGGTTGCCAAGGGGGGGCGTGGGACTGCGGGTGCTGGACTGCGGCCC control Ch1_135_FAM_L GGGTTCCCTAAGGGTGGACCTGGGGGCTCTGAATTGGACTGTGCGGCGCC control Ch1_135_FAM_L GGGTTCCCTAAGGGTGGAGCCAGGCTGCTCAAGTTGGACCTGCGGGCGCCATGGCCC control Ch1_135_FAM_L GGGTTCCCTAAGGGTGGAGCCAGGCCTGCTCAAGTTGGACCTGCGGGCCCCAGTGG control Ch1_135_FAM_L GGGTTCCCTAAGGGTGGAGCCAGGCCATGCACGGTGGGCGGGGCGGCCCCCGGGGCCCCCCGGGCCCCCGGGCCCC	C2ORF85_VIC_L	GGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcg <u>GACTTCTGGATCTGGGTGTCCAT</u>	control
CAPN2_FAM_L GGGTAGGGAATCCCTTGACCCCCACGAACCCCCCACTATC control CAPN2_FAM_L FlowsightGGGGAATCCCTTGAGCCGCCACAGCACTCTCTGATGGACTCTGCTGGGAC control CAPN2_VIC_1 GGGTAGGGAATCCCTTGGAGCCCGCGAACGACTCTGCTGGTGGGACTTGCTGGGGAC control CAPN2_VIC_1 GGGTACGCAAGGGGCACGTGGTGGCACTTGCCTGCTGGTGACTCGCGGGAC control CAPN2_VIC_1 GGGTACGCAAGGGGCGACGTGGGCGTGGACTCTGCTGCGGCAC control Ch1_139_TAM_R PhosigTGCAAGGGGGGGGGTGGACGTGGGCGCGCCGCGGCGCGCCC control Ch1_clor1619_FAM_R PhosigTGCCAAGGGGGGGCGCACTGGGCCCCCGCGGCCCGGGTGGCACGTGGCCCC control Ch1_clor1619_FAM_R PhosigTTCCAAGGCGTGGACGTGGACGTGGGCAGCTGGGCCGGGGCCCGCGTGGCCAGGCCCCGCATTG control Ch6_161_FAM_R PhosigTTCCAAGGCGCGCGCACTTGCAAGGCGTGGGACGTGGGCGGCCCCGCATTG control CFC_FAM_L GGGTTCCCTAAGGGTTGGACGCAGGCATTGGACTGGGGGCACGCGGCAGCATTGGACGGCGGCAGCCATGGACTGGCGGGCACGCATGGACTGGGCGGCACGCATGGACTGGGCGGCACGCATGGACTGGGCGGCACTGCAGGGGAATCCGCTGGGGCACTGCGGGGCACTGCAGGGGACTGCCCTGGGGCACTGCGGGGCACTGCGGGGCATTGGGGGCATTGGGGGGACTGCGTGGGGCATTGGGGGGACTGGGGGGACTGGGGGGGG	C2ORF85_VIC_R	[Phos]GACCGTGTGCGTCTTCTGGCTGATGTGTCTAGATTGGATCTTGCTGGCAC	control
CAPAP2_FAM_R [Phos] <u>ATTGGA6SGASCCACCCCCCACAGACAGCCTTGCTGCGCAC</u> control CAPAP2_VIC_L GGGTAGGAAGCCCTTGGAGCCCTGGACTTGCTGCTGCTATCGAGCC control CAPAP2_VIC_R [Phos] <u>TAGGTCTGTCGGAGCGCCTGGGACTTGCTGCTGCTGCACACGAGG</u> control Ch1_133_FAM_L GGGTTCCCTAAGGGTTGGACCTGGTGGCACTTGCTGCTGCTGCACACGAGG control Ch1_135_FAM_L GGGTTCCCTAAGGGTTGGACCTGGTGGCACGTGGTGCGCCTGGGTCCCACTGCGGCCC control Ch1_1CoTI50_FAM_R [Phos] <u>TTCCTGTCCCGAAGCGTGGGTCCAAGTGGTGGGCGCGGGGCGCGGGGCCCCATGGCGCCCACTGCACGGGCCCACTGCACGGGGCCCACTGCACGGGGCCCACTGCACGGGGCCCACTGCACGGGGCCCACTGCACGGGGCCCACTGCACGGGGCCCACTGCACGGGGCCCACTGCACGGGGCCCACTGCACGGGGCCCACTGCACGGGGCCCACTGCACGGGGCCCACTGCACGGGGCCCAGTGCACGGGGCCCAGTGCACGGGGCCCAGTGCACGGGGCCCAGTGCACGGGGCCCAGTGCACGGGGCCCAGTGCACGGGGCCCAGTGCACGGGGCCCAGTGCACGGGGCCCAGTGCACGGGGCCCAGTGCACGGGGCCCAGTGCACGGCGCCCCACGGGGCCCAGTGCACGCGGCCCCACTGCGCGCCCA diana CTCF_VICL GGGTTCCCCTAAGGGTTGGAGGTAAACACGCCAGTTGCTGCGGCCCA diana diana GGTCCCCTAAGGGTTGGAGGTAAACACGCCAGTTGCTGCGGCCCA [Phos]<u>TTCCGGCCCCCGGGGCCCCAGCGGCGCCCCTTGCGGCCCCA</u> diana GGTAGGGAATCCCTTGGAGGTGAAACCCGCGGCTGCAATGCAGCGTGGGCCCA [Aina GGGTAGGGAATCCCTTGGAGGGGACACGCCGCCTGCAGTGGGCCCAGCCCCA diana GGGTAGGGAATCCCTTGGAGGGGGCGCGGGCGCCCGGGTTGGACGCCGCCTTGGGCCC [Aina GGGTAGGGAATCCCTTGGAGGGGGCTGAACGCGGCTTGGGGCCAGCGCCGCCCC [Aina GGGTAGGGAATCCCTTGGAGGG</u>	CAPN2_FAM_L	GGGTAGGGAATCCCTTGGA <u>CTGCGCTGACCCCCAGTTTATC</u>	control
CAPPA2_VIC_L GGGTAGGGAATCCCTTGGAGCTGGGGAGTTAAAGGATCATTGA control CAPA2_VIC_R IPhos]TAGGGATGCCTTGGGAGCTGGCCGTCTCTGATGGATCTGCTGCGGCAC control CAPA2_VIC_R IPhos]TGCGAAGGGCGAGTGGCCTGTCGCTGCTGCTGGACTGGCGCAC control Ch1_193_FAM_R IPhos]TGCGAAGGGCGACGTGGGCGTCAACTGCGGTGGCACCAC control Ch1_1c1_ch175_PAM_R IPhos]TGCCAAGGGTGGACGTGGGGGGTCAACTGCGGGCGCGCGC	CAPN2_FAM_R	[Phos]ATTGGAGGAGCCACCCGCACAGACATCTCTAGATTGGATCTTGCTGGCAC	control
CAPPR_VIC_R [Phos]TAGGSTCISTCISGGSGASTGCCTTGCCTTGCTGTCTGCAGCTCGCAGC control chrl_193_FAM_L GGGTTCCTAAGGGTTGGACtGISGGACTGGACTTGGCTGCTGCTGCTGCAGCCAGGGC control chrl_1057_FAM_L GGGTTCCCTAAGGGTTGGACtGISggacgattaggattaggattaggattaggttaggttagg	CAPN2_VIC_L	GGGTAGGGAATCCCTTGGA <u>GCCCTGGAGTTTAAAGGAGTCATTCA</u>	control
chr.1 gay. FAM_LGGGTTCCCTAAGGGTTGGACCGTIGGTGGTGACTCTGCTGTGTGTGGCACGAGGGcontrolchr.1 gay. FAM_R[Phos]TGTCCAAGGGTGGACCGTAGGTGGACCTTAGATTGGATGTGGTGGCACcontrolchr.1 chor1 sy. FAM_LGGGTTCCCTAAGGGTTGGACCATaggcagtattaggagggtgttgtgtatggttggtTTAATCCCCGTGACTCCAAGGCTGGCACcontrolchr.1 chor1 sy. FAM_LGGGTTCCCTAAGGGTTGGACCATaggcagtattaggagggtgttgtgtatGGTGGACTCCGATGGCcontrolchr.2 for JAM_R[Phos]TGTCCAAGGCTGGACCATGACGTGGCAGATCATGACdianaCTCF_FAM_LGGGTTCCCTAAGGGTTGGACGCAGCATGCACGTGGCAGATCATGACdianaCTCF_VCLGGGTAGGGAATCCCCTGGACCAAGGCCAGCCATTGCAGCGGCAGATCATGAdianaCTCF_VCLGGGTAGGGAATCCCCTGGACCCAGCCAGCCCGTCTAGATTGGACTGCGGCAGCdianaCTCF_VCLGGGTAGGGAATCCCCTGGACCCAGCCCGCTCTAGATGGACTGCAGCGACCAGCdianaEGR3_VCL_R[Phos]TGCTGAGGGACCCCCTGGAGCCGCCTGCAAGTCGGCCGCAGCCAGC	CAPN2_VIC_R	[Phos] <u>TAAGGTCTGTCTGGGAGTGCCTTGTCCTC</u> TCTAGATTGGATCTTGCTGGCAC	control
chr.1.93.,FAM_R [Phos]ETIGCAGEGAGEGCGATIGCICTAATGGATCTTGCTGGCAC control chr.1.ctorf180_FAM_R [Phos]ETICCTAGEGGTTGGACCTATAGEGTCTAAATGGATCTGCTGGCACC control chr.1.ctorf180_FAM_R [Phos]ETICCTGTTCCGGACCTGGGCGTCTAAATGGATCTGGTGGACCTATGGT control chr.1.sto.1.FAM_L GGGTTCCCTAAGEGTTGGACCTATGCTGCTGGACGTAGGACCTAGCTGGCTGG	chr1_193_FAM_L	GGGTTCCCTAAGGGTTGGAcc <u>GTGTGGTGACTCTGCTGTCTGACTACGAGG</u>	control
chrl_clorH39_FAM_L GGGTTCCCTAAGGGTTGGAccttage:gattaggggggtgttgtadgtagtagtgtagttgtadgtagtagtagtgtagtgtadgtagtagtgtagtgtagtgtagtgtagtgtagtagtgtagtgtagtgtgtagtgtagtgtagtgtgtagtgtagtgtgtagtgtgtagtgtgtagtgtgtagtgtgtagtgtgtagtgtgtagtgtgtagtgtgtagtgtgtagtgtgtgtgtagt	chr1_193_FAM_R	[Phos] <u>TGTGCAAGGAGGGCGATGTGCTGAC</u> TCTAGATTGGATCTTGCTGGCAC	control
chrl_id=161_FAM_R [Phos]ITTECTGITECEGAAACGIGGGGTE[TCITAGATIGGATCITGCIGGCAC control chr6_161_FAM_L GGGTTCCCTAAGGGTIGAACTATAGCAGTIGGTGTAGATGIGGTCGGTGCGACTEG control CTCF_FAM_R [Phos]ITCCAGCCCACGGAGCCAGGATIGCACGTGGCAGATCITGCTGGCAC diana CTCF_FAM_R [Phos]ITCCAGCCCACGGAGCCAGCATTGCACGTGGCAGATCATGAC diana CTCF_VIC_L GGGTGCCTAAGGGTTGGACGGACGCAGCCAGTCACGTGGCAGATCATGAC diana CTCF_VIC_R [Phos]ITTCCAGCCCACGGAGCCAGCATTGCACGTGGCAGATCATGAC diana CGGTCCTAAGGGTTGGACGTAAACACACCCACGTCACCTCAA diana EGR3_VIC_R [Phos]GGGATCCTTAAGGGTGGACGTTGACGTGGCGTCTAGATGGATCTTGCTGGCAC diana EGR3_VIC_R [Phos]GAGCTTGAAACACACCCCGGGTATAGATGGATCTTGCTGGCAC diana EGR3_VIC_R [Phos]GAGCTCTAAGGGTGGACCTTGGCGGCGTTAGATGGATCTTGCTGGCAC diana FARVIC_FAM_R [Phos]GAGCTCTAAGGGTGGAACTTGGACGCGGGATATACACACGCGGGAAATAGAGCTGGCAC diana FST_FAM_L GGGTTCCTAAGGGTGGAACCTGGGACCCGGGATATAGAGTGGGACCTCGGCCA diana FST_VIC_R [Phos]GAGCGTCCTAGGGTGGAACTAGGGGGGGCGGTTAGATGGACTCTGCGGCAC diana FST_VIC_L GGGTAGGAATCCCTTGGAACTAGGGGGGGCGGTTAGATTGGACGCGGCGCCCCGCCCCCCGGC diana FST_VIC_L GGGTAGGGAATCCCTTGGAACTAGGGGGGGTCTAGATTGGACGCCGGCGCCAACAGGCGGCCCCCGGGCGGACAACAGGGGCGCCCCAAGGCGGGCCCGA	chr1_c1orf159_FAM_L	GGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactgactgac	control
chr6; 161, FAM_R EGGTTCCTAAGGGTTGGA/CATAgCGTGGTCTAATGGTCTGCTGCTGGCCGATTG control chr6; 161, FAM_R [Phos]GTGCCAAGGGTGGA/GAATGGTCTCTGTGGA/CATGGTCTGCTGGCAC control CTCF_FAM_R [Phos]TTCCAACGCGAGCCAAGGCATTGAACGACTGGCAGATCATGAT diana CTCF_VIC, L GGGTGCCTAAGGGTTGGA/GGA/GCAGTGGA/GCAGTGGCAGATCATGA diana EG3, FAM_L GGGTGCCTAAGGGTTGGA/GGACCACGCAGTTGCACGTGGCAGATCATGA diana EG3, FAM_L GGGTGCCTA/GGGTTGGA/GGTA/GA/CAGCCCAGTTGCACGTGCACACT diana EG83, VIC, L GGGTAGGA/ATCCTTGGA/CATGGCGCTCTA/GATTGGATCTTGCTGGCAC diana EG83, VIC, L GGGTAGGA/ATCCCTGGA/CATGGCGCTTA/GATTGGACTCTGGCAC diana EG83, VIC, L GGGTAGGA/ATCCCTGGA/CATGCGCGCTTA/ATTGGATCTTGCGCACC diana EG83, VIC, R [Phos]GAGTCCTA/AGGGTTGGA/CATGCGGCCTTA/ATTGGATCTTGCGCACC diana FARVC, FAM, L GGGTTCCCTA/AGGGTTGGA/CATGCGGCCTTA/ATTGGA/CTCTGCGCAC diana FST, FAM, R [Phos]GAAGGATTGCCTTGGA/CATGGA/CTCTGGGA/CCCGGCGTTA/ATA/AGA/CTCGGCGCAC diana FST, FAM, L GGGTTCCCTA/AGGGTTGGA/CATGGGCTCTA/ATTGGA/CTCTGCGA/CA diana FST, VIC, L GGGTA/GGA/ATCCCTTGGA/CATGGA/CTCTGGGA/CACGG/GTCCTCA/GA/AAGA/GGA/CTCGCGA/CA diana FST, VIC, R [Phos]/ACCCA/AGGGA/TCCCTGGA/CATGGA/CTCGGGCGTTA/ATTGGA/CTC	chr1_c1orf160_FAM_R	[Phos] <u>TTTCCTGTTCCCGAGACGTGGGGGTC</u> TCTAGATTGGATCTTGCTGGCAC	control
dnf6_161_FAM_R [Phos]GIGTCCAAGGGTGGACAGGCIGGTCTAGATGGATCTGCTGGCAC control CTCF_FAM_L GGGTTCCCTAAGGGTGGAGGACATGCACGGGCAGTATGATGATT diana CTCF_VIC_L GGGTAGGGAATCCCTTGGACCAGGGACCAGCATTTGAATTGGATCTTGCTGGCAC diana CTCF_VIC_R [Phos]TTCCAGCCCAGGGACCCAGCATTTTCTAGATTGGATCTTGCTGGCAC diana EGR3_FAM_L GGGTAGGGAATCCCTTGGACCTAGGGTCGACATTGCATGGCATCTGCTGGCAC diana EGR3_VIC_L GGGTAGGGAATCCCTTGGACCTAGGCTTGGCCTGCGCTTAGATTGGATCTTGCTGGCAC diana EGR3_VIC_L GGGTAGGGAATCCCTTGGACCTGAGCTCTAGATTGGATCTTGCTGGCAC diana EGR3_VIC_R [Phos]TTGTGAGGTGGAACTGGACCTGGCGTCTAGATTGGATCTTGCTGGCAC diana EGR3_FAM_R [Phos]TTGGAGGTGGAACTGGAGCCGTAAGACTGGAGCCTTGCGTCTAGATTGGACGCAC diana FST_FAM_R [Phos]GAGGTTGAACTGGAGCCGAAAGACTGGAGCCGTTAGATTGGTGGCAC diana FST_FAM_L GGGTTCCCTAAGGGTTGGAACTGGAGCCGTTTGCTAGGACTGCGGTCAAATAGAGA diana FST_VIC_R [Phos]GAGGATTCCCTTGGGCACTGCGGTTTAGATTGGTGGCAC diana FST_VIC_R [Phos]GAGGATTCCCTTGGGCACTGCGGTTTAGATTGGTGGCAC diana FST_VIC_R [Phos]GAGGATTCCCTTGGGCACTCAGGTTTGGCTGGCACAACAGGGGCTCCAAGT diana FST_VIC_R [Phos]GAGGATTCCCTGGGCGCACACTCGGGTCTAGATTGGTGGCAC <tddiana< td=""> KCNG</tddiana<>	chr6_161_FAM_L	GGGTTCCCTAAGGGTTGGAcctatagcc <u>GAGAGATGGTGTAGGTCCGTGGTCCGATTG</u>	control
CTCF_FAM_R GGGTTCCCTAAGGGTTGGA <u>GGACATGCACGTGGCAGATCATGAT</u> diana CTCF_FAM_R [Phos]TTCCAGCCCACGGATCTTGACCGTGGCAGTCTTGCAGCCA diana CTCF_VIC_R [Phos]TTCCAGCCCACGGAGCCAGGATTTGAACCGTGGCGTGGC	chr6_161_FAM_R	[Phos]GTGTCCAACGCTGGTCTCAAATGTCTCTCAGATTGGATCTTGCTGGCAC	control
CTCF_FAM_R [Phos]TTCCAGCCCAGGAGCCAGCATTIGAACCTCAGTGGACTCTGCGGCAC diana CTCF_VIC_L GGGTAGGGAATCCCTTGGACCAGTGCACGTGCAGATCATGA diana CTCF_VIC_L GGGTAGGGAATCCCTTGGACCCAGTGCACGTGCAGATCATGA diana EG3_FAM_L GGGTTCCCTAAGGGTTGGAGGTAAACACAGCCCAGTTCAGCTGCGCAC diana EGR3_VIC_L GGGTAGGGAATCCCTTGGACCTGGGCGTGGGCGTCTAGATTGGATCTTGCTGGCAC diana EGR3_VIC_R [Phos]TGCTTGAGGTGGACTTGGCGTGGCGCTAGATTGGATCTTGCTGGCAC diana EGR3_FAW_R [Phos]ACTCTTAAACACACACCCCTTGCGCTCTAGATTGGATCTTGCTGGCAC diana FARVIC_FAM_R [Phos]TTGGGGAGCCGAAAGGATGGAGCCGGAGTATATGGATCTTGCTGGCAC diana FST_FAM_K IPhos]GAGTTGGAAGGCGAAAGGACTGGGGGCTCTGGGTCTGCGGCAC diana FST_FAM_R [Phos]GAGATGTTGAACCAACTGGGGGCTCCGGTTGCAGGACCCGGCTCTCG diana FST_VIC_L GGGTAGGGAATCCCTTGGACCTGGGGCTCCGGTTGCTAGATTGGATCTGCTGGCAC diana KCNG2_FAM_R [Phos]TCCGTAGGGAGGCACACGGTGTGTCTAGATTGGATCTGCTGGCAC diana KCNG2_FAM_R [Phos]TCCGTAGGGAGGCACACGGCTGTGTCTAGATTGGATCTGCTGGCAC diana KCNG2_VIC_L GGGTAGGGAATCCCTTGGACCTTGGACCTCCGTCTCGAGTCGGACACACAGGGGCTCCAAGT diana KCNG2_VIC_L GGGTAGGGAATCCCTTGGACCTTGGACCTCCGTCTCGGACACACAGGGGGCTCCAAGT diana R	CTCF_FAM_L	GGGTTCCCTAAGGGTTGGA <u>GGACATGCACGTGGCAGATCATGAT</u>	diana
CTCF_VIC_L GGTAGGGAATCCCTTGGAccCAGGAGCAGCATCATGACCAGGGCAGATCATGA diana CTCF_VIC_R [Phos]TTTCCAGCCCACGGAGCCAGCATTTCTAGATTGGACTTGCTGCACC diana EG3_FAM_L GGGTAGGGAATCCCTTGGACGCTAACCAGCCCAGTTCAGCTCAA diana EG3_YCL_L GGGTAGGGAATCCCTTGGACGTAACACAGCCCAGTTCAGCTCAA diana EGR3_VIC_R [Phos]TGCTTAAGGGTTGGACGTTGGCGCTTAGATTGGATCTTGCTGGCAC diana FARVIC_FAM_L GGGTTCCCTAAGGGTTGGACCGGGCTCTAGATTGGATCTTGCTGGCAC diana FARVIC_FAM_R [Phos]TGGGAGCCGAAAGACTGGACCGGGTCTAGATTGGATCTTGCTGGCAC diana FST_FAM_L GGGTTCCCTAAGGGTTGGACCTGGACCGGGTCTAGATTGGATCTTGCTGGCAC diana FST_FAM_L GGGTTCCCTAAGGGTTGGACCTGGACCTGGGTCTAGATTGGATCTTGCTGGCAC diana FST_VIC_R [Phos]AGGGAGCCGAAAGCCTGGACCTGGGTCTAGATTGGATCTTGCTGGCAC diana FST_VIC_R [Phos]ACCCGAGGAATTCCCTTGCAGCCGGTTTTCTAGATTGGATCTTGCTGGCAC diana KCNG2_FAM_L GGGTTCCCTAAGGGTTGGACCTTAGAGGGTTGACATTGGATCTTGCTGGCAC diana KCNG2_VIC_R [Phos]ACCCGAGGGATCCCTTGGACCTAGggggggtgtaCAGCGGGAGACACAAGGGGCTCAAGT diana RCNG2_VIC_R [Phos]ACCCCGAGGGGCCCTAAGGATGCCTTGCTGGCAC diana ORAOV1_FAM_L GGGTTCCCTAAGGGTTGGACCTAGGATGCCTTGGACTGGACCCAAGGGCCCCAAGT diana ORAO	CTCF_FAM_R	[Phos] <u>TTCCAGCCCACGGAGCCAGCATTTGAACC</u> TCTAGATTGGATCTTGCTGGCAC	diana
CTCF_VIC_R [Phos]TTTCCAGCCCACGGAGCCAGCATTTTCTAGATTGGATCTTGCTGGCAC diana EG3_FAM_L GGGTTCCTAAGGGTTGGAGCTAGAGCCCAGTTCAGCTCAA diana EGR3_VIC_L GGGTTGCCTAAGGGTTGGAGCTAGAGCCCAGCCCGCTTCTCTCCGCCTCTT diana EGR3_VIC_R [Phos]TGCTTGAGGGAATCCCTTGGCGCTGCGCCTCTAGATTGGACCTTGCTGGCAC diana EGR3_FAM_R [Phos]TGCTTGAGGGATCCCGGGGCCTCTAGATTGGATCTTGCTGGCAC diana FARVIC_FAM_R [GGTTCCTAAGGGTTGGAcctatagcagcGGCTGTTGGACTGCGGCACC diana FARVIC_FAM_R [Phos]TGGGGAGCCGAAAGACTGGGAGCCGTTTCTGAGATGGATCTTGCTGGCAC diana FST_FAM_L GGGTTCCCTAAGGGTTGGAcctatagcagtcGGTCTGTGTGGAGCCCCGGCCC diana FST_FAM_R [Phos]AGCTGAAGGAATCCCTTGGGCCCTGGGCTCCGGTCTAGATTGGATCTGCTGGCAC diana FST_VIC_L GGGTAGGGAATCCCTTGGACCtatagcgattCCCGGTCTAGATTGGATCTTGCTGGCAC diana KCNG2_FAM_L GGGTAGGGAATCCCTTGGACCCTAAGGCTGCGTCTCAGATTGGAACTGCGGCAC diana KCNG2_FAM_R [Phos]TGCTTCAAGGGTTGGAACCTCCGGCGCCTCAGGTTCTGGGACCA diana KCNG2_FAM_L GGGTAGGGAATCCCTTGGGACCTCGGGCTCCAGGTGCCTAGATTGGACCTGCGCAC diana RCNG2_VIC_L GGGTAGGGAATCCCTTGGAGGGACATCCGGTGGCTCAGATTGGATCTTGCTGGCAC diana RCNG2_VIC_L GGGTAGGGAATCCCTTGGAGGGACATGCTTGGAGGGCGTAAGACTGGGCCCTCGGCT diana	CTCF_VIC_L	GGGTAGGGAATCCCTTGGAccCAGTGACGGACATGCACGTGGCAGATCATGA	diana
EG3_FAM_L GGGTTCCCTAAGGGTTGGAGGTAAACACAGCCCAGTTCAGCTCAA diana EGR3_VIC_L GGGTAGGGAATCCCTTGGACctatagcgattCCTTGTCCGCCTTTGTCTGCTGGCAC diana EGR3_VIC_R [Phos]TTGCTTGAGGTGGATCTTGGCGGTGGGCTCTAGATTGGATCTTGCTGGCAC diana EGR3_FAM_R [Phos]GAGTCTTAAACACACCGCTTGCGCTCTAGATTGGATCTTGCTGGCAC diana FARVIC_FAM_L GGGTTCCCTAAGGGTTGGAcatTCCGGGCTTAGATTGGATCTTGCTGGCAC diana FARVIC_FAM_R [Phos]TGGGACCCGAAAGACTGGACCTTGCTGGGCCGTTTCCTAGATTGGATCTTGCTGGCAC diana FST_FAM_L GGGTTCCCCTAAGGGTTGGAcattagcgactgCGGTGTTCTCAGATTGGACCTTGCGGCAC diana FST_VIC_R [Phos]GAGGATTCCCTTGGACCTTGGACCGGTCTTAGATTGGATCTTGCTGGCAC diana FST_VIC_R [Phos]ACTCGACGATTCCCTTGGACGTTCCACGCGTTTTTGAATTGGATCTTGCTGGCAC diana KCNG2_FAM_R [Phos]TACATTCGGTTGCACGAGCATCCGGTCTTCAGCTGGGGAGACACACAGAGGAGCCCAACCGCAT diana KCNG2_FAM_R [Phos]TGCTCAAGGGTTGGACCTTGGACGTGTCTAGATTGGATCTTGCTGGCAC diana RCNG2_VIC_R GGTTACGGAGATCCCTTGGACGTGGACGTGGTCTAGATTGGATCTTGCTGGCAC diana RCNG2_VIC_R IPhos]TGCTCAAGGGTGGAGCAGGTCTCAGGTTGGACTTGCTGGCAC diana ORAOV1_FAM_L GGGTTCCCTAAGGGTGGACGCGGAGGGTCCAAGGTGCTCTGGGCAC diana ORAOV1_FAM_R [Phos]ACCCAGGGGTGGACGCAGACCCCCGGTCTGAGATTGGATCTTGCTGGCA	CTCF_VIC_R	[Phos]TTTCCAGCCCACGGAGCCAGCATTTTCTAGATTGGATCTTGCTGGCAC	diana
EGR3_VIC_L GGGTAGGGAATCCCTTGGAcctatagegact <u>CCTTCTCCCCCTT diana EGR3_VIC_R [Phos]TGCTTCAAGGTGGACCTTGGCGTCTAGATTGGATCTTGCTGGCAC diana EGR3_FAM_R [Phos]GAGTCTTAAACACACACGCTGCGCGTCTAGATTGGATCTTGCTGGCAC diana FARVIC_FAM_L GGGTTCCCTAAGGGTTGGAcatCTCGCGCGTCTAGATTGGATCTGCTGGCAC diana FARVIC_FAM_R [Phos]TGGGAGCCGAAAGACTGGAGCCGTTTCTAGATTGGATCTTGCTGGCAC diana FST_FAM_R [Phos]GAGGATCCCTAGGGGACCCTAgeGGGCTCTGGTCTGAGCACGCGTCTCCG diana FST_FAM_R [Phos]GAGGATCCCTTGGACCATagegattCTCCGTCTCGGCCCA diana FST_VIC_R [Phos]ACTGGAGCACCTCCGTCCGGCTCTGGCACCATGGCAC diana FST_VIC_R [Phos]ACTCGACGATTCCCTTCGACCGTCTCTAGATTGGATCTTGCTGGCAC diana KCNG2_FAM_R [Phos]ACATTGGTTTCCGACGATCCCTTCCAGCGGGACACACGGGAACAACAGAGGCTCCAAGT diana KCNG2_VIC_L GGGTTAGGGATCCCTTGGACCATagegattacggacttacGGCGGGAGAACACGAGGCTCCAAGT diana KCNG2_VIC_L GGGTTGGAGGAGGCGCGGAGGACAGTGTCTAGATTGGATCTGCTGGCAC diana RCNG2_VIC_L GGGTTCCCTAAGGGTTGGACCTTAGGATGGATCTGCTGGCGCA diana RCNG2_VIC_L GGGTTCCCTAAGGGTTGGACCTTAGGATGGACCTTGCTGGCAC diana RCNG2_VIC_L GGGTTCCCTAAGGGTTGGACCTTGGACCTTGCTGCGGCCACAGGCGCTTCGGACA diana RANV1</u>	EG3_FAM_L	GGGTTCCCTAAGGGTTGGAGGTAAACACAGCCCAGTTCAGCTCAA	diana
EGR3_VIC_R [Phos]TIGCTTGAGGTGGATCTTGCCGTGGCGTCTAGATTGGATCTGCTGCGCC diana EGR3_FAM_R [Phos]GAGTCTTAAACACACACGCTTGCGCTCTAGATTGGATCTGCTGCGCAC diana FARVIC_FAM_L GGGTTCCCTAAGGGTTGGACat <u>CTCCGGACGCGGATATATAGAGTGTGACCGT</u> diana FARVIC_FAM_R [Phos]GAGTCCCTAAGGGTTGGACCTGCGGACGCGTTCTCTAGATTGGATCTTGCTGGCAC diana FST_FAM_R [Phos]GAAGATGTTGGACCATagcgatcGCTCTTCTAGATTGGATCTTGCTGGCAC diana FST_VIC_L GGGTACGGAATCCCTTGGACCtatagcgattCTCCCCGCTCAGCAAATAAGA diana FST_VIC_R [Phos]ACTCCCTAAGGTTGGACCtatagcgattCTCCCCGCCCAAATAAGA diana KCNG2_FAM_L GGGTAGGGAATCCCTTGGACCtatagcgattCCGCGGCGGAGACACGAGGGCCCAAGGAGCCCCAAGGAGG	EGR3 VIC L	GGGTAGGGAATCCCTTGGAcctatagcgact CCTTCTCCGCCTTCTCCCTT	diana
EGR3_FAM_R [Phos]GAGTCTTAAACACACACGCTTGCGC_TCAGATTGGATCTTGCTGGCAC diana FARVIC_FAM_L GGGTTCCCTAAGGGTTGGACatCTCGGAGCCGTTTCTCAGATTGGATCTGCTGGCAC diana FARVIC_FAM_R [Phos]TGGGAGCCGAAAGACTGGAGCCGTTTCTCAGATTGGATCTGGCGCAC diana FST_FAM_L GGGTTCCCTAAGGGTTGGACACTTGGGGCCGTTCTCAGATTGGATCTGGCGCAC diana FST_VIC_L GGGTAGGGAATCCCTTGGGACCACTGGGGCTCTGGGTCCGGCTCTGGCAC diana FST_VIC_L GGGTAGGGAATCCCTTGGACCATTGGGACCTCCGGTCTGGGCACACACA	EGR3 VIC R	[Phos]TTGCTTGAGGTGGATCTTGGCGTGGCGTCTAGATTGGATCTTGCTGGCAC	diana
FARVIC_FAM_LGGGTTCCCTAAGGGTTGGAcat GGGTTCCCTAAGGGTTGGAcat TGGACatatgcatt GGGTTCCCTAAGGGTTGGAcctatgcatt GGGTTCCCTAAGGGTTGGAcctatgcatt GGGTTCCCTAAGGGTTGGAcctatgcatt GGGTTCCCTAGGGACCCGGTTCTCTAGATTGGACCTGCGTCCTCGdianaFAT_FAM_LGGGTTCCCTAAGGGTTGGAcctatgcatt GGGTTGCCTTGGGACCCCGGTCTGGCTCCGGdianaFST_FAM_R[Phos]GAAGATGTTGAACCAACTTGGGGACCCGGGTCTGATGGATCTGCTGCGCACdianaFST_VIC_LGGGTAGGGAATCCCTTGCAGCCGGCTCTGCGGCCTAAGGCACCCGGAATAAGAdianaFST_VIC_R[Phos]ACTCGACGAGTTGCACCTTGCAGCCGCGCTCTGGCTCTGCGCACdianaKCNG2_FAM_LGGGTTCCCTAAGGGTTGGACctatgcgacttacggacggcgtat CCAGCGGGAGACCAACGGAGGCCCAAGGdianaKCNG2_VIC_R[Phos]TACATTGGGTTCTCGAGCGACCACCGGTCTAGATTGGATCTTGCTGGCACdianaCNG2_VIC_R[Phos]TACATTGGATCGGACCACAGGTGTCTAGATTGGATCTTGCTGGCACdianaORAOV1_FAM_LGGGTTCCCTAAGGGTGGACctatgcgacttacggacggcgtatCAACAGGTATGCTGCTGGCACdianaORAOV1_VIC_LGGGTAGGGAATCCCTTGGACCAAGGTGTCTAGATTGGATCTTGCTGGCACdianaORAOV1_VIC_LGGGTAGGGAATCCCTTGGACCtatgcgacttacggaCggtatCAACAGGTGTGTCTCAGATdianaORAOV1_VIC_LGGGTTCCTAAGGGTGGACCTAAGCGGGTCTAGATTGGATCTTGCTGGCACdianaDCD1_FAM_R[Phos]AACCCAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaDCD1_VIC_LGGGTTCCTAAGGGTTGGAACTAgcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAAdianaDCD1_VIC_LGGGTAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaDCD1_FAM_R[Phos]AAACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaRASA3_FAM_LGGGTTCCTAAGGGTTGGAACTAgcgacttacggacggcgtattcgtactGACCCGGGTTGGGGATATCTCATAAdiana<	EGR3 FAM R	[Phos]GAGTCTTAAACACACACGCTTGCGCTCTAGATTGGATCTTGCTGGCAC	diana
FARVIC_FAM_R[Phos][Phos]TGGGAGCCGAAAGACTGGAGCCGTTCTCTAGATTGGATCTGCTGGCACdianaFST_FAM_LGGGTTCCCTAAGGGTTGGACctatagcagtcGGCTGTTCTGAGCAACGCTGCTCCGdianaFST_FAM_R[Phos]GAAGATGTTGAACCAACTTGGGGACTCCGGTCTAGATTGGATCTGCTGGCACdianaFST_VIC_LGGGTAGGGAATCCCTTGCACCTTGCAGCCGTTTCTAGATTGGATCTTGCTGGCACdianaFST_VIC_R[Phos]GGGTTCCCTAAGGGTTGGAcctatagcgacttCCCCCTCCCGCTCCTAGATTGGACACAAGAGGCTCCAAGTdianaKCNG2_FAM_R[Phos]CGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtatCAGCGGGAGACAACAGAGGCCCCAACGCdianaKCNG2_YIC_LGGGTAGGGAATCCCTTGGACctatagcgacttacggacgggcgtatCAGCGGGAGACCCAACCGCACdianaKCNG2_VIC_LGGGTAGGGAGTGGACGACGTGCTAGATTGGATCTTGCTGGCACdianaORAOV1_FAM_LGGGTTCCTAAGGGTTGGACctatagcgacttacggacgggcgtaCACACGCTGCGGCTGCGGCCCdianaORAOV1_FAM_R[Phos]TGTTCCTGGACCtatagcgacttacggacggcgtCTCAGATTGCTGCGGCACdianaORAOV1_VIC_R[Phos]GGGTTCCTAAGGGTGGACCAAGGTGCTCAAGATGGCTCTAGATTGGTGCGCACdianaDCD1_FAM_R[Phos]AACCCAAGGGAAGCACACCTGAGGTGGCTAAGATGGACTTGCTGGCACdianaDCD1_FAM_R[Phos]AACCAAGGGAAGCACACCCTGAGGTGGTCTAGATTGGTGGGAATATCTCATAAdianaDCD1_VIC_LGGGTAGGGAAGCACACACCTGAGGTGGTCTAGATTGGACCTGGCGATATCTCATAAdianaDCD1_FAM_R[Phos]AACAAGAGGAAGCACACACCTGAGGTGGTCTAGATTGGTGGCACdianaDCD1_FAM_R[Phos]AACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGCTGGCACdianaDCD1_VIC_LGGGTAGGGAAGCACACACCTGAGGTGGTCTAGATTGGTGGGACACACCCCGGGTGGGGATATCTCATAAdianaRASA3_FAM_L </td <td>FARVIC FAM L</td> <td>GGGTTCCCTAAGGGTTGGAcatCTCCGAGCCGGATATATAGAGTGTCACGT</td> <td>diana</td>	FARVIC FAM L	GGGTTCCCTAAGGGTTGGAcatCTCCGAGCCGGATATATAGAGTGTCACGT	diana
FST_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcatgcGGTCTGTTCTGAGCAACGCTGCTCTCGdianaFST_FAM_R[Phos]GAAGATGTTGAACCAACTTGGGGACTCCGGTCTAGATTGGATCTTGCTGGCACdianaFST_VIC_LGGGTAGGGAATCCCTTGGACCCATagcgacttacggcggttCTCGGCTCTAGATTGGATCTTGCTGGCACdianaFST_VIC_R[Phos]ACTCGACGGATTCCCTTCGACGCGGTTTTCTAGATTGGATCTTGCTGGCACdianaKCNG2_FAM_R[Phos]ACTCGACGGATGCCTTGGACCTCCGGTCTTAGATTGGATCTTGCTGGCACdianaKCNG2_VIC_LGGGTAGGGAATCCCTTGGACCTAGgGTGCTAGATTGGATCTTGCTGGCACdianaKCNG2_VIC_R[Phos]ACCCATGGGGTGGAGGACAGTGGTCTAGATTGGATCTTGCTGGCACdianaORAOV1_FAM_LGGGTTCCCTAAGGGTTGGACCTTAggcggcgtatcCGGGGCGCCAAGGACCACCGCACdianaORAOV1_FAM_R[Phos]ACCCAGCGGGGGCGCAAGAAGAAGCTCCTGCTGCTGGCTCCTGAdianaORAOV1_VIC_R[Phos]ACCCAGGGTGGCAAGAGAGTGCTCTAGATTGGTCTAGATTGGACCTGCTGGCACdianaORAOV1_VIC_R[Phos]ACCCAGGGTGGCAAGAGAGCGCTCAAGGTGGCTCAGATTGCTGGGCACdianaDCD1_FAM_R[Phos]ACACAAGGGAAGCACACACCTGAGGGGGTAAGATGGCTCTAGATTGGAGCTTGCTGGCACdianaDDCD1_FAM_R[Phos]AACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTGCTGGCACdianaDDCD1_VIC_R[Phos]AACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaDDCD1_VIC_R[Phos]AACAGAGGAAGCACACACCTGAGGTGCTAGATTGGATCTTGCTGGCACdianaRASA3_FAM_LGGGTAGGGAATCCCTTGGAACCTGGGGCATAGCTGGGGCATAGCTGGGCACdianaRASA3_FAM_R[Phos]AACAGGGTTGGACCATagcggacttacggacgggcgtattcgtactGCAGCCCGCGTGTGGGGATATCCCTTdianaRASA3_FAM_R[Phos]AACAGGGTTGGACCTATGGCTGGGAAGCCACAGCGGGGGCACGCCCCCTTdianaSLC9A3_VIC_R[Phos]AGGGAATCCCTTGGACCATagcggactt	FARVIC FAM R	[Phos]TTGGGAGCCGAAAGACTGGAGCCGTTTCTCTAGATTGGATCTGGCAC	diana
FST_FAM_R[Phos]GAAGATGTTGAACCAACTTGGGGACTCCGGTCTAGATTGGATCTTGCTGCACdianaFST_VIC_LGGGTAGGGAATCCCTTGGACctatagcgacttCCCCTCCGCTCTACGCAATAAGAdianaFST_VIC_R[Phos]ACTCGACGATTCCCTTCGACCCTTGGACCTAtagcgacttacggacggcgtatCAGCGGGAGACAACAGAGGCTCCAAGTdianaKCNG2_FAM_LGGGTTCCCTAAGGGTTGGACctatagcgacttacggacggcgtatCAGCGGGAGACAACAGAGGCTCCAAGTdianaKCNG2_FAM_R[Phos]TACATTCGGTTCCGACGCACGACCGCGGTCTAGAATGGATCTTGCTGGCACdianaKCNG2_VIC_LGGGTAGGGAATCCCTTGGACCCAAGGTGCTCTAGATTGGATCTGCTGGCACdianaRCNG2_VIC_R[Phos]TGTTTCAGGGCTGGAGGACGACGTCTAGATTGGATCTTGCTGGCACdianaORAOV1_FAM_LGGGTTCCCTAAGGGTTGGACctatagcgacttacggacgtatCCAAGGTGTCTGGGCACdianaORAOV1_FAM_R[Phos]ACCCAGCAGGTGCGCTAAGAATGCCTTCGTCTGGTGGCTTCCTGAdianaORAOV1_VIC_LGGGTAGGGAATCCCTTGGACctatagcgacttacggacggcgtatCtGatCTGGCGCACdianaORAOV1_VIC_R[Phos]AACCCAAGGATGAGCACCAACGCTGGGGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_FAM_LGGGTTCCCTAAGGGTGGTGAAGCACAACCCGGGGTGGGATATCTCATAAAdianaPDCD1_VIC_R[Phos]AACACAAGGGAAGCACACACCCGGGGTGGGACTACGCACCdianaPDCD1_VIC_R[Phos]AAACAGAGGCTTGGACCATagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAAdianaRASA3_FAM_R[Phos]AAACAGGGTTGGACCATagcgacttacggacggcgtattcgtactgacCGGCACCACCCCCTCTTdianaRASA3_FAM_R[Phos]AAACAGGGCTTGGACCATAgcgacttacggacggcgtattcgtactGGACCACACCCCCCTCTTdianaRASA3_FAM_R[Phos]AAACAGGGCTTGGACCATAgcgacttacggacggcgtattcgtactGCACCACACCCCCCTCTTdianaSLC9A3_VIC_R[Phos]AAACGGGTTGGACCATAgcGGCTAGGTCTAGATTGGACCTTGCTGGCACdiana	FST FAM L	GGGTTCCCTAAGGGTTGGAcctatagcatgcGGTCTGTTCTGAGCAACGCTGCTCTCG	diana
FST_VIC_LGGTAGGAATCCCTTGGACctatagcgacttCTCCCTCCGCCCTACGCAATAAGAdianaFST_VIC_R[Phos]ACCCGACGATTCCCTTCCAGCCGTTTTTCTAGATTGGATCTGCTGGCACdianaKCNG2_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtatCAGCGGGAGACAACAGAGGCTCCAAGTdianaKCNG2_FAM_R[Phos]TACATTCGGTTTCCGACCCAGCATCCGGTCTCTAGATTGGATCTTGCTGGCACdianaKCNG2_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacgGTCATTCTGGACCAAGGAGACCCAACGGATdianaKCNG2_VIC_R[Phos]TGTTTCAGGGCTGGAGGACAGTGTCTAGATTGGATCTTGCTGGCACdianaORAOV1_FAM_LGGGTTCCCTAAGGGTGGACGAATGCCTCGTCTAGATTGGATCTTGCTGGCACdianaORAOV1_FAM_R[Phos]ACCCAGCGAGGTGCGCTAAGAATGCCTTCGTCTAGATTGGATCTTGCTGGCACdianaORAOV1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactGCACCGGGTTGGGGATATCTCATAAdianaORAOV1_VIC_R[Phos]ACCCAAGGGTGGCACACAACCGCGGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_FAM_LGGGTTCCCTAAGGGTTGAACTATGCGTGCTCAGATTGGATCTTGCTGGCACdianaPDCD1_FAM_R[Phos]AACCCAAGGGAAGCACACACCTGAGGTGCTCAGATTGGATCTTGCTGGCACdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGACCCATGggCGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_VIC_R[Phos]AAACACAGGGATGCCCTGGACCACACCCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaRASA3_FAM_R[Phos]AAACAGGGTTGGACCATATGGGCTCAGGTCTAGATTGGATCTTGCTGGCACdianaRASA3_FAM_R[Phos]AAACAGGGTTGGACCATTGGGGCTCAGGTCTAGATTGGACCTGGGCACCACCACCCCCCTCTdianaRASA3_FAM_R[Phos]AAACAGGGTTGGACCATTGGGGCATCTGCAGACGGCACCACCACCCCCCTCTdianaSLC9A3_VIC_R[Phos]AAGGGATCCCTTGGACCATTGGGGCATCAGATCTGCTGGCACdianaSLC9A3_VIC_R[Phos]A	FST FAM R	[Phos]GAAGATGTTGAACCAACTTGGGGACTCCGGTCTAGATTGGATCTTGCTGGCAC	diana
FST_VIC_R[Phos]ACTCGACGATTCCCTTCCAGCCGTTTTTCTAGATTGGATCTTGCTGGCACdianaKCNG2_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtatCAGCGGGAGACAACAGAGGGCTCCAAGTdianaKCNG2_FAM_R[Phos]TACATTCGGTTCCGACGCAGCAGCCGGCTCTAGATTGGATCTTGCTGGCACdianaKCNG2_VIC_LGGGTAGGGAATCCCTTGGACCtatagcgacttacgGGTCTCAGATTGGATCTTGCTGGCACdianaORAOV1_FAM_LGGGTTCCCTAAGGGTGGACCAAGGGTGGACAGTGCTCAAGAAGCTATGCGCGCGC	FST VIC L	GGGTAGGGAATCCCTTGGAcctatagcgacttCTCCCTCTCGCTCCTACGCAAATAAGA	diana
KCNG2_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtatCAGCGGGAGACAACAGAGGGCTCCAAGTdianaKCNG2_FAM_R[Phos]TACATTCGGTTTCCGACGCAGCACCGGTCTCTAGATTGGATCTTGCTGGCACdianaKCNG2_VIC_LGGGTAGGGAATCCCTTGGACCCAtagcgacttacGGTCATTCGGACCAACGGAGACCCAACCGCATdianaORAOV1_FAM_LGGGTTCCCTAAGGGTTGGACCtatagcgacttacggacggcgtaCACACGGCATGGCTCCTGAdianaORAOV1_FAM_R[Phos]AACCCAGCAGGTGGACGACGTGCTAAGAATGCCTTCGTCTGAATTGGATCTTGCTGGCACdianaORAOV1_VIC_LGGGTAGGAATCCCTTGGACCCAAGGAGTGCGCTAAGAATGCCTTCGTCTGAATTGGATCTTGCTGGCACdianaORAOV1_VIC_R[Phos]TTCCTGCACTGGACTCAAGGATGAGCTGTCAGATTGGATCTTGCTGGCACdianaORAOV1_VIC_R[Phos]TTCCTGCACTGGCACTCAAGGATGAGGCGTCTAGATTGGATCTTGCTGGCACdianaDCD1_FAM_LGGGTTCCCTAAGGGATGAGCACCACCCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_FAM_LGGGTTCCCTAAGGGAAGCACACACCCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_VIC_LGGGTAGGAATCCCTTGGACCATagcgacttacggacggcgtattcgtactGCAGCGGGTTGGGGATATCTCATAAdianaPDCD1_VIC_R[Phos]AACACAAGGGAAGCACACACCCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_VIC_R[Phos]AAACACAAGGGAAGCACACACCCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaRASA3_FAM_LGGGTTCCCTAAGGGTTGGACCTAGACGGGCTCAGGTGGGACTCTGCTGGCACdianaRASA3_FAM_R[Phos]AAACAGGGTTAGTACTTGGCACGTCAGGATCGCACCACACCCCCCTTdianaRASA3_FAM_R[Phos]AAGGAATCCCTTGGGACACACGTGCAGGTGGAGCACACACA	FST VIC R		diana
KCNG2_FAM_R[Phos]TACATTCGGTTTCCGACGCAGCATCCGGTCTCTAGATTGGATCTTGCTGGCACdianaKCNG2_VIC_LGGGTAGGGAATCCCTTGGACctatagcgacttacgGTCTAGATTGGATCTTGCTGGCACdianaKCNG2_VIC_R[Phos]TGTTTCAGGGCTGGAGGACAGTGTCTAGATTGGATCTTGCTGGCACdianaORAOV1_FAM_LGGGTTCCCTAAGGGTTGGACctatagcgacttacggacggcgtaCAACAGCTATGCTGCGGGCTTCCTGAdianaORAOV1_FAM_R[Phos]AACCCAGCAGGGGCGCTAAGAATGCCTTCGTCTGAGATTGGATCTTGCTGGCACdianaORAOV1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactGACGCGGCTGGGGATATCTCATAAAdianaORAOV1_VIC_R[Phos]TTTCCTGCACTGCGACTCAAGGATGAGGGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAAAdianaPDCD1_FAM_R[Phos]ACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGACctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAdianaPDCD1_VIC_LGGGTTCCCTAAGGGTAGGACCACACCCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGACctatagcgacttacggacggcgtattcgtactGCACCCCCCACCTCAAACAGGTTGCCGCCCdianaRASA3_FAM_R[Phos]AAACAGAGGCTAGGACCTAGGCTACGTCTAGATTGGATCTTGCTGGCACdianaRASA3_VIC_LGGGTAGGGAATCCCTTGGACctatagcgacttacggacggcgtattcgtacCAGAGCACACACCTGGCACdianaSLC9A3_VIC_LGGGTAGGGAATCCCTTGGACctatagcgacttacggacggcgtattcgtGCCACTGGCACCTCCTTdianaSLC9A3_VIC_R[Phos]AAGGAGTCCCTGGGCACCACAGGTGGACTAGGATCTTGGTGGACCdianaSLC9A3_VIC_R[Phos]AAGGGTTGCAGTGGGCACAGGGGGGCTTTATGGTGCAGGGGAGCCCTTGGTGGACCdianaSLC9A3_VIC_R[Phos]CAGTGGAGGAATCCCTTGG	KCNG2 FAM L	GGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtatCAGCGGGAGACAACAGAGGCTCCAAGT	diana
KCNS2_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttac GGTAGGGATCCCTAGGGCGGAGGACAGTGTCTAGATTGGATCTGCTGGCACdianaKCNS2_VIC_R[Phos]TGTTTCAGGGCTGGAGGACAGTGTCTAGATTGGATCTGCTGGCACdianaORAOV1_FAM_LGGGTTCCCTAAGGGTGGACCtatagcgactgcgcgta CCAACAGGCTGGCTCCTGACdianaORAOV1_FAM_R[Phos]AACCCAGCAGGGGCGCTAAGAATGCCTTCGTCAGATTGGATCTTGCTGGCACdianaORAOV1_VIC_LGGGTAGGGAATCCCTTGGACCtatagcgacttacgggCTCCTTTTCTCTGGACTGGCTCTCAGTdianaORAOV1_VIC_R[Phos]TTTCCTGCACTGCACTCAAGGATGAGGCGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_FAM_LGGGTTCCCTAAGGGTGGAcctatagcgacttacggacggcgtattcgtact GGGTAGGGAATCCCTTGGACCACACCTGAGGTGGTCTAGATTGGATCTGCTGGCACdianaPDCD1_FAM_R[Phos]AACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTGCTGGCACdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAdianaPDCD1_VIC_R[Phos]AAACACAAGGGAAGCACACACCCTGAGGTGGTCTAGATTGGATCTGCTGGCACdianaRASA3_FAM_LGGGTTCCCTAAGGGTTGGAACCACACCCCGAGGTGGGTCTAGATTGGATCTGCTGGCACdianaRASA3_VIC_R[Phos]AAACAGGGTTAGGATCTTGGGGCTACGdianaRASA3_VIC_LGGGTAGGGAATCCCTTGGACCATGGAGGAGCACACCACCGCGCTGCTGCGCACdianaSLC9A3_VIC_R[Phos]AAGGGATCCCTTGGACCACTGAGAGGAGACCACACCACGGCGCCTGCGCACCdianaSLC9A3_VIC_R[Phos]AAGGGATCCCTTGGACACGAGGGGAAACCAAGGGTCAGGTGGGAGTCAGGAGCACACCdianaSTK11_FAM_R[Phos]GGTTTACATGGACCAGGGGGAGTCAGGGGGAGTCAGGTGGGAGCCCCTGGGCACCdianaSTK11_FAM_R[Phos]GGTTTACATGGACCTGGGAAACCCAGGGCGCTTTATGGTGCACdianaSTK11_FAM_R[Phos]GTCTTAAGGGGGAACCCCTGGCGGTTAGGAGGGGAGCCGGCCTTAGGAT	KCNG2 FAM R		diana
KCNG2_VIC_R[Phos]IGTTTCAGGGCTGGAGGACAGTGTCTAGATTGGATCTTGCTGGCACdianaORAOV1_FAM_LGGGTTCCCTAAGGGTTGGACctatagcgactgcgcgtaCAACAGTGTATGCTGCTGGCACdianaORAOV1_FAM_R[Phos]AACCCAGCAGGTGCGCTAAGATGCCTTCGTCTAGATTGGATCTTGCTGGCACdianaORAOV1_VIC_LGGGTAGGGAATCCCTTGGACctatagcgacttacggCTCCTITTCTCTGGACTGTCTCAGTdianaORAOV1_VIC_R[Phos]TTTCCTGCACTGCGACTCAAGGATGAGCGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_FAM_LGGGTTCCCTAAGGGTTGGACctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAAAdianaPDCD1_FAM_R[Phos]ACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAdianaPDCD1_VIC_R[Phos]AAACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_VIC_R[Phos]AAACACAAGGGAAGCACCACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaRASA3_FAM_LGGGTTCCCTAAGGGTTGGACctatagcgacttacggacggcgtattcgtactgacCGTCCACTCTAAACAGTTTCCGTGCCCTdianaRASA3_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactgacCGCCACCTCCTTdianaRASA3_VIC_R[Phos]AAGGATCTTGGTCCAGTCAGTCAGATGGATCTAGATTGGATCTTGCTGGCACdianaSLC9A3_VIC_R[Phos]CAGTGGAGTCAGTGGGAAACCAAGTGTCTAGATTGGATCTTGCTGGCACdianaSTK11_FAM_R[Phos]CTCTTAAGTGGGAAACCCAAGTGTCTAGATTGGATCTTGCTGGCACdianaSTK11_FAM_R[Phos]CAGTGGAGTCAGGGGGCCTTTAGGTCTAGATTGGATCTTGCTGGCACdianaSTK11_VIC_LGGGTAGGGAATCCCTTGGACCTTGGTGGCCCTTTCCTGTCAGATTGGATCTTGCTGGCACdiana	KCNG2 VIC L	GGGTAGGGAATCCCTTGGAcctatagcgacttacGGTCATTCTGGACCAAGGAGACCCAACCGCAT	diana
ORAOV1_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtaCAACAGCCTATGCTGCTGCTGCTCCTGAdianaORAOV1_FAM_R[Phos]AACCCAGCAGGTGGAcctatagcgacttacggacggcgtaCAACAGCTATGCTGGCACdianaORAOV1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggCTCTAGATTGGATCTTGCTGGCACdianaORAOV1_VIC_R[Phos]TTTCCTGCACTGCGACTCAAGGATGAGGGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAAAdianaPDCD1_FAM_R[Phos]ACACAAGGGAAGCACACCCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAdianaPDCD1_VIC_LGGGTAGGGAAGCACACACCCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_VIC_R[Phos]AAACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaRASA3_FAM_LGGGTTCCCTAAGGGTGGACCTAGggacgtattcggacggcgtattcgtactCACCACCTCTAAACAGTTTCCCGTGCCTTdianaRASA3_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtacCAGAGACACACACCCCGGCCCCTCTTdianaRASA3_VIC_R[Phos]AAGGATCCTTGGACCATGGCACCACACCAGGGCTCTAGATTGGATCTTGCTGGCACdianaSLC9A3_VIC_R[Phos]CAGTGGAGTCAGTGGACACACACACAGTGCTCAGATTGGATCTTGCTGGCACdianaSLC9A3_VIC_R[Phos]CAGTGGAGTCAGTGGACACACACACACAGTGCTAGATTGGATCTTGCTGGCACdianaSTK11_FAM_R[Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCACdianaSTK11_VIC_LGGGTAGGGAATCCCTTGGACCTTGGCCCTTTCCTGTCAGATTGGATCTTGCTGGCACdiana	KCNG2 VIC R	[Phos]TGTTTCAGGGCTGGAGGACAGTGTCTAGATTGGATCTTGCTGGCAC	diana
ORAOV1_FAM_R[Phos]AACCCAGCAGGTGCGCTAAGAATGCCTTCGTCTAGATTGGATCTTGCTGCGCACdianaORAOV1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggCTCCTTTGGTCTAGATTGGATCTTGCTGGCACdianaORAOV1_VIC_R[Phos]TTTCCTGCACTGCGACTCAAGGATGAGCGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAAAdianaPDCD1_FAM_R[Phos]ACACAAGGGAAGCACAACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAAdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAdianaPDCD1_VIC_R[Phos]AAACACAAGGGAAGCACACACCTGAGGTGG <tctagattggatcttgctggcac< td="">dianaRASA3_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactgacCGTCCACTCTAAACAGTTTCCCGTGCCTTdianaRASA3_FAM_R[Phos]AAACAGGCTTAGTACTTTGGGGCTACGTCTAGATTGGATCTTGCTGGCACdianaRASA3_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtacCAGACACACACACGCCCTCCTTdianaSLC9A3_VIC_R[Phos]AAGGATCCTTGGACCATCAGTGGAAGTCAAGTGGATCTTGCTGGCACdianaSLC9A3_VIC_R[Phos]CAGTGGAGTCAGTGGGGAAACCAAGTGCTGAGATGGATCTTGCTGGCACdianaSTK11_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtGCGACCTGGACCTTGAGATCTGAGACdianaSTK11_VC_LGGGTAGGGAATCCCTTGGACCTTGGCCCCTTTCCTGTCAGATTGGATCTTGCTGGCACdiana</tctagattggatcttgctggcac<>	ORAOV1 FAM I		diana
ORAOV1_VIC_LGGGTAGGGAATCCCTTGGACCTAtagcgacttaccgCTCCCTTTCGGACTGGCGCGGATCCCTGGACCdianaORAOV1_VIC_R[Phos]TTTCCTGCACTGCACTCAAGGATGAGGCGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgactgcgcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAAAdianaPDCD1_FAM_R[Phos]ACACAAGGGAAGCACAACACCTGAGGTGGTCTAGATTGGATCTGGCGCACdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgactgcgcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAAdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgactgcgcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAdianaPDCD1_VIC_R[Phos]AAACACAAGGGAAGCACACACCTGAGGTGGdianaRASA3_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactgacCGTCCACTCTAAACAGTTTCCCGTGCCTTdianaRASA3_FAM_R[Phos]AAACAGGCTTAGTACTTTGGGGCTACGdianaRASA3_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactGAGACACACACGCCCTCCTTdianaRASA3_VIC_R[Phos]AAGGAATCCTTGGACCATGAGCTGAAGTGGATCTTGCTGGCACdianaSLC9A3_VIC_R[Phos]AAGGAATCCCTTGGACACAGTGGGAAACCAAGTGCTAGATTGGATCTTGCTGGCACdianaSLC9A3_VIC_R[Phos]CAGTGGAATCCCTTGGACACTGGAGGAAACCAAGTGCTAGGTCTAGATTGGATCTTGCTGGCACdianaSTK11_FAM_LGGGTTCCCTAAGGGTTGGACCAGTGGGCGCCTTTATGGTCTAGATTGGATCTTGCTGGCACdianaSTK11_FAM_R[Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCACdianaSTK11_VIC_LGGGTAGGGAATCCCTTGGACCTTGGCCCTTGCCGCCCCCCCC	ORAOV1 FAM R	[Phos]AACCCAGCAGCGTGCGCTAAGAATGCCTTCGTCTAGATTGGATCTTGCTGGCAC	diana
ORAOV1_VIC_R[Phos]TTTCCTGCACTGCGACTCAAGGATGAGGCGTCTAGATTGGATCTTGCTGCACdianaPDCD1_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgactgcgcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAAAdianaPDCD1_FAM_R[Phos]ACACAAGGGAAGCACAACACCTGAGGTGGTCTAGATTGGATCTGGCACdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgactgcggtattcgtactGCAGCCGGGTTGGGGATATCTCATAAdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgactgcggtattcgtactGCAGCCGGGTTGGGGATATCTCATAdianaPDCD1_VIC_R[Phos]AAACACAAGGGAAGCACACACCTGAGGTGGcTAGATTGGATCTTGGTGGCACdianaRASA3_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactgacCGTCCACTCTAAACAGTTTCCCGTGCCTTdianaRASA3_FAM_R[Phos]AAACAAGGCTTAGTACTTTGGGGCTACGdianaRASA3_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtacCAGAGACACACACGCCCTCCTTdianaRASA3_VIC_R[Phos]AAGGATCCTTGGAcctatagcgacttacggacggcgtattcgtaCGAGACACACACACGCCCTCCTTdianaSLC9A3_VIC_LGGGTAGGGAATCCCTTGGACCtTGGACCTGAGGTGTAGATCTTGCTGGCACdianaSLC9A3_VIC_R[Phos]CAGTGGAGTCAGTGGGAAACCAAGTGTCTAGATTGGATCTTGCTGGCACdianaSTK11_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacgtattcgtGTGCCAGTCGGACACTTGGAGCACATCdianaSTK11_FAM_R[Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCACdianaSTK11_VIC_LGGGTAGGGAATCCCTTGGACCTTGGCCCCTTCCCGCCACdiana	ORAOV1 VIC L	GGGTAGGGAATCCCTTGGAcctatagcgacttacggCTCCTTTTCTCTGGACTGTCTTCAGT	diana
PDCD1_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAAAdianaPDCD1_FAM_R[Phos]ACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTGGCACdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAdianaPDCD1_VIC_R[Phos]AAACAAAGGGAAGCACACACCTGAGGTGGGTCTAGATTGGATCTTGCTGGCACdianaRASA3_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactgacCGTCCACTCTAAACAGTTTCCCGTGCCTTdianaRASA3_FAM_R[Phos]AAACAAGGGTTAGTACTTGGGGCTACGTCTAGATTGGATCTTGCTGGCACdianaRASA3_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtaccCAGAGACACACACGCCCTCCTTdianaRASA3_VIC_R[Phos]AAGGATCCTTGGAcctatagcgacttacggacggcgtattcgtactgTGGCACACACACGCCCCCCTTdianaSLC9A3_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtGTGCCACTGACCCTGGCACdianaSLC9A3_VIC_R[Phos]CAGTGGAGTCAGTGGGAAACCAAGTGTCTAGATTGGATCTTGCTGGCACdianaSTK11_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacgtattcgTGTGCAGTCTGGGCACdianaSTK11_FAM_R[Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCACdianaSTK11_VIC_LGGGTAGGGAATCCCTTGGACCTTGGCCCCTTGCCGCACCTGGCACCTTGCTGGACCdiana	ORAOV1 VIC R	[Phos]TTTCCTGCACTGCGACTCAAGGATGAGGCGTCTAGATTGGATCTGGCAC	diana
PDCD1_FAM_R[Phos]ACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaPDCD1_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAdianaPDCD1_VIC_R[Phos]AAACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCACdianaRASA3_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactGCACCACCCTGACACCTGCAGCTdianaRASA3_FAM_R[Phos]AAACAAGGGTTAGTACTTGGGGCTACGdianaRASA3_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtacCAGAGACACACACGCCTCCTTdianaRASA3_VIC_R[Phos]AAGGATCTTGGTCCAGTCACGTCAGGTCAGGTCTAGATTGGATCTTGCTGGCACdianaSLC9A3_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactgTGCCAGCACCACCCTGTCTTGAGGCACATCdianaSLC9A3_VIC_R[Phos]CAGTGGGAGTCAGTGGGGAAACCAAGTGTCTAGATTGGATCTTGCTGGCACdianaSTK11_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggctattcgtGTGCCAGCTGGCACCdianaSTK11_FAM_R[Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCACdianaSTK11_VIC_LGGGTAGGGAATCCCTTGGACCTTGGCCCCTTCCCGTCAGATTGGATCTTGCTGGCACdiana	PDCD1 FAM L	GGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATAAA	diana
PDCD1_VIC_LGGGTAGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGGATATCTCATAdianaPDCD1_VIC_R[Phos]AAACAAAGGGAAGCACAACACCTGAGGTGGTCTAGATTGGATCTTGGTGGCACdianaRASA3_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactgacCGTCCACTCTAAACAGTTTCCCGTGCCTTdianaRASA3_FAM_R[Phos]AAACAAGGCTTAGTACTTTGGGGCTACGdianaRASA3_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtacCAGAGACACAACACCGCCTCCTTdianaRASA3_VIC_R[Phos]AAGGGATCCTTGGACCTGGACCTGGAGTGTGGATCTTGGATCTGGCACdianaSLC9A3_VIC_R[Phos]AAGGGATCCCTTGGAACCTAGGGAAACCAAGTGCTCTAGATTGGATCTTGCTGGCACdianaSLC9A3_VIC_R[Phos]CAGTGGGAATCCATGGGGAAACCAAGTGTCTAGATTGGATCTTGCTGGCACdianaSTK11_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgTGTGCGGCACTTGGTGGCACdianaSTK11_FAM_R[Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCACdianaSTK11_VIC_LGGGTAGGGAATCCCTTGGACCTTGGCACCTTGCTGGCACdiana	PDCD1 FAM R	[Phos]ACACAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCAC	diana
PDCD1_VIC_R [Phos]AAACACAAGGGAAGCAACACACGAGGGGGGTGGGTCTAGATTGGATCTTGCTGGCAC diana RASA3_FAM_L GGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactgacCGTCCACTCTAAACAGTTTCCCGTGCCTT diana RASA3_FAM_R [Phos]AAACAGGCTTAGTACTTTGGGGCTACGTCTAGATTGGATCTTGCTGGCAC diana RASA3_VIC_L GGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtaccCAGAGACACACACCACCGCCTCCTT diana RASA3_VIC_R [Phos]AAGGGATCCTTGGTCCAGTCAGTGAGTCTAGATTGGATCTTGCTGGCAC diana SLC9A3_VIC_R [Phos]CAGTGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtacgtaCCAGAGCACCACGCCCTGTCTGAGGCACATC diana SLC9A3_VIC_R [Phos]CAGTGGGAATCCCTTGGAcctatagcgacttacggactggcgtattcgtaGTGCCACTGACCTGGCAC diana STK11_FAM_L GGGTTCCCTAAGGGTTGGAcctatagcgacttacggactgcgcgtattcgtaGTGCGACCTGGCACC diana STK11_FAM_R [Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCAC diana STK11_VIC_L GGGTAGGGAATCCCTTGGACCTTGGACCTTTGCTGCCACCTGGCACC diana	PDCD1 VIC L	GGGTAGGGAATCCCTTGGAcctatagcgacttacggacggcgtattcgtactGCAGCCGGGTTGGGGATATCTCATA	diana
RASA3_FAM_LGGGTTCCCTAAGGGTTGGAcctatagcgacttacggacggcgtattcgtactgacCGTCCACTCTAAACAGTTTCCCGTGCCTTdianaRASA3_FAM_R[Phos]AAACAGGCTTAGTACTTTGGGGCTACGTCTAGATTGGATCTGGCGCACdianaRASA3_VIC_LGGGTAGGGAATCCCTTGGAcctatagcgactgcggtattcgtacgacCAGAGACACACACGCCCTCCTTRASA3_VIC_R[Phos]AAGGGATCTTGGTCCAGTCACTGGACCTAGGTTGGATCTGGCTGG	PDCD1 VIC R	[Phos]AAACACAAAGGGAAGCACACACCTGAGGTGGTCTAGATTGGATCTTGCTGGCAC	diana
RASA3_FAM_R [Phos]AAACAGGCTTAGTACTTTGGGGGCTACGTCTAGATTGGATCTTGCTGGCAC diana RASA3_FAM_R [Phos]AAACAGGCTTAGTACTTTGGGGCGCTACGTCTAGATTGGATCTTGCTGGCAC diana RASA3_VIC_L GGGTAGGGAATCCCTTGGAcctatagcgactgcgcgtattcgtac CAGAGACACACACACCCCCCCCTT diana RASA3_VIC_R [Phos]AAGGGATCTTGGTCCAGTCACTGAAGTGATCTAGATTGGATCTTGCTGGCAC diana SLC9A3_VIC_L GGGTAGGGAATCCCTTGGAcctatagcgactgcggcgtattcgtac GTGCCACTGACCCTGTCTGAGGCACACTC diana SLC9A3_VIC_R [Phos]CAGTGGAGTCAGTGGGAAACCAAGTGTCTAGATTGGATCTTGCTGGCAC diana STK11_FAM_L GGGTTCCCTAAGGGTTGGAcctatagcgacttac GAGCTGGGAGTCAGTGGACCTTTAGGTCTAGATTGGATCTTGCTGGCAC diana STK11_FAM_R [Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCAC diana STK11_VIC_L GGGTAGGGAATCCCTTGGACCTTGGCCCTTTCCTGTCACTTCCAC diana	RASA3 FAM L		diana
RASA3_VIC_L GGGTAGGGAATCCCTTGGAcctatagcgactgcgcgtattcgtac CAGAGACACACACCCCCCCTTT diana RASA3_VIC_R [Phos]AAGGATCTTGGTCCAGTCACTGAAGTGATCTAGATTGGATCTTGCTGGCAC diana SLC9A3_VIC_L GGGTAGGGAATCCCTTGGAcctatagcgactgcgcgtattcgtac GGGCAGGGAATCCCTTGGACCTAGAGTGATCTAGATTGGATCTTGCTGGCAC diana SLC9A3_VIC_R [Phos]CAGTGGAGTCAGTGGGAAACCAAGTGTCTAGATTGGATCTTGCTGGCAC diana STK11_FAM_L GGGTTCCCTAAGGGTTGGAcctatagcgacttacggactgcgCTTGGAGTCTTGGAGCTTTGTAGG diana STK11_FAM_R [Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCAC diana STK11_VIC_L GGGTAGGGAATCCCTTGGACCTTGGCCCTTTCCTGTCACTTCCAC diana	RASA3 FAM R	[Phos]AAACAGGCTTAGTACTTTGGGGGCTACGTCTAGATTGGATCTTGCTGGCAC	diana
RASA3_VIC_R [Phos]AAGGATCTTGGTCCAGTCACTGAAGTGATCTAGATTGGATCTGCTGCCACC diana SLC9A3_VIC_L GGGTAGGGAATCCCTTGGACCtatagcgacttacggacgtattcgt_GTGCCACTGACCCTGTCTTGAGGCACATC diana SLC9A3_VIC_R [Phos]CAGTGGAGTCAGTGGGAAACCAAGTG diana STK11_FAM_L GGGTTCCCTAAGGGTTGGAcctatagcgacttacggacgtattcgt_GTGCCACTGGCAC diana STK11_FAM_R [Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCAC diana STK11_VIC_L GGGTAGGGAATCCCTTGGACCTTGCTGCCCTTTCCTGTCACTTCCAC diana	RASA3 VIC I		diana
SLG93_VIC_L GGGTAGGGAATCCCTTGGAcctatagcgacttacggactgacggcgtattcgt GGGCAGGGAATCCCTTGGAcctatagcgacttacggactgacggcgtattcgt GGGCAGGGAATCCCTTGGACCAGTGGCAATCCAGTGGACCCACTGACCCCTGTCTGAGGCACATC diana SLC933_VIC_R [Phos]CAGTGGAGTCAGTGGGAAACCAAGTG GGGATGCCAGTGGGAGTCGGACCTAGGGGAAACCAAGTG diana STK11_FAM_L GGGTTCCCTAAGGGTTGGAcctatagcgacttacgGAGTCGGGAGTCAGTCCTGGGACTTTGCTGGACCT diana STK11_FAM_R [Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCAC diana STK11_VIC_L GGGTAGGGAATCCCTTGGACCTTGCCCCTTTCCTGTCACTTCCAC diana	RASA3 VIC R		diana
SLEPA_VIC_R [Phos]CAGTGGGAGTCAGTGGGGAAACCAAGTG diana STK11_FAM_L GGGTTCCCTAAGGGTTGGAcctatagcgacttac GAGCTGGGAGTCCAGTGGGACTATGGACCTGGGACTTTGCAG diana STK11_FAM_R [Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCAC diana STK11_VIC_L GGGTAGGGAATCCCTTGGACCCTTGCTGCACTTCCAC diana			diana
STK11_FAM_L GGGTTCCCTAAGGGTTGGAcctatagcgacttac GAGCTGGGAGTCAGTCCTGGACTTTGTAG diana STK11_FAM_R [Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCAC diana STK11_VIC_L GGGTAGGGAATCCCTTGGACCTTGCCACTTCCCAC diana	SLC9A3 VIC R	[Phos]CAGTGGAGTCAGTGGGAAACCAAGTGTCTAGATTGGATCTTGCTGGCAC	diana
STK11_FAM_R [Phos]GTCTTTACATCCCAGGCGGCCTTTATGGTCTAGATTGGATCTTGCTGGCAC diana STK11_VIC_L GGGTAGGGAATCCCTTGGACCTGCCCTTTCCTGTCACTTCCAC diana	STK11 FAM	GGGTTCCCTAAGGGTTGGAcctatagcgacttacGAGCTGGGAGTCAGTCCTGGACTTTGTAG	diana
STK11_VIC_L GGGTAGGGAATCCCTTGGACCTGCCCTTTCCTGTCACTTCCAC diana	STK11 FAM R		diana
	STK11_VIC_L		diana
STK11 VIC R [Phos]CTGTTGCAAAACACTGTGCTTTCGTATCTCTAGATTGGATCTTGCTGGCAC diana	STK11 VIC R		diana

pérdida de material en el aCGH

FAM, VIC: Marcadores fluorescentes de los cebadores de la reacción de amplificación de PCR. [Phos]: grupo fosfato añadido a las sondas R en posición 5'. Estructura de las sondas: CEBADOR, stuffer y <u>SECUENCIA DE</u> <u>HIBRIDACION</u>.

Tabla 14. Caracterización de las sondas empleadas en el ensayo de MLPA. Preparación de PROBEMIX y

ID sonda	Tamaño teórico	Tamaño real	Marcador de PCR	Tipo de sonda	PROBEMIX Final(pmoles)
C2ORF85_1	105	102,3	FAM	diana	9.6
C2ORF85_2	121	121,07	VIC	diana	1.2
CAPN2_1	91	88,4	VIC	control	2.4
CAPN2_3	97	95,89	VIC	control	1.2
CHR1_193_M	99	97,81	FAM	control	2.4
CHR1_C1ORF159	138	1370	FAM	control	48
CHR11_672	133	131,91	VIC	control	60
CHR6_161_1P	108	106,51	FAM	control	4.8
CTCF_1	96	92,91	FAM	diana	2.4
CTCF_2	100	98,01	VIC	diana	36
EGR3_1	93	88,73	FAM	diana	1.2
EGR3_2	103	102,49	VIC	diana	1.2
ENR321.1	118	116,29	VIC	control	24
FAR2_1	102	100,17	FAM	diana	2.4
FST_1	111	108,02	FAM	diana	2.4
FST_2	109	106,86	VIC	diana	1.2
KCNG2_1	126	122,33	FAM	diana	24
KCNG2_2	112	110	VIC	diana	2.4
ORAOV1_1	123	120,26	FAM	diana	24
ORAOV1_2	115	113	VIC	diana	2.4
PDCD1_1	132	132	FAM	diana	12
PDCD1_2	130	128,48	VIC	diana	48
RASA3_1	135	132	FAM	diana	48
RASA3_2	124	122,1	VIC	diana	2.4
SLC9A3_2	127	125,89	VIC	diana	48
STK11_1	117	112,41	FAM	diana	4.8
STK11_2	94	91,87	VIC	diana	1.2
ZWINT	120	116,32	FAM	control	12

detección del tamaño real de las sondas de MLPA.

Tamaño teórico y real de las sondas (nucleótidos).

3.5. Detección de metilación del ADN mediante conversión de bisulfito

3.5.1. Conversión de bisulfito de ADN genómico

Una de las formas más empleadas de detección de la ADNm es la reacción de conversión por bisulfito. Esta reacción consiste en la adición de una sal ácida de sulfito de sodio al ADN genómico que convierte las citosinas no metiladas en uracilo, mientras que las citosinas metiladas permanecen inalteradas. De este modo, se puede analizar el estado de metilación de una secuencia genómica observando la relación C/U de cada posición CpG (Figura 14).

Figura 14. Reacción de conversión por bisulfito con 'EZ-96 Methylation Kit' (Zymo Research), modificado de protocolo de reacción del fabricante.

Un total de 500 ng de ADN obtenido a partir de las muestras de cerebro fueron convertidos utilizando el kit *EZ-96 Methylation Kit* (Zymo Research), realizando un total de dos conversiones para cada muestra. La eficiencia de la conversión se determinó por secuenciación de bisulfito. En cada conversión, se incluyeron muestras con un valor de metilación conocido, se amplificaron con una reacción estándar de PCR (*gen 285*) y los productos de la reacción fueron secuenciados. El grado de metilación de las secuencias fue calculado con el programa informático *ESME* (Epigenomics AG)^{345,346} y contrastado con el valor original de cada muestra. Las muestras control empleadas fueron:

• *Jurkat Genomic DNA* (N4001S, NE Biolabs). Control positivo, obtenido a partir de una línea celular humana de leucemia aguda, con un grado metilación calculado de aproximadamente 80%.

- CpG Methylated Jurkat Genomic DNA (N4002S, NE Biolabs). Control positivo originado a partir de Jurkat Genomic DNA, metilado in vitro con el enzima 'M-Sssl', que presenta un valor de metilación del 100%.
- Control negativo, generado a partir de ADN amplificado por el método de amplificación por desplazamiento múltiple o Whole Genome Amplification (Genomiphi, GE Healthcare). El ADN amplificado no reproduce el patrón de metilación del ADN molde y por lo tanto se genera un ADN no metilado, aunque generalmente la eliminación de la metilación no es completa.

La conversión de bisulfito puede dañar el ADN y por tanto limitar sus posteriores aplicaciones. Por este motivo, la amplificación de PCR de ADN modificado, se realizó con *Titanium Taq PCR Kit*. Este kit contiene una enzima modificada, que sólo se activa a elevadas temperaturas (hot start), evitando la formación de productos inespecíficos a temperatura ambiente.

La reacción de PCR se realizó en un volumen total de 25 µL que contenía:

- 20-50 ng de ADN modificado
- 2,5 μL de tampón (10X) ('Titanium', Clontech)
- 0,2 mM de dNTPs (2 mM) (Invitrogen)
- 0,25 μM de cada cebador directo (28S F-5'GAGTGAATAGGGAAGAGTTTAG 3') e inverso (28S R 5'-AAAATTCTTTTCAACTTTCCCTTAC3') (Sigma-Aldrich)
- 1 µL taq-polimerasa (50X) ('Titanium', Clontech)
- q.s. de agua *PCR grade*

La reacción se realizó en un termociclador bajo las siguientes condiciones:

- activación enzimática, 1 min. a 95°C
- 30 ciclos de:
 - desnaturalización 95°C, 30 seg.
 - anillado 58ºC, 30 seg.
 - extensión 72ºC, 45 seg.
- extensión final 10 min. a 72ºC

El producto de PCR se visualizó en un gel de agarosa (1,3%), marcado con *SYBRgreen*. Una vez comprobado el tamaño y pureza de la banda, se purificó el producto de PCR (*Qiaquick PCR purification Kit*, Qiagen) y se añadió a un volumen total de 10 μL:

- 1 µL de PCR purificada
- 1,5 μL de tampón BigDye Terminator v.3.1 Sequencing Buffer (5X)
- 1 µL de *BigDye® Terminator ready reaction mix* (Applied Biosystems)
- 1 µL de uno de los cebadores 28S (directo o inverso)

La reacción de secuenciación se realizó en un termociclador realizando, 25 ciclos totales de:

- 96ºC, 10 seg.
- 58ºC, 5 seg.
- 60ºC, 2 min.

El producto de PCR se purificó tal y como se ha descrito previamente (*Sephadex*, GE Healthcare) y se analizó en un secuenciador *ABI 3130x automated sequencer* (Applied Biosystems). Los cromatogramas fueron visualizados y filtrados en función de la calidad de la secuencia con el programa 4Peaks y analizados por ESME para obtener el valor de metilación.

3.5.2. Identificación global de la metilación del ADN en el genoma humano

La caracterización del patrón de metilación del genoma humano, a partir de muestras de cerebro de donantes, se dividió en dos estudios.

El primer estudio, exploratorio, se realizó en diez donantes de cerebro, entre los cuales había individuos no afectos, afectos de EA tardía y afectos de EP esporádica, pertenecientes al *set1* (Tabla Suplementaria 1). La plataforma de elección fue *Humanmethylation27* (Illumina). Para el segundo estudio, se aumentó el número de individuos analizados a 40 (20 no afectos y 20 afectos de EA tardía), correspondientes al *set3* (Tabla Suplementaria 1) y el número de dianas CpG a analizar, empleando la plataforma *Humanmethylation450* (Illumina). Ambos ensayos se llevaron a cabo en el nodo Barcelona del CeGen, localizado en el CRG.

3.5.2.1. Infinium® Humanmethylation27 Beadchip Array

Ensayo Infinium

El ensayo Infinium está formado por sondas de 50 oligómeros ligados a microesferas de sílice, con capacidad de auto-ensamblaje en la superficie sólida del chip. Este dispositivo, denominado *Beadchip array*, contiene dos tipos de sondas complementarias a dianas CpG metiladas (M) y no metiladas (U) del genoma humano. Tras la hibridación de las sondas al ADN, se adiciona un nucleótido marcado con biotina o DNP en la posición adyacente a la base a estudiar. Posteriormente se tiñe con fluorescencia el array (Cy3-streptavidina o Cy5-antiDNP) y se mide la intensidad de la fluorescencia para cada tipo de sonda (M y U). Se calcula el grado de metilación de cada una de las posiciones mediante una fórmula que tiene en cuenta la ratio de la intensidad de la sonda metilada respecto a la intensidad total, obteniéndose un valor entre 0 y 1 definido como θ -value.

Se seleccionaron diez individuos, tres pacientes de EA tardía, tres de EP esporádica y cuatro individuos sin lesiones neuropatológicas de los que se aisló ADN de hasta siete regiones del SNC: amígdala, corteza, hipocampo, hipotálamo, protuberancia, sustancia negra y cerebelo (Tabla 15). Tras el control de calidad se seleccionaron un total de 50 muestras que incluían, 5 controles de metilación –una muestra de *Jurkat Genomic DNA*, dos réplicas biológicas de *CpG Methylated Jurkat Genomic DNA* y dos réplicas biológicas de *CpG Methylated Jurkat Genomic DNA* y dos réplicas biológicas de *cpG Methylated Jurkat Genomic DNA* y dos réplicas biológicas de *cpG Methylated Jurkat Genomic DNA* y dos réplicas biológicas de *cpG Methylated Jurkat Genomic DNA* y dos réplicas biológicas de *cpG Methylated Jurkat Genomic DNA* y dos réplicas biológicas de *cpG Methylated Jurkat Genomic DNA* y dos réplicas biológicas de *cpG Methylated Jurkat Genomic DNA* y dos réplicas biológicas de *cpG Methylated Jurkat Genomic DNA* y dos réplicas biológicas de *cpG Methylated Jurkat Genomic DNA* y dos réplicas biológicas de *cpG Methylated Jurkat Genomic DNA* y dos réplicas biológicas de *D14* (ADN extraído de una muestra de sangre independiente al estudio)– y 45 muestras humanas de cerebro, entre las que se encontraban tres réplicas biológicas (A08/00095 CB), una técnica (A08/00095) y cinco muestras de área desconocida (anotadas como *NA*, con más de un individuo por condición) pertenecientes a tres individuos (BK-873(2), BK-1049(1) y A08/00095(1)). Las muestras se distribuyeron de manera aleatoria en un total de seis chips con capacidad para doce muestras cada uno. Un total de 500 ng fueron tratados con bisulfito e hibridados en el array de Ilumina siguiendo el protocolo establecido por el fabricante. La correlación entre réplicas se calculó con el coeficiente de *Pearson* (Tabla 16).

ID muestra	Patología	Sexo	Edad	PMI (h.)	Estadios BraaK EA	Estadios BraaK EP	Área SNC
BK-962	EP	F	85	7	0	5	C,A,HC,P,SN
BK-1049	EP	F	81	4	0	6	HT,CB,NA
BK-1082	EP	М	80	7.3	0	6	A,HC,HT,P,CB
BK-0816	EA	F	77	9.3	6	0	C,HC
BK-0873	EA	М	85	4.3	6	0	A,HC,HT,P,SN,CB,NA
BK-0999	EA	F	76	10	5	0	A,HC,HT,P,SN,CB
A07/00005	С	Μ	56	5	0	0	A,HT
A08/00095	С	М	52	9.25	0	0	A,HT,P,CB,NA
A08/00107	С	М	64	11.4	0	0	C,HC,HT
A08/00132	С	М	66	3.05	0	0	C,HC,CB

Tabla 15. Sujetos empleados en la detección de patrones de metilación con 'Humanmethlyation27'

EP: enfermedad de Parkinson; **EA:** enfermedad de Alzheimer; **C:** control; **F:** femenino, **M:** masculino; **PMI:** intervalo post-mortem, medido en horas. **Estadios Braak:** clasificación de la evolución de la enfermedad en función de las regiones afectadas en enfermedad de Alzheimer y Parkinson (1-6); C: corteza, A: amígdala, HC: hipocampo, HT: hipotálamo, P: protuberancia, SN: sustancia negra, CB: cerebelo, NA: área sin determinar.

Tabla 16. Correlación entre réplicas técnicas y biológicas

ID muestras	Réplicas biológicas	Réplicas técnicas	r²
D14	2	-	0,987
A08-95 CB	2	1	0,983/0,995
CpG Methylated Jurkat	2	-	0,995

D14: muestra de sangre de un individuo control independiente al estudio; A08-95 CB: muestra control de cerebelo *set1; CpG Methylated Jurkat*: muestra control totalmente metilada.

Análisis de los resultados

El análisis bioinformático y estadístico de los resultados se realizó en el servicio de bioinformática del CRG, empleando el paquete de R *HumMeth27QCReport*³⁴⁷. El proceso consta de tres partes: análisis de controles internos del array, control de calidad global de los resultados y análisis exploratorio de los resultados. El protocolo completo está disponible en: 'CRAN repository' http://biocore.crg.cat/wiki /HumMeth27QCReport. La normalización de las variaciones intra e inter-array se realizaron con la función *normalizeMethyLumiSet* incluida en el paquete de R *methylumi*. Esta función permite corregir los efectos del marcaje de la intensidad de cada canal (metilado, no metilado), recalculando los valores de metilación de acuerdo a este ajuste. Inicialmente, se calcula la mediana de las sondas metiladas (Cy3) y de las no metiladas (Cy5), los valores negativos se ajustan a cero, y los valores de Cy5, se ajustan a los de Cy3, corrigiendo el efecto de marcaje de las sondas o d*ye-bias*. Una vez corregidas las intensidades se calculan los *β-values*, por medio de dos posibles funciones de mapeo: (Cy3/Cy5) o (Cy3/Cy3+Cy5), siendo la primera la más correcta matemáticamente.

El análisis exploratorio incluyó el agrupamiento jerárquico no supervisado de los datos (Unsupervised hierarquical clustering) y el análisis lineal discriminante (LDA). Además del paquete *HumMeth27QCReport*, se empleó el programa comercial *JMP* (JMP, v.7. SAS Institute Inc., Cary, NC, 1989-2007). Entre los métodos de identificación de patrones, LDA es uno de los más utilizados a la hora de emplear variables continuas, como es el caso de la metilación del ADN. Dado un conjunto de datos clasificados en grupos (Ej.- región del SNC, rango de edad o diagnóstico), se considera LDA como un análisis de regresión, donde la variable dependiente es categórica (etiqueta de cada grupo), y las variables independientes (metilación del ADN) son continuas y determinan a qué grupo pertenece cada objeto. Con este análisis se pretende encontrar relaciones lineales entre variables continuas que mejor discriminen, en los grupos dados, a los objetos en estudio. En particular, a partir de la clasificación de las muestras de cerebro en base a parámetros del tipo, rango de edad, región del SNC o diagnóstico, es posible obtener una combinación de CpGs, cuyo valor de metilación permite discriminar cada grupo de muestras en base a dicho parámetro.

Los resultados obtenidos por LDA –los valores de metilación para cada CpG relacionada por cada muestra– fueron representados gráficamente mediante el diagrama *heatmap* contenido en el programa 'R Statistics' (http://www.R-project.org), empleando las funciones estándar de representación y cálculo de dendograma (distancia Euclídea). Por otra parte, la interacción funcional de los genes que albergaban las CpG identificadas por LDA fueron analizadas *in silico* con el programa *DAVID Functional Genomics*³⁴⁸. Se introdujo la lista de genes y se comparó respecto al genoma de referencia. Para obtener una representación reducida y organizada de las vías enriquecidas, se aplicó la función *Functional annotation clustering*, pre-determinando el grado de restricción del análisis como alto. Este análisis, que emplea un algoritmo de agrupación de genes, está basado en la hipótesis de que las anotaciones génicas similares deben contener genes similares. Para ello integra dos técnicas analíticas, *kappa statistics* que mide el

grado de similitud entre las anotaciones de dos genes dados y fuzzy heuristic clustering, que clasifica los grupos previamente creados en función del valor kappa asignado. De manera que la probabilidad de que dos genes estén contenidos en un mismo grupo incrementa con la similitud entre las anotaciones génicas de los mismos. Los resultados de este análisis, se interpretan a partir de tres parámetros, el enriquecimiento, el p-valor o EASE score y la corrección de Benjamini. El enriquecimiento, definido como la media geométrica del p-valor de cada agrupación y expresado en escala logarítmica (-log), jerarquiza el grado de importancia de la agrupación o representación encontrada. Por lo que a mayor valor de enriquecimiento, mayor representación de una agrupación respecto al conjunto, siendo 1,3 el valor umbral de enriquecimiento equivalente a un p-valor de 0,05. Para estimar el grado de significación, se emplea el EASE score, una modificación más restrictiva del Fisher exact p-valor modificado que varía de 0 a 1, siendo generalmente 0,05 el valor umbral por debajo del cual se considera que una agrupación de genes es significativa respecto al conjunto. Por último, el parámetro de Benjamini se emplea para corregir el testeo múltiple de manera global. El resultado de este análisis resulta de gran utilidad para observar de manera rápida la interacción de los resultados y las vías más representativas, sin embargo, la complejidad de las asociaciones moleculares obliga a tomar estos datos como orientativos, a la espera de una validación funcional real.

3.5.2.2. Infinium[®] Humanmethylation450 Beadchip Array

La principal ventaja de *Humanmethylation450*, basado en el ensayo de Infinium, es el aumento en 423.000 dianas CpG, que a su vez, cubren más del 90% de las dianas contenidas en el array Humamethylation27 Beadchip. Estas dianas se distribuyen de manera más homogénea en el genoma cubriendo el 99% de las secuencias génicas de referencia, con una media de 17 CpGs por región génica (promotores, 5'-UTR, primer exón, cuerpo génico, y 3'-UTR) y el 96% de CGIs, con una cobertura adicional en las regiones que las delimitan (CGI shore y CGI shelf). Además se han incluido en el array sondas que cubren nuevas regiones de interés (CpG fuera de CGIs, nucleótidos metilados no-CpG, CGI en regiones no codificantes y miRNAs), de manera que se obtiene una visión global representativa del estado de la metilación (Figura 15a). Además de esta característica, este array incluye dos tipos de sondas, tipo I y tipo II. Las sondas de tipo I coinciden con las contenidas en el ensayo previo, mientras que las sondas de tipo II se presentan como unas sondas únicas por región, capaces de hibridar con una región diana independientemente de su estado de metilación. Tan sólo se diferencian en la base que se insertará en el proceso de amplificación que sigue a la hibridación (Figura 15.b) (http://www.illumina.com/products/ methylation_450_beadchip_kits.ilmn.)

Figura 15.a. Cobertura de dianas CpG de 'HumanMethylation450K' en regiones génicas y en torno a 'CpG Island' (CGI) y a las regiones adyacentes 'N-shelf', 'N-shore', 'S-shore' y 'S-shelf'. **b.** Funcionamiento de las sondas de tipo II en el array de metilación 'Illumina Humanmeth450K'. Estas sondas se unen a regiones específicas del genoma metiladas o no metiladas, difiriendo únicamente en la base que se inserta en la secuencia en el proceso de amplificación.

Se evaluaron un total de 192 muestras de ADN pertenecientes a corteza pre-frontal, amígdala, hipocampo y cerebelo de 20 donantes no afectados por lesiones neuropatológicas y 20 donantes afectados por enfermedad de Alzheimer de aparición tardía. A partir de 500 ng de ADN de alto peso molecular tratado con bisulfito las muestras se hibridaron en el array y se analizaron siguiendo el protocolo del fabricante (www.illumina.com). Como controles del ensayo se añadieron tres muestras estándar de metilación (Jurkat Genomic DNA (JUR), CpG Methylated Jurkat Genomic DNA (JURMET) y non-methylated DNA (NO MET)) y seis controles de tejido no neuronal (sangre) independientes al estudio. Además, se dispusieron nueve réplicas biológicas (PUBILLA_BIO1, BIO2; A09/00020 C_BIO1, BIO2; A06/00210 C_BIO1, BIO2; A06/00210 A_BIO1, BIO2; A06/00210 HC_BIO1, BIO2; A06/00210 CB_BIO1, BIO2; JURMET_BIO1-6; NO MET_BIO1-5; JUR_BIO1-6) y dos técnicas (PUBILLA_BIO2_TEC y A09/00020 CTX_BIO2_TEC). Por último, se añadieron 14 muestras de cerebro pertenecientes al set1 (BK-1082 A, BK-1049 A, NA, BK-816 C, BK-873 A, NA (2), A07/00005 A, C, A08/00132 A, C, A08/00095 A, BK-999 A, A08/00107 C). El control de calidad de los resultados se realizó siguiendo el protocolo previamente descrito (Human27QCReport), adaptado a esta plataforma. Se identificó una muestra que no cumplía con el estándar de calidad: A09/00020 amígdala, debido a su baja tasa de conversión y número de CpGs detectadas, y por tanto, fue excluida del análisis. Las sondas que se encontraban en el cromosoma X fueron excluidas de

70

los análisis posteriores para evitar una desviación en los resultados causada por el fenómeno de inactivación del cromosoma X, además de las sondas del array que alineaban en más de una posición del genoma de referencia convertido con bisulfito (31% del total). Para comparar la reproducibilidad entre ambos arrays se seleccionaron ocho muestras del set1 (BK-816 C, BK-873 C, BK-999 A, BK-1082 A, A07/00005 A, A08/00095 A, A08/00107 C A08/00132 C), se tomaron las sondas comunes a los dos ensayos (21.325) y se calculó el coeficiente de correlación de *Pearson*, obteniéndose un valor promedio de 0,95 \pm 0,009. Por otro lado, el análisis jerárquico global no supervisado de los resultados mostró la agrupación de todas la réplicas técnicas y biológicas, exceptuando A06/00210 CB_BIO1, BIO2, que mostraron una agrupación parcial, y A06/00210 C_BIO1, BIO2 y A06/00210 A_BIO1, BIO2 que no se agruparon entre sí.

Posteriormente, se exploró el comportamiento de las sondas (tipo I vs tipo II) y su distribución en el genoma humano. Para ello se seleccionaron tres muestras control de metilación conocida (*Jurkat Genomic DNA*, *CpG Methylated Jurkat Genomic DNA* y *non-methylated DNA*) y tres muestras de cerebro (2 controles y 1 caso EA), y se determinó para cada una de ellas el perfil de metilación de cada tipo de sonda por separado a partir de los valores *M-value*. Para ello, se normalizaron los valores de metilación (*β-value*) y se transformaron a *M-value*, empleando un método estándar³⁴⁹, donde *M-value* se define, $M_i = log2(\frac{Beta_i}{1-Beta_i})$.

Los resultados del array fueron sometidos a análisis de agrupamiento jerárquico no supervisado, y análisis lineal discriminante (*JMP* software), para la identificación de patrones de metilación diferenciales entre grupos de muestras. Los resultados de LDA fueron representados en *heatmap* y su implicación funcional fue analizada por *DAVID Functional Genomics*, de manera análoga al apartado anterior.

El cálculo de las CpGs con diferencias significativas de metilación entre casos y controles dentro de cada área se calculó empleando el paquete de R 'LIMMA'³⁵⁰. A partir de los valores normalizados de metilación, se calculó la distribución normal de los datos, las diferencias significativas entre casos y controles (*T-student*) y su significancia estadística (p-valor), corrigiendo el error del análisis múltiple por el ajuste de *Benjamini*. Para estimar la magnitud de las diferencias de metilación entre casos y controles, se calculó para cada CpG el logFC (logaritmo del Fold Change). Este parámetro de uso muy frecuente en los análisis de expresión génica, permite detectar el número de veces que aumenta o disminuye el valor de metilación de los casos frente a los controles. El rango de valores de logFC comprende: [-∞, -1], [1,+ ∞], y cero, donde los valores positivos indican hipermetilación de casos frente a controles, los valores negativos hipometilación y cero representa la ausencia de cambios de metilación entre los grupos de muestras comparados.

3.5.3. Amplificación del genoma completo y cuantificación de la metilación del ADN por pirosecuenciación de fragmentos de PCR

En el presente trabajo de tesis, se empleó la reacción de pirosecuenciación para validar los resultados obtenidos por *Humanmethylation27* (Illumina) en siete locus: *APOE*, *DHRS4L2*, *HDC*, *PSEN1*, *SIRT3*, *SUSD1* y *TAT*. Con el objetivo de evitar la degradación del ADN convertido con bisulfito y aumentar la cantidad de muestra disponible para los ensayos, se realizó una amplificación del genoma completo tratado con bisulfito o *Whole Bisulfitome Amplification* (WBA). Esta reacción se realizó con el kit comercial 'Epitect Whole Bisulfitome kit' (Qiagen), específico para muestras tratadas con bisulfito, siguiendo las indicaciones de los fabricantes (http://www.qiagen.com/products/epigenetics /epitect/epitectbisulfitekit.aspx). WBA se basa en una reacción de amplificación por desplazamiento múltiple (MDA), en la que se produce un amplificación del ADN a temperatura constante gracias a la adición de hexámeros como cebadores y a la acción de una polimerasa modificada (Phi29). Esta reacción permite la amplificación de fragmentos de ADN mayores que una PCR estándar (hasta 100 kb), partiendo de una cantidad mínima de 50 ng. El producto de la reacción varía entre 1-3 µg de ADN, en función de la calidad del material de partida, siendo desaconsejable utilizar ADN tratado con bisulfito en un periodo superior a doce semanas, ya que la calidad del ADN no está garantizada por los fabricantes del kit de conversión.

Se realizaron dos reacciones de WBA por muestra, partiendo de 100-200 ng de cada una dependiendo de la disponibilidad de la muestra. Se preparó una mezcla de 29 µL de *Epitect WBA Reaction buffer* y 1 µL de *REPLI-g Midi DNA polimerasa* y se añadieron a la dilución de ADN. La solución se incubó durante 8 h. a 28°C y posteriormente se inactivó el enzima exponiéndolo 5 min. a 95°C. La concentración del ADN se midió con Nanodrop y Picogreen para determinar el rendimiento y la calidad del ADN final (Tabla 17).

La pirosecuenciación (PSQ) es una técnica bioluminométrica de secuenciación de ADN basada en la síntesis en tiempo real del mismo. La PSQ se basa en la detección de moléculas de pirofosfato inorgánico (*PPi*) liberadas tras la incorporación de nucleótidos durante la polimerización del ADN. Una vez liberado el *PPi*, la enzima *ATP-sulfurilasa* lo convierte en adenosina trifosfato (ATP), sustrato de la *luciferasa*, que produce fotones de manera a la concentración de ATP recibido, tras lo cual las moléculas de ATP y los deoxinucleótidos no utilizados son degradados por la *apirasa*. Este proceso se repite consecutivamente hasta completar la reacción siguiendo el orden de dispensación de nucleótidos para completar la secuencia (Figura 16).

ID muestra	Concentración (ng/ul)	Factor
A07/00005 A	134.54	1.92
A07/00005 HT	142.14	1.44
A08/00095 A	74.66	1.87
A08/00095 CB	1521.12	16.19
A08/00095 HT	117.7	2.92
A08/00095 NA	782.6	12.55
A08/00095 P	120.77	1.65
A08/00107 C	66.4	0.71
A08/00107 HC	41.1	0.91
A08/00107 HT	57.4	1.36
A08/00132 C	72.1	1.6
A08/00132 CB	436.51	8.95
A08/00132 HC	39.5	0.63
BK-1049 CB	92.2	1.63
BK-1049 HT	45.3	0.52
BK-1049 NA	36.8	0.85
BK-1082 A	163.08	3.8
BK-1082 CB	543.93	15.23
BK-1082 HC	184.72	3.19
BK-1082 HT	237.76	4.78
BK-1082 P	63.2	0.79
BK-816 C	69	0.78
BK-816 HC	95.97	1.89
BK-873 A	59.1	1.1
BK-873 CB	304.41	4.38
BK-873 HC	65.5	0.68
BK-873 HT	31	0.45
BK-873 NA	700	7.39
BK-873 NA	60.9	2.14
BK-873 NA	433.3	5.73
BK-873 P	63.9	0.72
BK-873 SN	90.4	1.63
BK-962 A	66.8	1.28
BK-962 C	59.7	0.73
BK-962 HC	49	0.56
BK-962 P	81.7	6.35
BK-962 SN	83.2	0.92
BK-999 A	96.3	1.13
ВК-999 СВ	380.65	8.28
BK-999 HC	248.74	6.22
BK-999 HT	107.57	1.99
BK-999 P	76.2	1.07
BK-999 SN	42.1	1.37

Tabla 17. Cuantificación de ADN tratado con bisulfito y amplificado por WBA

ADN tratado con bisulfito y amplificado por WBA. Factor: número de veces que aumenta la concentración de ADN WBA respecto a la concentración inicial.

Figura 16. Principio de pirosecuenciación, extraído de DNA methylation Analysis by *Pyrosequencing*³⁵¹. a. Adición de α s-dATP a la secuencia a analizar. En el caso de la adenosina empleamos un nucleótido modificado, porque dATP es sustrato directo de la *luciferasa*. En este ejemplo, la luz detectada equivale a la incorporación en la secuencia de una adenosina. b. La adición de una *dGTP* en la secuencia no produce emisión de luz, porque este nucléotido no es complementario al nucleótido 'R' y por lo tanto no se incorpora a la secuencia. c. El nucléotido degenerado 'R' representa la mezcla de 'A o G' en la solución. Su complementario es 'Y' que representa a 'C o T'. Por lo tanto, la adición de *dCTP* a la secuencia se incorpora en una fracción de las moléculas. En este ejemplo vemos que el 50% de las moléculas contenían una guanina y por lo tanto la señal luminiscente detectada equivale a la mitad de la señal de adenosina. d. La adición de *dTTP* se incorpora en el resto de moléculas que contenían una 'A', de manera que podemos calcular la relación de C/T y por lo tanto cuantificar la metilación en un sitio CpG. e. *dGTP* se incorpora en la secuencia, y emite un haz de luz proporcional a la adición de un nucleótido. La secuencia resultante sería AYG, con un 50% de metilación en el sitio CpG.

Antes de comenzar la reacción de pirosecuenciación se genera un amplicón a partir de una reacción de amplificación de PCR, en la que uno de los cebadores está biotinilado en el extremo 5'. La biotina del extremo del producto de PCR se une a una superficie sólida revestida de estreptavidina, de forma que cuando se desnaturaliza el ADN, la hebra unida a la superficie sólida queda aislada y preparada para la reacción de pirosecuenciación. Para ello, se añade el cebador de secuencia, diseñado para cada ensayo, y los reactivos. Los ensayos específicos para las regiones seleccionadas se diseñaron con el programa *PSQ Assay Design Software* (Biotage). Los ensayos fueron seleccionados en función de la puntuación de calidad atribuidos a los diseños, que estriba en la especificidad y estabilidad de los productos de PCR y de secuencia. Los ensayos seleccionados para la validación se encuentran en la Tabla 18.

Locus	Tm (ºC)	Directo
APOE	57,8	F:5'-AGGATATTGGGGATATTTAGTAGG-3'
		R:5'[Biot]-AACAAAACTCCACCAATTATCACTATCAT-3'
		S:5'-GGGATATTTAGTAGGTGT-3'
SIRT-3	58,5	F:5'-AGTGTTTTGAGAGGATTAGGTGTAAA-3'
		R:5'[Biot]-AATTCCCTAATCTAATATCTCATCTCTC-3'
		S:5'-GTAAATATAATGTTTGATTATAGTA-3'
PSEN-1	60,75	F:5'-GGGTTGTAGGGGTTTTGAGGTT-3'
		R:5'-[Biot]-CCACCCACCAAAAATTTTAATTCAT-3'
		S:5'-GAAAGTTTTTATATAAATTGGG-3'
HDC	61,8	F:5'-AGGGTTTATATTGGTTGTTAGGG-3'
		R:5'[Biot]-CTCCCTTAAACTCTAACTCCTTCTCA-3'
		S:5'-GGTTGTTAGGGAGTG-3'
DHRS4L2	58,7	F:5'-AGGGATAGAAGGGTTGGTAAG-3'
		R:5'[Biot]-CCCTAACTACCTAAAAACATACACT-3'
		S:5'-GGGGTATTGGAGGTAAA-3'
SUSD-1	58,3	F:5'-AAGGGAGTTGGATGAGGT-3'
		R:5'[Biot]-CTCCATCACAACCCTACTCT-3'
		S:5'-AGGTTTAGATGAGAGG-3'
TAT	61,45	F:5'-GGGAGAGGAGGAAAGAAGTT-3'
		R:5'[Biot]-CTCCCTTAACTCTTCTTTAACAAATTACA-3'
		S:5'-ATGGTATGAAAGTTTTAAGT-3'

Tabla 18. Ensayos de pirosecuenciación diseñados para la validación de 'Infinium® Humanmethylation27 Beadchip Array'

Cebadores: directo (F), inverso (R) y de secuencia (S). [Biot], extremo 5' modificado con biotina.

La reacción de PSQ se llevó a cabo en un volumen total de 25 µL, añadiendo:

- 100 ng de ADN tratado con bisulfito y amplificado por WBA
- 2,5 μL de tampón 10x 'Gold-Taq' (Applied Biosystems)
- 200 μM de dNTPs (Invitrogen)
- 1,6 mM de MgCl₂ 'Gold-Taq' (Applied Biosystems)
- 0,2 µM de cada cebador (directo e inverso) (Sigma-Aldrich)
- 2 U de polimerasa 'Gold-Taq' (Applied Biosystems)

La amplificación se realizó en un termociclador *Gene AMP PCR System 9700* (Applied Biosystems) bajo las siguientes condiciones de reacción:

- 15 min. a 95ºC
- amplificación tota de 50 ciclos:
 - 30 seg. a 95°C
 - 30 seg. a Tm específica de cada reacción (Tabla 23)
 - 10 seg. a 72 °C
- 10 min. a 72ºC

Los productos de amplificación se visualizaron en geles de agarosa (2%), teñidos con SYBR Safe. En una estación de pirosecuenciación se purificaron los fragmentos de PCR y se seleccionó la hebra marcada con biotina mediante la unión a microesferas revestidas de estreptavidina. Esta hebra se incubó con el

cebador de secuenciación y a continuación se realizó la reacción de pirosecuenciación con el kit comercial *PyroGold Reagent Kit* (Biotage), en el *PSQ 96MA pyrosequencer* (Biotage) de acuerdo con los protocolos previamente publicados³⁵¹. Para cada muestra y CpG se realizaron dos experimentos independientes. La frecuencia alélica o porcentaje de Citosina respecto Timina, se calculó a partir de la altura de pico calculada por *Pyro-Q-CpG Software* (Biotage), siendo el porcentaje total de metilación de un sitio CpG equivalente al% de Citosina respecto a la suma de Citosina y Timina en dicha posición: *Metilación* (%) = $\frac{Citosina}{Citosina+Timina} \times 100$

3.6. Detección de la expresión de ARN

3.6.1. Secuenciación de ARN de última generación (RNA-sequencing)

La secuenciación de ARN se realizó íntegramente en la unidad de ultrasecuenciación (CRG). El ARN mensajero se purifica para su retrotranscripción a ADN copia (ADNc) y posterior construcción de librerías –colecciones de clones que contienen como insertos fragmentos de ADN copia–. Una vez desnaturalizadas, se cargan en celdas de flujo (CF), donde forman *clusters* de secuencias, es decir, fragmentos de ADNc que se distribuyen a lo largo de las CF en agrupaciones con idéntica secuencia nucleotídica. A continuación se carga la CF en un *Genome Analyzer IIx* (GAIIx) para su lectura.

Preparación de las librerías de ARN mensajero (ARNm) y secuenciación

Se prepararon librerías de ARNm a partir de seis muestras de ARN aisladas de la amígdala de BK-1082, A07/00005, BK-1049, A08/00132, BK-0816 y BK-0873 (*set1*) de concentración y calidad determinada (ver apartado 3.2.2.). Brevemente, 5 µg de ARN total, no tratados con *DNasa I*, fueron enriquecidos en secuencias codificantes mediante captura de *poly_A* presente en el ARN mensajero (*Sera-mag® magnetic beads*, revestidas con oligo-dT). Una vez enriquecido, el ARNm se fragmentó por tratamiento de calor con una solución de zinc disminuyendo así la presencia de estructuras secundarias y el desvío de los cebadores universales por los extremos 5', favoreciendo la eficiencia de la reacción de retrotranscripción de ARNm a ADN copia (ADNc) (*SuperScript II reverse transcriptase*, Invitrogen). A continuación, se repararon los extremos del ADNc incubando las muestras con *T4 DNA polimerasa* y fragmento *Klenow* (Illumina). El ADNc fue purificado (*QIAquick PCR purification kit*, Qiagen) y poliadenilado en el extremo 3' mediante incubación con *dATP* y 3' \rightarrow 5' *exo Klenow* (Illumina). Tras purificar el ADNc se ligaron adaptadores a los extremos, se visualizaron en un gel de agarosa y se extrajeron los fragmentos de ~300 pb. Se realizó entonces una PCR específica de elongación de los adaptadores hasta 112 pb. La librería así obtenida fue purificada cuantificada y analizada por *Bioanalyzer*. Finalmente, se realizó una secuenciación de extremos apareados (*paired-end*), generando los *clusters* con el *PE generation kit* (v.4), y secuenciando con el *SBS kit v.4 y v.5* (Tabla 19) durante 54 ciclos.

Samples ID	Area	Conc. (ng/μL)	260/280	260/230	RIN	PMI (h)	Cámara de flujo	Carril	Conc. Inicial (pM)	Tamaño librería (pb)	Secuencias (Millones)
BK-0816	Amígdala	482,15	2,02	1,76	6	9,3	61RN6AAX	1	8	221	16,29
BK-0873	Amígdala	595,82	2,03	2,06	5,90	4,3	61RN6AAX	2	8	223	13,30
A08/00132	Amígdala	1453,2	2,02	2,13	6,40	3,05	61RN6AAX	3	8	217	16,15
BK-1082	Amígdala	836,97	2,03	2,1	6,10	7,3	626MJAAX	3	5,5	236	32,67
BK-1049	Amígdala	1267,0	2,1	1,43	6,40	3,4	61RN6AAX	4	8	225	14,53
A07/00005	Amígdala	900,55	2,1	2,22	6	5	626MJAAX	4	5,5	232	45,98

Tabla 19. Caracterización del proceso de secuenciación a gran escala de ARN mensajero

Análisis de los resultados de secuenciación de ARN

El análisis de los resultados se realizó en colaboración con un miembro del laboratorio, Marc Friedlander. Los resultados de secuenciación recogidos en archivos de texto ('qseq.txt') fueron transformados a formato *fastq* mediante el código de programación *qseq2fastq.pl* (http://qseq2fastq.sourceforge.net/). Este formato, compatible con el formato estándar de secuencia FASTA, define para cada secuencia un identificador específico, la secuencia nucleotídica leída, otro identificador y los parámetros de calidad de la secuencia obtenida.

El método *paired-end* permitió obtener dos lecturas por cada fragmento secuenciado, una de cada extremo. Las secuencias se alinearon contra la última versión de referencia del genoma humano (NCBI37, hg19) mediante el programa bioinformático *TopHat*³⁵². A partir de los datos de alineamiento de secuencias cortas a gran escala obtenidos por el programa *Bowtie, TopHat* permitió identificar los puntos de corte y empalme o *splice junctions* de las secuencias de ARN que delimitan el final e inicio de exones contiguos, permitiendo alinear frente al genoma humano secuencias combinadas de varios exones que de otra forma quedarían fuera del alineamiento de secuencias (Figura 17). El análisis de secuencias apareadas se realizó empleando parámetros estándar y definiendo una distancia entre extremos media de 200 nt, con el comando –*r 200*. A partir de las secuencias alineadas, se estimaron los valores de expresión génica utilizando el programa *Cufflinks*³⁵³, seleccionando parámetros de análisis estándar y empleando los genes codificantes de proteína de Genecode versión 6 como anotación de referencia.

Figura 17. Estrategia de alineamiento de secuencias o 'reads' obtenidos por 'RNA sequencing', frente al genoma humano de referencia. El fenómeno de corte y empalme puede dar lugar a fragmentos de secuencias que contengan el final de un exón y el inicio del siguiente. Estos fragmentos no pueden ser alineados directamente frente al genoma de referencia, puesto que carecen de homología, por ello, es necesario identificar estos puntos de cortes, separar los fragmentos y alinearlos por separado.

Para observar la correlación entre la metilación del ADN y la expresión del ARN mensajero se compararon los datos obtenidos en el array de metilación Humanmethyl27, frente a los resultados obtenidos por RNA-sequencing de las seis muestras de amígdala analizadas. Para ello, se tomó el valor de metilación de 11.774 sondas que presentaban un p-valor<0,05, en el cálculo de la intensidad. Calculando un valor promedio de metilación para las regiones que contenían más de una sonda. A partir de estos datos se calculó la correlación de los *6-value* de las sondas seleccionadas frente a los valores de expresión normalizados en RPKM (Reads Per Kilobase of exon model per Million mapped reads). Se creó un script de Perl para ordenar y clasificar estos genes en cuantiles, por metilación y expresión, se calculó el coeficiente de correlación de *Spearman* entre estos parámetros y se generó un *heatmap* empleando el paquete *Statistics* de R.

3.6.2. Cuantificación de la expresión génica por transcripción reversa y PCR semicuantitativa en tiempo real (RT-qPCR)

Para calcular la expresión relativa de cuatro genes (*HIF1A, NR2F1, PAX6, SYK*) que presentaban cambios significativos en la metilación en muestras de cerebelo entre controles y EA tardía, se aisló el ARNm de 19 individuos control y 17 EA tardía (Tabla 11), se retrotranscribió a ADNc y se cuantificó su abundancia relativa por PCR en tiempo real incluyendo dos genes control o *housekeeping (HPRT1 y TBP*) para normalizar los valores de cada experimento (Tabla 20).

Genes	Тіро	Eficiencia
SYK	diana	1,83
NR2F1	diana	1,74
HIF1A	diana	1,86 - 1,91
PAX6	diana	1,83
HPRT1	HSK-1	1,83 - 2,05
ТВР	HSK-2	1,71 - 2,001

Tabla 20. Sondas Taqman utilizadas en la PCR en tiempo real (RT-qPCR).

HSK: housekeeping de referencia; cálculo de la eficiencia a partir de dos experimentos independientes por triplicado (2 valor máximo de eficiencia).

Esta técnica de evaluación de la expresión del ARN mensajero consiste en el seguimiento de la amplificación por PCR en tiempo real a través de la emisión de fluorescencia utilizando un sistema de sondas Taqman. La reacción de PCR consta de una fase inicial, una exponencial y un *plateau* de amplificación. Como se expresa en la siguiente fórmula, la cantidad de producto de PCR final (P) obtenido es directamente proporcional al número de ciclos (N) y a la cantidad de ADNc de partida (C): $P = (2)^N x C$. Para comparar la cantidad de ADN problema en cada muestra, se establece un umbral de fluorescencia que coincide con el punto en el cual la reacción de PCR se encuentra en su fase exponencial. El ciclo de PCR en el que la amplificación atraviesa este umbral de fluorescencia se define como C_t (threshold cycle) o C_p (crossing point) y es inversamente proporcional a la concentración inicial de ADNc presente en cada muestra. De manera que una baja concentración de ADNc necesitará un número mayor de ciclos para llegar a dicho umbral.

En primer lugar, se evaluó la eficiencia de la reacción de amplificación de cada sonda mediante una recta de calibrado que permite comprobar la idoneidad de las sondas y el rango óptimo de concentración de ADNc en nuestro sistema de trabajo en el cual el cálculo de C_t es lineal (Ct <30-35 ciclos). La recta patrón se generó a partir de 8 diluciones seriadas (1/2) de una mezcla equimolar de diez muestras de ADNc, cinco controles y cinco EA tardía. La eficiencia de la reacción definida como la capacidad de duplicar las copias de ADNc en cada ciclo^{354,355}, se calculó como: E = $10^{(-1/m)}$; siendo *m*, la pendiente de la función (ADNc, Ct).

A partir de ARN mensajero total aislado de muestras de cerebro (Tabla 11) y tratado con *DNAsa I*, se tomó 1 μg de cada muestra y se añadió a un volumen total de 25 μL de reacción de retrotranscripción (*SuperScript® III One-Step RT-PCR System with Platinum®Taq*, Invitrogen) para generar ADNc. Una vez comprobado el rango de concentración óptimo para cada sonda, se realizó el ensayo Taqman de cada gen con todas las muestras problema incluyendo los genes de referencia en cada placa. La reacción se llevó a cabo en un volumen total de 10 μL, añadiendo:

- 1 μL de ADNc (dilución específica para cada ensayo Taqman)
- 5 µL de 2XMaster mix Buffer

- 0,5 μL 20X Taqman Gene Expression Assay (sonda Taqman y primer universal)
- q.s. de agua hasta 10 μL

La reacción se mezcló por vórtex, se centrifugó y se cargó en un aparato *ABI PRISM 7900 HT Real Time PCR System* (Applied Biosystems). Las condiciones de reacción, fueron:

- 15 seg. de desnaturalización a 90ºC
- 1 min. de amplificación a 60ºC durante 40 ciclos.

Los resultados fueron analizados con el software SDS v.2.1 (Applied Biosystems).

El diseño del experimento comprende dos réplicas biológicas, originadas a partir de dos reacciones de retrotranscripción (RT1, RT2) independientes y tres réplicas técnicas de cada muestra (36 muestras en total: 19 controles y 17 EA tardía). Se realizó un experimento por cada RT y para cada experimento se necesitaron tres placas de 384 pocillos. En cada placa, se analizaron los cuatro genes problema y los dos genes control, para evitar el efecto de la variabilidad entre placas. Las muestras se distribuyeron de manera homogénea entre casos y controles cuando era posible. En la primera placa se analizaron 14 muestras (7 casos y 7 controles), en la segunda 13 muestras (7 casos y 6 controles) y en la tercera 9 muestras (3 casos y 9 controles) para la RT1 y la RT2. Un tercer experimento, realizado a partir de una RT independiente (RT3), fue empleado para contrastar los resultados obtenidos en el gen *HIF1A* en los experimentos anteriores (RT1, RT2). En este experimento se necesitó una única placa de 384 pocillos en la que se distribuyeron las 36 muestras y las réplicas técnicas (3) para el ensayo problema y los dos genes control. Para obtener una medida más exacta de la variación entre casos y controles, se añadió una recta patrón para cada gen de forma que el valor de la eficiencia introducida en el cálculo fuera el de la misma placa del ensayo.

Una vez obtenidos los valores de C_t , se emplearon dos sistemas de cuantificación de la expresión génica: la cuantificación relativa o "Método $\Delta\Delta C_t$ " y un "*Modelo mixto*" estadístico, que calcula las diferencias de expresión entre casos y controles corrigiendo los datos según la presencia de variables externas a la reacción de RT-qPCR, como la calidad del ARNm de partida, la reacción de retrotranscripción del ARNm a ADNc y las diferencias entre placas en un mismo experimento. La cuantificación relativa se basa en la comparación de los valores de *Ct* de los genes problema frente a los de referencia. Una estimación rápida de esta relación se puede efectuar considerando la eficiencia de ambas reacciones (muestras problema y referencia) como del 100%, empleando la siguiente fórmula³⁵⁶,

$$ratio = 2^{-(\Delta Ct_{target} - \Delta Ct_{ref})} = 2^{-\Delta \Delta Ct}$$

Para el cálculo de esta relación se empleó otro modelo que incluye la eficiencia de los genes en estudio y de los genes de referencia basándose en la fórmula³⁵⁵,

$$ratio = \frac{(E_{target})^{\Delta CP_{target}(control-sample)}}{(E_{ref})^{\Delta CP_{ref}(control-sample)}}$$

donde, *E* es la eficiencia del gen en estudio (target) y de referencia (ref) y ΔC_p es la desviación o incremento entre los controles y los afectos para el gen en estudio y de referencia, respectivamente. El segundo método empleado fue el *Modelo mixto* el cual estimando de manera global los parámetros que pueden afectar a las muestras, calcula la variación de la expresión entre casos y controles³⁵⁷,

$$ygijkr = TGgi + lgj + Bgijk + Dijk + egijkr$$

donde *ygijkr* es la medida de la expresión logarítmica (C_t), *Dijk* representa una variación específica de la muestra introducida por el protocolo experimental y *egijkr*, representa el error de cada medida puntual.

Resultados

4.1. Estudio del patrón de metilación del sistema nervioso central entre individuos afectados por enfermedad de Alzheimer de aparición tardía, enfermedad de Parkinson esporádica

4.1.1. Detección global de metilación: array Infinium HumanMethylation27

Se seleccionaron diez individuos, tres afectados de EA tardía, tres afectados de EP esporádica y cuatro individuos sin lesiones neuropatológicas, de los que se obtuvieron muestras de ADN de siete áreas del SNC: amígdala, corteza, hipocampo, hipotálamo, protuberancia, sustancia negra y cerebelo. Un total de 50 muestras de ADN tratadas con bisulfito fueron hibridadas en el array de Illumina *Infinium HumanMethylation27*, efectuándose un análisis global de metilación de 27.578 dianas CpG, distribuidas en 14.475 genes y 110 miRNAs. Los resultados fueron normalizados y analizados siguiendo el protocolo establecido para esta plataforma.

Se efectuó un análisis jerárquico no supervisado para observar la agrupación entre muestras en base al patrón de metilación global. Inicialmente se consideraron las 27.578 sondas de las 50 muestras hibridadas en el array y se comparó su distribución. El análisis global mostró una agrupación de las muestras hibridadas en cuatro bloques principales, correspondientes a: controles de metilación, regiones de cerebro (corteza, amígdala, hipocampo, hipotálamo, protuberancia y sustancia negra), cerebelo, y un cuarto grupo heterogéneo que no correspondía a ninguna de las clasificaciones anteriores. Las muestras humanas de cerebro de regiones sin identificar (NA) se agruparon junto con las muestras de SNC (Figura 18a). El control de calidad de las muestras confirmó que el grupo heterogéneo estaba formado por muestras de baja calidad, bien por presentar una limitada detección de CpGs (Coverage<27.500), como A08/00107 HT, BK-873 NA, A08/00107 HC y A08/00132 HC, o bien por mostrar una eficiencia de conversión por bisulfito inferior al estándar (BSE<4.000 u.a.), como BK-1082 A y A08/00095 P. Se observó la presencia de un posible outlier, BK-962 P, que se agrupaba con las muestras de cerebelo. Esta muestra pudo sufrir un fallo en el etiquetado y fue eliminada de los análisis posteriores. Las muestras de regiones de cerebro y las de cerebelo mostraron una agrupación por sexo y un gradiente de metilación de mayor a menor correspondiente a: muestras control, regiones anteriores del SNC y cerebelo.

En un segundo análisis jerárquico se eliminaron los controles demetilación para observar el agrupamiento de las muestras de cerebro y y 1.086 sondas ubicadas en el cromosoma X. Estas sondas

fueron eliminadas para minimizar el efecto de la inactivación epigenética del cromosoma X y el desequilibrio en el número de individuos de cada sexo (Figura 18b). En este caso no se observaron agrupaciones por sexo. Nuevamente el patrón de distribución de las muestras de cerebro mostró una separación entre cerebelo –con menor grado de metilación–, el grupo de muestras de baja calidad y el resto de regiones de cerebro. La eliminación de las muestras de cerebelo no mostró nuevas agrupaciones entre el resto de regiones del SNC analizadas (datos no mostrados).

Figura 18. Agrupamiento jerárquico no supervisado de los valores de metilación global obtenidos en *Humanmethylation27K*. Las muestras están agrupadas por similitud de valores de metilación global. **a.** *Heatmap* y dendograma correspondiente a todas la muestras. **b.** *Heatmap* y dendograma correspondientes a las muestras humanas de cerebro una vez eliminados los controles de metilación y las sondas ubicadas en el cromosoma X.

Patrón de metilación asociado a patología neurodegenerativa en muestras de cerebro

Un total de 339 sondas –cuya desviación estándar presentaba un valor superior al triple de la media de la desviación del conjunto– fueron seleccionadas para determinar la viabilidad de aplicar un análisis lineal discriminante por patología del conjunto de datos de metilación (LDA-global) (Figura 19a) y de los datos de cerebelo separadamente (LDA-CB) (Figura 19c). A continuación, se eliminaron las muestras de cerebelo, y se seleccionaron 101 sondas (desviación estándar mayor que el triple de la desviación media del conjunto) para realizar un análisis de las regiones anteriores de cerebro (LDA-CA) (Figura 19e). Los tres análisis identificaron una combinación de CpGs cuyos valores de metilación permitían discriminar las muestras por condición patológica (Tabla 21).

El *heatmap* del análisis global agrupa las muestras de cerebelo respecto al resto. El dendrograma muestra la agrupación por individuos y posteriormente es posible observar la disposición de las muestras por patología (Figura 19b). En el análisis de cerebelo no es posible distinguir si la separación es debida al género de las muestras o a la patología, dado el limitado número de muestras (Figura 19d). El resto de regiones de cerebro presentan una agrupación de las muestras por género, con tendencia a agruparse por condición patológica dentro de cada grupo, siendo las muestras control las mas similares entre sí (Figura 19f).

A continuación, se analizó el contexto genómico de las dianas CpG identificadas con *DAVID Functional Genomics*. Además, una búsqueda bibliográfica identificó ciertos genes involucrados en el proceso de neurodegeneración (Tabla 21). El análisis predictivo funcional de los genes asociados a las dianas CpG mostró un elevado enriquecimiento en vías de óxido-reducción, respiración celular y detoxificación, características del envejecimiento celular y neurodegenerativo.

Figura 19. Análisis linear discriminante (LDA) y *heatmap* **de muestras humanas de cerebro. a., c., e.** Diagrama bidimensional de la agrupación de cada una de las muestras de cerebro analizadas según patología. Los ejes de coordenadas representan la distancia entre las agrupaciones. b., d., f. Agrupación de las muestras a partir de los valores de metilación de las CpGs obtenidas por LDA. **a y b.** LDA y *heatmap* global de las 45 muestras de cerebro analizadas. **c y d.** LDA y *heatmap* de las muestras de cerebro (CB). **e y f.** LDA y *heatmap* de las muestras de regiones anteriores de cerebro (CA).

Tabla	1 21. Identificac	ción y localización	genór	nica de las di	anas Cp(3 identificadas por LDA			
ID CpGs	Gen	LDA	chr	Localización	TSS	SNPs o CNVs	Localización génica	CGI	Referencia
cg13055278	ID2	CA	2	8739739	175	rs56393729	5'-UTR	CGI	•
cg09111917	TGM4	CA	m	44890922	209	I	promotor	ı	ı
cg13315147	CYP2E1	CA	10	135191518	661	CNV (8673)	intrón 1	CGI	Kaut et al., 2012; Shahabi et al., 2009 ^{358,359}
cg05740244	LDHC	CA	11	18390591	162	ı	intrón 1		
cg15812957	VCY1B	CA	≻	14677478	14		promotor		
cg04533291	TMEM127	CB	2	96294125	1486	CNV(4300)	intrón 2		ı
cg09827833	TEK	CB	6	27099492	51	CNV(52779)	5'-UTR		
cg18338296	THRSP	CB	11	77452692	137	I	5'-UTR		1
cg21359747	ALDH1A3	B	15	99238159	575	CNV(114045)	intrón 1	CGI	
cg24075743	RMI2/PRM1	CB	16	11282886	202	rs74007631	intrón		
cg24335895	COX7A1	CB	19	41335611	0		5'-UTR		
cg26227005	ELAVL4	Global	ц.	50347104	121		intrón 1		Noureddine et al., 2005; DeStefano et al., 2008 ^{360,361}
cg03387723	SCMH1	Global	1	41481051	676		promotor		Stapels et al., 2010 ³⁶²
cg17792192	CAMSAP1	Global	6	137914347	223	ı	intrón 1	·	Yoshioka et al., 2012 ³⁶³
cg06210526	CYP2F1	Global	19	46311690	503	rs62117444	promotor		
cg15926585	TXNRD2	Global	22	18308445	864	rs45553733/CNV(31071)	intrón 1		Mandal et al., 2010 ³⁶⁴
cg05467918	ACADM	global/ CA	1	75962533	337	rs61797339	promotor	CGI	
cg14893161	PM20D1	global/ CA	1	204085874	26	I	5'-UTR		ı
cg07327347	AQP8	global/ CA	16	25135505	281	rs74015618, rs73551008	promotor		Benga et al., 2012; Yang et al., 2011 ³⁶⁵⁻³⁶⁷
cg16106497	NLRP2	global/ CA	19	60169541	38	CNV(104429, 67613, 30928)	5'-UTR		ı
cg25569462	TRIML1	global/ CA/ CB	4	189263854	452	rs67650322, CNV(7437, 34439, 51353, 51354)	promotor	ī	Tian et al., 2009 ³⁶⁸
cg27063525	NUS1	global/CA	9	118103565	202	-	5'-UTR	CGI	
ID CpGs: lc anteriores (CA)	ocalizador especi o cerebelo (CB))	ífico CpGs. Gen: síml . Localización: ubica	bolo ofi ación ge	icial (HUGO). I enómica CpGs,	. DA : tipo hg18 (N(de análisis (Global, regiones CBI36). Distancia TSS : distancia de			
la CpG al punto 60 nt) . Localiza	de inicio de trar ción Génica: pos	iscripción génica (nt sición CoG respecto). SNP (al gen.	o CNV: solapa CGI: presenci	miento de a de CGI.	e sondas con SNPs/CNVs (rango = Referencia: descripción previa de			
alteraciones ne	urodegenerativa	S	0	_					

89

4.1.2. Validación de los resultados de metilación mediante pirosecuenciación

Para validar los resultados obtenidos con el array *Humanmethylation27* se comprobó la correlación entre los valores de metilación obtenidos con el array y los valores de metilación obtenidos por PSQ de las mismas muestras en siete de las dianas CpG. Las dianas validadas corresponden a CpGs en tres genes implicados en patologías neurodegenerativas (*APOE, PSEN-1, y SIRT-3*), y cuatro CpGs identificadas en un análisis diferencial preliminar (*DHRS4L2, HDC, SUSD1, y TAT*). A partir del ADN tratado con bisulfito se realizaron en paralelo dos reacciones independientes de pirosecuenciación para cada muestra y ensayo. La concordancia entre las réplicas técnicas de PSQ fue superior al 95% (CCC=0,964, p<2,2e16), mientras que la concordancia entre el porcentaje de metilación obtenido por PSQ y los *β-value* obtenidos por el array es superior al 90% (CCC=0,920, p<2,2e-16)³⁶⁹ (Figura 20).

Figura 20. a. Concordancia entre réplicas técnicas considerando todos los valores obtenidos en dos experimentos independientes de siete ensayos de pirosecuenciación. El valor de la concordancia entre réplicas es superior al 95%. **b.** Representación de la concordancia entre los valores de metilación en función de la plataforma empleada. Comparando los resultados de los siete locus analizados la concordancia entre ambas plataformas es de 92%.

Debido a la limitación en el número de muestras de este análisis exploratorio, no fue posible aplicar cálculos estadísticos que identificaran diferencias significativas entre los valores de metilación de las muestras control frente a las de EA tardía y EP esporádica.

4.1.3. Análisis exploratorio del perfil de expresión de ARN mensajero en amígdala. Correlación de la expresión génica con la metilación del ADN

Se seleccionó un área de interés funcional, amígdala, en seis individuos donantes, con el objetivo de observar el impacto del mecanismo epigenético evaluado en el perfil de expresión. Sobre estas muestras se realizó una secuenciación de ARN total. Tras alinear las secuencias obtenidas contra el genoma de referencia con el programa *TopHat*, observamos que un 63% de las secuencias coincidían con las regiones codificantes de 21.049 genes; un 20% correspondían a regiones no anotadas hasta el momento, mientras que el 8% restante pertenecían a pseudogenes (incluidos ARNr y ARNt) y a lincRNAs (long interspread non-coding RNA) (Figura 21). Tan solo un 10% de las secuencias no pudieron ser alineadas siguiendo las condiciones estándar de *TopHat* (máximo de dos bases no alineadas por secuencia) representando un valor muy próximo a estudios de características similares^{370,371}.

Anotación perfil de expresión

Figura 21. Anotación y distribución global de los transcritos de ARN obtenidos por secuenciación de ARN total.

Posteriormente se procedió a la normalización de los datos de cada muestra utilizando el parámetro *RPKM* (Reads Per Kilobase of exon model per Million mapped reads)³⁷². Los datos normalizados se utilizaron para comparar los perfiles de expresión, empleando el programa de análisis *CLC Genomic Workbench 5* (CLC BIO). Aunque los datos parecen seguir una distribución similar entre las distintas muestras (Figura 22a), el análisis de componentes principales, permitió identificar una muestra, BK-873 (EA tardía), como outlier. Retrospectivamente, se advirtió que esta muestra presentaba un valor de calidad de ARN (RIN) por debajo de 6, por lo que no superaba los estándares de calidad y fue excluida de análisis posteriores (Figura 22b).

Figura 22. Control de calidad de los perfiles de expresión. a. Boxplot. Distribución del conjunto de valores de expresión para cada muestra. **b.** Análisis de componentes principales. Agrupación de las muestras basadas en los dos componentes con mayor variabilidad.

Para comparar la correlación entre los valores de metilación y de expresión, en las cinco muestras de amígdala de EA tardía, EP esporádica y controles, se seleccionaron las sondas del array de metilación que presentaban un p<0.05. Con este nivel de confianza se obtuvieron un total de 11.774 regiones génicas de ambos estudios. Este análisis mostró una correlación inversa en todas las muestras, con un coeficiente de correlación de *Spearman* entre -0,32 a -0,42. De forma que, como refleja la Figura 23, una baja o media tasa de metilación de los promotores se corresponde con una alta o media expresión génica y, por el contrario, valores altos de metilación en promotores inducen una bajada de expresión. Este efecto se ha constatado de manera consistente en las cinco muestras analizadas.

Correlación Metilación vs. Expresión

Figura 23. Correlación entre metilación y expresión génica en amígdala. *Heatmap* representando en el eje de abscisas los niveles de metilación de 11.774 promotores frente a los valores de expresión (medidos en RPKMs) determinados por secuenciación a gran escala de ARN en el eje de ordenadas. Cada columna y cada fila contiene el 5% de los genes, ordenados por metilación y expresión respectivamente. El color de cada recuadro representa el solapamiento entre ambos parámetros y la escala de colores representa la densidad de datos. Para la realización de este diagrama se seleccionó la muestra A07/00005, representativa del set de muestras analizado.

4.2. Estudio global de las alteraciones de metilación asociadas a estructuras del sistema nervioso central en enfermedad de Alzheimer

4.2.1. Ensayo de genotipación de *APOE* para la determinación de la predisposición genética de los individuos a padecer EA tardía

Los resultados de la distribución de los genotipos en las muestras analizadas se encuentran resumidos en la Tabla 22 (Información completa en Tabla Suplementaria 2). En un total de 42 individuos analizados el 83% presentaron un riesgo normal o bajo a padecer esta afección, mientras que tan solo un 17% de los estudiados presentó un riesgo moderado a padecer EA tardía, de los cuales la mitad eran individuos afectados. Ningún individuo resultó portador de la variante £4/£4. En la población general se encuentra una distribución del 85% para el alelo £3, 5% para el alelo £2 y 10% para £4 (16% para al menos un alelo £4), cifra que asciende al 37% en pacientes con EA (58% para al menos un alelo £4). Ello pone de manifiesto la baja presencia de este alelo en los individuos analizados.

Variantes	Ν	Control	EA tardía	Total
ε2/ε2	1	0%	5%	2%
ε2/ε3	4	10%	9%	10%
ɛ 3/ɛ3	30	75%	68%	71%
ε2/ε4	1	0%	5%	2%
ε3/ε4	6	15%	14%	14%
E 4*	7	15%	18%	17%
Total	42	100%	100%	100%

Tabla 22. Distribución de las variantes de APOE en los individuos analizados en este estudio

*: presencia de al menos un alelo

4.2.2. Detección global de la metilación: array *Infinium Humanmethylation450K*

Las muestras de ADN se trataron con bisulfito y se hibridaron en el array de genoma completo *Humanmethylation450K* de Illumina. Se procedió a efectuar el control de calidad de los resultados de metilación, analizando los controles internos del array. Este análisis identificó una muestra, A09/00020 A, con una baja conversión por bisulfito y una limitada cobertura en la detección de dianas CpG, por lo que fue eliminada de los análisis posteriores. A continuación, se identificaron 24 muestras que presentaban valores normales para todos los controles internos, exceptuando RED-DNP (red-DNP, marcador de fluorescencia), que presentó una disminución de los valores de fluorescencia respecto a la línea de base. Debido a la ausencia de otras alteraciones se concluyó que se trataba de
un fallo del control interno independiente a las muestras (Figura Suplementaria 1). Por último, se normalizaron los valores de metilación correspondientes a las sondas de tipo I y de tipo II, conjuntamente, y se transformaron los β -value a *M*-value.

El análisis del comportamiento de las sondas de tipo I y de tipo II, en las seis muestras analizadas (tres controles de metilación y tres muestras de cerebro), mostró un incremento generalizado de sondas hipermetiladas de tipo II. En las muestras control de metilación los valores observados coincidieron con los valores teóricos esperados, mientras que las muestras de cerebro presentaron una distribución homogénea de la metilación con un aumento en los extremos, sondas hipo- e hipermetiladas. Tomando como ejemplo las distribución de *Jurkat Genomic DNA* (80% de metilación teórica) es posible observar, en ambos tipos de sondas, tres picos correspondientes a los valores de hipometilación, hemimetilación e hipermetilación. Sin embargo, la curva de las sondas de tipo II experimenta un desplazamiento de ambos extremos hacia el centro de la gráfica, abarcando un rango de valores de metilación menor que las de tipo I. Al mismo tiempo, las sondas de tipo II presentan un enriquecimiento en el número de sondas hemimetiladas, y sobre todo como se señalaba anteriormente, hipermetiladas (Figura 24).

Figura 24. **Perfil de distribución de los valores de metilación de las sondas de tipo I y II en** *Jurkat Genomic DNA***. Representación gráfica de la distribución y frecuencia de los valores de metilación (***M-value***) de las sondas contenidas en el array de metilación** *Humanmethylation450K* **(Illumina).**

Por otro lado, se analizó la distribución en el genoma de las sondas de tipo I y las sondas de tipo II. Como muestra la Figura 25, las sondas de tipo II son más abundantes en las regiones fuera de CGIs, en desiertos génicos y N-shores que las sondas de tipo I. Estas diferencias en la distribución génica podrían justificar las variaciones entre los perfiles de metilación de ambos tipos de sondas observados anteriormente.

Figura 25. Distribución de las sondas de tipo I y II del array de metilación *Humanmethylation450* (Illumina) en el genoma humano de referencia GRCh37/hg19.

Los resultados del array fueron sometidos a un análisis preliminar jerárquico no supervisado para observar la homología entre muestras en base al valor global de metilación. El primer análisis se efectuó en la totalidad de las muestras hibridadas en el array de metilación. Este análisis mostró cuatro agrupaciones principales, correspondientes a: controles de metilación, muestras de cerebelo, regiones anteriores del SNC y controles de tejido no cerebral (Figura 26). El primer grupo está formado por: seis réplicas biológicas CpG Methylated Jurkat Genomic DNA (totalmente metiladas), cinco réplicas biológicas de non-methylated DNA (hipometiladas) y seis réplicas biológicas de Jurkat Genomic DNA (hipermetiladas). Este grupo de muestras presenta unos valores de metilación acordes con los valores teóricos y una perfecta agrupación entre réplicas. La siguiente agrupación corresponde a las muestras de cerebelo. En este grupo, se encuentran 40 muestras de cerebelo correspondientes a todos los individuos incluidos en este análisis. Todas las muestras presentan un estado generalizado de hipometilación respecto a los controles de metilación -excepto nonmethylated DNA-. Dentro de esta agrupación, el dendograma permite identificar cinco sub-ramas. Al comparar esta agrupación con la información relativa a las muestras, no se observaron agrupaciones por individuos, ni por edad, estado patológico o intervalo post-mortem. Sin embargo, se observó una agrupación de las muestras por sexo (Figura 26). El resto de regiones del SNC comprendidas en este análisis formaron un único grupo, en el centro de la figura. Este grupo de muestras presenta un estado de hipometilación global, comparado con los controles de metilación. Dentro de este bloque se identificaron dos grandes grupos que corresponden a la división de las muestras por sexo, con la excepción de dos muestras (A06/00210 C_BIO1, BK-873 NA). Finalmente, la última agrupación corresponde a ocho muestras control de tejido no neuronal ligeramente más metiladas que las muestras de cerebro, y un outlier: BK-1049 AMYG, correspondiente al set1, que presentaba una baja cobertura de detección CpG en el array Humanmethylation27.

El segundo análisis se realizó exclusivamente en las muestras humanas de cerebro, para observar agrupaciones adicionales (Figura 27). Para ello, se eliminaron un total de 25 muestras (17 controles de metilación, 8 controles no-SNC), 11.187 CpGs localizadas en el cromosoma X (2,3% del total) y

150.928 CpGs ubicadas en sondas que se alineaban en más de una localización en el genoma de referencia una vez tratado con bisulfito (31% del total). Tal como se observaba en el análisis previo, el patrón de metilación de las muestras de cerebelo está hipometilado respecto al resto de regiones del SNC. En este caso, no se observaron diferencias por edad, patología o sexo en cada grupo, pero si una tendencia de las muestras de corteza a agruparse conjuntamente.

Inferior. Agrupación de las muestras acorde a los resultados del *Heatmap*. En este análisis se distingue una agrupación clara entre las muestras de cerebelo y de las regiones anteriores. Entre éstas últimas, es posible apreciar la agrupación de ciertas muestras por áreas similares, como en el Figura 27. Agrupamiento jerárquico no supervisado de los valores de metilación (*M-valu*e) de las muestras de cerebro. En este análisis se eliminaron los controles de metilación, las muestras no neuronales, las sondas del array ubicadas en el cromosoma X y las sondas que no pasaron el control de calidad. Superior. Heatmap que refleja el agrupamiento de las muestras en base a la homología en el valor global de metilación. caso de corteza, y más levemente, amígdala e hipocampo. En consecuencia, el patrón de metilación identificado es independiente de los individuos, la edad, el intervalo *post mortem* y el diagnóstico clínico, sin embargo, es característico de tejido. La región del SNC que presenta un patrón de metilación más homogéneo entre muestras es cerebelo, seguido de corteza cerebral, donde se observan agrupaciones entre muestras aunque de carácter más débil. Al mismo tiempo, el patrón de metilación está altamente influenciado por el sexo, hecho que se ve disminuido cuando se elimina el cromosoma X. Probablemente por el efecto que ejerce la inactivación por ADNm de uno de los cromosoma X en el sexo femenino.

La caracterización epigenética de las muestras incluyó una serie de análisis estadísticos complementarios, Análisis lineal discriminante (LDA). Para ello, se eliminaron las sondas ubicadas en el cromosoma X y las sondas que se alineaban en más de un sitio del genoma tratado con bisulfito. A su vez, para reducir la carga computacional del análisis, se calculó la desviación estándar de cada sonda y se seleccionaron solamente aquellas que presentaban valores superiores a cinco veces la desviación estándar de la media de las sondas. A partir de estos datos se dispusieron dos sets de muestras y sondas para los LDA posteriores. El primer set estaba formado por 976 sondas contenidas en todas la áreas de cerebro disponibles (163 muestras) (LDA-global) y el segundo estaba compuesto por 3.729 sondas de regiones anteriores de cerebro (122 muestras de: amígdala, corteza e hipocampo) (LDA-CA). Todos los análisis de LDA se llevaron a cabo empleando el programa informático *JMP*.

Cambios en la metilación asociados al envejecimiento

Las muestras fueron clasificadas en los siguientes rangos de edad (años): <65, 65-70, 70-75, 75-80, 80-85, >85. El resultado del LDA-global identificó una combinación de 43 CpGs que permitían discriminar las muestras por edad (Figura 28a, Tabla Suplementaria 3), mientras que, el análisis de LDA-CA proporcionó una lista de 25 CpGs (Figura 28d, Tabla Suplementaria 3). El *heatmap* de los resultados de LDA-global por edad mostró una agrupación de las muestras por individuos independientemente del sexo, área o patología (Figura Suplementaria 2). Asimismo, el análisis de las muestras de casos y controles por separado confirmó el mismo resultado (Figura Suplementaria 3).

Con el objetivo de obtener las vías enriquecidas representativas de los resultados de LDA-global por edad se realizó un análisis exploratorio con el programa *DAVID Functional Genomics* (Tabla Suplementaria 4). El *Functional annotation clustering* agrupó el 30% de las regiones génicas (datos no mostrados). De los 15 grupos obtenidos, dos presentaban un enriquecimiento significativo (>1,3), aunque ninguno superó la corrección de *Benjamini (multiple testing*). Estos pertenecían a

mecanismos biológicos de adhesión molecular (*ACTN3*, *APBA1*, *ITGB2*, *LGALS7*, *PKHD1*, *TGFBI*) (1,62), comportamiento, movimiento y defensa (*APBA1*, *CCR6*, *GNG7*, *ITGB2*, *UBR3*) (1,32). Otros grupos funcionales, con un menor enriquecimiento, presentaron funciones relacionadas con el SNC, como: percepción sensorial, procesos neurológicos y cognitivos (*GNAS*, *APBA1*, *TGFBI*, *UBR3*, *VSX2*) (0,63), señalización molecular, apoptosis y factores de transcripción entre otros.

Variaciones metilación asociadas a estructuras del sistema nervioso central

La presencia de patrones de metilación intrínsecos al SNC, en muestras humanas de cerebro, fue descrita por primera vez en el año 2007²⁷⁸. En concreto, este estudio describió la presencia de patrones específicos en regiones aisladas como cerebelo, protuberancia o corteza pre-frontal. Acorde con estos datos, el presente trabajo de tesis, ha mostrado la presencia de diferencias de metilación entre cerebelo y el resto de regiones analizadas (corteza, hipocampo, hipotálamo amígdala, protuberancia y sustancia negra), aunque hasta el momento no se habían identificado diferencias de metilación entre todas las regiones. Con este objetivo se planteó la posibilidad de observar diferencias de metilación entre todas las regiones del SNC analizadas en el array *HumanMethlyation450*, empleando el análisis lineal discriminante. Análogamente al análisis previo, se realizó un LDA-global (Figura 28b) y LDA-CA (Figura 28e) por área, seleccionando las sondas más variables. En ambos análisis se observó una separación de las muestras por área basada en una combinación de CpGs (recogidas en la Tabla Suplementaria 3). Este resultado se replicó analizando las muestras de afectos y controles por separado (Figura Suplementaria 3).

La representación gráfica de los resultados de LDA por *heatmap* mostró las variaciones de metilación en las diferentes áreas del cerebro (Figura 29a y b). En la Figura 29a se observa la agrupación de las muestras de cerebelo, mientras que el resto de muestras se agrupan por individuo. Las muestras de cerebelo presentan un estado general de hipometilación respecto al resto de áreas, salvo en 9 CpGs (*AGAP1*, *AJAP1*, *MAGI2*, *MAML2*, *IL17RA*, *ADAMTSL2*, *SHANK1*, *FAM83F*, *RBP1*) que presentan un estado alterado de metilación. En concreto, *SHANK1*, *FAM83F* y *RBP1*, están hipermetiladas en cerebelo respecto al resto de áreas. En la Figura 29b se muestra la agrupación de las áreas anteriores del cerebro. Como se puede observar la mayoría de las muestras de corteza se agrupan en la parte inferior del diagrama, mientras que las muestras de amígdala e hipocampo se distribuyen formando grupos más heterogéneos. Cabe destacar la hipometilación en corteza, comparado con amígdala e hipocampo, en 6 de las 21 dianas analizadas en (*ZC3H18*, *PVRL1*, *KIAA0415*, *BTBD12*, *CLCN7*, *STK10*). El análisis funcional *in silico* (*DAVID Functional Genomics*) del LDA-global identificó un 55% de los genes como específicos del SNC, mientras que, por *Functional annotation clustering* tres agrupaciones resultaron significativas antes de la corrección por *Benjamini*. El primer grupo estaba formado por proteínas relacionadas con la anquirina (1,8), el segundo por sinapsis, unión celular y componentes de la membrana plasmática celular (1,35) y el tercero por componentes de la sinapsis y de la membrana plasmática (1,3). Los genes incluidos en estas categorías fueron: *AGAP1, ERC1, KANK2, RIN1, SHANK1, AJAP1, ANKS4B, HDLBP, IL17RA, MAGI2, PKP2, PCSK9, RIMS1, SLC1A6, SERP2*. Entre el resto de grupos obtenidos en este análisis se encuentran, moléculas de la sinapsis neuronal, transporte neuronal y factores de transcripción (Tabla Suplementaria 5).

Alteraciones de metilación asociadas a enfermedad de Alzheimer de aparición tardía

Para comprobar la existencia de un patrón de metilación asociado a enfermedad de Alzheimer se realizó un LDA considerando las clasificaciones de las muestras Control, EA-3 y EA-4 (EA tardía estadíos de Braak 3 y 4). En este análisis se observó una separación entre casos y controles, en el análisis global (Figura 28c y f, Tabla Suplementaria 3). El análisis de cada una de las áreas estudiadas, por separado, confirmó este resultado (datos no mostrados). No obstante, el *heatmap* de LDA-global por patología no mostró la agrupación de las muestras en casos y controles (Figura 29c), sino que se agruparon por individuos, mientras que el *heatmap* de LDA-global en cerebelo tampoco presentó una clara agrupación de las muestras por estadio patológico (Figura 29d). En general, las CpGs analizadas presentaron valores de metilación heterogéneos entre muestras.

El análisis funcional *in silico* de las 23 dianas obtenidas por LDA-global mostró seis genes específicos de SNC (*DNAJC17, GNAS, C14orf149, CDK2AP1, NRGN, RFTN1*) y el *Functional annotation clustering* siete agrupamientos, de los que ninguno presentaba un enriquecimiento significativo. Entre los grupos más representativos se encontraron: moléculas de la membrana plasmática (1,11) y de señalización intra- (0,78) y extra-celular (0,49), que incluían los siguientes genes: *GNAS, CCR6, MAGI2, SCN1A, TGFBR3, LGI3, CPAMD8, C10orf58, COLEC11, SLC12A8,* RFTN1 (Tabla Suplementaria 6)

Figura 28. Análisis discriminante lineal (LDA) de los resultados de metilación del array *HumanMethylation450* (Illumina), por edad, área del SNC y patología. a., b., c.: LDA-global de todas las muestras de SNC generado a partir de 163 muestras y 976 sondas del array. a. LDA por EDAD, b. LDA por AREA, c. LDA por PATOLOGÍA. d., e., ft: LDA-CA, de las muestras de SNC excepto cerebelo generados a partir de 122 muestras y 3729 sondas del array. d. LDA por EDAD, e. LDA por AREA, c. LDA por AREA, e. LDA por AREA, ft. LDA por PATOLOGÍA. d., e., ft: LDA-OR PATOLOGÍA.

correspondiente al análisis de las muestras de cerebelo.

Análisis diferencial de metilación entre casos y controles por área

La caracterización epigenética de las muestras analizadas incluyó el cálculo de diferencias significativas entre casos y controles para cada CpG individual. Todas las regiones del SNC incluidas en el estudio se analizó por separado, empleando los métodos estadísticos descritos previamente.

El análisis diferencial de cerebelo identificó un total de 1.112 CpGs con diferencias significativas de metilación (p-adj<0,01) entre casos y controles (Tabla Suplementaria 7). El 98.38% de las regiones mostraron una disminución de metilación en casos frente a controles, con la siguiente distribución en el genoma: 47% en *open-sea*, 30% en N-shelf, N-shore, S-shelf, S-shore y 27% en CGIs. Se identificaron un total 97 regiones génicas que contenían dos o más CpGs por región, hasta un máximo de 8 CpGs (Tablas 23 y 24). Tan sólo se identificaron dos regiones génicas con valores de metilación discordantes: *BCL6* (cg05264446, logFC=-0,32, N-shore y cg20716989 logFC=0,28, S-shore) y *TSHR* (cg14373410, log FC=-0,61; cg13525276, logFC=-0,4; cg19563130, logFC=0,42; cg23234607, logFC=0,25; cg09721659, logFC=0,35). *BCL6* codifica una proteína que promueve la maduración de anticuerpos a través de un mecanismo de represión transcripcional. Por otro lado, *TSHR* codifica un receptor de tirotropina, con un importante papel en la regulación del metabolismo tiroideo. En este gen las dos primeras CpGs estaban ubicadas en el cuerpo génico, mientras que las otras tres en el primer exón y en TSS200.

De las 1.112 regiones génicas con CpGs significativos, un 46% resultaron ser específicas de cerebro (*DAVID Functional Genomics*). De estos, 15 estaban implicados en la fisiopatología de EA (*ATP2A3*, *NDUFA6*, *NDUFV1*, *ATF6*, *APP*, *CASP8*, *CDK5*, *ERN1*, *GSK3B*, *ITPR3*, *LRP1*, *MAPK1*, *PLCB3*, *PPP3CA*, *PPP3R1*) (KEGG_PATHWAY, incluido en *DAVID Functional Genomics*). A continuación, se seleccionaron las 185 dianas mayores valores absolutos de logFC, para evidenciar las vías más enriquecidas y se realizó un nuevo *Functional annotation cluster* (Tabla Suplementaria 8). Este análisis mostró 63 agrupaciones que incluían el 20% de los datos. Las categorías más enriquecidas fueron la vía de señalización de *WNT* (2,62), implicada en el desarrollo anterior y posterior de estructuras del SNC, en procesos de neurodegenerativos y en EA³⁷³⁻³⁷⁵, moléculas de interacción con el factor de crecimiento epidérmico (EGF) (1,9), factores de interacción de la trombospondina (1,55), unión a metales (ej. Zn) (1,49) y moléculas implicadas el desarrollo muscular (1,32). Entre los grupos no significativos con interés funcional destacan una agrupación asociada a *ANK2*. Está proteína, asociada a la terminal sináptica, se expresa de manera particular en cerebelo y su alteración ha sido ligada a procesos neurodegenerativos.

El análisis diferencial de amígdala e hipocampo no mostró diferencias significativas de metilación entre casos y controles, mientras que en corteza se detectaron 11 CpGs con diferencias significativas (0,01<p-adj<0,05) (Tabla Suplementaria 7). A continuación, se analizaron las tres regiones en

conjunto, identificando un total de 110 CpGs (p-adj<0,01), de las que 11 estaban presentes en la lista obtenida en el análisis de cerebelo. De las 11 CpGs significativas encontradas en corteza pre-frontal, tan solo una estaba hipermetilada en casos, mientras que el resto de CpGs estaban hipometiladas en las muestras de EA tardía, tal como se veía en cerebelo. En cuanto a su distribución en el genoma, 4 CpGs estaban ubicadas en regiones fuera de CGIs, 2 CpGs en CGIs y 5 CpGs en N-shelf, N-shore, S-shelf y S-shore. De las 110 dianas CpG con diferencias significativas entre casos y controles en amígdala, corteza e hipocampo, el 31% estaban hipermetiladas en EA tardía (Tabla Suplementaria 7). Su distribución en el genoma fue del 32% fuera de CGIs, 35% en CGIs, y el 33% en las regiones adyacentes a las CGIs. Tan solo se encontraron cinco regiones génicas con más de una CpGs por región: cuatro regiones con 2 CpGs cada una (*PRAMEF20, ANKRD56, PLD4, SPATA22*) y una única región con 3 CpGs (*CMYA5*), cuyos valores de metilación fueron concordantes entre dianas (Tablas 23 y 24).

El análisis funcional *in silico* (*DAVID*) de las dianas con diferencias significativas entre casos y controles en amígdala, corteza e hipocampo indicó la presencia de regiones génicas implicadas en procesos de biosíntesis de glicoproteínas (1,32), anti-apoptosis, adhesión celular, factores de transcripción, moléculas de la sinapsis y receptores de membrana. Asimismo, entre éstas categorías se identificaron genes asociados a enfermedad de Alzheimer (*KLK1* y *MAPK8IP1*), y a enfermedades psiquiátricas, como el trastorno bipolar, la esquizofrenia y el déficit de atención e hiperactividad (*GABR1* y *ALG9*).

CpG significativas	СВ	СТХ	CTX/AMYG/HPC	
Hipometiladas	1094 (98.38%)	10 (90.9%)	72 (68.57%)	
Hipermetiladas	18 (1.61%)	1 (9.09%)	33 (31.42%)	
Sondas tipo II	683 (61.42%)	10 (90.9%)	73 (69.52%)	
Sondas tipo I	429 (38.57%)	1 (9.09%)	32 (30.47%)	
CpG island	306 (27.51%)	2 (18.18%)	37 (35.23%)	
N_shelf	32 (2.87%)	1 (9.09%)	5 (4.76%)	
N_shore	136 (12.23%)	2 (18.18%)	13 (12.38%)	
S_Shelf	47 (4.22%)	1 (9.09%)	4 (3.8%)	
S_Shore	120 (10.79%)	1 (9.09%)	12 (11.42%)	
No CpG	535 (48.11%)	4 (36.36%)	34 (32.38%)	
Total	1112	11	105	

Tabla 23. Caracterización de las sondas CpGs que presentan diferenciassignificativas entre EA tardía y controles en el SNC

Distribución de CpGs significativas identificadas en cerebelo (p<0,01), en corteza (p<0,05) y en corteza, amígdala e hipocampo conjuntamente (p<0,01).

Distribución	СВ	СТХ	CTX/AMYG/HPC
CpG island	296/10	2/0	14/28
N_shelf	32/0	1/0	4/1
N_shore	134/2	1/1	8/5
S_Shelf	47/0	1/0	4/0
S_Shore	115/5	1/0	10/2
No CpG	470/1	4/0	32/2
Total	1094/18	10/1	72/38

Tabla 24. Estado de metilación (hipo-/hiper-) de las sondas que presentan diferencias

significativas entre EA tardía y controles en el SNC y su distribución en el genoma

Distribución de las CpGs significativas identificadas en cerebelo (p<0,01), en corteza (p<0,05) y en corteza, amígdala e hipocampo conjuntamente (p<0,01).

4.2.3. Cuantificación de la correlación entre los niveles de expresión génica de dianas CpG con alteraciones en la metilación del ADN en muestras de cerebelo

Para observar el efecto de las diferencias significativas de metilación descritas en cerebelo entre pacientes y controles se seleccionaron cuatro regiones génicas diana para cuantificar y comparar su expresión en EA tardía frente a controles. Los criterios de selección de los genes comprenden: número de CpG significativas/gen >1; magnitud logFC; genes implicados en vías de señalización afectadas en enfermedad de Alzheimer. Según estos criterios se seleccionaron cuatro genes: *HIF1A, NR2F1, PAX6* y *SYK*, que albergaban las siguientes dianas (Tabla 25):

ID CpG	Gen	logFC(M)	adj.P.Val(M)	Referencias
cg04948941	HIF1A	-0.434	0.004	Jiang H et al.(2012) ³⁷⁶
cg03714110	NR2F1	-0.916	0.006	
cg25449484	NR2F1	-2.144	0.009	
cg17774851	NR2F1	-1.213	0.009	Note 11 et al. $(2000)^{377}$
cg08690999	NR2F1	-1.090	0.006	Naka 🗆 et al (2008)
cg03714110	NR2F1	-0.916	0.006	
cg15171839	NR2F1	-0.617	0.006	
cg25764105	PAX6	-0.369	0.008	
cg18082638	PAX6	-0.383	0.003	
cg25764105	PAX6	-0.369	0.008	Osumi N et al. (2008) ³⁷⁸
cg23287710	PAX6	-0.363	0.007	
cg16822387	PAX6	-0.305	0.008	
cg14005120	SYK	-0.498	0.008	Siegmund KD et al (2007) 379 , Lebouvier T et al (2009) 380

Tabla 25. CpGs seleccionados para validar por RT-qPCR

logFC: logaritmo de fold change (FC) M-values, adj.P.val: p-valor ajustado por 'multiple testing'.

Una vez determinada la expresión génica por PCR cuantitativa en tiempo real, se analizaron los resultados estadísticamente con un modelo lineal mixto adaptado a este ensayo (Tabla 26). Tan solo

el gen *HIF1A* presentó diferencias significativas (p=0,04) entre casos y controles en los experimentos RT1 y RT2 utilizando *TBP* como gen control, mientras que, la normalización con *HPRT1* mostró una tendencia no significativa (p=0,06). Un tercer experimento independiente, RT3, no confirmó los resultados obtenidos previamente (TBP p=0,81; HPRT1 p=0,84) (Tabla 26, Figura 30). Por lo que no se obtuvo confirmación de la correlación entre las diferencias significativas de metilación frente a las diferencias significativas de expresión entre casos y controles.

Tabla 26. Valores de expresión cuantificados por RT-qPCR y analizados por el modelo mixto paradeterminar las diferencias significativas entre casos y controles para cada gen

	М	lodelo m	ixto (RT1, RT	2)		Modelo	mixto (RT3)	
Gen	FC (TBP)	p-val (TBP)	FC (HPRT1)	p-val (HPRT1)	FC (TBP)	p-val (TBP)	FC (HPRT1)	p-val (HPRT1)
HIF1A	1,32	0,04*	1,45	0,06	1,03	0,81	1,05	0,84
NR2F1	1,11	0,52	1,17	0,49	-	-	-	-
PAX6	1,34	0,10	1,41	0,08	-	-	-	-
SYK	1,15	0,45	1,22	0,45	-	-	-	-

RT: retrotranscripción (1,2 y 3). *p<0.05.

Figura 30. Boxplot de HIF1A. El diagrama muestra la distribución de los valores de 'Ct' la media y la desviación estándar de cada experimento independiente correspondiente a RT1, RT2 (**a** y **b**) y RT3 (**c** y **d**). **a** y **c**. Boxplot de HIF1A normalizado por al gen *housekeeping TBP*. **b** y **d**. Boxplot de HIF1A normalizado por el gen *housekeeping HPRT1*.

4.3. Detección de mosaicismo somático en el sistema nervioso central

4.3.1. Identificación de variantes estructurales por array CGH

Se exploró la posibilidad de identificar mosaicismo somático entre regiones del SNC de un mismo individuo, originado por variantes estructurales del genoma, a partir de 10 sujetos (4 EA tardía, 2 EP, 2 controles). Para identificar estas variantes se realizó una hibridación genómica comparada sobre array, utilizando como referencia la muestra de cerebelo de cada individuo e hibridándola junto con cada una de las regiones restantes (corteza, amígdala, hipocampo, hipotálamo, protuberancia y sustancia negra). El análisis de los resultados fueron realizados con el programa de Agilent *Genomic Workbench* (Tabla Suplementaria 8). Dos sujetos (BK-816, BK-873) fueron eliminados del estudio por presentar regiones aberrantes en cromosomas sexuales no concordantes con el sexo de los mismos, además de las regiones resultantes de la hibridación self to self (salvo alguna excepción, que cumplía los criterios presentados más adelante). Un total de 826 variantes estructurales fueron detectadas, de las que el 52% correspondían a ganancias del genoma. Asimismo, el tamaño medio de las variaciones resultó de 73 kb (con un rango de 400 pb a 3 Mb).

4.3.2. Validación de mosaicismo somático de CNVs en el sistema nervioso central

Para validar los resultados del array CGH, se seleccionaron regiones de CNVs presentes en 2-5 áreas del cerebro en más de un donante. Los límites de los CNVs se establecieron agrupando regiones genómicas en intervalos, denominados CNV regions (CNVRs) cuando solapaban entre sí con un intervalo de variación máxima entre los puntos de rotura o 'breakpoints' (BPs) de 1 kb. A continuación, se identificaron regiones susceptibles de ser validadas con métodos estándar que cumplieran los siguientes criterios: no solapar con regiones complejas del genoma o regiones segmentarias, presentar CNVs previamente descritos en la base de datos de variantes genómicas DGV (http://projects.tcag.ca /variation/) y disponer de datos de genotipación en individuos control de HapMap Project (http://hapmap.ncbi.nlm.nih.gov/). A partir de esta pauta, se eligieron dos regiones: ARHGEF10 y IGFN1, para validar por secuenciación (Tabla 27). Para validar por MLPA se escogieron 10 CNVRs fuera de duplicaciones segmentarias (DS), de las que se carecía de información sobre la localización exacta de los BPs y el genotipo de individuos control (Tabla 27). La tercera estrategia de validación consistió en escoger CNVs ya descritos y genotipados en individuos control, con un tamaño y número de sondas positivas idéntico para cada muestra, independientemente del número de individuos u áreas que presentaran la región aberrante. Las regiones candidatas fueron ADAM5P3A y WWOX (Tabla Suplementaria 8).

omosómica		ID Gen	Long (kb)	B	U	٩	Н	Ħ	٩	SN	Tipo de validación	Duplicación segmentaria	Base de datos de variantes (DGV)
-199447720		IGFN1	4.742	0	0	0.50	0	0.67	0.53	0	PCR-seq		Matsuzaki et al., 2009
-199496078	_	IGFN1	53.1	0	0	0	0	0		0.39	PCR-seq	ı	Matsuzaki et al., 2009
-199447720		IGFN1	3.85	0	0.53	0.46	0	0		0	PCR-seq	1	Matsuzaki et al., 2009
-199447209		IGFN1	2.916	0	0.51	0	0.45				PCR-seq	ı	Matsuzaki et al., 2009
-1826299		ARHGEF10	3.606	0	0	0	0	0.65	0.61	0	PCR-seq	1	Conrad et al., 2009
-1826632		ARHGEF10	3.684	0	0.44	0.39	0	0		0.50	PCR-seq	ı	Conrad et al., 2009
-54016927		NPBWR1	1.611	0	0.11	0.89	0			ī	PCR-seq	1	Park et al., 2010
-54016927		NPBWR1	1.611	0	0.90	0.10	0				PCR-seq	ı	Park et al., 2010
3-69192119		ORAOV1	0.481	0	0	0	-0.16	0	0	-0.18	MLPA	-	Wong et al., 2007
3-69192119	_	ORAOV1	0.481	0	-0.13	0	-0.12	0		0	MLPA	1	Wong et al., 2007
7-29194594		FAR2	1.867	0	0.77	0.69	0	ı	ı	ı	MLPA	-	Kim et al.,2009
7-29195411	_	FAR2	2.684	0	0	0.81	0	0.11	0.11	0.95	MLPA	ı	Kim et al.,2009
0-113826438	_	RASA3	0.968	0	0	0	-0.99	0	0	-0.88	MLPA	1	Park et al., 2010
0-113826438		RASA3	0.968	0	-0.93	0	-0.11	0		0	MLPA	I	Park et al., 2010
1-66230334		CTCF	0.4	0	0.68	0.66	0	0.68	•	0	MLPA	T	NA
4-66307098		CTCF	77.164	0	0.68	0.66	0	0		0	MLPA	1	Kidd et al., 2008
5-75728064		KCNG2	2.378	0.56	0.46	0.50	0	0		0.62	MLPA	I	Mills et al., 2006
0-1162847		STK11	0.407	0	0	0	-0.13	0	0	-0.13	MLPA	1	Redon et al., 2006
0-1162847		STK11	0.407	0	-0.85	0	-0.17	0		0	MLPA	-	Redon et al., 2006
-242469311		PDCD1	22.277	0	-0.69	0	-0.11	0	ı	0	MLPA	I	Saikh et al., 2009
-242469311	_	C2ORF85	14.743	0	0	0	-0.10	0	0	-0.12	MLPA	T	Saikh et al., 2009
-52813609	_	FST	2.683	0	0.55	0.59	0	ı			MLPA	I	Mills et al., 2006
-52813609		FST	2.683	0	0.54	0.70	0			·	MLPA	I	Mills et al., 2006
-537912		SLC9A3	3.334	0	0.69	0.11	0				MLPA		Redon et al., 2006
-537912		SLC9A3	3.334	0	0.73	0.10	0.71				MLPA	-	Redon et al., 2006
-22609106		EGR3	6.292	0	0	0.63	0	0	0.68	0	MLPA	•	Perry et al., 2008
-22609106		EGR3	6.292	0	0.55	0.52	0	ı	ı	1	MLPA		Perry et al., 2008

Ŋ
I SN
s de
reas
s ái
qo
o de
ime
mír
un
en
Ites
eser
l pre
ЧŊ
ır a(
od s
adas
ecta
det
/Rs
S
27.
ola 2
Tat

٩	Localización cromosómica	ID Gen	Long (kb)	CB	U	۷	ЧС	Н	Ч	SN	Tipo de validación	Duplicación segmentaria	Base de datos de variantes (DGV)
1082	chr1:236166777-236179567	,	12.79	0	0.43	0.36	0	0.46		0		,	Redon et al., 2006
1082	chr11:3651468-3768153	864UN	116.685	0	-0.32	-0.31	0	0	ī	0	I		Redon et al., 2006
1049	chr11:3692078-3778284	NUP98	86.206	0	0	-0.55	0	0	0	-0.70		1	Redon et al., 2006
1049	chr14:104920889-104924376	PACS2	3.487	0	0	0	-0.80	0	0	-0.11	ı		Redon et al., 2006
1082	chr14:104920889-104924376	PACS2	3.487	0	-0.94	0	-0.12	0		0			Redon et al., 2006
1049	chr18:75640039-75641110	I	1.071	0	0	0	-0.86	0	0	-0.11	ı		
1082	chr18:75640039-75641110		1.071	0	-0.80	0	-0.86	0		0			Ahn et al. (2009)
1049	chr2:202780849-203559333	SUM01	778.484	0	0	-0.64	0	0	0	-0.62	ı		Kidd et al., 2008
1082	chr2:240766676-240767384		0.708	0	0.96	0.93	0	0		0.94			NA
1049	chr2:91043759-91094689		50.93	0	0	-0.56	0	0	0	-0.79		DS	Matsuzaki et al., 2009
1082	chr2:91043759-91117389		73.63	0	-0.37	-0.37	0	0		0		DS	Matsuzaki et al., 2009
A10-00011	chr20:47326971-47328730	ZNFX1	1.759	0	0.57	0.98	0.70						Conrad et al. 2005
A07-00043	chr20:47327248-47328730	ZNFX1	1.482	0	0.88	0.81	0		ı				Conrad et al. 2005
1082	chr3:105833764-105845700	I	11.936	0	0.83	0.66	0	0	ī	0.77	ı		Redon et al., 2006
1049	chr3:97819138-97820058		0.92	0	0	0.18	0.20	0.15	0	0.18	-	DS	Matsuzaki et al., 2009
1082	chr3:97819138-97820058		0.92	0	0.23	0.23	0	0.26		0		DS	Matsuzaki et al., 2009
A06-00210	chr3:97819138-97820058		0.92	0	0.24	0	0.18		ı			DS	Matsuzaki et al., 2009
A07-00043	chr3:97819138-97820058		0.92	0	0.19	0.25	0.23					DS	Matsuzaki et al., 2009
A08-00017	chr3:97819138-97820058		0.92	0	0.26	0.23	0.19					DS	Matsuzaki et al., 2009
A10-00011	chr3:97819138-97820058		0.92	0	0.29	0.24	0.23					DS	Matsuzaki et al., 2009
1082	chr4:1520487-1522192		1.705	0.96	-0.93	0	0	0		0		DS	Park et al., 2010
A10-00011	chr4:1520487-1522192		1.705	0.12	0.11	0.14	0.14					DS	Park et al., 2010
1082	chr4:1528842-1529986	ı	1.144	0	-0.75	0	-0.92	0	ı	0			Park et al., 2010
1049	chr5:134288246-134291279	PCBD2	3.033	0	0	0.19	0.20	0.19	0.10	0.22		DS	Matsuzaki et al., 2009
1082	chr5:134288246-134291279	PCBD2	3.033	0	0.21	0.21	0	0.25		0		DS	Matsuzaki et al., 2009
A06-00210	chr5:134288246-134291279	PCBD2	3.033	0	0.22	0	0.17					DS	Matsuzaki et al., 2009
A07-00043	chr5:134288246-134291279	PCBD2	3.033	0	0.16	0.22	0.19	-	-	-	-	DS	Matsuzaki et al., 2009
A08-00017	chr5:134288246-134291279	PCBD2	3.033	0	0.24	0.20	0.16	-			I	DS	Matsuzaki et al., 2009
A10-00011	chr5:134288246-134291279	PCBD2	3.033	0	0.26	0.24	0.23		1	T		DS	Matsuzaki et al., 2009
1049	chr5:93929331-93932037	C5orf36	2.706	0	0	0.16	0.15	0.15	0.83	0.17	I	DS	Matsuzaki et al., 2009

in cromosómica	ID Gen	Long (kb)	CB	U	A	НС	Ŧ	٩	SN	Tipo de validación	Duplicación segmentaria	Base de datos de variantes (DGV)
2	C5orf36	2.706	0	0.15	0	0	0.17		0.53	-	DS	Matsuzaki et al., 2009
2	C5orf36	2.706	0	0.14	0	0.11		ı			DS	Matsuzaki et al., 2009
2	C5orf36	2.706	0	0.10	0.16	0.12			-		DS	Matsuzaki et al., 2009
7	C5orf36	2.706	0	0.15	0.13	0.11				·	DS	Matsuzaki et al., 2009
2	C5orf36	2.706	0	0.15	0.17	0.15	ı	ı			DS	Matsuzaki et al., 2009
		8.842	0	0	0.17	0.16	0.16	0.85	0.18		DS	Conrad et al., 2009
0		8.842	0	0.16	0.16	0	0.20		0.55		DS	Conrad et al., 2009
0		8.842	0	0.16	0.50	0.13			ī		DS	Conrad et al., 2009
0		8.842	0	0.12	0.17	0.15					DS	Conrad et al., 2009
0	ı	8.842	0	0.17	0.15	0.12	ı	ı	ı	ı	DS	Conrad et al., 2009
_		8.842	0	0.18	0.18	0.18					DS	Conrad et al., 2009
36	RASA4	168.031	0	0.36	0.40	0	0		0.40		DS	Matsuzaki et al., 2009
36	RASA4	168.031	0	0.36	0.40	0	0		0.40	ı	DS	Matsuzaki et al., 2009
44	DPP6	4.655	0	0	0.34	0.42	0.41		0		DS	Matsuzaki et al., 2009
78	PTPRN2	2.504	0	-0.61	-0.61	0	0		0	-	DS	Conrad et al., 2009
78	PTPRN2	2.504	0	-0.59	0	-0.52				-	DS	Conrad et al., 2009
8	PTPRN2	2.504	0	0	-0.74	-0.65	i.				DS	Conrad et al., 2009
8	PTPRN2	2.504	0	-0.72	-0.62	0	ī			-	DS	Conrad et al., 2009
	,	2.882	0	0	0.55	0.92		I.	I		SQ	Sharp et al., 2005; Matsuzaki et al., 2009
	1	2.882	0	0.52	0.56	0		ī	1		SQ	Sharp et al., 2005; Matsuzaki et al., 2009
	,	3.366	0	0	0.81	0.70	0	0	0.80		SQ	Sharp et al., 2005; Matsuzaki et al., 2009
10	ı	3.366	0	0.81	06.0	0	0.93	T	0	1	SQ	Sharp et al., 2005; Matsuzaki et al., 2009
9	ı	3.366	0	0.81	06.0	0	0.93	ı	0		DS	Sharp et al., 2005; Matsuzaki et al., 2009
.0	ı	3.366	0	0.54	0	0.92		1	,	ı	SQ	Sharp et al., 2005; Matsuzaki et al., 2009
p o	e cara una	de las regic	nes p	or área	analizad	a.						

.

En el cromosoma 8 (8p23.3) se ha observado una ganancia de material genómico de 3 kb que solapa con una región no codificante del gen ARHGEF10. Esta duplicación es común a 5 muestras (BK-1082 corteza, amígdala y sustancia negra; BK-1049 hipotálamo y protuberancia) que contienen entre 15-16 sondas positivas en aCGH. A pesar de que el tamaño de la ganancia de material es variable en las muestras, los datos brutos del array CGH, basados en la posición de las sondas, han proporcionado la siguiente localización: chr8: 1823082-1826212, solapando con un CNV previamente descrito^{381,382}. La secuenciación de las muestras de ADN de los individuos BK-1082 y BK-1049 no ha confirmado la presencia de una duplicación en las muestras que presentaban una ganancia de material genómico por aCGH. Sin embargo, se ha identificado una pérdida de material, de aproximadamente 2 kb, ubicada en la misma región génica en muestras que no presentaban ganancias de material por aCGH: BK-1049 amígdala, corteza e hipocampo, como muestra la Figura 31. El resto de muestras analizadas, tanto de BK-1049 como de BK-1082 proporcionaron secuencias no legibles. Por lo tanto, no se ha obtenido una validación directa de los resultados obtenidos por aCGH, pero se observa una pérdida de material genético, en la misma región donde se detectaba una ganancia de material en las muestras no amplificadas. Estos datos, en conjunto, sugieren la presencia de mosaicismo somático entre regiones del SNC, a pesar de que no se dispone de pruebas definitivas.

Análogamente, se ha observado una ganancia de material genómico en la posición 1q32.1 del cromosoma 1, que abarca entre 8 y 10 sondas positivas de aCGH en el gen *IGFN1*. Esta ganancia solapa con una región no codificante del intrón-10, de aproximadamente 3 kb. De acuerdo con los datos brutos obtenidos por aCGH, los límites de la ganancia de material son: chr1: 199.443.983-199.447.058, donde previamente se ha descrito un CNV³⁸³. Esta duplicación se ha identificado en las siguientes muestras: BK-1049 amígdala, hipotálamo, protuberancia; BK-1082 amígdala, corteza y sustancia negra; y A06-00210 corteza e hipocampo. La PCR de amplificación de BK-1082, indicó la presencia de una deleción en amígdala, hipotamo, hipotálamo, protuberancia y cerebelo; no dio fragmento de amplificación en sustancia nigra y de corteza; y no se disponía de muestra para la validación. La escasa longitud de la secuencia de los fragmentos amplificados en hipotálamo, protuberancia y cerebelo, no permitió caracterizar los puntos de corte de la deleción, como se indica en la Figura 32. Por lo que no se pueden confirmar los resultados de aCGH. Del mismo modo que en *ARHGEF10* es posible que éstas regiones presenten una deleción respecto a cerebelo y al resto de áreas, detectadas como ganancias de material genético por aCGH. Aunque en este caso, amígdala, presentaba una duplicación en el array y por otro lado ha amplificado una banda del tamaño esperado coincidiendo con la deleción.

Figura 31. Caracterización de la región aberrante identificada en *ARHGEF10.* **a.** Representación esquemática del contexto genómico de *ARHGEF10* y PCR de amplificación para BK-1049 (1: C, 2: A, 3: HC, 4: HT, 5: CB, 6: SN, 7: control positivo, 8: control negativos, 9: control negativo, 10: CB, 11: SN, 12: P, 13: HT, 14: HC, 15: A, 16: C). **b.** Localización genómica de las secuencias amplificadas frente al genoma de referencia (NCBI36/hg18) (Blast tool, UCSC). Las muestras BK-1049 A, C y HC, presentaron una deleción intrónica de aproximadamente 2 kb, la secuencia de CB presentó una homología parcial, mientras que las muestras de HT y P no proporcionaron resultados legibles al igual que las muestras de BK-1082.

Figura 32. Caracterización de la región aberrante identificada en *IGFN1.***a.** Representación esquemática del contexto genómico de *IGFN1* y PCR de amplificación para BK-1082 (1: control positivo, 2: A, 3: HC, 4: HT, 5: P, 6: SN, 7: CB, 8: control negativo). Las muestras que contienen la deleción descrita en el diagrama superior pueden amplificar una banda de PCR de 298 pb aproximadamente, correspondiente a la suma de la secuencia de ADN comprendida entre los cebadores y los BPs. Las muestras que no presenten la deleción darían lugar a una banda de 4 kb en condiciones de PCR adecuadas. **b.** Localización genómica de las secuencias amplificadas frente al genoma de referencia (NCBI36/hg18) (Blast tool, UCSC). Las muestras BK-1082 HT, P y CB, dieron lugar a secuencias de amplificación parciales (directas e inversas), que no llegaron al punto de rotura de la deleción, por lo que impide la completa caracterización de la deleción.

De las 10 regiones seleccionadas para validar por MLPA no se han observado cambios significativos en el número de copia en las muestras analizadas. Cada experimento se realizó por triplicado, empleando dos fluorocromos diferentes en paralelo (FAM y VIC) para disminuir cualquier desviación en el resultado. A continuación se identificó en la corteza de un individuo (A07/00043) una ganancia de material en 8p11.23-p11.22, que abarca 91 sondas positivas del gen *ADAM5P3A*. Esta región coincide en tamaño con una región previamente descrita³⁸¹ y caracterizada en otro estudio (*Bustamante et al., Personal Communication*) (Figura 33a). La PCR de genotipación descrita confirmó la presencia de mosaicismo somático en dicha muestra. Como se observa en la Figura 33b, el gel de agarosa muestra la presencia de

una copia génica en corteza –correspondiente a las bandas de amplificación de 427 pb y 288 pb, para un alelo y 397 pb para la ausencia del otro alelo–, y cero copias génicas en amígdala, hipocampo y cerebelo del mismo individuo –correspondientes a una banda de amplificación única de 397pb–. Por último, se identificó una región aberrante del genoma de 14 kb en 16q23.1, que abarca 11 sondas del array CGH. El CNV previamente descrito en esta región^{381,384} solapa con el gen *WWOX* y se ha identificado en la región cortical de dos donantes: A06/00210 y A07/00043 (Figura 33c). El genotipado de las muestras por PCR múltiple ha confirmado la presencia de mosaicismo somático en los dos individuos. Los geles de agarosa presentan las bandas de amplificación de las muestras de corteza –alelo delecionado: 192 pb y alelo no delecionado: 217 pb–, correspondientes a una copia génica y el resto de regiones analizadas que presentan una única banda de amplificación –dos alelos delecionados: 192 pb–, correspondientes a una copia génica y el resto de regiones analizadas que presentan una única banda de amplificación –dos alelos delecionados: 192 pb–, correspondiente a cero copias génicas (Figura 33d).

Figura 33. Caracterización y validación del mosaicismo somático en *ADAM5P3A* **y** *WWOX*. **a. y c.** Representación gráfica del contexto genómico de los CNVs y de la estrategia de validación en la que se muestran los BPs, el tamaño del inserto identificado por aCGH, y el diseño de la PCR múltiple (fuera de escala). **b**. Genotipación por PCR múltiple de *ADAM5P3A* mostrando la presencia de mosaicismo somático en A07/00043 C (1: amígdala (397bp); 2: corteza (427bp, 288bp y 397bp); 3: hipocampo (397bp); 4: cerebelo (397bp); 5: HapMap +/+ (427bp y 288bp), 6: HapMap +/- (427bp 288bp y 397bp); 7: HapMap -/- (397bp)). **d**. Los geles de agarosa muestran la presencia de mosaicismo somático de *WWOX* en A06/00210 (1: amígdala (192bp); 2, 3 y 4: corteza (192bp, 217bp); 5: cerebelo (192bp)) y A7/00043; 6: amígdala (192bp); 7: corteza (192bp, 217bp); 8: cerebelo (192bp); 9: hipocampo (192bp)).

4.3.3. Genotipado de WWOX en muestras de enfermos de Alzheimer e individuos control

La confirmación de mosaicismo somático de *WWOX* en dos individuos –dos controles– y su posible implicación en la patogénesis de la EA³⁸⁵⁻³⁸⁷, promovió la validación de los resultados anteriores en un mayor número de individuos. Para ello, se seleccionaron muestras de amígdala, corteza, hipocampo y cerebelo de 18 pacientes de EA tardía, y de 18 controles pertenecientes al *set3* de muestras, y se procedió a efectuar la genotipación de éstos individuos mediante la PCR múltiple descrita (Tabla 28). Se realizaron tres experimentos de genotipado independientes, en los que cinco donantes (A08/00131, A08/00152, A09/00086, A09/00125 y A10/00027) mostraron resultados discordantes entre réplicas, y fueron eliminados de los análisis posteriores. El resto de casos no mostraron mosaicismo somático entre áreas. La distribución de los genotipos de las muestras fue: 32,35% deleción, 32,35% de presencia de una copia y 35,29% dos copias. Considerando sólo los controles, observamos que la distribución varía de esta manera: 43,75%, 25%, y 31,25% (deleción, una copia y dos copias, respectivamente), mientras que la distribución del genotipo de las muestras de EA fue: 22,22%, 38,89%, and 38,89% (deleción, una copia y dos copias) (Tabla 29).

ID muestras	Área	Patología	Sexo	# Copias	Genotipo
A07/00137	А, С, СВ, НС	AD3	Masculino	0	Deleción
A07/00160	А, С, СВ, НС	AD3	Masculino	1	Presencia
A08/00017	А, С, СВ, НС	AD3	Femenino	0	Deleción
A08/00064	А	AD3	Femenino	2	WT
A08/00088	С, СВ, НС	AD3	Femenino	2	WT
A08/00106	А, С, СВ, НС	AD3	Masculino	0	Deleción
A09/00005	С, СВ, НС	AD3	Femenino	0	Deleción
A09/00021	А, С, СВ, НС	AD3	Masculino	2	WT
A09/00030	А, С, СВ, НС	AD3	Masculino	2	WT
A09/00068	C, CB, HC	AD3	Femenino	1	Presencia
A09/00111	С	AD3	Masculino	1	Presencia
A09/00124	СВ <i>,</i> НС	AD3	Masculino	1	Presencia
A10/00022	CB, HC	AD3	Femenino	2	WT
A07/00142	A, C, CB	AD4	Masculino	2	WT
A08/00117	А, С, СВ, НС	AD4	Femenino	1	Presencia
A09/00053	А, С, СВ, НС	AD4	Femenino	1	Presencia
BK-816	А	AD6	Femenino	1	Presencia
BK-816	HC	AD6	Femenino	2	WT
A04/00146	C, CB, HC	С	Masculino	2	WT
A05/00057	C, CB	С	Masculino	1	Presencia
A06/00107	С, СВ, НС	С	Masculino	0	Deleción
A06/00110	А, С, СВ, НС	С	Femenino	0	Deleción
A06/00112	C, CB	С	Masculino	0	Deleción
A06/00203	А, С, СВ, НС	С	Masculino	2	WT
A07/00011	C, CB, HC	С	Femenino	1	Presencia
A08/00015	A, C, CB	С	Femenino	2	WT
A08/00023	A, C, CB	С	Femenino	0	Deleción
A08/00041	C, CB, HC	С	Femenino	1	Presencia
A08/00070	A, C, CB	С	Femenino	0	Deleción
A08/00081	А, С, СВ, НС	С	Masculino	0	Deleción
A08/00113	А, С, СВ, НС	С	Femenino	1	Presencia
A08/00132	C, CB, HC	С	Masculino	2	WT
A09/00020	C, CB	С	Femenino	2	WT
A09/00027	C, CB	С	Masculino	0	Deleción

Tabla 28. Resultados de la PCR de genotipación de WWOX en muestras de cerebro

Deleción: O copias, Presencia: 1 copia, WT: wild, 2 copias. AD#: estadio de Braak EA.

Tabla 29. Distribución de los genotipos de WWOX en las
muestras humanas de cerebro analizadas

N copias/ (%)	0	1	2
Global	32.35%	32.35%	35.29%
EA tardía	22.22%	38.89%	38.89%
Control	43.75%	25.00%	31.25%

Discusión

Las enfermedades neurodegenerativas, como la enfermedad de Alzheimer (EA) y la enfermedad de Parkinson (EP), se caracterizan por una etiología multifactorial. La interacción entre la carga genética y el ambiente contribuyen a la susceptibilidad a padecer estas patologías y al desarrollo de las mismas. En este contexto, se ha propuesto que la intersección de estos factores podría estar mediada por las modificaciones epigenéticas, que permitirían integrar los estímulos exógenos en el medio interno e inducir una respuesta fisiológica capaz de mantener el equilibrio homeostático, gracias a la regulación compleja de la transcripción génica. Si bien en conjunto las modificaciones epigenéticas constituyen un extenso capítulo biológico, las modificaciones del ADN, como la metilación, representan uno de sus máximos exponentes, capaces de ser abordadas a nivel experimental. Se trata del mecanismo mejor descrito hasta la fecha, con una batería de técnicas de última generación para la identificación de los cambios en la metilación del genoma.

Otro mecanismo que contribuye a la variabilidad del genoma es la enorme variabilidad estructural del genoma, responsable, en gran parte de las diferencias fenotípicas inter-individuales que, en ocasiones determinadas, pueden predisponer o contribuir a desarrollo de enfermedades. En este sentido, la variabilidad en el número de copias ha dado lugar a numerosos estudios en los que se ha determinado su implicación en enfermedades neurológicas, y más concretamente, también en enfermedades neurodegenerativas. En algunos casos la variabilidad genómica se puede manifiestar por la presencia de mosaicismo somático, esto es, por la presencia de una carga genética diferente entre células, provenientes de un mismo individuo, originado por mutaciones durante el desarrollo o la vida del individuo, pudiendo dar lugar a consecuencias fenotípicas. En los últimos años, numerosos estudios han constatado la importancia de las variantes en número de copia (CNVs) en la formación del mosaicismo somático y en relación a enfermedades complejas.

En el presente trabajo de tesis se ha planteado la hipótesis de que las alteraciones en el patrón de metilación del genoma jueguen un papel en la enfermedad neurodegenerativa, con efectos en la transcripción génica. Por otra parte, plantea que los cambios en el número de copia en el genoma de un mismo individuo, en diferentes áreas del SNC, mediado por CNVs, podrían contribuir al desarrollo de enfermedades neurodegenerativas.

5.1. Detección global de metilación en sistema nervioso central

El estudio exploratorio sobre la viabilidad de identificar cambios globales en la metilación del ADN asociados a patologías neurodegenerativa se realizó en siete áreas del cerebro de diez individuos (tres con EA tardía, tres con EP esporádica y 4 controles). El análisis jerárquico no supervisado del estado de metilación de las muestras analizadas reveló la existencia de un patrón de metilación específico en *vermis cerebeloso,* independiente de las diferencias inter-individuales existentes (edad, sexo y patología), en consonancia con los datos mostrados previamente por *Ladd-Acosta et al.*²⁷⁸, entre otros^{280,388}.

Dentro de cada grupo de muestras de cerebro y cerebelo se observó la agrupación de éstas por género. Estas diferencias se pueden deber al fenómeno epigenético de inactivación del cromosoma X, el cual contribuye a que la carga neta de metilación en las mujeres sea mayor. Para minimizar el efecto de éstas diferencias se descartaron 1.086 sondas del array ubicadas en el cromosoma X, dando lugar a la eliminación de éste agrupamiento.

Los resultados obtenidos indican un patrón homogéneo de metilación de las muestras de cerebelo, claramente diferenciadas del resto, en todos los individuos analizados. Además, respecto al resto de muestras, el cerebelo presenta una disminución del estado de metilación que, teniendo en cuenta el enriquecimiento de las sondas del array en regiones promotoras, sugeriría un aumento de la actividad transcripcional en esta región. Por otro lado, las muestras de regiones anteriores del cerebro se agrupan de forma heterogénea, independientemente del área (corteza, hipocampo, hipotálamo, protuberancia y sustancia nigra), por lo que no replican estudios previos en los que se observan diferencias en el patrón de metilación entre protuberancia, corteza y cerebelo²⁷⁸ y entre protuberancia, cerebelo y corteza frontal/temporal, pero no entre estas dos regiones corticales³⁸⁹. Ello puede ser debido a que el número de individuos estudiados no fue suficiente para permitir observar estas agrupaciones, o bien puede estar indicando la presencia poblaciones celulares más heterogéneas que las presentes en el cerebelo.

Los cambios de metilación asociados a las enfermedades neurodegenerativas se determinaron mediante un análisis lineal discriminante. Los resultados de este análisis (efectuados a partir de los datos de metilación de las sondas más variables del array en el conjunto de muestras analizadas) mostraron una discriminación de las muestras por patología, tanto en el análisis global de todas las muestras, como en el análisis de cerebelo y de las regiones anteriores, siendo el análisis global el que presentó mayor discriminación entre grupos. Sin embargo, cuando se representó el valor de las CpGs obtenidas por LDA mediante *heatmap*, ninguno de los tres gráficos mostró una agrupación completa de las muestras por patología. El *heatmap* de las muestras de cerebelo y de regiones anteriores mostró la agrupación de los individuos por género, probablemente, causado por la presencia de un elevado número de muestras masculinas en el grupo control. Este resultado sugiere la presencia de variaciones de metilación asociadas al género, independientes del cromosoma X.

El *heatmap* de LDA global agrupó las muestras por individuos y por patología, excepto las de cerebelo que se agruparon conjuntamente. De la lista de dianas CpGs, correspondientes a los tres análisis se identificaron cinco dianas, contenidas en regiones génicas previamente relacionadas con procesos neurodegenerativos: *SCMH1*³⁶² y *CAMSAP1*³⁶³, implicadas en daño cerebral; *TXNRD2*³⁶⁴ implicada en vías de detoxificación mediada por GSH; y *CYP2E1*^{358,359} y *ELAVL4*^{360,361}, implicadas en EP. Un estudio paralelo de metilación en muestras de cerebro de pacientes con EP, realizado con el mismo array, ha identificado una disminución significativa de la metilación de la diana CpG contenida en el gen *CYP2E1*, que a su vez se correlaciona con un incremento de la expresión del ARNm del mismo gen. Este gen codifica para una enzima miembro de la familia citocromo P450, implicada en las vías de detoxificación metabólica, así como en diversos procesos que incluyen el metabolismo del colesterol y el cáncer. En modelos animales de rata se ha descrito la expresión de ésta proteína en neuronas de la sustancia negra. Asimismo, la inducción de CYP2E1 incrementa la producción de especies reactivas de oxígeno e inhibe la liberación de dopamina en las neuronas de la sustancia negra, mientras que por otro lado, favorece la formación de metabolitos tóxicos como las isoquinolinas, cuya estructura química está relacionada con la neurotoxina dopaminérgica 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine³⁵⁸. Apoyando estos datos se encuentra un estudio que ha identificado una asociación entre una variante intrónica y la susceptibilidad a padecer EP en un muestra de 272 controles y 347 casos de EP³⁵⁹. Otros estudios genéticos han permitido identificar ciertos polimorfismos asociados a la edad de inicio de EP en el gen ELAVL4^{360,361}.

Para observar el posible efecto que estos cambios de metilación pueden tener en la expresión génica, se seleccionó una región diana en procesos de neurodegeneración, amígdala, y se analizó el perfil de expresión de muestras de seis individuos. La comparación entre ambos mecanismos mostró una fuerte correlación inversa, validando en nuestro sistema de estudio el paradigma de la regulación epigenética de la expresión génica. Así pues, dado el reducido número de muestras de cada fenotipo, no es posible extraer conclusiones definitivas acerca de las diferencias de metilación observadas entre grupos, ni de los perfiles de expresión en amígdala. No obstante, los resultados obtenidos avalan el uso de plataformas globales de detección de cambios de metilación en muestras de cerebro. Puesto que, por una parte, ofrece resultados fidedignos (Figura 20) –tal como indican los resultados de las validaciones entre plataformas y la correlación entre réplicas biológicas y réplicas técnicas (Tabla 16)–, y por otro, aportan datos prometedores sobre posibles dianas génicas implicadas en procesos neurodegenerativos (Tabla 21). Los resultados de este análisis muestran una posible implicación de estas características a gran escala.

5.2. Detección de alteraciones del patrón global de metilación asociadas a la enfermedad de Alzheimer

El estudio del perfil de metilación del SNC de pacientes con EA frente a controles permitió dar respuesta a dos preguntas claves planteadas en el estudio preliminar. ¿Existe un patrón de metilación específico de cada región del SNC, a parte de cerebelo y corteza pre-frontal?, y por otro lado, ¿es posible observar diferencias significativas de metilación en dianas puntuales entre casos y controles en cada área? La importancia de este estudio radica en la originalidad del planteamiento. El análisis de factores epigenéticos permite observar la impronta genética que los factores ambientales han ejercido en el organismo de individuos de avanzada edad. Este hecho es especialmente relevante en enfermedades afectadas de un modo muy marcado por la edad y la susceptibilidad genética, como las enfermedades neurodegenerativas. Por primera vez, se muestra el perfil de metilación global de individuos sanos frente a pacientes afectos de EA, a partir de muestras de tejido cerebral *post-mortem*, con la finalidad de identificar cambios de metilación asociados a eventos iniciales en la patología. Para ello, se escogieron individuos bien caracterizados, clasificados en los estadíos intermedios de Braak (estadíos 3 y 4)^{25,390}. Estos estadíos corresponden a la fase denominada prodrómica, en la que tienen lugar las manifestaciones clínicas y psicológicas previas al inicio de las lesiones neuropatológicas y la muerte celular que acompañan la progresión neurodegenerativa.

Al igual que en el estudio exploratorio, se constató la existencia de un patrón de metilación global específico de tejido, no influenciado por factores inter-individuales –edad, sexo o diagnóstico–, en el que se distinguían las muestras de cerebelo, ligeramente hipometiladas respecto a las regiones cerebrales. Estas últimas, presentaron una cierta tendencia a agruparse por áreas, siendo corteza la región que presentaba una mayor similitud entre muestras. Respecto al estudio preliminar este estudio supone una mejora en la jerarquización de las muestras, posiblemente motivada por la mejor resolución de la plataforma empleada, que presenta una cobertura seis veces mayor, y por el número de individuos analizados. El análisis discriminante proporcionó varios listados de dianas CpG capaces de clasificar las muestras por diferentes factores: edad, área y diagnóstico clínico (Figura 27, Tabla Suplementaria 3). El análisis funcional *in silico* de las dianas identificadas por edad (global, CA) (*DAVID Functional Genomics*), mostró dos grupos significativos de moléculas con funciones de adhesión celular, de comportamiento, movimiento y defensa. Entre ellas cabe destacar la actina (ACTN3), asociada a la pérdida de elasticidad y disminución de la capacidad física y APBA1, una proteína de unión al precursor beta amiloide, encargada del transporte de vesículas en la terminal sináptica, la transducción de señales celulares, la estabilización de APP y la inhibición de la formación de fragmentos proteolíticos (Tabla Suplementaria 4).

El *heatmap* realizado a partir de las dianas obtenidas por LDA global, así como LDA-CA (regiones anteriores de cerebro), permitió discriminar las muestras de cerebelo, en el análisis global y las muestras de corteza, en el análisis de regiones cerebrales anteriores (Figura 28). Como se describía en el estudio anterior, el patrón de metilación de cerebelo indica que las muestras de esta región presentan un patrón de metilación más homogéneo entre sí. También se observa un estado de hipometilación generalizado en las muestras de cerebelo respecto al resto de áreas, que en principio indicaría una mayor actividad transcripcional. El análisis funcional *in silico* de las CpGs obtenidas por LDA-CB (cerebelo) identificó moléculas asociadas a adhesión celular (como la anquirina), la sinapsis neuronal y componentes de la membrana plasmática. Entre las moléculas específicas de cerebelo destacan el receptor de glutamato (SLC1A6), mientras que en las de corteza destaca PCSK9, molécula que promueve la diferenciación cortical de neuronas. Por el contrario, el *heatmap* realizado a partir del LDA por enfermedad, no mostró, en principio, una agrupación de las muestras por diagnóstico clínico. Este resultado sugiere la existencia de variaciones inter-individuales, mayores que las propias de cada condición, al contrario de lo que cabría esperar, dados los gráficos obtenidos en LDA.

El análisis de dianas individuales con cambios de metilación significativos entre casos y controles identificó 1.112 dianas significativas en cerebelo (p<0,01) (Tabla Suplementaria 7). Estas dianas mostraron una fuerte tendencia a la hipometilación en las muestras de EA tardía frente a los controles. Sorprendentemente, un 50% de estas dianas estaban ubicadas en citosinas "no-CpG", en regiones alejadas de promotores y *enhancers*, y cuyo mecanismo regulador está aun por determinar. No obstante, las investigaciones más recientes sobre el metiloma humano³⁹¹ han constatado enriquecimiento de "no-CpGs" en el cuerpo génico y en regiones intergénicas. Además, se ha observado que las citosinas más variables del genoma están situadas en estas regiones, confirmado los datos obtenidos en cerebelo. Además, se ha observado una correlación positiva entre el grado de metilación de estas posiciones y la expresión génica, sugiriendo una regulación de la transcripción no canónica con importantes consecuencias biológicas. Por otra parte, se identificaron 97 regiones génicas que contenían más de una diana significativa en el mismo gen (Tabla Suplementaria 11). Estas dianas despertaron gran interés, ya que podrían indicar la presencia de regiones fuertemente reguladas por factores epigenéticos. Los únicos genes que mostraron valores de metilación discordantes en sus dianas fueron *BCL6* y *TSHR*, con dos y cuatro dianas respectivamente.

La posición de las dianas respecto a la CGIs o a secuencias reguladoras, y la unión a factores de transcripción, son dos de los principales determinantes en la regulación de la transcripción, por lo que, es posible que en un mismo gen confluyan CpGs con valores de metilación diferentes, dando idea de la complejidad de este mecanismo de regulación de la expresión génica. Se identificaron 15 dianas ubicadas en regiones génicas asociadas a la EA. Unas formando parte de la vía amiloidogénica y de formación de ovillos neurofibrilares: APP, LRP1³⁹², GSK3B, CDK5³⁹³, y otras regulando el proceso neurodegenerativo, como ATF6 y ERN1, que pertenecen al grupo de moléculas que regulan la respuesta a estrés del retículo endoplasmático³⁹⁴⁻³⁹⁶; CASP8, elemento clave en la regulación del ciclo celular neuronal y la entrada en apoptosis³⁹⁷; MAPK1³⁹⁸, PPP3CA y PPP3R1³⁹⁹⁻⁴⁰¹.

El análisis global de los genes con mayores diferencias en la metilación, por *DAVID Functional Genomics*, mostró un enriquecimiento de la vía de señalización de WNT, implicada en el desarrollo embrionario, en la formación del SNC, y en apoptosis, mediada por la proteína beta-catenina. Esta activación es dependiente de GSK3, mientras que la unión de WWOX inhibe el desencadenamiento de este mecanismo, Otras vías representativas encontradas pertenecen al grupo de marcadores del proceso neurodegenerativo: como moléculas de interacción con el factor de crecimiento epidérmico (EGF) y factores de interacción de trombospondina^{402,403}. Entre las vías no significativas del análisis funcional *in*

silico, cabe destacar la presencia de moléculas del tipo anquirina. Este grupo de proteínas, también conocidas como canales de potencial transitorios, son específicas de cerebro y median la pérdida homeostática de Ca²⁺ en procesos neurodegenerativos.

En conjunto, el análisis de las diferencias significativas entre casos y controles en el SNC, identificó una gran variedad de CpGs, la mayoría aisladas en regiones externas a CGIs. El análisis funcional *in silico* de estos resultados exhibió un fuerte enriquecimiento en moléculas vinculadas al desarrollo del SNC, así como factores de transcripción que regulan su arquitectura. Algunas, estaban directamente implicadas en procesos amiloidogénicos, de formación de ovillos neurofibrilares y en mecanismos característicos de procesos neurodegenerativos que conducen a la muerte celular, como la hipoxia, apoptosis e inflamación.

Hipotéticamente, los cambios observados en los pacientes con EA, siguiendo la teoría de la regulación epigenética de la transcripción, deberían inducir cambios en la expresión génica de las dianas afectadas. No obstante, de los genes seleccionados para validar su expresión, ninguno ha ofrecido resultados significativos replicables. Tan solo un gen HIF1A, mostró diferencias significativas nominales en dos experimentos independientes, que no pudieron ser replicados en un tercer experimento. Los datos de metilación correlacionaban correctamente con los dos expresión, puesto que la disminución de la metilación de esta diana, ubicada en un dinucleótido CpG de la región reguladora de este gen, en pacientes de EA se correspondía con un incremento de la expresión de ARNm frente a controles. Probablemente, esta falta de concordancia entre resultados es debida a la variabilidad entre el ADN y el ARN, que a pesar de haber sido extraído del mismo corte de tejido, puede presentar diferencias entre regiones muy próximas. Para disminuir el efecto de esta variabilidad se debería realizar una homogeneización previa del tejido antes de aislar el material genético. Por otro lado, existen una serie de limitaciones técnicas, inherentes a la metodología empleada, que pueden interferir con el éxito del estudio. A partir de las muestras humanas de cerebro, se aisló el material genético de un número no determinado de núcleos neuronales, que podrían presentar grandes variaciones en la metilación. Por lo que en primer lugar sería necesario progresar hacia nuevas técnicas que permitan aislar núcleos celulares individuales, como la técnica de captura por láser, o normalizar los valores obtenidos por un numero exacto de núcleos. Otro factor, que podría ser determinante en la variabilidad de la técnica es la falta de entre 5-metilcitosina y 5-hidroximetilcitosina, un metabolito intermedio de la degradación de la 5-metilcitosina. No obstante, se debe tener en consideración la complejidad del proceso de regulación de la transcripción en el que otros factores epigenéticos pueden ser determinantes.

El estudio del perfil de metilación en pacientes afectos de EA ha ofrecido una información muy valiosa acerca de la importancia que puede adquirir el fenómeno de la metilación en procesos neurodegenerativos. Se trata de una herramienta muy útil en el descubrimiento de nuevas moléculas implicadas en la patofisiología de esta enfermedad y en la confirmación de otras ya descritas. Las diferencias de metilación observadas en cerebelo de pacientes con EA ponen de manifiesto la implicación de esta región del SNC en esta enfermedad. Además, en la fase de la enfermedad estudiada, esta región no presenta lesiones neuropatológicas, por lo que induce a pensar que las marcas epigenéticas alteradas evidencian cambios previos a la instauración de la enfermedad y a la progresión de la neurodegeneración profusa. Por lo que cabría pensar que se trata de una causa de patología y no una consecuencia del proceso neurodegenerativo generalizado, aunque la casuística puede ser muy variada.

Por lo que respecta a este tipo de estudios, los pasos a realizar serían la validación de la metilación a través de cambios de la expresión en un mayor número de moléculas, así como la replicación de los valores de metilación con un método cuantitativo alternativo. Por último, como se señalaba anteriormente, el uso de tejido diana en el estudio de la metilación resulta muy valioso, pero es necesario establecer una buena correlación entre los datos de tejidos diana frente a otros tejidos, como la sangre, ya que también permitiría estudiar un mayor número de individuos, facilitando la correlación de los datos con los estudios de neuroimagen in vivo y con datos epidemiológicos de los pacientes obtenidos a partir de cuestionarios, suponiendo un gran avance en la caracterización de la enfermedad de Alzheimer.

Los últimos avances en neuroimagen y en biología molecular, unidos a los datos de fisiología preexistentes, han permitido confirmar la implicación del cerebelo en la regulación de funciones nomotoras. Las proyecciones de los núcleos profundos a la corteza cerebral, a través de las células de Purkinje, establecen un puente de transferencia bidireccional de información. Las principales conexiones se establecen con núcleos de la corteza pre-frontal, el sistema límbico, el complejo amigdaloide, el núcleo septal y con varios núcleos talámicos e hipotalámicos⁴⁰⁴⁻⁴⁰⁶. Entre las nuevas funciones atribuidas a cerebelo destacan el control de la atención –entre otras funciones cognitivas–, las emociones, el estado de ánimo y el comportamiento social, todas ellas atribuidas a la neo-corteza. Por ejemplo, a través estímulos emocionales se ha observado la activación de cerebelo⁴⁰⁷. El estudio de la relación entre las estructuras del cerebelo y la función asociada ha permitido identificar al *vermis cerebeloso posterior*, como el "sistema límbico del cerebelo".

De hecho, se ha comprobado que las lesiones que afectan a esta región, pueden interrumpir la comunicación con el sistema límbico y el neo-corteza, dando lugar a enfermedades psiquiátricas caracterizadas por trastornos emocionales y del comportamiento⁴⁰⁸. Atendiendo a las enfermedades neurológicas que presentan alteraciones en la función y/o estructura de cerebelo cabe destacar el síndrome cognitivo-afectivo cerebelar⁴⁰⁹, esquizofrenia⁴¹⁰⁻⁴¹³, el trastorno de déficit de atención e hiperactividad⁴¹³ y el trastorno bipolar y de depresión mayor⁴¹⁴, autismo⁴¹⁵, entre otros, como la dislexia⁴¹⁶ o el síndrome de estrés post-traumático⁴¹⁷. En concreto, entre las enfermedades neurodegenerativas con alteraciones en esta región del SNC se encuentran el temblor esencial^{418,419}, la
enfermedad de Parkinson⁴²⁰, la enfermedad de Huntington⁴²¹ y la enfermedad de Alzheimer⁴²². En conclusión, muchos autores remarcan el importante papel que desempeña el cerebelo en el control del pensamiento y las emociones, entre otras funciones intelectuales superiores, con el mismo grado de implicación que el control de las funciones motoras⁴²³⁻⁴²⁹.

El primer estudio que describe la afectación del cerebelo en la EA mostró la presencia de atrofia de los hemisferios cerebelares derecho y posterior⁴³⁰, confirmado recientemente⁴³¹. Entre los principales signos identificados en casos familiares y esporádicos de EA destacan el déficit de células de Purkinje, astrocitosis⁴³², atrofia⁴³³, presencia de placas seniles⁴³⁴⁻⁴³⁶ –en ausencia de ovillos neurofibrilares– y microgliosis⁴³⁷. Otro estudio señala la potencial implicación de la alteración motora en estadíos iniciales de EA⁴³⁸. Sin embargo, otros autores apoyan un modelo de afectación de los núcleos profundos de cerebelo en estadíos tardíos de la EA, como consecuencia del proceso neurodegenerativo y la pérdida neuronal⁴²². El estudio de los perfiles de expresión de cerebelo en un modelo neurodegenerativo de ratón, demuestra la implicación de alteraciones génicas asociadas a EA tanto en cerebelo como en corteza⁴³⁹. No obstante, ningún estudio ha mostrado el patrón de metilación de esta región en controles, ni en relación a enfermedades neurodegenerativas.

5.3. Mosaicismo somático en el sistema nervioso central

En este estudio exploratorio se analizaron siete áreas del SNC bien caracterizadas –amígdala, corteza, hipocampo, hipotálamo, protuberancia, *substantia nigra* y cerebelo– de diez individuos, cuatro EA tardía, dos EP esporádica y dos controles, con el objetivo de identificar mosaicismo somático mediado por CNVs. Para ello se hibridaron una a una las regiones disponibles de cada individuo, frente al cerebelo del mismo, en un array CGH *de Agilent SurePrint 400K*.

Se identificaron un total de 826 regiones aberrantes distribuidas aleatoriamente por todo el genoma, de las que un 52% correspondían a duplicaciones respecto al cerebelo. Una vez agrupadas en CNVRs se obtuvieron un total de 32 regiones génicas presentes en más de un individuo en al menos dos áreas del SNC. Esta cifra, mucho mayor a la esperada, considerando que tanto la muestra de referencia como la muestra problema corresponden al mismo individuo, pone de relieve el dinamismo presente en el genoma humano. En particular, se ha visto con anterioridad que el cerebro es una de las regiones donde tienen lugar frecuentemente procesos de integración de elementos retro-transponibles del genoma, como los LINEs⁴⁴⁰. Éstos pueden representar una fuente de variabilidad en el genoma, alterando la secuencia de ADN y provocando alteraciones en la expresión génica, a través de la formación de variantes estructurales *de novo*²¹⁴, que pueden inducir un efecto deletéreo, como la disrupción funcional de proteínas. Por otro lado, este tipo de cambios estructurales han sido un mecanismo clave en el proceso evolutivo, ya que seguramente ahn sido responsables de un gran número de mutaciones

estocásticas que, siendo favorables al organismo, se perpetúan dando una ventaja adaptativa al organismo. La acción de estos elementos en el cerebro humano podría explicar la presencia de mosaicismo somático entre regiones del mismo individuo originadas *de novo* durante el desarrollo o incluso en el transcurso de la vida adulta²¹³. Por ello, la acción de los transposones dotaría al SNC de un mecanismo único de remodelación del entramado genético en relación a estímulos externos y cambios en procesos neurobiológicos⁴⁴¹.

A partir de los resultados del array CGH, se seleccionaron 14 regiones para validar por métodos convencionales (PCR múltiple, MLPA y secuenciación), de las que tan solo dos regiones confirmaron la presencia de mosaicismo somático en la muestras analizadas. Este hecho, unido al elevado número de regiones resultantes, podría indicar la presencia de una considerable proporción de falsos positivos en el array CGH. Entre los factores que pueden influir en este resultado se encuentran la calidad del ADN genómico, la desviación estándar de cada hibridación y, en último término, los filtros empleados en la detección de regiones aberrantes del genoma. Todos ellos fueron controlados exhaustivamente para asegurar un elevado estándar de calidad en el estudio. No obstante, cabe la posibilidad de que los parámetros empleados en la detección de regiones aberrantes resultaran menos restrictivos de lo requerido. Al mismo tiempo, la limitada cantidad de ADN genómico de alta pureza, disponible para la validación de los resultados, ha dificultado la puesta a punto de ensayos adicionales que permitirían obtener una visión global de la validación.

El CNV identificado en ARHGEF10 mostró una ganancia de material genético en el hipotálamo y la protuberancia del individuo BK-1049. La amplificación de este individuo mediante PCR mostró la presencia de una deleción de alrededor de 2 kb, respecto al genoma de referencia (Hg18/NCBI36), que solapaba con la localización de CNVs previamente identificados y contenidos en DGV, en amígdala, corteza e hipocampo. En el cerebelo la secuencia no supera la longitud necesaria para abarcar dicha deleción, mientras que las muestras que presentaban la ganancia de material no pudieron ser secuenciadas. Este resultado sugiere que las muestras de hipotálamo y protuberancia no estaban delecionadas y por ello al compararlas frente a cerebelo, presentaban una duplicación. No obstante, la muestra de hipotálamo mostró una banda de amplificación en uno de los experimentos, por lo que al menos una proporción de las moléculas de ADN analizadas presentaba la deleción. En todo caso, debe tomarse en consideración la posibilidad de detectar alteraciones anómalas de la intensidad de sondas aisladas en regiones que presentan una misma tendencia. Paralelamente, se observó una ganancia de material genético en una región intrónica de aproximadamente 3 kb del gen IGNF1 en tres individuos (BK-1049 A, HT, P; BK-1082 A, C, SN; A06/00210 C, HC) frente a cerebelo. De todas las muestras analizadas, tan solo se obtuvo la secuencia de BK-1082 hipotálamo, protuberancia y cerebelo, que alineaban en el extremo 3' de la región analizada, comparado frente al genoma de referencia, en consonancia con los datos de aCGH que indicaban una ganancia de material en corteza, amigdala y sustancia nigra. Sin embargo, sería necesaria la caracterización de la deleción completa para concluir

que se trata de un caso de mosaicismo somático. Por otra parte, el diseño de una PCR larga que permitiera amplificar el fragmento completo de 3 kb en los individuos que no presentaban la deleción, podría mostrar la presencia de mosaicismo en este individuo. Asimismo, de las 10 regiones seleccionadas para validar por MLPA, ninguna mostró cambios en el número de copia entre muestras. En este caso concreto, resulta factible justificar que, la presencia de regiones aberrantes comunes a un número elevado de individuos y áreas del SNC puede ser indicativa de una alteración anómala de la intensidad de ciertas sondas del array CGH. Finalmente, debido a la elevada heterogeneidad del SNC, debe tomarse en consideración la posibilidad de que coexistencian en una región células "normales" y células con cambios estructurales, pudiendo afectar a los resultados del análisis.

La presencia de mosaicismo somático se confirmó en el corteza de dos individuos, que presentaban ganancias de material genético en regiones del genoma que solapan con el gen *ADAM5P3A* (A07/00043) y el gen *WWOX* (A06/00210, A07/00043). Este resultado, confirmado mediante PCR múltiple, mostró un aumento en el número de copias génicas de las muestras problema respecto a cerebelo y al resto de muestras analizadas del mismo individuo. La validación de este resultado en un número mayor de individuos –no hibridadas en el array CGH–, no proporcionó nuevos casos de mosaicismo somático de *WWOX* en la corteza de 36 individuos (18 EA tardía y 18 controles). Sin embargo, sería necesario aumentar el número de individuos. Posteriormente se calculó la distribución de los genotipos de *WWOX* en las muestras analizadas. En un total de 22 muestras de cerebro de EA se observó una disminución (22%) del genotipo delecionado (0 copias), respecto a los controles (44%), que de confirmarse en un tamaño de muestra mayor resultaría de gran interés en relación a la EA (Tabla 29).

El gen *WWOX* se localiza en una región inestable del genoma (16q), caracterizada por la presencia de deleciones homocigóticas y pérdida de la heterocigosidad⁴⁴²⁻⁴⁴⁴, y coincide con uno de los lugares frágiles más comunes del genoma, FRA16D^{445,446}. Este gen *WWOX* abarca una región de 1.1 Mb y está formado por nueve exones, cuya transcripción da lugar proteínas con dos dominios WW y un dominio de deshidrogenasa/reductasa (SDR)⁴⁴⁷⁻⁴⁴⁹. La deleción observada en el presente estudio abarca una región intrónica (intrón 4) de 12,4 kb, previamente caracterizada^{450,451}. Entre las funciones atribuidas a WWOX destaca la regulación de la apoptosis y la muerte celular la inhibición de la vía de señalización de Wnt, implicada en el desarrollo y mantenimiento de los tejidos, sobre todo en la formación del SNC. Su distribución en el SNC es ubicua, expresándose tanto en cerebelo, como en regiones corticales⁴⁵². Entre las nuevas funciones sugeridas para este gen se encuentra la regulación del metabolismo del colesterol^{453,454} y la implicación en la etiopatología de la EP⁴⁵⁵ y sobre todo de la EA^{386,456,457}. Recientemente, *Teng et al., 2012* han descrito el potencial papel de esta proteína en las vías patogénicas de la EA⁴⁵⁷. En este trabajo se discute la implicación de WWOX en tauopatías, en la supervivencia neuronal, el papel pro-apoptótico y su posible influencia en los procesos inflamatorios que comportan el

desencadenamiento de la enfermedad. En este contexto sería de gran interés evaluar la posible relación entre la deleción intrónica identificada y la expresión de la proteína en relación a la EA.

Entre los factores que pueden verse alterados por esta deleción se encuentran sitios de *splicing* alternativo y elementos reguladores de la transcripción, entre los que se encuentra la ADNm. En nuestro estudio se comparó el grado de metilación de 49 CpGs de *WWOX*, 14 de los cuales presentaron diferencias significativas entre casos y controles. Este análisis mostró que el 78% de las dianas CpG con diferencias significativas entre casos y controles, presentaban una disminución de la metilación respecto a los controles (Tabla Suplementaria 10), señalando un posible efecto en la regulación de esta proteína en relación a enfermedad de Alzheimer.

Conclusiones

- Estudio de marcadores epigenéticos en enfermedades neurodegenerativas: exploración preliminar de las diferencias del patrón de metilación del sistema nervioso central entre individuos afectados por enfermedad de Alzheimer de aparición tardía, enfermedad de Parkinson esporádica e individuos sin patología neurodegenerativa
 - a) El estudio del patrón de metilación del SNC confirma la presencia de un perfil de metilación específico para este órgano, siendo el cerebelo la región con un patrón de metilación más homogéneo entre muestras, frente a corteza, amígdala, hipocampo, hipotálamo, protuberancia y sustancia negra.
 - El análisis lineal discriminante permite identificar combinaciones de dianas CpGs cuyos valores de metilación permiten separar las muestras de cerebro analizadas por patología, y que se encuentran en regiones génicas relacionadas con procesos neurodegenerativos.
 - c) Los datos de reproduciblidad entre réplicas y la concordancia entre métodos de análisis, arrays de metilación y pirosecuenciación, confirman en siete loci la fiabilidad del método de análisis empleado para la detección del metiloma humano en muestras de cerebro.

2. Estudio global de las alteraciones del patrón de metilación de ADN asociadas a estructuras del sistema nervioso central en enfermedad de Alzheimer de aparición tardía

- a) El patrón de metilación en muestras de 40 individuos analizados confirma los resultados obtenidos mediante arrays de metilación en el cerebelo, hipometilado respecto a corteza, amígdala e hipocampo.
- b) El análisis lineal discriminante, de todas las muestras de forma conjunta y de las muestras de cerebelo y de las de regiones anteriores del cerebro (corteza, amígdala e hipocampo) por separado, permitió identificar combinaciones de CpGs que separaban las muestras por rango de edad, región del sistema nervioso central y por patología.
- c) El análisis de las diferencias de metilación entre muestras de EA tardía y controles mostró más de mil dianas CpG potencialmente hipometiladas en EA tardía en el cerebelo, de las que un centenar contenían variaciones para dos a ocho CpGs por región.
- d) La validación del impacto funcional de las diferencias de metilación observadas en cuatro dianas CpGs seleccionadas no confirmó la existencia de diferencias significativas de metilación entre casos y controles, sólo detectando una tendencia en el gen HIF1A.

3. Detección de mosaicismo somático en el sistema nervioso central

- a) La hibridación de ADN de corteza, amígdala, hipocampo, hipotálamo, protuberancia y sustancia negra de diez individuos respecto al de cerebelo de cada uno identificó un total de 864 ganancias y pérdidas de material genético distribuídas a lo largo del genoma, sugiriendo una notable variabilidad a nivel estructural entre distintas áreas del SNC.
- b) La validación por PCR múltiple de los cambios estructurales identificados mediante arrays, identificó dos individuos con mosaicismo somático para ADAM5P3A y WWOX en corteza cerebral respecto al resto de áreas analizadas, indicando que las diferencias estructurales entre distintas áreas del cerebro afectan genes con importantes papeles evolutivos.
- c) La replicación de WWOX en un número adicional de individuos no mostró nuevos casos de mosaicismo somático, pero indicó una disminución del genotipo delecionado en las muestras de EA tardía.

Bibliografía

- 1 Przedborski, S., Vila, M. & Jackson-Lewis, V. Neurodegeneration: what is it and where are we? *J Clin Invest* **111**, 3-10, doi:10.1172/JCI17522 (2003).
- 2 Economic, U. N. D. o., Division, S. A. P. & Nations, U. *World Population Ageing 2009*. (United Nations, Department of Economic and Social Affairs, Population Division, 2010).
- Brown, R. C., Lockwood, A. H. & Sonawane, B. R. Neurodegenerative diseases: an overview of environmental risk factors. *Environ Health Perspect* **113**, 1250-1256 (2005).
- 4 Worl Health Organization, W. H. O., *Neurological Disorders: Public Health Challenges*. (World Health Organization, 2006).
- 5 Ferri, C. P. *et al.* Global prevalence of dementia: a Delphi consensus study. *Lancet* **366**, 2112-2117, doi:10.1016/S0140-6736(05)67889-0 (2005).
- 6 Taylor, J. P., Hardy, J. & Fischbeck, K. H. Toxic proteins in neurodegenerative disease. *science* **296**, 1991-1995, doi:10.1126/science.1067122 (2002).
- 7 Bertram, L. & Tanzi, R. E. The genetic epidemiology of neurodegenerative disease. *J Clin Invest* **115**, 1449-1457, doi:10.1172/JCl24761 (2005).
- 8 Armstrong, R. A., Lantos, P. L. & Cairns, N. J. Overlap between neurodegenerative disorders. *Neuropathology* **25**, 111-124 (2005).
- 9 Jacobs, J. W., Bernhard, M. R., Delgado, A. & Strain, J. J. Screening for organic mental syndromes in the medically ill. *Ann Intern Med* **86**, 40-46 (1977).
- 10 Frances, A. & Ross, R. *Dsm-Iv-Tr Case Studies: A Clinical Guide to Differential Diagnosis*. (American Psychiatric Pub., 2001).
- 11 Pascual, J. in *Medicina interna* (ed Guardia J. Rodés J.) 1998-2017 (Masson, 2004).
- 12 Lopez-Pousa, S. in *Enfermedad de Alzheimer y otras demencias* (ed Lopez-Pousa S. Alberca Serrano R.) Ch. 13, 33-42 (Médica Panamericana, 2006).
- 13 Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N. & Murtagh, F. R. An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". *Clin Anat* **8**, 429-431, doi:10.1002/ca.980080612 (1995).
- 14 Graeber, M. B. *et al.* Rediscovery of the case described by Alois Alzheimer in 1911: historical, histological and molecular genetic analysis. *Neurogenetics* **1**, 73-80 (1997).
- 15 Burns, A., Byrne, E. J. & Maurer, K. Alzheimer's disease. *Lancet* **360**, 163-165, doi:10.1016/S0140-6736(02)09420-5 (2002).
- 16 de Lau, L. M. & Breteler, M. M. Epidemiology of Parkinson's disease. *Lancet Neurol* **5**, 525-535, doi:S1474-4422(06)70471-9 [pii] 10.1016/S1474-4422(06)70471-9 (2006).
- 17 Beyreuther, K. & Masters, C. L. Amyloid precursor protein (APP) and beta A4 amyloid in the etiology of Alzheimer's disease: precursor-product relationships in the derangement of neuronal function. *Brain Pathol* **1**, 241-251 (1991).
- 18 Delacourte, A. *et al.* The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease. *Neurology* **52**, 1158-1165 (1999).
- 19 Fox, N. C., Warrington, E. K. & Rossor, M. N. Serial magnetic resonance imaging of cerebral atrophy in preclinical Alzheimer's disease. *Lancet* **353**, 2125, doi:10.1016/S0140-6736(99)00496-1 (1999).
- 20 Haroutunian, V. *et al.* Regional distribution of neuritic plaques in the nondemented elderly and subjects with very mild Alzheimer disease. *Arch Neurol* **55**, 1185-1191 (1998).
- 21 McKhann, G. *et al.* Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. *Neurology* **34**, 939-944 (1984).
- 22 Khachaturian, Z. S. Diagnosis of Alzheimer's disease. Arch Neurol 42, 1097-1105 (1985).
- 23 Mirra, S. S. *et al.* The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. *Neurology* **41**, 479-486 (1991).
- 24 Consensus recommendations for the postmortem diagnosis of Alzheimer's disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer's Disease. *Neurobiol Aging* **18**, S1-2 (1997).
- 25 Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. *Acta Neuropathol* **82**, 239-259 (1991).
- 26 Serrano, R. A. in *Enfermedad de Alzheimer y otras demencias* (ed Lopez-Pousa S. Alberca Serrano R.) Ch. 20, 225-242 (Médica Panamericana, 2006).

- 27 Campion, D. *et al.* Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. *Am J Hum Genet* **65**, 664-670, doi:10.1086/302553 (1999).
- 28 Muniain, A. L. in *Enfermedad de Alzheimer y otras demencias* (ed Lopez-Pousa S. Alberca Serrano R.) Ch. 14, 155-170 (Médica Panamericana, 2006).
- 29 Mattson, M. P. & Magnus, T. Ageing and neuronal vulnerability. *Nat Rev Neurosci* 7, 278-294, doi:10.1038/nrn1886 (2006).
- 30 Silverman, J. M., Ciresi, G., Smith, C. J., Marin, D. B. & Schnaider-Beeri, M. Variability of familial risk of Alzheimer disease across the late life span. *Arch Gen Psychiatry* **62**, 565-573, doi:10.1001/archpsyc.62.5.565 (2005).
- 31 Hy, L. X. & Keller, D. M. Prevalence of AD among whites: a summary by levels of severity. *Neurology* **55**, 198-204 (2000).
- 32 Lobo, A. *et al.* Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. *Neurology* **54**, S4-9 (2000).
- Gao, S., Hendrie, H. C., Hall, K. S. & Hui, S. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. *Arch Gen Psychiatry* **55**, 809-815 (1998).
- 34 Burns, A. & Iliffe, S. Alzheimer's disease. *BMJ* **338**, b158 (2009).
- 35 Lahiri, D. K., Sambamurti, K. & Bennett, D. A. Apolipoprotein gene and its interaction with the environmentally driven risk factors: molecular, genetic and epidemiological studies of Alzheimer's disease. *Neurobiol Aging* 25, 651-660, doi:10.1016/j.neurobiolaging.2003.12.024 S0197458004001010 [pii] (2004).
- 36 Luchsinger, J. A. & Gustafson, D. R. Adiposity and Alzheimer's disease. *Curr Opin Clin Nutr Metab Care* **12**, 15-21, doi:10.1097/MCO.0b013e32831c8c71 00075197-200901000-00004 [pii] (2009).
- Wilson, R. S. *et al.* Chronic psychological distress and risk of Alzheimer's disease in old age. *Neuroepidemiology* **27**, 143-153, doi:NED2006027003143 [pii] 10.1159/000095761 (2006).
- 38 Wu, J. The Environment, Epigenetics and Amyloidogenesis. *J Mol Neurosci* **34**, 1–7 (2008).
- 39 Perry, V. H., Cunningham, C. & Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. *Nat Rev Immunol* **7**, 161-167, doi:nri2015 [pii] 10.1038/nri2015 (2007).
- 40 Scarmeas, N. *et al.* Physical activity, diet, and risk of Alzheimer disease. *JAMA* **302**, 627-637, doi:302/6/627 [pii] 10.1001/jama.2009.1144 (2009).
- 41 Cummings, J. L. Alzheimer's disease. *N Engl J Med* **351**, 56-67, doi:10.1056/NEJMra040223 (2004).
- 42 Santibanez, M., Bolumar, F. & Garcia, A. M. Occupational risk factors in Alzheimer's disease: a review assessing the quality of published epidemiological studies. *Occup Environ Med* **64**, 723-732 (2007).
- 43 Seshadri, S. *et al.* Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA **303**, 1832-1840, doi:303/18/1832 [pii] 10.1001/jama.2010.574 (2010).
- 44 Wang, S. C., Oelze, B. & Schumacher, A. Age-specific epigenetic drift in late-onset Alzheimer's disease. *PLoS One* **3**, e2698 (2008).
- 45 Hayden, K. M. *et al.* Occupational exposure to pesticides increases the risk of incident AD: the Cache County study. *Neurology* **74**, 1524-1530, doi:10.1212/WNL.0b013e3181dd4423 (2010).
- 46 Van Den Heuvel, C., Thornton, E. & Vink, R. Traumatic brain injury and Alzheimer's disease: a review. *Prog Brain Res* **161**, 303-316, doi:S0079-6123(06)61021-2 [pii] 10.1016/S0079-6123(06)61021-2 (2007).
- 47 Letenneur, L. Risk of dementia and alcohol and wine consumption: a review of recent results. *Biol Res* **37**, 189-193 (2004).
- 48 Garcia, A. M., Ramon-Bou, N. & Porta, M. Isolated and joint effects of tobacco and alcohol consumption on risk of Alzheimer's disease. *J Alzheimers Dis* **20**, 577-586, doi:10.3233/JAD-2010-1399 (2010).
- 49 Harwood, D. G. *et al.* The effect of alcohol and tobacco consumption, and apolipoprotein E genotype, on the age of onset in Alzheimer's disease. *Int J Geriatr Psychiatry* **25**, 511-518, doi:10.1002/gps.2372 (2010).

- 50 Allam, M. F., Campbell, M. J., Hofman, A., Del Castillo, A. S. & Fernandez-Crehuet Navajas, R. Smoking and Parkinson's disease: systematic review of prospective studies. *Mov Disord* **19**, 614-621, doi:10.1002/mds.20029 (2004).
- 51 Hu, G., Bidel, S., Jousilahti, P., Antikainen, R. & Tuomilehto, J. Coffee and tea consumption and the risk of Parkinson's disease. *Mov Disord* **22**, 2242-2248, doi:10.1002/mds.21706 (2007).
- 52 Gao, X. *et al.* Prospective study of dietary pattern and risk of Parkinson disease. *Am J Clin Nutr* **86**, 1486-1494, doi:86/5/1486 [pii] (2007).
- 53 Sanyal, J. *et al.* Environmental and familial risk factors of Parkinsons disease: case-control study. *Can J Neurol Sci* **37**, 637-642, doi:UP67W190K82H15U3 [pii].
- 54 Priyadarshi, A., Khuder, S. A., Schaub, E. A. & Priyadarshi, S. S. Environmental risk factors and Parkinson's disease: a metaanalysis. *Environ Res* **86**, 122-127, doi:10.1006/enrs.2001.4264 S 0013-9351(01)94264-1 [pii] (2001).
- 55 Firestone, J. A. *et al.* Pesticides and risk of Parkinson disease: a population-based case-control study. *Arch Neurol* **62**, 91-95, doi:62/1/91 [pii] 10.1001/archneur.62.1.91 (2005).
- 56 Khandhar, S. M. & Marks, W. J. Epidemiology of Parkinson's disease. *Dis Mon* **53**, 200-205, doi:S0011-5029(07)00004-1 [pii] 10.1016/j.disamonth.2007.02.001 (2007).
- 57 Parkinson, J. An essay on the shaking palsy. 1817. *J Neuropsychiatry Clin Neurosci* 14, 223-236; discussion 222 (2002).
- 58 Nussbaum, R. L. & Ellis, C. E. Alzheimer's disease and Parkinson's disease. *N Engl J Med* **348**, 1356-1364, doi:10.1056/NEJM2003ra020003 (2003).
- 59 Van Den Eeden, S. K. *et al.* Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. *Am J Epidemiol* **157**, 1015-1022 (2003).
- 60 Braak, H. *et al.* Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages). *J Neurol* **249 Suppl 3**, III/1-5 (2002).
- 61 Gelb, D. J., Oliver, E. & Gilman, S. Diagnostic criteria for Parkinson disease. *Arch Neurol* **56**, 33-39 (1999).
- 62 Yankner, B. A., Lu, T. & Loerch, P. The aging brain. *Annu Rev Pathol* **3**, 41-66, doi:10.1146/annurev.pathmechdis.2.010506.092044 (2008).
- 63 Lotharius, J. & Brundin, P. Pathogenesis of Parkinson's disease: dopamine, vesicles and alphasynuclein. *Nat Rev Neurosci* **3**, 932-942, doi:10.1038/nrn983nrn983 [pii] (2002).
- 64 Yates, D. Neurodegenerative networking. *Nat Rev Neurosci* **13**, 288, doi:10.1038/nrn3248 (2012).
- 65 Priller, C. *et al.* Synapse formation and function is modulated by the amyloid precursor protein. *J Neurosci* **26**, 7212-7221, doi:10.1523/JNEUROSCI.1450-06.2006 (2006).
- 66 Turner, P. R., O'Connor, K., Tate, W. P. & Abraham, W. C. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. *Prog Neurobiol* **70**, 1-32 (2003).
- 67 Duce, J. A. *et al.* Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. *Cell* **142**, 857-867, doi:10.1016/j.cell.2010.08.014 (2010).
- Tabaton, M., Zhu, X., Perry, G., Smith, M. A. & Giliberto, L. Signaling effect of amyloid-beta(42) on the processing of AbetaPP. *Exp Neurol* 221, 18-25, doi:10.1016/j.expneurol.2009.09.002 (2010).
- 69 Bogoyevitch, M. A., Boehm, I., Oakley, A., Ketterman, A. J. & Barr, R. K. Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential. *Biochim Biophys Acta* **1697**, 89-101, doi:10.1016/j.bbapap.2003.11.016 (2004).
- 70 Baruch-Suchodolsky, R. & Fischer, B. Abeta40, either soluble or aggregated, is a remarkably potent antioxidant in cell-free oxidative systems. *Biochemistry* **48**, 4354-4370, doi:10.1021/bi802361k (2009).
- 71 Zou, K., Gong, J. S., Yanagisawa, K. & Michikawa, M. A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. *J Neurosci* **22**, 4833-4841 (2002).
- 72 Yao, Z. X. & Papadopoulos, V. Function of beta-amyloid in cholesterol transport: a lead to neurotoxicity. *FASEB J* **16**, 1677-1679, doi:10.1096/fj.02-0285fje (2002).
- 73 Soscia, S. J. *et al.* The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. *PLoS One* **5**, e9505, doi:10.1371/journal.pone.0009505 (2010).
- 74 Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. *science* **297**, 353-356, doi:10.1126/science.1072994 (2002).

- Tam, J. H. & Pasternak, S. H. Amyloid and Alzheimer's disease: inside and out. *Can J Neurol Sci* 39, 286-298 (2012).
- 76 Reitz, C. Alzheimer's disease and the amyloid cascade hypothesis: a critical review. *Int J Alzheimers Dis* **2012**, 369808, doi:10.1155/2012/369808 (2012).
- 77 Tuppo, E. E. & Arias, H. R. The role of inflammation in Alzheimer's disease. *Int J Biochem Cell Biol* **37**, 289-305, doi:10.1016/j.biocel.2004.07.009 (2005).
- 78 Aliev, G. *et al.* The role of oxidative stress in the pathophysiology of cerebrovascular lesions in Alzheimer's disease. *Brain Pathol* **12**, 21-35 (2002).
- 79 de la Torre, J. C. Vascular basis of Alzheimer's pathogenesis. *Ann N Y Acad Sci* **977**, 196-215 (2002).
- 80 Hartmann, T. Role of amyloid precursor protein, amyloid-beta and gamma-secretase in cholesterol maintenance. *Neurodegener Dis* **3**, 305-311, doi:10.1159/000095271 (2006).
- 81 Bush, A. I. The metallobiology of Alzheimer's disease. *Trends Neurosci* **26**, 207-214, doi:10.1016/S0166-2236(03)00067-5 (2003).
- 82 Neve, R. L. & McPhie, D. L. The cell cycle as a therapeutic target for Alzheimer's disease. *Pharmacol Ther* **111**, 99-113, doi:10.1016/j.pharmthera.2005.09.005 (2006).
- 83 Mohandas, E., Rajmohan, V. & Raghunath, B. Neurobiology of Alzheimer's disease. *Indian J Psychiatry* **51**, 55-61, doi:10.4103/0019-5545.44908 (2009).
- 84 Bossy-Wetzel, E., Schwarzenbacher, R. & Lipton, S. A. Molecular pathways to neurodegeneration. *Nat Med* **10 Suppl**, S2-9, doi:10.1038/nm1067 (2004).
- 85 Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H. & Del Tredici, K. Stages in the development of Parkinson's disease-related pathology. *Cell Tissue Res* **318**, 121-134, doi:10.1007/s00441-004-0956-9 (2004).
- Schapira, A. H. Neurobiology and treatment of Parkinson's disease. *Trends Pharmacol Sci* **30**, 41-47, doi:10.1016/j.tips.2008.10.005 (2009).
- 87 Schulz, J. B. Mechanisms of neurodegeneration in idiopathic Parkinson's disease. *Parkinsonism Relat Disord* **13 Suppl 3**, S306-308, doi:10.1016/S1353-8020(08)70021-X (2007).
- 88 Hilker, R. *et al.* Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. *Neurology* **65**, 1716-1722, doi:10.1212/01.wnl.0000191154.78131.f6 (2005).
- 89 Calabresi, P., Picconi, B., Parnetti, L. & Di Filippo, M. A convergent model for cognitive dysfunctions in Parkinson's disease: the critical dopamine-acetylcholine synaptic balance. *Lancet Neurol* **5**, 974-983, doi:10.1016/S1474-4422(06)70600-7 (2006).
- 90 Cookson, M. R. & van der Brug, M. Cell systems and the toxic mechanism(s) of alpha-synuclein. Exp Neurol **209**, 5-11, doi:10.1016/j.expneurol.2007.05.022 (2008).
- 91 Obeso, J. A. *et al.* Missing pieces in the Parkinson's disease puzzle. *Nat Med* **16**, 653-661, doi:10.1038/nm.2165 (2010).
- 92 Lander, E. S. *et al.* Initial sequencing and analysis of the human genome. *Nature* **409**, 860-921, doi:10.1038/35057062 (2001).
- 93 Venter, J. C. *et al.* The sequence of the human genome. *science* **291**, 1304-1351, doi:10.1126/science.1058040 (2001).
- 94 Turnpenny, P. Emery, elementos de genética médica. (Elsevier Health Sciences, 2009).
- 95 Hartong, D. T., Berson, E. L. & Dryja, T. P. Retinitis pigmentosa. *Lancet* **368**, 1795-1809, doi:10.1016/S0140-6736(06)69740-7 (2006).
- 96 Muller, J. *et al.* Identification of 28 novel mutations in the Bardet-Biedl syndrome genes: the burden of private mutations in an extensively heterogeneous disease. *Hum Genet* **127**, 583-593, doi:10.1007/s00439-010-0804-9 (2010).
- 97 Weeks, D. E. & Lathrop, G. M. Polygenic disease: methods for mapping complex disease traits. *Trends Genet* **11**, 513-519 (1995).
- 98 Cordell, H. J. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. *Hum Mol Genet* **11**, 2463-2468 (2002).
- 99 Carlborg, O. & Haley, C. S. Epistasis: too often neglected in complex trait studies? *Nature reviews* **5**, 618-625, doi:10.1038/nrg1407 (2004).
- 100 Mukherjee, B. *et al.* Principal interactions analysis for repeated measures data: application to gene-gene and gene-environment interactions. *Stat Med*, doi:10.1002/sim.5315 (2012).
- 101 Steen, K. V. Travelling the world of gene-gene interactions. *Brief Bioinform* **13**, 1-19, doi:10.1093/bib/bbr012 (2012).

- 102 de Koning, D. J. & Haley, C. S. Genetical genomics in humans and model organisms. *Trends Genet* **21**, 377-381, doi:10.1016/j.tig.2005.05.004 (2005).
- 103 Mehta, D. *et al.* Impact of common regulatory single-nucleotide variants on gene expression profiles in whole blood. *Eur J Hum Genet*, doi:10.1038/ejhg.2012.106 (2012).
- 104 Chakravarti, A. Population genetics--making sense out of sequence. *Nat Genet* **21**, 56-60, doi:10.1038/4482 (1999).
- 105 Corder, E. H. *et al.* Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. *science* **261**, 921-923 (1993).
- 106 Altshuler, D. *et al.* The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. *Nat Genet* **26**, 76-80, doi:10.1038/79216 (2000).
- 107 Bell, G. I., Horita, S. & Karam, J. H. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. *Diabetes* **33**, 176-183 (1984).
- 108 Sherva, R. & Farrer, L. A. Power and pitfalls of the genome-wide association study approach to identify genes for Alzheimer's disease. *Curr Psychiatry Rep* **13**, 138-146, doi:10.1007/s11920-011-0184-4 (2011).
- 109 Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. *Nat Genet* **40**, 695-701, doi:10.1038/ng.f.136 (2008).
- 110 Schork, N. J., Murray, S. S., Frazer, K. A. & Topol, E. J. Common vs. rare allele hypotheses for complex diseases. *Curr Opin Genet Dev* **19**, 212-219, doi:10.1016/j.gde.2009.04.010 (2009).
- 111 Scheuner, D. *et al.* Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. *Nat Med* **2**, 864-870 (1996).
- 112 Rovelet-Lecrux, A. *et al.* APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. *Nat Genet* **38**, 24-26, doi:ng1718 [pii] 10.1038/ng1718 (2006).
- 113 Bird, T. D. Genetic factors in Alzheimer's disease. *N Engl J Med* **352**, 862-864, doi:10.1056/NEJMp058027 (2005).
- 114 Harold, D. *et al.* Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. *Nat Genet* **41**, 1088-1093, doi:10.1038/ng.440 (2009).
- 115 Lambert, J. C. *et al.* Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. *Nat Genet* **41**, 1094-1099, doi:10.1038/ng.439 (2009).
- 116 Naj, A. C. *et al.* Dementia revealed: novel chromosome 6 locus for late-onset Alzheimer disease provides genetic evidence for folate-pathway abnormalities. *PLoS Genet* **6**, doi:10.1371/journal.pgen.1001130 (2010).
- 117 Seshadri, S. *et al.* Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. *N Engl J Med* **346**, 476-483, doi:10.1056/NEJMoa011613 (2002).
- 118 Kronenberg, G., Colla, M. & Endres, M. Folic acid, neurodegenerative and neuropsychiatric disease. *Curr Mol Med* **9**, 315-323 (2009).
- 119 Ramirez-Lorca, R. *et al.* The MTHFD1L gene rs11754661 marker is not associated with Alzheimer's disease in a sample of the Spanish population. *J Alzheimers Dis* **25**, 47-50, doi:10.3233/JAD-2011-101983 (2011).
- 120 Ren, R. J. *et al.* The MTHFD1L gene rs11754661 marker is associated with susceptibility to Alzheimer's disease in the Chinese Han population. *J Neurol Sci* **308**, 32-34, doi:10.1016/j.jns.2011.06.036 (2011).
- 121 Ma, X. Y. *et al.* Replication of the MTHFD1L gene association with late-onset Alzheimer's disease in a Northern Han Chinese population. *J Alzheimers Dis* **29**, 521-525, doi:10.3233/JAD-2011-111847 (2012).
- 122 Iraola-Guzman, S., Estivill, X. & Rabionet, R. DNA methylation in neurodegenerative disorders: a missing link between genome and environment? *Clin Genet* **80**, 1-14, doi:10.1111/j.1399-0004.2011.01673.x (2011).
- 123 Goate, A. *et al.* Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. *Nature* **349**, 704-706, doi:10.1038/349704a0 (1991).
- 124 Rogaev, E. I. *et al.* Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. *Nature* **376**, 775-778, doi:10.1038/376775a0 (1995).
- 125 Sherrington, R. *et al.* Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. *Nature* **375**, 754-760, doi:10.1038/375754a0 (1995).

- 126 Levy-Lahad, E. *et al.* Candidate gene for the chromosome 1 familial Alzheimer's disease locus. *science* **269**, 973-977 (1995).
- 127 Grupe, A. *et al.* Evidence for novel susceptibility genes for late-onset Alzheimer's disease from a genome-wide association study of putative functional variants. *Hum Mol Genet* **16**, 865-873, doi:ddm031 [pii] 10.1093/hmg/ddm031 (2007).
- 128 Kehoe, P. G. *et al.* Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. *Nat Genet* **21**, 71-72, doi:10.1038/5009 (1999).
- 129 Gunther, C. *et al.* Possible association of mitochondrial transcription factor A (TFAM) genotype with sporadic Alzheimer disease. *Neurosci Lett* **369**, 219-223, doi:S0304-3940(04)00953-X [pii] 10.1016/j.neulet.2004.07.070 (2004).
- 130 Crawford, F. C. *et al.* A polymorphism in the cystatin C gene is a novel risk factor for late-onset Alzheimer's disease. *Neurology* **55**, 763-768 (2000).
- 131 Scherzer, C. R. *et al.* Loss of apolipoprotein E receptor LR11 in Alzheimer disease. *Arch Neurol* **61**, 1200-1205, doi:10.1001/archneur.61.8.120061/8/1200 [pii] (2004).
- 132 Cook, L. J. *et al.* Candidate gene association studies of the alpha 4 (CHRNA4) and beta 2 (CHRNB2) neuronal nicotinic acetylcholine receptor subunit genes in Alzheimer's disease. *Neurosci Lett* **358**, 142-146, doi:10.1016/j.neulet.2004.01.016S0304394004000709 [pii] (2004).
- 133 Grupe, A. *et al.* A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease. *Am J Hum Genet* **78**, 78-88, doi:S0002-9297(07)60807-6 [pii] 10.1086/498851 (2006).
- 134 Biffi, A. *et al.* Genetic variation and neuroimaging measures in Alzheimer disease. *Arch Neurol* **67**, 677-685, doi:67/6/677 [pii] 10.1001/archneurol.2010.108 (2010).
- 135 Reiman, E. M. *et al.* GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. *Neuron* **54**, 713-720, doi:S0896-6273(07)00379-0 [pii] 10.1016/j.neuron.2007.05.022 (2007).
- 136 Kruger, R. *et al.* Increased susceptibility to sporadic Parkinson's disease by a certain combined alpha-synuclein/apolipoprotein E genotype. *Ann Neurol* **45**, 611-617 (1999).
- 137 Skipper, L. *et al.* Linkage disequilibrium and association of MAPT H1 in Parkinson disease. *Am J Hum Genet* **75**, 669-677, doi:10.1086/424492 (2004).
- 138 Gilks, W. P. *et al.* A common LRRK2 mutation in idiopathic Parkinson's disease. *Lancet* **365**, 415-416, doi:10.1016/S0140-6736(05)17830-1 (2005).
- 139 Lwin, A., Orvisky, E., Goker-Alpan, O., LaMarca, M. E. & Sidransky, E. Glucocerebrosidase mutations in subjects with parkinsonism. *Mol Genet Metab* **81**, 70-73 (2004).
- 140 Polymeropoulos, M. H. *et al.* Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. *science* **276**, 2045-2047 (1997).
- 141 Ibanez, P. *et al.* Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. *Lancet* **364**, 1169-1171, doi:10.1016/S0140-6736(04)17104-3 (2004).
- 142 Chartier-Harlin, M. C. *et al.* Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. *Lancet* **364**, 1167-1169, doi:10.1016/S0140-6736(04)17103-1 (2004).
- 143Fuchs, J. et al. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and
triplication. Neurology 68, 916-922, doi:01.wnl.0000254458.17630.c5 [pii]
10.1212/01.wnl.0000254458.17630.c5 (2007).
- 144 Zimprich, A. *et al.* The PARK8 locus in autosomal dominant parkinsonism: confirmation of linkage and further delineation of the disease-containing interval. *Am J Hum Genet* **74**, 11-19, doi:10.1086/380647 (2004).
- 145 Kitada, T. *et al.* Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. *Nature* **392**, 605-608, doi:10.1038/33416 (1998).
- 146 Bonifati, V. *et al.* Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. *science* **299**, 256-259, doi:10.1126/science.1077209 (2003).
- 147 Valente, E. M. *et al.* Hereditary early-onset Parkinson's disease caused by mutations in PINK1. *science* **304**, 1158-1160, doi:10.1126/science.1096284 (2004).
- 148 Leroy, E. *et al.* The ubiquitin pathway in Parkinson's disease. *Nature* **395**, 451-452, doi:10.1038/26652 (1998).
- 149 Maraganore, D. M. *et al.* Case-control study of the ubiquitin carboxy-terminal hydrolase L1 gene in Parkinson's disease. *Neurology* **53**, 1858-1860 (1999).
- 150 Paisan-Ruiz, C. *et al.* Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. *Neuron* **44**, 595-600, doi:S0896627304006890 [pii] 10.1016/j.neuron.2004.10.023 (2004).

- 151 Lautier, C. *et al.* Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease. *Am J Hum Genet* **82**, 822-833, doi:S0002-9297(08)00164-X [pii] 10.1016/j.ajhg.2008.01.015 (2008).
- 152 Strauss, K. M. *et al.* Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. *Hum Mol Genet* **14**, 2099-2111, doi:ddi215 [pii] 10.1093/hmg/ddi215 (2005).
- 153 Kruger, R. *et al.* A large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson's disease. *Neurobiol Aging*, doi:S0197-4580(09)00391-1 [pii] 10.1016/j.neurobiolaging.2009.11.021 (2009).
- 154 Ramirez, A. *et al.* Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. *Nat Genet* **38**, 1184-1191, doi:10.1038/ng1884 (2006).
- 155 Morgan, N. V. *et al.* PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. *Nat Genet* **38**, 752-754, doi:ng1826 [pii] 10.1038/ng1826 (2006).
- 156 Di Fonzo, A. *et al.* FBXO7 mutations cause autosomal recessive, early-onset parkinsonianpyramidal syndrome. *Neurology* **72**, 240-245, doi:10.1212/01.wnl.0000338144.10967.2b (2009).
- 157 Simon-Sanchez, J. *et al.* Genome-wide association study reveals genetic risk underlying Parkinson's disease. *Nat Genet* **41**, 1308-1312, doi:ng.487 [pii] 10.1038/ng.487 (2009).
- Hamza, T. H. *et al.* Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease. *Nat Genet* **42**, 781-785, doi:ng.642 [pii] 10.1038/ng.642 (2010).
- 159 Levy, S. *et al.* The diploid genome sequence of an individual human. *PLoS Biol* **5**, e254, doi:10.1371/journal.pbio.0050254 (2007).
- 160 Metzker, M. L. Sequencing technologies the next generation. *Nature reviews* **11**, 31-46, doi:10.1038/nrg2626 (2010).
- 161 Siva, N. 1000 Genomes project. Nat Biotechnol 26, 256, doi:10.1038/nbt0308-256b (2008).
- 162 Via, M., Gignoux, C. & Burchard, E. G. The 1000 Genomes Project: new opportunities for research and social challenges. *Genome Med* **2**, 3, doi:10.1186/gm124 (2010).
- 163 Maher, B. Personal genomes: The case of the missing heritability. *Nature* **456**, 18-21, doi:10.1038/456018a (2008).
- 164 Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. *Am J Hum Genet* **90**, 7-24, doi:10.1016/j.ajhg.2011.11.029 (2012).
- 165 Tsuji, S. Genetics of neurodegenerative diseases: insights from high-throughput resequencing. *Hum Mol Genet* **19**, R65-70, doi:10.1093/hmg/ddq162 (2010).
- 166 Feuk, L., Carson, A. R. & Scherer, S. W. Structural variation in the human genome. *Nature reviews* **7**, 85-97, doi:10.1038/nrg1767 (2006).
- 167 Hurles, M. E., Dermitzakis, E. T. & Tyler-Smith, C. The functional impact of structural variation in humans. *Trends Genet* **24**, 238-245, doi:10.1016/j.tig.2008.03.001 (2008).
- 168 Bauman, J. G., Wiegant, J., Borst, P. & van Duijn, P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. *Exp Cell Res* **128**, 485-490 (1980).
- 169 Bettio, D. *et al.* FISH analysis in Prader-Willi and Angelman syndrome patients. *Am J Med Genet* **56**, 224-228, doi:10.1002/ajmg.1320560222 (1995).
- 170 Patel, P. I. *et al.* The gene for the peripheral myelin protein PMP-22 is a candidate for Charcot-Marie-Tooth disease type 1A. *Nat Genet* **1**, 159-165, doi:10.1038/ng0692-159 (1992).
- 171 Bartsch, O. *et al.* DiGeorge/velocardiofacial syndrome: FISH studies of chromosomes 22q11 and 10p14, and clinical reports on the proximal 22q11 deletion. *Am J Med Genet A* **117A**, 1-5, doi:10.1002/ajmg.a.10914 (2003).
- 172 Peoples, R. *et al.* A physical map, including a BAC/PAC clone contig, of the Williams-Beuren syndrome--deletion region at 7q11.23. *Am J Hum Genet* **66**, 47-68, doi:10.1086/302722 (2000).
- 173 lafrate, A. J. *et al.* Detection of large-scale variation in the human genome. *Nat Genet* **36**, 949-951, doi:10.1038/ng1416 (2004).
- 174 Sebat, J. *et al.* Large-scale copy number polymorphism in the human genome. *science* **305**, 525-528, doi:10.1126/science.1098918 (2004).
- 175 Redon, R. *et al.* Global variation in copy number in the human genome. *Nature* **444**, 444-454, doi:nature05329 [pii] 10.1038/nature05329 (2006).

- 176 Beckmann, J. S., Estivill, X. & Antonarakis, S. E. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. *Nature reviews* **8**, 639-646, doi:nrg2149 [pii] 10.1038/nrg2149 (2007).
- 177 Marioni, J. C. *et al.* Breaking the waves: improved detection of copy number variation from microarray-based comparative genomic hybridization. *Genome Biol* **8**, R228, doi:10.1186/gb-2007-8-10-r228 (2007).
- 178 Diaz de Stahl, T. *et al.* Profiling of copy number variations (CNVs) in healthy individuals from three ethnic groups using a human genome 32 K BAC-clone-based array. *Hum Mutat* **29**, 398-408, doi:10.1002/humu.20659 (2008).
- 179 McCarroll, S. A. *et al.* Integrated detection and population-genetic analysis of SNPs and copy number variation. *Nat Genet* **40**, 1166-1174, doi:10.1038/ng.238 (2008).
- 180 Butler, H. & Ragoussis, J. BeadArray-based genotyping. *Methods Mol Biol* **439**, 53-74, doi:10.1007/978-1-59745-188-8_4 (2008).
- 181 Haraksingh, R. R., Abyzov, A., Gerstein, M., Urban, A. E. & Snyder, M. Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms. *PLoS One* 6, e27859, doi:10.1371/journal.pone.0027859 (2011).
- 182 Feuk, L., Marshall, C. R., Wintle, R. F. & Scherer, S. W. Structural variants: changing the landscape of chromosomes and design of disease studies. *Hum Mol Genet* **15 Spec No 1**, R57-66, doi:10.1093/hmg/ddl057 (2006).
- 183 Sellner, L. N. & Taylor, G. R. MLPA and MAPH: new techniques for detection of gene deletions. *Hum Mutat* **23**, 413-419, doi:10.1002/humu.20035 (2004).
- 184 Wyatt, A. W. & Ragge, N. MLGA: a cost-effective approach to the diagnosis of gene deletions in eye development anomalies. *Mol Vis* **15**, 1445-1448 (2009).
- 185 Tuzun, E. *et al.* Fine-scale structural variation of the human genome. *Nat Genet* **37**, 727-732, doi:10.1038/ng1562 (2005).
- 186 Korbel, J. O. *et al.* Paired-end mapping reveals extensive structural variation in the human genome. *science* **318**, 420-426, doi:10.1126/science.1149504 (2007).
- 187 McCarroll, S. A. *et al.* Common deletion polymorphisms in the human genome. *Nat Genet* **38**, 86-92 (2006).
- 188 Repping, S. *et al.* High mutation rates have driven extensive structural polymorphism among human Y chromosomes. *Nat Genet* **38**, 463-467, doi:10.1038/ng1754 (2006).
- 189 Nguyen, D. Q., Webber, C. & Ponting, C. P. Bias of selection on human copy-number variants. *PLoS Genet* **2**, e20, doi:10.1371/journal.pgen.0020020 (2006).
- 190 Stranger, B. E. *et al.* Relative impact of nucleotide and copy number variation on gene expression phenotypes. *science* **315**, 848-853, doi:10.1126/science.1136678 (2007).
- 191 Armengol, L., Rabionet, R. & Estivill, X. The emerging role of structural variations in common disorders: initial findings and discovery challenges. *Cytogenet Genome Res* **123**, 108-117, doi:10.1159/000184698 (2008).
- 192 Firth, H. V. *et al.* DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. *Am J Hum Genet* **84**, 524-533, doi:10.1016/j.ajhg.2009.03.010 (2009).
- 193 Stankiewicz, P. & Lupski, J. R. Structural variation in the human genome and its role in disease. Annu Rev Med **61**, 437-455, doi:10.1146/annurev-med-100708-204735 (2010).
- 194 Almal, S. H. & Padh, H. Implications of gene copy-number variation in health and diseases. *J Hum Genet* **57**, 6-13, doi:10.1038/jhg.2011.108 (2012).
- 195 Lefebvre, S. *et al.* Identification and characterization of a spinal muscular atrophy-determining gene. *Cell* **80**, 155-165 (1995).
- 196 Padiath, Q. S. *et al.* Lamin B1 duplications cause autosomal dominant leukodystrophy. *Nat Genet* **38**, 1114-1123, doi:10.1038/ng1872 (2006).
- 197 Chance, P. F. *et al.* Two autosomal dominant neuropathies result from reciprocal DNA duplication/deletion of a region on chromosome 17. *Hum Mol Genet* **3**, 223-228 (1994).
- 198 Reiter, L. T. *et al.* A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. *Nat Genet* **12**, 288-297, doi:10.1038/ng0396-288 (1996).
- 199 Dumanski, J. P. & Piotrowski, A. Structural genetic variation in the context of somatic mosaicism. *Methods Mol Biol* **838**, 249-272, doi:10.1007/978-1-61779-507-7_12 (2012).

- 200 Migeon, B. R. X-chromosome inactivation: molecular mechanisms and genetic consequences. *Trends Genet* **10**, 230-235 (1994).
- 201 Gartler, S. M. & Goldman, M. A. Biology of the X chromosome. *Curr Opin Pediatr* **13**, 340-345 (2001).
- 202 De, S. Somatic mosaicism in healthy human tissues. *Trends Genet* **27**, 217-223, doi:S0168-9525(11)00043-6 [pii] 10.1016/j.tig.2011.03.002.
- 203 Zlotogora, J. Germ line mosaicism. *Hum Genet* **102**, 381-386 (1998).
- 204 Mouret, S., Forestier, A. & Douki, T. The specificity of UVA-induced DNA damage in human melanocytes. *Photochem Photobiol Sci* **11**, 155-162, doi:10.1039/c1pp05185g.
- 205 Strauss, B. S. Molecular biology of the response of cells to radiation and to radiomimetic chemicals. *Cancer* **40**, 471-480 (1977).
- Zasukhina, G. D. [Nature of diverse molecular diseases in man]. *Arkh Patol* **38**, 69-75 (1976).
- 207 AbuBakar, S., Au, W. W., Legator, M. S. & Albrecht, T. Induction of chromosome aberrations and mitotic arrest by cytomegalovirus in human cells. *Environ Mol Mutagen* **12**, 409-420 (1988).
- 208 Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. *science* 333, 1895-1898, doi:333/6051/1895 [pii] 10.1126/science.1210214.
- 209 Iourov, I. Y., Vorsanova, S. G. & Yurov, Y. B. Chromosomal mosaicism goes global. *Mol Cytogenet* **1**, 26, doi:1755-8166-1-26 [pii] 10.1186/1755-8166-1-26 (2008).
- 210 Conlin, L. K. *et al.* Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis. *Hum Mol Genet* **19**, 1263-1275, doi:10.1093/hmg/ddq003 (2010).
- 211 Piotrowski, A. *et al.* Somatic mosaicism for copy number variation in differentiated human tissues. *Hum Mutat* **29**, 1118-1124, doi:10.1002/humu.20815 (2008).
- 212 Mkrtchyan, H. *et al.* The human genome puzzle the role of copy number variation in somatic mosaicism. *Curr Genomics* **11**, 426-431, doi:10.2174/138920210793176047.
- 213 Muotri, A. R. *et al.* Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. *Nature* **435**, 903-910, doi:nature03663 [pii] 10.1038/nature03663 (2005).
- 214 Xing, J. *et al.* Mobile elements create structural variation: analysis of a complete human genome. *Genome Res* **19**, 1516-1526, doi:gr.091827.109 [pii] 10.1101/gr.091827.109 (2009).
- 215 Gonitel, R. *et al.* DNA instability in postmitotic neurons. *Proceedings of the National Academy of Sciences of the United States of America* **105**, 3467-3472, doi:0800048105 [pii] 10.1073/pnas.0800048105 (2008).
- 216 Erickson, R. P. Somatic gene mutation and human disease other than cancer: an update. *Mutat Res* **705**, 96-106, doi:S1383-5742(10)00047-5 [pii] 10.1016/j.mrrev.2010.04.002.
- 217 Rehen, S. K. *et al.* Constitutional aneuploidy in the normal human brain. *J Neurosci* **25**, 2176-2180, doi:25/9/2176 [pii] 10.1523/JNEUROSCI.4560-04.2005 (2005).
- 218 Heim, S. & Mitelman, F. Cancer Cytogenetics: Chromosomal and Molecular Genetic Abberations of Tumor Cells. (Wiley, 2011).
- 219 Messiaen, L. *et al.* Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). *Hum Mutat* **32**, 213-219, doi:10.1002/humu.21418 (2011).
- Helderman-van den Enden, A. T. *et al.* Recurrence risk due to germ line mosaicism: Duchenne and Becker muscular dystrophy. *Clin Genet* **75**, 465-472 (2009).
- 221 Iourov, I. Y., Vorsanova, S. G., Liehr, T., Kolotii, A. D. & Yurov, Y. B. Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. *Hum Mol Genet* **18**, 2656-2669, doi:ddp207 [pii] 10.1093/hmg/ddp207 (2009).
- 222 Iourov, I. Y., Vorsanova, S. G., Liehr, T. & Yurov, Y. B. Aneuploidy in the normal, Alzheimer's disease and ataxia-telangiectasia brain: differential expression and pathological meaning. *Neurobiol Dis* 34, 212-220, doi:S0969-9961(09)00005-9 [pii] 10.1016/j.nbd.2009.01.003 (2009).
- 223 Yurov, Y. B. *et al.* Unexplained autism is frequently associated with low-level mosaic aneuploidy. *J Med Genet* **44**, 521-525, doi:jmg.2007.049312 [pii] 10.1136/jmg.2007.049312 (2007).

- 224 Yurov, Y. B. et al. The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res 98, 139-147, doi:S0920-9964(07)00329-5 [pii] 10.1016/j.schres.2007.07.035 (2008). 225 Hulten, M. A., Jonasson, J., Nordgren, A. & Iwarsson, E. Germinal and Somatic Trisomy 21 Mosaicism: How Common is it, What are the Implications for Individual Carriers and How Does it Come About? Curr Genomics 11, 409-419, doi:10.2174/138920210793176056. 226 Jacobs, K. B. et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44, 651-658, doi:10.1038/ng.2270 (2012). 227 Topcu, M. et al. Somatic mosaicism for a MECP2 mutation associated with classic Rett syndrome in a boy. Eur J Hum Genet 10, 77-81, doi:10.1038/sj.ejhg.5200745 (2002). 228 Charles, P. et al. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology 69, 1970-1975, doi:10.1212/01.wnl.0000269323.21969.db (2007). 229 Beck, J. A. et al. Somatic and germline mosaicism in sporadic early-onset Alzheimer's disease. Hum Mol Genet 13, 1219-1224, doi:10.1093/hmg/ddh134 (2004). Barker, D. J. A new model for the origins of chronic disease. Med Health Care Philos 4, 31-35 230 (2001). Lahiri, D. K. & Maloney, B. The "LEARn" (Latent Early-life Associated Regulation) model 231 integrates environmental risk factors and the developmental basis of Alzheimer's disease, and proposes remedial steps. Exp Gerontol 45, 291-296, doi:10.1016/j.exger.2010.01.001 (2010). 232 Murgatroyd, C. et al. Dynamic DNA methylation programs persistent adverse effects of earlylife stress. Nat Neurosci 12, 1559-1566, doi:10.1038/nn.2436 (2009). 233 Waddington, C. H. The epigenotype. 1942. Int J Epidemiol 41, 10-13, doi:10.1093/ije/dyr184 (2012). 234 Kouzarides, T. Chromatin modifications and their function. Cell 128, 693-705, doi:10.1016/j.cell.2007.02.005 (2007). 235 Zaratiegui, M., Irvine, D. V. & Martienssen, R. A. Noncoding RNAs and gene silencing. Cell 128, 763-776, doi:10.1016/j.cell.2007.02.016 (2007). 236 Bai, L. & Morozov, A. V. Gene regulation by nucleosome positioning. Trends Genet 26, 476-483, doi:10.1016/j.tig.2010.08.003 (2010). 237 Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances through genomics. Nature reviews 10, 161-172, doi:10.1038/nrg2522 (2009). Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nat Biotechnol 28, 1057-238 1068, doi:10.1038/nbt.1685 (2010). 239 Bertram, L., Lill, C. M. & Tanzi, R. E. The genetics of Alzheimer disease: back to the future. Neuron 68, 270-281, doi:10.1016/j.neuron.2010.10.013 (2010). 240 Hamza, T. H. & Payami, H. The heritability of risk and age at onset of Parkinson's disease after accounting for known genetic risk factors. J Hum Genet 55, 241-243, doi:10.1038/jhg.2010.13 (2010). 241 Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766-770, doi:10.1038/nature07107 (2008). 242 Berdasco, M. & Esteller, M. Hot topics in epigenetic mechanisms of aging: 2011. Aging Cell 11, 181-186, doi:10.1111/j.1474-9726.2012.00806.x (2012). 243 Heijmans, B. T., Tobi, E. W., Lumey, L. H. & Slagboom, P. E. The epigenome: archive of the prenatal environment. *Epigenetics* **4**, 526-531 (2009). 244 Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America 102, 10604-10609, doi:10.1073/pnas.0500398102 (2005).
- 245 Eichler, E. E. *et al.* Missing heritability and strategies for finding the underlying causes of complex disease. *Nature reviews* **11**, 446-450, doi:10.1038/nrg2809 (2010).
- lan C G Weaver1, Nadia Cervoni3, Frances A Champagne1,2, Ana C D'Alessio3, Shakti Sharma1, , Jonathan R Seckl4, S. D., Moshe Szyf2,3& Michael J Meaney1,2 ro & S. NAIDUa, b., d AND M. A.
 HOSSAIN. Epigenetic programming by maternal behavior *nature neuroscience* 7, 847-854 (2004).
- 247 McGowan, P. O. *et al.* Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. *Nat Neurosci* **12**, 342-348, doi:10.1038/nn.2270 (2009).
- 248 Dolinoy, D. C., Huang, D. & Jirtle, R. L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. *Proceedings of the National*

Academy of Sciences of the United States of America **104**, 13056-13061, doi:10.1073/pnas.0703739104 (2007).

- 249 Heijmans, B. T. *et al.* Persistent epigenetic differences associated with prenatal exposure to famine in humans. *Proceedings of the National Academy of Sciences of the United States of America* **105**, 17046-17049, doi:10.1073/pnas.0806560105 (2008).
- 250 Tobi, E. W. *et al.* DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. *Hum Mol Genet* **18**, 4046-4053, doi:10.1093/hmg/ddp353 (2009).
- 251 Gropman, A. L. & Batshaw, M. L. Epigenetics, copy number variation, and other molecular mechanisms underlying neurodevelopmental disabilities: new insights and diagnostic approaches. *J Dev Behav Pediatr* **31**, 582-591, doi:10.1097/DBP.0b013e3181ee384e00004703-201009000-00011 [pii] (2010).
- Amir, R. E. *et al.* Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. *Nat Genet* **23**, 185-188, doi:10.1038/13810 (1999).
- 253 Willemsen, R., Levenga, J. & Oostra, B. A. CGG repeat in the FMR1 gene: size matters. *Clin Genet* **80**, 214-225, doi:10.1111/j.1399-0004.2011.01723.x (2011).
- 254 Day, J. J. & Sweatt, J. D. DNA methylation and memory formation. *Nat Neurosci* **13**, 1319-1323, doi:10.1038/nn.2666 (2010).
- 255 Mattson, M. P. & Shea, T. B. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. *Trends Neurosci* **26**, 137-146, doi:10.1016/S0166-2236(03)00032-8 (2003).
- 256 Hassler, M. R. & Egger, G. Epigenomics of cancer emerging new concepts. *Biochimie*, doi:10.1016/j.biochi.2012.05.007 (2012).
- 257 Barres, R. & Zierath, J. R. DNA methylation in metabolic disorders. *Am J Clin Nutr* **93**, 897S-900, doi:10.3945/ajcn.110.001933 (2011).
- 258 Movassagh, M. *et al.* Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. *PLoS One* **5**, e8564, doi:10.1371/journal.pone.0008564 (2010).
- Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. *Nature reviews* **8**, 286-298, doi:10.1038/nrg2005 (2007).
- 260 Wilson, A. S. DNA HYPOMETHYLATION AND HUMAN DISEASES. BBA 1775, 138-162 (2007).
- 261 Doi, A. *et al.* Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. *Nat Genet* **41**, 1350-1353, doi:10.1038/ng.471 (2009).
- Fraga, M. F. *et al.* Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. *Nat Genet* **37**, 391-400, doi:10.1038/ng1531 (2005).
- 263 Urdinguio, R. G., Sanchez-Mut, J. V. & Esteller, M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. *Lancet Neurol* **8**, 1056-1072, doi:10.1016/S1474-4422(09)70262-5 (2009).
- 264 De Sario, A. Clinical and molecular overview of inherited disorders resulting from epigenomic dysregulation. *Eur J Med Genet* **52**, 363-372, doi:10.1016/j.ejmg.2009.07.004 (2009).
- 265 Javierre, B. M., Esteller, M. & Ballestar, E. Epigenetic connections between autoimmune disorders and haematological malignancies. *Trends Immunol* **29**, 616-623, doi:10.1016/j.it.2008.08.008 (2008).
- 266 Karouzakis, E., Gay, R. E., Gay, S. & Neidhart, M. Epigenetic control in rheumatoid arthritis synovial fibroblasts. *Nat Rev Rheumatol* **5**, 266-272, doi:10.1038/nrrheum.2009.55 (2009).
- 267 Javierre, B. M. *et al.* Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. *Genome Res* **20**, 170-179, doi:10.1101/gr.100289.109 (2010).
- 268 Jin, B. *et al.* DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. *Hum Mol Genet* **17**, 690-709, doi:10.1093/hmg/ddm341 (2008).
- 269 Antequera, F. & Bird, A. CpG islands. *EXS* 64, 169-185 (1993).
- Takai, D. & Jones, P. A. Comprehensive analysis of CpG islands in human chromosomes 21 and
 22. Proceedings of the National Academy of Sciences of the United States of America 99, 3740-3745, doi:10.1073/pnas.052410099 (2002).

- 271 Saxonov, S., Berg, P. & Brutlag, D. L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. *Proceedings of the National Academy of Sciences of the United States of America* **103**, 1412-1417, doi:10.1073/pnas.0510310103 (2006).
- 272 Esteller, M. Epigenetic gene silencing in cancer: the DNA hypermethylome. *Hum Mol Genet* **16 Spec No 1**, R50-59, doi:10.1093/hmg/ddm018 (2007).
- 273 Lopez-Serra, L. & Esteller, M. Proteins that bind methylated DNA and human cancer: reading the wrong words. *Br J Cancer* **98**, 1881-1885, doi:10.1038/sj.bjc.6604374 (2008).
- 274 Kuroda, A. *et al.* Insulin gene expression is regulated by DNA methylation. *PLoS One* **4**, e6953, doi:10.1371/journal.pone.0006953 (2009).
- 275 Irizarry, R. A. *et al.* The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. *Nat Genet* **41**, 178-186, doi:ng.298 [pii] 10.1038/ng.298 (2009).
- Hellman, A. & Chess, A. Gene body-specific methylation on the active X chromosome. *Science* 315, 1141-1143, doi:315/5815/1141 [pii] 10.1126/science.1136352 (2007).
- 277 Bird, A. DNA methylation patterns and epigenetic memory. *Genes Dev* **16**, 6-21, doi:10.1101/gad.947102 (2002).
- 278 Ladd-Acosta, C. *et al.* DNA methylation signatures within the human brain. *Am J Hum Genet* **81**, 1304-1315, doi:S0002-9297(07)63779-3 [pii] 10.1086/524110 (2007).
- 279 Feng, X. Y., Li, J. H., Li, J. Z., Han, Z. X. & Xing, R. D. Serum SCCA, Cyfra 21-1, EGFR and Cyclin D1 levels in patients with oral squamous cell carcinoma. *Int J Biol Markers* **25**, 93-98, doi:076B9CAD-02B9-4768-B398-63F609B49A01 [pii].
- Hernandez, D. G. *et al.* Distinct DNA methylation changes highly correlated with chronological age in the human brain. *Hum Mol Genet* **20**, 1164-1172, doi:10.1093/hmg/ddq561 (2011).
- 281 Miller, C. A. & Sweatt, J. D. Covalent modification of DNA regulates memory formation. *Neuron* 53, 857-869, doi:10.1016/j.neuron.2007.02.022 (2007).
- 282 Lubin, F. D. & Sweatt, J. D. The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. *Neuron* **55**, 942-957, doi:10.1016/j.neuron.2007.07.039 (2007).
- 283 Lubin, F. D., Roth, T. L. & Sweatt, J. D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. *J Neurosci* **28**, 10576-10586, doi:10.1523/JNEUROSCI.1786-08.2008 (2008).
- 284 Vanyushin, B. F., Nemirovsky, L. E., Klimenko, V. V., Vasiliev, V. K. & Belozersky, A. N. The 5methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. *Gerontologia* **19**, 138-152 (1973).
- 285 Wilson, V. L., Smith, R. A., Ma, S. & Cutler, R. G. Genomic 5-methyldeoxycytidine decreases with age. *J Biol Chem* **262**, 9948-9951 (1987).
- Fuke, C. *et al.* Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. *Ann Hum Genet* **68**, 196-204, doi:10.1046/j.1529-8817.2004.00081.xAHG081 [pii] (2004).
- 287 Suzuki, T., Fujii, M. & Ayusawa, D. Demethylation of classical satellite 2 and 3 DNA with chromosomal instability in senescent human fibroblasts. *Exp Gerontol* **37**, 1005-1014 (2002).
- 288 Jintaridth, P. & Mutirangura, A. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. *Physiol Genomics* **41**, 194-200, doi:10.1152/physiolgenomics.00146.2009 (2010).
- 289 Issa, J. P. Age-related epigenetic changes and the immune system. *Clin Immunol* **109**, 103-108 (2003).
- 290 Kwabi-Addo, B. *et al.* Age-related DNA methylation changes in normal human prostate tissues. *Clin Cancer Res* **13**, 3796-3802, doi:10.1158/1078-0432.CCR-07-0085 (2007).
- 291 Christensen, B. C. *et al.* Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. *PLoS Genet* **5**, e1000602, doi:10.1371/journal.pgen.1000602 (2009).
- 292 Weaver, I. C. *et al.* Epigenetic programming by maternal behavior. *Nat Neurosci* **7**, 847-854, doi:10.1038/nn1276 (2004).
- 293 Lister, R. *et al.* Human DNA methylomes at base resolution show widespread epigenomic differences. *Nature* **462**, 315-322, doi:nature08514 [pii] 10.1038/nature08514 (2009).

- Laurent, L. *et al.* Dynamic changes in the human methylome during differentiation. *Genome Res* 20, 320-331, doi:gr.101907.109 [pii] 10.1101/gr.101907.109 (2010).
- 295 Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. *Science* **324**, 929-930, doi:1169786 [pii] 10.1126/science.1169786 (2009).
- 296 Mohr, F., Dohner, K., Buske, C. & Rawat, V. P. TET genes: new players in DNA demethylation and important determinants for stemness. *Exp Hematol* **39**, 272-281, doi:10.1016/j.exphem.2010.12.004 (2011).
- 297 Frommer, M. *et al.* A genomic sequencing protocol that yields a positive display of 5methylcytosine residues in individual DNA strands. *Proceedings of the National Academy of Sciences of the United States of America* **89**, 1827-1831 (1992).
- 298 Bibikova, M. & Fan, J. B. Genome-wide DNA methylation profiling. *Wiley Interdiscip Rev Syst Biol Med* **2**, 210-223, doi:10.1002/wsbm.35.
- 299 Lister, R. *et al.* Highly integrated single-base resolution maps of the epigenome in Arabidopsis. *Cell* **133**, 523-536, doi:10.1016/j.cell.2008.03.029 (2008).
- 300 Milici, A., Salbaum, J. M. & Beyereuther, K. Study of the Alzheimer's A4 precursor gene promoter region by genomic sequencing using Taq polymerase. *Biochem Biophys Res Commun* **169**, 46-50 (1990).
- 301 West, R. L., Lee, J. M. & Maroun, L. E. Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer's disease patient. *J Mol Neurosci* **6**, 141-146, doi:10.1007/BF02736773 (1995).
- 302 Tohgi, H. *et al.* Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. *Brain Res Mol Brain Res* **70**, 288-292, doi:S0169328X99001631 [pii] (1999).
- 303 Brohede, J., Rinde, M., Winblad, B. & Graff, C. A DNA Methylation Study of the Amyloid Precursor Protein Gene in Several Brain Regions from Patients with Familial Alzheimer Disease. *J Neurogenet* 24, 179-181, doi:10.3109/01677063.2010.503978.
- 304 Barrachina, M. & Ferrer, I. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. *J Neuropathol Exp Neurol* **68**, 880-891, doi:10.1097/NEN.0b013e3181af2e46 (2009).
- 305 Lin, H. C., Hsieh, H. M., Chen, Y. H. & Hu, M. L. S-Adenosylhomocysteine increases beta-amyloid formation in BV-2 microglial cells by increased expressions of beta-amyloid precursor protein and presenilin 1 and by hypomethylation of these gene promoters. *Neurotoxicology* **30**, 622-627, doi:10.1016/j.neuro.2009.03.011 (2009).
- 306 Fuso, A., Seminara, L., Cavallaro, R. A., D'Anselmi, F. & Scarpa, S. Sadenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. *Mol Cell Neurosci* **28**, 195-204, doi:10.1016/j.mcn.2004.09.007 (2005).
- Hellstrom-Lindahl, E., Ravid, R. & Nordberg, A. Age-dependent decline of neprilysin in Alzheimer's disease and normal brain: inverse correlation with A beta levels. *Neurobiol Aging* 29, 210-221, doi:10.1016/j.neurobiolaging.2006.10.010 (2008).
- 308 Wang, D. S. *et al.* Decreased neprilysin immunoreactivity in Alzheimer disease, but not in pathological aging. *J Neuropathol Exp Neurol* **64**, 378-385 (2005).
- 309 Wang, S. *et al.* Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme in prospectively studied elderly and Alzheimer's brain. *J Neurochem* **115**, 47-57, doi:10.1111/j.1471-4159.2010.06899.x (2010).
- 310 Yasojima, K., Akiyama, H., McGeer, E. G. & McGeer, P. L. Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of beta-amyloid peptide. *Neurosci Lett* **297**, 97-100 (2001).
- 311 Chen, K. L. *et al.* The epigenetic effects of amyloid-beta(1-40) on global DNA and neprilysin genes in murine cerebral endothelial cells. *Biochem Biophys Res Commun* **378**, 57-61, doi:10.1016/j.bbrc.2008.10.173 (2009).
- 312 Uematsu, F., Takahashi, M., Yoshida, M., Igarashi, M. & Nakae, D. Methylation of neutral endopeptidase 24.11 promoter in rat hepatocellular carcinoma. *Cancer Sci* **97**, 611-617, doi:10.1111/j.1349-7006.2006.00227.x (2006).

- 313 Belyaev, N. D., Nalivaeva, N. N., Makova, N. Z. & Turner, A. J. Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. *EMBO Rep* **10**, 94-100, doi:10.1038/embor.2008.222 (2009).
- 314 Kalman, J. *et al.* Gene expression profile analysis of lymphocytes from Alzheimer's patients. *Psychiatr Genet* **15**, 1-6 (2005).
- 315 Silva, P. N. *et al.* Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer's disease. *J Alzheimers Dis* **13**, 173-176 (2008).
- Morris, M. S. Homocysteine and Alzheimer's disease. *Lancet Neurol* **2**, 425-428 (2003).
- 317 Van Dam, F. & Van Gool, W. A. Hyperhomocysteinemia and Alzheimer's disease: A systematic review. *Arch Gerontol Geriatr* **48**, 425-430, doi:10.1016/j.archger.2008.03.009 (2009).
- 318 Kennedy, B. P. *et al.* Elevated S-adenosylhomocysteine in Alzheimer brain: influence on methyltransferases and cognitive function. *J Neural Transm* **111**, 547-567, doi:10.1007/s00702-003-0096-5 (2004).
- 319 Fuso, A., Nicolia, V., Cavallaro, R. A. & Scarpa, S. DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer's disease models. *J Nutr Biochem* **22**, 242-251, doi:10.1016/j.jnutbio.2010.01.010 (2011).
- 320 Fuso, A. *et al.* Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. *Neurobiol Aging* **32**, 187-199, doi:10.1016/j.neurobiolaging.2009.02.013 (2011).
- 321 Minagawa, H. *et al.* Homocysteine, another risk factor for Alzheimer disease, impairs apolipoprotein E3 function. *J Biol Chem* **285**, 38382-38388, doi:10.1074/jbc.M110.146258 (2010).
- 322 Wu, J. *et al.* Alzheimer's disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. *J Neurosci* **28**, 3-9, doi:10.1523/JNEUROSCI.4405-07.2008 (2008).
- Li, Y. Y., Chen, T., Wan, Y. & Xu, S. Q. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. *Environ Toxicol*, doi:10.1002/tox.20666 (2010).
- 324 Zawia, N. H., Lahiri, D. K. & Cardozo-Pelaez, F. Epigenetics, oxidative stress, and Alzheimer disease. *Free Radic Biol Med* **46**, 1241-1249, doi:10.1016/j.freeradbiomed.2009.02.006 (2009).
- Mastroeni, D., McKee, A., Grover, A., Rogers, J. & Coleman, P. D. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. *PLoS One* 4, e6617, doi:10.1371/journal.pone.0006617 (2009).
- 326 Mastroeni, D. *et al.* Epigenetic changes in Alzheimer's disease: decrements in DNA methylation. *Neurobiol Aging* **31**, 2025-2037, doi:10.1016/j.neurobiolaging.2008.12.005 (2010).
- 327 Blandini, F. *et al.* Plasma homocysteine and l-dopa metabolism in patients with Parkinson disease. *Clin Chem* **47**, 1102-1104 (2001).
- 328 Yasui, K., Kowa, H., Nakaso, K., Takeshima, T. & Nakashima, K. Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. *Neurology* **55**, 437-440 (2000).
- 329 Duan, W. *et al.* Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease. *J Neurochem* **80**, 101-110 (2002).
- 330 Jowaed, A., Schmitt, I., Kaut, O. & Wullner, U. Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains. *J Neurosci* **30**, 6355-6359, doi:10.1523/JNEUROSCI.6119-09.2010 (2010).
- 331 Chiba-Falek, O., Lopez, G. J. & Nussbaum, R. L. Levels of alpha-synuclein mRNA in sporadic Parkinson disease patients. *Mov Disord* **21**, 1703-1708, doi:10.1002/mds.21007 (2006).
- 332 Grundemann, J., Schlaudraff, F., Haeckel, O. & Liss, B. Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson's disease. *Nucleic Acids Res* **36**, e38, doi:10.1093/nar/gkn084 (2008).
- 333 Pieper, H. C. *et al.* Different methylation of the TNF-alpha promoter in cortex and substantia nigra: Implications for selective neuronal vulnerability. *Neurobiol Dis* **32**, 521-527, doi:10.1016/j.nbd.2008.09.010 (2008).
- Iwamoto, K. *et al.* Evaluation of whole genome amplification methods using postmortem brain samples. J Neurosci Methods 165, 104-110, doi:S0165-0270(07)00265-8 [pii] 10.1016/j.jneumeth.2007.05.029 (2007).
- 335 Schroeder, A. *et al.* The RIN: an RNA integrity number for assigning integrity values to RNA measurements. *BMC Mol Biol* **7**, 3, doi:10.1186/1471-2199-7-3 (2006).

- 336 Seripa, D. *et al.* The genetics of the human APOE polymorphism. *Rejuvenation Res* **14**, 491-500, doi:10.1089/rej.2011.1169 (2011).
- 337 Rubin, J. & Berglund, L. Apolipoprotein E and diets: a case of gene-nutrient interaction? *Curr Opin Lipidol* **13**, 25-32 (2002).
- 338 Lipson, D., Aumann, Y., Ben-Dor, A., Linial, N. & Yakhini, Z. Efficient calculation of interval scores for DNA copy number data analysis. *J Comput Biol* 13, 215-228, doi:10.1089/cmb.2006.13.215 (2006).
- 339 Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K. & Mattick, J. S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. *Nucleic Acids Res* **19**, 4008 (1991).
- 340 Kent, W. J. BLAT--the BLAST-like alignment tool. *Genome Res* **12**, 656-664, doi:10.1101/gr.229202. Article published online before March 2002 (2002).
- 341 Schouten, J. P. *et al.* Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. *Nucleic Acids Res* **30**, e57 (2002).
- den Dunnen, J. T. & White, S. J. MLPA and MAPH: sensitive detection of deletions and duplications. *Curr Protoc Hum Genet* **Chapter 7**, Unit 7 14, doi:10.1002/0471142905.hg0714s51 (2006).
- 343 Pantano, L., Armengol, L., Villatoro, S. & Estivill, X. ProSeeK: a web server for MLPA probe design. *BMC Genomics* **9**, 573, doi:10.1186/1471-2164-9-573 (2008).
- 344 Yau, S. C., Bobrow, M., Mathew, C. G. & Abbs, S. J. Accurate diagnosis of carriers of deletions and duplications in Duchenne/Becker muscular dystrophy by fluorescent dosage analysis. *J Med Genet* **33**, 550-558 (1996).
- Lewin, J., Schmitt, A. O., Adorjan, P., Hildmann, T. & Piepenbrock, C. Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. *Bioinformatics* **20**, 3005-3012, doi:10.1093/bioinformatics/bth346 (2004).
- 346 Rakyan, V. K. *et al.* DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. *PLoS Biol* **2**, e405, doi:10.1371/journal.pbio.0020405 (2004).
- 347 Mancuso, F. M., Montfort, M., Carreras, A., Alibes, A. & Roma, G. HumMeth27QCReport: an R package for quality control and primary analysis of Illumina Infinium methylation data. *BMC Res Notes* **4**, 546, doi:10.1186/1756-0500-4-546 (2011).
- 348 Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat Protoc* **4**, 44-57, doi:10.1038/nprot.2008.211 (2009).
- 349 Du, P. *et al.* Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. *BMC Bioinformatics* **11**, 587, doi:1471-2105-11-587 [pii] 10.1186/1471-2105-11-587 (2010).
- 350 Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. *Stat Appl Genet Mol Biol* **3**, Article3, doi:10.2202/1544-6115.1027 (2004).
- 351 Tost, J. & Gut, I. G. DNA methylation analysis by pyrosequencing. *Nat Protoc* **2**, 2265-2275, doi:10.1038/nprot.2007.314 (2007).
- Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics* **25**, 1105-1111, doi:10.1093/bioinformatics/btp120 (2009).
- 353 Trapnell, C. *et al.* Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat Biotechnol* **28**, 511-515, doi:10.1038/nbt.1621 (2010).
- 354 Bustin, S. A. & Nolan, T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. *J Biomol Tech* **15**, 155-166 (2004).
- 355 Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res* **29**, e45 (2001).
- Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**, 402-408, doi:10.1006/meth.2001.1262 (2001).
- 357 Steibel, J. P., Poletto, R., Coussens, P. M. & Rosa, G. J. A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data. *Genomics* **94**, 146-152, doi:10.1016/j.ygeno.2009.04.008 (2009).

358 Kaut, O., Schmitt, I. & Wullner, U. Genome-scale methylation analysis of Parkinson's disease patients' brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics 13, 87-91, doi:10.1007/s10048-011-0308-3 (2012). 359 Shahabi, H. N. et al. Cytochrome P450 2E1 gene polymorphisms/haplotypes and Parkinson's disease in a Swedish population. J Neural Transm 116, 567-573, doi:10.1007/s00702-009-0221-1 (2009). 360 Noureddine, M. A. et al. Association between the neuron-specific RNA-binding protein ELAVL4 and Parkinson disease. Hum Genet 117, 27-33, doi:10.1007/s00439-005-1259-2 (2005). 361 DeStefano, A. L. et al. Replication of association between ELAVL4 and Parkinson disease: the GenePD study. Hum Genet 124, 95-99, doi:10.1007/s00439-008-0526-4 (2008). 362 Stapels, M. et al. Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci Signal 3, ra15, doi:10.1126/scisignal.2000502 (2010). 363 Yoshioka, N., Asou, H., Hisanaga, S. & Kawano, H. The astrocytic lineage marker calmodulinregulated spectrin-associated protein 1 (Camsap1): phenotypic heterogeneity of newly born Camsap1-expressing cells in injured mouse brain. J Comp Neurol 520, 1301-1317, doi:10.1002/cne.22788 (2012). 364 Mandal, P. K. et al. System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J Biol Chem 285, 22244-22253, doi:10.1074/jbc.M110.121327 (2010). 365 Benga, O. & Huber, V. J. Brain water channel proteins in health and disease. Mol Aspects Med, doi:10.1016/j.mam.2012.03.008 (2012). 366 Yang, M. et al. Immunolocalization of aquaporins in rat brain. Anat Histol Embryol 40, 299-306, doi:10.1111/j.1439-0264.2011.01070.x (2011). 367 Bienert, G. P. et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282, 1183-1192, doi:10.1074/jbc.M603761200 (2007). 368 Tian, L. et al. Characterization and potential function of a novel pre-implantation embryospecific RING finger protein: TRIML1. Mol Reprod Dev 76, 656-664, doi:10.1002/mrd.20997 (2009). 369 Carrasco, J. L. & Jover, L. Estimating the generalized concordance correlation coefficient through variance components. Biometrics 59, 849-858 (2003). 370 Pickrell, J. K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464, 768-772, doi:10.1038/nature08872 (2010). Liu, X. et al. Extension of cortical synaptic development distinguishes humans from 371 chimpanzees and macaques. Genome Res 22, 611-622, doi:10.1101/gr.127324.111 (2012). 372 Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods 5, 621-628, doi:10.1038/nmeth.1226 (2008). 373 Pei, Y. et al. WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum. Development 139, 1724-1733, doi:10.1242/dev.050104 (2012). 374 Wexler, E. M. et al. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways. Sci Signal 4, ra65, doi:10.1126/scisignal.2002282 (2011). 375 Kitazawa, M. et al. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer's disease model. J Immunol 187, 6539-6549, doi:10.4049/jimmunol.1100620 (2011). 376 Jiang, H. et al. Hypoxia inducible factor-1alpha is involved in the neurodegeneration induced by isoflurane in the brain of neonatal rats. J Neurochem 120, 453-460, doi:10.1111/j.1471-4159.2011.07589.x (2012). 377 Grandl, J. et al. Pore region of TRPV3 ion channel is specifically required for heat activation. Nat Neurosci 11, 1007-1013, doi:nn.2169 [pii] 10.1038/nn.2169 (2008). 378 Osumi, N., Shinohara, H., Numayama-Tsuruta, K. & Maekawa, M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 26, 1663-1672, doi:2007-0884 [pii] 10.1634/stemcells.2007-0884 (2008). 379 Siegmund, K. D. et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2, e895, doi:10.1371/journal.pone.0000895 (2007). 380 Lebouvier, T. et al. The microtubule-associated protein tau is also phosphorylated on tyrosine. J Alzheimers Dis 18, 1-9, doi:MN52270717243376 [pii] 10.3233/JAD-2009-1116 (2009).

- 381 Conrad, D. F. *et al.* Origins and functional impact of copy number variation in the human genome. *Nature* **464**, 704-712, doi:nature08516 [pii] 10.1038/nature08516.
- 382 Park, C. H. *et al.* Identification of novel gastric cancer-associated CNVs by integrated analysis of microarray. *J Surg Oncol* **102**, 454-461, doi:10.1002/jso.21585 (2010).
- 383 Matsuzaki, H., Wang, P. H., Hu, J., Rava, R. & Fu, G. K. High resolution discovery and confirmation of copy number variants in 90 Yoruba Nigerians. *Genome Biol* **10**, R125, doi:gb-2009-10-11-r125 [pii] 10.1186/gb-2009-10-11-r125 (2009).
- 384 Pinto, D. *et al.* Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. *Nat Biotechnol* **29**, 512-520, doi:10.1038/nbt.1852nbt.1852 [pii] (2011).
- 385 Teng, C. C., Yang, Y. T., Chen, Y. C., Kuo, Y. M. & Sze, C. I. Role of WWOX/WOX1 in Alzheimer's disease pathology and in cell death signaling. *Front Biosci (Elite Ed)* **4**, 1951-1965, doi:397 [pii].
- 386 Del Mare, S., Salah, Z. & Aqeilan, R. I. WWOX: its genomics, partners, and functions. *J Cell Biochem* **108**, 737-745, doi:10.1002/jcb.22298 (2009).
- 387 Abazov, V. M. *et al.* Measurement of semileptonic branching fractions of B mesons to narrow D** states. *Phys Rev Lett* **95**, 171803 (2005).
- 388 Xin, Y. *et al.* Genome-wide divergence of DNA methylation marks in cerebral and cerebellar cortices. *PLoS One* **5**, e11357, doi:10.1371/journal.pone.0011357 (2010).
- 389 Gibb, W. R., Luthert, P. J., Janota, I. & Lantos, P. L. Cortical Lewy body dementia: clinical features and classification. *J Neurol Neurosurg Psychiatry* **52**, 185-192 (1989).
- 390 Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. *Acta Neuropathol* **112**, 389-404, doi:10.1007/s00401-006-0127-z (2006).
- 391 Consortium, E. P. *et al.* An integrated encyclopedia of DNA elements in the human genome. *Nature* **489**, 57-74, doi:10.1038/nature11247nature11247 [pii] (2012).
- 392 Holtzman, D. M., Herz, J. & Bu, G. Apolipoprotein e and apolipoprotein e receptors: normal biology and roles in Alzheimer disease. *Cold Spring Harb Perspect Med* **2**, a006312, doi:10.1101/cshperspect.a006312 (2012).
- 393 Crews, L. & Masliah, E. Molecular mechanisms of neurodegeneration in Alzheimer's disease. *Hum Mol Genet* **19**, R12-20, doi:10.1093/hmg/ddq160 (2010).
- 394 Doyle, K. M. *et al.* Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. *J Cell Mol Med* **15**, 2025-2039, doi:10.1111/j.1582-4934.2011.01374.x (2011).
- 395 Kudo, T. [Therapeutic strategies for Alzheimer disease based on endoplasmic reticulum stress]. *Nihon Shinkei Seishin Yakurigaku Zasshi* **30**, 163-168 (2010).
- 396 Hoozemans, J. J. *et al.* The unfolded protein response is activated in pretangle neurons in Alzheimer's disease hippocampus. *Am J Pathol* **174**, 1241-1251, doi:10.2353/ajpath.2009.080814 (2009).
- Burguillos, M. A. *et al.* Caspase signalling controls microglia activation and neurotoxicity. *Nature* 472, 319-324, doi:10.1038/nature09788 (2011).
- 398 Trojanowski, J. Q., Mawal-Dewan, M., Schmidt, M. L., Martin, J. & Lee, V. M. Localization of the mitogen activated protein kinase ERK2 in Alzheimer's disease neurofibrillary tangles and senile plaque neurites. *Brain Res* **618**, 333-337 (1993).
- 399 Chiocco, M. J. *et al.* Fine mapping of calcineurin (PPP3CA) gene reveals novel alternative splicing patterns, association of 5'UTR trinucleotide repeat with addiction vulnerability, and differential isoform expression in Alzheimer's disease. *Subst Use Misuse* **45**, 1809-1826, doi:10.3109/10826084.2010.482449 (2010).
- 400 Lloret, A. *et al.* Amyloid-beta toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer's disease. *J Alzheimers Dis* **27**, 701-709, doi:10.3233/JAD-2011-110890 (2011).
- 401 Cruchaga, C. *et al.* SNPs associated with cerebrospinal fluid phospho-tau levels influence rate of decline in Alzheimer's disease. *PLoS Genet* **6**, doi:10.1371/journal.pgen.1001101 (2010).
- 402 Bjorkqvist, M., Ohlsson, M., Minthon, L. & Hansson, O. Evaluation of a previously suggested plasma biomarker panel to identify Alzheimer's disease. *PLoS One* **7**, e29868, doi:10.1371/journal.pone.0029868 (2012).
- 403 Miguel, R. F., Pollak, A. & Lubec, G. Metalloproteinase ADAMTS-1 but not ADAMTS-5 is manifold overexpressed in neurodegenerative disorders as Down syndrome, Alzheimer's and Pick's disease. *Brain Res Mol Brain Res* **133**, 1-5, doi:10.1016/j.molbrainres.2004.09.008 (2005).

- 404 Habas, C. *et al.* Distinct cerebellar contributions to intrinsic connectivity networks. *J Neurosci* **29**, 8586-8594, doi:10.1523/JNEUROSCI.1868-09.2009 (2009).
- 405 Stoodley, C. J., Valera, E. M. & Schmahmann, J. D. An fMRI study of intra-individual functional topography in the human cerebellum. *Behav Neurol* **23**, 65-79, doi:10.3233/BEN-2010-0268 (2010).
- 406 Bostan, A. C. & Strick, P. L. The cerebellum and basal ganglia are interconnected. *Neuropsychol Rev* 20, 261-270, doi:10.1007/s11065-010-9143-9 (2010).
- 407 Habel, U., Klein, M., Kellermann, T., Shah, N. J. & Schneider, F. Same or different? Neural correlates of happy and sad mood in healthy males. *Neuroimage* **26**, 206-214, doi:10.1016/j.neuroimage.2005.01.014 (2005).
- 408 Stoodley, C. J. & Schmahmann, J. D. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. *Cortex* **46**, 831-844, doi:10.1016/j.cortex.2009.11.008 (2010).
- 409 Schmahmann, J. D. & Sherman, J. C. The cerebellar cognitive affective syndrome. *Brain* **121 (Pt 4)**, 561-579 (1998).
- 410 Andreasen, N. C., Paradiso, S. & O'Leary, D. S. "Cognitive dysmetria" as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? *Schizophr Bull* **24**, 203-218 (1998).
- 411 Lee, K. H. *et al.* Increased cerebellar vermis white-matter volume in men with schizophrenia. *J Psychiatr Res* **41**, 645-651, doi:10.1016/j.jpsychires.2006.03.001 (2007).
- 412 Kent, J. S. *et al.* Motor deficits in schizophrenia quantified by nonlinear analysis of postural sway. *PLoS One* **7**, e41808, doi:10.1371/journal.pone.0041808 (2012).
- 413 Silk, T. J., Vance, A., Rinehart, N., Bradshaw, J. L. & Cunnington, R. White-matter abnormalities in attention deficit hyperactivity disorder: a diffusion tensor imaging study. *Hum Brain Mapp* **30**, 2757-2765, doi:10.1002/hbm.20703 (2009).
- 414 Baldacara, L. *et al.* Is cerebellar volume related to bipolar disorder? *J Affect Disord* **135**, 305-309, doi:10.1016/j.jad.2011.06.059 (2011).
- 415 Bauman, M. L. & Kemper, T. L. The neuropathology of the autism spectrum disorders: what have we learned? *Novartis Found Symp* **251**, 112-122; discussion 122-118, 281-197 (2003).
- 416 Kibby, M. Y., Fancher, J. B., Markanen, R. & Hynd, G. W. A quantitative magnetic resonance imaging analysis of the cerebellar deficit hypothesis of dyslexia. *J Child Neurol* **23**, 368-380, doi:10.1177/0883073807309235 (2008).
- 417 Yin, Y. *et al.* Abnormal baseline brain activity in posttraumatic stress disorder: a resting-state functional magnetic resonance imaging study. *Neurosci Lett* **498**, 185-189, doi:10.1016/j.neulet.2011.02.069 (2011).
- 418 Louis, E. D., Faust, P. L. & Vonsattel, J. P. Purkinje cell loss is a characteristic of essential tremor: Towards a more mature understanding of pathogenesis. *Parkinsonism Relat Disord*, doi:10.1016/j.parkreldis.2012.06.017 (2012).
- 419 Passamonti, L. *et al.* Altered cortical-cerebellar circuits during verbal working memory in essential tremor. *Brain* **134**, 2274-2286, doi:10.1093/brain/awr164 (2011).
- 420 Gilman, S. *et al.* Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes. *Neurology* **74**, 1416-1423, doi:10.1212/WNL.0b013e3181dc1a55 (2010).
- 421 Dougherty, S. E. *et al.* Disruption of Purkinje cell function prior to huntingtin accumulation and cell loss in an animal model of Huntington disease. *Exp Neurol* **236**, 171-178, doi:10.1016/j.expneurol.2012.04.015 (2012).
- 422 Chen, J., Cohen, M. L., Lerner, A. J., Yang, Y. & Herrup, K. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer's disease. *Mol Neurodegener* **5**, 60, doi:10.1186/1750-1326-5-60 (2010).
- 423 Schmahmann, J. D. & Caplan, D. Cognition, emotion and the cerebellum. *Brain* **129**, 290-292, doi:10.1093/brain/awh729 (2006).
- 424 Schmahmann, J. D. An emerging concept. The cerebellar contribution to higher function. *Arch Neurol* **48**, 1178-1187 (1991).
- 425 Baillieux, H., De Smet, H. J., Paquier, P. F., De Deyn, P. P. & Marien, P. Cerebellar neurocognition: insights into the bottom of the brain. *Clin Neurol Neurosurg* **110**, 763-773, doi:10.1016/j.clineuro.2008.05.013 (2008).
- 426 Strick, P. L., Dum, R. P. & Fiez, J. A. Cerebellum and nonmotor function. *Annu Rev Neurosci* **32**, 413-434, doi:10.1146/annurev.neuro.31.060407.125606 (2009).

- 427 Gillig, P. M. & Sanders, R. D. Psychiatry, neurology, and the role of the cerebellum. *Psychiatry* (*Edgmont*) **7**, 38-43 (2010).
- 428 O'Halloran, C. J., Kinsella, G. J. & Storey, E. The cerebellum and neuropsychological functioning: a critical review. *J Clin Exp Neuropsychol* **34**, 35-56, doi:10.1080/13803395.2011.614599 (2012).
- 429 Ito, M. Control of mental activities by internal models in the cerebellum. *Nat Rev Neurosci* **9**, 304-313, doi:10.1038/nrn2332 (2008).
- 430 Hemphill, R. E. & Stengel, E. Alzheimer's Disease with Predominating Crossed Cerebro-Cerebellar Hemiatrophy. *J Neurol Psychiatry* **4**, 97-106 (1941).
- 431 Kusbeci, O. Y. *et al.* Evaluation of cerebellar asymmetry in Alzheimer's disease: a stereological study. *Dement Geriatr Cogn Disord* **28**, 1-5, doi:10.1159/000228544 (2009).
- 432 Fukutani, Y., Cairns, N. J., Rossor, M. N. & Lantos, P. L. Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer's disease. *Neurosci Lett* **214**, 33-36 (1996).
- 433 Wegiel, J. *et al.* Cerebellar atrophy in Alzheimer's disease-clinicopathological correlations. *Brain Res* **818**, 41-50 (1999).
- 434 Braak, H., Braak, E., Bohl, J. & Lang, W. Alzheimer's disease: amyloid plaques in the cerebellum. *J Neurol Sci* **93**, 277-287 (1989).
- 435 Joachim, C. L., Morris, J. H. & Selkoe, D. J. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer's disease. *Am J Pathol* **135**, 309-319 (1989).
- 436 Mann, D. M., Iwatsubo, T. & Snowden, J. S. Atypical amyloid (A beta) deposition in the cerebellum in Alzheimer's disease: an immunohistochemical study using end-specific A beta monoclonal antibodies. *Acta Neuropathol* **91**, 647-653 (1996).
- 437 Mattiace, L. A., Davies, P., Yen, S. H. & Dickson, D. W. Microglia in cerebellar plaques in Alzheimer's disease. *Acta Neuropathol* **80**, 493-498 (1990).
- 438 Vidoni, E. D., Thomas, G. P., Honea, R. A., Loskutova, N. & Burns, J. M. Evidence of altered corticomotor system connectivity in early-stage Alzheimer's disease. *J Neurol Phys Ther* **36**, 8-16, doi:10.1097/NPT.0b013e3182462ea6 (2012).
- 439 Kim, K. H., Moon, M., Yu, S. B., Mook-Jung, I. & Kim, J. I. RNA-Seq analysis of frontal cortex and cerebellum from 5XFAD mice at early stage of disease pathology. *J Alzheimers Dis* **29**, 793-808, doi:10.3233/JAD-2012-111793 (2012).
- 440 Thomas, C. A. & Muotri, A. R. LINE-1: creators of neuronal diversity. *Front Biosci (Elite Ed)* **4**, 1663-1668, doi:488 [pii].
- 441 Baillie, J. K. *et al.* Somatic retrotransposition alters the genetic landscape of the human brain. *Nature* **479**, 534-537, doi:10.1038/nature10531nature10531 [pii] (2011).
- 442 Chen, T., Sahin, A. & Aldaz, C. M. Deletion map of chromosome 16q in ductal carcinoma in situ of the breast: refining a putative tumor suppressor gene region. *Cancer research* **56**, 5605-5609 (1996).
- 443 Latil, A., Cussenot, O., Fournier, G., Driouch, K. & Lidereau, R. Loss of heterozygosity at chromosome 16q in prostate adenocarcinoma: identification of three independent regions. *Cancer research* **57**, 1058-1062 (1997).
- 444 Yu, S. *et al.* Human chromosomal fragile site FRA16B is an amplified AT-rich minisatellite repeat. *Cell* **88**, 367-374 (1997).
- 445 Mangelsdorf, M. *et al.* Chromosomal fragile site FRA16D and DNA instability in cancer. *Cancer research* **60**, 1683-1689 (2000).
- 446 Paige, A. J. *et al.* A 700-kb physical map of a region of 16q23.2 homozygously deleted in multiple cancers and spanning the common fragile site FRA16D. *Cancer research* **60**, 1690-1697 (2000).
- 447 Bednarek, A. K. *et al.* WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. *Cancer research* **60**, 2140-2145 (2000).
- 448 Ried, K. *et al.* Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. *Hum Mol Genet* **9**, 1651-1663 (2000).
- 449 Chang, N. S. *et al.* Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. *Biochem Pharmacol* **66**, 1347-1354 (2003).
- 450 Winchester, L., Newbury, D. F., Monaco, A. P. & Ragoussis, J. Detection, breakpoint identification and detailed characterisation of a CNV at the FRA16D site using SNP assays. *Cytogenet Genome Res* **123**, 322-332, doi:10.1159/000184724 (2008).

- 451 Perry, G. H. *et al.* The fine-scale and complex architecture of human copy-number variation. *Am J Hum Genet* **82**, 685-695, doi:10.1016/j.ajhg.2007.12.010 (2008).
- 452 Nunez, M. I., Ludes-Meyers, J. & Aldaz, C. M. WWOX protein expression in normal human tissues. *J Mol Histol* **37**, 115-125, doi:10.1007/s10735-006-9046-5 (2006).
- 453 Lee, J. C. *et al.* WW-domain-containing oxidoreductase is associated with low plasma HDL-C levels. *Am J Hum Genet* **83**, 180-192, doi:10.1016/j.ajhg.2008.07.002 (2008).
- 454 Saez, M. E. *et al.* WWOX gene is associated with HDL cholesterol and triglyceride levels. *BMC Med Genet* **11**, 148, doi:10.1186/1471-2350-11-148 (2010).
- 455 Lo, C. P. *et al.* MPP+-induced neuronal death in rats involves tyrosine 33 phosphorylation of WW domain-containing oxidoreductase WOX1. *Eur J Neurosci* **27**, 1634-1646, doi:10.1111/j.1460-9568.2008.06139.x (2008).
- 456 Sze, C. I. *et al.* Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer's disease. *J Biol Chem* **279**, 30498-30506, doi:10.1074/jbc.M401399200 (2004).
- 457 Teng, C. C., Yang, Y. T., Chen, Y. C., Kuo, Y. M. & Sze, C. I. Role of WWOX/WOX1 in Alzheimer's disease pathology and in cell death signaling. *Front Biosci (Elite Ed)* **4**, 1951-1965 (2012).

Abreviaturas y símbolos

3'-UTR	Untranslated final gene region		
5´-UTR	Untranslated initial gene region		
Α	Amígdala		
aCGH	Comparative genomic hybridization array		
ADM3-6	Estadio de Braak 3-6, enfermedad de Alzheimer		
ADM-2	Aberrant detection method-2 algorithm		
ADN	Ácido desoxirribonucleico		
ADNc	ADN copia		
ADNm	Metilación del ADN		
АМРА	Ácido amino-metilfosfónico		
ARN	Ácido ribonucleico		
ARNr	ARN ribosómico		
ARNt	ARN de transferencia		
АТР	Adenosina trifosfato		
ATR-X	Alfa-talasemia ligada al cromosoma X		
BAC	Bacterial artificial chromosome		
BP	Breakpoint		
BSE	Bisulphite conversion efficiency		
C	Corteza		
CA	Cerebro anterior		
CA1	Cornu ammonis 1		
СВ	Cerebelo		
CF	Celda de flujo		
CGI	Islas CpG		
CGI shelf	Plataforma islas CpG		
CGI shores	Orillas islas CpG		
CHG	trinucleótidos de metilación, ^H: adenina, citosina o guanina		
СНН	trinucleótidos de metilación, ^H: adenina, citosina o guanina		
Chr	Cromosoma		
CNV	Copy number variant		
CNVR	Copy number variant region		
Ср	Crossing point		
CpG	CpG dinucleotide, site		
CpGs	Dinucleótidos/sitios CpG		
CRG	Centro de regulación genómica		
Ct	Inreshold cycle		
dATP	Desoxi adenosina trifosfato		
dCTP	Desoxicitidina trifosfato		
ddNTP	Didesoxinucleotido tritostato		
DECIPHER	Database of chromosomal impalance and phenotype in human using		
	Ensembli Resources		
	Desoxiguanosina tritostato		
DGV	Differentially methylation hybridization		
	DNA metiltransferasas		
	Desora Quetient		
	Dusage Quotient		
DSM	Duplicación segmentaria Manual octadíctico y diagnóstico do onforma da das recentales		
	manual estadístico y diagnóstico de enfermedados montalos.		
D3141-14-11	edición texto revisado		
ЧТТР	Desovitimidina trifosfato		
FΔ	Enfermedad de Alzheimer		
FA precoz	Enfermedad de Alzheimer de inicio precoz		
FA tardía	Enfermedad de Alzheimer de inicio tardío		
	Ethylenediamine tetracetic acid		
FFG	Electroencefalograma		

EP	Enfermedad de Parkinson		
eQTLs	Locus de expresión de rasgos cuantitativos		
FC	Fold change		
FISH	Fluorescence in situ hybridization		
GITC	Guanidinium thiocyanate		
GSH	Glutatión		
GWAS	Genome-Wide Association Studies		
нс	Ніросатро		
HELP	Hpall tiny fragment Enrichment by Ligation-mediated PCR		
нт	Hipotálamo		
ICD	International Classification of Disease		
ICF	Inmunodeficiencia, inestabilidad centromérica y anomalías faciales		
INDELS	Inserciones y deleciones		
kb	Kilobase		
LDA	Linear Discriminant Analysis		
logFC	Logaritmo del Fold Change		
lincRNAs	Long intergenic non coding RNA		
LINE	Long interspersed nuclear elements		
MAF	Minor Allele Frequency		
МАРН	Multiplex amplifiable probe hybridization		
Mb	Megabases		
MBD	Methyl-CpG binding domain		
MCA	Methylated CpG island amplification		
MCI	Mild Cognitive Impairement		
MeDIP	Methylated DNA inmunoprecipitation		
MEDIP-seq	Methylated DNA inmunoprecipitation sequencing		
MIRA	Methylated-CpG island recovery assay		
MLGA	Multiplex ligation-dependent genome amplification		
MLPA	Multiplex ligation-dependent genome amplification		
MMSE	Mini-examen del estado mental de Folstein		
MS	Esclerosis múltiple		
MSDK	Methylation-specific digital karyotyping		
Mt RNAt	Mitochondrial ARN		
NFQ	Non-fluorescent quencher		
NFT	Neurofibrillary tangles		
NGS	Next generation sequencing		
NINCDS-ADRDA	National Institute of Neurologic Communicative Disorders and Stroke-		
	Alzheimer's Disease and Related Disorders Association Criteria		
nt	Nucleótidos		
oligo-dT	Oligonucleótidos desoxitimina		
OMS	Organización mundial de la salud		
Р	Protuberancia		
PCR	Polymerase chain reaction		
PEM	Pair end mapping		
PMI	Post mortem interval		
Ppi	Fósforo inorgánico		
PS	Placas seniles		
PSQ	Pyrosequencing		
RA	Artritis reumatoide		
KFLP	Restriction fragment length polymorphism		
KIN	RNA integrity number		
KIVIN Da	Resonancia magnetica nuclear		
KN DDKM	Relative number		
	Reads per kilobase of exon model per million mapped reads		
KKBS	Reduced representation disulphite sequencing		
ri-gruk			

SAH	S-adenosilhomocisteina
SAM	S-adenosil-metionina
SD	Standar deviation
SDS	Sequence detection system
SDS	Sodium dodecyl sulfate
SINE	Short interspersed nuclear elements
SLE	Lupus eritematoso
SM	Mosaicismo somático
SN	Sustancia negra
SNC	Sistema nervioso central
SNP	Single nucleotide polymorphism
SP	Senile Plaques
STR	Short tandem repeats or microsatellite
SV	Structural variants
тс	Tomografía computerizada
WBA	Whole bisulfitome amplification
Anexo

Protocolos de laboratorio

1. Extracción de ADN genómico a partir de tejido humano (cerebro) congelado a -80ºC.

Reactivos

- tampón de lisis (150 mM NaCl, 10 mM Tris-HCL pH 8.0, 10 mM EDTA, 0,1% SDS)
- proteinasa-K (2 mg/μL)
- fenol (tamponado con TE)
- fenol/cloroformo/isopropanol (25:24:1)
- acetato sódico (3 M)
- etanol 100% (frío)
- etanol 70% (frío)
- tampón TE 1X
- RNasa (10 mg/ml)
- cloroformo/isopropanol

Procedimiento

- Se coloca una placa metálica en nieve carbónica y se corta la cantidad necesaria de tejido con un bisturí (20 a 40 mg), disgregamos el tejido mecánicamente fragmentando la alícuota mientras se mantiene en frío
- Se preparan unos tubos 'Eppendorf' (1,5 mL) con la cantidad necesaria de tampón de lisis (entre 10-20 volumen en mL de buffer por mg de tejido) y de proteinasa-K (concentración final: 100 μL/mL)

Ej.- por cada 40 mg de tejido añadimos 600 mL de tampón de lisis y 30 μ L de proteinasa-K

- Mezcla por inversión. Evitamos la agitación automática para no provocar degradación del ADN
- Se colocan las muestras en un baño a 55ºC, 10-16 h. para realizar la disgregación química del tejido
- 5. Añadimos 1 V (volumen) de FENOL (tamponado con TE) (630 µL)
- 6. Agitamos suavemente en agitador orbital, durante 20 min.
- 7. Centrifugamos 10 min. a 5000 g a temperatura ambiente
- Recuperamos la fase superior (acuosa) y añadimos el mismo volumen (1V) de fenol/cloroformo/isopropanol. Repetimos los pasos 6-7
- 9. Recuperamos la fase superior (acuosa)

- 10. Precipitamos el ADN con etanol (100%): añadimos 1/10 V de Acetato sódico (3 M) y 2 V de etanol, mezclamos por inversión y observamos la formación de un pequeño pellet
- 11. Ponemos a -20°C durante 1 h., centrifugamos 30 min. a 15.000 rpm a 4°C
- 12. Lavar el pellet con aprox. 100 μL de etanol al 70%, , centrifugamos a velocidad máxima durante unos seg.
- 13. Secamos el pellet durante 10 min. a 37ºC
- 14. Disolvemos el pellet en 200 µL de TE 1X y lo dejamos a 4ºC toda la noche
- 15. Tratamos el ADN disuelto con 0,2 μL de RNasa (10 mg/ml), durante 1 h a 37ºC, para eliminar restos de ARN
- 16. Purificamos el ADN nuevamente añadiendo 1 V de FENOL (tamponado con TE), agitamos en agitador orbital, 20 min. y centrifugar a temperatura ambiente 10 min. a 5000 g
- 17. Recuperamos la fase acuosa y repetimos el paso anterior
- Añadimos 1 V de cloroformo/isopropanol, agitamos en agitador orbital durante 20 min. y centrifugamos a temperatura ambiente durante 10 min. a 5000 g
- 19. Recuperamos la fase acuosa y precipitamos el ADN con etanol (pasos 10-14)
- 20. Cuantificación y control de calidad del ADN aislado, purificado y resuspendido.

2. Protocolo de hibridación, ligación y amplificación de MLPA.

Reactivos

- Tampón MLPA (MRC Holland)
- Tampón A ligasa-65 (MRC-Holland)
- Tampón B ligasa-65 (MRC-Holland)
- Ligasa (MRC-Holland)
- Salsa PCR (MRC-Holland)
- dNTPs (Invitrogen)
- Tampón de PCR (Roche)
- Taq polimerasa (Roche)
- Mezcla de cebadores FAM (MRC-Holland)
- Mezcla de cebadores VIC (Sigma)
- Formamida (Applied Biosystems)
- Marcador peso molecular ROX (Applied Biosystems)

Procedimiento

- Se desnaturalizaron 5 μL de cada muestra de ADN (150-200 ng) durante 8 min. a 98°C en un termociclador
- Se añadieron 1,5 μL de probe mastermix y 1,5 μL de tampón de MLPA (MRC Holland) por cada muestra, se mezcló durante 2 min. y se centrifugó 1 min. a 1000 g
- Se hibridó la mezcla en un termociclador realizando una desnaturalización de 1 min. a 95ºC seguido de 16 h de incubación a 60ºC
- Para la ligación de cada muestra se prepararon 32 μL de solución de ligasa (como máximo 1 h antes de la ligación), añadiendo:
 - 25 μL de agua
 - 3 μL de ligasa-65 tampón A
 - 3 μL de ligasa-65 tampón B
 - 1 μL de ligasa
- Al final de la incubación, se redujo la temperatura a 54ºC, se añadieron los 32 μL de la solución de ligasa a cada muestra, se mezcló y se incubó durante 15 min. a 54ºC
- 6. Seguido de un paso de inactivación térmica de la ligasa durante 5 min. a 98ºC

El producto de ligación se puede conservar a -20ºC o continuar con la amplificación de los fragmentos ligados. Para la amplificación de PCR se prepararon reacciones paralelas, una para cada primer marcado (FAM y VIC):

- Se preparó una solución de reacción de PCR común para ambos cebadores añadiendo para cada muestra:
 - 13 μL de agua
 - 2 μL de SALSA[®] PCR (MRC-Holland)
- 8. La PCR FAM se preparó en un volumen total de 5 μ L añadiendo:
 - 1 μL de tampón 10X (Roche)
 - 1 μL de SALSA[®] PCR Primer FAM (MRC-Holland)
 - 0,5 μL de taq polimerasa (5U/μL) Roche
 - 2,5 μL de agua *Braun PCR grade*
- 9. Para la PCR VIC se preparó una mezcla de cebadores añadiendo:
 - 6,4 μL de cebador VIC directo a 100 μM
 - 9 μ L de cebador VIC inverso a 100 μ M
 - 308,5 μL de agua Braun 'PCR grade'
- 10. La PCR se realizó en un volumen de 5 μ L añadiendo:
 - 1 μL de tampón 10X (Roche)
 - 0,25 μL de dNTPs a 100 μM (Invitrogen)
 - 1,5 µL mezcla cebadores VIC
 - 0,4 µL taq polimerasa (Roche)
 - 1,85 μL de agua Braun PCR grade

3. Electroforesis capilar de los productos de amplificación de MLPA.

- 1. Preparamos una solución desnaturalizante de los productos de PCR para mantener separadas las hebras de ADN, añadiendo en una placa para cada muestra:
 - 7,8 μL de Formamida (Applied Biosystems)
 - 0,2 µL de marcador de peso molecular fluorescente ROX (Applied Biosystems)
- 2. Añadimos 8 μ L de la solución desnaturalizante a 2 μ L de producto de PCR* y mezclamos la solución con vortex
- Calentamos 5 min. a 95°C, enfriamos en hielo y colocamos las muestras en placa en el secuenciador siguiendo las instrucciones del fabricante

*Se realizaron tres diluciones 1/5, 1/10, 1/100, para determinar la concentración del producto de PCR que proporciona una intensidad de fluorescencia óptima.

Material Suplementario

Tabla Suplementaria 1. Control de calidad del ADN genómico obtenido a partir de muestras decerebro preservadas a -80ºC

ID BANCO TEJIDO	EXTRACTION-1			EXTRACTION-2			
	ng/µL	260/280	260/230	ng/µL	260/280	260/230	
A04/00146 C	113,46	2	1,41	-	-	-	3
A04/00146 CB	487,93	1,84	1,98	-	-	-	3
A04/00146 HC	63,7	1,92	1,42	-	-	-	3
A04/00179 C	59,68	1,85	1,25	-	-	-	3
A04/00179 CB	299,85	1,88	2,09	-	-	-	3
A05/00057 C	33,75	1,98	0,96	-	-	-	3
A05/00057 CB	504,56	1,87	2,21	-	-	-	3
A06/00107 C	91,44	1,87	1,46	-	-	-	3
A06/00107 CB	781,63	1,89	2,02	-	-	-	3
A06/00107 HC	98,68	1,9	1,5	-	-	-	3
A06/00110 A	100,51	1,95	1,51	-	-	-	3
A06/00110 C	48,03	1,9	1	-	-	-	3
A06/00110 CB	708,57	1,9	2,28	-	-	-	3
A06/00110 HC	50,81	1,78	0,97	-	-	-	3
A06/00112 C	105,71	2,02	1,74	-	-	-	3
A06/00112 CB	619,75	1,9	1,95	-	-	-	3
A06/00203 A	90,04	1,93	1,57	-	-	-	3
A06/00203 C	90,61	1,99	1,62	-	-	-	3
A06/00203 CB	366,03	1,88	2,12	-	-	-	3
A06/00203 HC	104,38	1,88	1,55	-	-	-	3
A06/00210 A	114,85	1,89	1,6	-	-	-	3
A06/00210 A	31,68	1,89	1,69	-	-	-	3
A06/00210 C	88,8	1,89	1,5	-	-	-	3
A06/00210 C	37,24	1,81	1,44	-	-	-	3
A06/00210 CB	315,86	1,88	2,02	-	-	-	3
A06/00210 CB	174,07	1,91	2,01	-	-	-	3
A06/00210 HC	76,5	1,87	0,97	-	-	-	3
A06/00210 HC	18,38	2,04	0,83	-	-	-	3
A07/00005 A	317,31	1,78	1,24	-	-	-	1
A07/00005 C	207,6	1,82	1,13	-	-	-	1
A07/00005 HT	194,33	1,86	1,32	-	-	-	1
A07/00005 P	116,59	1,75	0,87	-	-	-	1
A07/00005 SN	129,97	1,8	0,84	-	-	-	1
A07/00011 A	11,85	1,64	0,52	-	-	-	3
A07/00011 C	26,38	1,42	0,93	-	-	-	3
A07/00011 CB	92,41	1,88	1,95	-	-	-	3
A07/00011 HC	23,43	1,87	1,6	-	-	-	3
A07/00043 A	91,32	1,91	1,55	-	-	-	3
A07/00043 C	178,27	1,95	1,84	-	-	-	3
A07/00043 CB	369,47	1,87	2,04	-	-	-	3
A07/00043 HC	83,25	1,96	1,43	-	-	-	3

	ng/µL	260/280	260/230	ng/µL	260/280	260/230	
A07/00132 HC	77,08	2,06	1,6	44,44	2,13	1,35	3
A07/00137 A	111,48	1,93	1,89	59,22	1,98	1,64	3
A07/00137 C	69,16	2,02	1,87	30,32	2,16	1,07	3
A07/00137 CB	515,44	1,85	2,24	321,89	1,89	2,25	3
A07/00137 HC	39,63	1,93	1,78	93,92	1,98	2,12	3
A07/00142 A	57,3	1,89	1,42	18,26	1,59	1,72	3
A07/00142 C	47	1,97	1,93	19,97	1,65	1,84	3
A07/00142 CB	59,2	1,89	1,44	94,92	1,83	2,23	3
A07/00160 A	57,92	2,07	1,25	36,34	2,27	1,18	3
A07/00160 C	23,5	2,28	1,44	29,73	2,13	1,6	3
A07/00160 CB	198,8	1,9	2	499,35	1,86	2,22	3
A07/00160 HC	42,9	1,91	1,57	27,98	2,13	0,93	3
A08/00015 A	55,9	1,118	0,575	-	-	-	3
A08/00015 C	23,15	1,92	0,84	-	-	-	3
A08/00015 CB	28,05	0,561	0,269	-	-	-	3
A08/00015 HC	13,44	1,79	0,54	-	-	-	3
A08/00017 A	21,9	1,66	1,62	50,07	1,85	1,98	3
A08/00017 C	35,7	1,89	1,18	60,81	1,89	2,02	3
A08/00017 CB	51,2	1,75	1,89	148,36	1,87	1,87	3
A08/00017 HC	33,2	1,83	1,3	72,6	1,87	1,96	3
A08/00023 A	23,9	1,89	1,02	-	-	-	3
A08/00023 C	36,73	0,735	0,382	-	-	-	3
A08/00023 CB	166,45	1,89	2,28	-	-	-	3
A08/00041 C	48,01	0,96	0,509	-	-	-	3
A08/00041 CB	1863,74	37,275	19,365	-	-	-	3
A08/00041 HC	29,43	0,589	0,288	-	-	-	3
A08/00064 A	35,08	2,16	1,48	50,32	2,01	1	3
A08/00070 A	43,11	0,862	0,418	-	-	-	3
A08/00070 C	40,12	0,802	0,407	-	-	-	3
A08/00070 CB	126,19	2,524	1,277	-	-	-	3
A08/00081 A	55,94	1,62	1,9	-	-	-	3
A08/00081 C	70,85	1,93	1,40	-	-	-	3
A08/00081 CB	422,01	1,07	1 10	-	-	-	2
A08/00081 HC	44,02	1,99	1,19	- 40.88	- 1.92	- 1 0/	2
A08/00088 A	31,5	1.95	-	40,88	1.85	1,54	3
A08/00088 CB	173 4	1.9	-	321.63	1.88	2 33	3
A08/00088 HC	47 3	2 02	_	51 7	1 86	1 79	3
A08/00095 A	165.2	1.86	1.32	-	-	-	1
A08/00095 C	492.6	1.81	1.61	-	-	-	1
A08/00095 CB	1423.44	1.83	1.96	-	-	-	1
A08/00095 HT	183,1	1,85	1,26	-	-	-	1
A08/00095 P	242,69	1,86	1,67	-	-	-	1
A08/00106 A	55,21	2,16	1,12	61,75	2,07	1,37	3
A08/00106 C	63,25	2,1	1,59	29,34	2,27	1,35	3
A08/00106 CB	189,88	1,91	1,85	521,99	1,87	2,22	3
A08/00106 HC	71,75	2,02	1,71	86,3	1,98	1,72	3
A08/00107 A	79,76	1,79	1,07	-	-	-	1

	ng/ul	260/280	260/230	ng/ul	260/280	260/230	
A08/00107 C	100 22	1 81	1 35		-	-	1
A08/00107 CB	433.92	1.84	1 55	_	-	_	1
A08/00107 HC	205.2	1.71	1.43	-	-	-	1
A08/00107 HT	307.6	1.74	1.62	-	-	-	1
A08/00107 SN	196.72	1.89	0.98	-	-	-	1
A08/00113 A	84.51	1.93	1.46	-	-	-	3
A08/00113 C	73.47	1.74	0.98	-	-	-	3
A08/00113 CB	829.89	1.91	2.3	-	-	-	3
A08/00113 HC	78,13	1,87	1,28	-	-	-	3
A08/00117 A	53,9	1,9	-	45,4	1,84	1,91	3
A08/00117 C	18,1	1,97	-	23,01	1,75	1,93	3
A08/00117 CB	62,5	1,87	-	139,24	1,83	1,97	3
A08/00117 HC	15,4	2,08	-	38,82	1,85	1,86	3
A08/00131 A	83,26	1,96	1,61	64,25	2	1,23	3
A08/00131 C	105,79	1,78	1,78	86,04	2,05	1,81	3
A08/00131 CB	236,19	1,91	2,21	333	1,89	2,06	3
A08/00131 HC	55,95	1,95	1,22	66,67	1,93	1,31	3
A08/00132 A	287,14	1,82	1,21	-	-	-	1
A08/00132 C	190,63	1,91	1,3	-	-	-	1
A08/00132 CB	386,76	1,79	1,3	-	-	-	1
A08/00132 HC	184,4	1,74	1,42	-	-	-	1
A08/00132 HT	163,41	1,74	0,76	-	-	-	1
A08/00132 P	151,28	1,78	0,71	-	-	-	1
A08/00152 A	9,7	1,92	-	14,55	1,78	1,4	3
A08/00152 C	12,5	1,73	-	31,1	1,95	2,05	3
A08/00152 CB	35,9	1,97	-	63,53	1,86	2,11	3
A08/00152 HC	17,2	1,87	-	21,88	1,73	1,52	3
A08/107 P	196,8	1,81	1,05	-	-	-	1
A09/00005 A	48,9	2,05	-	42,7	1,83	1,29	3
A09/00005 C	55,5	2,02	-	98,2	1,98	2,13	3
A09/00005 CB	61	1,94	-	57,73	1,72	1,97	3
A09/00005 HC	49,4	2,08	-	71,77	1,91	2,16	3
A09/00020 C	79,59	1,76	1,12	-	-	-	3
A09/00020 CB	46,19	1,98	1,83	-	-	-	3
A09/00021 A	60,94	2,07	1,66	67,47	2,05	1,34	3
A09/00021 C	74,12	2,01	1,44	69,86	2,09	1,39	3
A09/00021 CB	315,93	1,9	1,93	638,1	1,75	2,03	3
A09/00021 HC	90,75	1,96	1,89	18,14	3,15	0,49	3
A09/00027 C	35,05	0,701	0,364	-	-	-	3
A09/00027 CB	1417,68	28,354	15,326	-	-	-	3
A09/00027 HC	17,81	0,356	0,161	-	-	-	3
A09/00030 A	63,49	2,01	1,38	53,41	2,03	1,72	3
A09/00030 C	56,22	2,1	1,73	36,57	2,17	1,07	3
A09/00030 CB	57,4	2,05	1,07	908,81	1,/7	1,62	3
A09/00030 HC	53,02	2,1	1,85	42,85	2,18	1,76	3
AU9/00053 A	54,3	2,08	-	14,04	1,73	1,6	3
AU9/00053 C	59,6	2,18	-	1/,/2	1,9	1,94	<u>კ</u>
AU9/00053 CB	55,5	1,89	-	23,23	1,80	1,8/	3

	ng/µL	260/280	260/230	ng/µL	260/280	260/230	
A09/00053 HC	91,4	2,07	-	18,49	1,6	1,9	3
A09/00068 C	36,47	2,15	1,21	36,58	2,32	0,99	3
A09/00068 CB	21,7	2,33	0,63	78,09	1,97	1,69	3
A09/00068 HC	44,76	2,1	1,47	58,92	1,97	1,18	3
A09/00086 A	69,74	2,08	1,66	107,76	1,99	1,81	3
A09/00086 C	55,99	2,07	1,59	79,87	2,02	1,67	3
A09/00086 CB	701,87	1,89	2,15	373,57	1,87	2,22	3
A09/00086 HC	117,34	2,01	1,51	37,36	2,13	1,02	3
A09/00111 A	47	1,97	1,36	176,35	1,84	1,83	3
A09/00111 C	19,9	1,72	0,98	104,11	1,92	2,02	3
A09/00111 CB	74,9	1,86	2,16	526,4	1,86	2,29	3
A09/00111 HC	13,5	1,61	0,83	93,53	1,9	1,66	3
A09/00124 A	69,2	1,83	1,91	107,86	1,88	2,11	3
A09/00124 C	44,9	1,84	1,87	54,23	1,95	1,67	3
A09/00124 CB	58,2	1,91	1,79	94,25	1,98	2,01	3
A09/00124 HC	93,7	1,92	2	75,39	1,95	2,12	3
A09/00125 A	18,55	0,371	0,178	-	-	-	3
A09/00125 C	52,57	1,051	0,548	-	-	-	3
A09/00125 CB	30,8	0,616	0,3	-	-	-	3
A09/00125 HC	31,18	0,624	0,298	-	-	-	3
A09/00136 A	32,9	1,86	1,43	27,1	1,84	1,61	3
A09/00136 C	52,2	1,87	1,47	59,66	1,83	1,77	3
A09/00136 CB	83,8	1,89	1,79	239	1,86	2,09	3
A09/00136 HC	15,1	1,58	1,05	36,36	1,86	0,61	3
A10/00011 A	55,2	2,04	1,38	37,45	2,27	1,55	3
A10/00011 C	52,99	2,03	1,81	38,66	2	1,66	3
A10/00011 CB	59,56	2,01	1,91	206,21	1,8	1,68	3
A10/00011 HC	35,52	2,25	1,7	51,96	2,13	1,82	3
A10/00022 A	80,08	2	1,99	45,13	2,08	1,75	3
A10/00022 C	43,37	2,01	1,3	44,//	2,14	1,67	3
A10/00022 CB	63,78	2,01	1,63	337,47	1,85	1,83	3
A10/00022 HC	46,27	2,1	1,/1	58,89	2,08	1,74	3
A10/00027 A	10.69	2,00	1,90	-	-	-	с с
A10/00027 C	122 54	2,17	1,42	-	-	-	2
A10/00027 CB	20.15	1,95	1.8	-	-	-	2
RK-1049 A	350.81	1.8	1.28	-		-	1
BK-1049 Δ	187 44	1.81	1,20				2
BK-1049 C	287 29	1 75	0.93	-	_	-	-
BK-1049 CB	320.73	1.82	1.91	-	-	-	1
BK-1049 CB	1194.21	1.87	2.24				2
BK-1049 HC	198.95	1.87	1.17	-	-	-	1
BK-1049 HC	320.8	1.83	1.83				2
BK-1049 HT	186,58	1,87	1,52	-	-	-	1
ВК-1049 НТ	101,76	1,81	1,35				2
BK-1049 P	306,11	1,85	1,33	-	-	-	1
BK-1049 P	95,54	1,85	1,33				2
BK-1049 SN	191,51	1,77	1,4	-	-	-	1

	ng/ul	260/280	260/230	ng/ul	260/280	260/230	
BK-1049 SN	47.83	1 82	1 02				2
BK-1082 A	19.3	1.81	0.48				2
BK-1082 C	24.67	1.74	0.57				2
BK-1082 A	436.6	1 91	1 39	_	-	-	-
BK-1082 C	236.76	1.74	1.03	-	-	-	- 1
BK-1082 CB	617.86	1.93	1.96	-	-	-	1
BK-1082 CB	296.85	1.85	1.89				2
BK-1082 HC	60.28	1.44	1.26				2
BK-1082 HC	174,08	, 1,86	1,64				2
BK-1082 HC	258.88	1.75	1.12	-	-	-	1
BK-1082 HT	458,61	1,61	0,86	-	-	-	1
BK-1082 HT	113,82	1,81	1,5				2
BK-1082 P	273,88	1,74	1,17	-	-	-	1
BK-1082 SN	246,71	1,72	1,13	-	-	-	1
BK-1082 SN	44,8	1,67	0,88				2
BK-816 A	495,94	1,73	1,13	-	-	-	1
BK-816 A	1497	1,87	2,23				2
BK-816 C	162,99	1,84	1,2	-	-	-	1
BK-816 C	96,87	1,82	1,3				2
BK-816 CB	555,39	1,77	1,51	-	-	-	1
BK-816 CB	211,75	1,86	1,74				2
BK-816 HC	146,5	1,67	0,65	-	-	-	1
BK-816 HC	152,76	1,84	1,58				2
BK-816 HT	247,09	1,75	1,55	-	-	-	1
BK-816 P	156,03	1,8	1,44	-	-	-	1
BK-816 P	111,47	1,83	1,39				2
BK-816 SN	70,7	1,84	1,19				2
BK-873 A	150,32	1,85	1,55	-	-	-	1
BK-873 A	181,19	1,86	2,34				2
BK-873 C	234,72	1,83	0,99	-	-	-	1
BK-873 C	222,17	1,86	2,35				2
BK-873 CB	429,85	1,86	1,42	-	-	-	1
BK-873 CB	1373,14	1,86	2,45				2
BK-873 HC	321,5	1,81	1,59	-	-	-	1
BK-873 HC	278,8	1,87	2,39				2
BK-873 HT	152,1	1,79	0,93	-	-	-	1
BK-873 P	195,08	1,84	0,92	-	-	-	1
BK-873 P	210,72	1,88	2,48				2
BK-873 SN	145,8	1,73	1,08	-	-	-	1
BK-873 SN	135,23	1,89	2,48				2
BK-962 A	170,42	1,79	1,04	-	-	-	1
BK-962 C	143,71	1,87	0,94	-	-	-	1
BK-962 CB	352,88	1,89	1,36	-	-	-	1
BK-962 HC	150,27	1,79	1,62	-	-	-	1
BK-962 HT	150,27	1,79	1,62	-	-	-	1
BK-962 P	334,98	1,89	1,11	-	-	-	1
BK-962 SN	191,52	1,79	0,85	-	-	-	1
BK-999 A	301,59	1,82	1,33	-	-	-	1

BK-999 C 241,2	9 1,87	1,51	-	-	-	1
BK-999 CB 423,5	9 1,74	1,19	-	-	-	1
BK-999 HC 318,0	3 1,78	1,36	-	-	-	1
BK-999 HT 279,8	5 1,79	1,43	-	-	-	1
BK-999 P 171,2	9 1,69	0,82	-	-	-	1
BK-999 SN 134,1	7 1,77	0,65	-	-	-	1

Listado completo de las muestras de ADN extraídas a partir de los 136 tejidos de los donantes. La identificación de la muestra corresponde al ID del donante seguido del símbolo de las áreas siguientes: corteza (C), amígdala (A), hipocampo (HC), hipotálamo (HT), sustancia negra (SN), protuberancia (P) y cerebelo (CB). Datos de calidad del ADN medidos por Nanodrop: concentración (ng/ μ L) y ratios de absorbancia (260/280; 260/230nm) indicadores de la calidad del ADN, así como el set al que corresponde cada muestras, en función de los experimentos efectuados y el método de extracción.

					Estadio Braak			Hanlotino	
ID muestra	Patología	Sexo	Edad	PMI (h.)	AD	rs429358	rs7412	АроЕ	Riesgo
A07/00043	С	MASCULINO	81	4	0	rs429358_T	Both	E3/E2	PROTECCIÓN
A10/00027	С	MASCULINO	68	10.55	0	rs429358_T	Both	E3/E2	PROTECCIÓN
A04/00146	С	MASCULINO	81	12.45	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A04/00179	С	FEMENINO	82	7.75	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A05/00057	С	MASCULINO	82	4	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A06/00107	С	MASCULINO	84	14	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A06/00110	С	FEMENINO	86	19.3	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A06/00112	С	MASCULINO	71	4.3	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A07/00011	С	FEMENINO	66	7	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A08/00015	С	FEMENINO	79	3.35	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A08/00023	С	FEMENINO	81	4	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A08/00070	С	FEMENINO	79	6.25	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A08/00081	С	MASCULINO	72	3.35	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A08/00113	С	FEMENINO	79	4.45	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A09/00020	С	FEMENINO	71	6	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A09/00027	С	MASCULINO	66	9.45	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A09/00125	С	MASCULINO	73	7.05	0	rs429358_T	rs7412_C	E3/E3	NORMAL
A06/00203	С	MASCULINO	74	4	0	Both	rs7412_C	E3/E4	ELEVADO
A06/00210	С	FEMENINO	71	11.3	0	Both	rs7412_C	E3/E4	ELEVADO
A08/00041	С	FEMENINO	67	5.2	0	Both	rs7412_C	E3/E4	ELEVADO
A08/00088	AD	FEMENINO	71	7.15	3	rs429358_T	rs7412_T	E2/E2	PROTECCIÓN
A07/00142	AD	MASCULINO	75	6.1	4	Both	Both	E2/E4	NORMAL
A07/00137	AD	MASCULINO	83	7.25	3	rs429358_T	Both	E3/E2	PROTECCIÓN
A07/00160	AD	MASCULINO	81	4	3	rs429358_T	Both	E3/E2	PROTECCIÓN
A07/00132	AD	MASCULINO	90	2.3	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A08/00017	AD	MASCULINO	82	3.45	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A08/00064	AD	FEMENINO	76	9.5	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A08/00106	AD	MASCULINO	69	13.1	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A08/00117	AD	FEMENINO	90	9.55	4	rs429358_T	rs7412_C	E3/E3	NORMAL
A08/00131	AD	MASCULINO	64	6	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A08/00152	AD	FEMENINO	67	6.1	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A09/00005	AD	FEMENINO	90	4	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A09/00021	AD	MASCULINO	77	11.15	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A09/00030	AD	MASCULINO	86	3.1	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A09/00086	AD	FEMENINO	79	3.35	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A09/00124	AD	MASCULINO	77	5.4	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A09/00136	AD	FEMENINO	68	4.45	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A10/00011	AD	FEMENINO	81	5	4	rs429358_T	rs7412_C	E3/E3	NORMAL
A10/00022	AD	FEMENINO	82	4.5	3	rs429358_T	rs7412_C	E3/E3	NORMAL
A09/00053	AD	FEMENINO	69	8.1	4	Both	rs7412_C	E3/E4	ELEVADO
A09/00068	AD	FEMENINO	79	5.45	3	Both	rs7412_C	E3/E4	ELEVADO
A09/00111	AD	MASCULINO	77	13.45	3	Both	rs7412_C	E3/E4	ELEVADO

Tabla Suplementaria 2. Identificación del genotipo de APOE asociado al riesgo de padecer EA tardía,en los individuos incluidos en el presente estudio

Patología: C, control; EA, enfermedad de Alzheimer. PMI: intervalo post-mortem, horas. Genotipación SNP-1 (rs429358) y SNP-2 (rs7412): C, T o C/T. Asignación del haplotipo (3.3 Materiales y métodos): E2, E3, y E4.

Tabla Suplementaria 3. Caracterización de dianas CpG identificadas por análisis lineal discriminante

ID CpG	Sonda	Chr.	Localización	Gen	Posición	LDA	Muestras
cg00004073	11	2	237027592	AGAP1	N_Shore	Área	LDA-global
cg00345083	П	1	4725584	AJAP1	N Shore	Área	LDA-global
cg00390694	I	20	62700725	TCEA2	-	Área	LDA-global
cg00922420	I	1	55529158	PCSK9	-	Área	LDA-global
cg01070657	I	2	207988837	KLF7	-	Área	LDA-global
cg01916743	I	1	2238932	SKI	CGI	Área	LDA-global
cg03762760	1	12	33031216	PKP2	-	Área	LDA-global
cg04361015	1	7	101882646	CUX1	CGI	Área	LDA-global
cg04886934	I	15	89386809	ACAN	-	Área	LDA-global
cg05622686	11	16	58501611	NDRG4	S Shelf	Área	LDA-global
cg06833110	1	2	66673316	MEIS1	CGI	Área	LDA-global
cg07138366	1	3	186075879	DGKG	N Shelf	Área	LDA-global
cg07676300	1	19	11285258	KANK2	CGI	Área	LDA-global
cg08597733	1	20	60886158	LAMA5	CGI	Área	LDA-global
cg09284949	1	19	51190179	SHANK1	S Shore	Área	LDA-global
cg11115134	1	2	149866805	KIF5C	CGI	Área	LDA-global
cg11945096		11	8123205	TUB	-	Área	LDA-global
cg12605662	1	18	56935199	RAX	CGI	Área	I DA-global
cg12912663		11	66102239	RIN1	CGI	Área	I DA-global
cg13275129		11	96076288	MAMI 2	-	Área	I DA-global
cg13406860		9	132881336	GPR107	-	Área	LDA-global
cg13558431		9	140357706	PNPLA7	S Shore	Área	LDA-global
cg13803647		18	56702838	100390858	-	Área	LDA-global
cg14112997		22	17591088	II 17RA	S Shore	Área	LDA-global
cg14290616		22	40420987	FAM83F	S Shelf	Área	LDA-global
cg15831875		1	245986694	SMYD3	-	Área	I DA-global
cg16130802		11	118773983	BCI 9I	-	Área	LDA-global
cg16382314		1	2200962	SKI	-	Área	LDA-global
cg16527371		6	72924967	RIMS1	-	Área	LDA-global
cg16600501	1	19	15083842	SI C1A6	-	Área	LDA-global
cg17849156		17	79255961	SIC38A10	CGI	Área	LDA-global
cg18933128		17	48183400	PDK2	CGI	Área	LDA-global
cg20555462		11	122535518	UBASH3B	-	Área	LDA-global
cg21211688		9	136403935	ADAMTSI 2	S Shelf	Área	I DA-global
cg23363832		3	139258939	RRP1	S Shore	Área	LDA-global
cg23764766		12	1459744	FRC1	-	Área	LDA-global
cg24428851		2	242170166	HDIBP	-	Área	I DA-global
cg24913168		13	44971694	SERP2	-	Área	I DA-global
cg26937434		16	21245151	ANKS4B	-	Área	I DA-global
cg05593887		7	77827379	MAGI2	-	Área/Patología	LDA-global
cg02380521	Ш	19	17862130	FCHO1	S Shelf	Edad	LDA-global
cg02464073	11	21	46349496	ITGB2	N Shore	Edad	LDA-global
cg02658043	П	8	144917532	NRBP2	N Shore	Edad	LDA-global
cg03466780	11	9	140247365	EXD3	N Shore	Edad	LDA-global
cg05338731	Ш	22	23489041	RAB36	S Shore	Edad	LDA-global
cg06634576	1	2	36782386	FEZ2	-	Edad	LDA-global
cg07128503	Ш	16	85747424	C16orf74	S Shelf	Edad	LDA-global
cg07304760	11	7	127514192	SND1	-	Edad	LDA-global
cg07456585	Ш	14	74704714	VSX2	N Shore	Edad	LDA-global
cg08136432	11	16	88902276	GALNS	CGI	Edad	LDA-global
cg08429705	Ш	19	2583601	GNG7	S Shelf	Edad	LDA-global
cg08603678	II	8	109235928	EIF3E	-	Edad	LDA-global
cg08880261	11	21	43547872	UMODL1	CGI	Edad	LDA-global
cg09636756	II	18	77134251	ATP9B	CGI	Edad	LDA-global
cg10058204	II	10	91453851	FLJ37201	-	Edad	LDA-global
cg10738003	II	11	120233535	ARHGEF12	-	Edad	LDA-global
cg10890644	II	10	5446942	TUBAL3	-	Edad	LDA-global
cg12208638	П	11	66317822	ACTN3	S_Shelf	Edad	LDA-global

Humanmethylation450

ID CpG	Sonda	Chr.	Localización	Gen	Posición	LDA	Muestras
cg12259892	Ш	18	56963742	CPLX4	-	Edad	LDA-global
cg14460215	II	9	72132995	APBA1	S_Shore	Edad	LDA-global
cg16963093	II	7	105399252	ATXN7L1	-	Edad	LDA-global
cg17386240	II	5	135384080	TGFBI	-	Edad	LDA-global
cg18673341	II	7	22481962	MGC87042	-	Edad	LDA-global
cg19393008	II	12	52798363	KRT82	-	Edad	LDA-global
cg20536971	II	13	100989375	PCCA	-	Edad	LDA-global
cg20823859	II	1	111971624	OVGP1	-	Edad	LDA-global
cg21130926	II	20	46415320	SULF2	CGI	Edad	LDA-global
cg21463262	II	13	113539522	ATP11A	N_Shore	Edad	LDA-global
cg21589417	II	2	170834853	UBR3	-	Edad	LDA-global
cg22336867	II	19	39265241	LGALS7	S_Shelf	Edad	LDA-global
cg23022053	II	14	52733243	PTGDR	N_Shore	Edad	LDA-global
cg24470466		6	32608858	HLA-DQA1	-	Edad	LDA-global
cg24638099		6	32526027	HLA-DRB6	-	Edad	LDA-global
cg26077133		8	10049871	MSRA	-	Edad	LDA-global
cg26820259		6	51953096	PKHD1	-	Edad	LDA-global
cg04612030		16	1486462	CCDC154	N_Shore	Edad/Patologia	LDA-global
cg09281805		7	4751840	FOXK1	-	Edad/Patologia	LDA-global
cg09866143		3	124861521	SLC12A8	S_Shore	Edad/Patologia	LDA-global
cg09885502		20	57463991	GNAS	CGI	Edad/Patologia	LDA-global
cg10482512		6	16/524238	CCR6	-	Edad/Patologia	LDA-global
cg10/24632		2	36/5155	COLEC11	-	Edad/Patologia	LDA-global
cg00881894		2	166930521	SCN1A	-	Patologia	LDA-global
cg01543583		14	59947673	C140rf149	N_Shelf	Patologia	LDA-global
cg06767339		8	22011/8/	LGI3	N_Shelf	Patologia	LDA-global
cg09084244		12	123/5/860	CDK2AP1	S_Shore	Patologia	LDA-global
cg09175792	1	10	50534598		CGI	Patologia	LDA-global
Cg09993319		10	131529435		-	Patología	LDA-global
cg13078798		1	92203667		-	Patologia	LDA-global
cg10191297		0	140926709	TRAPPCS	-	Patología	LDA-global
cg19961767		10	21/108035	C10orfE9	-	Patología	LDA-global
cg22509145		10	02109470	CIUUIIS	-	Patología	
cg22308143		3	16/20793	RETN1		Patología	
cg25100555		11	12/612055	NRGN	N Shore	Patología	
cg11897887*		20	23550632	CSTQL	N_511016	Fdtologia	
cg13603318*		17	63926873	CCDC/6		Edad	
cg24976563*	1	14	24587638	DCAF11	S Shelf	Patología	
cg27224751*		15	41096921	DNAIC17	N Shelf	Patología	LDA-CA/LDA-global
cg01018360		16	88689494	ZC3H18	-	Área	IDA-CA
cg01909845	1	11	119535897	PVRI 1	CGI	Área	IDA-CA
cg02991118		7	4823955	KIAA0415	CGI	Área	LDA-CA
cg04740264	1	16	3632588	BTBD12	-	Área	LDA-CA
cg06233301		16	1500359	CLCN7	CGI	Área	LDA-CA
cg07665929	II	5	171523225	STK10	-	Área	LDA-CA
cg09175811	II	12	111050500	TCTN1	N Shore	Área	LDA-CA
cg09867128	1	6	31795671	HSPA1B	CGI	Área	LDA-CA
cg11141652	Ш	22	24348549	GSTTP1	-	Área	LDA-CA
cg12997579	I	4	1801063	FGFR3	N Shore	Área	LDA-CA
cg13021479	1	17	8380298	MYH10	CGI	Área	LDA-CA
cg13492737	II	9	137624816	COL5A1	-	Área	LDA-CA
cg16678121	П	6	126665098	C6orf173	S_Shelf	Área	LDA-CA
cg17370616	II	14	56233068	RPL13AP3	CGI	Área	LDA-CA
cg17420036	I	1	22182143	HSPG2	-	Área	LDA-CA
cg18845598	II	7	143746594	OR2A5	-	Área	LDA-CA
cg19026811	II	17	42980188	CCDC103	S_Shelf	Área	LDA-CA
cg19554037	I	11	1318877	TOLLIP	S_Shore	Área	LDA-CA
cg19759671	I	4	183063459	MGC45800	CGI	Área	LDA-CA
cg22692545	II	10	6185933	PFKFB3	N_Shore	Área	LDA-CA
cg24284460	II	3	42139507	TRAK1	-	Área	LDA-CA

ID CpG	Sonda	Chr.	Localización	Gen	Posición	LDA	Muestras
cg01406776	II	4	8386748	ACOX3	N_Shore	Edad	LDA-CA
cg01790920	1	5	3594679	IRX1	CGI	Edad	LDA-CA
cg03114748	П	20	35973098	SRC	N_Shore	Edad	LDA-CA
cg03987842	Ш	16	68321858	SLC7A6	-	Edad	LDA-CA
cg04493778	П	6	32713018	HLA-DQA2	-	Edad	LDA-CA
cg06377353	1	20	25388089	GINS1	N_Shore	Edad	LDA-CA
cg06995503	П	10	3178915	PFKP	N Shore	Edad	LDA-CA
cg07196514	Ш	1	158984321	IFI16	-	Edad	LDA-CA
cg08923669	I	16	420230	MRPL28	CGI	Edad	LDA-CA
cg10151737	I	6	170615854	FAM120B	CGI	Edad	LDA-CA
cg13085030	I	7	1090504	C7orf50	CGI	Edad	LDA-CA
cg14752227	Ш	20	34000481	UQCC	-	Edad	LDA-CA
cg15029183	П	6	143586006	AIG1	-	Edad	LDA-CA
cg16519574	Ш	2	1134065	SNTG2	-	Edad	LDA-CA
cg20060160	Ш	1	183298149	NMNAT2		Edad	LDA-CA
cg20231299		19	49202858	FUT2	N Shelf	Edad	LDA-CA
cg20857709	1	2	43019727	HAAO	CGI	Edad	LDA-CA
cg23630179	II	13	111089337	COL4A2	N Shore	Edad	IDA-CA
cg24098252	1	12	131580577	GPR133	-	Edad	LDA-CA
cg25075347	II	6	133731801	EYA4	-	Edad	LDA-CA
cg25165144	1	12	670974	B4GALNT3	-	Edad	IDA-CA
cg25613667		5	140044292	WDR55	CGI	Edad	IDA-CA
cg25963939		11	3168455	OSBPI 5	-	Edad	IDA-CA
cg08849813		11	17825098	SERGEE	-	Edad/Patología	IDA-CA
cg00871204		17	15620678	7NF286A	-	Patología	IDA-CA
cg01491428		16	2334163	ABCA3	CGI	Patología	
cg04787784		16	930179	I MF1	S Shore	Patología	
cg06300880		3	119279147	CD80	-	Patología	LDA-CA
cg13935315		19	12547760	7NF443	N Shelf	Patología	
cg17044526		12	132824225	GALNT9		Patología	
cg17259298		5	145583025	RBM27	CGI	Patología	
cg17203250		13	40108007	L HED	-	Patología	
cg18/33519		6	24646494	KIAA0319	CGI	Patología	
cg196/8023		2	179275173	MIR5/18N	N Shelf	Patología	
cg22853855		10	3/111/00		N Shore	Patología	
cg22855855		6	22605704		N_SHOLE	Patología	
cg22933600	1	10	12862078			Patología	
cg23020554		1	12111000			Patología	
Cg22004200	11	2	72215647		-	Patología	
CG22622026	11	17	24067205		- N Share	Patología	
cg24166175		11	54007305 85506200	KASLIDB	N_Shore	Patología	
Cg241001/5	11	11	17204274		-	Patología	
cg23482839 cg23633026 cg24166175 cg25593194		2 17 11 1	/3215647 34067305 85596390 17394374	SFXN5 RASL10B CCDC83 PADI2	- N_Shore - -	Patologia Patología Patología Patología	LDA-CA LDA-CA LDA-CA LDA-CA

ID CpG: identificación específica de Illumina para cada diana CpG. Sonda: tipo de sonda diseñada por Illumina. Chr.: cromosoma. Localización: localización genómica de las dianas CpG, basada en el genoma humano de referencia hg18 (NCBI36). Gen: nombre oficial (HUGO). CGI: posición de las CpGs respecto a islas CpG. N_Shore: región adyacente a CGI en posición 5'. S_Shore: región adyacente a CGI en posición 3'. N_Shelf: región adyacente a 'N_Shore' en posición 5'. S_Shelf: región adyacente a 'S_Shore' en 3'. LDA Área, LDA Edad, LDA Pat.: Análisis lineal discriminante realizados para determinar la presencia de patrones de metilación dependientes de Edad, Área del SNC y Patología. LDA-global: muestras de partida con de todas las áreas. LDA-CA: regiones anteriores de cerebro: amígdala, corteza e hipocampo. Tabla Suplementaria 4. Análisis funcional in silico de las dianas CpG obtenidas por LDA-global

por edad										
Enriquecimiento: 1.62	Genes	P-valor	Benjamini							
cell adhesion	6	1.10E-02	9.90E-01							
biological adhesion	6	1.10E-02	8.90E-01							
cell-cell adhesion	3	1.00E-01	1.00E+00							
Enriquecimiento: 1.37										
behavior	5	1.30E-02	8.10E-01							
locomotory behavior	4	1.70E-02	8.00E-01							
defense response	3	3.50E-01	1.00E+00							
Enriquecimiento: 0.63										
sensory perception	4	2.20E-01	1.00E+00							
neurological system process	5	2.20E-01	1.00E+00							
cognition	4	2.70E-01	1.00E+00							
Enriquecimiento: 0.59										
G-protein coupled receptor protein signaling pathway	6	6.80E-02	9.90E-01							
cell surface receptor linked signal transduction	7	1.60E-01	1.00E+00							
plasma membrane part	8	2.50E-01	1.00E+00							
transducer	4	2.60E-01	9.60E-01							
plasma membrane	11	3.90E-01	1.00E+00							
cell membrane	6	4.60E-01	9.80E-01							
receptor	4	6.30E-01	1.00E+00							
Enriquecimiento: 0.54										
signal	10	2.00F-01	9.80F-01							
signal pentide	10	2.10E-01	1.00F+00							
disulfide bond	9	2.10E 01	9 90F-01							
glycoprotein	12	2.50E-01	9 80F-01							
topological domain:Extracellular	8	3 20E-01	1.00E+00							
glycosylation site.N-linked (GlcNAc	11	3.20E 01	1.00E+00							
disulfide bond	8	3.50E-01	1.00E+00							
	Q	5.50E-01	1.000+00							
Enriquecimiento: 0.48	0	5.502 01	1.002100							
protoin complex accomply	2	2 705 01	1.005±00							
protein complex biogenesis	2	2.70E-01	1.002+00							
protein complex biogenesis	2	2.700-01	1.000+00							
	2	3.90E-01	1.00E+00							
Frainweimienter 0.42	3	4.20E-01	1.00E+00							
	2	2 405 04	1.005.00							
apoptosis	3	3.40E-01	1.00E+00							
programmed cell death	3	3.50E-01	1.00E+00							
ceil death	3	4.20E-01	1.00E+00							
death	3	4.30E-01	1.00E+00							
Enriquecimiento: 0.41	_									
calcium	5	7.80E-02	9.70E-01							
calcium ion binding	5	1.90E-01	1.00E+00							
cation binding	11	6.10E-01	1.00E+00							
ion binding	11	6.30E-01	1.00E+00							
metal ion binding	10	7.40E-01	1.00E+00							
metal-binding	5	8.70E-01	1.00E+00							

Enriquecimiento: 0.4			
nucleotide phosphate-binding region:GTP	3	1.20E-01	1.00E+00
gtp-binding	3	1.40E-01	9.60E-01
GTP binding	3	2.30E-01	1.00E+00
guanyl ribonucleotide binding	3	2.40E-01	1.00E+00
guanyl nucleotide binding	3	2.40E-01	1.00E+00
nucleotide-binding	6	2.50E-01	9.70E-01
nucleotide binding	8	3.10E-01	1.00E+00
purine nucleotide binding	7	3.30E-01	1.00E+00
ribonucleotide binding	6	4.80E-01	1.00E+00
purine ribonucleotide binding	6	4.80E-01	1.00E+00
atp-binding	3	7.60E-01	1.00E+00
adenyl nucleotide binding	4	7.60E-01	1.00E+00
purine nucleoside binding	4	7.70E-01	1.00E+00
nucleoside binding	4	7.80E-01	1.00E+00
ATP binding	3	8.90E-01	1.00E+00
adenyl ribonucleotide binding	3	9.00E-01	1.00E+00
Enriquecimiento: 0.34			
membrane	16	2.60E-01	9.50E-01
topological domain:Extracellular	8	3.20E-01	1.00E+00
glycosylation site:N-linked (GlcNAc)	11	3.30E-01	1.00E+00
plasma membrane	11	3.90E-01	1.00E+00
topological domain:Cytoplasmic	8	5.50E-01	1.00E+00
intrinsic to membrane	14	5.50E-01	1.00E+00
transmembrane region	11	5.60E-01	1.00E+00
transmembrane	11	5.70E-01	1.00E+00
integral to membrane	11	8.60E-01	1.00E+00
Enriquecimiento: 0.32			
extracellular region	7	3.30E-01	1.00E+00
extracellular space	3	4.80E-01	1.00E+00
extracellular region part	3	6.70E-01	1.00E+00
Enriquecimiento: 0.32			
protein transport	3	4.50E-01	1.00E+00
establishment of protein localization	3	4.60E-01	1.00E+00
protein localization	3	5.30E-01	1.00E+00
Enriquecimiento: 0.28			
cytoskeletal part	4	3.90E-01	1.00E+00
structural molecule activity	3	4.70E-01	1.00E+00
non-membrane-bounded organelle	7	5.90E-01	1.00E+00
intracellular non-membrane-bounded organelle	7	5.90E-01	1.00E+00
cytoskeleton	4	6.40E-01	1.00E+00
Enriquecimiento: 0.26			
transmembrane protein	3	3.80E-01	9.80E-01
intrinsic to plasma membrane	4	5.50E-01	1.00E+00
integral to plasma membrane	3	7.80E-01	1.00E+00
Enriquecimiento: 0.15			
acetylation	8	2.80E-01	9.50E-01
intracellular organelle lumen	5	6.20E-01	1.00E+00
organelle lumen	5	6.40E-01	1.00E+00

membrane-enclosed lumen	5	6.50E-01	1.00E+00
nuclear lumen	4	6.80E-01	1.00E+00
transcription regulation	4	7.90E-01	1.00E+00
Transcription	4	8.10E-01	1.00E+00
transcription	4	8.10E-01	1.00E+00
transcription regulator activity	3	9.00E-01	1.00E+00
regulation of transcription	4	9.10E-01	1.00E+00
nucleus	6	9.50E-01	1.00E+00

Enriquecimiento: 1.8	Genes	P-valor	Benjamini
repeat:ANK 1	4	1.00E-02	9.30E-01
repeat:ANK 2	4	1.00E-02	7.50E-01
ank repeat	4	1.10E-02	4.70E-01
Ankyrin	4	1.50E-02	8.30E-01
ANK	4	1.90E-02	5.20E-01
repeat:ANK 3	3	5.40E-02	9.80E-01
Enriquecimiento: 1.35			
cell junction	5	7.00E-03	5.60E-01
cell junction	5	1.50E-02	7.70E-01
Synapse	4	2.80E-02	7.50E-01
PDZ/DHR/GLGF	3	4.10E-02	9.20E-01
plasma membrane part	9	4.20E-02	7.60E-01
PDZ	3	5.00E-02	6.20E-01
Synapse	3	6.30E-02	6.60E-01
plasma membrane	12	6.70E-02	7.40E-01
cell membrane	5	6.20E-01	9.90E-01
Enriquecimiento: 1.3			
Synapse	4	2.80E-02	7.50E-01
extrinsic to membrane	4	6.40E-02	8.00E-01
enzyme binding	4	7.00E-02	7.70E-01
Enriquecimiento: 1.19			
Synapse	4	2.80E-02	7.50E-01
synapse part	3	7.70E-02	7.30E-01
protein localization	5	1.30E-01	1.00E+00
Enriquecimiento: 0.96			
Transport	9	1.30E-02	3.80E-01
GTPase regulator activity	4	3.70E-02	9.00E-01
nucleoside-triphosphatase regulator activity	4	3.90E-02	8.00E-01
small GTPase regulator activity	3	9.00E-02	8.00E-01
protein localization	5	1.30E-01	1.00E+00
vesicle-mediated transport	4	1.30E-01	1.00E+00
intracellular transport	4	1.80E-01	1.00E+00
protein transport	4	2.40E-01	1.00E+00
protein transport	3	2.40E-01	8.60E-01
establishment of protein localization	4	2.40E-01	1.00E+00
mutagenesis site	6	3.60E-01	1.00E+00
Enriquecimiento: 0.88			
RNA polymerase II transcription factor activity	4	9.90E-03	7.00E-01
Nucleus	14	5.10E-02	6.30E-01
transcription regulator activity	7	5.30E-02	7.30E-01
regulation of transcription from RNA polymerase II promoter	5	7.50E-02	1.00E+00
Activator	4	7.80E-02	6.90E-01
Homeobox	3	7.90E-02	6.50E-01
regulation of transcription, DNA-dependent	8	8.90E-02	1.00E+00
Homeobox, conserved site	3	8.90E-02	9.80E-01
Homeobox	3	9.10E-02	9.40E-01
	3	9.30F-02	9.10F-01

Tabla Suplementaria 5. Análisis funcional in silico de las dianas CpG obtenidas por LDA-global de área

Homeodomain-related			
regulation of RNA metabolic process	8	9.70E-02	1.00E+00
нох	3	1.10E-01	7.70E-01
transcription cofactor activity	3	1.40E-01	8.70E-01
developmental protein	4	1.90E-01	8.60E-01
Transcription	7	2.00E-01	8.40E-01
regulation of transcription	9	2.10E-01	1.00E+00
transcription factor binding	3	2.40E-01	9.40E-01
transcription factor activity	4	2.70E-01	9.40E-01
sequence-specific DNA binding	3	3.10E-01	9.60E-01
Transcription	7	3.20E-01	1.00E+00
transcription regulation	6	3.50E-01	9.40E-01
dna-binding	5	4.90E-01	9.70E-01
DNA binding	5	6.50E-01	1.00E+00
Enriquecimiento: 0.8			
cell morphogenesis involved in differentiation	3	1.00E-01	1.00E+00
cell projection morphogenesis	3	1.00E-01	1.00E+00
cell part morphogenesis	3	1.10E-01	1.00E+00
cell morphogenesis	3	1.90E-01	1.00E+00
cell projection organization	3	2.00E-01	1.00E+00
cellular component morphogenesis	3	2.20E-01	1.00E+00
cell motion	3	2.80E-01	1.00E+00
Enriquecimiento: 0.7			
cell adhesion	3	1.90E-01	8.50E-01
cell adhesion	4	2.00E-01	1.00E+00
biological adhesion	4	2.00E-01	1.00E+00
Enriquecimiento: 0.63			
membrane fraction	4	1.90E-01	8.80E-01
insoluble fraction	4	2.10E-01	8.70E-01
cell fraction	4	3.30E-01	9.50E-01
Enriquecimiento: 0.5			
zinc ion binding	8	1.20E-01	8.50E-01
zinc-finger	6	2.30E-01	8.70E-01
transition metal ion binding	8	2.40E-01	9.50E-01
metal ion binding	10	3.50E-01	9.70E-01
cation binding	10	3.60E-01	9.60E-01
ion binding	10	3.80E-01	9.70E-01
zinc	6	4.10E-01	9.50E-01
metal-binding	6	7.00E-01	1.00E+00
Enriquecimiento: 0.39			
regulation of transcription from RNA polymerase II promoter	5	7.50E-02	1.00E+00
nucleoplasm part	3	2.80E-01	9.30E-01
nucleoplasm	3	5.00E-01	9.90E-01
nuclear lumen	4	5.20E-01	9.90E-01
intracellular organelle lumen	4	6.70E-01	1.00E+00
organelle lumen	4	6.80E-01	1.00E+00
- membrane-enclosed lumen	4	7.00E-01	1.00E+00

Enriquecimiento: 0.37			
extracellular region part	5	1.00E-01	7.80E-01
proteinaceous extracellular matrix	3	1.20E-01	7.90E-01
extracellular matrix	3	1.40E-01	8.00E-01
Secreted	5	4.10E-01	9.50E-01
extracellular region	5	5.40E-01	9.90E-01
glycosylation site:N-linked (GlcNAc)	8	7.20E-01	1.00E+00
glycoprotein	8	7.60E-01	1.00E+00
signal	6	7.70E-01	1.00E+00
signal peptide	6	7.80E-01	1.00E+00
disulfide bond	5	8.30E-01	1.00E+00
disulfide bond	4	9.30E-01	1.00E+00
Enriquecimiento: 0.19			
cytoskeleton	4	4.90E-01	9.90E-01
non-membrane-bounded organelle	5	7.50E-01	1.00E+00
intracellular non-membrane-bounded organelle	5	7.50E-01	1.00E+00
Enriquecimiento: 0.14			
nucleotide binding	5	6.20E-01	1.00E+00
nucleotide-binding	4	6.40E-01	9.90E-01
ribonucleotide binding	4	6.80E-01	1.00E+00
purine ribonucleotide binding	4	6.80E-01	1.00E+00
purine nucleotide binding	4	7.10E-01	1.00E+00
atp-binding	3	7.30E-01	1.00E+00
ATP binding	3	7.80E-01	1.00E+00
adenyl ribonucleotide binding	3	7.80E-01	1.00E+00
adenyl nucleotide binding	3	8.10E-01	1.00E+00
purine nucleoside binding	3	8.10E-01	1.00E+00
nucleoside binding	3	8.20E-01	1.00E+00
Enriquecimiento: 0.14			
membrane	15	3.00E-01	9.10E-01
integral to membrane	9	8.40E-01	1.00E+00
transmembrane region	8	8.70E-01	1.00E+00
intrinsic to membrane	9	8.80E-01	1.00E+00
transmembrane	8	8.80E-01	1.00E+00
topological domain:Cytoplasmic	5	9.10E-01	1.00E+00

Enriquecimiento: 1.11	Gene	P_Value	Benjamini
membrane fraction	4	4.50E-02	7.80E-01
insoluble fraction	4	4.90E-02	6.80E-01
cell fraction	4	9.10E-02	8.00E-01
plasma membrane part	5	1.70E-01	9.20E-01
Enriquecimiento: 0.78			
extracellular region	6	4.10E-02	9.40E-01
Secreted	5	9.30E-02	9.90E-01
signal	5	4.40E-01	1.00E+00
signal peptide	5	4.50E-01	1.00E+00
Enriquecimiento: 0.49			
cell membrane	6	6.90E-02	1.00E+00
homeostatic process	3	1.00E-01	1.00E+00
plasma membrane part	5	1.70E-01	9.20E-01
intracellular signaling cascade	3	2.40E-01	1.00E+00
glycoprotein	7	2.80E-01	1.00E+00
membrane	9	3.10E-01	1.00E+00
plasma membrane	6	3.30E-01	9.90E-01
integral to plasma membrane	3	3.40E-01	9.80E-01
intrinsic to plasma membrane	3	3.50E-01	9.70E-01
cell surface receptor linked signal transduction	3	4.10E-01	1.00E+00
glycosylation site:N-linked (GlcNAc)	6	4.40E-01	1.00E+00
intrinsic to membrane	7	5.10E-01	9.90E-01
transmembrane region	5	8.00E-01	1.00E+00
transmembrane	5	8.00E-01	1.00E+00
integral to membrane	5	8.60E-01	1.00E+00
Enriquecimiento: 0.26			
regulation of transcription	4	3.00E-01	1.00E+00
transcription	3	4.80E-01	1.00E+00
transcription regulation	3	6.40E-01	1.00E+00
Transcription	3	6.50E-01	1.00E+00
nucleus	4	8.60E-01	1.00E+00
Enriquecimiento: 0.23			
nuclear lumen	3	4.40E-01	9.90E-01
intracellular organelle lumen	3	5.60E-01	9.90E-01
organelle lumen	3	5.70E-01	9.90E-01
membrane-enclosed lumen	3	5.80E-01	9.90E-01
nucleus	4	8.60E-01	1.00E+00
Enriquecimiento: 0.21			
DNA binding	4	4.70E-01	1.00E+00
dna-binding	3	5.90E-01	1.00E+00
nucleus	4	8.60E-01	1.00E+00
Enriquecimiento: 0.15			
metal ion binding	5	7.00E-01	1.00E+00
cation binding	5	7.10E-01	1.00E+00

7.20E-01

5

1.00E+00

Tabla Suplementaria 6. Análisis funcional in silico de las dianas CpG obtenidas por LDA-patología

ion binding

ID CpG	logFC	adj.P.Val	Sonda	Chr	Localización	Gene	CGI	Área
cg01432520	-0.523	0.00317091	Ш	1	217068243	ESRRG	-	СВ
cg04442806	-0.517	0.00317091	П	3	39509081	MOBP	-	CB
cg14916754	-0 536	0.00317091		12	132530012	FP400	-	CB
cg26785106	-0 504	0.00342080		8	143957347	CYP11B1	-	CB
cg2702/161	-0 595	0.00398209		5	17238232	BASP1	_	CB
cg07024101	-0 723	0.00478639		10	17230232	SHC2	CGI	CB
cg01075459	-0 511	0.00478033		16	1266/318	SNX29	S Shore	CB
cg01092135	-0 578	0.00481183		7	1/8768099	ZNE786		CB
cg01/278/9	-0.961	0.00481183		, 8	59826/63		-	CB
cg03952109	-0.520	0.00481183		5	03/00032	EAN/172A	_	CB
cg05676570	-0 525	0.00481183		2	13598516/		_	CB
cg26679004	0.525	0.00481183		10	88022125	GRID1		CB
cg13057837	-0 510	0.00481183	1	10	140705000		S Shore	CB
cg18282840	-0.519	0.00483278		11	86085604		2_31016	CB
cg16222049	-0.333	0.00556840		12	33604703	STARD13	-	CB
cg08070112	-0.724	0.00550840		17	2007/22		-	CB
cg10174921	-0.504	0.00560340		12	100770961		-	СВ
cg19174831	-0.804	0.00560340		13	109779801		CGI C. Chara	CB
cg01876288	-0.511	0.00593259		10	158800934	100154822	S_Shore	CB
cg14434293	-0.550	0.00593259		10	1596108	ADARB2	s_snore	CB
Cg05303690	-0.692	0.00603241		8	32284962	NRGI	-	CB
cg09415272	0.519	0.00603241		2	88/51158	FUXI3	N_Shore	CB
cg21527616	-0.537	0.00603241		3	6454/3/3	ADAMIS9	-	CB
cg01210622	-1.072	0.00612970		16	68405731	SMPD3	CGI	CB
cg10210806	-0.737	0.00612970	1	1	6514605	ESPN	CGI	СВ
cg00715323	-0.621	0.00617649		2	11479980	ROCK2	N_Shelf	СВ
cg03714110	-0.916	0.00617649	II	5	92923623	NR2F1	CGI	СВ
cg13584531	-0.565	0.00617649		2	99280070	MGAT4A	-	СВ
cg13292607	-0.591	0.00627909	I	10	126751950	СТВР2	-	СВ
cg16001418	-0.677	0.00630133		19	36393325	HCST	S_Shore	СВ
cg16898334	-0.768	0.00633273	II	1	181767774	CACNA1E	CGI	СВ
cg10819495	-0.542	0.00636016	II	8	75735552	PI15	-	CB
cg15171839	-0.617	0.00636016	11	5	92924603	NR2F1	S_Shore	СВ
cg00929345	-0.632	0.00638529		8	143622353	BAI1	N_Shore	CB
cg13656062	-0.629	0.00638529	11	19	16008723	CYP4F2	-	CB
cg19776833	-0.564	0.00638529	11	3	71057616	FOXP1	-	CB
cg08690999	-1.090	0.00645339	11	5	92923396	NR2F1	N_Shore	CB
cg12561776	-0.751	0.00645339	II	17	30844705	MYO1D	N_Shore	CB
cg25354248	-0.551	0.00645339	11	19	8676862	ADAMTS10	S_Shore	CB
cg25376875	-0.659	0.00645339	II	2	9459453	ASAP2	CGI	CB
cg26337312	-1.000	0.00645339	1	1	165321741	LMX1A	CGI	CB
cg27138293	-0.895	0.00645339	I.	17	79503701	FSCN2	CGI	CB
cg25264268	-0.978	0.00647831	1	19	427263	SHC2	CGI	CB
cg20258486	-0.669	0.00656707	Ш	7	158800888	LOC154822	S_Shore	CB
cg05450477	-0.509	0.00679268	Ш	6	20426845	E2F3	-	CB
cg01877524	1.073	0.00705250	I	11	117651359	DSCAML1	CGI	CB
cg26681176	-0.580	0.00705250	П	14	88675766	KCNK10	-	CB
cg02913918	-0.789	0.00712967	II	1	181767609	CACNA1E	CGI	CB
cg10324158	-0.738	0.00712967	П	3	45067713	CLEC3B	-	CB
cg12999366	-0.619	0.00712967	II	7	30499283	NOD1	-	CB
cg02504734	-0.586	0.00718519	П	16	70955865	HYDIN	-	СВ
cg11002119	-1.112	0.00718519	П	10	11137788	CUGBP2	-	СВ
cg24668883	-0.660	0.00718519	П	5	17257844	BASP1	-	СВ
cg01314488	-0.539	0.00719208	Ш	4	143286770	INPP4B	-	CB

 Tabla Suplementaria 7. Caracterización de las dianas CpG con diferencias significativas de metilación

 entre casos y controles en cerebelo, en corteza y en corteza, amígdala e hipocampo conjuntamente

ID CpG	logFC	adj.P.Val	Sonda	Chr	Localización	Gene	CGI	Área
cg01923516	-0.790	0.00719208	П	7	3989167	SDK1	-	CB
cg19411146	-0.655	0.00719208	I	6	152128471	ESR1	N_Shore	CB
cg19509663	-0.608	0.00719208	П	4	7863560	AFAP1	-	CB
cg24142603	0.650	0.00719208	I.	8	72753888	MSC	CGI	CB
cg26339943	-0.651	0.00719208	П	4	145571234	ннір	S_Shelf	CB
cg07967498	-0.666	0.00726493	Ш	14	89059881	ZC3H14	-	CB
cg00401471	-0.565	0.00726915	П	19	38782834	SPINT2	-	CB
cg10575219	-0.514	0.00726915	Ш	7	105313992	ATXN7L1	-	CB
cg12299554	-0.562	0.00726915	П	15	94840953	MCTP2	-	CB
cg14412134	-0.568	0.00726915	Ш	14	64912417	MTHFD1	-	CB
cg17066349	-0.592	0.00726915	П	12	120130646	CIT	S_Shelf	CB
cg19453093	-0.511	0.00726915	П	14	88655985	KCNK10	-	CB
cg23178069	-0.564	0.00726915	П	11	21043240	NELL1	-	CB
cg24929834	-0.538	0.00726915	Ш	22	29457241	C22orf31	-	CB
cg10122050	-0.694	0.00734641	Ш	10	106059062	GSTO2	-	СВ
cg12355887	-0.585	0.00736133	I.	5	172305927	ERGIC1	-	CB
cg10398418	-0.733	0.00741852	П	10	11312015	CUGBP2	-	СВ
cg21204530	-0.508	0.00741852	Ш	5	172306136	ERGIC1	-	СВ
cg03549412	-0.590	0.00745178	11	20	45866394	ZMYND8	N Shore	СВ
cg21192185	-0.633	0.00756886	Ш	3	126708075	PLXNA1	CGI	СВ
cg08230695	-0.708	0.00770511	1	19	47220755	PRKD2	CGI	СВ
cg19780352	-0.789	0.00770511	1	4	169798931	PALLD	N Shore	СВ
cg22086566	-0.820	0.00770511	1	7	3989097	SDK1	-	CB
cg25894071	-0.593	0.00770511		4	101953935	PPP3CA	-	CB
cg10254035	-0.531	0.00776002		6	21741635	FL122536	-	CB
cg06452184	-0.517	0.00780447		4	62924397		-	CB
cg00143220	-0 506	0.00787353		8	143592721	BAI1	S Shore	CB
cg06788362	-0.575	0.00787353		1	171753504	MFTTI 13	CGI	CB
cg09366519	-0.609	0.00787353		-	209877970	HSD11B1	-	CB
cg13406085	-0 561	0.00787353		12	39981136	ABCD2	-	CB
cg14737571	-0.782	0.00787353		13	113436568	ATP11A	N Shelf	CB
cg18242139	-0.715	0.00787353		1	50574837	FLAVI4	-	CB
cg24696151	-0 523	0.00787353		-	32975986		S Shore	CB
cg26391080	-0.603	0.00787353		10	82297397	SH2D4B	S Shore	CB
cg06442489	-0 533	0.00795146		19	58630612	75CAN18	S Shore	CB
cg13107973	-0 513	0.00795146		1	215178658		-	CB
cg18126802	-0 73/	0.00795146		1	172321067			CB
cg02115/16	-0.666	0.00733140		2	29/0073			CB
cg1/2982//	-0 703	0.00810056		18	7/72907/	MRP		CB
cg09711028	-0 558	0.00813171		12	21976788			CB
cg00/2162/	-0 505	0.00815171		1	1537/6588	SIC27A3	N Shore	CB
cg22854448	-0 798	0.00815953		2	65617203	SPRED2	-	CB
cg12681776	-0.798	0.00813933		10	15/10001		_	CB
cg17044372	-0.380	0.00813535		10	76086013		-	CB
cg22220087	-0.785	0.00824083		12	11/102810		- N Sholf	CB
cg01267700	0.555	0.00825055		1/	22622756	510748	N_SHEI	CB
cg07120174	-0.002	0.00820837		0	/1251212		- S Sholf	CB
cg11/50772	-0.522	0.00020007		10	41331213	BCI 2	S Shore	CB
cg12072970	-0.560	0.00020007	1	19	45202055	TMCC2		CP
cg1/272/10	-1.408	0.00020057	- U	14	203210042	тенр	-	
cg10024610	-0.018	0.00020857	, ,	14	01420234		-	CB
CG10121202	-0.004	0.00826857	1	12	100323092			CB
cg21291040	-0.028	0.00820857	11	12	011014/4		N_Shore	CB
Cg21381949	-0.746	0.00826857	11	3	189/00284		-	CB
cg25310097	-0.555	0.00826857	11	4	5200784		-	CB
CG17133010	-0.728	0.00834942	11	/	5390781		N_Shore	CB
Cg10519204	-0.564	0.00834942	11	2	109000498	NUSTRIN	-	CB

ID CpG	logFC	adj.P.Val	Sonda	Chr	Localización	Gene	CGI	Área
cg25868694	-0.619	0.00834942	II	15	69089281	ANP32A	-	СВ
cg16638385	-0.572	0.00835142	I.	17	41832753	SOST	CGI	CB
cg04493169	-0.504	0.00835252	П	7	27912112	JAZF1	-	СВ
cg06748966	-0.527	0.00835252	П	19	36393344	HCST	S_Shore	СВ
cg13914324	-0.615	0.00835252	П	9	79320026	PRUNE2	-	СВ
cg03545972	-0.607	0.00835382	Ш	2	9477144	ASAP2	-	СВ
cg04907084	-0.521	0.00841121	П	11	92498796	FAT3	-	СВ
cg13758331	-0.529	0.00842150	П	2	111893676	BCL2L11	-	СВ
cg12727940	-0.528	0.00842875	П	3	145969718	PLSCR4	S Shore	СВ
cg14396117	-0.506	0.00842875	Ш	13	109248047	MYO16	-	СВ
cg05612574	-0.773	0.00846775	П	6	151758963	RMND1	-	СВ
cg21694350	-0.549	0.00849386	I	1	21948793	RAP1GAP	CGI	СВ
cg18719217	-0.647	0.00852263	Ш	8	143623495	BAI1	CGI	СВ
cg04723436	-0.626	0.00853534	Ш	10	7985110	TAF3	-	СВ
cg05181301	-0.789	0.00853534	1	2	9459596	ASAP2	S Shore	CB
cg08069902	-0.527	0.00853534		14	88675853	KCNK10	-	CB
cg14571493	-0 791	0.00853534		4	110834401	FGF	-	CB
cg23093870	-0 536	0.00853534		15	69853853	100145837	-	CB
cg24215279	-0.639	0.00853534		2	1518383	TPO	S Shelf	CB
cg26400491	-0.634	0.00855367		2	1//891915	SCRIB		CB
cg12564012	-0 711	0.00855737		7	20800/15	SDK1	-	CB
cg107424012	-0.711	0.00855732		11	60027541		- S Sholf	CB
cg24240665	-0.567	0.00855752		0	75726722	ANO1	3_SHell	CB
Cg24349665	-0.674	0.00855732		17	75730723	PIIS	-	CB
Cg01543184	-0.559	0.00857264	1	1/	/9881543	MAFG	S_Shore	CB
cg25067547	-0.574	0.00857264		19	44005893	PHLDB3	CGI	CB
cg14252502	-0.632	0.00861110		19	8676388	ADAMIS10	S_Shore	CB
cg04851044	-0.577	0.00867312		6	33638313	ITPR3	-	СВ
cg05688618	-0.682	0.00867523		4	86699962	ARHGAP24	-	СВ
cg07249433	-1.554	0.00872330	1	10	134420183	INPP5A	-	СВ
cg21045072	-0.640	0.00873199	II	6	168445596	KIF25	N_Shelf	СВ
cg17133972	-0.593	0.00874030	11	10	1550073	ADARB2	-	СВ
cg25448812	-0.629	0.00874030	I	11	46402210	MDK	N_Shore	CB
cg16580700	-0.578	0.00879061	11	6	30685744	MDC1	S_Shore	СВ
cg04215511	-0.961	0.00879984	II	16	76310816	CNTNAP4	-	СВ
cg17952075	-0.645	0.00887337	II	2	23854382	KLHL29	S_Shelf	СВ
cg26667091	-0.522	0.00889878	II	11	65352232	EHBP1L1	CGI	CB
cg22654504	-0.543	0.00893282	Ш	4	183717025	ODZ3	N_Shelf	СВ
cg02549628	-0.716	0.00894984	II	4	88896208	SPP1	-	СВ
cg10523671	-0.518	0.00894984	Ш	3	121612956	SLC15A2	-	СВ
cg01694400	-0.556	0.00895634	Ш	6	127484100	RSPO3	-	СВ
cg14511782	-0.567	0.00895634	II	7	112724674	GPR85	-	СВ
cg17774851	-1.213	0.00895634	1	5	92929319	NR2F1	CGI	СВ
cg05801879	-0.515	0.00899243	П	16	84101832	MBTPS1	-	СВ
cg09540738	-0.515	0.00911811	П	8	81080281	TPD52	N_Shelf	СВ
cg15393733	-0.562	0.00914470	П	12	53189841	KRT3	-	СВ
cg00519069	-0.537	0.00914931	П	19	14491737	CD97	-	СВ
cg26262197	-0.756	0.00927328	П	11	115115297	CADM1	-	СВ
cg14359531	-0.799	0.00938750	П	9	140401382	PNPLA7	CGI	СВ
cg23087707	-0.695	0.00938750	П	12	132863869	GALNT9	N Shore	СВ
cg20999427	-0.519	0.00944603	Ш	12	24381595	SOX5	-	СВ
cg25449484	-2.144	0.00944603	I	5	92929372	NR2F1	CGI	СВ
cg20742696	-0.518	0.00950336		1	226129824	LEFTY2	S Shelf	CB
cg19008877	-0.891	0.00954985		10	78157854	C10orf11	-	CB
cg14149007	-0 710	0.00957483		19	47219555	PRKD2	CGL	CB
cg21279756	-0 525	0.00962445		2	1408/7610	TRAPPCO	-	CR
cg13071386	-0 729	0.00963969		2	37/0//02	ITGA9	CGI	CB
08100/1000	0.725	0.0000000000		5	57757703	110/13	001	

ID CpG	logFC	adj.P.Val	Sonda	Chr	Localización	Gene	CGI	Área
cg07635227	-0.814	0.00966329	I	16	4714815	MGRN1	-	СВ
cg06652085	-0.525	0.00967149	Ш	6	31130261	TCF19	S_Shelf	CB
cg14171514	-0.821	0.00967149	I	11	62308492	AHNAK	-	CB
cg07456681	-0.529	0.00971417	Ш	16	15146876	NTAN1	N_Shelf	CB
cg02892925	-0.506	0.00976553	П	8	60032926	тох	S_Shore	CB
cg16627236	-0.889	0.00976553	Ш	10	134420036	INPP5A	-	CB
cg27416489	-0.561	0.00976553	П	2	149823115	KIF5C	-	CB
cg03316628	-0.544	0.00981808	I.	16	368066	AXIN1	-	CB
cg06206670	-0.824	0.00981808	П	13	113436564	ATP11A	N_Shelf	CB
cg19308132	-0.578	0.00981808	Ш	8	103137173	NCALD	S_Shore	CB
cg20679271	-0.804	0.00981808	I	2	128350442	MYO7B	CGI	CB
cg27360098	-0.526	0.00981808	Ш	7	73442480	ELN	-	CB
cg26880525	-0.928	0.00987413	П	1	209877941	HSD11B1	-	CB
cg05608790	-0.535	0.00990930	Ш	7	69427388	AUTS2	-	CB
cg06349851	-0.589	0.00990930	П	3	64193180	PRICKLE2	-	CB
cg16380885	-0.834	0.00990930	Ш	5	17219936	BASP1	S_Shore	CB
cg07462861	-0.550	0.00991652	П	12	49366152	WNT10B	S_Shore	CB
cg17473165	-0.502	0.00991652	I	4	105411756	CXXC4	N_Shore	CB
cg18888814	-0.649	0.00994220	П	13	100300543	CLYBL	-	CB
cg07015221	-0.576	0.00996539	Ш	5	1034307	NKD2	N_Shelf	CB
cg04223924	-0.388	0.0000034	П	2	98552472	TMEM131	-	С
cg19622358	-0.425	0.00000051	П	15	80444736	FAH	-	С
cg02900183	-0.314	0.00000066	П	19	16284421	CIB3	-	С
cg10564498	-0.405	0.00000139	П	19	41724653	AXL	-	С
cg25487404	-0.387	0.0000035	Ш	8	37551945	ZNF703	CGI	С
cg02117656	-0.383	0.00000091	Ш	17	79614917	TSPAN10	CGI	С
cg20248691	-0.333	0.00000146	Ш	11	532330	HRAS	N_Shelf	С
cg01549227	0.412	0.0000067	П	9	124980074	LHX6	N_Shore	С
cg22021934	-0.303	0.00000152	П	17	1358234	CRK	N_Shore	С
cg22514987	-0.383	0.00000019	П	6	52271182	PAQR8	S_Shelf	С
cg11163777	-0.504	0.00000048	I	1	27693474	MAP3K6	S_Shore	С
cg20276743	-0.313	0.00000303	Ш	17	35583136	ACACA	-	C, A e HC
cg21220721	-0.228	0.00000172	I	1	6341230	ACOT7	CGI	C, A e HC
cg04141806	0.159	0.00000151	Ш	5	374252	AHRR	CGI	C, A e HC
cg06312137	0.154	0.00000323	П	11	111742196	ALG9	CGI	C, A e HC
cg03477792	0.301	0.0000003	П	4	77819574	ANKRD56	CGI	C, A e HC
cg06046430	0.479	0.00000196	I	4	77819534	ANKRD56	CGI	C, A e HC
cg18518909	0.148	0.00000291	Ш	8	54755577	ATP6V1H	CGI	C, A e HC
cg27049761	0.197	0.00000077	I	12	122688708	B3GNT4	CGI	C, A e HC
cg19809575	0.709	0.00000100	Ш	16	88044501	BANP	CGI	C, A e HC
cg09918929	-0.223	0.00000118	П	12	92540332	BTG1	CGI	C, A e HC
cg23234602	-0.453	0.00000009	I	5	180428536	BTNL3	-	C, A e HC
cg08864283	-0.161	0.00000091	I	16	613142	C16orf11	N_Shore	C, A e HC
cg02707464	-0.261	0.00000270	I	7	66386045	C7orf42	CGI	C, A e HC
cg16727774	-0.276	0.00000310	I	16	87958281	CA5A	-	C, A e HC
cg05514418	-0.400	0.00000012	1	11	15093744	CALCB	N_Shore	C, A e HC
cg15837838	-0.239	0.00000282	I	17	20280166	CCDC144C	-	C, A e HC
cg02020319	0.173	0.00000076	Ш	19	532355	CDC34	CGI	C, A e HC
cg02655972	-0.240	0.00000205	I	5	31194800	CDH6	S_Shore	C, A e HC
cg22853855	1.488	0.0000002	П	19	34111400	CHST8	N_Shore	C, A e HC
cg09655403	-0.470	0.00000027	I	5	78985495	CMYA5	-	C, A e HC
cg23279355	-0.457	0.00000070	1	5	78985592	CMYA5	-	C, A e HC
cg04154027	-0.406	0.00000095	I	5	78985588	CMYA5	-	C, A e HC
cg01013522	-1.383	0.0000007	П	2	124971544	CNTNAP5	-	C, A e HC
cg11427377	-0.079	0.00000111	П	3	130171040	COL29A1	-	C, A e HC
cg19092368	0.150	0.00000005	1	1	41444829	CTPS	N_Shore	C, A e HC

ID CpG	logFC	adj.P.Val	Sonda	Chr	Localización	Gene	CGI	Área
cg25424194	-0.198	0.00000101	П	19	41388232	CYP2A7	S_Shore	C, A e HC
cg12297292	-0.189	0.00000309	П	13	114126424	DCUN1D2	-	C, A e HC
cg02690013	-0.286	0.00000225	II	8	1650309	DLGAP2	S_Shore	C, A e HC
cg21584710	-0.171	0.00000046	П	17	72306141	DNAI2	-	С, А е НС
cg17525856	-0.301	0.00000207	I	2	47596787	EPCAM	CGI	C, A e HC
cg11426075	-0.277	0.00000009	1	1	8086959	ERRFI1	S_Shore	C, A e HC
cg11766468	-0.346	0.00000015	I	19	7923041	EVI5L	N_Shelf	C, A e HC
cg18364576	-0.193	0.00000245	П	14	53417060	FERMT2	N_Shore	C, A e HC
cg02989510	-0.159	0.0000084	П	17	21907069	FLJ36000	-	C, A e HC
cg09281805	-1.707	0.00000061	П	7	4751840	FOXK1	-	C, A e HC
cg27096477	-0.465	0.00000001	I	6	168476553	FRMD1	CGI	C, A e HC
cg27406070	-0.393	0.00000279	П	6	29575566	GABBR1	-	C, A e HC
cg12447066	-0.163	0.00000011	П	1	35261252	GJA4	S_Shelf	C, A e HC
cg20621945	-0.236	0.0000006	Ш	6	30876992	GTF2H4	S Shore	C, A e HC
cg23849169	0.173	0.00000010	П	6	29760495	HCG4	CGI	C, A e HC
cg27513308	-0.258	0.00000057	Ш	1	32797653	HDAC1	N Shelf	C. A e HC
cg20839991	-0.170	0.00000261	11	6	33088941	HLA-DPB2	_ S Shelf	C. A e HC
cg09584691	-0.144	0.00000076	Ш	10	44285881	HNRNPA3P1	_	C. A e HC
cg01748892	-0.343	0.00000175	1	7	27184667	HOXA5	CGI	C A e HC
cg03180953	-0.358	0.00000118		16	1842505	IGFALS	CGI	САенс
cg05490029	0 240	0.00000241		8	79719015	117	S Shore	C A e HC
cg17415239	0.137	0.00000249		16	29937734	KCTD13		
cg16990532	-0.245	0.00000243		10	72238//19	KIAA127/	CGI	
cg02725269	-0.369	0.00000232		19	51327177		N Shelf	
cg22/23203	-0.309	0.00000121		17	66030553		N Shore	
cg15620460	0.238	0.00000035		1/	70506224		N_SHOLE	
cg12942022	-0.141	0.00000203		11	/5350224		-	
cg2227626	1 407	0.0000018		1	45921959		CGI	
cg11270215	1.407	0.00000183		1	40420220	MEDE	-	
cg11379313	-1.117	0.00000130		4	220/200		-	C, A e HC
cg04670255	-0.556	0.0000004		17	2594599		-	C, A e HC
cg0E4070255	-0.247	0.00000085		10	39004029		CGI S Shoro	C, A e HC
cg2E172692	-0.229	0.00000184		17	20055004		3_31101e	C, A e HC
cg25172062	0.522	0.00000231		17	34122736			C, A e HC
cg17047882	0.140	0.00000080		10	24403113			C, A e HC
cg11430371	0.302	0.00000206		19	50961752	MITBPC2	CGI	C, A e HC
cg04828041	-0.253	0.00000033		4	40143600	N4BP2	-	C, A e HC
cg20380448	-0.155	0.00000315		4	/6832111	NAAA	-	C, A e HC
CgUU484396	-0.228	0.00000306		16	3507460	NAT15	N_Shore	C, A e HC
cg15059065	-0.294	0.00000265	1	19	1/354961	NR2F6	N_Shore	C, A e HC
cg05674036	-0.416	0.00000002		1/	3323/91	OR3A3	-	C, A e HC
cg12687069	-0.260	0.00000059		11	5474001	OR51I2	-	C, A e HC
cg15031780	0.144	0.00000023		1	10535585	PEX14	S_Shore	C, A e HC
cg09588815	-0.164	0.00000325	1	11	3845298	PGAP2	-	C, A e HC
cg20978937	-0.144	0.00000196	1	14	105399321	PLD4	CGI	C, A e HC
cg20145009	-0.201	0.00000272	II	14	105399175	PLD4	CGI	C, A e HC
cg09125754	0.816	0.00000004	II	2	130886714	POTEF	-	С, А е НС
cg27243624	-0.266	0.0000007	11	12	63324472	PPM1H	N_Shelf	C, A e HC
cg21410132	-0.474	0.00000005	II	1	13737267	PRAMEF20	-	C, A e HC
cg15667219	-0.463	0.0000029	П	1	13737234	PRAMEF20	-	C, A e HC
cg15725440	0.209	0.00000174	П	6	100053161	PRDM13	N_Shore	C, A e HC
cg04201347	-0.147	0.00000192	П	19	50086849	PRRG2	S_Shelf	C, A e HC
cg04790357	0.190	0.0000061	П	5	40680416	PTGER4	CGI	C, A e HC
cg07978494	-0.202	0.00000223	П	7	158059179	PTPRN2	N_Shore	C, A e HC
cg24746444	-0.180	0.0000154	П	20	62706765	RGS19	S_Shore	C, A e HC
cg01195198	0.196	0.0000068	П	18	18692028	ROCK1	CGI	C, A e HC
cg12154153	-0.241	0.00000059	П	1	168195108	SFT2D2	CGI	C, A e HC

ID CpG	logFC	adj.P.Val	Sonda	Chr	Localización	Gene	CGI	Área
cg24483552	0.122	0.0000093	II	8	67687060	SGK3	N_Shore	C, A e HC
cg17152316	-0.913	0.0000001	I.	19	6754337	SH2D3A	S_Shore	C, A e HC
cg09378339	-0.304	0.0000085	I	10	73078610	SLC29A3	N_Shore	C, A e HC
cg04647176	-0.303	0.00000159	П	12	341431	SLC6A13	-	C, A e HC
cg07304760	-1.789	0.00000056	П	7	127514192	SND1	-	C, A e HC
cg21695935	0.566	0.0000036	Ш	17	3375223	SPATA22	CGI	C, A e HC
cg15465836	1.013	0.00000171	П	17	3371409	SPATA22	N_Shelf	C, A e HC
cg05541779	-0.274	0.00000016	Ш	15	45943467	SQRDL	-	C, A e HC
cg19302831	0.159	0.00000304	П	2	107502251	ST6GAL2	N_Shore	C, A e HC
cg22250586	-0.188	0.00000337	Ш	13	33704014	STARD13	-	C, A e HC
cg01490793	0.167	0.00000207	П	2	242448207	STK25	CGI	C, A e HC
cg02515553	-0.282	0.00000168	Ш	5	75473201	SV2C	S_Shelf	C, A e HC
cg11961834	-0.156	0.00000069	П	17	34583962	TBC1D3C	-	C, A e HC
cg00741609	0.144	0.00000329	Ш	10	102893925	TLX1	CGI	C, A e HC
cg22056044	0.161	0.00000120	П	10	98347055	TM9SF3	CGI	C, A e HC
cg00556719	0.164	0.00000328	Ш	9	108457484	TMEM38B	CGI	C, A e HC
cg21697252	-0.182	0.00000062	I	6	32056709	TNXB	S_Shore	C, A e HC
cg01993067	-0.291	0.0000082	I	11	68851601	TPCN2	S_Shore	C, A e HC
cg11949335	-0.324	0.00000194	П	1	55247408	TTC22	CGI	C, A e HC
cg24696861	-0.162	0.00000158	Ш	17	46871582	TTLL6	-	C, A e HC
cg02733728	0.147	0.00000269	П	3	23847990	UBE2E1	CGI	C, A e HC
cg26216002	-0.178	0.0000013	Ш	1	10093067	UBE4B	CGI	C, A e HC
cg07535605	0.152	0.00000288	П	18	158294	USP14	CGI	C, A e HC
cg13992444	-1.146	0.0000007	Ш	6	149368110	UST	-	C, A e HC
cg20782778	0.148	0.00000158	П	11	101982138	YAP1	CGI	C, A e HC
cg16467465	0.214	0.00000109	П	7	44240564	YKT6	CGI	C, A e HC
cg18710692	0.224	0.0000035	I	13	20437712	ZMYM5	CGI	C, A e HC
cg12508343	0.205	0.00000065	П	3	125076233	ZNF148	CGI	C, A e HC
cg17515480	0.312	0.00000062	II	19	48049039	ZNF541	CGI	C. A e HC

Tabla Suplementaria 8. Agrupaciones significativas de moléculas obtenidas a partir de las 185 regionesgénicas que albergan dianas CpG con diferencias significativas de metilación entre casos y controles,por análisis funcional in silico (DAVID)

Enriquecimiento: 2.62	Genes	P-valor	Benjamini
Wnt signaling pathway	8	2.30E-04	2.00E-02
wnt signaling pathway	6	2.50E-03	1.30E-01
Wnt receptor signaling pathway	5	2.30E-02	9.40E-01
Enriquecimiento: 1.9			
EGF-like, type 3	9	2.50E-04	8.80E-02
domain:EGF-like 1	7	3.40E-04	1.10E-01
egf-like domain	9	4.20E-04	4.60E-02
EGF-like	8	1.60E-03	1.80E-01
EGF	8	5.90E-03	4.80E-01
EGF-like calcium-binding, conserved site	5	9.00E-03	5.70E-01
EGF-like calcium-binding	5	9.00E-03	5.70E-01
EGF-type aspartate/asparagine hydroxylation conserved site	5	9.30E-03	5.00E-01
EGF-like region, conserved site	8	1.20E-02	4.90E-01
EGF_CA	5	2.00E-02	6.70E-01
domain:EGF-like 3	4	2.00E-02	8.40E-01
EGF calcium-binding	4	2.30E-02	6.20E-01
domain:EGF-like 2	4	3.10E-02	8.60E-01
Six-bladed beta-propeller, TolB-like	3	4.10E-02	7.60E-01
Laminin G	3	5.60E-02	8.30E-01
domain:EGF-like 2	3	7.20E-02	8.80E-01
domain:EGF-like 4	3	7.40E-02	8.70E-01
LamG	3	8.50E-02	7.50E-01
EGF	4	9.30E-02	8.40E-01
EGF, extracellular	3	1.00E-01	8.40E-01
Enriquecimiento: 1.55			
domain:TSP type-1 5	3	1.60E-02	8.00E-01
Thrombospondin, type 1 repeat	4	1.80E-02	5.60E-01
domain:TSP type-1 4	3	2.40E-02	8.20E-01
domain:TSP type-1 3	3	3.20E-02	8.50E-01
TSP1	4	3.30E-02	6.00E-01
domain:TSP type-1 2	3	4.60E-02	8.40E-01
domain:TSP type-1 1	3	4.60E-02	8.40E-01
Enriquecimiento: 1.49			
metal ion binding	51	4.70E-03	7.60E-01
cation binding	51	5.80E-03	5.80E-01
ion binding	51	7.90E-03	4.50E-01
metal-binding	34	1.70E-02	3.20E-01
zinc	25	4.70E-02	4.70E-01
transition metal ion binding	31	1.20E-01	9.10E-01
zinc ion binding	25	2.10E-01	9.40E-01
zinc-finger	17	2.50E-01	7.80E-01
Enriquecimiento: 1.36			
striated muscle tissue development	5	1.60E-02	9.70E-01
skeletal muscle organ development	4	1.70E-02	9.50E-01
skeletal muscle tissue development	4	1.70E-02	9.50E-01

muscle tissue development	5	1.90E-02	9.40E-01
muscle organ development	5	9.30E-02	9.60E-01
striated muscle cell differentiation	3	1.60E-01	9.70E-01
muscle cell differentiation	3	2.60E-01	9.90E-01
Enriquecimiento: 1.35			
motor protein	6	3.60E-03	1.50E-01
motor activity	6	8.30E-03	3.90E-01
actin-binding	7	1.20E-02	2.90E-01
actin binding	8	2.50E-02	7.20E-01
Myosin head, motor region	3	4.10E-02	7.60E-01
myosin	3	5.90E-02	4.90E-01
MYSc	3	6.30E-02	7.60E-01
actin cytoskeleton	6	7.10E-02	8.80E-01
cytoskeletal protein binding	9	7.60E-02	8.80E-01
cytoskeleton	17	9.90E-02	8.50E-01
myosin complex	3	1.00E-01	8.10E-01
IQ calmodulin-binding region	3	1.70E-01	9.30E-01
IQ	3	2.40E-01	9.40E-01

-	ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
I	A06/00210 A	С	chr5	q21.1	99409658	99418500	8842	9	0.495061	8.93E-13
1	A06/00210 C	С	chr9	p23	10394403	10395130	727	3	0.207	2.25E-18
1	A06/00210 C	С	chr4	q22.1	92153964	92154830	866	4	0.303	9.83E-22
1	A06/00210 C	С	chr3	q11.2	97819138	97820058	920	3	0.237	6.63E-43
	A06/00210 C	С	chr18	q23	75480698	75481678	980	3	0.771892	3.37E-10
	A06/00210 C	С	chr11	q13.1	66468525	66469627	1102	4	0.151	2.29E-15
	A06/00210 C	С	chr5	q21.1	97427186	97428373	1187	3	0.433	3.64E-49
	A06/00210 C	С	chr1	q43	238459698	238461268	1570	4	0.302	5.72E-24
	A06/00210 C	С	chr5	p14.3	21486453	21488027	1574	4	0.265	5.08E-41
	A06/00210 C	С	chr12	q12	44193769	44195350	1581	4	0.315	6.81E-35
	A06/00210 C	С	chr6	q27	170549526	170551286	1760	3	0.863991	4.09E-12
	A06/00210 C	С	chr8	q21.11	75527618	75529402	1784	4	0.410	5.37E-55
	A06/00210 C	С	chr4	q35.2	187333341	187335199	1858	3	0.304	7.34E-14
	A06/00210 C	С	chr1	q23.1	157134596	157136493	1897	4	0.376	7.75E-54
	A06/00210 C	С	chr17	p13.3	1590057	1592169	2112	6	0.520262	6.07E-10
	A06/00210 C	С	chr3	q12.1	99893308	99895475	2167	7	0.281	1.29E-58
	A06/00210 C	С	chr8	q24.3	140836416	140838841	2425	8	0.510467	2.81E-12
	A06/00210 C	С	chr7	q36.3	157132974	157135478	2504	6	-0.521138	5.84E-10
	A06/00210 C	С	chr9	p13.3	33646497	33649076	2579	6	0.684222	1.70E-14
	A06/00210 C	С	chr4	q35.2	187330385	187333024	2639	6	0.232	2.19E-25
	A06/00210 C	С	chr5	q15	93929331	93932037	2706	7	0.137	1.52E-47
	A06/00210 C	С	chr12	q21.31	83117104	83119817	2713	6	0.225	2.89E-29
	A06/00210 C	С	chr2	p25.3	998040	1000871	2831	7	0.511382	5.93E-11
	A06/00210 C	С	chr8	p23.1	9535256	9538130	2874	10	-0.410569	4.66E-10
	A06/00210 C	С	chr17	q12	32829947	32832842	2895	6	-0.550112	2.95E-10
	A06/00210 C	С	chr1	q32.1	199444293	199447209	2916	8	0.507371	3.71E-12
	A06/00210 C	С	chr5	q31.1	134288246	134291279	3033	3	0.218	6.54E-39
	A06/00210 C	С	chr22	q13.1	37623889	37626949	3060	5	0.357	1.29E-64
	A06/00210 C	С	chr13	q13.3	37955300	37958362	3062	5	0.258	5.09E-32
1	A06/00210 C	C.	chr2	n31.1	176976678	176979749	3071	6	0.277	8.06F-44
	A06/00210 C	C	chr1C	~77 1	76020522	76041774	2251	2	0.202	1 625 10

Tabla Suplementaria 9. Regiones del genoma humano con alteraciones en el número de copia frente a cerebelo de cada individuo. Elgenoma humano de referencia es genome build 36, Hg18

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
A06/00210 C	С	chr3	q12.1	100381571	100384986	3415	6	0.319	4.44E-45
A06/00210 C	С	chr12	p13.31	9528390	9531852	3462	4	0.431	2.93E-49
A06/00210 C	С	chr12	p13.31	9550589	9554349	3760	4	0.305	1.33E-31
A06/00210 C	С	chr6	q27	168377362	168381168	3806	10	0.622163	9.23E-21
A06/00210 C	С	chr8	p21.2	25122432	25126488	4056	6	0.230	5.96E-48
A06/00210 C	С	chr6	q16.3	102041162	102045614	4452	9	0.389	2.45E-99
A06/00210 C	С	chr13	q14.3	49967301	49971932	4631	6	0.178	1.36E-24
A06/00210 C	С	chr8	p11.21	40893910	40898766	4856	9	0.209	4.19E-46
A06/00210 C	С	chr3	q29	199309891	199314846	4955	4	0.659497	3.05E-10
A06/00210 C	С	chr11	p14.1	28964490	28969650	5160	10	-0.498718	2.97E-13
A06/00210 C	С	chr11	q22.3	103773298	103778467	5169	6	0.201	3.33E-23
A06/00210 C	С	chr17	p13.3	88999	94272	5273	10	-0.426433	5.01E-11
A06/00210 C	С	chr8	p21.2	25029803	25035170	5367	4	0.372	1.47E-11
A06/00210 C	С	chr3	q12.1	100426338	100431764	5426	8	0.382	1.31E-104
A06/00210 C	С	chr1	q32.2	208144915	208150343	5428	5	0.294	9.80E-21
A06/00210 C	С	chr2	q14.3	126160360	126168262	7902	3	0.294	1.28E-13
A06/00210 C	С	chrY	q11.222	20356614	20365316	8702	3	-0.255	7.30E-15
A06/00210 C	С	chr5	q21.1	99409658	99418500	8842	9	0.159	3.90E-77
A06/00210 C	С	chr16	q23.1	76929398	76941774	12376	11	0.188	3.29E-52
A06/00210 C	С	chr8	p21.2	25029803	25047030	17227	12	0.225	1.71E-87
A06/00210 C	С	chr3	q26.1	164008414	164027924	19510	12	0.238	1.57E-78
A06/00210 C	С	chr14	q32.33	105602556	105632713	30157	6	0.130	1.16E-26
A06/00210 C	С	chr2	p22.3	34551953	34583355	31402	35	0.272	3.88E-230
A06/00210 C	С	chr1	p31.1	72538943	72582607	43664	30	-0.498915	1.45E-33
A06/00210 C	С	chr8	p23.1	6817112	6868478	51366	23	0.470024	3.91E-27
A06/00210 HC	С	chr3	q11.2	97819138	97820058	920	3	0.178	3.84E-32
A06/00210 HC	С	chr2	p25.3	409927	411547	1620	4	0.800922	9.79E-14
A06/00210 HC	С	chr17	p13.3	92359	94272	1913	7	-0.599486	3.14E-14
A06/00210 HC	С	chr7	q36.3	157132974	157135478	2504	6	-0.591199	3.67E-12
A06/00210 HC	С	chr5	q15	93929331	93932037	2706	7	0.114	1.92E-37
A06/00210 HC	С	chr22	q13.33	48800194	48803013	2819	6	-0.568932	3.00E-11
A06/00210 HC	С	chr1	q32.1	199444293	199447209	2916	8	0.447015	6.52E-10
A06/00210 HC	С	chr5	q31.1	134288246	134291279	3033	3	0.172	1.10E-30
A06/00210 HC	С	chr6	q27	169267774	169271069	3295	10	0.455626	2.33E-12
A06/00210 HC	С	chr5	q21.1	99409658	99418500	8842	9	0.125	7.30E-56
A07/00043 A	С	chr16	p11.2	29883905	29884305	400	3	-0.739078	8.91E-10

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
A07/00043 A	С	chr6	p25.3	368631	369332	701	3	0.904724	3.25E-11
A07/00043 A	С	chr3	q11.2	97819138	97820058	920	3	0.249	3.53E-45
A07/00043 A	С	chr5	p15.33	535382	536699	1317	5	0.105	2.47E-19
A07/00043 A	С	chr4	q32.3	166467500	166468855	1355	3	0.798677	5.84E-10
A07/00043 A	С	chr20	q13.13	47327248	47328730	1482	4	0.809108	1.97E-10
A07/00043 A	С	chr8	q11.23	54015316	54016927	1611	3	0.889368	9.22E-11
A07/00043 A	С	chr9	p13.3	33646809	33648592	1783	4	0.922485	3.79E-12
A07/00043 A	С	chr12	p11.22	29192727	29194594	1867	5	0.688206	5.21E-11
A07/00043 A	С	chr4	q21.22	83937653	83939531	1878	4	0.781638	5.48E-12
A07/00043 A	С	chr22	q13.1	36125158	36127052	1894	6	0.720074	2.43E-11
A07/00043 A	С	chr17	p13.3	92359	94272	1913	7	-0.550444	4.87E-10
A07/00043 A	С	chr16	q24.2	87047734	87050228	2494	3	0.889562	9.83E-10
A07/00043 A	С	chr7	q36.3	157132974	157135478	2504	6	-0.743226	1.04E-14
A07/00043 A	С	chr5	q11.2	52810926	52813609	2683	7	0.592513	2.32E-11
A07/00043 A	С	chr5	q15	93929331	93932037	2706	7	0.155	3.81E-54
A07/00043 A	С	chr19	q13.42	60283437	60286163	2726	5	0.781135	1.66E-10
A07/00043 A	С	chr5	q31.1	134288246	134291279	3033	3	0.221	4.66E-39
A07/00043 A	С	chr1	q21.1	144182850	144186220	3370	7	0.736187	1.14E-13
A07/00043 A	С	chr19	p13.3	3123501	3126888	3387	8	-0.502122	6.55E-15
A07/00043 A	С	chr4	p16.3	639236	642685	3449	8	0.683484	1.47E-12
A07/00043 A	С	chr14	q32.33	104420514	104424822	4308	12	0.524487	6.14E-11
A07/00043 A	С	chr8	p23.3	1172384	1178382	5998	14	-0.450022	7.72E-13
A07/00043 A	С	chr8	p21.3	22602814	22609106	6292	10	0.518224	7.64E-11
A07/00043 A	С	chr15	q24.1	72206480	72213156	6676	7	0.622755	8.50E-11
A07/00043 A	С	chr7	q11.21	63204866	63213142	8276	10	0.554975	8.56E-14
A07/00043 A	С	chr5	q21.1	99409658	99418500	8842	9	0.170	1.25E-83
A07/00043 A	С	chr7	p22.3	1474929	1496362	21433	23	0.446293	2.04E-12
A07/00043 A	С	chrX	p11.23	48551781	48576327	24546	4	-0.592921	2.22E-10
A07/00043 C	С	chr14	q11.2	21954122	21954652	530	3	0.931263	4.74E-13
A07/00043 C	С	chr9	q21.33	86964986	86965658	672	3	0.163	3.43E-27
A07/00043 C	С	chr8	p23.2	3982168	3982881	713	3	0.254	4.14E-12
A07/00043 C	С	chr9	p23	10394403	10395130	727	3	0.301	1.28E-41
A07/00043 C	С	chr4	p16.3	1490365	1491147	782	4	0.857236	1.33E-11
A07/00043 C	С	chr15	q23	68664219	68665011	792	3	0.103	1.92E-14
A07/00043 C	С	chr3	q11.2	97819138	97820058	920	3	0.194	1.20E-35
A07/00043 C	С	chr6	q14.3	84800293	84801274	981	3	0.786387	2.21E-10
ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
-------------	-----------	-------	----------	-----------	-----------	---------------	----------	-----------	----------
A07/00043 C	С	chr7	q34	142167049	142168108	1059	3	0.303	1.31E-23
A07/00043 C	С	chr16	p13.3	807002	808100	1098	3	0.111	2.01E-11
A07/00043 C	С	chr1	p36.22	10380883	10381990	1107	3	0.107	1.50E-13
A07/00043 C	С	chr2	p22.3	34377273	34378411	1138	3	0.313	1.53E-37
A07/00043 C	С	chr10	p15.2	3100381	3101553	1172	3	0.101	1.34E-14
A07/00043 C	С	chr19	q13.42	59496163	59497338	1175	3	0.280	4.23E-38
A07/00043 C	С	chr7	q21.13	89648486	89649682	1196	3	0.519	1.46E-58
A07/00043 C	С	chr18	q23	75271233	75272432	1199	3	0.964262	3.80E-14
A07/00043 C	С	chr4	q22.1	92153964	92155174	1210	5	-0.73562	4.12E-12
A07/00043 C	С	chr19	q13.42	60284053	60285289	1236	3	0.106	9.16E-13
A07/00043 C	С	chr11	p15.3	11336333	11337663	1330	3	0.236	1.16E-22
A07/00043 C	С	chr10	q26.13	126184953	126186361	1408	5	0.64272	6.60E-12
A07/00043 C	С	chr14	q22.1	50480076	50481492	1416	3	0.917567	3.69E-13
A07/00043 C	С	chr20	q13.13	47327248	47328730	1482	4	0.880453	2.31E-13
A07/00043 C	С	chr4	q28.2	130285980	130287464	1484	3	0.378	3.37E-30
A07/00043 C	С	chr16	p12.1	22955352	22956885	1533	4	0.231	3.86E-27
A07/00043 C	С	chr20	p11.1	26137218	26138759	1541	3	0.823701	2.91E-11
A07/00043 C	С	chr15	q25.2	81111659	81113242	1583	4	0.733809	1.74E-10
A07/00043 C	С	chr8	q11.23	54015316	54016927	1611	3	0.113	9.51E-18
A07/00043 C	С	chr19	q13.41	58842693	58844378	1685	5	0.884265	8.54E-14
A07/00043 C	С	chr10	q26.12	122216693	122218483	1790	4	0.207	1.24E-26
A07/00043 C	С	chr2	p25.3	409744	411547	1803	5	0.627297	2.37E-11
A07/00043 C	С	chr12	p11.22	29192727	29194594	1867	5	0.768726	1.69E-15
A07/00043 C	С	chr4	q21.22	83937653	83939531	1878	4	0.940113	7.46E-17
A07/00043 C	С	chr19	q12	35979486	35981413	1927	8	-0.614865	5.10E-16
A07/00043 C	С	chr11	p15.4	5717188	5719117	1929	4	0.344	5.22E-57
A07/00043 C	С	chr19	q13.42	60732542	60734508	1966	7	0.641834	1.81E-10
A07/00043 C	С	chr9	p22.3	15805131	15807290	2159	5	0.369	3.97E-63
A07/00043 C	С	chr11	p15.5	724448	726624	2176	5	0.893374	4.40E-14
A07/00043 C	С	chr8	p21.2	25124228	25126488	2260	4	-0.813454	1.79E-12
A07/00043 C	С	chr7	q11.22	70060429	70062730	2301	4	0.101	1.39E-10
A07/00043 C	С	chr4	q35.1	186678529	186680840	2311	5	-0.658798	1.11E-11
A07/00043 C	С	chr8	q23.3	112363243	112365639	2396	5	-0.803767	2.86E-12
A07/00043 C	С	chr6	q14.1	77154683	77157107	2424	5	0.340	1.91E-57
A07/00043 C	С	chr4	q26	115399496	115402001	2505	8	0.345	4.16E-81
A07/00043 C	С	chr17	p13.3	912472	915007	2535	6	-0.514465	1.80E-15

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
A07/00043 C	С	chr11	p15.5	1210030	1212645	2615	4	0.880633	1.90E-11
A07/00043 C	С	chr5	q11.2	52810926	52813609	2683	7	0.546018	1.15E-11
A07/00043 C	С	chr22	q11.23	22707812	22710502	2690	3	0.339	3.38E-17
A07/00043 C	С	chr5	q15	93929331	93932037	2706	7	0.103	8.44E-35
A07/00043 C	С	chr7	q34	141415494	141418234	2740	5	0.294	5.69E-14
A07/00043 C	С	chr17	p11.2	17566482	17569300	2818	5	0.756651	1.17E-11
A07/00043 C	С	chr4	q34.1	172613089	172615919	2830	8	-0.738467	2.88E-18
A07/00043 C	С	chr7	q36.1	147704433	147707361	2928	5	-0.651221	2.52E-11
A07/00043 C	С	chr7	q34	141411924	141414919	2995	4	0.461	1.06E-30
A07/00043 C	С	chr5	q31.1	134288246	134291279	3033	3	0.161	3.43E-28
A07/00043 C	С	chr4	q34.1	173225839	173229060	3221	7	-0.698171	3.36E-14
A07/00043 C	С	chr16	q23.1	76938523	76941774	3251	3	0.430	8.19E-12
A07/00043 C	С	chr5	p15.33	534578	537912	3334	11	0.69166	1.17E-19
A07/00043 C	С	chr9	q34.3	137354056	137357550	3494	5	-0.617175	3.48E-15
A07/00043 C	С	chr22	q12.3	35473578	35477142	3564	6	0.204	5.14E-41
A07/00043 C	С	chr12	q21.33	89011981	89015656	3675	12	-0.657019	2.06E-20
A07/00043 C	С	chr22	q11.23	22695371	22699177	3806	4	0.402256	1.88E-19
A07/00043 C	С	chr21	q22.3	46278160	46282115	3955	10	0.499299	2.79E-11
A07/00043 C	С	chr2	p22.3	35841036	35845084	4048	4	0.245	3.18E-25
A07/00043 C	С	chr4	q35.2	187590335	187594751	4416	8	0.129	6.20E-53
A07/00043 C	С	chr7	q34	141433258	141437708	4450	8	0.362	4.18E-34
A07/00043 C	С	chr4	q35.2	187330385	187335199	4814	10	-0.688625	1.56E-20
A07/00043 C	С	chr8	p11.21	40893910	40898766	4856	9	0.265	4.08E-65
A07/00043 C	С	chr22	q11.23	22677759	22682628	4869	4	0.383	8.18E-25
A07/00043 C	С	chr3	q12.1	99893308	99898239	4931	11	-0.543929	1.27E-17
A07/00043 C	С	chr1	q32.2	208144915	208150343	5428	5	-0.642971	4.87E-10
A07/00043 C	С	chr4	q34.1	173660829	173666272	5443	10	-0.576618	3.67E-14
A07/00043 C	С	chr2	q31.1	176974147	176979749	5602	7	-0.575275	9.54E-11
A07/00043 C	С	chr1	p31.3	61886871	61892491	5620	10	0.453327	1.30E-11
A07/00043 C	С	chr12	p11.21	33192243	33198330	6087	8	-0.585	4.11E-13
A07/00043 C	С	chr9	p21.3	22486382	22492823	6441	8	-0.657703	3.10E-13
A07/00043 C	С	chr3	p22.2	37954674	37961668	6994	17	0.489161	2.90E-21
A07/00043 C	С	chr6	q27	165644700	165652038	7338	14	0.465105	1.93E-16
A07/00043 C	С	chr2	q14.3	126160360	126168262	7902	3	0.326	3.43E-21
A07/00043 C	С	chr7	q34	141418899	141427331	8432	16	0.998164	4.78E-16
A07/00043 C	С	chr5	q21.1	99409658	99418500	8842	9	0.121	3.39E-57

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
A07/00043 C	С	chr17	q21.2	36675806	36685196	9390	17	0.287	3.56E-123
A07/00043 C	С	chr1	q21.3	151027531	151036948	9417	12	0.249	3.07E-103
A07/00043 C	С	chr5	p15.2	12863801	12873252	9451	17	-0.401981	4.82E-15
A07/00043 C	С	chr13	q13.3	36972892	36983077	10185	12	-0.734954	2.58E-31
A07/00043 C	С	chr1	q31.3	195014098	195024615	10517	5	0.249	1.24E-14
A07/00043 C	С	chr5	q33.2	155410497	155421643	11146	16	0.449363	8.25E-17
A07/00043 C	С	chr3	p14.1	68818666	68830589	11923	16	-0.527797	1.81E-22
A07/00043 C	С	chr16	q23.1	76929398	76941774	12376	11	0.214	5.04E-62
A07/00043 C	С	chr8	p11.23	39452083	39465485	13402	9	0.469	4.55E-13
A07/00043 C	С	chr2	q22.3	146579646	146593454	13808	26	-0.611029	1.36E-41
A07/00043 C	С	chr7	p12.1	52697747	52712390	14643	12	0.433212	6.06E-16
A07/00043 C	С	chr5	q35.3	180343269	180359223	15954	33	-0.414956	1.00E-28
A07/00043 C	С	chr7	q34	142155965	142175345	19380	39	0.816364	1.60E-108
A07/00043 C	С	chr7	q34	141694673	141714368	19695	17	-0.593792	4.55E-30
A07/00043 C	С	chr20	p13	1511432	1531941	20509	28	-0.564557	1.60E-41
A07/00043 C	С	chr8	p23.1	12269638	12292177	22539	26	0.608745	1.82E-11
A07/00043 C	С	chr4	p16.1	9819101	9842844	23743	25	-0.534556	5.85E-35
A07/00043 C	С	chr3	p11.1	89476936	89501135	24199	34	0.400911	1.48E-28
A07/00043 C	С	chr19	p13.3	3332222	3356534	24312	11	0.649315	3.59E-13
A07/00043 C	С	chr1	p36.31	6412064	6438933	26869	20	0.524346	2.71E-18
A07/00043 C	С	chr7	q34	141411924	141440775	28851	51	0.150	1.30E-269
A07/00043 C	С	chr1	q21.3	150822363	150853725	31362	20	0.42687	4.28E-12
A07/00043 C	С	chr12	p13.2	11110300	11141764	31464	30	-0.441287	1.54E-27
A07/00043 C	С	chr2	p22.3	34551022	34590197	39175	38	-0.554617	2.78E-56
A07/00043 C	С	chr1	p31.1	72538943	72584212	45269	32	0.297	8.81E-198
A07/00043 C	С	chr22	q11.23	22675377	22725680	50303	35	0.133	5.06E-143
A07/00043 C	С	chr8	p11.23	39352153	39405839	53686	31	0.414	6.50E-17
A07/00043 C	С	chr6	q14.1	79024357	79092050	67693	84	-0.640306	1.35E-158
A07/00043 C	С	chr1	q31.3	195002353	195086482	84129	54	0.509982	3.98E-48
A07/00043 C	С	chr8	p11.23 - p11.22	39351157	39505456	154299	91	0.338	0
A07/00043 C	С	chrX	p11.23	49046928	49242290	195362	9	0.710032	3.45E-15
A07/00043 C	С	chr8	p23.1	7260242	7824538	564296	90	0.677211	5.59E-18
A07/00043 C	С	chr8	p23.1	6994355	8135475	1141120	183	0.48327	1.56E-211
A07/00043 HC	С	chr3	q11.2	97819138	97820058	920	3	0.231	1.70E-42
A07/00043 HC	С	chr18	p11.21	11004055	11005464	1409	6	-0.532941	2.96E-10
A07/00043 HC	С	chr4	q21.22	83937653	83939531	1878	4	0.772267	1.71E-12

A07/00043 HCCchr18q23753344507533679323438-0.5439551.60E-13A07/00043 HCCchr7q36.315713297415713547825046-0.6478424.89E-14A07/00043 HCCchr5q1593929319392037270670.1233.19E-41A07/00043 HCCchr9p13.33364571033648592288270.547484.43E-10A07/00043 HCCchr5q31.113428246134291279303330.1909.37E-34A07/00043 HCCchr5q21.19940965899418500884290.1471.17E-70A07/00043 HCCchr8q21.28674153686910685169149150.4537363.65E-17A08/00017 AADchr3q11.2978191389782005892030.2298.13E-42A08/00017 AADchr5q1593293319332037270670.1333.83E-46A08/00017 AADchr5q11.113428246134291279303330.1974.04E-35A08/00017 AADchr5q21.19940965899418500884290.1505.21E-72A08/00017 CADchr5q21.1978191389782005892030.2611.52E-46A08/00017 CADchr2p11.277845971778459199483-0.6677242.81E-12A08
A07/00043 HC C chr7 q36.3 157132974 157135478 2504 6 -0.647842 4.89E-14 A07/00043 HC C chr5 q15 93929331 9393037 2706 7 0.123 3.19E-41 A07/00043 HC C chr5 q31.1 13428246 134291279 3033 3 0.190 9.37E-34 A07/00043 HC C chr5 q31.1 13428246 134291279 3033 3 0.190 9.37E-34 A07/00043 HC C chr5 q21.1 99409658 99418500 8842 9 0.147 1.17E-70 A07/00043 HC C chr8 q21.2 86741536 86910685 169149 15 0.453736 3.65E-17 A08/00017 A AD chr7 q36.3 157132974 157135478 2504 6 -0.618035 4.78E-13 A08/00017 A AD chr5 q15 9329331 9392037 2706 7 0.133 3.83E-46
A07/00043 HCCchr5q159392933193932037270670.1233.19E-41A07/00043 HCCchr9p13.33364571033648592288270.547484.43E-10A07/00043 HCCchr5q31.1134288246134291279303330.1909.37E-34A07/00043 HCCchr5q21.194096589941850884290.1471.7E-70A07/00043 HCCchr8q21.28674153686910685169149150.4537363.65E-17A08/0017 AADchr3q11.2978191389782005892030.2298.13E-42A08/0017 AADchr7q36.315713297415713547825046-0.6180354.78E-13A08/00017 AADchr5q11134288246134291279303330.1974.04E-35A08/00017 AADchr5q31.1134288246134291279303330.1974.04E-35A08/00017 AADchr5q21.19940965899418500884290.1505.21E-72A08/0017 CADchr5q21.1978191389782005892030.2611.52E-46A08/0017 CADchr5q21.11758144175399418504-0.8616228.25E-11A08/0017 CADchr22q11.211758144175399418504-0.8616228.25E-11A08
A07/00043 HCCchr9p13.33364571033648592288270.547484.43E-10A07/00043 HCCchr5q31.1134288246134291279303330.1909.37E-34A07/00043 HCCchr5q21.19940965899418500884290.1471.17E-70A07/00043 HCCchr8q21.28674153686910685169149150.4537363.65E-17A08/00017 AADchr3q11.2978191389782005892030.2298.13E-42A08/00017 AADchr7q36.315713297415713547825046-0.6180354.78E-13A08/00017 AADchr5q159392933193932037270670.1333.83E-46A08/00017 AADchr5q1.1940965899418500884290.1505.21E-72A08/00017 AADchr5q21.1978191389782005892030.2611.52E-46A08/0017 CADchr3q11.2978191389782005892030.2611.52E-46A08/00017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/00017 CADchr2p1277845971778469199483-0.8616228.25E-11A08/00017 CADchr19q13.4260733428607355832157-0.6803825.99E-16
A07/00043 HCCchr5q31.1134288246134291279303330.1909.37E-34A07/00043 HCCchr5q21.19940965899418500884290.1471.17E-70A07/00043 HCCchr8q21.28674153686910685169149150.4537363.65E-17A08/00017 AADchr3q11.2978191389782005892030.2298.13E-42A08/00017 AADchr7q36.315713297415713547825046-0.6180354.78E-13A08/00017 AADchr5q15939293319392037270670.1333.88E-46A08/00017 AADchr5q11134288246134291279303330.1974.04E-35A08/00017 AADchr5q21.19940965899418500884290.1505.21E-72A08/00017 CADchr5q21.1978191389782005892030.2611.52E-46A08/00017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/00017 CADchr12p1277845971778469199483-0.8677242.81E-12A08/00017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/00017 CADchr17p13.3917759427224978-0.6074572.78E-13A08/0
A07/00043 HCCchr5q21.19940965899418500884290.1471.17E-70A07/00043 HCCchr8q21.28674153686910685169149150.4537363.65E-17A08/00017 AADchr3q11.2978191389782005892030.2298.13E-42A08/00017 AADchr7q36.315713297415713547825046-0.6180354.78E-13A08/00017 AADchr5q1593929319392037270670.1333.83E-46A08/00017 AADchr5q31.1134288246134291279303330.1974.04E-35A08/00017 AADchr5q21.19940965899418500884290.1505.21E-72A08/00017 CADchr3q11.2978191389782005892030.2611.52E-46A08/00017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/00017 CADchr2q11.2117538144175399418504-0.8616228.25E-11A08/00017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/00017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/00017 CADchr17p13.315713297415713547825046-0.7156041.59E-13<
A07/00043 HCCchr8q21.28674153686910685169149150.4537363.65E-17A08/00017 AADchr3q11.2978191389782005892030.2298.13E-42A08/00017 AADchr7q36.315713297415713547825046-0.6180354.78E-13A08/00017 AADchr5q15939293193932037270670.1333.83E-46A08/00017 AADchr9p13.33364571033648592288270.5565067.31E-12A08/00017 AADchr5q31.1134288246134291279303330.1974.04E-35A08/00017 AADchr5q21.19940965899418500884290.1505.21E-72A08/00017 CADchr3q11.2978191389782005892030.2611.52E-46A08/00017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/00017 CADchr12p1277845971778469199483-0.8616228.25E-11A08/00017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/00017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/00017 CADchr17p13.315713297415713547825046-0.7156041.59E-13 <tr< td=""></tr<>
A08/00017 AADchr3q11.2978191389782005892030.2298.13E-42A08/00017 AADchr7q36.315713297415713547825046-0.6180354.78E-13A08/00017 AADchr5q159392933193932037270670.1333.83E-46A08/00017 AADchr9p13.33364571033648592288270.5565067.31E-12A08/0017 AADchr5q31.113428246134291279303330.1974.04E-35A08/0017 AADchr5q21.1994095899418500884290.1505.21E-72A08/0017 CADchr3q11.2978191389782005892030.2611.52E-46A08/0017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/0017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/0017 CADchr19q13.42607334286073558321557-0.6803825.39E-16A08/0017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/0017 CADchr7q36.315713297415713547825046-0.7156041.59E-13A08/0017 CADchr7q36.315713297415713547825046-0.7156041.59E-13
A08/00017 AADchr7q36.315713297415713547825046-0.6180354.78E-13A08/00017 AADchr5q159392933193932037270670.1333.83E-46A08/00017 AADchr9p13.33364571033648592288270.5565067.31E-12A08/00017 AADchr5q31.113428246134291279303330.1974.04E-35A08/00017 AADchr5q21.19940965899418500884290.1505.21E-72A08/0017 CADchr3q11.2978191389782005892030.2611.52E-46A08/0017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/0017 CADchr22q11.2117538144175399418504-0.8616228.25E-11A08/0017 CADchr19q13.42607334286073558321557-0.6803825.39E-16A08/0017 CADchr17p13.317759427224978-0.6074572.78E-12A08/0017 CADchr7q36.114937591415713547825046-0.7156041.59E-13A08/0017 CADchr7q36.114937591415713547825046-0.7492554.88E-14A08/0017 CADchr7q36.114937591414937851526013-0.9693.75E-13
A08/00017 AADchr5q159392933193932037270670.1333.83E-46A08/00017 AADchr9p13.33364571033648592288270.5565067.31E-12A08/00017 AADchr5q31.1134288246134291279303330.1974.04E-35A08/00017 AADchr5q21.19940965899418500884290.1505.21E-72A08/0017 CADchr3q11.2978191389782005892030.2611.52E-46A08/0017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/0017 CADchr2q1.2117538144175399418504-0.8616228.25E-11A08/0017 CADchr19q13.42607334286073558321557-0.6803825.39E-16A08/0017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/0017 CADchr7q36.114937591414937851526013-0.9693.75E-13A08/0017 CADchr1p15.51913795191640926145-0.7492554.88E-14A08/0017 CADchr5q15939293193932037270670.1536.11E-54A08/0017 CADchr5q15939293193932037270670.1536.11E-54A08/0017 C
A08/00017 AADchr9p13.33364571033648592288270.5565067.31E-12A08/00017 AADchr5q31.1134288246134291279303330.1974.04E-35A08/00017 AADchr5q21.19940965899418500884290.1505.21E-72A08/0017 CADchr3q11.2978191389782005892030.2611.52E-46A08/0017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/0017 CADchr22q11.21175381441753999418504-0.8616228.25E-11A08/0017 CADchr19q13.42607334286073558321557-0.6803825.39E-16A08/0017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/0017 CADchr7q36.315713297415713547825046-0.7156041.59E-13A08/0017 CADchr7q36.114937591414937851526013-0.9693.75E-13A08/0017 CADchr11p15.51913795191640926145-0.7492554.88E-14A08/0017 CADchr5q11.1134288246134291279303330.2383.66E-42A08/0017 CADchr5q13.1134288246134291279303330.2383.66E-42<
A08/00017 AADchr5q31.1134288246134291279303330.1974.04E-35A08/00017 AADchr5q21.19940965899418500884290.1505.21E-72A08/00017 CADchr3q11.2978191389782005892030.2611.52E-46A08/00017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/0017 CADchr22q11.21175381441753999418504-0.8616228.25E-11A08/0017 CADchr19q13.42607334286073558321557-0.6803825.39E-16A08/0017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/0017 CADchr7q36.315713297415713547825046-0.7156041.59E-13A08/0017 CADchr7q36.114937591414937851526013-0.9693.75E-13A08/0017 CADchr11p15.51913795191640926145-0.7492554.88E-14A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42
A08/00017 AADchr5q21.19940965899418500884290.1505.21E-72A08/00017 CADchr3q11.2978191389782005892030.2611.52E-46A08/00017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/00017 CADchr22q11.21175381441753999418504-0.8616228.25E-11A08/0017 CADchr19q13.42607334286073558321557-0.6803825.39E-16A08/0017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/0017 CADchr7q36.315713297415713547825046-0.7156041.59E-13A08/0017 CADchr7q36.114937591414937851526013-0.9693.75E-13A08/0017 CADchr11p15.51913795191640926145-0.7492554.88E-14A08/00017 CADchr5q159392933193932037270670.1536.11E-54A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42A08/00017 CADchr5p15.33534578537912333411-0.6264381.78E-14
A08/00017 CADchr3q11.2978191389782005892030.2611.52E-46A08/00017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/00017 CADchr22q11.21175381441753999418504-0.8616228.25E-11A08/00017 CADchr19q13.42607334286073558321557-0.6803825.39E-16A08/00017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/00017 CADchr7q36.315713297415713547825046-0.7156041.59E-13A08/00017 CADchr7q36.114937591414937851526013-0.9693.75E-13A08/00017 CADchr11p15.51913795191640926145-0.7492554.88E-14A08/00017 CADchr5q159392933193932037270670.1536.11E-54A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42A08/00017 CADchr5p15.33534578537912333411-0.6264381.78E-14
A08/00017 CADchr2p1277845971778469199483-0.8677242.81E-12A08/00017 CADchr22q11.21175381441753999418504-0.8616228.25E-11A08/00017 CADchr19q13.42607334286073558321557-0.6803825.39E-16A08/00017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/0017 CADchr7q36.315713297415713547825046-0.7156041.59E-13A08/0017 CADchr7q36.114937591414937851526013-0.9693.75E-13A08/0017 CADchr11p15.51913795191640926145-0.7492554.88E-14A08/00017 CADchr5q159392933193932037270670.1536.11E-54A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42A08/00017 CADchr5p15.33534578537912333411-0.6264381.78E-14
A08/00017 CADchr22q11.21175381441753999418504-0.8616228.25E-11A08/00017 CADchr19q13.42607334286073558321557-0.6803825.39E-16A08/00017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/00017 CADchr7q36.315713297415713547825046-0.7156041.59E-13A08/00017 CADchr7q36.114937591414937851526013-0.9693.75E-13A08/00017 CADchr11p15.51913795191640926145-0.7492554.88E-14A08/00017 CADchr5q159392933193932037270670.1536.11E-54A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42A08/00017 CADchr5p15.33534578537912333411-0.6264381.78E-14
A08/00017 CADchr19q13.42607334286073558321557-0.6803825.39E-16A08/00017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/00017 CADchr7q36.315713297415713547825046-0.7156041.59E-13A08/00017 CADchr7q36.114937591414937851526013-0.9693.75E-13A08/00017 CADchr11p15.51913795191640926145-0.7492554.88E-14A08/00017 CADchr5q159392933193932037270670.1536.11E-54A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42A08/00017 CADchr5p15.33534578537912333411-0.6264381.78E-14
A08/00017 CADchr17p13.3917759427224978-0.6074572.78E-12A08/00017 CADchr7q36.315713297415713547825046-0.7156041.59E-13A08/00017 CADchr7q36.114937591414937851526013-0.9693.75E-13A08/00017 CADchr11p15.51913795191640926145-0.7492554.88E-14A08/00017 CADchr5q159392933193932037270670.1536.11E-54A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42A08/00017 CADchr5p15.33534578537912333411-0.6264381.78E-14
A08/00017 CADchr7q36.315713297415713547825046-0.7156041.59E-13A08/00017 CADchr7q36.114937591414937851526013-0.9693.75E-13A08/00017 CADchr11p15.51913795191640926145-0.7492554.88E-14A08/00017 CADchr5q159392933193932037270670.1536.11E-54A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42A08/00017 CADchr5p15.33534578537912333411-0.6264381.78E-14
A08/00017 CADchr7q36.114937591414937851526013-0.9693.75E-13A08/00017 CADchr11p15.51913795191640926145-0.7492554.88E-14A08/00017 CADchr5q159392933193932037270670.1536.11E-54A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42A08/00017 CADchr5p15.33534578537912333411-0.6264381.78E-14
A08/00017 CADchr11p15.51913795191640926145-0.7492554.88E-14A08/00017 CADchr5q159392933193932037270670.1536.11E-54A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42A08/00017 CADchr5p15.33534578537912333411-0.6264381.78E-14
A08/00017 CADchr5q159392933193932037270670.1536.11E-54A08/00017 CADchr5q31.1134288246134291279303330.2383.66E-42A08/00017 CADchr5p15.33534578537912333411-0.6264381.78E-14
A08/00017 C AD chr5 q31.1 134288246 134291279 3033 3 0.238 3.66E-42 A08/00017 C AD chr5 p15.33 534578 537912 3334 11 -0.626438 1.78E-14
A08/00017 C AD chr5 p15.33 534578 537912 3334 11 -0.626438 1.78E-14
A08/00017 C AD chr9 p13.3 33645710 33649076 3366 8 0.520714 3.11E-11
A08/00017 C AD chr19 p13.3 3123501 3126888 3387 8 -0.799144 4.21E-15
A08/00017 C AD chr6 p21.32 31972689 31976419 3730 8 -0.609812 9.19E-13
A08/00017 C AD chr14 q32.33 104920059 104924376 4317 5 -0.894699 2.55E-10
A08/00017 C AD chr8 q24.3 145464160 145469816 5656 3 -0.114 1.47E-11
A08/00017 C AD chr12 p11.1 34387951 34394924 6973 3 -0.803138 4.53E-10
A08/00017 C AD chr1 p36.13 16892609 16900999 8390 7 -0.643947 3.38E-14
A08/00017 C AD chr5 q21.1 99409658 99418500 8842 9 0.172 3.25E-84
A08/00017 C AD chr1 p36.32 2425488 2435495 10007 11 -0.685927 2.09E-12
A08/00017 C AD chr15 q11.2 20364480 20384338 19858 21 -0.406496 3.92E-17
A08/00017 C AD chr11 q23.2 113970068 114007972 37904 30 -0.462988 5.39E-30
A08/00017 C AD chr16 p13.3 2150152 2210298 60146 9 -0.736343 1.87E-11

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
A08/00017 HC	AD	chr3	q11.2	97819138	97820058	920	3	0.187	5.50E-34
A08/00017 HC	AD	chr5	q15	93929331	93932037	2706	7	0.110	1.34E-35
A08/00017 HC	AD	chr5	q31.1	134288246	134291279	3033	3	0.161	4.33E-28
A08/00017 HC	AD	chr5	q21.1	99409658	99418500	8842	9	0.118	1.79E-51
A10/00011 A	AD	chr4	p16.3	1490615	1491147	532	3	0.130	1.26E-12
A10/00011 A	AD	chr8	q24.3	141192107	141192877	770	3	-0.736127	3.25E-12
A10/00011 A	AD	chr3	q11.2	97819138	97820058	920	3	0.245	4.10E-45
A10/00011 A	AD	chr5	q21.3	108717366	108718468	1102	4	-0.118	5.73E-12
A10/00011 A	AD	chr3	p25.3	9413376	9414804	1428	3	0.115	7.89E-13
A10/00011 A	AD	chr20	q13.13	47327248	47328730	1482	4	0.976343	1.18E-11
A10/00011 A	AD	chr8	q11.23	54015316	54016927	1611	3	0.100	1.25E-12
A10/00011 A	AD	chr6	q24.1	139497758	139499519	1761	5	0.821939	2.99E-14
A10/00011 A	AD	chr2	p25.3	409744	411547	1803	5	0.124	6.87E-22
A10/00011 A	AD	chr5	p15.33	534578	536699	2121	7	0.103	1.32E-16
A10/00011 A	AD	chr12	p11.22	29193072	29195411	2339	5	0.103	3.61E-21
A10/00011 A	AD	chr5	q11.2	52810926	52813609	2683	7	0.696945	2.47E-14
A10/00011 A	AD	chr5	q15	93929331	93932037	2706	7	0.171	2.08E-65
A10/00011 A	AD	chr4	p16.3	639236	642220	2984	7	0.101	4.03E-14
A10/00011 A	AD	chr5	q31.1	134288246	134291279	3033	3	0.241	3.30E-37
A10/00011 A	AD	chr1	q21.1	144181433	144186220	4787	9	0.704777	5.83E-14
A10/00011 A	AD	chr7	q11.21	63204866	63209825	4959	7	0.710851	1.08E-14
A10/00011 A	AD	chr5	q21.1	99409658	99418500	8842	9	0.185	3.21E-101
A10/00011 A	AD	chr2	q21.2	132753820	132763661	9841	14	0.582792	2.43E-15
A10/00011 A	AD	chr1	p36.12	22068242	22102547	34305	10	0.727743	6.92E-14
A10/00011 A	AD	chr11	q23.2	113972284	114017074	44790	29	-0.505232	2.28E-28
A10/00011 A	AD	chr9	p11.2	44775933	44823424	47491	44	0.410517	5.21E-29
A10/00011 C	AD	chr4	p16.3	1490615	1491147	532	3	0.998384	1.91E-12
A10/00011 C	AD	chr15	q23	68664219	68665011	792	3	0.846617	2.09E-11
A10/00011 C	AD	chr3	q11.2	97819138	97820058	920	3	0.292	3.63E-50
A10/00011 C	AD	chr6	q14.3	84800293	84801274	981	3	0.786495	3.74E-10
A10/00011 C	AD	chr8	q11.23	54015316	54016927	1611	3	0.90221	3.19E-12
A10/00011 C	AD	chr20	q13.13	47326971	47328730	1759	5	0.574973	3.48E-12
A10/00011 C	AD	chr5	p15.33	534578	536699	2121	7	0.72641	1.00E-13
A10/00011 C	AD	chr2	p25.3	409744	411867	2123	6	0.611552	2.29E-11
A10/00011 C	AD	chr4	p16.3	639800	642220	2420	6	0.696533	3.08E-14
A10/00011 C	AD	chr5	q11.2	52810926	52813609	2683	7	0.542878	3.44E-11

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
A10/00011 C	AD	chr5	q15	93929331	93932037	2706	7	0.151	1.89E-52
A10/00011 C	AD	chr17	p11.2	17566482	17569300	2818	5	0.655691	3.80E-11
A10/00011 C	AD	chr5	q31.1	134288246	134291279	3033	3	0.258	7.32E-45
A10/00011 C	AD	chr9	p13.3	33645710	33649076	3366	8	0.535679	1.16E-12
A10/00011 C	AD	chr12	p11.22	29191984	29195411	3427	7	0.613619	5.86E-14
A10/00011 C	AD	chr6	q13	74209867	74216228	6361	9	-0.496676	7.72E-12
A10/00011 C	AD	chr5	q21.1	99409658	99418500	8842	9	0.180	8.42E-89
A10/00011 HC	AD	chr4	p16.3	1490615	1491147	532	3	0.115	2.26E-16
A10/00011 HC	AD	chr22	q13.33	49533570	49534357	787	3	-0.111	1.88E-10
A10/00011 HC	AD	chr3	q11.2	97819138	97820058	920	3	0.233	1.09E-41
A10/00011 HC	AD	chr4	p16.3	639800	640967	1167	3	0.909591	3.99E-11
A10/00011 HC	AD	chr4	q35.2	191004162	191005637	1475	4	-0.865259	2.05E-11
A10/00011 HC	AD	chr20	q13.13	47327248	47328730	1482	4	0.700136	9.44E-11
A10/00011 HC	AD	chr9	p13.3	33646809	33648592	1783	4	0.917391	1.33E-12
A10/00011 HC	AD	chr2	p25.3	409585	411547	1962	6	0.893925	3.09E-17
A10/00011 HC	AD	chr4	q32.1	159246586	159248607	2021	3	-0.106	1.58E-11
A10/00011 HC	AD	chr5	q14.3	90609325	90611431	2106	4	-0.871323	5.99E-11
A10/00011 HC	AD	chr19	q13.42	60284053	60286163	2110	4	0.693188	1.76E-10
A10/00011 HC	AD	chr5	p15.33	534578	536699	2121	7	0.705758	5.05E-13
A10/00011 HC	AD	chr12	p11.22	29193072	29195411	2339	5	0.979862	2.96E-17
A10/00011 HC	AD	chr7	q36.3	157132974	157135478	2504	6	-0.811333	1.62E-14
A10/00011 HC	AD	chr5	q15	93929331	93932037	2706	7	0.154	6.16E-48
A10/00011 HC	AD	chr7	q36.3	157632535	157635389	2854	9	-0.633316	2.02E-13
A10/00011 HC	AD	chr5	q31.1	134288246	134291279	3033	3	0.230	4.17E-40
A10/00011 HC	AD	chr19	p13.3	3123501	3126888	3387	8	-0.83364	4.05E-13
A10/00011 HC	AD	chr8	p21.3	21212367	21216043	3676	12	-0.510792	7.13E-12
A10/00011 HC	AD	chr5	q35.3	180447189	180451801	4612	5	-0.761461	8.30E-11
A10/00011 HC	AD	chr2	q37.3	242594159	242601922	7763	14	-0.549889	2.67E-15
A10/00011 HC	AD	chr20	q13.33	61268935	61276961	8026	3	0.960614	1.07E-10
A10/00011 HC	AD	chr5	q21.1	99409658	99418500	8842	9	0.176	1.88E-80
A10/00011 HC	AD	chr7	p22.1	6743587	6758364	14777	6	-0.728259	4.87E-12
A10/00011 HC	AD	chr15	q11.2	20364480	20384338	19858	21	-0.75456	1.35E-21
A10/00011 HC	AD	chr15	q25.3	83068933	83089798	20865	20	-0.446031	1.30E-14
A10/00011 HC	AD	chrX	p11.23	48869847	48897258	27411	7	-0.71983	1.35E-11
A10/00011 HC	AD	chr11	q23.2	113978745	114007972	29227	25	-0.444307	1.59E-17
A10/00011 HC	AD	chr4	p16.3	1409668	1465681	56013	15	-0.558874	3.59E-13

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
A10/00011 HC	AD	chr7	p22.2	2564656	2704415	139759	12	-0.511548	6.66E-12
A10/00011 HC	AD	chr6	q13	73982659	74282332	299673	13	-0.615337	1.20E-17
A10/00011 HC	AD	chr15	q22.31	64335696	64665760	330064	40	-0.416746	1.08E-23
BK-1049 A	sPD	chr9	q31.2	109313176	109313576	400	3	-0.102	1.115E-11
BK-1049 A	sPD	chr19	p13.13	12619750	12620663	913	4	0.591216	9.385E-11
BK-1049 A	sPD	chr3	q11.2	97819138	97820058	920	3	0.185	2.812E-33
BK-1049 A	sPD	chr6	q24.1	139497758	139498994	1236	3	0.896444	2.88E-10
BK-1049 A	sPD	chr1	q32.1	204925217	204926558	1341	3	0.905232	1.953E-10
BK-1049 A	sPD	chr7	q34	142053638	142055048	1410	3	0.108	7.433E-11
BK-1049 A	sPD	chr14	q21.1	38764444	38766093	1649	4	-0.111	4.712E-10
BK-1049 A	sPD	chr17	p13.3	92359	94272	1913	7	-0.617119	3.584E-11
BK-1049 A	sPD	chr10	p13	16601316	16603717	2401	6	0.545217	1.464E-11
BK-1049 A	sPD	chr12	p11.22	29192727	29195411	2684	6	0.806464	1.548E-15
BK-1049 A	sPD	chr5	q15	93929331	93932037	2706	7	0.159	4.643E-54
BK-1049 A	sPD	chr6	q27	165994320	165997286	2966	5	0.791333	2.884E-10
BK-1049 A	sPD	chr5	q31.1	134288246	134291279	3033	3	0.194	6.093E-34
BK-1049 A	sPD	chr9	p13.3	33645710	33649076	3366	8	0.81471	7.641E-20
BK-1049 A	sPD	chr3	p24.3	17720205	17723836	3631	6	-0.67291	2.364E-11
BK-1049 A	sPD	chr19	q12	35086644	35090503	3859	4	-0.812041	4.512E-11
BK-1049 A	sPD	chr1	q32.1	199442978	199447720	4742	15	0.502681	3.835E-15
BK-1049 A	sPD	chr3	q26.32	178425597	178430822	5225	9	-0.693855	2.167E-14
BK-1049 A	sPD	chr5	q33.1	150585601	150590870	5269	8	-0.54788	1.327E-12
BK-1049 A	sPD	chr16	q24.2	86018953	86024444	5491	4	-0.765349	5.016E-10
BK-1049 A	sPD	chr16	q23.1	73638102	73644081	5979	6	-0.858553	5.581E-11
BK-1049 A	sPD	chr8	p21.3	22602814	22609106	6292	10	0.630545	8.528E-16
BK-1049 A	sPD	chr5	q21.1	99409658	99418500	8842	9	0.168	1.212E-80
BK-1049 A	sPD	chr14	q24.3	73630311	73639463	9152	10	-0.712207	3.36E-11
BK-1049 A	sPD	chrY	q11.21	12564423	12574348	9925	3	0.118	9.782E-10
BK-1049 A	sPD	chr10	q25.1	107285498	107296759	11261	3	0.896562	3.667E-10
BK-1049 A	sPD	chr16	p13.3	1623	14617	12994	5	0.813335	1.928E-13
BK-1049 A	sPD	chr2	p22.3	36185569	36199529	13960	7	-0.574232	6.673E-10
BK-1049 A	sPD	chr20	q13.13	47220976	47236870	15894	19	-0.564198	1.81E-10
BK-1049 A	sPD	chrY	q11.222	19593670	19614064	20394	8	-0.824991	4.918E-12
BK-1049 A	sPD	chrY	p11.2	7228133	7251151	23018	11	0.743967	5.947E-10
BK-1049 A	sPD	chr20	q13.2	51716974	51742656	25682	30	-0.53616	1.536E-13
BK-1049 A	sPD	chr5	q23.2	126135210	126168102	32892	12	-0.58108	4.609E-16

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
BK-1049 A	sPD	chr3	p21.31	49379607	49423520	43913	20	-0.652508	6.7E-11
BK-1049 A	sPD	chr2	p11.1	91043759	91094689	50930	17	-0.560495	1.382E-20
BK-1049 A	sPD	chr8	p11.23	39401501	39464777	63276	38	0.597375	2.022E-11
BK-1049 A	sPD	chr11	p15.4	3709243	3778284	69041	46	-0.553367	4.402E-51
BK-1049 A	sPD	chr17	p13.3	1218445	1308381	89936	13	-0.590949	5.086E-10
BK-1049 A	sPD	chr2	q33.1	203014878	203139390	124512	18	-0.637669	2.524E-11
BK-1049 A	sPD	chr6	p21.31	34421653	34548482	126829	14	-0.560615	2.753E-17
BK-1049 A	sPD	chr13	q12.11	19190110	19360864	170754	21	-0.608063	9.016E-14
BK-1049 A	sPD	chr15	q24.2	73464815	73657570	192755	14	-0.532709	8.735E-16
BK-1049 A	sPD	chr15	q22.31	64335696	64552126	216430	31	-0.522662	1.615E-31
BK-1049 A	sPD	chr17	q12	34668394	34911322	242928	22	-0.526453	6.263E-15
BK-1049 A	sPD	chr6	p23	15123077	15399731	276654	11	-0.611442	5.301E-13
BK-1049 A	sPD	chr17	q11.2	26092631	26380884	288253	31	-0.569318	6.795E-11
BK-1049 A	sPD	chr14	q22.1	49120580	49479418	358838	22	-0.553175	1.899E-25
BK-1049 A	sPD	chr1	p34.3	35255756	35652399	396643	31	-0.503998	7.786E-20
BK-1049 A	sPD	chr3	p21.31	47562386	48134542	572156	62	-0.513055	2.148E-12
BK-1049 HC	sPD	chr19	p13.3	1162440	1162847	407	4	-0.133	8.014E-31
BK-1049 HC	sPD	chr13	q34	111896752	111897438	686	3	-0.118	2.206E-20
BK-1049 HC	sPD	chr2	p11.2	88083370	88084195	825	3	-0.102	4.471E-15
BK-1049 HC	sPD	chr8	q24.3	144471540	144472377	837	4	-0.562403	2.732E-10
BK-1049 HC	sPD	chr17	p13.3	208205	209057	852	3	-0.814012	9.067E-11
BK-1049 HC	sPD	chr3	q11.2	97819138	97820058	920	3	0.202	4.855E-37
BK-1049 HC	sPD	chr16	p13.3	1446703	1447654	951	3	-0.149	5.924E-24
BK-1049 HC	sPD	chr8	p23.3	1765251	1766213	962	3	-0.906057	4.07E-14
BK-1049 HC	sPD	chr13	q34	113825470	113826438	968	3	-0.994	4.683E-16
BK-1049 HC	sPD	chr18	q23	75640039	75641110	1071	4	-0.863159	8.825E-18
BK-1049 HC	sPD	chr17	p13.3	122382	123712	1330	4	-0.958	6.799E-18
BK-1049 HC	sPD	chr19	p13.3	275985	277451	1466	4	-0.720091	4.94E-13
BK-1049 HC	sPD	chr16	p13.3	820247	821745	1498	3	-0.100	6.523E-14
BK-1049 HC	sPD	chr13	q34	113903079	113905302	2223	7	-0.500716	2.377E-10
BK-1049 HC	sPD	chr9	q34.3	139327873	139330143	2270	3	-0.878242	1.053E-10
BK-1049 HC	sPD	chr4	p16.3	842207	844565	2358	3	-0.722722	5.235E-11
BK-1049 HC	sPD	chr5	p15.33	541262	543686	2424	6	-0.528239	6.12E-13
BK-1049 HC	sPD	chr1	p36.22	10654771	10657315	2544	3	-0.712745	3.601E-10
BK-1049 HC	sPD	chr11	p15.5	1913795	1916409	2614	5	-0.543577	4.628E-11
BK-1049 HC	sPD	chr5	q15	93929331	93932037	2706	7	0.154	5.912E-57

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
BK-1049 HC	sPD	chr5	q31.1	134288246	134291279	3033	3	0.196	2.089E-35
BK-1049 HC	sPD	chr10	p15.3	771379	774562	3183	10	0.601167	4.75E-17
BK-1049 HC	sPD	chr6	q27	169267774	169271069	3295	10	0.465789	2.25E-10
BK-1049 HC	sPD	chr9	p13.3	33645710	33649076	3366	8	0.699739	4.96E-16
BK-1049 HC	sPD	chr14	q32.33	104920889	104924376	3487	4	-0.804843	3.591E-14
BK-1049 HC	sPD	chr1	p36.32	2431812	2435495	3683	5	-0.633646	2.236E-12
BK-1049 HC	sPD	chr10	q26.3	134473728	134478084	4356	4	-0.717718	2.227E-12
BK-1049 HC	sPD	chr19	q13.33	55609412	55613872	4460	7	-0.432635	1.822E-10
BK-1049 HC	sPD	chr16	p13.3	606512	613478	6966	3	-0.828585	7.846E-10
BK-1049 HC	sPD	chr5	q21.1	99409658	99418500	8842	9	0.160	1.643E-79
BK-1049 HC	sPD	chr2	q37.3	242460204	242469311	9107	3	-0.101	1.457E-14
BK-1049 HC	sPD	chr7	q11.21	63204150	63214598	10448	12	0.425361	1.116E-12
BK-1049 HC	sPD	chr1	p36.32	2386716	2398480	11764	3	-0.681801	7.396E-10
BK-1049 HC	sPD	chr19	p13.3	1364559	1376347	11788	6	-0.665537	6.348E-15
BK-1049 HC	sPD	chr9	q34.2	136458579	136472396	13817	4	-0.675602	7.641E-13
BK-1049 HC	sPD	chr21	q22.3	44551543	44576773	25230	4	-0.667864	4.693E-11
BK-1049 HC	sPD	chr7	p22.3	1650906	1714104	63198	8	-0.433145	2.502E-10
BK-1049 HT	sPD	chr16	p11.2	30101463	30102306	843	3	0.121	1.402E-12
BK-1049 HT	sPD	chr3	q11.2	97819138	97820058	920	3	0.152	7.658E-22
BK-1049 HT	sPD	chr18	q23	75336558	75337515	957	4	0.98082	6.167E-10
BK-1049 HT	sPD	chr12	p11.22	29193072	29194594	1522	4	0.110	3.841E-16
BK-1049 HT	sPD	chr9	q31.3	112839200	112840860	1660	3	0.964503	4.654E-10
BK-1049 HT	sPD	chr17	q25.3	78601721	78603432	1711	3	0.132	1.839E-15
BK-1049 HT	sPD	chr4	q35.2	190803146	190804867	1721	3	0.9795	2.546E-10
BK-1049 HT	sPD	chr10	q26.3	133504915	133506659	1744	7	0.775646	8.547E-10
BK-1049 HT	sPD	chr6	q24.1	139497758	139499519	1761	5	0.912755	3.698E-14
BK-1049 HT	sPD	chr13	q34	112809991	112811935	1944	3	0.117	8.719E-11
BK-1049 HT	sPD	chr14	q13.1	32471949	32474289	2340	5	0.717809	5.569E-11
BK-1049 HT	sPD	chr5	q15	93929331	93932037	2706	7	0.148	9.238E-47
BK-1049 HT	sPD	chr6	q27	165994320	165997286	2966	5	0.846837	8.987E-10
BK-1049 HT	sPD	chr5	q31.1	134288246	134291279	3033	3	0.191	3.054E-32
BK-1049 HT	sPD	chr10	p15.3	771379	774562	3183	10	0.655454	9.008E-11
BK-1049 HT	sPD	chr1	q32.1	199443870	199447209	3339	10	0.669117	3.027E-10
BK-1049 HT	sPD	chr8	p23.3	1822693	1826299	3606	16	0.651386	2.013E-14
BK-1049 HT	sPD	chr20	q13.33	59951265	59957337	6072	7	0.105	7.032E-17
BK-1049 HT	sPD	chr22	q13.1	36469727	36477198	7471	13	0.638358	2.045E-11

BK-1049 HTsPDchr5q21.19940965899418500884290.160BK-1049 HTsPDchr3p21.3148592291486116091931860.743288BK-1049 HTsPDchr17p11.2166675961670268335087130.574922BK-1049 HTsPDchr8p11.23393793393945178372444360.772814	3.15E-70 7.993E-10 2.924E-10 1.935E-12 3.149E-14 4.776E-10 3.413E-13 2.1E-16
BK-1049 HTsPDchr3p21.3148592291486116091931860.743288BK-1049 HTsPDchr17p11.2166675961670268335087130.574922BK-1049 HTsPDchr8p11.23393793393945178372444360.772814	7.993E-10 2.924E-10 1.935E-12 3.149E-14 4.776E-10 3.413E-13 2.1E-16
BK-1049 HT sPD chr17 p11.2 16667596 16702683 35087 13 0.574922 BK-1049 HT sPD chr8 p11.23 39379339 39451783 72444 36 0.772814	2.924E-10 1.935E-12 3.149E-14 4.776E-10 3.413E-13 2.1E-16
BK-1049 HT sPD chr8 p11.23 39379339 39451783 72444 36 0.772814	1.935E-12 3.149E-14 4.776E-10 3.413E-13 2.1E-16
	3.149E-14 4.776E-10 3.413E-13 2.1E-16
BK-1049 P sPD chr19 p13.13 12619750 12620663 913 4 0.849495	4.776E-10 3.413E-13 2.1E-16
BK-1049 P sPD chr5 p15.33 1012920 1013839 919 3 0.989143	3.413E-13 2.1E-16
BK-1049 P sPD chr22 q13.1 36125158 36126268 1110 3 0.101	2.1E-16
BK-1049 P sPD chr19 q13.41 58297961 58299093 1132 3 0.114	
BK-1049 P sPD chr16 p13.3 885121 886303 1182 3 0.117	6.792E-13
BK-1049 P sPD chr6 q24.1 139497758 139498994 1236 3 0.813916	7.032E-11
BK-1049 P sPD chr2 p25.1 7147553 7148870 1317 4 0.715	1.148E-10
BK-1049 P sPD chr16 p11.2 30897616 30899058 1442 4 0.777366	5.277E-11
BK-1049 P sPD chr3 q21.2 127116895 127118366 1471 3 0.929486	3.761E-10
BK-1049 P sPD chr20 q13.13 47327248 47328730 1482 4 0.832114	1.001E-13
BK-1049 P sPD chr12 p11.22 29193072 29194594 1522 4 0.109	2.146E-20
BK-1049 P sPD chr8 q11.23 54015316 54016927 1611 3 0.100	1.16E-14
BK-1049 P sPD chr17 q25.3 78601721 78603432 1711 3 0.107	4.368E-15
BK-1049 P sPD chr3 p25.3 9413036 9414804 1768 4 0.701843	4.796E-10
BK-1049 P sPD chr13 q14.11 42046417 42048394 1977 5 0.728158	3.824E-13
BK-1049 P sPD chr21 q22.3 46280013 46282115 2102 7 0.615533	6.289E-10
BK-1049 P sPD chr4 q13.1 66216899 66219114 2215 6 0.510761	8.715E-10
BK-1049 P sPD chr14 q13.1 32471949 32474289 2340 5 0.584143	1.65E-10
BK-1049 P sPD chr1 q21.1 144183831 144186220 2389 4 0.717496	5.285E-10
BK-1049 P sPD chr10 p13 16601316 16603717 2401 6 0.520969	5.732E-10
BK-1049 P sPD chr17 p13.3 1590057 1592509 2452 7 0.566795	2.318E-10
BK-1049 P sPD chr10 p15.3 1440631 1443278 2647 8 0.564317	2.922E-10
BK-1049 P sPD chr5 q15 93929331 93932037 2706 7 0.827368	2.066E-23
BK-1049 P sPD chr18 q23 75725305 75728064 2759 11 0.564966	4.36E-11
BK-1049 P sPD chr8 q24.3 140836416 140839344 2928 10 0.63822	3.81E-11
BK-1049 P sPD chr6 p25.3 122972 125958 2986 3 0.91558	1.016E-12
BK-1049 P sPD chr5 q31.1 134288246 134291279 3033 3 0.101	1.04E-13
BK-1049 P sPD chr10 p15.3 771379 774562 3183 10 0.515382	2.19E-10
BK-1049 P sPD chr8 p23.3 1822693 1826299 3606 16 0.605998	5.129E-19
BK-1049 P sPD chr1 q32.1 199443870 199447720 3850 12 0.530673	4.921E-13
BK-1049 P sPD chr7 q36.1 - q36.2 152197167 152201613 4446 14 0.464558	8.528E-15
BK-1049 P sPD chr6 q27 165993342 165998144 4802 8 0.583419	1.679E-10

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
BK-1049 P	sPD	chr13	q31.1	82607402	82612869	5467	9	-0.514033	3.752E-10
BK-1049 P	sPD	chr20	q13.33	59951265	59957337	6072	7	0.85718	1.052E-17
BK-1049 P	sPD	chr5	q21.1	99409658	99418500	8842	9	0.845885	4.01E-31
BK-1049 P	sPD	chr1	p36.32	2393306	2408207	14901	8	0.652206	2.528E-10
BK-1049 P	sPD	chr5	p15.33	525288	544860	19572	44	0.469944	8.424E-17
BK-1049 P	sPD	chr16	p13.3	847658	877132	29474	6	0.785141	6.067E-10
BK-1049 P	sPD	chr4	p11 - q11	49270439	52380154	3109715	5	0.662305	2.576E-11
BK-1049 SN	sPD	chr19	p13.3	1162440	1162847	407	4	-0.128	5.903E-11
BK-1049 SN	sPD	chr3	q11.2	97819138	97820058	920	3	0.185	2.516E-29
BK-1049 SN	sPD	chr17	p13.3	208499	209432	933	3	-0.140	3.736E-11
BK-1049 SN	sPD	chr16	p13.3	1446703	1447654	951	3	-0.200	3.204E-23
BK-1049 SN	sPD	chr18	q23	75640039	75641110	1071	4	-0.108	1.776E-15
BK-1049 SN	sPD	chr4	p16.3	2388907	2390005	1098	4	0.674972	4.094E-10
BK-1049 SN	sPD	chr3	q22.3	139316209	139317443	1234	3	0.102	6.613E-11
BK-1049 SN	sPD	chr20	q13.31	55717363	55718610	1247	3	0.121	3.24E-11
BK-1049 SN	sPD	chr13	q34	113825470	113826733	1263	4	-0.87616	9.091E-11
BK-1049 SN	sPD	chr17	p13.3	122382	123712	1330	4	-0.134	5.189E-13
BK-1049 SN	sPD	chr16	p13.3	820247	821745	1498	3	-0.138	5.951E-13
BK-1049 SN	sPD	chr12	p11.22	29193072	29194594	1522	4	0.948188	2.58E-12
BK-1049 SN	sPD	chr16	q24.3	88597186	88598751	1565	4	-0.125	1.465E-10
BK-1049 SN	sPD	chr11	p15.5	368550	370122	1572	5	-0.922549	7.672E-10
BK-1049 SN	sPD	chr13	q34	113903079	113904784	1705	5	-0.841596	3.738E-12
BK-1049 SN	sPD	chr1	p36.33	2135075	2137237	2162	3	-0.117	7.152E-10
BK-1049 SN	sPD	chr2	p25.3	2014049	2016222	2173	8	0.656185	8.614E-10
BK-1049 SN	sPD	chr4	q13.1	66216899	66219114	2215	6	0.691448	3.588E-10
BK-1049 SN	sPD	chr9	q22.33	99212288	99214657	2369	5	0.865853	7.233E-12
BK-1049 SN	sPD	chr5	q15	93929331	93932037	2706	7	0.173	5.165E-54
BK-1049 SN	sPD	chr5	q31.1	134288246	134291279	3033	3	0.223	3.089E-37
BK-1049 SN	sPD	chr9	p13.3	33645710	33649076	3366	8	0.796535	1.198E-16
BK-1049 SN	sPD	chr14	q32.33	104920889	104924376	3487	4	-0.111	1.329E-11
BK-1049 SN	sPD	chr3	p24.3	17720205	17724181	3976	7	-0.715632	2.785E-12
BK-1049 SN	sPD	chr5	q33.1	150585601	150590870	5269	8	-0.61444	1.28E-10
BK-1049 SN	sPD	chr13	q34	112709899	112715728	5829	11	-0.54791	1.889E-11
BK-1049 SN	sPD	chr19	p13.3	1031278	1037772	6494	3	-0.138	2.36E-10
BK-1049 SN	sPD	chr19	q13.42	59276361	59283340	6979	8	-0.105	1.266E-11
BK-1049 SN	sPD	chrY	q11.1	11692762	11701354	8592	6	0.899055	6.181E-13

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
BK-1049 SN	sPD	chr5	q21.1	99409658	99418500	8842	9	0.184	6.157E-80
BK-1049 SN	sPD	chr5	q21.1	98873390	98884327	10937	10	-0.569845	2.743E-11
BK-1049 SN	sPD	chr16	p13.3	1623	14617	12994	5	0.854952	1.737E-12
BK-1049 SN	sPD	chr4	q35.2	188117208	188131944	14736	16	0.5485	6.99E-16
BK-1049 SN	sPD	chr2	q37.3	242454568	242469311	14743	5	-0.121	3.977E-16
BK-1049 SN	sPD	chr15	q21.3	55434837	55455020	20183	11	-0.67774	4.216E-12
BK-1049 SN	sPD	chr3	q25.31	156955550	156982057	26507	33	-0.680347	3.06E-46
BK-1049 SN	sPD	chr11	p15.4	9251439	9278750	27311	29	-0.872386	6.328E-10
BK-1049 SN	sPD	chr3	q26.32	178399684	178430822	31138	10	-0.81215	4.432E-21
BK-1049 SN	sPD	chr5	q23.2	126135210	126169553	34343	18	-0.708711	3.478E-28
BK-1049 SN	sPD	chr22	q13.33	48960580	48996630	36050	6	-0.104	2.207E-12
BK-1049 SN	sPD	chr6	q25.3	158534400	158572515	38115	26	-0.549214	1.906E-10
BK-1049 SN	sPD	chr3	p21.31	49379607	49423882	44275	21	-0.921878	4.18E-11
BK-1049 SN	sPD	chr18	q21.31	53453094	53497927	44833	24	-0.664406	3.987E-14
BK-1049 SN	sPD	chr16	q24.3	88361926	88408665	46739	7	-0.103	2.231E-10
BK-1049 SN	sPD	chr2	p11.1	91047484	91094689	47205	15	-0.791437	3.251E-29
BK-1049 SN	sPD	chr2	q14.3	127494982	127543165	48183	5	-0.744243	7.043E-10
BK-1049 SN	sPD	chr7	p22.1	5808736	5861774	53038	39	-0.823949	1.369E-12
BK-1049 SN	sPD	chr17	p11.2	16008885	16065498	56613	30	-0.622133	1.725E-13
BK-1049 SN	sPD	chr17	q21.33	46514899	46575715	60816	18	-0.723475	1.903E-14
BK-1049 SN	sPD	chr1	q21.2	149439605	149500787	61182	47	-0.680888	7.368E-10
BK-1049 SN	sPD	chr10	q24.1	98969898	99031473	61575	18	-0.692602	7.432E-15
BK-1049 SN	sPD	chr16	p13.3	2808001	2871934	63933	3	-0.168	5.694E-17
BK-1049 SN	sPD	chr2	p11.2	86951624	87018669	67045	19	-0.617227	2.369E-11
BK-1049 SN	sPD	chr2	p22.2	36978705	37046284	67579	12	-0.647669	5.01E-16
BK-1049 SN	sPD	chr17	q25.3	75829866	75899725	69859	17	-0.678706	1.185E-11
BK-1049 SN	sPD	chr10	q22.3	81766270	81840132	73862	31	-0.638968	1.152E-38
BK-1049 SN	sPD	chr7	q32.1	127963792	128045089	81297	19	-0.774624	4.171E-18
BK-1049 SN	sPD	chr3	q26.2	171430302	171514430	84128	27	-0.643389	6.001E-12
BK-1049 SN	sPD	chr11	p15.4	3692078	3778284	86206	47	-0.695522	3.48E-38
BK-1049 SN	sPD	chr18	q11.2	17422258	17510912	88654	83	-0.659612	5.753E-18
BK-1049 SN	sPD	chr6	p21.32	32302677	32397268	94591	16	-0.593675	9.344E-12
BK-1049 SN	sPD	chr5	q13.2	70342094	70440278	98184	12	-0.743203	3.019E-13
BK-1049 SN	sPD	chr17	p11.2	17068880	17167847	98967	45	-0.576279	3.53E-15
BK-1049 SN	sPD	chr15	q15.3	41832227	41931787	99560	50	-0.613525	9.362E-10
BK-1049 SN	sPD	chr3	q21.3	129820979	129920594	99615	43	-0.552623	4.853E-40

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
BK-1049 SN	sPD	chr6	p21.32 - p21.31	33566081	33666006	99925	23	-0.701913	1.078E-10
BK-1049 SN	sPD	chrX	p22.2	16523087	16623584	100497	28	-0.567453	1.873E-18
BK-1049 SN	sPD	chr1	p36.12	21909049	22011983	102934	20	-0.62074	1.268E-11
BK-1049 SN	sPD	chr17	p11.2	18688106	18791668	103562	30	-0.633077	3.081E-14
BK-1049 SN	sPD	chr17	q11.2	27229130	27335500	106370	33	-0.770923	2.611E-13
BK-1049 SN	sPD	chr16	p13.2 - p13.13	10262104	10370226	108122	18	-0.590183	1.09E-13
BK-1049 SN	sPD	chr1	p36.32	2573144	2681886	108742	68	-0.644268	5.169E-39
BK-1049 SN	sPD	chr19	p12	23595563	23706088	110525	68	-0.703999	6.152E-21
BK-1049 SN	sPD	chrX	q22.3	106700995	106814823	113828	14	-0.556077	1.828E-14
BK-1049 SN	sPD	chr15	q22.31	64335696	64449557	113861	27	-0.739435	8.155E-33
BK-1049 SN	sPD	chr7	p11.2	56748785	56862806	114021	53	-0.602074	3.348E-13
BK-1049 SN	sPD	chr17	q21.31	38292133	38413636	121503	41	-0.664159	4.41E-13
BK-1049 SN	sPD	chr21	q22.3	46544676	46667147	122471	24	-0.57011	2.623E-14
BK-1049 SN	sPD	chr2	q36.3	230498564	230625481	126917	37	-0.64171	9.597E-21
BK-1049 SN	sPD	chr14	q21.1	38646195	38774965	128770	40	-0.550247	1.063E-36
BK-1049 SN	sPD	chr9	q34.3	139583121	139712722	129601	20	-0.709371	7.294E-10
BK-1049 SN	sPD	chr21	q22.11	33658674	33788891	130217	26	-0.627371	2.196E-19
BK-1049 SN	sPD	chr12	q24.31	122638856	122771021	132165	101	-0.618336	2.74E-11
BK-1049 SN	sPD	chrX	q24	119504439	119642834	138395	10	-0.577178	1.551E-11
BK-1049 SN	sPD	chr13	q22.1	72470737	72609390	138653	17	-0.613208	1.734E-20
BK-1049 SN	sPD	chr1	q43	240133061	240272078	139017	36	-0.65662	1.224E-35
BK-1049 SN	sPD	chr1	q42.3 - q43	234518261	234662675	144414	18	-0.743825	8.219E-12
BK-1049 SN	sPD	chr3	p22.3	32630663	32787322	156659	41	-0.618743	9.169E-12
BK-1049 SN	sPD	chr11	q22.3	107169336	107328053	158717	42	-0.744249	9.177E-19
BK-1049 SN	sPD	chr17	q21.32	42887536	43051290	163754	78	-0.625084	3.833E-18
BK-1049 SN	sPD	chr19	q13.42	60074973	60247715	172742	54	-0.652584	6.725E-23
BK-1049 SN	sPD	chr19	p12	23047104	23222486	175382	45	-0.649836	2.035E-10
BK-1049 SN	sPD	chr1	p34.3	35476862	35652399	175537	28	-0.646772	1.058E-10
BK-1049 SN	sPD	chr19	q13.32	53009379	53185974	176595	51	-0.698858	5.229E-12
BK-1049 SN	sPD	chr9	q31.2	109313176	109491155	177979	4	-0.968	5.318E-10
BK-1049 SN	sPD	chr11	q13.1	66578977	66760810	181833	20	-0.693921	1.224E-10
BK-1049 SN	sPD	chr11	p15.5	523382	709421	186039	45	-0.578917	1.005E-22
BK-1049 SN	sPD	chr13	q12.11	19175628	19363322	187694	31	-0.734504	1.768E-28
BK-1049 SN	sPD	chr15	q24.2	73464815	73657570	192755	14	-0.738681	6.811E-18
BK-1049 SN	sPD	chr12	q23.1	97378166	97576225	198059	15	-0.611539	1.591E-14
BK-1049 SN	sPD	chr10	q21.2 - q21.3	64619105	64832545	213440	62	-0.54261	7.44E-55

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
BK-1049 SN	sPD	chr6	q21	107418711	107640662	221951	53	-0.718187	4.988E-37
BK-1049 SN	sPD	chr17	p13.3	1077326	1308381	231055	51	-0.595031	7.433E-10
BK-1049 SN	sPD	chr8	q24.3	145244012	145476651	232639	35	-0.557587	1.878E-14
BK-1049 SN	sPD	chr20	q13.2	51664242	51903643	239401	59	-0.631853	1.584E-35
BK-1049 SN	sPD	chr3	p25.1	12522967	12771080	248113	69	-0.551849	1.279E-24
BK-1049 SN	sPD	chr20	p13 - p12.3	4782092	5049554	267462	51	-0.603209	8.425E-19
BK-1049 SN	sPD	chr6	q25.1	149880221	150154429	274208	72	-0.593536	2.081E-32
BK-1049 SN	sPD	chr8	q22.1	98677127	98952511	275384	48	-0.616654	2.03E-26
BK-1049 SN	sPD	chr7	q11.21 - q11.22	65994248	66271718	277470	103	-0.644452	6.09E-22
BK-1049 SN	sPD	chrX	q25	122692703	122974714	282011	45	-0.548184	3.586E-41
BK-1049 SN	sPD	chr5	p13.2	37241283	37523538	282255	48	-0.584345	1.822E-49
BK-1049 SN	sPD	chr7	p11.2	55808388	56095470	287082	50	-0.591575	9.847E-12
BK-1049 SN	sPD	chr12	q14.2	63043863	63332885	289022	58	-0.594343	2.082E-47
BK-1049 SN	sPD	chr7	q22.2	104707531	104998355	290824	79	-0.689125	3.841E-30
BK-1049 SN	sPD	chr9	p22.1	19046715	19342316	295601	66	-0.613391	7.459E-74
BK-1049 SN	sPD	chr21	q22.12 - q22.13	36445152	36741671	296519	90	-0.652562	1.008E-68
BK-1049 SN	sPD	chr17	q12	34614795	34911670	296875	38	-0.673092	2.903E-23
BK-1049 SN	sPD	chr17	q11.2	26084269	26395205	310936	39	-0.737224	7.094E-13
BK-1049 SN	sPD	chr8	p11.21	42395690	42707488	311798	35	-0.557611	6.266E-10
BK-1049 SN	sPD	chr5	q35.2 - q35.3	176308212	176621265	313053	59	-0.595932	8.05E-29
BK-1049 SN	sPD	chrX	p11.3	44294509	44613389	318880	22	-0.651285	1.192E-11
BK-1049 SN	sPD	chr12	p12.3	19308509	19633089	324580	92	-0.583833	1.089E-92
BK-1049 SN	sPD	chr8	q13.3	70863200	71197793	334593	52	-0.633145	2.43E-62
BK-1049 SN	sPD	chr1	p36.21	15714013	16050125	336112	42	-0.594227	7.465E-20
BK-1049 SN	sPD	chr9	p24.1	6508574	6851053	342479	181	-0.546306	5.021E-158
BK-1049 SN	sPD	chr17	q21.31	39909747	40262156	352409	59	-0.589663	4.266E-11
BK-1049 SN	sPD	chr14	q22.1	49120580	49479418	358838	22	-0.746515	1.62E-37
BK-1049 SN	sPD	chr22	q12.2	30061926	30428312	366386	94	-0.668552	8.81E-60
BK-1049 SN	sPD	chr5	q35.1 - q35.2	172154692	172522773	368081	35	-0.54388	1.303E-25
BK-1049 SN	sPD	chr7	q11.21	64974889	65344699	369810	52	-0.645368	4.593E-12
BK-1049 SN	sPD	chr17	q23.3 - q24.1	59818489	60190930	372441	40	-0.598617	2.092E-17
BK-1049 SN	sPD	chr9	p13.3	33805961	34217775	411814	17	-0.609837	2.774E-20
BK-1049 SN	sPD	chr4	p14	39386051	39807111	421060	89	-0.685353	1.681E-10
BK-1049 SN	sPD	chr17	q22	54053201	54479879	426678	73	-0.70635	1.291E-14
BK-1049 SN	sPD	chr16	q22.3	70149862	70634311	484449	25	-0.571225	3.441E-13
BK-1049 SN	sPD	chr6	q13	73982659	74479327	496668	60	-0.587677	5.525E-62

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
BK-1049 SN	sPD	chr17	q25.1	70576370	71083032	506662	65	-0.549431	8.897E-21
BK-1049 SN	sPD	chr20	q13.2	49673569	50202773	529204	193	-0.576888	5.212E-86
BK-1049 SN	sPD	chr12	p13.31	7662827	8199540	536713	239	-0.577245	6.733E-231
BK-1049 SN	sPD	chr10	p14 - p13	12035846	12579809	543963	159	-0.644103	4.164E-87
BK-1049 SN	sPD	chrX	p22.11	23637484	24201383	563899	52	-0.579857	2.795E-34
BK-1049 SN	sPD	chr3	p21.31	47562386	48140446	578060	64	-0.757234	2.992E-11
BK-1049 SN	sPD	chr1	p36.12	20826722	21412374	585652	34	-0.549749	3.174E-13
BK-1049 SN	sPD	chr5	q13.2	68464945	69061554	596609	64	-0.609472	1.5E-36
BK-1049 SN	sPD	chr22	q11.1 - q11.21	16009764	16610660	600896	195	-0.555016	3.714E-69
BK-1049 SN	sPD	chr3	q29	197496067	198097277	601210	181	-0.578846	1.135E-37
BK-1049 SN	sPD	chr1	q22	153558800	154179662	620862	103	-0.564428	5.215E-16
BK-1049 SN	sPD	chr15	q21.2	48439810	49076042	636232	69	-0.590981	6.823E-48
BK-1049 SN	sPD	chr1	q21.3	152066542	152726630	660088	160	-0.543548	8.699E-20
BK-1049 SN	sPD	chr14	q23.2	63140043	63893329	753286	32	-0.659346	1.178E-24
BK-1049 SN	sPD	chr2	q33.1 - q33.2	202780849	203559333	778484	62	-0.617508	1.204E-13
BK-1049 SN	sPD	chr9	q33.3	126710161	127524122	813961	29	-0.576007	1.064E-18
BK-1049 SN	sPD	chr1	p32.3	52235847	53135431	899584	107	-0.576461	1.931E-43
BK-1049 SN	sPD	chr5	q31.1	133320351	134284021	963670	40	-0.545505	6.716E-13
BK-1049 SN	sPD	chr11	p15.4	9138193	10250658	1112465	155	-0.56248	1.135E-143
BK-1049 SN	sPD	chr17	q11.2	24170109	25500787	1330678	35	-0.595427	3.21E-15
BK-1049 SN	sPD	chr14	q13.1 - q13.2	33901518	35375109	1473591	240	-0.640584	1.161E-285
BK-1049 SN	sPD	chr11	p11.2	45952249	48001397	2049148	120	-0.552353	2.487E-107
BK-1049 SN	sPD	chrX	p11.1 - q11.1	58444753	61698526	3253773	5	-0.867606	4.961E-10
BK-1082 A	sPD	chr4	q35.1	186672688	186673088	400	3	0.758331	2.903E-10
BK-1082 A	sPD	chr6	q27	164416944	164417605	661	3	0.874734	3.577E-10
BK-1082 A	sPD	chr10	q24.31	102025451	102026134	683	3	0.89763	7.374E-14
BK-1082 A	sPD	chr2	q37.3	240766676	240767384	708	3	0.933954	3.001E-12
BK-1082 A	sPD	chr12	p12.1	23832387	23833258	871	3	0.765062	2.274E-10
BK-1082 A	sPD	chr3	q11.2	97819138	97820058	920	3	0.230	2.567E-41
BK-1082 A	sPD	chr3	q13.12	109181004	109182323	1319	4	0.718729	9.257E-11
BK-1082 A	sPD	chr8	q24.3	140828674	140830057	1383	4	0.80052	4.742E-12
BK-1082 A	sPD	chr2	q37.3	238094665	238096608	1943	6	0.756749	5.886E-17
BK-1082 A	sPD	chr2	p25.3	2014049	2016222	2173	8	0.563993	6.398E-13
BK-1082 A	sPD	chr8	p23.3	1184245	1186461	2216	7	0.645628	4.882E-10
BK-1082 A	sPD	chr4	q25	109500202	109502476	2274	5	0.718063	1.635E-14
BK-1082 A	sPD	chr5	q15	93929609	93932037	2428	6	0.132	1.261E-39

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
BK-1082 A	sPD	chr7	q36.3	157132974	157135478	2504	6	-0.606667	9.56E-13
BK-1082 A	sPD	chr9	p13.3	33646497	33649076	2579	6	0.904353	3.784E-22
BK-1082 A	sPD	chr17	p11.2	19442492	19445441	2949	5	0.61521	3.423E-13
BK-1082 A	sPD	chr8	p23.2	3906264	3909236	2972	3	0.826379	4.902E-11
BK-1082 A	sPD	chr5	q31.1	134288246	134291279	3033	3	0.208	2.158E-37
BK-1082 A	sPD	chr20	q13.33	62370787	62374307	3520	8	0.488322	3.483E-11
BK-1082 A	sPD	chr8	p23.3	1822948	1826632	3684	16	0.389066	3.906E-14
BK-1082 A	sPD	chr1	q32.1	199443870	199447720	3850	12	0.456793	1.364E-13
BK-1082 A	sPD	chr7	q36.2	154082589	154087244	4655	15	0.339528	1.099E-10
BK-1082 A	sPD	chr13	q21.32	65254393	65260719	6326	9	0.438437	2.811E-11
BK-1082 A	sPD	chr5	q21.1	99409658	99418500	8842	9	0.163	1.014E-78
BK-1082 A	sPD	chr17	p11.2	21943780	21954139	10359	11	0.443296	9.9E-13
BK-1082 A	sPD	chr2	q12.3	108144291	108155101	10810	22	0.316	1.006E-12
BK-1082 A	sPD	chr3	q13.11	105833764	105845700	11936	5	0.658707	1.441E-11
BK-1082 A	sPD	chr11	q24.1	120981423	120993764	12341	17	0.326	1.274E-10
BK-1082 A	sPD	chr1	q43	236166777	236179567	12790	26	0.364178	3.246E-22
BK-1082 A	sPD	chr19	q13.42	59271025	59285108	14083	15	-0.440049	8.12E-10
BK-1082 A	sPD	chr8	q22.1	96924117	96941192	17075	18	0.358287	4.91E-13
BK-1082 A	sPD	chr3	p22.3	35861985	35884617	22632	7	0.507839	2.228E-10
BK-1082 A	sPD	chr12	q14.2	63295170	63326922	31752	44	-0.301	4.528E-17
BK-1082 A	sPD	chr7	q22.1	102071174	102110036	38862	6	0.39988	9.865E-10
BK-1082 A	sPD	chr2	p11.1	91043759	91117389	73630	18	-0.367927	3.262E-14
BK-1082 A	sPD	chr16	q22.1	66229934	66307098	77164	4	0.659406	1.613E-15
BK-1082 A	sPD	chr17	p11.2	18674224	18755622	81398	29	-0.336286	1.018E-10
BK-1082 A	sPD	chr11	p15.4	3651468	3768153	116685	41	-0.311	1.403E-21
BK-1082 A	sPD	chr19	p12	23558219	23726359	168140	75	-0.34091	2.836E-13
BK-1082 A	sPD	chr7	p22.2	2178440	2375186	196746	24	-0.331941	5.798E-15
BK-1082 A	sPD	chr6	q21	107418711	107662727	244016	54	-0.306	7.778E-22
BK-1082 A	sPD	chr19	q13.32	52915904	53192473	276569	57	-0.394522	6.05E-11
BK-1082 A	sPD	chr10	q21.2	64499980	64776780	276800	62	-0.308	4.787E-31
BK-1082 A	sPD	chr7	p11.2	55808388	56095470	287082	50	-0.3287	6.645E-13
BK-1082 A	sPD	chr7	q22.2	104704460	105011277	306817	84	-0.305	2.324E-15
BK-1082 A	sPD	chr11	p15.1	18381108	18691803	310695	18	-0.319	8.937E-11
BK-1082 A	sPD	chr22	q12.1	27427464	27780201	352737	28	-0.335646	5.041E-12
BK-1082 A	sPD	chr17	q22	54055690	54526048	470358	76	-0.335381	3.463E-10
BK-1082 A	sPD	chr17	q12	34603400	35128112	524712	47	-0.301	3.635E-13

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
BK-1082 A	sPD	chr10	q25.3	116544865	117086442	541577	10	-0.37737	2.221E-10
BK-1082 A	sPD	chr14	q23.2 - q23.3	62997616	64015778	1018162	35	-0.313	1.562E-18
BK-1082 C	sPD	chr7	q31.2	115981243	115981643	400	3	0.810043	7.709E-10
BK-1082 C	sPD	chr14	q32.33	105040857	105041257	400	3	-0.101	4.083E-15
BK-1082 C	sPD	chr4	q35.1	186672688	186673088	400	3	0.964066	1.842E-14
BK-1082 C	sPD	chr19	p13.3	1162440	1162847	407	4	-0.85188	3.999E-11
BK-1082 C	sPD	chr4	p16.3	1490615	1491147	532	3	-0.866284	3.743E-11
BK-1082 C	sPD	chr3	p22.1	39483052	39483634	582	3	0.862387	1.133E-10
BK-1082 C	sPD	chr2	q37.3	240766676	240767384	708	3	0.960512	7.057E-11
BK-1082 C	sPD	chr4	q22.1	88977093	88977859	766	3	0.806435	1.784E-10
BK-1082 C	sPD	chr7	p22.3	1282019	1282811	792	3	-0.952089	3.963E-11
BK-1082 C	sPD	chr2	p11.2	88083370	88084195	825	3	-0.805591	1.96E-10
BK-1082 C	sPD	chr3	q11.2	97819138	97820058	920	3	0.234	1.497E-42
BK-1082 C	sPD	chr13	q34	113825470	113826438	968	3	-0.925279	4.523E-13
BK-1082 C	sPD	chr9	q34.3	137287754	137288795	1041	3	-0.100	7.184E-16
BK-1082 C	sPD	chr18	q23	75640039	75641110	1071	4	-0.800852	1.951E-13
BK-1082 C	sPD	chr4	p16.3	1528842	1529986	1144	4	-0.746772	5.77E-12
BK-1082 C	sPD	chr19	p13.3	3129273	3130537	1264	4	-0.79957	9.538E-10
BK-1082 C	sPD	chr17	p13.3	122382	123712	1330	4	-0.749383	8.484E-10
BK-1082 C	sPD	chr4	q25	109500202	109501651	1449	3	0.100	2.518E-15
BK-1082 C	sPD	chr6	p21.33	31346970	31348456	1486	4	-0.694363	1.578E-10
BK-1082 C	sPD	chr16	q24.3	88597186	88598751	1565	4	-0.973	1.796E-18
BK-1082 C	sPD	chr5	p15.33	103815	105386	1571	3	-0.103	1.863E-14
BK-1082 C	sPD	chr13	q14.11	42046802	42048394	1592	4	-0.959	3.07E-17
BK-1082 C	sPD	chr12	p11.22	27987425	27989359	1934	6	0.543367	7.826E-10
BK-1082 C	sPD	chr10	q24.31	102492163	102494304	2141	4	0.696859	4.101E-10
BK-1082 C	sPD	chr2	p25.3	2014049	2016222	2173	8	0.612935	2.853E-13
BK-1082 C	sPD	chr13	q34	113903079	113905302	2223	7	-0.619318	8.15E-14
BK-1082 C	sPD	chr17	p11.2	19442492	19444766	2274	4	0.726238	1.329E-12
BK-1082 C	sPD	chr7	q36.3	157132974	157135478	2504	6	-0.60821	6.491E-12
BK-1082 C	sPD	chr13	q34	113852724	113855235	2511	4	-0.788429	5.177E-13
BK-1082 C	sPD	chr2	q37.3	241159895	241162466	2571	3	-0.812661	2.529E-12
BK-1082 C	sPD	chr5	q15	93929331	93932037	2706	7	0.153	1.047E-55
BK-1082 C	sPD	chr5	q31.1	134288246	134291279	3033	3	0.206	5.476E-37
BK-1082 C	sPD	chr13	q21.32	65257564	65260719	3155	7	0.519736	6.05E-11
BK-1082 C	sPD	chr5	p15.33	534578	537912	3334	11	-0.61354	8.179E-20

-	ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
	BK-1082 C	sPD	chr1	q32.1	199443870	199447209	3339	10	0.52811	1.613E-14
	BK-1082 C	sPD	chr9	p13.3	33645710	33649076	3366	8	0.811508	4.609E-23
	BK-1082 C	sPD	chr14	q32.33	104920889	104924376	3487	4	-0.94334	9.536E-16
	BK-1082 C	sPD	chr7	p22.3	318441	322048	3607	10	-0.590059	1.523E-12
	BK-1082 C	sPD	chr8	p23.3	1822948	1826632	3684	16	0.440197	4.723E-12
	BK-1082 C	sPD	chr7	p13	46004050	46010903	6853	6	0.588407	7.376E-11
	BK-1082 C	sPD	chr11	q22.2	101988812	101996776	7964	24	0.303	2.008E-11
	BK-1082 C	sPD	chr5	q21.1	99409658	99418500	8842	9	0.162	6.006E-79
	BK-1082 C	sPD	chr1	q43	236170393	236179567	9174	20	0.431073	1.739E-18
	BK-1082 C	sPD	chr17	p11.2	21943780	21954139	10359	11	0.492508	5.744E-14
	BK-1082 C	sPD	chr14	q21.1	38764444	38774965	10521	20	-0.342583	5.149E-12
	BK-1082 C	sPD	chr20	q13.33	61125789	61136657	10868	4	-0.742403	3.748E-11
	BK-1082 C	sPD	chr3	q13.11	105833764	105845700	11936	5	0.831432	2.481E-16
	BK-1082 C	sPD	chr3	p25.2	12159056	12171269	12213	24	0.311	1.142E-10
	BK-1082 C	sPD	chr8	q24.3	145464160	145476651	12491	5	-0.80993	5.464E-15
	BK-1082 C	sPD	chr8	p22	14619596	14632708	13112	17	-0.325	9.03E-10
	BK-1082 C	sPD	chr9	q34.3	138526791	138542479	15688	5	-0.69666	2.09E-10
	BK-1082 C	sPD	chr16	p13.3	2150152	2167080	16928	3	-0.987	2.998E-10
	BK-1082 C	sPD	chr2	q37.3	242447034	242469311	22277	7	-0.686215	4.637E-15
	BK-1082 C	sPD	chr22	q13.33	48960580	48990683	30103	5	-0.898073	2.942E-18
	BK-1082 C	sPD	chr11	p15.4	3722867	3765595	42728	33	-0.323	2.236E-17
	BK-1082 C	sPD	chr16	p13.3	386810	440621	53811	24	-0.342701	8.127E-11
	BK-1082 C	sPD	chr3	q13.31	118010646	118070270	59624	5	0.596528	6.85E-10
	BK-1082 C	sPD	chr19	p12	22625979	22688117	62138	52	-0.318	8.307E-10
	BK-1082 C	sPD	chr16	p13.3	2808001	2872335	64334	4	-0.126	2.266E-23
	BK-1082 C	sPD	chr7	p14.1	41178080	41246809	68729	4	0.701168	9.842E-11
	BK-1082 C	sPD	chr2	p11.1	91043759	91117389	73630	18	-0.374743	2.833E-13
	BK-1082 C	sPD	chr16	q22.1	66229934	66307098	77164	4	0.682282	1.993E-14
	BK-1082 C	sPD	chr7	q22.1	102027571	102110036	82465	10	0.361926	6.485E-11
	BK-1082 C	sPD	chr19	p12	23603012	23705410	102398	55	-0.3535	2.592E-13
	BK-1082 C	sPD	chr16	p13.2 - p13.13	10262104	10370226	108122	18	-0.338133	3.827E-12
	BK-1082 C	sPD	chr3	p25.1 - p24.3	14698853	14836758	137905	14	0.393623	1.94E-10
	BK-1082 C	sPD	chr19	q13.32	53009379	53202043	192664	56	-0.328392	9.504E-10
	BK-1082 C	sPD	chr7	q22.2	104704460	104956982	252522	65	-0.323	3.315E-17
	BK-1082 C	sPD	chr21	q22.12 - q22.13	36452108	36709460	257352	65	-0.305	1.448E-21
	BK-1082 C	sPD	chr14	q22.1	49187504	49479418	291914	16	-0.347926	6.474E-10

ID muestras	Patología	Chr	Cytoband	Inicio	Final	Longitud (pb)	Sondas #	Log2ratio	P-valor
BK-1082 HC	sPD	chr1	p22.1	93417465	93417865	400	3	-0.109	9.825E-17
BK-1082 HC	sPD	chr7	q31.2	115981243	115981643	400	3	0.812234	3.35E-10
BK-1082 HC	sPD	chr19	p13.3	1162440	1162847	407	4	-0.175	3.982E-35
BK-1082 HC	sPD	chr19	p13.3	256184	256852	668	3	-0.934632	2.168E-10
BK-1082 HC	sPD	chr2	p11.2	88083370	88084195	825	3	-0.82098	6.699E-11
BK-1082 HC	sPD	chr10	q26.3	133619330	133620234	904	3	-0.899391	1.03E-12
BK-1082 HC	sPD	chr13	q34	113825470	113826438	968	3	-0.114	2.182E-15
BK-1082 HC	sPD	chr13	q34	111896437	111897438	1001	4	-0.819451	6.093E-14
BK-1082 HC	sPD	chr18	q23	75640039	75641110	1071	4	-0.858734	3.556E-15
BK-1082 HC	sPD	chr13	q34	113904221	113905302	1081	5	-0.746249	7.715E-12
BK-1082 HC	sPD	chr13	q34	113261964	113263144	1180	3	-0.917908	3.842E-11
BK-1082 HC	sPD	chr17	p13.3	208205	209432	1227	4	-0.956	2.093E-14
BK-1082 HC	sPD	chr17	p13.3	861997	863302	1305	3	-0.137	2.104E-20
BK-1082 HC	sPD	chr10	p15.3	1011545	1012899	1354	7	0.507156	8.048E-11
BK-1082 HC	sPD	chr19	p13.2	9790237	9791652	1415	5	-0.754916	8.895E-11
BK-1082 HC	sPD	chr16	q24.3	88597186	88598751	1565	4	-0.900602	7.298E-15
BK-1082 HC	sPD	chr4	p16.3	1529109	1530708	1599	5	-0.917382	1.416E-16
BK-1082 HC	sPD	chr11	p15.5	1266545	1268207	1662	4	-0.782599	3.665E-10
BK-1082 HC	sPD	chr5	p15.33	541262	543686	2424	6	-0.812477	6.521E-17
BK-1082 HC	sPD	chr8	q24.3	145072411	145075043	2632	3	-0.893217	3.739E-10
BK-1082 HC	sPD	chr14	q32.33	104922828	104925627	2799	3	-0.116	8.842E-15
BK-1082 HC	sPD	chr10	p15.3	771379	774562	3183	10	0.423977	6.034E-11
BK-1082 HC	sPD	chr13	q34	112712449	112715728	3279	6	-0.762121	1.624E-14
BK-1082 HC	sPD	chr20	q13.33	60318064	60322178	4114	8	-0.519339	2.429E-10
BK-1082 HC	sPD	chr7	q36.2	154082924	154087244	4320	14	0.41526	4.445E-14
BK-1082 HC	sPD	chr10	q26.3	134473728	134478084	4356	4	-0.927793	1.819E-13
BK-1082 HC	sPD	chr7	p22.3	1482632	1488620	5988	7	-0.593401	6.866E-10
BK-1082 HC	sPD	chr17	p13.3	920611	929000	8389	3	-0.873804	5.975E-10
BK-1082 HC	sPD	chr2	q37.3	242460204	242469311	9107	3	-0.107	4.767E-13
BK-1082 HC	sPD	chr8	q24.3	145464160	145473953	9793	4	-0.826889	2.063E-10
BK-1082 HC	sPD	chr20	q13.33	61553782	61564563	10781	4	-0.102	3.224E-14
BK-1082 HC	sPD	chr20	q13.33	61125789	61136657	10868	4	-0.729727	2.613E-10
BK-1082 HC	sPD	chr9	q34.2	136458579	136472396	13817	4	-0.117	9.862E-22
BK-1082 HC	sPD	chr7	p22.3	1704086	1719879	15793	3	-0.894158	3.16E-10
BK-1082 HC	sPD	chr7	p22.3	996692	1017207	20515	4	-0.88459	5.941E-12
BK-1082 HC	sPD	chr9	q34.3	137751403	137777009	25606	4	-0.815173	6.286E-10

BK-1082 HC sPD chr1 p13.3 663934 690076 26142 8 -0.642396 1.647F-13 BK-1082 HC sPD chr11 p24.1 72206480 72238266 31786 9 -0.473363 1.337F-10 BK-1082 HC sPD chr16 p13.3 521697 563764 42067 7 -0.846747 5.048F-19 BK-1082 HC sPD chr16 p13.3 22064282 400 3 0.679308 8.755F-10 BK-1082 HT sPD chr16 p12.3 1011545 1012899 13.4 -0.766138 3.931F-10 BK-1082 HT sPD chr12 p25.3 2014049 2016222 2173 8 0.602628 7.609F-14 BK-1082 HT sPD chr4 q13.1 66121891 6219114 2115 6 0.54092 5.331F-11 BK-1082 HT sPD chr4 q13.1 13428424 12491279 303 3 0.248 7.6454026 3.883F-10 <th></th>										
BK-1082 HC sPD chr1 p36.33 987655 1014051 26396 6 -0.62396 1.437F-10 BK-1082 HC sPD chr15 q24.1 72206480 7223826 31786 9 -0.473661 1.833E-10 BK-1082 HC sPD chr16 p13.3 521697 563764 42067 7 -0.846747 5.048E-19 BK-1082 HT sPD chr16 p13.3 22806010 2872335 64334 40 -0.766138 3.891E-10 BK-1082 HT sPD chr13 q11.2 97819138 97820058 920 3 0.257 3.061E-46 BK-1082 HT sPD chr10 p15.3 1011545 1012899 1354 7 0.743607 1.294E-17 BK-1082 HT SPD chr3 q15 9392031 93033 3 0.248 5.331E-11 BK-1082 HT SPD chr5 q15 9392031 93033 3 0.248 5.331E-16 BK-1082 HT <td>BK-1082 HC</td> <td>sPD</td> <td>chr16</td> <td>p13.3</td> <td>663934</td> <td>690076</td> <td>26142</td> <td>8</td> <td>-0.64856</td> <td>1.687E-13</td>	BK-1082 HC	sPD	chr16	p13.3	663934	690076	26142	8	-0.64856	1.687E-13
BK-1082 HC sPD chr16 p13.3 521697 563764 42067 7 -0.846747 5.048E-19 BK-1082 HC sPD chr16 p13.3 521697 563764 42067 7 -0.846747 5.048E-19 BK-1082 HT sPD chr16 p13.3 2808001 287233 64334 4 -0.76138 3.891E-10 BK-1082 HT sPD chr16 q22.1 9620382 9200422 400 3 0.257 3.061E-46 BK-1082 HT sPD chr3 q11.2 97819138 97820058 920 3 0.257 3.061E-46 BK-1082 HT sPD chr3 q11.1 66216899 66219114 2215 6 0.545092 5.311E-11 BK-1082 HT sPD chr5 q11.1 13428246 134291279 3033 3 0.248 5.748E-44 BK-1082 HT sPD chr5 q11.1 13428246 134291279 3033 3 0.248 3.838E-10 <td>BK-1082 HC</td> <td>sPD</td> <td>chr1</td> <td>p36.33</td> <td>987655</td> <td>1014051</td> <td>26396</td> <td>6</td> <td>-0.62396</td> <td>1.437E-10</td>	BK-1082 HC	sPD	chr1	p36.33	987655	1014051	26396	6	-0.62396	1.437E-10
BK-1082 HC sPD chr16 p13.3 521697 563764 42067 7 -0.466747 5.0486-19 BK-1082 HT sPD chr16 p13.3 2808001 2872335 64334 4 -0.766138 3.891E-10 BK-1082 HT sPD chr16 q22.1 66203344 400 3 0.679308 8.755E-10 BK-1082 HT sPD chr19 q22.2 92603882 92604282 400 3 0.257 3.061E-46 BK-1082 HT SPD chr10 p15.3 1011545 1012899 1354 7 0.743607 1.294E-17 BK-1082 HT SPD chr12 p25.3 2014049 2016222 2173 8 0.602628 7.609E-14 BK-1082 HT SPD chr5 q11 134288246 134291279 3033 3 0.248 5.748E-44 BK-1082 HT SPD chr5 q31.1 134288246 134291279 33366 8 0.93131 3.494E-31 BK-1082 HT SPD chr6 q27 169267774 169271076 <td< td=""><td>BK-1082 HC</td><td>sPD</td><td>chr15</td><td>q24.1</td><td>72206480</td><td>72238266</td><td>31786</td><td>9</td><td>-0.473363</td><td>1.833E-10</td></td<>	BK-1082 HC	sPD	chr15	q24.1	72206480	72238266	31786	9	-0.473363	1.833E-10
BK-1082 HC sPD chr16 p13.3 2808001 2872335 64334 4 -0.766138 3.891E-10 BK-1082 HT sPD chr16 q22.1 66230334 400 3 0.679308 8.755E-10 BK-1082 HT sPD chr3 q11.2 97819138 97820058 920 3 0.983676 4.023E-11 BK-1082 HT sPD chr10 p15.3 1011545 1012899 1354 7 0.743607 1.294E-17 BK-1082 HT sPD chr4 q13.1 66216899 66219114 2215 6 0.545092 5.331E-11 BK-1082 HT SPD chr5 q15 93992037 2706 7 0.174 2.051E-63 BK-1082 HT SPD chr6 q27 169267774 169271069 3295 10 0.488926 3.883E-10 BK-1082 HT SPD chr19 p13.3 366571 3666 11 0.466914 3.5677E-11 BK-1082 HT SPD </td <td>BK-1082 HC</td> <td>sPD</td> <td>chr16</td> <td>p13.3</td> <td>521697</td> <td>563764</td> <td>42067</td> <td>7</td> <td>-0.846747</td> <td>5.048E-19</td>	BK-1082 HC	sPD	chr16	p13.3	521697	563764	42067	7	-0.846747	5.048E-19
BK-1082 HT sPD chr16 q22.1 66229934 66230334 400 3 0.679308 8.755E-10 BK-1082 HT sPD chr3 q11.2 97819138 97820058 920 3 0.257 3.061E-46 BK-1082 HT sPD chr10 p15.3 1011545 1012899 1354 7 0.734507 1.294E-17 BK-1082 HT sPD chr4 q13.1 66216899 66219114 2115 6 0.545092 5.31E-11 BK-1082 HT sPD chr5 q15 9392037 2706 7 0.174 2.051E-63 BK-1082 HT sPD chr5 q31.1 13428246 134291279 3033 3 0.248 5.748E-44 BK-1082 HT sPD chr6 q27 16927774 169271069 3295 10 0.48826 3.883E-10 BK-1082 HT sPD chr7 q36.2 154082589 154087244 4655 15 0.411884 7.7137-10	BK-1082 HC	sPD	chr16	p13.3	2808001	2872335	64334	4	-0.766138	3.891E-10
BK-1082 HT sPD chr9 q22.2 9260382 92604282 400 3 0.983676 4.023E-11 BK-1082 HT sPD chr13 q11.2 97819138 97820058 920 3 0.257 3.061E-46 BK-1082 HT sPD chr14 q13.1 1011545 1012899 1354 7 0.743607 1.274E-17 BK-1082 HT sPD chr4 q13.1 66216899 66219114 2215 6 0.545092 5.331E-11 BK-1082 HT sPD chr5 q31.1 13428246 134291279 3033 3 0.248 5.748E-44 BK-1082 HT sPD chr6 q27 169271069 3295 10 0.488926 3.883E-10 BK-1082 HT sPD chr6 q27 169271069 3265 15 0.41184 7.713:71 BK-1082 HT sPD chr10 p15.3 771379 775045 3666 11 0.466914 3.567F-11 BK-1082 HT	BK-1082 HT	sPD	chr16	q22.1	66229934	66230334	400	3	0.679308	8.755E-10
BK-1082 HT sPD chr3 q11.2 97819138 97820058 920 3 0.257 3.061E-46 BK-1082 HT sPD chr10 p15.3 1011545 1012899 1354 7 0.743607 1.294E-17 BK-1082 HT sPD chr4 q13.1 66216899 66219114 2215 6 0.545092 5.331E-11 BK-1082 HT sPD chr5 q15 93929331 93932037 2706 7 0.174 2.051E-63 BK-1082 HT sPD chr5 q31.1 13428246 134291279 3033 3 0.248 5.748E-44 BK-1082 HT sPD chr5 q21 169267774 169271069 3295 10 0.488926 3.883E-10 BK-1082 HT sPD chr10 p15.3 771379 775045 3666 11 0.466914 3.567E-11 BK-1082 HT sPD chr1 q43 23617053 23617557 9174 20 0.474458 6.95E-12 <td>BK-1082 HT</td> <td>sPD</td> <td>chr9</td> <td>q22.2</td> <td>92603882</td> <td>92604282</td> <td>400</td> <td>3</td> <td>0.983676</td> <td>4.023E-11</td>	BK-1082 HT	sPD	chr9	q22.2	92603882	92604282	400	3	0.983676	4.023E-11
BK-1082 HT sPD chr10 p15.3 1011545 1012899 1354 7 0.743607 1.294E-17 BK-1082 HT sPD chr2 p25.3 2014049 2016222 2173 8 0.602628 7.609E-14 BK-1082 HT sPD chr5 q15 93929331 93932037 2706 7 0.174 2.051E-63 BK-1082 HT sPD chr5 q31.1 134288246 134291279 3033 3 0.248 5.748E-44 BK-1082 HT sPD chr6 Q27 169267774 169271069 3295 10 0.488926 3.8381-10 BK-1082 HT sPD chr10 p15.3 771379 775045 3366 11 0.466914 3.5677-11 BK-1082 HT sPD chr7 q16.1 9409658 9414850 8842 9 0.020 7.337E-104 BK-1082 HT sPD chr7 q11.21 6304552 11372 9 0.474458 6.95E-12	BK-1082 HT	sPD	chr3	q11.2	97819138	97820058	920	3	0.257	3.061E-46
BK-1082 HT SPD chr2 p25.3 2014049 2016222 2173 8 0.602628 7.609E-14 BK-1082 HT SPD chr4 q13.1 66216899 66219114 2215 6 0.545092 5.331E-11 BK-1082 HT SPD chr5 q15 93929331 9332037 2706 7 0.174 2.051E-63 BK-1082 HT SPD chr5 q31.1 13428246 134291279 3033 3 0.248 5.748E-44 BK-1082 HT SPD chr6 q27 169267774 169271069 3295 10 0.488926 3.883E-10 BK-1082 HT SPD chr6 q21 15908277 169271069 3265 15 0.41184 7.713E-10 BK-1082 HT SPD chr7 q36.2 154082589 154087244 4655 15 0.41184 7.713E-10 BK-1082 HT SPD chr7 q1.21 63204598 10448 12 0.492149 1.663E-17	BK-1082 HT	sPD	chr10	p15.3	1011545	1012899	1354	7	0.743607	1.294E-17
BK-1082 HT SPD chr4 q13.1 66216899 66219114 2215 6 0.545092 5.331E-11 BK-1082 HT SPD chr5 q15 9392033 9392037 2706 7 0.174 2.051E-63 BK-1082 HT SPD chr6 q27 169267774 169271069 3295 10 0.488926 3.883E-10 BK-1082 HT SPD chr6 q27 169267774 169271069 3295 10 0.488926 3.883E-10 BK-1082 HT SPD chr9 p13.3 33645710 33649076 3366 8 0.93131 3.494E-31 BK-1082 HT SPD chr10 p15.3 771379 775045 3666 11 0.466914 3.567E-11 BK-1082 HT SPD chr7 q36.2 154082589 154087244 4655 15 0.41184 7.713E-10 BK-1082 HT SPD chr7 q11.21 63204598 10448 12 0.457807 3.087E-22 BK-1082 HT SPD chr7 p11.2 21942390 21954139	BK-1082 HT	sPD	chr2	p25.3	2014049	2016222	2173	8	0.602628	7.609E-14
BK-1082 HT SPD chr5 q15 93929331 93932037 2706 7 0.174 2.051E-63 BK-1082 HT SPD chr5 q31.1 134288246 134291279 3033 3 0.248 5.748E-44 BK-1082 HT SPD chr6 q27 169267774 169267774 16926776 3366 8 0.93131 3.498E-10 BK-1082 HT SPD chr10 p15.3 771379 775045 3666 11 0.466914 3.567E-11 BK-1082 HT SPD chr7 q36.2 154082589 154087244 4655 15 0.411884 7.713E-10 BK-1082 HT SPD chr1 q43 236179567 9174 20 0.457807 3.087E-22 BK-1082 HT SPD chr1 q43 236179567 9174 20 0.457807 3.087E-22 BK-1082 HT SPD chr1 q43 236179567 9174 20 0.457807 3.087E-22 BK-1082 HT SPD chr6 p21.31 34043153 34054525 11372 9	BK-1082 HT	sPD	chr4	q13.1	66216899	66219114	2215	6	0.545092	5.331E-11
BK-1082 HT sPD chr5 q31.1 134288246 134291279 3033 3 0.248 5.748E-44 BK-1082 HT sPD chr6 q27 16926774 169271069 3295 10 0.488926 3.8381-10 BK-1082 HT sPD chr10 p15.3 3764976 3666 11 0.466914 3.567E-11 BK-1082 HT sPD chr10 p15.3 771379 775045 3666 11 0.466914 3.567E-11 BK-1082 HT sPD chr7 q36.2 154082589 154087244 4655 15 0.411884 7.713F-10 BK-1082 HT sPD chr7 q1.1 63204506 8842 9 0.202 7.337E-104 BK-1082 HT sPD chr17 q1.2 2604050 8842 9 0.474458 6.95E-12 BK-1082 HT sPD chr17 p1.2 21942390 21954139 11749 12 0.484511 5.33E-16 BK-1082 SN sPD<	BK-1082 HT	sPD	chr5	q15	93929331	93932037	2706	7	0.174	2.051E-63
BK-1082 HT sPD chr6 q27 169267774 169271069 3295 10 0.488926 3.883E-10 BK-1082 HT sPD chr9 p13.3 33645710 3364076 3366 8 0.93131 3.494E-31 BK-1082 HT sPD chr10 p15.3 771379 775045 3666 11 0.466914 3.567E-11 BK-1082 HT sPD chr5 q21.1 99409658 99418500 8842 9 0.202 7.337E-104 BK-1082 HT sPD chr5 q21.1 99409658 99418500 8842 9 0.202 7.337E-104 BK-1082 HT sPD chr6 p21.31 34043153 34054525 11372 9 0.474458 6.95E-12 BK-1082 HT sPD chr6 p21.31 34043153 34054525 11372 9 0.47458 6.95E-12 BK-1082 SN sPD chr17 p11.2 21942390 21954139 11749 12 0.484511	BK-1082 HT	sPD	chr5	q31.1	134288246	134291279	3033	3	0.248	5.748E-44
BK-1082 HT sPD chr9 p13.3 33645710 33649076 3366 8 0.93131 3.494E-31 BK-1082 HT sPD chr10 p15.3 771379 775045 3666 11 0.466914 3.567E-11 BK-1082 HT sPD chr7 q36.2 154082589 154082744 4655 15 0.411844 7.713E-10 BK-1082 HT sPD chr1 q43 236170393 236179567 9174 20 0.457807 3.087E-22 BK-1082 HT sPD chr1 q43 236170393 236179567 9174 20 0.457807 3.087E-22 BK-1082 HT sPD chr6 p21.31 3403153 34054525 11372 9 0.474458 6.95E-12 BK-1082 HT sPD chr6 p23.3 1171249 1186461 15212 30 0.406984 9.853E-16 BK-1082 SN sPD chr2 q37.3 240766676 240767384 708 3 0.9434 2.353E-16 BK-1082 SN sPD chr5 q15 9392931	BK-1082 HT	sPD	chr6	q27	169267774	169271069	3295	10	0.488926	3.883E-10
BK-1082 HT sPD chr10 p15.3 771379 775045 3666 11 0.466914 3.567E-11 BK-1082 HT sPD chr7 q36.2 154082589 154087244 4655 15 0.411884 7.713E-10 BK-1082 HT sPD chr5 q21.1 99409658 99418500 8842 9 0.202 7.337E-104 BK-1082 HT sPD chr1 q43 236170393 236179567 9174 20 0.457807 3.087E-22 BK-1082 HT sPD chr6 p21.31 34043153 34054525 11372 9 0.474458 6.95E-12 BK-1082 HT sPD chr6 p21.31 34043153 34054525 11372 9 0.474458 6.95E-12 BK-1082 HT sPD chr6 p23.3 1171249 1186461 15212 30 0.406984 9.853E-16 BK-1082 SN sPD chr2 q27.3 240766676 24076784 708 3 0.9434 <	BK-1082 HT	sPD	chr9	p13.3	33645710	33649076	3366	8	0.93131	3.494E-31
BK-1082 HT sPD chr7 q36.2 154082589 154087244 4655 15 0.411884 7.713E-10 BK-1082 HT sPD chr5 q21.1 99409658 99418500 8842 9 0.202 7.337E-104 BK-1082 HT sPD chr1 q43 236170393 236179567 9174 20 0.457807 3.087E-22 BK-1082 HT sPD chr6 p21.31 34043153 34054525 11372 9 0.474458 6.95E-12 BK-1082 HT sPD chr6 p21.31 34043153 34054525 11372 9 0.474458 6.95E-12 BK-1082 HT sPD chr6 p23.3 1171249 1186461 15212 30 0.406984 9.853E-16 BK-1082 SN sPD chr2 q37.3 240766676 240767384 708 3 0.9434 2.33E-10 BK-1082 SN sPD chr2 p23.3 1822948 1826632 3684 16 0.502092 3.697E-14 BK-1082 SN sPD chr4 q35.2 187590083	BK-1082 HT	sPD	chr10	p15.3	771379	775045	3666	11	0.466914	3.567E-11
BK-1082 HTsPDchr5q21.19940965899418500884290.2027.337E-104BK-1082 HTsPDchr1q432361703932361795679174200.4578073.087E-22BK-1082 HTsPDchr7q11.21632041506321459810448120.4921491.663E-17BK-1082 HTsPDchr6p21.3134043153340545251137290.4744586.95E-12BK-1082 HTsPDchr17p11.2219423902195413911749120.4845115.335E-16BK-1082 HTsPDchr8p23.31171249118646115212300.4069849.853E-16BK-1082 SNsPDchr2q37.324076667624076738470830.94342.335E-10BK-1082 SNsPDchr2p25.39980401000871283170.6062869.665E-11BK-1082 SNsPDchr5q15939293193932513318280.5288893.325E-14BK-1082 SNsPDchr4q35.2187590083187594751466890.4515313.702E-11BK-1082 SNsPDchr4q35.2187590083187594751466890.5499486.302E-17BK-1082 SNsPDchr5q21.19940965899418500884290.5499486.302E-17BK-1082 SNsPDchr5q21.19940965899418500989330.77	BK-1082 HT	sPD	chr7	q36.2	154082589	154087244	4655	15	0.411884	7.713E-10
BK-1082 HTsPDchr1q432361703932361795679174200.4578073.087E-22BK-1082 HTsPDchr7q11.21632041506321459810448120.4921491.663E-17BK-1082 HTsPDchr6p21.3134043153340545251137290.4744586.95E-12BK-1082 HTsPDchr17p11.2219423902195413911749120.4845115.33E-16BK-1082 HTsPDchr8p23.31171249118646115212300.4069849.853E-16BK-1082 SNsPDchr2q37.32407667624076738470830.94342.35E-16BK-1082 SNsPDchr2p25.39980401000871283170.6062869.665E-11BK-1082 SNsPDchr5q159392933193932513318280.5288893.325E-14BK-1082 SNsPDchr4q35.2187590083187594751466890.4515313.702E-11BK-1082 SNsPDchr5q21.1940965899418500884290.549486.302E-17BK-1082 SNsPDchr3q13.11105835807105845700983330.7715534.4866-11BK-1082 SNsPDchr3q13.11105845700983330.7715534.4866-11BK-1082 SNsPDchr3q13.11105845700983330.7715534.4866-11 <td>BK-1082 HT</td> <td>sPD</td> <td>chr5</td> <td>q21.1</td> <td>99409658</td> <td>99418500</td> <td>8842</td> <td>9</td> <td>0.202</td> <td>7.337E-104</td>	BK-1082 HT	sPD	chr5	q21.1	99409658	99418500	8842	9	0.202	7.337E-104
BK-1082 HTsPDchr7q11.21632041506321459810448120.4921491.663E-17BK-1082 HTsPDchr6p21.3134043153340545251137290.4744586.95E-12BK-1082 HTsPDchr17p11.2219423902195413911749120.4845115.335E-16BK-1082 HTsPDchr8p23.31171249118646115212300.4069849.853E-16BK-1082 SNsPDchr2q37.324076667624076738470830.94342.353E-10BK-1082 SNsPDchr5q1593929319392513318280.528893.325E-11BK-1082 SNsPDchr5q15939293193932513318280.528893.325E-14BK-1082 SNsPDchr8p23.3182294818266323684160.5020923.697E-14BK-1082 SNsPDchr4q35.2187590083187594751466890.4515313.702E-11BK-1082 SNsPDchr4q35.1150445915129298470330.3241.531E-10BK-1082 SNsPDchr3q13.11105835807105845700989330.7715534.486E-11BK-1082 SNsPDchr3q13.11105845807105845700989330.7715534.486E-11BK-1082 SNsPDchr8q24.314082867414083934410670270.4	BK-1082 HT	sPD	chr1	q43	236170393	236179567	9174	20	0.457807	3.087E-22
BK-1082 HTsPDchr6p21.3134043153340545251137290.4744586.95E-12BK-1082 HTsPDchr17p11.2219423902195413911749120.4845115.335E-16BK-1082 HTsPDchr8p23.31171249118646115212300.4069849.853E-16BK-1082 SNsPDchr2q37.324076667624076738470830.94342.353E-10BK-1082 SNsPDchr2p25.39980401000871283170.6062869.665E-11BK-1082 SNsPDchr5q159392933193932513318280.5288893.325E-14BK-1082 SNsPDchr4q35.2187590083187594751466890.4515313.702E-11BK-1082 SNsPDchr4q35.2187590083187594751466890.5499486.302E-17BK-1082 SNsPDchr5q21.19940965899418500884290.5499486.302E-17BK-1082 SNsPDchr3q13.11105835807105845700989330.7715534.486E-11BK-1082 SNsPDchr8q24.314082867414083934410670270.4175835.981E-11BK-1082 SNsPDchr3q13.1110248407710249513311056230.3690473.051E-17BK-1082 SNsPDchr10q24.3110248407710249513311056 <t< td=""><td>BK-1082 HT</td><td>sPD</td><td>chr7</td><td>q11.21</td><td>63204150</td><td>63214598</td><td>10448</td><td>12</td><td>0.492149</td><td>1.663E-17</td></t<>	BK-1082 HT	sPD	chr7	q11.21	63204150	63214598	10448	12	0.492149	1.663E-17
BK-1082 HTsPDchr17p11.2219423902195413911749120.4845115.335E-16BK-1082 HTsPDchr8p23.31171249118646115212300.4069849.853E-16BK-1082 SNsPDchr2q37.324076667624076738470830.94342.353E-10BK-1082 SNsPDchr2p25.39980401000871283170.6062869.665E-11BK-1082 SNsPDchr5q159392933193932513318280.5288893.325E-14BK-1082 SNsPDchr8p23.3182294818266323684160.5020923.697E-14BK-1082 SNsPDchr4q35.2187590083187594751466890.4515313.702E-11BK-1082 SNsPDchr5q21.19940965899418500884290.5499486.302E-17BK-1082 SNsPDchr3q13.11105835807105845700989330.7715534.486E-11BK-1082 SNsPDchr8q24.314082867414083934410670270.4175835.981E-17BK-1082 SNsPDchr8q24.31024807710249513311056230.3690473.051E-17BK-1082 SNsPDchr8q24.31024807710249513311056230.3690473.051E-17BK-1082 SNsPDchr8q12.15827731058303392602916 <td>BK-1082 HT</td> <td>sPD</td> <td>chr6</td> <td>p21.31</td> <td>34043153</td> <td>34054525</td> <td>11372</td> <td>9</td> <td>0.474458</td> <td>6.95E-12</td>	BK-1082 HT	sPD	chr6	p21.31	34043153	34054525	11372	9	0.474458	6.95E-12
BK-1082 HTsPDchr8p23.31171249118646115212300.4069849.853E-16BK-1082 SNsPDchr2q37.324076667624076738470830.94342.353E-10BK-1082 SNsPDchr2p25.39980401000871283170.6062869.665E-11BK-1082 SNsPDchr5q159392933193932513318280.5288893.325E-14BK-1082 SNsPDchr8p23.3182294818266323684160.5020923.697E-14BK-1082 SNsPDchr4q35.2187590083187594751466890.4515313.702E-11BK-1082 SNsPDchr2p25.3150445915129298470330.3241.531E-10BK-1082 SNsPDchr5q21.19940965899418500884290.5499486.302E-17BK-1082 SNsPDchr3q13.11105835807105845700989330.7715534.486E-11BK-1082 SNsPDchr3q24.311024807710249513311056230.3690473.051E-17BK-1082 SNsPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNsPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNsPDchr8q12.158277310583033926029160.32	BK-1082 HT	sPD	chr17	p11.2	21942390	21954139	11749	12	0.484511	5.335E-16
BK-1082 SNSPDchr2q37.324076667624076738470830.94342.353E-10BK-1082 SNSPDchr2p25.39980401000871283170.6062869.665E-11BK-1082 SNSPDchr5q159392933193932513318280.5288893.325E-14BK-1082 SNSPDchr8p23.3182294818266323684160.5020923.697E-14BK-1082 SNSPDchr4q35.2187590083187594751466890.4515313.702E-11BK-1082 SNSPDchr2p25.3150445915129298470330.3241.531E-10BK-1082 SNSPDchr5q21.19940965899418500884290.5499486.302E-17BK-1082 SNSPDchr3q13.11105835807105845700989330.7715534.486E-11BK-1082 SNSPDchr3q24.314082867414083934410670270.4175835.981E-11BK-1082 SNSPDchr10q24.3110248407710249513311056230.3690473.051E-17BK-1082 SNSPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNSPDchr20q11.1282773105830333926029160.3223.308E-10BK-1082 SNSPDchr1q32.11994429781994960785310029<	BK-1082 HT	sPD	chr8	p23.3	1171249	1186461	15212	30	0.406984	9.853E-16
BK-1082 SNsPDchr2p25.39980401000871283170.6062869.665E-11BK-1082 SNsPDchr5q159392933193932513318280.5288893.325E-14BK-1082 SNsPDchr8p23.3182294818266323684160.5020923.697E-14BK-1082 SNsPDchr4q35.2187590083187594751466890.4515313.702E-11BK-1082 SNsPDchr2p25.3150445915129298470330.3241.531E-10BK-1082 SNsPDchr5q21.19940965899418500884290.5499486.302E-17BK-1082 SNsPDchr3q13.11105835807105845700989330.7715534.486E-11BK-1082 SNsPDchr8q24.314082867414083934410670270.4175835.981E-11BK-1082 SNsPDchr10q24.3110248407710249513311056230.3690473.051E-17BK-1082 SNsPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNsPDchr8q12.1582773105830333926029160.3223.308E-10BK-1082 SNsPDchr1q32.11994207819949607853100290.38795.571E-24BK-1082 SNsPDchr1q32.1109420510211003616803113<	BK-1082 SN	sPD	chr2	q37.3	240766676	240767384	708	3	0.9434	2.353E-10
BK-1082 SNsPDchr5q159392933193932513318280.5288893.325E-14BK-1082 SNsPDchr8p23.3182294818266323684160.5020923.697E-14BK-1082 SNsPDchr4q35.2187590083187594751466890.4515313.702E-11BK-1082 SNsPDchr2p25.3150445915129298470330.3241.531E-10BK-1082 SNsPDchr5q21.19940965899418500884290.5499486.302E-17BK-1082 SNsPDchr3q13.11105835807105845700989330.7715534.486E-11BK-1082 SNsPDchr8q24.314082867414083934410670270.4175835.981E-11BK-1082 SNsPDchr10q24.3110248407710249513311056230.3690473.051E-17BK-1082 SNsPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNsPDchr8q12.1582773105830333926029160.3223.308E-10BK-1082 SNsPDchr1q32.11994297819949607853100290.38795.571E-24BK-1082 SNsPDchr7q22.1101942005102110036168031130.3992893.642E-12	BK-1082 SN	sPD	chr2	p25.3	998040	1000871	2831	7	0.606286	9.665E-11
BK-1082 SNsPDchr8p23.3182294818266323684160.5020923.697E-14BK-1082 SNsPDchr4q35.2187590083187594751466890.4515313.702E-11BK-1082 SNsPDchr2p25.3150445915129298470330.3241.531E-10BK-1082 SNsPDchr5q21.19940965899418500884290.5499486.302E-17BK-1082 SNsPDchr3q13.11105835807105845700989330.7715534.486E-11BK-1082 SNsPDchr8q24.314082867414083934410670270.4175835.981E-11BK-1082 SNsPDchr10q24.3110248407710249513311056230.3690473.051E-17BK-1082 SNsPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNsPDchr8q12.158277310583033926029160.3223.308E-10BK-1082 SNsPDchr1q32.119944297819949607853100290.38795.571E-24BK-1082 SNsPDchr7q22.1101942005102110036168031130.3992893.642E-12	BK-1082 SN	sPD	chr5	q15	93929331	93932513	3182	8	0.528889	3.325E-14
BK-1082 SNsPDchr4q35.2187590083187594751466890.4515313.702E-11BK-1082 SNsPDchr2p25.3150445915129298470330.3241.531E-10BK-1082 SNsPDchr5q21.19940965899418500884290.5499486.302E-17BK-1082 SNsPDchr3q13.11105835807105845700989330.7715534.486E-11BK-1082 SNsPDchr8q24.314082867414083934410670270.4175835.981E-11BK-1082 SNsPDchr10q24.3110248407710249513311056230.3690473.051E-17BK-1082 SNsPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNsPDchr8q12.158277310583033926029160.3223.308E-10BK-1082 SNsPDchr1q32.119944297819949607853100290.38795.571E-24BK-1082 SNsPDchr7q22.1101942005102110036168031130.3992893.642E-12	BK-1082 SN	sPD	chr8	p23.3	1822948	1826632	3684	16	0.502092	3.697E-14
BK-1082 SNsPDchr2p25.3150445915129298470330.3241.531E-10BK-1082 SNsPDchr5q21.19940965899418500884290.5499486.302E-17BK-1082 SNsPDchr3q13.11105835807105845700989330.7715534.486E-11BK-1082 SNsPDchr8q24.314082867414083934410670270.4175835.981E-11BK-1082 SNsPDchr10q24.3110248407710249513311056230.3690473.051E-17BK-1082 SNsPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNsPDchr8q12.158277310583033926029160.3223.308E-10BK-1082 SNsPDchr1q32.11994207819949607853100290.38795.571E-24BK-1082 SNsPDchr7q22.1101942005102110036168031130.3992893.642E-12	BK-1082 SN	sPD	chr4	q35.2	187590083	187594751	4668	9	0.451531	3.702E-11
BK-1082 SNsPDchr5q21.19940965899418500884290.5499486.302E-17BK-1082 SNsPDchr3q13.11105835807105845700989330.7715534.486E-11BK-1082 SNsPDchr8q24.314082867414083934410670270.4175835.981E-11BK-1082 SNsPDchr10q24.3110248407710249513311056230.3690473.051E-17BK-1082 SNsPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNsPDchr8q12.158277310583033926029160.3223.308E-10BK-1082 SNsPDchr1q32.119944297819949607853100290.38795.571E-24BK-1082 SNsPDchr7q22.1101942005102110036168031130.3992893.642E-12	BK-1082 SN	sPD	chr2	p25.3	1504459	1512929	8470	33	0.324	1.531E-10
BK-1082 SNsPDchr3q13.11105835807105845700989330.7715534.486E-11BK-1082 SNsPDchr8q24.314082867414083934410670270.4175835.981E-11BK-1082 SNsPDchr10q24.3110248407710249513311056230.3690473.051E-17BK-1082 SNsPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNsPDchr8q12.158277310583033926029160.3223.308E-10BK-1082 SNsPDchr1q32.119944297819949607853100290.38795.571E-24BK-1082 SNsPDchr7q22.1101942005102110036168031130.3992893.642E-12	BK-1082 SN	sPD	chr5	q21.1	99409658	99418500	8842	9	0.549948	6.302E-17
BK-1082 SNsPDchr8q24.314082867414083934410670270.4175835.981E-11BK-1082 SNsPDchr10q24.3110248407710249513311056230.3690473.051E-17BK-1082 SNsPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNsPDchr8q12.158277310583033926029160.3223.308E-10BK-1082 SNsPDchr1q32.119944297819949607853100290.38795.571E-24BK-1082 SNsPDchr7q22.1101942005102110036168031130.3992893.642E-12	BK-1082 SN	sPD	chr3	q13.11	105835807	105845700	9893	3	0.771553	4.486E-11
BK-1082 SNsPDchr10q24.3110248407710249513311056230.3690473.051E-17BK-1082 SNsPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNsPDchr8q12.1582773105830333926029160.3223.308E-10BK-1082 SNsPDchr1q32.119944297819949607853100290.38795.571E-24BK-1082 SNsPDchr7q22.1101942005102110036168031130.3992893.642E-12	BK-1082 SN	sPD	chr8	q24.3	140828674	140839344	10670	27	0.417583	5.981E-11
BK-1082 SNsPDchr20q11.1281285402815290124361110.3820385.11E-10BK-1082 SNsPDchr8q12.1582773105830333926029160.3223.308E-10BK-1082 SNsPDchr1q32.119944297819949607853100290.38795.571E-24BK-1082 SNsPDchr7q22.1101942005102110036168031130.3992893.642E-12	BK-1082 SN	sPD	chr10	q24.31	102484077	102495133	11056	23	0.369047	3.051E-17
BK-1082 SNsPDchr8q12.1582773105830333926029160.3223.308E-10BK-1082 SNsPDchr1q32.119944297819949607853100290.38795.571E-24BK-1082 SNsPDchr7q22.1101942005102110036168031130.3992893.642E-12	BK-1082 SN	sPD	chr20	q11.1	28128540	28152901	24361	11	0.382038	5.11E-10
BK-1082 SN sPD chr1 q32.1 199442978 199496078 53100 29 0.3879 5.571E-24 BK-1082 SN sPD chr7 q22.1 101942005 102110036 168031 13 0.399289 3.642E-12	BK-1082 SN	sPD	chr8	q12.1	58277310	58303339	26029	16	0.322	3.308E-10
BK-1082 SN sPD chr7 q22.1 101942005 102110036 168031 13 0.399289 3.642E-12	BK-1082 SN	sPD	chr1	q32.1	199442978	199496078	53100	29	0.3879	5.571E-24
	BK-1082 SN	sPD	chr7	q22.1	101942005	102110036	168031	13	0.399289	3.642E-12

Illumina ID	Gen	Muestras	Benjamini p-val	M-val promedio AD	M-val promedio C	Metilación AD/C
cg01608400	WWOX	Global	0.04	0.14±0.34	0.27±0.31	Hipometilación
cg01623475	WWOX	Global	0.02	0.73±0.38	0.96±0.47	Hipometilación
cg01630032	WWOX	Global	0.04	0.76±0.55	0.94±0.39	Hipometilación
cg01657422	WWOX	Global	0.04	3.26±0.22	3.17±0.24	Hipermetilación
cg02748089	WWOX	Global	0.03	-1.05±0.7	-0.81±0.26	Hipometilación
cg03295251	WWOX	Corteza	0.01	0.55±0.31	0.95±0.53	Hipometilación
cg03601549	WWOX	Global	0.04	2.56±0.34	2.43±0.35	Hipermetilación
cg07493562	WWOX	Global	0.02	0.27±0.46	0.48±0.36	Hipometilación
cg09452312	WWOX	Global	0.04	1.93±0.23	2.02±0.22	Hipometilación
cg10466626	WWOX	Global	0.04	2.34±0.92	2.08±0.22	Hipermetilación
cg16508857	WWOX	Corteza	0.02	-4.08±0.18	-3.93±0.23	Hipometilación
cg16747717	WWOX	Global	0.02	-1.22±0.48	-1.03±0.22	Hipometilación
cg27002639	WWOX	Corteza	0.01	0.85±0.29	1.28±0.56	Hipometilación
cg27230472	WWOX	Corteza	0.02	0.72±0.21	1±0.46	Hipometilación

Tabla Suplementaria 10. Análisis de metilación del gen WWOX

*mean ± SD

Tabla Suplementaria 11. Regiones génicas que contienen más de una dianas CpG cor
cambios significativos de metilación entre casos y controles

llmnID	logFC	adj.P.Val	CHR	MAPINFO	UCSC_RefGene_Group	Ref Gene name	CpG
cg25354248	-0.551181939	0.006453393	19	8676862	TSS1500	ADAMTS10	2
cg14187266	-0.463367798	0.009412783	3	64547346	Body	ADAMTS9	2
cg24307341	-0.249177837	0.007873526	1	21904484	3'UTR	ALPL	2
cg14537886	-0.246348705	0.008467747	8	41511582	3'UTR	ANK1	2
cg05638739	-0.348386426	0.008268573	16	89440324	5'UTR	ANKRD11	2
cg18274664	-0.337520012	0.006032407	21	27372461	Body	APP	2
cg25310097	-0.554844956	0.008268573	4	86874205	Body	ARHGAP24	2
cg20716989	0.283956707	0.008144279	3	187459481	5'UTR	BCL6	2
cg16898334	-0.768109158	0.006332732	1	181767774	Body	CACNA1F	2
cg14479377	-0 418563293	0.007977569	9	138742730	Body	CAMSAP1	2
cg23817893	-0.463515576	0.007705112	11	86085932	1stEvon:5'LITR		2
cg08379212	-0 242512352	0.00959796	10	97803058	TSS200	CCNI	2
cg22181664	-0 2871317	0.006453303	1	8603/325	TSS200		2
cg10005300	-0.308239626	0.000455555	12	110852582	Body		2
cg19003390	0.308233020	0.008208575	10	60227440	TSS1E00	CDM	2
cg25110742	-0.270701622	0.008001002	10	11050200	PodurtSS1500	CHICRDO	2
cg25119745	-0.455255064	0.009564904	10	11059290	BUUY,1551500	CUGBPZ	2
cg17035579	-0.255995003	0.007951456	4	105412884	1227200		2
cg17054045	-0.245757782	0.005789495	ð	1643697	BODY	DLGAPZ	2
Cg25836326	-0.241914474	0.007951456	3	113898609	1551500	DRD3	2
cg14/88563	-0.277294059	0.00834942	6	20417986	Body	EZF3	2
cg26667091	-0.521931117	0.008898777	11	65352232	Body	EHBP1L1	2
cg12355887	-0.585059758	0.007361328	5	172305927	Body	ERGIC1	2
cg19856499	-0.46564429	0.009634718	12	52215042	1stExon	FIGNL2	2
cg17944372	-0.784963197	0.008246894	6	76086013	Body	FILIP1	2
cg10254035	-0.530853703	0.007760025	6	21741635	Body	FLJ22536	2
cg07318834	-0.363671239	0.009726275	3	171940586	Body	FNDC3B	2
cg27138293	-0.894669117	0.006453393	17	79503701	Body	FSCN2	2
cg21967545	-0.279121588	0.006385292	19	5838807	1stExon;5'UTR	FUT6	2
cg21026120	-0.453474132	0.008159534	6	29581121	Body	GABBR1	2
cg16001418	-0.676750723	0.006301328	19	36393325	TSS200	HCST	2
cg24696151	-0.523356911	0.007873526	6	32975986	Body	HLA-DOA	2
cg26880525	-0.927725995	0.009874128	1	209877941	5'UTR;TSS1500	HSD11B1	2
cg01485548	-0.453804153	0.008353822	19	18284321	TSS1500	IFI30	2
cg24885556	-0.447839137	0.006360156	12	56105991	Body	ITGA7	2
cg12146151	-0.266416937	0.008159534	17	73716945	TSS1500	ITGB4	2
cg11689625	-0.408211853	0.007951456	4	154386689	TSS1500	KIAA0922	2
cg03270619	-0.427643016	0.008427563	6	168418454	TSS200	KIF25	2
cg20791178	-0.290828883	0.006176492	8	38246696	5'UTR	LETM2	2
cg19924619	-0.664203227	0.008268573	1	165323692	Body	LMX1A	2
cg03077671	-0.331477373	0.006736231	19	13211225	Body	LYL1	2
cg13674316	-0.279033048	0.009765529	14	55518174	TSS200	MAPK1IP1L	2
cg12728665	-0.356531209	0.007608001	13	113744906	Body	MCF2L	2
cg02700491	-0.304852871	0.00914931	15	94841112	TSS1500	MCTP2	2
cg20598894	-0.302215916	0.00675289	1	171756153	Body	METTL13	2
cg03429643	-0.399248713	0.007876714	2	99280963	TSS1500:Body	MGAT4A	2
cg19046216	-0.254309214	0.008427563	6	84743257	TSS200	MRAP2	2
cg14396117	-0 505936821	0.008428752	13	109248047	TSS1500	MYO16	2
cg26650973	-0 390442285	0.007269152	2	128350306	Body	MY07B	2
Cg02050560	-0.347595856	0.006453393	22	42486888	TSS200	NDUEA6	2
cg12598870	-0 348818/20	0.009776316	11	20861/190	Body	NEU 1	2
cg26475087	-0 282282222	0.0005770510	12	77222110	Body	NFATC1	2
cg1/52//6/	-0.202302237	0.006260156	7	26101622	TSS1EDD	NEEDID	2
Cg()2E11202	-0.224003723	0.000300130	16	151/0202	Pody	NTAN1	2
cg10910405	0.597914180	0.007209152	0	75725552	TCS1EDO		2
CG10019495	0.21002744	0.000300130	Ö 17	10742224	1331300		2
cg23399011	-0.518037744	0.008246894	1/	10/422/4	1227200		2
Cg10130860	-0.305204865	0.008467747	10	43124230	воау	PPIH	2
CgU8230695	-0.708119105	0.007705112	19	47220755	1551500	PKKD2	2
cg24129977	-0.295083026	0.008747469	2	1748872	1551500	PXDN	2

llmnID	logFC	adj.P.Val	CHR	MAPINFO	UCSC_RefGene_Group	Ref Gene name	CpG
cg07462512	-0.332140534	0.009412783	12	130961759	Body	RIMBP2	2
cg11796910	-0.393630125	0.008535339	2	11475299	Body	ROCK2	2
cg27643147	-0.283212384	0.008025286	11	70517294	Body	SHANK2	2
cg07908805	-0.722501932	0.004786391	19	427022	Body	SHC2	2
cg07080372	-0.283796853	0.009305205	11	796607	TSS1500	SLC25A22	2
cg02884773	-0.362893589	0.007269152	4	146446271	Body	SMAD1	2
cg07277864	-0.457326015	0.009916522	17	36707708	Body	SRCIN1	2
cg07429515	-0.299059839	0.006385292	17	80871405	Body	TBCD	2
cg24077277	-0.424941083	0.007192082	1	205201540	Body	TMCC2	2
cg00549475	-0.335551703	0.009814791	17	10632715	Body	TMEM220	2
cg02892925	-0.506475856	0.009765529	8	60032926	TSS1500	тох	2
cg21625563	-0.277011529	0.00834942	22	39152448	TSS1500	UNC84B	2
cg12799596	-0.316157604	0.003170905	6	169901082	Body	WDR27	2
cg24401656	-0.263108899	0.009765529	2	175450074	Body	WIPF1	2
cg17286326	-0.354974942	0.009212314	20	57796491	Body	ZNF831	2
cg21729214	-0.245434842	0.008743235	12	133312061	Body	ANKLE2	3
cg27024161	-0.59456528	0.003982088	5	17238232	5'UTR	BASP1	3
cg06947608	-0.219508211	0.006453393	10	128113825	3'UTR	C10orf90	3
cg25845158	-0.252273922	0.008676806	6	31696165	Body	DDAH2	3
cg00004219	-0.370719382	0.008740302	12	132536833	Body	EP400	3
cg02726819	-0.371753868	0.009909295	7	158800869	TSS200	LOC154822	3
cg14871736	-0.296754896	0.009042223	3	139346734	5'UTR	NMNAT3	3
cg21900078	-0.304576031	0.008268573	7	158301302	Body	PTPRN2	3
cg21484515	-0.354464138	0.008268573	13	36944469	TSS200	SPG20	3
cg20347648	-0.493208874	0.009373052	6	31130516	3'UTR	TCF19	3
cg05511613	-0.414582516	0.008373963	7	5391469	Body	TNRC18	3
cg19293163	-0.391077556	0.006385292	13	113380931	Body	ATP11A	4
cg12011876	-0.232295253	0.007381033	12	132836216	Body	GALNT9	4
cg00805619	-0.29801029	0.007951456	10	134420623	Body	INPP5A	4
cg15347348	-0.439961103	0.006360156	14	88738731	TSS1500;Body	KCNK10	4
cg22699052	-0.252912485	0.00749616	17	708597	Body	NXN	4
cg16822387	-0.305228783	0.00834942	11	31831591	5'UTR	PAX6	4
cg17756105	-0.342724456	0.007269152	7	3613164	Body	SDK1	4
cg09851596	-0.35531888	0.007705112	8	143545214	TSS200	BAI1	5
cg15171839	-0.617255287	0.006360156	5	92924603	Body	NR2F1	5
cg19563130	0.425333864	0.006360156	14	81422098	1stExon	TSHR	5
cg14710529	-0.319136057	0.008740302	2	9387472	Body	ASAP2	6
cg24336338	-0.316374086	0.007076111	12	131452238	Body	GPR133	6
cg11498333	-0.252816672	0.00914931	10	1547459	Body	ADARB2	8

b.

Extension control (red channel): Background (GC) on Signal (AT)

Figura Suplementaria 1. Control interno de marcaje por *DNP* en *HumanMethylation450 array* (Illumina). **a.** Relación entre el ruido de fondo y la señal de fluorescencia de DNP (% ratio = background/ signal) mostrando una baja tasa de marcaje en 24 muestras. **b.** Control de extensión de la sonda marcada con DNP. Valores normales de intensidad excepto para A09-00020 amígdala.

Figura Suplementaria 2. Heatmap valores de metilación CpGs identificados por LDA-global por edad en muestras humanas de cerebro analizadas por *Humanmethylation450*.

Figura Suplementaria 3. Análisis linear discriminante por edad *Humanmethylation450*. a. LDA-global muestras control. b. LDA-global muestras de EA tardía c. LDA-CA muestras control d. LDA-CA muestras de EA tardía.

Figura Suplementaria 4. **Análisis discriminante lineal por área del SNC** *Humanmethylation450*. **a.** LDA-global muestras control. **b.** LDA-global muestras de EA tardía. **c.** LDA-CA muestras control. **d.** LDA-CA muestras EA tardía.