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Abstract

The use of light, especially of laser light, is in many cases the most sensi-
tive way to perform measurements. However, the highest sensitivity that
can be achieved with laser light as probe is bounded by the standard quan-
tum limit (SQL). As many instruments are approaching this fundamental
limit, it becomes crucial to explore ways to overcome the SQL. Quantum
metrology offers the possibilities to increase the sensitivities of the most
accurate measurements beyond the SQL by using photonic quantum states
of light as a tool. Two well-known classes of quantum states that provide a
metrological advantage and break the SQL are squeezed states and a cer-
tain class of entangled states, called NOON states. While it is of special
interest to apply these quantum states to atomic systems, such as atomic
vapors, this requires quantum states of the highest quality in terms of
purity, fidelity, brightness, and indistinguishability. Most importantly, for
the probing of atomic systems, the quantum states need to be extremely
narrowband to match the atomic linewidths. As NOON states are usu-
ally generated in a broadband spontaneous parametric down-conversion
(SPDC) process, they are not compatible with narrowband atomic reso-
nances.

The goal of this thesis was the generation of suitable narrowband entan-
gled and squeezed quantum states of light and their application to atomic
systems. To increase the rate of atom-resonant SPDC photons by orders
of magnitude, we used a cavity-enhanced setup. Polarization-squeezed
states and polarization-entangled NOON states were created. The spec-
tral brightness of the generated NOON states is one of the highest of
pairs of indistinguishable photons reported so far. The photon pairs were
carefully characterized by full quantum state tomography showing high fi-
delities with a perfect NOON state. After filtering the photon source out-
put by a novel filter based on the “interaction-free measurement” scheme, a
cross-correlation measurement demonstrated its potential as a narrowband
heralded single-photon source, needed for example in quantum informa-
tion. To apply these states in a quantum metrology scheme and to show
the metrological advantage, we chose an atomic magnetometer as a model
system. The assembled shot-noise-limited magnetometer is based on the
Faraday effect in a vapor of hot rubidium atoms. It could be demonstrated
that both quantum states perform better in the magnetometer application
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4 Abstract

than any classical state, i.e., they break the SQL. In the case of NOON
states, this is the first use of multi-photon coherence in an atomic exper-
iment. In addition to applications in quantum metrology, the presented
techniques of quantum-light generation and filtering are also directly ap-
plicable to quantum information tasks, especially to the use in quantum
memories.



Resumen

El uso de la luz, en particular la luz laser es, en muchos casos, el método
que permite realizar mediciones de la manera més sensible. No obstante,
la mayor sensibilidad que se puede conseguir gracias a la luz laser como
sistema de sondeo queda delimitada por el limite cuantico estandar (SQL).
Visto que muchos instrumentos se estédn acercando a este limite fundamen-
tal, es crucial explorar formas de superar el SQL. La metrologia cuantica
ofrece la posibilidad de incrementar la sensibilidad de las medidas mas pre-
cisas mas alla del SQL empleando los estados cuanticos de luz como her-
ramienta. Dos categorias conocidas de estados cuanticos que brindan una
ventaja metrologica y rompen con el SQL son los estados “comprimidos”
y ciertas categorias de estados entrelazados llamados estados “NOON”.
Aunque es de especial interés aplicar estos estados cuénticos a los sistemas
atomicos, como a los vapores atéomicos, se requieren estados cuanticos de
o6ptima calidad en términos de pureza, fidelidad, luminosidad e identidad.
Lo més importante para los sistemas atémicos de investigacion es que los
estados cuanticos sean de banda extremadamente estrecha para que coin-
cidan con el ancho de banda de atomos. Puesto que los estados NOON
suelen ser generados en un proceso de conversion espontanea paramétrica
descendente (SPDC) de banda ancha, no son compatibles con las resonan-
cias atomicas de banda estrecha.

El objeto de esta tesis fue la generacion de estados cuénticos de luz
apropiados de banda estrecha, entrelazados y comprimidos, y su aplicacion
en los sistemas atoémicos. Para incrementar el niimero de fotones generados
por SPDC resonantes con la transiciéon atémica por 6rdenes de magnitud,
se empled un sistema aumentado por un resonador. Se crearon estados
de polarizaciéon comprimida y estados NOON de polarizacion entrelazada.
La luminosidad espectral de los estados NOON generada supone una de
las mas altas que se hayan reportado hasta el momento entre pares de
fotones idénticos. Los pares de fotones fueron cuidadosamente caracter-
izados por medio de una tomografia completa del estado cuantico que
muestra la gran fidelidad con un estado NOON perfecto. Después de
filtrar la producciéon de la fuente de fotones por medio de un novedoso
filtro basado en el esquema “interaction-free measurement”, una medida
de correlaciéon cruzada demostré su potencial como fuente de fotones indi-
viduales anunciados de banda estrecha que resulta necesaria, por ejemplo,
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6 Resumen

en la informacion cuéntica. Para aplicar estos estados en un esquema de
metrologia cuéntica y demostrar la ventaja metrologica, elegimos un mag-
netometro atéomico como sistema modelo. El montaje del magnetémetro
delimitado por el limite cuantico estandar se basa en el efecto Faraday
en un vapor de atomos de rubidio calientes. Se podia demostrar que el
comportamiento de ambos estados cuanticos es superior en la aplicacion
con el magnetémetro que cualquier estado clésico, es decir, que superan el
SQL. En el caso de los estados NOON, este es el primer uso de la coheren-
cia multifoténica en un experimento atéomico. Ademas de las aplicaciones
en la metrologia cuantica, las técnicas presentadas de generacion de luz
cuantica y filtraciéon también son directamente aplicables a las tareas de
informacion cuéantica, en especial al uso en las memorias cuanticas.









Ezxploration is the physical expression of the intellectual passion.
And I tell you, if you have the desire for knowledge and the power
to give it physical expression, go out and explore. Some will tell
you that you are mad, and nearly all will say, ‘What is the use?’
For we are a nation of shopkeepers, and no shopkeeper will look
at research which does not promise him a financial return within
a year. And so you will sledge nearly alone, but those with whom
you sledge will not be shopkeepers: that is worth a good deal. If
you march your winter journeys you will have your reward, so
long as all you want is a penguin’s egg.

Aspley Cherry-Garrard
The Worst Journey in the World: Antarctic 1910-1913
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The concept of progress acts as a protective mecha-
nism to shield us from the terrors of the future.
-from “Collected Sayings of Muad’Dib”

— Frank Herbert, Dune

Introduction

The ability to perform precise measurements has had a major influence
on the progress of science and technology. For example, the possibility to
measure the direction of the earth’s magnetic field led to a revolution in
sea travel, because it allowed the determination of the course even when
the sky was cloudy and celestial navigation was not possible. This new
technique therefore contributed to increased sea trade and eventually to
the discovery of unknown continents. Later, the position (especially the
longitude) could be determined with much higher precision after the in-
vention of the sea clock by John Harrison. Today, the use of GPS increases
the precision in positioning down to the scale of meters.

As the measurement techniques were improving increasingly fast over
the last century, in some fields, measurements have for the first time be-
come so precise that they are not limited anymore by technical shortcom-
ings, but by more fundamental restrictions of nature itself.

It is possible to increase the precision of an experiment by repeating
the measurement many times and taking the average of the outcomes. A
simple example of this strategy is counting the number of rain drops that
fall on a given area, e.g., a tin roof, per second. If the measurement is
performed over a long period of time, the average rate of rain drops N can
be determined very accurately, but the error, i.e., the deviation for any
particular measurement of one second will be v/N. Completely analogous
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14 Introduction

is the behavior of photons in a laser beam. When the number of photons
from a laser that hit a detector per second N is measured, the intrinsic
error or quantum noise will be v/N. Photons in a laser beam and rain
drops follow the same behavior as they are both governed by the statistics
of random independent events: the Poisson distribution.

The +/N-limit is generally called shot-noise limit and in quantum physics
also standard quantum limit (SQL). The relative error that is connected
with the SQL is 6N oc vVN/N = N~Y2. This N~'/?-noise, is the limiting
factor in many precision measurements that use laser light as a probe.
When only classical resources (or lasers) are used, an experiment cannot
be more accurate than the SQL, but often it is possible to decrease the
relative error by using a very large number of photons. In many cases,
however, it is not possible to use a high optical power because the system
could be destroyed or at least altered. Examples of such systems are single
atoms [1}, 2l 3], molecules [4, [5], atomic quantum states [6l, [7, 8], and bio-
logical cells [9]. For these — often very interesting — fragile systems another
strategy has to be pursued to increase the precision of measurement.

Fortunately, quantum physics offers a way to overcome the SQL. When
instead of a laser beam, quantum states of light are used to probe the
system, the relative error can be decreased below the SQL from N~/2 to-
ward N1, the so-called Heisenberg limit. The most prominent quantum
states of light that break the SQL are squeezed states and a certain class
of entangled states, called NOON states. While squeezed states are easier
to generate and closer to applications, NOON states give a higher metro-
logical advantage per photon and ideally achieve the Heisenberg limit [10)].
NOON states are two-mode entangled states that consist of N photons.
The metrological advantage of NOON states could be demonstrated ex-
perimentally more than a decade ago [11], [12], although for non-fragile
systems.

One of the principal goals of this thesis is to demonstrate a quan-
tum metrological advantage in the measurement of a fragile system. The
system of choice is a hot ensemble of atoms. This system has special re-
quirements, namely the NOON states have to be narrowband and atom-
resonant. The reason why, to date, NOON states were not used to beat
the SQL in an atomic system lies in the difficulty to generate NOON
states with the right properties, especially the correct bandwidth, to in-
teract with atoms. While the natural linewidth of an atom is of the order
of a few MHz, the bandwidth of NOON states is usually many GHz or
THz wide. The process that is usually exploited to create NOON states is
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spontaneous parametric down-conversion (SPDC), which is a convenient
process as it generates pairs of photons. The two photons of a pair are
in the same mode and can form a NOON state with N=2, a so-called
2-NOON state [13]. In the past, high efforts were made to increase the
size of NOON states and ‘NOON-like’ states by superposing a 2-NOON
state with a coherent beam [I4] [I5] or by using double-pair emission of
an SPDC crystal [16]. The bandwidth in these experiments is usually
larger than 100 GHz, i.e., more than four orders of magnitude larger than
the natural atomic linewidth. Although the recent experiments that have
demonstrated up to 5-NOON states are not suitable for interaction with
atoms, these techniques could be adapted to the narrowband regime.

In this thesis an approach is followed that decreases the bandwidth
without sacrificing the count rate. When the SPDC process takes place
inside an optical cavity that is resonant with the down-converted light,
the cavity geometry enhances the spontaneous emission into the cavity
modes [17, I8]. For the spatial modes this is convenient because the down-
conversion is enhanced into the fundamental Gaussian mode of the cavity
and spectrally the modes of the cavity can be designed to match the
atomic lindewidths. To select the spectral mode that is atom-resonant,
additional filtering of the cavity-enhanced SPDC output is necessary, but
the filter requirements are less stringent than for free-space SPDC and a
much higher count rate after the filter is achieved. When the SPDC cavity
is stabilized onto the frequency of the atomic transition, the generated
polarization-entangled NOON states after the filter have all properties to
interact efficiently with atoms.

Following a complementary approach, we generate polarization-squeezed
states of light in a technically similar manner. Also the production of
squeezing is based on an SPDC process inside an optical cavity, which in
this regime is known as optical parametric oscillator (OPO).

We demonstrate the potential of both squeezed states and NOON states
on a metrological system that relies on light-matter interaction, the atomic
magnetometer [19]. In an atomic magnetometer a sample of atoms, placed
in an unknown field, experiences energy level shifts due to the Zeeman ef-
fect. These level shifts are detected optically in an interferometric scheme,
by Faraday rotation. The rotation can be either caused by the normal
Faraday effect, i.e., the atomic sample is unpolarized, or — for a larger sig-
nal — by the paramagnetic Faraday effect in a polarized sample. At present,
the most sensitive instruments for low-frequency magnetic field measure-
ments operate in this way. Notably, they achieve high sensitivities in the
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low frequency range (DC-1kHz), allowing them to detect bio-magnetic
fields. [20]. While these magnetometers are reaching higher and higher
sensitivities, they are approaching fundamental quantum limits |21, 22].

In our proof-of-principle experiments we use an atomic magnetometer
based on the normal Faraday effect as a test system to apply the generated
atom-resonant and narrowband quantum states in a metrological context.

While the quantum states of light that are generated are used for quan-
tum metrology, these states are also applicable to other fields of quantum
science and technology. It is demonstrated in this thesis that the gener-
ated photon pairs that form the NOON state can be used as atom-resonant
heralded single photons. These single photons are interesting for quan-
tum information tasks, e.g., quantum memories and quantum computing.
Quantum memories are supposed to store information imprinted on a sin-
gle photon into an atomic system. As the atomic system can be based on
an ensemble of atoms in a gas or a solid-state medium, the requirements
on the spectral properties of the single photons are very similar to those
in quantum metrology. Also the indistinguishability of the generated pho-
tons is of great interest for quantum computing, since in schemes for linear
optical quantum computing highly indistinguishable photons are required
as resource [23].

This thesis is organized in the following way:

Chapter 2 provides the theoretical background for the whole thesis.
First, the physics of parametric down-conversion and cavity enhancement
are reviewed and important parameters for the characterization of the
cavity output are introduced. Then, the theory of quantum state tomo-
graphy and the theory of NOON states, including the description of their
metrological advantage, are presented. The chapter briefly summarizes the
theoretical description of quadrature squeezing and polarization squeezing
and the application to phase estimation measurements. Finally, normal
and paramagnetic Faraday effect are presented as a way to apply a phase
shift on a polarized light beam by an atomic system.

Chapter 3 describes the design, construction, and characterization of
the cavity-enhanced down-conversion source used in subsequent experi-
ments. The design of the down-conversion apparatus is presented. The
source is characterized by measurements of brightness, time-correlations,
and photon indistinguishability, and compared to theory. It also describes
the characterization of a two-photon NOON state and the experimental
reconstruction of the polarization density matrix of the cavity output by
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quantum state tomography.

Chapter 4 presents the generation of atom-resonant, ultra-narrowband
photon pairs and heralded single photon states. The spectral filtering
of the down-converted photons by an atomic based filter is described.
The filtered photons are shown to be narrowband and to match atomic
resonances in frequency and bandwidth.

Chapter 5 describes the demonstration of a quantum-enhanced mea-
surement of a magnetic field with NOON states. The experimental results
are analyzed in terms of Fisher information, which shows that the infor-
mation content acquired per photon is larger than achievable with the best
classical state.

Chapter 6 describes a squeezed-light-enhanced atomic magnetometer.
An optical parametric oscillator is shown to produce polarization-squeezed
light. The implementation of a quantum noise lock between a squeezed
vacuum beam and a local oscillator beam is described. The generated
phase-stable, atom-resonant squeezed state is shown to improve the sen-
sitivity of an atomic magnetometer below the standard quantum limit.

Chapter 7 summarizes the main results and discusses possible impli-
cations of the work.






Without sensibility no object would be given to us,
and without understanding none would be thought.
Thoughts without content are empty, intuitions
without concepts are blind.

— Immanuel Kant, Critique of Pure Reason

Theoretical background

ITheory-chapter This chapter summarizes and provides references for the
theoretical framework of the experiments presented in the following chap-
ters and develops the specific theory to describe the experiments. The
presentations in this chapter include the physics of cavity-enhanced spon-
taneous parametric down-conversion, quantum state tomography with a
focus on polarization tomography of indistinguishable photons and the re-
lationship between tomography and Hong-Ou-Mandel interference, phase
estimation including the improvement of classical interferometric schemes
with non-classical probe light, the theory of polarization squeezing and
Faraday rotation in an atomic ensemble.

2.1 Cavity-enhanced down-conversion

2.1.1 Nonlinear frequency conversion

When a light beam enters into a medium, the medium responds to the
electromagnetic field. There are several mechanisms that contribute to
the polarization of the medium. At optical frequencies these are mainly
the displacement of ions within a crystal lattice and the change in the
electronic charge distribution inside the atoms. Macroscopically the de-
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20 2. Theory

pendence of the polarization vector P on the electric field vector E can be
described as
P = ¢)xE, (2.1)

where € is the electric permittivity of vacuum and y is the electric suscep-
tibility. When the susceptibility is the same in all spatial directions, the
medium is called isotropic. Only then can x be written as a scalar, other-
wise it has tensorial character. The magnitude of the electric susceptibility
can itself depend on the electric field:

X(E) = x" + x?E + y®EE + ... (2.2)

This can be understood in the following way: For low intensities the po-
tential that an electronic charge sees inside an atom can be approximated
by a harmonic potential. For high intensities, i.e., for large displacements,
this approximation is not valid anymore. Inserting Eq. into Eq.
yields the electric field dependence of the polarization:

P(E) = eoXVE + coxPEE + ¢ox¥EEE + ... (2.3)

The first term, which is always present, describes the linear optical effects,
such as reflection and absorption, whereas higher order terms become im-
portant at relatively higher light intensities. The most widely used ef-
fects of the xy(®-nonlinearity are sum-frequency generation and difference-
frequency generation with their special cases second-harmonic generation
(SHG) and spontaneous parametric down-conversion (SPDC). A second-
order nonlinearity is only present in media that do not show inversion
symmetry. Usually crystals are chosen as media for applications of second-
order effects. These ‘nonlinear crystals’ can show high second-order non-
linearities and the search for new materials with high nonlinearities is an
active field of research.

Since isotropic matter will not show any second-order nonlinear effects,
in media like gases, liquids and amorphous solids, the dominant nonlinear
effects are coming from the xy®-term. This third-order term gives rise to,
e.g., the optical Kerr effect, third-harmonic generation (THG) and four-
wave mixing (FWM). In general, one of the main applications of nonlinear
optical effects is the creation of beams with wavelengths different from the
input wavelengths.

For this thesis the most important nonlinear effect and also the most
widely used method for the generation of non-classical states of light is
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spontaneous parametric down-conversion (SPDC). Inside a suitable crys-
tal a pump photon, typically in the ultra-violet frequency range, is an-
nihilated and two photons, typically in the infrared, are created. These
photons — that are called signal and idler — can be correlated in various
degrees of freedom. The SPDC process is capable of producing NOON
states as well as squeezed states. The following discussion is therefore
focusing on SPDC.
In SPDC, energy conservation of the participating photons has to be
strictly fulfilled:
Tw, = hws + hw;, (2.4)

where w), ,; are the angular frequencies of pump, signal and idler beam.
When the frequency of the pump beam w, is very narrow, energy conser-
vation leads to a strong frequency anti-correlation between the frequencies
of the two generated photons.

Momentum conservation, which is also referred to as phase matching,
requires

1k, = hk, + hk;, (2.5)

with |k;| = k; = 27n,;/);, the vacuum wavelength \; and the refractive
index of the medium n; (j € p, s, i) for the wave vectors of pump, signal
and idler fields. Depending on the phase-matching conditions, the signal
and idler fields can be mutually parallel (type-I) or orthogonally (type-1I)
polarized.

2.1.2 Phase matching

All nonlinear effects require phase matching of the participating wave vec-
tors. In other words, all the contributions of waves generated at different
positions inside the crystal have to add up constructively. Since the index
of refraction depends on direction of propagation, wavelength and tem-
perature, there is in general a phase mismatch between the waves. This
phase mismatch provokes a flowing-back of energy into the fundamental
wave after the coherence length (Fig.[2.1](a)). In order to avoid this, phase
matching has to be guaranteed over the full length of the crystal. In the
case of frequency-degenerate SPDC, the phase mismatch Ak along a given

direction 1is 5
Ak =k, — ks — k; = A—”(an — g — ), (2.6)

where n,,; are the refractive indices of pump, signal and idler waves
respectively and A, is the vacuum wavelength of signal and idler waves.
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Figure 2.1: Different phase-matching situations. Intensity of the gen-
erated SPDC light as a function of the crystal length in units of the
coherence length l.,. (a) No phase matching, (b) Birefringent phase
matching, (¢) Quasi-phase matching.

The coherence length (.., is proportional to the reciprocal phase mis-

match:
T Ag

lco = AL
"TOAE 2(2n, —ns —ny)

(2.7)

In typical nonlinear crystals the differences in refractive index between
pump, signal and idler are of the order of a few percent, which leads to a
typical coherence length between 5 um and 50 um.

Birefringent phase matching

In birefringent crystals the refractive index depends on polarization, angle
of propagation, wavelength and temperature. Under certain conditions
it is therefore possible to achieve (2n, — ns —n;) — 0 which leads to a
long coherence length (I.,, — 00) (Fig.[2.1](b)). While the phase velocity
of the waves is matched, the angle of propagation between ordinary and
extraordinary polarized beams differs in general, which gives rise to a spa-
tial walk-off between signal and idler beams. This limits the useful crystal
length and leads to an elliptic beam profile of the generated extraordinary
beam. To avoid walk-off it is favorable to inject the input beam into the
crystal in direction of one of the crystal axes where no walk-off occurs. For
some crystals this so-called non-critical phase matching can be achieved
in such an orientation by temperature tuning.
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Quasi-phase matching

Instead of temperature and angle tuning it is possible to avoid the flowing
back of energy into the fundamental mode by swapping the sign of the
susceptibility after the coherence length. The phase mismatch is then
compensated by the so-called quasi-phase matching (QPM) (Fig. [2.1)(c)).
It is referred to as higher order quasi-phase matching, when the period of
the susceptibility is changed after an odd multiple integer of the coherence
length. In QPM the direction of propagation is not determined anymore
by the phase-matching condition, but can be chosen to coincide with the
direction of maximum nonlinearity or one of the crystal axes in order
to avoid spatial walk-off between signal and idler waves. Compared to
perfect birefringent phase matching the efficiency of m’th order quasi-
phase matching is reduced by a factor of 2/m.

The periodic poling of the crystal is normally achieved by applying large
electric fields with alternating signs to a ferroelectric crystal that produce
a swap of the ferroelectric domains with alternating polarity. Commonly
used crystals are, e.g., lithium niobate (LiNbOj3) and potassium titanyl
phosphate (KTP). The shorter the poling period is, the more challenging
is the fabrication of periodically-poled crystals.

Mathematically, the additional k-parameter is described by a QPM-

term:
21

A(T)

Ideally, the poling period A is chosen so that Ak = 0. The k-parameter
of each function however is a function of the frequency and the refractive
index which itself is a function of the frequency and the temperature. It
is therefore interesting to study the behavior of the function close to the
point where the frequencies of signal (w?) and idler (w?) guarantee perfect
phase matching. Consequently, Ak is expanded in a Taylor series around
(w9, w?). This derivation is following the approach by Fedrizzi et al. [24]
to analyze the spectral bandwidth of the down-conversion output and the

temperature bandwidth of the phase-matching condition:

Ak(T) = kp(wp’ T) - ks(wsaT) - kz(WuT) - (28)

=0
A\
7~ Y

AK(T) = ky(wp T) = k(@(T), T) = ki(Wf(T), T) - %

— K (w(T), T)(ws — wi(T)) — ki(wi(T), T)(wi — w}(T)),
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Figure 2.2: Theoretical frequency phase-matching curve. The curve
shows the spectral sinc?-dependence of the SPDC intensity.
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. From the phase mismatch Ak the intensity dis-

.0
Ws,i=Wg 4

tribution of the beam generated in a nonlinear crystal of length [ can be
calculated (Fig. [2.2)):
Akl
I o sinc? (T) (2.10)

The full width at half maximum (FWHM) of the spectral bandwidth of
this function can be written as:

27

A= ——.
T

(2.11)
The temperature bandwidth is calculated based on Sellmeier equations
for the refractive indices [25], 26]. For a SHG process, in which the two
photons of the fundamental wave that are up-converted are of orthogonal
polarization, the temperature bandwidth of this SHG interaction is given
by the following expression [25] 26]:

-1

ons On; 20n,
+ J—
or  oT oT

0886,

AT
l

(2.12)

The reverse process of spontaneous parametric down-conversion, in which
the down-converted photons are of orthogonal polarization (type-1I), the
temperature bandwidth is [25, 26]:

0886 -

AT = ——
L

1 On, N 19n; 1 20n,
A OT N\ 0T A, OT

(2.13)
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For the case of degenerate SPDC this reduces to the same formula as
Eq. , which means the expected temperature bandwidth is the same
for these two inverse processes. An analytical treatment that shows that
the efficiencies of SHG and SPDC have the same shape is based on Green
functions [27].

Boyd-Kleinman theory

Another parameter besides the phase matching to maximize the down-
conversion efficiency is the focusing. It is well known that focussing of
the pump beam increases the rate of down-converted photons [28]. The
optimal focussing in the classical case was studied by Boyd and Kleinman
in great detail [29]. For non-critical phase matching the optimal ratio
between the crystal length [ and the confocal parameter b is /by, ~
2.84. The confocal parameter is two times the Rayleigh range, b = 2z, =
2mnwd /Ao, with the refractive index of the medium n and the vacuum
wavelength \g. This results in an optimal beam waist of

I o
VPO (e 2.14
Wopt 21 2.84n (2.14)

2.1.3 Cayvity enhancement

Even when the efficiency of the SPDC process is optimized in terms of
phase matching and mode matching as described before, the produced
photon flux at narrow bandwidths (~MHz) is still low. It can be increased
by letting the SPDC process take place inside an optical resonator. This
cavity design enhances the generation into the spatial and spectral cavity
modes. The temporal and spectral properties of the two-photon wave
packets will depend on the cavity geometry. Therefore the cavity parame-
ters have to be chosen carefully to ’tailor’ the desired quantum states.

In the following, the parameters of a ring cavity of length L will be
introduced. We assume that the cavity consists of three high-reflecting
mirrors and an output-coupler of reflectivity Roc. The losses at the high-
reflecting mirrors as well as other absorption and scattering losses in the
cavity are denoted as Pss.

e Free spectral range
The free spectral range F'SR is the spectral distance between two
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transmission modes of the cavity and is — for a ring cavity — defined
as .
FSR = 7. (2.15)

Cavity round-trip gain

The cavity round-trip gain g, is the factor by which the intensity in
the resonator is increased after one round trip. Notably, g, < 1 for
a passive cavity. Assuming a Fabry-Pérot cavity it depends on the
reflectivity of the outcoupling mirror Roc and the additional loss in
the cavity Pyss:

grt = \/ROC(l - -Ploss) . (216)

Cavity escape efficiency

The cavity escape efficiency P.. is the probability that an intra-
cavity photon is coupled out of the cavity through the output coupler
as opposed to being absorbed or scattered in the cavity:

1_ROC’
F)loss + 1— ROC’.

P... = (2.17)

Cavity finesse
For g,; near 1 the cavity finesse F is defined as

Fo o (2.18)

—1_grt.

Cavity linewidth

The cavity linewidth Av is the FWHM of individual spectral cavity
modes and can be calculated by taking the ratio between the free
spectral range and the finesse:

Ay =2 (2.19)

Cavity round-trip time
The cavity round-trip time 7,; is defined as the time that a photon
needs to make a round trip in the cavity of length L. It is the inverse

of the FF'SR:
__ L L (2.20)
TSR T ¢ '
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e Cavity ring-down time
The cavity ring-down time 7,4 is defined as the time after which
a photon that was coupled into the cavity (or was created in the
cavity) persists in the cavity with a probability of 1/e. It is inversely
proportional to the cavity linewidth Av:

1
= 2.21
Trd Av ( )

2.1.4 Time-correlation function

Pioneering work on cavity-enhanced down-conversion, both, experimen-
tally and theoretically was done by Z. Y. Ou et al. [17, 18]. They devel-
oped a theory for a type-I phase-matched cavity-enhanced SPDC setup
by adopting the theory of an optical parametric oscillator (OPO) below
threshold developed for the generation of squeezed states by Collett and
Gardiner [30]. Later the theory was extended to type-II single-resonant
[31] and type-II double-resonant [32 [33] 31|, B4 [35] processes. In the fol-
lowing, the theory developed in [31] B4 35] is summarized and the main
result of the cross-correlation function is presented.

SPDC is an important process for quantum optics, because it generates
photon pairs. These show more interesting features than coherent light. In
order to distinguish between the different statistics of coherent, thermal
and non-classical states, the cross-correlation function of the light field
can be measured. The normalized intensity cross-correlation function for
a single field is defined as

(ET(t + T)EY)E@)E(t + 7))
(E1(t)E(t))>

g?(r) : (2.22)

where E is the electric field operator. This cross-correlation function
g (1) is 1 for a coherent state and all classical fields show ¢ (7 = 0) > 1,
but it can be 0 < ¢®(7) < oo for a non-classical state. A value of
g® (7 = 0) below 1 is therefore a non-classical signature.

For an SPDC process, the cross-correlation function of signal and idler
modes is

(EX(t+ 1) B (1) Ei(t) ES(t + 7))
(EL () E(0)EL(t + 7)Es(t + 1)

where Es,i are the electric field operators of the signal and idler fields.

(2.23)

g&)(m) =
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In order to obtain an explicit expression of the cross-correlation function
(Eq. ), the operators of the electric field have to be evaluated. The
positive-frequency electric free-field operators of signal and idler waves
propagating in z-direction are

l’t sl /+°O ds) LI w —|—Q) i(ws, i +Q)(x/c— t) (2 24)
“ ~ V 2¢pca s '

with [as;(w ),aiz(w )] = 0(w — &) [36]. In this equation A denotes the
transverse cross-section of the wave and a,; are the photon annihilation
operator of the signal and idler modes. Since a type-II process with mu-
tually orthogonal polarizations of signal and idler waves is considered,
[65(w), @l (w)] = 0 can be assumed.

The main result and the one that is of most interest for the following
experimental implementation is the cross-correlation function for a double-

resonant cavity-enhanced SPDC process, which takes the following form:

Z Vs Vi Ws Wi

i (r Y

mg,m;=0

2
{6—27rFs(T—(TO/Q))SinC(iFTors) T 2 %
X
-
<%

(2.25)

where v;, are the cavity damping rates for signal and idler, w;, are the
central frequencies, 7y is the difference between the transit times of a signal
and idler photon through the SPDC crystal, I'; = 7.;/2+ims;Aw;, ; with
mode indices my; and free spectral ranges Aw; [34], 31].

2.1.5 Indistinguishability

Indistinguishability is a key resource in many protocols in quantum in-
formation, quantum metrology and quantum communication. The KLM
proposal [23], e.g., suggests to use linear optics and indistinguishable pho-
tons for quantum computing.

The meaning of ‘indistinguishability” in this context does not refer to
the bosonic character of photons. Of course, all photons are indistinguish-
able in that sense. The word ‘indistinguishability’ is used here in a more
operational sense. Photons can be distinct in various degrees of freedom.
For example, two photons can be in different spatial, temporal, frequency
or polarization modes. For two photons to be distinguishable in this sense,
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they need to be distinct in at least two degrees of freedom. One has — in
principle — to be able to say, for example: “The horizontally polarized
photon always arrives before the vertically polarized one.” or “The blue
photon is in spatial mode 1, the red photon in mode 2.”

If the photons are distinct in only one degree of freedom, they can be
indistinguishable. A way to quantify the degree of indistinguishability is
the Hong-Ou-Mandel (HOM) experiment. The HOM effect is a purely
quantum two-photon interference effect with no classical analog [37, 38].
Two indistinguishable photons that meet on a beam splitter are leaving
the beam splitter in the same mode, i.e., ideally no coincident detection
events would be measured at the two output ports. Strictly speaking, the
photons do not need to meet at a common place. This is because, as
Pittman et al. [39] have shown, the HOM effect can be understood as the
interference of the two-photon amplitude. It is thus not necessary that
the photons meet; what is important is that the two-photon amplitudes
are indistinguishable, e.g., that no path-information is obtained. When
the path of one of the photons is varied with respect to the other, a dip
in the coincidence counts is observed at zero time delay between the two
paths. The visibility of the HOM interference dip is a measure for the
quality of single-photon and pair-photon sources. A limited interference
visibility in a polarization HOM experiment is often due to distinguishing
information in other degrees of freedom, such as arrival time. Typically,
this second distinguishing degree of freedom is something not measured,
and only reveals itself through its effect on coherence and interference
visibilities.

The following calculation assumes that the two incoming photons are
indistinguishable and enter from two different input ports of a beam split-
ter with reflectivity r. The input modes are labeled 1 and 2 and the
output modes 3 and 4 (Fig. . Analog reasoning applies to the polari-
zation Hong-Ou-Mandel effect, in which the two photons are in the same
spatial mode, but in different polarization modes.

We model the beam splitter by the following transformations of the
creation operators: dJ{ — \/?&;Q +v1 - 7‘&1 and &; — V1= rdg — \/Fdjl,
where r is the reflectivity of the beam splitter. In the following, the
reflectivity of the beam splitter is set to 50% (r = 1/2). The creation
operator CAL; creates a photon in the j'th mode with [&Z, dT] = 0. Within
the constraint that the transformation be unitary, there is some freedom
in the choice of the relative phases. When each of the input modes of a
beam splitter contains one single photon, the output can be described in
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Figure 2.3: Beam splitter modes of Hong-Ou-Mandel effect.
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The probability amplitudes that both photons take different paths after
the beam splitter cancel, which results in a “bunching” of the two photons

in the same output port.

In contrast, if the two photons are distinct in two degrees of freedom,
e.g., if they are in two different spatial modes 1 and 2 and in two different
temporal modes, denoted by t; and 5, the HOM effect does not take place:
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2.1.6 Heralded single photons

The cavity-enhanced SPDC scheme described in the previous sections is
not only able to provide photon pairs, but can also be used as a heralded
single-photon source. In this mode of operation, one of the photons of a
pair, the idler, is detected and ‘heralds’ the presence of the other photon,
the signal, which state can be a very good approximation of a single-
photon Fock state. The lower the contribution of higher photon numbers,
the better is this approximation.

E. Bocquillon et al. [40] have identified two critical figures of merit
for heralded single-photon sources. The first, gg}(T), describes the cross-
correlation of signal and idler beams, a measure of reliability of the heral-
ding mechanism. The cross-correlation function was discussed in Section
. The second, & (1), describes the conditional auto-correlation of
the signal beam, a measure of the single-photon character of the heralded
state. gé2)(0) < 1 indicates non-classical behavior; gﬁQ)(O) = 0 for an ideal
single-photon source.

The signal auto-correlation function, given a trigger detection of the
idler, is [41], 40, 34]

(B (t+ 1) EL(t) Es(t) Bs(t + 7))

9 (1) = T : .
(Es(t)Es(t))(Eg(t +7)Es(t + 7))

(2.28)

The crucial figure of merit is the value of the auto-correlation function of
signal photons géQ)(T) at 7 = 0. This function is given as [42] 41} [40]

(2) Dab
g9.7(0) = ; 2.29
(0) D ( )

where p,, is the probability to detect a triggered coincidence of channels
a and b and p, and p, are the probabilities of triggered single detections
of channel a or b, respectively.

2.2 Quantum state tomography

2.2.1 Density matrix formalism

In any physics experiment it is desirable to have as much knowledge as
possible about the considered system. In quantum mechanics the com-
plete — accessible — knowledge of a quantum state is contained in the



32 2. Theory

corresponding density matrix. While it is possible to represent a pure
state by a state vector, under laboratory conditions states normally show
non-perfect purity and consequently have to be described by the density
matrix formalism, which is especially useful to determine the degree of
purity and fidelity of a measured mixed state.

If the measured system is in state |¢);) with probability p;, the density
matrix of the system is defined as the weighted sum over these states:

p= sz- |¥) (1] (2.30)

with non-negative p; and > . p; = 1. The density matrix has to be her-
mitian, positive semi-definite and of unit trace. The degree of purity of a
state is defined as the trace over the square of the density matrix: Tr{)?}.
The purity ranges between 1 for a perfectly pure state and 1/d for a com-
pletely mixed state, where d is the dimension of the density matrix.

In this thesis mostly two-photon states are of interest. The density
matrix of a general mixed polarization two-photon state takes the following
form:

P11 y |p12‘€i¢12 ’plg‘elzlg ’pM‘eZ:zm
H [pn[e*t - pas |p2sl€™® | paae’®
a ' ' 4 2.31
P |/031 |el'¢31 |p32|61'¢>32 D33 | |p34|€z¢34 ( )
|p41 Iez¢41 |p42|€1¢42 |p43|61¢43 pus

Because of the hermiticity and the trace condition of the density matrix,
this reduces to 15 independent components that are often written in a
lower-triangular matrix. An n-photon polarization state is described by a
2" x 2™ matrix with 4"—1 independent elements.

Projective measurements

The tomographic characterization of the state, described at the end of this
chapter, is well described by the formalism of projective measurements. In
this formalism, measurement of a quantum system is described by projec-
tion operators. A more general approach, the POVM formalism (Positive
Operator-Valued Measure) is also widely used in quantum information
[43].

Since the density matrix describes the complete state of the quantum
system — possibly restricted to a certain degree of freedom such as spin
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or polarization — it is possible to calculate the expectation value of any
measurement of an observable with hermitian operator A:

(4) = ZMWAWD = Tr{pA}. (2.32)

The observable A has the following decomposition:

A= Z aiﬂi7 (2.33)

where II; are the projection operators that project the system onto the
eigenspace of A with eigenvalue a;.

2.2.2 General quantum state tomography

The task of quantum state tomography is to deduce the density matrix
from the outcomes of a given set of measurements. As measurements in
quantum mechanics can leave the system in a different state, two consecu-
tive measurements of non-commuting observables will in general not reflect
the state of the initial system. Measurements on a single system are thus
insufficient to investigate in which state the system was before the mea-
surement. To acquire this information it is necessary to be able to make
measurements on several identical copies of the considered system. The
different copies can be projected onto different bases to get full informa-
tion about the system. This procedure is analogous to other tomographic
methods. In medical applications, for example, two-dimensional images
of the human body in different bases are made in order to reconstruct the
three-dimensional tissue.

In quantum optics different systems and degrees of freedom can be of
interest. Quantum state tomography has been performed in various fields
of quantum physics, such as trapped ions [44] and super-conducting qubits
[45] 46, [47). The first tomography of a state of entangled photons has been
performed by A. G. White et al. [48, 49]. Depending on the system of
interest, possible degrees of freedom are spin, orbital angular momentum,
position or polarization. For applications of photonic quantum states,
polarization is often the most useful and therefore most interesting degree
of freedom. In this thesis we will discuss exclusively polarization state
tomography.
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2.2.3 Linear tomographic reconstruction

In this section the formalism of linear tomographic reconstruction is pre-
sented. This method was used to analyze our experimental data and to
reconstruct the density matrix of the generated quantum states. We follow
the seminal work by the group of P. G. Kwiat [48 [49] [50].

Consider the density matrix p of an unknown state generated in the lab-
oratory. The projection of this unknown polarization state onto a specific
polarization basis can be measured experimentally. Polarization analyzers
and single-photon detectors allow the measurement of the photon rate in a
particular polarization state |1,,). The normalization of the rate yields the
probability that the unknown state is in |¢,,). Mathematically, the projec-
tion is described by a projection operator ﬁu = |1,) (Y| The probability
to find p in the polarization state [¢,) is

Py=Te{pTL,} = (0| plthy) - (2.34)

Measurements in different polarization bases are necessary to acquire suf-
ficient information to reconstruct the whole density matrix. The tomo-
graphic reconstruction requires 4" — 1 (= d? — 1) measurements for a
partially mixed state, where n is the number of photons and d is the
dimension of the Hilbert space (d = 2" for the two polarization basis vec-
tors). In contrast, a perfectly pure state is determined by 2d — 1 linearly
independent parameters [48]. We restrict the following discussion to the
case that the data set consists of outcomes of 4" linearly independent
measurements. It should be noted that, if the number of measurements is
larger than 4", the over-complete set still permits reconstruction [50] 5.

In analogy to the Stokes parameters of a single-photon polarization
state, the polarization density matrix of a multiphoton state can be pa-
rameterized as

471
1 ~
= —S"1 3, 2.35
h= 5 ;:1 (2.35)

with the generalized Stokes parameters S, = Tr{f‘yﬁ}. The [-matrices
can be constructed as tensor-products of Pauli matrices:

~

I'=6;,®6,®..00d, (2.36)
where 7; € {0,1,2,3} and

. 10 . 01
0'0_<01),O'1_(10> (237)
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. (0 =i\ . (10
0'2—(2. 0 ),0’3—(0 _1) (238)

While the generalized Pauli-matrices represent one possible set of matrices
for the parametrization of the density matrix, there are other choices. In
general, all sets of matrices that have the following properties can be used
[49]:

Te{T,1,} = b, (2.39)
A=>"T,Te{l, - A} (2.40)

for all arbitrary 2" x2"™ matrices A. Inserting 1) into 1' gives

"
= (Uul 5 DA

471
1 A
:2_n E SVBZ,’“ (241)
v=1

where B, is the 4" x4" matrix B,,, = (¢,| T, [1,). If B is invertible, i.e.,
if B is non-singular, the generalized Stokes parameters can be deduced
from the measurement probabilities P,:

471

S, =2"> (B™),,P, (2.42)

p=1

For the density matrix this means:

4m  4n 4n
6=> Y (B luBi=> M,P,, (2.43)
n=1 v=1 p=1

with M, = S0 (B™Y),,.[,.

It is thus possible to reconstruct p from the coincidence measurements
in different bases. Often, this straight-forward approach gives the desired
density matrix of the system. Sometimes, however, this method fails to
give a physical density matrix. Because of experimental imperfections and
fluctuations in the coincidence counts due to the statistical distribution,
it is possible that the reconstructed density matrix shows negative eigen-
values and hence fails the criterion of positive semi-definiteness. If this
happens, a different approach has to be followed that makes sure that the

reconstructed matrix fulfills all requirements on a density matrix.
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2.2.4 Maximum-likelihood estimation

This section describes the method that was used in our experimental re-
construction when the linear tomography failed to produce a physical den-
sity matrix.

Maximum-likelihood estimation takes into account the physicality of
the density matrix by constructing a matrix that is a prior: hermitian,
positive semi-definite and of unit trace. A likelihood function gives the
probability that any given state would produce the measured data. Usu-
ally the likelihood function is expressed in terms of a set of parameters
which define the density matrix. A maximization of this likelihood func-
tion results in the density matrix that is most likely to represent the
unknown state given the measured data. Following this strategy, it is pos-
sible that the discovered maximum is not a global maximum, but a local
one. To avoid this, it is useful to perform the tomographic reconstruction
through linear inversion as explained in Section [2.2.3] The parameters
that are found in this procedure can be used as a set of start parameters
for the maximum likelihood estimation.

The positive semi-definiteness and the hermiticity condition (see also
Section @ are automatically achieved when the matrix p is of the
form: p = TiT. To ensure that the matrix has unit trace, the matrix is
normalized:

T
T {TIT}
The T-Matrix of dimension 27 x2" has 4" — 1 independent real parameters
and can be parameterized in tridiagonal form:

p= (2.44)

. tongq + iton t 0
7 .2 +1 2m+2 ‘2 (245)
t4n,1 + it4n t4n,3 -+ ?:t4n,2 cee t2n

The likelihood function depends on the statistics of the counting events.
The coincidence counts follow a Poisson distribution that can be appro-
ximated by a Gaussian distribution for large numbers. The conditional
probability of obtaining a set of data {n,}={ni,...,n4m}, given that the
system is described by the density matrix p, is

qn

P({n.}|p) = Ai/l [T exp (—%) : (2.46)

v=1 v
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where 7, is the number of expected counts in the vth measurement

with the normalization constants A; and AN5. The standard deviation
0, of the Gaussian distribution is given by o, = /n,. With this, the
conditional probability becomes

P({n,}[p) = H exp < _ "”)2> . (2.48)

2n,

To simplify this equation and the search for its maximum, the logarithm
of the equation is taken:

4 5 \2
log P({n,}|p) —log N "' = % =L (2.49)
v=1 v

The function L is called likelihood function and has to be minimized in
order to find a mazimum for the probability. £ is a function of the 4™
t-parameters and the 4™ measurement outcomes n,. Those t-parameters
have to be found that are most likely to result in the measured data. In
our reconstruction algorithm, the numerical minimization was done using
the MATLAB-function fminsearch which is an unconstrained nonlinear
optimization method based on [52].

2.2.5 Tomography and Hong-Ou-Mandel visibility

As described in Section [2.1.5] the HOM effect gives information about
the indistinguishability of two photons in the sense that a high HOM
dip visibility implies a high degree of indistinguishability. A low HOM
visibility, however, can also stem from a non-perfect preparation of the
state or from decoherence. In order to identify the reason for a non-
perfect HOM visibility, the information from the HOM experiment is not
sufficient. In contrast, quantum state tomography gives full information
about the density matrix and can be used to identify the experimental
insufficiencies. In this section the connection between HOM visibility and
quantum state tomography is investigated.

If two photons are completely distinguishable in the sense explained in
Section they do not perform the HOM effect. This is independent of
whether the measurement apparatus is sensitive to the respective degree of
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freedom or not. Consider, for example, a measurement on the polarization
of photons from a type-II SPDC process. The apparatus is sensitive to
polarization, which is thus called an accessible degree of freedom. If one of
the photons of a photon pair is delayed with respect to the other one in a
way that their temporal overlap is basically zero, the HOM effect will not
take place. This is true, even if the temporal resolution of the detection
system is not capable of measuring this time difference. Timing infor-
mation on this time scale would be an inaccessible degree of freedom for
the measurement apparatus. Information in inaccessible degrees of free-
dom can thus influence the measurement outcomes of accessible degrees
of freedom.

For the case that the photons can be distinguishable in inaccessible
degrees of freedom, a special kind of quantum state tomography was de-
veloped by R. B. A. Adamson et al. [53 64, 5I]. In the following, this
approach is described and connected to the HOM visibility. The descrip-
tion is restricted to the two-photon case that is of relevance in this thesis.
The treatment of higher dimensional Hilbert spaces is elaborated on in
[54].

The density matrix decomposes into two subspaces: one subspace rep-
resents the states that are symmetric under polarization exchange, the
other subspace contains the anti-symmetric part. There is no coherence
between these subspaces. For the two-photon case, the anti-symmetric
subspace consists of just one element and the density matrix takes the
following form:

>
I

Ps : (2.50)
(Pa)

where pg is a 3 X 3 matrix describing the symmetric portion of the polariza-
tion state and p4 is a 1 X 1 matrix describing the anti-symmetric portion.
We use a dot (-) to indicate coherences between the symmetric and anti-
symmetric parts of the state. These coherences, if observed, could allow
us to distinguish the photons. But because our analyzer is insensitive to
the hidden degrees of freedom where the distinguishing information exists,
these coherences are effectively zero.

We use the symmetry-ordered basis {|Hy, Hs), Y1), |Vi, Vo), Y)Y,
with [¢F) = (|Hy, Va) £|V4, Hy))/v/2, where subscripts 1,2 label the pho-
tons, as described in reference [53]. In this basis, a general polarization
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state is described by a density matrix of the form

PHHHH PHHy+ PHHVV

. PetHE Pt gt Pyt vy 0 _ (2.51)
PVV,HH Pvvyt PVV,VV
0 ( Prp= = )

For simplicity, in the following the subscripts will be labeled with numbers:

P11 P12 P13
b= P21 P22 P23 0 (2.52)
P31 P32 P33
0 ( P44 )

We now calculate the coincidence probability for a state p analyzed in
an arbitrary polarization basis. The result allows us to predict the HOM
visibility for an arbitrary state, and also the visibility in a polarization
interferometer. These visibilities are often reported as indicators of the
quality of a state, and our goal here is to make contact between the to-
mographic results and the simpler but less complete visibilities.
Concretely, we imagine an analyzer consisting of wave plates before a
polarizing beam splitter (PBS). One input polarization |a) = cos@ |H) —
sin 0 exp[ig] |V') leaves via one output port of the PBS and the orthogonal
polarization |5) = sinf |H) + cos 0 exp[ig] |V) leaves via the other output
port. A coincidence (one photon in each output) indicates a state with
one « photon and one 3 photon, but does not distinguish the photons or
indicate the symmetry of the state. It is a projective measurement onto
the subspace spanned by |aq, f2) and |ag, 1), described by a projection
operator II, 53 = jf’|a1ﬂ2> + ﬁ)\ﬁwz) where ]5‘\@ = |¥) (V|. The probability
of coincidence is Pcomc = Tr{ﬁﬂaﬂ}. In the symmetry-ordered basis, we

find

% sin? 26 ﬁe‘i‘f’ sin 46 _%e—2i¢> sin?260 0
. L _¢®gindh  cos?20 — L e ®gindh 0
i, — | =3¢ | 23 . (253
P —%62@ sin? 26 —ﬁiew’ sin 40 % sin? 20 0 ( )
0 0 0 1

We now consider the HOM situation encountered in the experiment de-
scribed in Section [2.1.5] The splitting is balanced, i.e., § = m/4, so that
the coincidence probability is

1 .
Proine = Paa + 5(,011 + p33) — R€[€22¢p13]. (254)
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In the experiment, it is possible to introduce a delay between the H and
V' parts of the state, to achieve zero delay or a large delay. For zero
delay, we have PUS %) — ) 4 (p11 + pss) /2 — Re[e?%pys] as above. A
large delay, however, makes H photons distinguishable from V' photons
and thereby removes the coherence between states |Hy, V3) and |V;, Ho).
Equivalently, it changes p by paa — (p22 + paa)/2 and psq — (paz + paa)/2-
Using Tr{p} = 1, we can express the coincidence probability away from

the dip as
1 .
PY9) — = _ Re[e¥p4). (2.55)

cotnc 2
The visibility of the HOM dip is

dela; zero dela;
Pc(oincy) B c(oinc ) P22 — P44 (256)

P(delay) + P(zero delay) - 2 _ (p22 _ p44) _ 4Re[622¢p13] ’

coinc coinc

Viom =

We note that this depends on few of the density matrix elements, and thus
a variety of different states could have the same HOM dip visibility.

We can also calculate the visibility in an interferometric measurement
based on polarization rotations. We assume a wave plate or other optical
device applies a unitary rotation to both photons of the state, and they are
detected in the «, ( state as above. The 1~ component is invariant under
any unitary transformation affecting both photons, and thus contributes a
constant pyy to the coincidence probability. In contrast, the contribution
of the triplet component may oscillate between zero and pi1 + pog + p33 =
1 — pag. A limit on interferometric visibility is thus

(2.57)

2.3 Phase estimation

The previous sections presented theoretical background necessary for the
characterization of quantum states. In the following, the application of
quantum states in a metrological context will be discussed.

When a physical parameter of a system is to be determined, often this
parameter is not measured directly. Instead, the parameter is estimated
indirectly via a probe. Regardless of the specific implementation the esti-
mation procedure can be described on an abstract level (Fig. : First,
the probe state is prepared. Then the probe is sent to the system, of
which some physical parameter should be measured, and interacts with
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Figure 2.4: Generic parameter-estimation scheme.

it. After that, certain parameters of the output probe are measured and
from the acquired information the unknown parameter of the system is
estimated. In this scheme, the measurement error is necessarily related to
the uncertainty in the measurement of the probe.

The parameter estimation problem is often translated into the measure-
ment of a phase difference. This is desirable, because the measurement of
a relative phase between two paths is possible with high sensitivity in an
optical interferometer. While classically there is no limit for the sensitiv-
ity, quantum physics sets lower limits on the uncertainty in phase, because
of the discrete nature of light quanta. The uncertainty in photon number
of the optical probe state enters into the phase uncertainty. The aim of
quantum estimation theory is to minimize this uncertainty [55, (56l [10].

In this section we analyze the uncertainty scaling in the measured vari-
able in units of the photon number. We derive the fundamental limits
for separable states and NOON states. The presented treatment assumes
a lossless interferometer in order to derive the fundamental scaling law
under optimal conditions. The accounting of losses and the search for the
optimal input states under loss situations is an active field of research.
For details see [57, 58, 59, 60, [61]. There are different ways in which the
theory of phase estimation can be treated. In the following, we present
three different approaches. The first is based on the uncertainty principle,
the second on operators and the third on Fisher information.

2.3.1 Uncertainty principle approach
An intuitive argument is based on the Heisenberg uncertainty principle, by

which the lower limit for the product of phase fluctuation d¢ and photon
number fluctuation d NV is given by:

5 ON > 1. (2.58)
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Figure 2.5: Generic phase-estimation scheme.

For coherent light, Poisson statistics of the photon distribution implies an
uncertainty in photon number of

SN = /(N), (2.59)

which limits the phase precision to the so-called shot noise:

1
(N}

5 > (2.60)

However, it can be shown that this shot-noise ‘limit’ can be broken with
non-classical states of light like squeezed and entangled states. In prin-
ciple, the fluctuations in photon number can be as high as the photon
number, leading to the so-called Heisenberg limit:

5o > - (2.61)

The above reasoning is not a rigorous derivation as pointed out in [62] and
[63]. The reason is that Eq. is derived by operator algebra, while
no Hermitian operator for phase exists [62]. For example, Eq. does
not hold for the vacuum state. A more rigorous treatment will be given
below.

2.3.2 Operator approach

Consider the generic parameter estimation scheme of Fig. The steps
of this approach can be written mathematically in terms of operators
(Fig. : After preparing the input probe state ™), the interaction
between probe state and system is represented by a unitary operator U (9).
The output state after the interaction is |)°“) = U(¢) [¢™). When the
interaction takes place in only one of the arms of an optical interferometer,
the unitary operator acts only on this mode: U (p) = eivalaz,
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(a) (b) Intensity
—o e O
N N o
¢

0o

Figure 2.6: Interferometer with product state input. (a) The relative
phase between the interferometer arms is modeled by an additional phase
shift in one arm. (b) The intensity at each detector shows a sinusoidal
dependence on the phase shift. The uncertainty in intensity translates
into an uncertainty in phase.

Phase estimation with product states

Consider an entangled single-photon state as input of an optical interfe-
rometer (Fig. [2.6)):
1

[¥5p) = 7

where the two modes are realized by the different spatial modes. Under
these conditions the output state becomes:

028, 5 = [1.® U ()] [0), 5
N . 1
—M®aMﬂ7;mmm+MJny
1

V2

The expectation value of the operator for a single-photon (SP)

(11,0015 +10, 1)y 5), (2.62)

(11,0), 5 4 €10,1), ,) (2.63)

Agpr = [0,1)(1,0] + [1,0)(0, 1| (2.64)

is
(Asp1) = (¥|Agpi|v) = %(Gi(Zb +e7) =cos . (2.65)

In all practical applications, not one but N photons will be sent to get an
estimation of the phase. Mathematically the corresponding operator Ay
can be described by a sum of operators Agp; of each single photon, where
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each operator acts only on the ¢’th single photon, that is represented by
the state 1) ¢p;:

Ay = (|0, 1)(1,0] + |1,0)(0,1)sp1 + -.. + (|0, 1)(1,0] + [1,0)(0, 1|)spn .

(2.66)
Calculating the expectation value over all N states gives:
(AN> = <¢|SPN W’sm AN |77Z)>SP1 |1/’>SPN
= (¢ Asp1 |¢>SP1 + ..+ (Y| Aspn |¢>SPN
= N cos ¢ (2.67)

Since A2, is the identity operator and A% is a sum of N identity opera-
tors, the expectation value for A%y, is 1 respectively N for A%, giving a
variance for Ay of:

(0AN)? = (A2) — (Ap)? = N(1 — cos? ¢) = N sin® ¢. (2.68)

The variance of the phase can be approximated from this result:

(30)? ~ (3An)? <—d<;4¢N>>

1
_ i 02
= Nsin“ ¢ Nl & S
B 1
N
1

This means that the lower bound for the uncertainty in phase is given by
the shot-noise limit.

Phase estimation with NOON states

The uncertainty can be reduced to the Heisenberg limit, when entangled
states are used [64), [65], 66}, H6].

A NOON state is a highly entangled state that represents the super-
position of the state when N photons are in mode 1 and no photon is in
mode 2 and vice versa (Fig. 2.7)).

1
|N . 0>172 == —2 <|N, O>1,2 + ‘0, N>172) (270)
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Figure 2.7: Interferometer with NOON state input. (a) The additional
phase shift is acquired N times by the N-photon NOON state. (b) The
phase dependence of the coincidence counts oscillates faster by a factor

of N compared to a product state input. The steeper slope results in a
reduced phase uncertainty.

Y

In order to generate a NOON state in the interferometer, the first beam
splitter has to be special in the sense that it either transmits or reflects
all NV photons. In the two-photon case this can be achieved by the Hong-
Ou-Mandel effect. The output state of the interferometer is given by:

[YRGoN) 12 = [ﬁ ® U(¢)] [ Noon) 1.2
1 7 aTaz 1
= [l @en ]E”N? 0)15+10,N);5)
1

V2

It should be noted that in this case the phase shift in the second term
enters with a factor of V. The expectation value for the NOON state of
the operator

(I, 0)1,2 +€iN¢|Oa N>1,2)- (2.71)

Anoon = [0, NY(N, 0| + |N,0)(0, N| (2.72)

1S now

(Avoon) = (V| Anoon|t) = = (€™ +e7N?) = cos N¢. (2.73)

N | —

The variance of A ~oon is analog to Eq. lb

(6Anoon)? = (A% pon) — (Anoon)? =1 —cos? N = sin® N,  (2.74)



46 2. Theory

which gives a phase variance of

(69)° ~ (6Anoon)? (M)

do
1

=sin?N¢p ———

si” N g N2sin? N¢
1
:m
1

= 5¢%N. (2.75)

This shows that the shot-noise limit can be beaten, when NOON states
are used as an input resulting in a minimum phase uncertainty given by
the Heisenberg limit. This property of NOON states that is called super-
resolution has been demonstrated experimentally [12) 67, 14]. In these
experiments, the phase shift between two orthogonal polarization modes
was imprinted by a wave plate.

NOON state detection

The previous derivation assumed the availability of the operator A NOON =
|0, N)(N,0| + |N,0)(0, N|. Experimentally, it is normally not possible to
implement such an operator. At the output of the interferometer, the
NOON state is recombined on a beam splitter and the phase information
has to be deduced from the signal of (number-resolving) single-photon
counters at the output ports of the beam splitter. In this section we
evaluate the limits in phase estimation under experimental conditions.

A NOON state can be written in terms of creation and annihilation
operators for modes 1 and 2:

The second analyzing beam splitter transforms the modes in the following
way:

1
V2

. . . . 1. .
ai = (a?S + ai) ag = E(ag — ai) ) (2.77)
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For the operators of the NOON state this yields:

@ =% (%) (@) @l (2.78)

@Y =3 (%) e (@) ()| (2.79)

where ¢, are the binomial coefficients ¢, = (];[ ) Inserted into Eq. 1}
this gives:

) = (i) i[ S @)V ()1 + eV +

+ Y a@h)" @b 1 —e™N) | 10).  (2.80)

The two different sums for even and odd k in this expression correspond
to even and odd photon numbers on the two single-photon counters, if
N itself is even. For N = 2 these different outcomes can easily be dis-
tinguished as the odd state induces coincidences of detection events at
the two photon counters, whereas the even state does not. For NOON
states with higher photon numbers the difference between even and odd
states can be measured with number resolving photon counters or further
splitting of the beam after the beam splitter. The respective operators

Aoven = 0, NY(O, N| + |2, N — 2)(2, N — 2| + ... 4+ [N, 0)(]N, 0/ (2.81)
Agga =1, N = 1)1, N — 1| + ... +|N = 1, 1)(N - 1,1| (2.82)
A = Avven + Aoad (2.83)
A = Acven — Aoaa (2.84)

have the following expectation values:
. 1 ‘ ‘ 1
(Ayen) = Z[(1 + 7N (1 4 N = 5[1 + cos N¢] (2.85)
. 1 . 4 1
(Apaa) = Z[(l — e NN (1 — N = 5[1 — cos N¢] (2.86)

(Ay) =1 (2.87)
(A_) = cosN¢. (2.88)
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Even and odd number states show different oscillatory behavior when the
phase is varied, but both expectation values show a period of N¢ meaning
that a smaller phase difference is resolvable compared to a non-entangled
state. The variance of the difference operator between even and odd states

A_is:
(A_)? = (A%) — (A2 =1—cos’ N = sin? N¢. (2.89)

Analog to Eq. (2.69) the phase variance becomes

. —2
~ d{A_) . 1
dp)? ~ (6A_)* | —— =sin® N¢p ——— 2.90
( ¢> ( ) ( dqb ) S (b N2 SinQ N(b ) ( )
which results in a phase uncertainty of
0 =~ L (2.91)
~~ N. .

2.3.3 Fisher information approach

The results of the previous section can also be derived in a different way
using the formalism of Fisher information.

Consider the interferometric scheme of the previous sections. The out-
put state of the interferometer is measured by projection measurement.
In general, the output state is a mixed state and therefore has to be de-
scribed by the density matrix p. The probability to detect outcome 7 given
an unknown true value of the phase of ¢ is

P(i¢) = Tr{IL; p(¢)} (2.92)

The maximum information that can be deduced from the measurement
outcomes about the unknown phase is called Fisher information (FI) [68]

69, [70]:
ZP il9) (alnP( W) (2.93)

It should be noted that the FI is additive, i.e., the FI provided by several
independent measurements sums up to the total FI. The maximum of the
FI over all possible measurements is called quantum Fisher information
(QFI). For pure states the QFI in an interferometric setup is given by

58, 59, [71]:
T =4[ (o) ()) — (W' ()| ()], (2.94)
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where |1)'(¢)) denotes the derivative d|¢)(¢))/0¢. From Eq. the FI
of a single-photon state at the output of an interferometer can easily be
calculated to be Z = 1. Instead, for an N-photon NOON state input the
FI becomes Z = N?2.

The FI is an important parameter in quantum estimation theory, as it
is related to a strict lower bound on the phase uncertainty. This bound is
the so-called Cramér-Rao bound [72] [73] [69, 58]:

1

00 2 ——,
Vil

(2.95)

where p is the number of repetitions of the experiment.

Inserting the values of the FI for a single-photon state and N repetitions
gives the same limit in phase estimation as in the previous sections, the
shot-noise limit:

5o > NIk (2.96)

The Cramér-Rao bound for a NOON state input (without repetitions)
leads to the Heisenberg limit:

1

06> . (2.97)

2.4 Squeezed states of light

So far, the thesis has discussed non-classical states of light in the single-
photon or discrete-variable regime, where the intensity of light is a dis-
crete variable, i.e., photons can be counted. When the light intensity is
increased, so that discrete photon events are not resolved anymore, the
intensity effectively becomes a continuous variable. Quantum effects, how-
ever, can still be observable [74]. In the experiment described in Chapter
[0, quadrature-squeezed light is produced and converted into polarization-
squeezed light, which is then used to improve the performance of a phase
estimation measurement. The following section briefly introduces the
concepts of quadrature squeezing and polarization squeezing, before the
metrological advantage of squeezed light is discussed.
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2.4.1 Quadrature squeezing

One set of continuous variables that describes the quantum state of a
system are the so-called quadrature operators of the light field [75]:

Xi=a+al X, =i(a" —a). (2.98)

These satisfy the commutation relation [Xl, Xg] = 2¢. For the variances
of the quadratures, the following uncertainty relation holds

var(X;) var(Xy) > ‘( X1, X, >‘ (2.99)

where the variance of operator A is defined as var(A) = (A2)—(A)2. While
the individual variances of the quadratures of a coherent state are equal
to 1, quadrature-squeezed states show a lower variance than a coherent
state in one quadrature at the expense of a higher variance in the other
quadrature:

var(f(l)‘g) < Var(f(l)w or VELI'(XQ)‘{) < Var(f(2)|a>, (2.100)

where the subscript |£) denotes a squeezed state and |a) denotes a coherent
state.

Mathematically, the squeezed state is constructed by a squeezing ope-
rator, defined in the following way:

5(6) = exp E(&*aﬂ _ ga”)} , (2.101)

with & = re??, where r > 0 is the squeezing parameter and 0 < 6 < 2.
The squeezing operator creates and annihilates pairs of photons and can
therefore be described as a two-photon generalization of the displacement
operator [70]. Sometimes squeezed states are therefore referred to as ‘two-
photon coherent states’ [77].

2.4.2 Polarization squeezing

As it has been the case in the discrete-variable regime, we are interested
in the polarization degree of freedom. The polarization state of light is
described by the Stokes parameters

So = dbap + alay

Sy = dban — alay

Sy = a},av +alay

Sy = zaVaH — Za}{av, (2.102)
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(a) Sy

Figure 2.8: Phase-space representation of a polarization-squeezed state.
(a) The uncertainty area of a coherent state is represented by a circle
(light green), while the uncertainty area of a polarization-squeezed state
forms an ellipse (dark green). (b) The angle of the ellipse in phase-space 6
is determined by the relative phase between local oscillator and squeezed
vacuum.

where the subscripts indicate horizontal (H) and vertical (V') polariza-
tion components [78]. Analogously to quadrature squeezing, polarization-
squeezed states are those that show a variance smaller than that of a
coherent state with the same power for at least one Stokes parameter [74].

There are different ways to produce polarization squeezing. One pos-
sibility is to overlap two quadrature squeezed states [74] [79], another to
overlap a single quadrature-squeezed beam with a strong coherent beam
of orthogonal polarization (‘local oscillator’) on a polarizing beam splitter
180, 1.

In our experiment, we follow the second approach with a horizontally
polarized local oscillator. The combined state shows a strong horizontal
polarization, i.e., S, ~ S, with squeezed quantum fluctuations in S'y and
S,. The squeezing behavior of this state can therefore be conveniently
visualized by a projection onto the Sy,SZ plane (Fig.2.8) and so it becomes
useful to define the operator qu = S cos ¢+ S, sin 0, Wlth Var(S¢) (N).
The squeezing criterion for this state becomes

Var(§¢)|5> < Var(5'¢)|a> (2.103)

for some value of ¢. While the uncertainty area of a coherent state shows
a circle in the phase-space diagram, the uncertainty area of a squeezed
state is represented by an ellipse (Fig. [2.8/(a)) [82, [76].

The production of polarization squeezing is a phase-sensitive process.
So far, this phase # was assumed to be fixed at # = 0. A change of
the relative phase between the squeezed vacuum and the local oscillator
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corresponds to a rotation of the polarization-squeezing ellipse in the S'y, S,
plane (Fig. [2.8/(b)) [78].

In the experiment we detect the signal with a balanced polarimeter:
The combined signal is rotated by a half-wave plate into the 45 degree
basis and split on another polarizing beam splitter. The signals on the
two output ports are detected by two photodiodes and then subtracted.

2.4.3 Phase estimation with squeezed states

If squeezed light is used in an interferometric setup, the detection noise
can be reduced in the following way.

Consider that one input port of the interferometer a is fed by coherent
light |«). If the other input port b is open, i.e., has no input light, phase
noise is given by the shot-noise limit. This can be interpreted as phase
noise from the open input port, where vacuum fluctuations enter [75]. If
instead light that shows less fluctuations than vacuum, i.e., a squeezed
vacuum state |€) is injected into the open port of the interferometer, the
shot-noise limit can be broken.

The input state is a product of the coherent state |a) and the squeezed
state |£):

[in) = 100), 1€), = Da(@)S5(€) [0), (2.104)

where D, («) is the displacement operator and S*b(g ) the squeeze operator,
acting both on the vacuum state. The state evaluation of this input state
in the interferometer can be described by three transformations: The two
beam splitter transformations and the additional phase shift in one of the
interferometer arms. When these transformations are described in the
framework of the SU(2) rotation group as in [83] [76], it can be shown that
under the conditions § = 7/2 and N > sinh? r, where N is the number
of photons, the phase uncertainty becomes [84] [76]

bt

S5 = jﬁ

Since r > 0, a phase uncertainty below the shot-noise level is achieved.

(2.105)

2.5 Faraday effect

As described in the previous sections, quantum light can increase the
sensitivity in a phase measurement. The goal of this thesis is to let this
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phase shift be imprinted onto the photonic state by an atomic medium.
This would allow for measuring an atomic property with better than shot-
noise-limited sensitivity. One way to achieve a phase shift from an atomic
system is by Faraday rotation [85]. The Faraday effect is a linear magneto-
optical effect by which the polarization plane of a linearly polarized probe
beam is rotated in a medium that shows optical anisotropy [86, [87].

In the following, the effect of the atomic medium on the optical states
is described. This description will be from the perspective of optical in-
terferometry, in which the atomic medium is described by the real and
imaginary parts of the refractive index, which will be different for the two
circular polarizations. The way in which the atoms produce this refractive
index is a subject in itself: A full description of the atomic physics involved
in these experiments is quite complex. The various situations encountered
in this thesis involve Doppler broadening, atomic transit through probing
and pumping beams, optical pumping, linear and nonlinear Zeeman shifts,
and radiation trapping. Here only a schematic description is presented and
the reader is referred to [88] 8, [89)] for details.

The Faraday effect can be understood as a polarization interferome-
ter: The linear input polarization decomposes in left- and right-circular
polarization. Due to the anisotropy, the two circular polarizations expe-
rience different absorptive and dispersive features of the medium. The
acquired phase between the two circular polarizations leads to a rotated
linear polarization after the medium, while the differential absorption re-
sults in elliptical or circular polarization. In this thesis, a vapor of alkali
atoms serves as anisotropic medium. If no magnetic field is applied and
the atomic medium is isotropic and in a thermal state, the medium in-
teracts symmetrically with left- and right-circularly polarized light, hence
no polarization rotation takes place (Fig.[2.9](a)). The anisotropy can be
induced by an external magnetic field (normal Faraday effect, Fig. 2.9/ (b))
or by a population imbalance of Zeeman sublevels (paramagnetic Faraday
effect, Fig. [2.9)(c)).

When a magnetic field is applied to the atomic medium in the direc-
tion of the propagation of the probe beam, the sublevels shift due to the
Zeeman effect, which results in different resonance frequencies for right-
and left-circularly polarized light (Fig. [2.9/(b)). For a given frequency of
the probe light, this leads to differential absorption (circular dichroism)
as well as to differential dispersion (circular birefringence).

Another way to break the symmetry of the interaction of right- and
left-circularly polarized light is spin-polarization of the atomic ensemble.
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(a) —_— b —_— c —_—
AN ANNA
e
e e _ e Y Y o _ o .swmee
mp -1 0 +1 ——

Figure 2.9: Atomic energy level structure of the Faraday effect. Right-
(o) and left-circularly (o4) polarized light is absorbed by the atomic
ensemble. (a) No Faraday effect. Without applied magnetic field and
population imbalance the two circular polarizations are absorbed sym-
metrically. (b) Normal Faraday effect. Due to an external magnetic
field the Zeeman sublevels shift. (c¢) Paramagnetic Faraday effect. The
isotropy of the medium is broken by a population imbalance of Zeeman
sublevels.

A population imbalance in the Zeeman sublevels results in a stronger
absorption of one circular polarization and in a different real part of the
refractive index (Fig. [2.9/(c)). The spin-polarization can be induced by
optically pumping the atoms with a circularly polarized pump beam [90)].

We follow the theory of [91} [92] 93, [88] to provide an expression for the
electric field and intensity of a light beam after a Faraday interaction with
an atomic medium. We consider a linearly polarized, monochromatic,
weak-intensity probe beam propagating in z-direction through an atomic
vapor. A magnetic field B, is applied along the propagation direction.
The electric field of the incident beam can be written as:

E(0,t) = Epe. coswt, (2.106)

where the electric field vector E oscillates in the x,y plane: e.=e, cose —
e, sin e. Inside the anisotropic atomic medium of length L, the propagation
of the two orthogonal circular polarization components is governed by
different wave numbers k4

E ‘ .
E(z,t) = 70 (A+e+e’1(“t’k+z) + A_e_eiwimh-2) 4 c.c.), (2.107)

where ki = “(n+ + iax), ax are the absorption coefficients and n. the
refractive indices in the medium for oy polarized light, Ay = A%, + 1A%
and e} = :F\/ii(ex +ie,).

To measure the change of the polarization described in Eq.[2.107] often,
a polarizer is used in the detection. Certainly, the intensity measured
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after the polarizer depends on the relative angle between the polarization
direction of the light after interaction with the atomic medium e and the
polarizer angle 6

Iy = (E(L,t) - ep)?, (2.108)

where eg = e, cos ) — e, sin . Evaluating Eq. (2.108]), the intensity that is
transmitted by the polarizer is then given by [92]

I
Ig — ZO (672a+wL/c + 672a_wL/c)
I L
—l—EO cos |2(e — 0) + (ny — n,)w— e~ (etaz)wl/e (9 109)
C

where [ is the incident intensity, w is the angular frequency of the probe
light. Using the identities cos 2z = 1 — 2sin® z and cosz = — cos(z — 7),

Eq. (2.109)) can be transformed to

[9 — % (€7a+wL/c . efoz_wL/c)2
wlL

2| e lerta)wl/e (9 110
5 | € ( )

1o sin? [(e— 0 — g) + (ny —n_)

The first term describes the differential absorption due to circular dichro-
ism, this is sometimes also called ‘parity nonconservation rotation’ [92].
The second term leads to Faraday rotation with an overall absorption fac-
tor. In the case that the Faraday rotation takes place between crossed
polarizers (e — 0 = 7/2), the transmitted intensity is at a minimum and
Eq. reduces to the corresponding equation given in [8§].

In this thesis, the Faraday effect of two extreme cases of this equation is
exploited, for a narrowband atomic-based filter and for the magnetometer
application.

2.5.1 Atomic magnetometer based on Faraday effect

For the magnetometer application described in Chapters [0] and [0}, it is
desirable that the measured signal depends directly on the magnetic field
strength. Since both input probe states — NOON states and squeezed
states — are sensitive to losses, the absorption in the atomic medium should
be kept to a minimum. For these reasons we rely for the magnetometer
application on the normal Faraday effect far-off-resonance. At a large
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detuning, the differential absorption is negligible and Eq. (2.110)) reduces
to

wlL

= | elorta)wl/e (9111
5 | € ( )

Iy = I sin® (E—Q—g)+(n+—n_)

The Faraday rotation angle ¢ is thus given by

¢ = (ny —n_)%. (2.112)
To measure the Faraday rotation angle, a convenient way is to use a bal-
anced polarimeter setup consisting of a polarizing beam splitter at 45°
from the linear input polarization and two photodetectors. The difference
signal of the two detectors is zero if no polarization rotation takes place.
Any rotation signal can therefore be detected on a zero background. An-
other advantage of this setup is its insensitivity to circular dichroism. For
these reasons, we use this detection scheme in the squeezed light magne-
tometer presented in Chapter [0l Chapter [5] describes the NOON state
probing of an atomic magnetometer. Since the NOON state is composed
of two orthogonal polarizations and at the single photon level, not the dif-
ference signal is taken, but the coincidence counts between the two output
ports of a polarization analyzer are recorded.

2.5.2 Narrowband filter based on Faraday effect

As explained in detail in Chapter [4 the ultra-narrowband filter devel-
oped in our group is based on a polarization interferometric scheme, in
which the two interferometer modes correspond to the two circular polar-
izations. One circular polarization needs to be completely absorbed in the
interferometer, the other polarization mode should be transmitted. For
this reason we work in the regime of the paramagnetic Faraday effect on
resonance. In this regime, the circular birefringence is negligible and only
the differential absorption of the circular polarizations contributes to the
output signal. Under these conditions Eq. reduces to

1
I, = ZO (emorwhble — gmo—whie)?®. (2.113)
In the extreme case that one circular polarization is completely absorbed

and the other one completely transmitted, the intensity of the transmitted
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light takes its maximum of 1/4 of the incident intensity. The atomic-based
filter therefore shows a maximum efficiency of 25%.

Light that is close to, but not exactly on resonance will experience a
polarization rotation and can be transmitted. This contributes to the
linewidth of the filter. In our case, this effect is negligible as the linewidth
of the central frequency mode of the incident beam is much narrower than
the linewidth of the filter.
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’Many things I can command the mirror to reveal,’
she answered, ’and to some I can show what they de-
sire to see. But the mirror will also show things un-
bidden, and those are often stranger and more prof-
itable than things which we wish to behold. What
you will see, if you leave the mirror free to work, I
cannot tell. For it shows things that were, and things
that are, and things that yet may be. But which it is
that he sees, even the wisest cannot always tell. Do
you wish to look?’

— J.R.R. Tolkien, The Fellowship of the Ring

Cavity-enhanced down-conversion

Our goals in atomic quantum metrology require quantum states of light
with certain characteristics, such as high brightness, very narrow band-
widths and high indistinguishability. Spontaneous parametric down-con-
version is a convenient way to generate quantum states, but suffers from
relatively low brightness, gives little control of bandwidth and does not
necessarily provide highly indistinguishable photons. Adding a cavity nar-
rows the bandwidth and also provides resonant enhancement. This chap-
ter describes the design, construction and characterization of the cavity-
enhanced down-conversion source used in the thesis.

3.1 Introduction

Spontaneous parametric down-conversion (SPDC) is the standard method
in quantum optics to produce single photons, photon pairs and squeezed
light. Compared to other sources of quantum light, it is a relatively simple
method, the emission shows a narrow bandwidth and its direction is de-
termined by momentum conservation. Depending on the application, the
emission can be tailored to be very broadband [94] or very narrowband
[28]. While in the latter case the bandwidth is narrow in comparison with
most other single-photon sources, it still extends over at least tens of GHz
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leaving a big mismatch to the natural atomic linewidths of a few MHz.
In order to reduce the bandwidth of the emission to the bandwidth of an
atomic transition, the SPDC photons have to be filtered in frequency. A
filtering with subsequent cavities is possible [95], but decreases the photon
flux by orders of magnitude rendering many experiments with the filtered
photons unpractical or impossible. As opposed to the filtering scheme af-
ter the generation process, the photons can be tailored in frequency during
generation if the SPDC process takes place inside an optical cavity. This
field of cavity-enhanced SPDC was started by work of Z. Y. Ou et al.
[T7, 18, 96] and continued with increasing interest in the last few years
[97, 98, [33], 99], 100, 10T, 102}, B34]. The cavity geometry enhances the cre-
ation of photon pairs into the spatial and spectral modes of the cavity.
All the spectral cavity modes that lie within the phase-matching band-
width of the SPDC process are populated. The cavity can be designed to
achieve atom-resonance of the frequency-degenerate mode. While subse-
quent filtering is necessary to block the non-degenerate modes and achieve
single-mode emission, the filter requirements for cavity-enhanced SPDC
are less stringent than for free-space SPDC and a much higher photon rate
can be achieved [103], 102, 34, 104 105].

The following sections describe the design of the SPDC cavity, including
the choice of the nonlinear crystal, the experimental setup, and characteri-
zation measurements, such as Hong-Ou-Mandel interference and quantum
state tomography.

3.2 Photon-source design

3.2.1 Nonlinear crystal

For our experiment, we have the following requirements on the nonlinear
crystal: The crystal has to be type-II phase-matched for down-conversion
from 397.5nm to 795 nm, the frequency of the D; transition of rubidium.
It should show a large nonlinearity for that process and exhibit no spatial
walk-off between signal and idler beams. The phase-matching temperature
should be above room-temperature to avoid water condensation on the
endfaces.

The crystal that provides the best performance with respect to these re-
quirements is a periodically-poled potassium titanyl phosphate (PPKTP)
crystal with a poling period for the type-II process of 9.4 um. At the time
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Figure 3.1: Microscopy picture of a type-II PPKTP crystal. The surface
has been edged with HF to achieve a contrast in the height of the domains.

when we purchased the crystal, the longest available length was 20 mm
and the biggest aperture 1 mm by 2mm. The long crystal length guaran-
tees a tight phase-matching condition and therefore a narrow bandwidth.
The FWHM of the crystal phase-matching bandwidth is calculated to be
1/(|k, — K}]l) = 148 GHz, as described in Section[2.1.2] This bandwidth is
narrow in the SPDC context, but still orders of magnitude larger than the
atomic linewidth of rubidium. The phase-matching temperature is slightly
above room temperature. The domain structure of a type-II PPKTP crys-
tal is shown in Fig.[3.1} This microscopy image was taken by coworkers in
the group of V. Pruneri at our institute. To study the domain structure
of the crystal, its surface was etched with hydrogen fluoride (HF). For
differences in the polarity, only domains with the poling in one of the two
directions are attacked by the HF, which leads to a contrast in the height
of the domains that can be observed under a microscope.

3.2.2 Experimental setup

The exact frequency of the pump beam is achieved by starting with an
external cavity diode laser, which is locked to the D; transition of ru-
bidium. The locking is done by saturated absorption spectroscopy with
the error signal being generated by FM spectroscopy [106], 107, 108]. For
this scheme the laser current is modulated at a frequency of 20 MHz. A
small part of the laser intensity is sent through a rubidium vapor cell
in a double-pass configuration and detected by a photodiode. When the
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Figure 3.2: Experimental temperature phase-matching curve. The data
points show good agreement with the sinc?-fit function.

frequency of the laser is scanned over the D transition of rubidium, the
transmission signal shows the Doppler-broadened absorption lines of this
transition. For a certain velocity-class that consists of those atoms that
are in rest, the absorption is saturated because of the double-pass con-
figuration, which leads to a spectrally narrow transmission feature. The
detected signal is amplified and then mixed with a local oscillator signal
at 20 MHz to extract the DC component. This DC component is pre-
amplified and sent into a field programmable gate array (FPGA) board
that serves as a Labview-controlled PID servo loop. The analog output of
the FPGA is the error signal that is fed back to the laser current.

The frequency-locked laser is then amplified by a tapered amplifier
(TA) and frequency doubled in a second-harmonic generation (SHG) cav-
ity. Laser, TA unit and SHG cavity are contained in a single box that
was bought as a commercial system (Toptica, TA-SHG 110). In the SHG
cavity that is also stabilized by FM spectroscopy, a 10 mm long lithium tri-
borate (LBO) crystal works as nonlinear crystal. The frequency-doubled
beam is passed through a single-mode fiber for mode cleaning and then
mode-matched onto a PPKTP, in which the SPDC process takes place.

In order to determine the crystal’s phase-matching temperature, the
intensity of the frequency-doubled beam was measured versus the crystal
temperature (Fig. . A diagonally polarized laser beam at 795 nm was
injected into the crystal and the power of the SHG signal was measured
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(a)
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)
Pump M3 PPKTP "

Figure 3.3: Cavity-enhanced SPDC setup. (a) Conceptual scheme.
PPKTP, phase-matched nonlinear crystal; KTP, compensating crystal;
M1-4, cavity mirrors; PD, photodiode. (b) Photo of the cavity.

with a photodiode. The focussing parameters of the 795nm beam were
chosen to be equal to the expected characteristics of the generated beams
in a SPDC process. Fig. shows that the data points are in good
agreement with a sinc?-fit function. The fit function has its maximum
at 41.4° and a zero-to-zero base bandwidth of 1.8 K. This is close to the
estimated 1.4K calculated from Eq. using the On/0T-parameters
from [109]. As SHG and SPDC are supposed to show the same bandwidth,
the temperature bandwidth was measured by SHG, which is easier to
detect than the signal from SPDC.

3.2.3 Cayvity design

Although the PPKTP crystal shows a relatively narrow bandwidth of
148 GHz, this is still orders of magnitude broader than the typical natural
atomic linewidth. It is possible to narrow the linewidth without sacrificing
the photon rate by letting the SPDC process take place inside an optical
cavity. This enhances the emission into the spectrally narrow and spatially
single mode of the resonator. The overall enhancement in photon rate is
linear in the cavity finesse [32].

Our cavity is a ring cavity built in bow-tie design (Figs. (a) and
3.3l(b)). This decreases the losses in the crystal per roundtrip compared
to a linear cavity design and allows for a more flexible use of the input
ports. The cavity is formed by two flat mirrors (M1, M2) and two concave
mirrors (M3, M4) with a curvature radius of 100mm at a distance of
119mm. The cavity geometry was chosen to provide the desired beam



66 3. Cavity-enhanced down-conversion

50

40t

30F

20F

Beam waist (um)

10

0.1 0.11 0.12 0.13 0.14
Distance between curved mirrors (m)

Figure 3.4: Intra-cavity beam waist size. Dependence of the cavity
beam waist on the distance between the curved cavity mirrors. The
waist is relatively constant over a distance of about 1 cm.

waist at the center of the PPKTP crystal. The optimum waist size for the
down-conversion process as calculated from the Boyd-Kleinman theory
(Eq. (2.14)) is wep = 22.5pm. For a small beam waist, effects such as
gray-tracking and thermal lensing can become important. These effects
were studied theoretically and experimentally in our group [110]. It turned
out that at a beam waist size of 42 um thermal lensing is negligible. The
waist size was therefore chosen to be 42 um, which is provided by a distance
between the curved mirrors of 119 mm. The waist size is relatively constant
over a range of several millimeters around this central distance of the

curved mirrors (Fig. [3.4)).

Due to birefringence in the crystal, the two polarization modes expe-
rience different group velocities causing a delay between signal and idler.
This effect, which is present in all type-II setups, leads to a temporal
distinguishability of signal and idler photons. To compensate for the tem-
poral delay per round trip, a KTP crystal of the same length as the PP-
KTP, rotated by 90° with respect to the PPKTP around the beam axis,
is added to the long arm of the cavity (Fig. . The initial temporal
distinguishability in the creation process is compensated after the cav-
ity. The ring cavity design avoids problems with pairs generated in the
counterpropagating mode, which would not be compensated correctly.

The output coupler (M2) has a reflectivity of Roc = 93% at 795 nm,
while the other cavity mirrors are highly reflective (Ryp 795 > 99.9%) at
795nm and highly transmissive at 397.5nm (Ryr 3975 < 3%) resulting in
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a single-pass through the nonlinear crystal for the blue pump beam. The
curved mirrors are anti-reflection (AR) coated for 397.5nm; the crystal
endfaces also for 795 nm.

According to Eq. the gain per round trip g,; for 795 nm is

grt = \/ ROCR?[{[RTényS, (31)

where Roc is the reflectivity of the output coupler, Ryg is the reflectiv-
ity of the other three high reflecting mirrors and T, is the transmission
efficiency through one crystal surface for both, PPKTP and the compen-
sating KTP crystal. The crystal endfaces were anti-reflection (AR) coated
by the manufacturer (Raicol Crystals Ltd.). The specified residual reflec-
tivity is <0.5% per surface. According to Eq. These values put a
lower limit of 66 on the expected finesse.

The probability that a generated photon is lost within one cavity round-
trip due to absorption or scattering is Poss = 1 — R}z 10, = 0.015, which
leads to an escape efficiency of Py, = 82% (Eq. (2.17)).

The effective cavity length was measured to be 610 mm which corre-
sponds to a free spectral range (FSR) of 490 MHz. In order to determine
the finesse, an auxiliary beam was injected into the cavity and detected
at the output while the cavity length was scanned. The finesse is given
by the ratio between the FSR, i.e., the distance between two fundamen-
tal transmission modes and the linewidth of the cavity. The finesse was
measured to be 70 yielding a cavity linewidth of 7 MHz.

The four cavity mirrors are mounted on a solid block of aluminum to
provide a high passive stability. Additionally, to ensure a reliable operation
despite mechanical vibrations, the cavity can be actively locked. As in
the case of the lock of the laser frequency to an atomic transition and
the lock of the SHG cavity to the laser, the FM spectroscopy scheme
was chosen (see Section . The error signal is again generated by
the Labview-controlled FPGA system and fed back to a piezo-electric
transducer (PZT), onto which one of the cavity mirrors (M1) is glued.

3.3 Characterization measurements

3.3.1 Characterization setup

The cavity-enhanced SPDC setup was characterized in terms of bright-
ness, indistinguishability and photon statistics in a characterization setup
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Figure 3.5: Cavity-enhanced SPDC characterization setup. PPKTP,
phase-matched nonlinear crystal; KTP, compensating crystal; M1-4, cav-
ity mirrors; PBS, polarizing beam splitter; HWP, half-wave plate; QWP,
quarter-wave plate; SMF, single-mode fiber; PD, photodiode; SPCM,
single photon counting module.

shown in Fig.[3.5] The cavity output passes through a Michelson-geometry
compensator, in which signal and idler photons are split by a polarizing
beam splitter (PBS1). Each of the arms of the interferometer contains
a quarter-wave plate (QWP) set to rotate the polarization by 90° at a
double-pass. The relative delay between the two orthogonally polarized
photons of a pair can be varied by changing the arm length of one of
the interferometer arms. This delay line is also used to compensate for
the initial timing distinguishability induced by the creation process in the
birefringent PPKTP. After the recombination of a pair, it is sent through
a half-wave plate (HWP2) that determines the measurement basis fol-
lowed by PBS2. Both output ports of PBS2 are coupled into single-mode
fibers and sent to single-photon counting modules (SPCM, Perkin Elmer,
AQ4C). The pulse events are registered and processed by coincidence elec-
tronics (FAST ComTec, P7888) with a resolution of 1ns. To eliminate the
background noise caused by the locking beam and to protect the SPCM,
the locking and measuring intervals are alternated using a mechanical
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chopper.

In the experiment, we first set the locking beam to a polarization of
45° and measured the cavity transmission for horizontally (H) and ver-
tically (V') polarized components. The transmission peaks for the two
polarizations were overlapped utilizing temperature tuning of the com-
pensating KTP crystal, whereas the temperature of the PPKTP crystal
was kept stable at the phase-matching temperature for degenerate opera-
tion at 41.4°C. Both crystals were temperature-controlled with a long-term
stability of better than 5mK. The optimization of the pump-beam mode
matching was performed by maximizing the count rates on the single-
photon detectors.

3.3.2 Brightness

At a pump power of 200 uW the photon rate in each arm (Rgyr1,Rs072)
was measured to be 142 000 counts/s during the measurement period
(when the chopper was open) with a coincidence rate of 34 000 pairs/s.
These numbers are not corrected for any losses. The unavoidable acciden-
tal coincidence rate R,.. in the coincidence time window of 7 = 256 ns is
calculated to be

Racc = RSMFl RSMFQ 7 =15 000 pairs/s, (32)

resulting in a corrected coincidence rate of 29 000 pairs/s, that is, an
overall detection efficiency of 20%. Assuming a quantum efficiency of 49%
for the SPCM, the collection efficiency is estimated to be 41%.
Considering the bandwidth, a spectral brightness of 450 000 pairs per
second per mW of pump power per nm of bandwidth is calculated. Within
the crystal bandwidth, the output spectrum consists of roughly 600 modes,
the degenerate one at the rubidium D; line. The modes are spaced by
a FSR of 490 MHz. While the bandwidth of the cavity is 7MHz, the
bandwidth of the correlated photon pairs is smaller than that by a factor

of V/v/2 —1 [34], i.e., their bandwidth is 4.5 MHz.

Taking into account the limited quantum efficiency of the detectors
(49%), the single-mode fiber-coupling efficiency (58%), the escape effi-
ciency of the cavity (82%) and the overall transmission through all optical
elements after the cavity (90%) a conditional detection efficiency of 21%
is expected. Given this parameter, we estimate the pair production rate
of photons in the cavity to be 3.4 x 10° pairs/(s mW).
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Figure 3.6: Arrival time histogram of photon pairs. Experimental data
(upper bars) and theory (lower bars). The visibility of the experimental
data are limited by time resolution of the counting electronics and by
aliasing.

3.3.3 Arrival-time correlation measurement

The arrival-time correlation function contains information about the tem-
poral shape of the wave function. The temporal photon wave function of
photons from cavity-enhanced SPDC shows features based on three time
scales: the ring-down time of the cavity, the round-trip time of the cavity
and the coherence time of the SPDC process.

We measured the arrival time correlation function (Fig. by moni-
toring the coincidences between detection events on the two SPCM in a
time window of 256 ns for 30 seconds in the H/V basis. The experimen-
tal data (upper bars) are shown together with the theoretical predictions
based on Eq. (lower bars). Due to compensation, Aw, = Aw; = Aw
in our cavity. The time correlation function shows the typical double-
exponential decay reflecting the cavity linewidth of Av = 7MHz, the
inverse of the cavity ring-down time. The difference between two peaks
corresponds to the round trip time of the cavity of 7, = 2.032ns and
is the inverse of the free spectral range of 490 MHz. As the round trip
time is not an integer multiple of the resolution of our detection system
of 1ns, the arriving photons fall in between two measurement time bins
every 1 / 0.032 = 31 peaks leading to a decrease in fringe visibility with
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Figure 3.7: Hong-Ou-Mandel Dip. Points show measured coincidence
rates, line shows a fit to Eq. (3.4)).

a period of 31 peaks as can be seen in Fig. [3.6] These results agree with
the theory given in [33] for the case of compensated birefringence. The
coherence time of the SPDC process is below the measurement resolution
and cannot be measured in this way.

3.3.4 Hong-Ou-Mandel measurement

When the relative delay between the two photons of a pair is changed,
their degree of temporal indistinguishability is varied and the Hong-Ou-
Mandel effect can be observed. HWP2 was set to rotate the polarization
state of the photons from H (V) to +45° (-45°) (Fig. B.5). When we
measure in the +45° basis and with no delay, signal and idler photons of a
pair impinging on PBS2 are indistinguishable and exit on the same output
port of PBS2 leading to a drop in the coincidence rate as shown in Fig. [3.7]
The coincidence rate in the +45° basis was measured for different mirror
positions in the Michelson-geometry delay line over a range of 8 mm with
a step width of 0.2 mm, accumulating coincidence counts at each point for
30 seconds. All coincidences within the time window of 7 = 256 ns are
counted. The number of accidental counts due to double pairs is calculated
using Eq. and is subtracted. The data are also corrected for power
fluctuations in the pump. These fluctuations are quantified by monitoring
the singles counts (Rgyr1, Rsyr2) in both channels. The coincidences are



72 3. Cavity-enhanced down-conversion

then corrected in the following way:

Rcoin _ Rcoin,r‘aw (33)
VRsmr1Rsyvr2
As expected for an unfiltered type-II SPDC source, the HOM dip shows
a triangular shape [I11], 112] [113]. The statistical error bars are too small
to be displayed.

The model that we use for the fit is based on the theory given in [24].
The coincidence rate R, is expressed in terms of the difference Al be-
tween signal and idler paths, the average coincidence rate for large time
differences R, and a parameter ¢ with ¢ = 4/(l|k} — k}|), that depends
on the crystal length [ and the spectral derivative of the k-parameters of
signal and idler photons as introduced in Section [2.1.2}

Ruoin(Al) = Rung (1 A (%)) (3.4)

The function A(x) takes the value A(x) =1 — |z for |z] < 1 and A(xz) =0
elsewhere. The theoretical prediction of the base-to-base width of the
triangle 4¢/¢ = 2.03mm agrees well with the fitted value of 2.0 mm. The
drop of the coincidence rate for path differences larger than +2.5mm is
due to a change in coupling efficiency to the single-mode fibers, as the
efficiency was optimized for translation stage positions close to the bottom
of the dip. Therefore, data points over +2.5 mm were disregarded for the
fit. The visibility V' of the HOM dip that is defined by
Cmax - szn

Vo= T 3.5
Cmacc + Cmin ’ ( )

where C,,.. and C,,;, are the extreme points of the coincidence rate, is
a quantification of the degree of indistinguishability of the two photons
of a pair. The fit function displays a visibility of 96% with subtraction
of accidental counts and 83% without; the lowest point measured directly
shows a visibility of 90%. To reduce the rate of accidental counts due to
double pair generation even more, the HOM dip was also measured for a
very low pump power of 12 uW. For this measurement the visibility for the
lowest data point is 95% with subtraction of the accidentals and 90% for
the raw data. This visibility clearly indicates the non-classical character
of the down-converted photon pairs and their indistinguishability [114]. It
should be noted that all our measurements were done without any spectral
filtering.
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As demonstrated in this section, the cavity-enhanced photon-pair source
fulfills all our requirements in terms of brightness and indistinguishability.
The next section describes the careful characterization of the polarization
state of the created photon pairs by quantum state tomography.

3.4 Quantum state tomography

As mentioned already in the previous section, many applications in quan-
tum information, quantum imaging and quantum metrology rely on the
availability of high-quality single photons or entangled photon pairs. De-
pending on the kind of application, the requirements on a source of pho-
tonic quantum states not only include brightness and efficiency as dis-
cussed in Section [3.3.2] but also the degree of indistinguishability, purity
and entanglement of the output state. This section presents characteriza-
tion measurements regarding these properties. The work described in this
section was published in reference [104].

Many type-II SPDC sources with and without cavity-enhancement suf-
fer from relatively low indistinguishability of the generated pair-photons
that result in a low Hong-Ou-Mandel (HOM) dip visibility [37], e.g., in
[33], where the reported visibility was 76.8% and not all reasons for the
low visibility could be identified.

A limited visibility can be caused by distinguishing timing information,
coherent state-preparation errors, and decoherence. These three possibili-
ties cannot be differentiated by a HOM measurement. Nevertheless, multi-
particle states can be fully characterized, including decoherence and dis-
tinguishability of particles by tomographic techniques [53]. We apply these
techniques to the output pairs from the cavity-enhanced down-conversion
source, and show that cavity-enhanced down-conversion not only provides
a large photon flux, but is also capable of producing highly indistinguish-
able photons that can be used to create interesting and useful quantum
states such as a high-fidelity NOON state.

3.4.1 Experimental setup

The experimental setup consists of two parts, one for the preparation
of the state and the other for its analysis. The state preparation part
is based on the high-brightness cavity-enhanced down-conversion source
described in detail in the previous section. As principal light source we
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Figure 3.8: Quantum state tomography setup. SHG, second-harmonic
generation cavity; PPKTP, phase-matched nonlinear crystal; KTP, com-
pensating crystal; M1-4, cavity mirrors; PBS, polarizing beam split-
ter; HWP, half-wave plate; QWP, quarter-wave plate; SMF, single-mode
fiber; PD, photodiode; FBS, fiber beam splitter; SPCM, single photon
counting module.

use a single-frequency diode laser locked to the D; transition of atomic
rubidium at 795nm (Fig. [3.8)). The frequency-doubled part of the laser
pumps a type-II phase-matched PPKTP crystal inside an optical cavity.
After the photons leave the cavity, a variable retarder consisting of a
polarizing beam splitter, two quarter-wave plates and two mirrors in a
Michelson geometry produces a relative delay between the horizontally
(H) and vertically (V) polarized photons.

A general polarization analyzer, consisting of a quarter-wave plate
(QWP1) followed by a half-wave plate (HWP) and a polarizing beam split-
ter (PBS2) is used to determine the measurement basis as shown in Fig.
3.8 To generate a NOON state in the H/V basis another quarter-wave
plate (QWP2) can be added. The two output ports of PBS2 are coupled
to single-mode fibers and split with 50:50 fiber beam splitters. The four
outputs are connected to a set of single photon counting modules (Perkin
Elmer SPCM-AQ4C). Time-stamping was performed by coincidence elec-
tronics. The counting board (FAST ComTec P7888) that was also used in
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the experiment described in Section has a reduced resolution of 2ns,
when detection events on all four channels are measured. By considering
a time window of 150 ns, that is longer than the coherence time of each in-
dividual photon, we can evaluate the coincidences between any two of the
four channels. Using this detection setup we can both observe the stan-
dard HOM interference that requires two detectors and also implement
multi-particle tomography [49, 53, 54, 5T].

3.4.2 Multi-particle state tomography

We follow the tomography method developed in 53] [54] and presented in
Section in order to get a polarization characterization of the output
state of the cavity-enhanced down-conversion process. In the case of per-
fect indistinguishability of the photons of a pair, the photons are supposed
to be in the state |¢)7). We evaluated the coincidence counts for the same
10 different wave plate settings of HWP and QWP1 as in [53].

The acquisition time for each wave plate setting was 60 seconds. Ap-
plying a maximum likelihood reconstruction, we obtain the polarization
density matrix. The singles count rate corrected for accidentals during
the measurements was typically 10 000 counts/s.

The density matrix was measured for different delays between the pho-
tons corresponding to different positions in the HOM dip, i.e., to different
amounts of distinguishing information (Fig. . We generated different
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Figure 3.10: Reconstructed polarization density matrices. (a) center of
HOM dip, (b) edge of HOM dip, (c) outside of HOM dip (corresponding
to points in Fig. , (d) center of dip, but with system tuned to a
different frequency.

states as follows: a) center of dip b) mid-point of dip ¢) outside of dip.
In addition, we produced an unknown state d) by tuning the fundamental
laser by about 3.1 GHz from the frequency used in a) — ¢). No compen-
sations such as the adjusting of the crystal temperature were performed.
At this detuning we observe a reduced HOM visibility. Data for d) were
taken at the center of the dip, i.e., with zero relative delay.

For all these states we applied the same tomography procedure. Fig.
shows the elements of the real parts of the density matrices. The
imaginary parts are close to zero and are not shown.

We note that the populations in |¢p™) and [¢)~) change for different dip
positions: a) 94% and 4%, b) 68% and 28%, c) 49% and 50%, d) 66%
and 16%. We also note that while b) and d) have a similar amount of
HOM dip visibility, their density matrices look very different. In b) only
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HH

Figure 3.11: Reconstructed NOON state density matrix. (a) Real and
(b) imaginary part of the polarization density matrix of the pair-photon
state transformed to a two-photon NOON state.

the |¢)*) and |¢~) populations are significant, while d) shows also V'V
population and coherence between [¢)) and V'V. Thus b) shows distin-
guishability while d) shows some distinguishability but also decoherence
and coherent errors which cause non-zero off-diagonal elements to appear
in the density matrix. This shows clearly that multi-particle tomography
provides information not present in the HOM visibility, and can be useful
for identifying imperfections in generated states.

3.5 High-quality NOON state

The achieved high indistinguishability of the photons of a pair is the re-
quirement for the generation a high-fidelity NOON state. We introduce
another quarter-wave plate (QWP2) before the analyzing part of the setup
to create a two-photon NOON state in the H /V basis, which can be writ-
ten 1/v/2(|Hy, Hy)+€|Vi, V3)). Since the output state of the cavity [HV)
is already a NOON state in the basis formed by right-hand (R) and left-
hand (L) circular polarization modes |[HV) = i/v/2(|Ly, L) + | Ry, Ry)),
this state can be transferred into a NOON state in the H/V basis by
sending it through an additional quarter-wave plate at 45 degrees. In
Fig. [3.11] real and imaginary parts of the reconstructed density matrix
of a NOON state are displayed. The coherence of the state is partly
imaginary leading to a phase of ¢ = 0.10 between HH and V'V compo-
nents (Fig. [3.11}1(b)), which is, however, of no importance in the follow-
ing. The fidelity of this state with the corresponding ideal two-photon
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Figure 3.12: Phase super-resolution measurements. (a) Standard phase
measurement. Normalized singles detection at the transmitted port of
PBS2. In this measurement, only the H polarized part of the pair-photon
state was sent to the analyzer. (b) Super-resolving phase measurement.
Normalized coincidence detection between reflected and transmitted port
of PBS2 for a NOON state input. The shorter period of the coincidence
oscillations indicates super-resolution.

NOON state 1/v2(|Hy, Hy) + e¥?|V1, V3)) is 99%, making the state suit-
able for applications such as phase-estimation [14]. To demonstrate this
ability, we performed a super-resolving phase experiment. After passing
the NOON state, for this experiment in the circular basis (without QWP1
and QWP2), through the HWP, the coincidence counts between the out-
put ports of PBS2 for different HWP settings were recorded. In Fig.|3.12
the interference fringes of the coincidences are displayed together with sin-
gles counts from a measurement in which one polarization of the cavity
output was blocked. The pump power in this experiment was 200 uW and
accidental coincidences have been subtracted. The period of the coinci-
dence oscillations is shorter by a factor of two compared to the singles, as
expected for a two-photon NOON state. The sinusoidal fit function of the
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coincidences shows a high visibility of 90%. Reasons for a non-perfect vis-
ibility are slight imperfections of the polarization optics and of the beam
alignment.

After the description of the photon-pair source in Section and its
characterization in terms of brightness and HOM visibility in Section |3.3|
Section extended the characterization to quantum state tomography.
The generated NOON states show a metrological advantage compared to
coherent states. In order to be useful for a measurement on an atomic
ensemble, the photon states need to be atom-resonant. The necessary
filtering of the two-photon state will be the subject of the next chapter.






Mr. Bond, they have a saying in Chicago:
‘Once is happenstance. Twice is coincidence.
The third time it’s enemy action’.

— Ian Flemming, Goldfinger

Atom-resonant heralded single photons

For light-matter interaction at the single-photon level, the spectral res-
onance of single photons with atomic systems is a crucial requirement.
This chapter describes the design and performance of a novel ultra-narrow
atomic-based filter. The filtering of photons from the cavity-enhanced
down-conversion source of the previous chapter is presented. Furthermore,
the implementation of a heralded source of narrowband, atom-resonant
single photons is demonstrated.

4.1 Introduction

One of the paramount requirements for atomic quantum metrology with
photons is atom resonance and narrow bandwidth of the photons. Other
applications of quantum optics that also rely on the interaction of single
photons or entangled photon pairs with atomic systems have very similar
requirements [3, 05]. Especially, quantum memories in the discrete vari-
able regime that store a single photon in a crystal or atomic vapor are in
need of narrowband photon sources [115], [116], [117].

The cavity-enhanced SPDC design described in the previous chapter
restricts the photon spectrum to the cavity modes resulting in a multi-
mode spectrum. As the cavity is operated far below threshold to avoid
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stimulated processes, no mode competition takes place and all of the cav-
ity modes within the phase-matching bandwidth of the SPDC process
are populated. Locking of the cavity to a laser that itself is locked to
an atomic transition guarantees the atom resonance of the frequency-
degenerate mode. To select this mode, a very narrowband filter is nec-
essary that shows a high extinction ratio over the whole cavity emission
bandwidth. Further requirements on the filter are: frequency stability,
atom resonance, and single-spatial-mode operation.

Another way to select the degenerate frequency mode is to use one
or more consecutive filter cavities or etalons with incommensurate FSR
[103, 99, 102], O5]. Usually, one filter cavity is not sufficient, as it would
require a very high finesse. The high finesse is necessary to achieve a high
extinction ratio over the whole emission spectrum of the SPDC process
(large FSR) and at the same time a narrow linewidth, at least smaller than
the FSR of the SPDC cavity to block non-degenerate frequency modes.
Filter cavities, however, are sensitive to misalignment and need to be
locked to an atomic resonance, which creates problems of scattering of
locking light into the detection mode.

In our group we followed a new approach and developed a filter that
meets all of the above mentioned requirements. Two different versions of
the filter were built by A. Ceré and coworkers. A description of setup and
performance of the first version was published in [II8]. The application
of the second version to the filtering of cavity-enhanced SPDC photons
was published in [IT9]. The following section summarizes the working
principle of the filter and the implementation of the two filter versions.

4.2 Atomic-based filter

4.2.1 Working principle

While atoms are very specific in what frequencies they absorb, the desired
filter should transmit at those frequencies. It is possible to take advantage
of the frequency spectrum of an atomic system to build a filter that is
transmissive exactly for those frequencies that are at an atomic resonance.
We achieve this using an atomic-based filter, inspired by the “interaction-
free measurement” (IFM) strategy of A. Elitzur and L. Vaidman [120, [121]
122] (also known as “quantum interrogation” [123]).

The idea of the IFM proposal is the following: Consider a Mach-
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Zehnder interferometer with its two spatial modes between two 50:50 beam
splitters. If the interferometer is balanced, the fields interfere destructively
in one output port (‘bright’ port) and constructively in the other (‘dark’
port). For perfect interference all light exits at the ‘bright’ port. When
an opaque object is inserted into one of the interferometer arms, no inter-
ference takes place anymore and the light at the last beam splitter exits
equally into both outputs. The detection of a photon in the formerly ‘dark’
port therefore indicates the presence of the opaque object, although the
photon obviously did not interact with the object (otherwise it would have
been absorbed). The cost that the experimenter has to pay is that the
scheme is probabilistic and does not work every time. The success proba-
bility is 25%, because each photon has only 50% chance to be not absorbed
and out of these photons only 50% exit at the formerly ‘dark’ output port.
This efficiency can in principle be improved to values arbitrarily close to
100% by taking advantage of the quantum Zeno effect as was shown by
P. Kwiat et al. [122, 123]. IFM experiments have been proposed and
demonstrated in different systems [124] and for a variety of applications
including imaging [125] and quantum computing [126], 127, 128].

In our version of the IFM scheme, the opaque object is a hot atomic
vapor which is opaque (only) at the transition frequencies. This guaran-
tees that photons, that exit at the formerly ‘dark’ port, are spectrally at
an atomic transition frequency. A very robust and alignment-insensitive
interferometer is achieved, since the interferometer arms are not spatial
modes, but orthogonal polarization modes. Consequently, our filter has
a large angular acceptance and is thus practically insensitive to mode
misalignment. This is — along with intrinsic stability and intrinsic atom-
resonance — one advantage over filter cavities.

As the Faraday effect between crossed polarizers can be understood as
a polarization interferometer, we implement the filter using the paramag-
netic Faraday effect (see Section [2.5). To produce an imbalance between
the absorption coefficients of the two circular polarizations, a counter-
propagating pump beam is applied to optically pump the atomic ensem-
ble into a maximally-polarized spin state, in which the ensemble is trans-
parent for the left-circularly polarized component and absorptive for the
right-circularly component. Therefore, if the absorption is saturated, the
beam after the cell is left-circularly polarized and the photons exit on
both ports of the analyzing polarizing beam splitter with equal probabil-
ity. The efficiency of 25% is mathematically described by the factor of 1/4

in Eq. (2.113).
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Figure 4.1: Setup of first filter version. PBS, polarizing beam splitter;
HWP, half-wave plate; QWP, quarter-wave plate; WP, Wollaston prism;
GT, Glan-Thompson polarizer; PD, photodiode.

4.2.2 First filter version

The setup of the first filter version is shown in Fig. 4.1l A diode laser
locked to the 52S; /o(F=2)—5%P 2 (F’=1) transition of the D; line of ¥’ Rb
at 795 nm is used as probe beam. The interferometer setup consists of two
polarizers, a Glan-Thomson polarizer and a Wollaston prism, both with
extinction ratios of >10°. The atomic sample is a hot rubidium vapor
of natural abundance contained in a cylindric glass cell. The cell has a
length of 15 cm and a diameter of 2.5 cm and the windows are AR coated
on both sides. The cell is heated to a temperature of 65°C to achieve an
optical depth of 1.1. A coil around the cell produces a small orienting
magnetic field. The cell is shielded against other external magnetic fields,
such as the earth magnetic field by a p-metal shielding.

To prepare the atomic sample, the atoms are optically pumped by a cir-
cularly polarized pump beam resonant to the same F=2—F’=1 transition
of 8"Rb as the probe beam. In order to send the pump beam counter-
propagating to the probe beam, mirrors with holes in the center are used
(Fig. [4.1). The pump beam of large beam diameter (12mm) is reflected
partially by these mirrors, while the probe beam passes through the holes.
Due to Doppler shifts, the optical pumping only effects a portion of the
thermal velocity distribution and creates circular dichroism in a narrow
spectral region. The atom-resonant fraction of the originally H-polarized
beam is partly rotated to V-polarization. After the cell, a Wollaston prism
splits the beam in H- and V-polarized components. The filter achieves
a transmission of 14.6% and a power-broadened sub-Doppler linewidth of
80 MHz. Off-resonance, the extinction ratio is given by the extinction of
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Figure 4.2: Setup of second filter version. HWP, half-wave plate; YVO4,
Yttrium Vanadate crystal; IF, interference filter; PD, photodiode.

the polarizers and was measured to be >35dB.

4.2.3 Second filter version

The filter design was changed and improved in several ways, mainly in
order to be able to use the filter at the single-photon level and with two
orthogonal input polarizations.

One improvement is that the pump beam which was frequency-degene-
rate with the probe beam in the first version, is now implemented by a laser
resonant to the F=2—F’=3 transition of the D, line of 8’Rb. The large
spectral separation between pump and probe beam enables the removal of
contaminating pump photons by spectral filters before the detection setup.
Interference filters centered on 795 nm further reject the 780 nm pump light
with an extinction ratio of >10°. A pump power of up to 20 mW is used.
In this new setup, the beam diameter of the pump beam is chosen to be
smaller in order to achieve a more efficient pumping. Instead of mirrors
with holes in the center, d-shaped mirrors are used and pump and probe
beams form a very small angle.

Generation of narrowband 2-NOON states requires simultaneous fil-
tering of both orthogonal polarizations. Therefore, the polarizers (Glan-
Thompson polarizer and Wollaston prism) were replaced by two YVO,
crystals. The first crystal separates H- and V-polarized light by 1 mm and
lets the two polarization modes travel parallel to each other through the
rubidium vapor cell (Fig. [4.2). The vapor cell contains isotopically pure
87Rb to increase the optical depth at the same temperature compared to a
cell of natural abundance. The windows of the cell are wedged and angled
to reduce back-reflection, mainly of the strong pump beam, into the single-
photon detectors. For the same reason, the output beams are coupled into
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single-mode fibers. Despite these measures, for high pump power levels,
a contribution of pump light on the photon counters is seen. To reduce
this contribution to a level of the same magnitude than the detector dark
counts, the alignment of the pump beam needs to be adjusted.

A second YVOy, crystal introduces a second relative displacement, which
can re-combine or further separate the photons, depending on polarization.
Separated photons are collected, while re-combined photons are blocked.
A half-wave plate is used to switch between the “active” configuration, in
which only photons that change polarization in the cell are collected, and
the “inactive” configuration, in which photons that do not change are col-
lected. In the “active” configuration, the system acts as an IFM detector
for polarized atoms: a photon is collected only if it experiences a polariza-
tion change, i.e., if it is resonant with the optically pumped atoms, which
absorb one circular component of the photon polarization state.

This setup is well suited for blocking the non-degenerate modes of the
cavity-enhanced SPDC setup, since the neighboring modes of the degen-
erate mode at the rubidium transition are already 490 MHz detuned and
therefore outside of the filter linewidth of 80 MHz. The out-of-band ex-
tinction ratio is >35 dB over the whole SPDC phase-matching bandwidth.
The filter transmission is optimized by adjusting the overlap between
pump and single-photon mode, the rubidium vapor temperature and the
magnitude of a small orienting applied magnetic field. The temperature
is set to 65°C, which corresponds to an atomic density of 5 - 10! ecm=3.
The measured filter transmission of 10.0% for horizontal polarization and
9.5% for vertical polarization is limited by pump power.

4.3 Filtering of photon pairs

4.3.1 Time-correlation measurements

The improved version of the atomic-based filter can be used to filter the
down-converted photons. The whole setup is shown schematically in Fig.
[4.3] After leaving the SPDC cavity, the generated photon pairs are coupled
into single-mode fiber and brought to a different optical table in our lab-
oratory where the filtering setup is located. The normal photo-detectors
are replaced by fiber-coupled avalanche photodiodes (APD, Perkin Elmer
SPCM-AQ4C). The APDs show a dark count rate of approximately 400
counts per second. The measured contribution from pump photons is be-
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Figure 4.3: Setup for time-correlation measurement. SHG, second-
harmonic generation cavity; PPKTP, phase-matched nonlinear crystal;
KTP, compensating crystal; YVO4, Yttrium Vanadate crystal; HWP,
half-wave plate; IF, interference filter; APD, avalanche photodiode.

low the detectors’ dark count rate. Photon detections are recorded by a
counting board (FAST ComTec P7888) for later analysis.

First, the time distribution of the difference in arrival time between
signal and idler photons, i.e., the g(S?}(T)—function, is measured with the
filter in the “inactive” configuration at a much reduced pump power. The
histogram of the difference in arrival time between detection events in
the two APDs is shown in Fig. [4.4] It corresponds to the measurement
of the g ( )-function directly after the SPDC cavity presented in Sec-
tion [3.3] The blue bars represent the coincidence event detections within
time bins of 1ns, the resolution of the counting board. The black bars,
drawn inverted for better visibility, show the theoretical prediction based
on Eq. (2.25). The height of the theory histogram, the only free parameter,
has been set to match the height of the data. Experimental and theoretical
results are in excellent agreement. When the filter is “active”, the arrival
time difference histogram shows a smooth double-exponential shape, with-
out multi-mode interference (Fig.|4.5). This already indicates that only
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Figure 4.4: Arrival time histogram of unfiltered photon pairs. Experi-
mental data (upper bars) and theory (lower bars). The frequency-comb
structure is reflected by a comb-like structure in the temporal domain.
The visibility of the experimental data is limited by time resolution of
the counting electronics.
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Figure 4.5: Arrival time histogram of filtered photon pairs. experimen-
tal data (upper bars) and theory (lower bars). The disappearance of the
comb structure in the filtered case indicates the single-mode character of
the filtered fields.
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a single frequency mode is transmitted through the filter. The theory
(lower black bars) is given by Eq. for a single mode (I ;=7,,/2). It
should be noted that the data shows a very low background noise level.
Throughout, raw data are shown; background coincidences have not been
subtracted.

In this experiment we are interested in time correlations, but it is inter-
esting to ask if other kinds of correlations and possible entanglement, e.g.,
in polarization or in frequency, are also preserved by the filter, because
this will become important for the filtering of NOON states in the follow-
ing chapter. By design, the filter should transmit nearly equally different
frequency and polarization components of the selected cavity mode, pre-
serving correlations: absorptive and refractive effects vary on the scale of
the 80 MHz absorption linewidth, large relative to the 7 MHz of the cavity
mode. Also, the axial magnetic field scrambles any linear birefringence or
dichroism, giving equal response for the two linear polarizations.

4.3.2 Atom-resonance

To measure the atom-resonant fraction, we let the filtered photons of the
signal arm propagate through a rubidium vapor cell (Fig. . At room
temperature, the cell’s optical density (OD) is low (0.3) corresponding to
a transmission of 74% and coincidences between the detection events on
the two APDs are observed (Fig. , upper green bars). By heating the
rubidium cell, an optical density of 6, or 0.25% resonant transmission, is
reached. The coincidences drop to the background level (Fig. , lower

HWP 000000006000 IF
(S — Rb cell =
L_1]|w
Atomic CW laser
reference (780 nm)

APD 2T Rbcell

Figure 4.6: Setup for measuring atom-resonant fraction. YVO4, Yt-
trium Vanadate crystal; HWP, half-wave plate; APD, avalanche photo-
diode.
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Figure 4.7: Arrival time histogram of atom-resonant photons. Signal
photons pass through a rubidium vapor cell at an optical density of 0.3
(upper green bars) and at an optical density of 6 (lower black bars).

black bars). Within a coincidence window of 40 ns, the ratio of raw OD
0.3 coincidences to raw OD 6 coincidences is 11.6:1, indicating rubidium
resonance of at least 94% of the photons.

4.4 Heralded single-photon source

For a heralded single-photon source of high quality it is important that
the trigger photon heralds the presence of only one photon with negligi-
ble contributions from higher photon numbers. The figure of merit for
that is the conditional signal auto-correlation function at 7 = 0, géQ)(O),
introduced in Section 2.1.6]

We measure g((;z)(O) as shown in Fig. . The signal mode is split by a
50:50 beam splitting fiber and the coincidences between the idler detector
(APD1) and the two signal detectors (APD2 and APD3) are analyzed.
The detection of an idler photon defines a coincidence window of 40 ns,
symmetrical around the detection time. Individual and coincident detec-
tions in this time window give singles counts Ny, N3, while detections at
both APD2 and APD3 give the coincidence count Noz. Nag corresponds
to unwanted multi-photon contributions which are very low in our ex-
periment. To accurately estimate N3, we measure for large coincidence
windows of up to 2000 ns, extrapolate down to 40 ns, and multiply by two,
to account for possible bunching [40], 34]. N; is the number of idler trig-
ger events. g£2)(0) is given by Eq.. The probabilities can be deduced
from the detected counts by normalizing on trigger events: pg, = Nog/Ny,
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Figure 4.8: Setup for measuring g£2)(0). YVO4, Yttrium Vanadate
crystal; HWP, half-wave plate; IF, interference filter; APD, avalanche
photodiode.
Pa = No/Ny, pp = N3/Nj. This results in
(2)(0) _ Pab _ N23N1‘ (4.1)
‘ DaDb Ny N3

We note that this gives an upper limit for g((f) (0), due to the conservative

bunching factor and the finite time window. We find ¢t (0) < 0.040 +
0.012, 80 standard deviations below the classical limit of 1.






All this is a dream. Still examine it by a few exper-
iments. Nothing is too wonderful to be true, if it be
consistent with the laws of nature.

— Michael Faraday, Laboratory journal entry #10 040

NOON state atomic magnetometry

Atomic magnetometers are among the most sensitive instruments for mea-
suring low-frequency magnetic fields. In recent years, the sensitivity of
atomic magnetometers has improved so much that it is approaching fun-
damental limits: The projection noise of atoms and the shot noise of light.
This chapter describes how NOON states can be used to improve the per-
formance of these magnetometers beyond the shot-noise limit of light. The
chapter presents the careful characterization of the atomic vapor cell, the
analysis of experimental results on super-resolution, reconstruction of the
density matrix and the quantification of the metrological advantage of the
NOON state in terms of Fisher information.

5.1 Introduction

The NOON state described in Chapter |3| acquires the highest information
per photon in a phase estimation measurement. NOON-state probing is
therefore especially attractive for measurements of delicate systems, which
can be damaged or altered by excessive illumination. Examples of delicate
systems are single atoms [3], single molecules [5] and quantum simulators
[6] as well as atomic ensembles, including atomic magnetometers. Further-
more, the optical sensing of much larger and much more complex systems,

93
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such as biological cells, is limited by the power of the probe light [9] and
could potentially benefit from quantum-light probing techniques.

NOON states have proven to achieve super-resolution [I1, 14] and to
break the shot-noise limit [129] [15]. To date, however, all measurements
with NOON states that show an advantage in sensitivity have been per-
formed on robust systems, in measurements of wave-plate orientations
[14, 129, ©60], liquid crystal wave retarders [I5] and optical path differ-
ences [I30]. For these robust systems, the advantage provided by NOON
states could also be obtained by using a larger number of non-entangled
particles. Instead, for delicate systems, the entanglement produces an
advantage unobtainable by other means.

One major goal of this thesis is to demonstrate the metrological ad-
vantage of NOON states on such a delicate system: the atomic ensemble
of an atomic magnetometer. Atomic magnetometers rely on interactions
between atom-tuned probe light and atomic vapors, often in form of the
Faraday effect (see Section . The Faraday rotation angle is linear

(a) o P

PA @ .
B~ @0 0o

Singles Coincidences

00 SR/

(b) o P

Bd ® D

Coincidences

@ FR

¢

Figure 5.1: Working principle of an atomic magnetometer. Polarized
photons pass through a rubidium vapor cell (FR) where they experience
an optical rotation dependent on the applied magnetic field B (the Fara-
day effect) and are detected by a polarization analyzer (PA) with photon
counting detectors (D). (a) With non-entangled photons, “singles detec-
tion” can give high visibility, while “coincidence detection” can give (low
visibility) super-resolution. (b) By Hong-Ou-Mandel interference, NOON
states can give both super-resolution and high visibility, providing more
information per photon than possible without entanglement.
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Figure 5.2: NOON state magnetometry setup. SHG, second-harmonic
generation cavity; PPKTP, phase-matched nonlinear crystal; KTP, com-
pensating crystal; YVO4, Yttrium Vanadate crystal; HWP, half-wave
plate; IF, interference filter; APD, avalanche photodiode.

with the component of the applied magnetic field in the direction of beam
propagation and can therefore be used as a way to measure the magnetic
field [I31) 21]. A polarimeter setup after the atomic vapor cell analyzes
the rotation angle from which the magnetic field is estimated (Fig. |5.1]).
An extensive review of optical magnetometry was written by D. Budker
and M. Romalis [19].

While so far atomic magnetometry used coherent light as probe beam,
a polarization NOON state ideally shows high-visibility super-resolution
and improves the sensitivity by a factor of v/N. In this chapter we demon-
strate sensitivity enhancement of an atomic magnetometer using the nar-
rowband, atom-tuned NOON states described in the previous chapters.
The work presented in this chapter was submitted for publication [132].

5.2 Magnetometry setup

The experimental setup consists of three stages: the generation stage of
the NOON state, the atomic magnetometer, and the detection stage (Figs.

and.
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Figure 5.3: Magnetic field calibration. Circles represent data points,
line shows linear fit. The magnetic field strength increases linearly with
the current through the coil.

5.2.1 Generation stage

The generation stage is formed by the cavity-enhanced SPDC source de-
scribed in Chapter [3] The NOON states produced in the SPDC cavity are
of the form (|Ly, Ly) + €| Ry, Ry))/+/2 and resonant to the 523 jo(F=2)—
52Py5(F’=1) transition of the D line of ¥Rb. The photon pairs are
coupled into a single-mode optical fiber and sent to the magnetometer.

5.2.2 Magnetometer stage

The atomic magnetometer consists of a 75 mm-long vapor cell contain-
ing ®Rb and 8"Rb at an isotope ratio of 200:1. An isotopically purified
rubidium cell offers the possibility to lock the NOON state frequency to
a 8"Rb transition and at the same time enables high transmission of the
NOON state through the magnetometer cell. The NOON state is 1.5 GHz
detuned from the closest (D;: F=3—F’=2) ®Rb resonance. The cell is
temperature stabilized at 70°C to achieve a high optical density.

A large magnetic field of up to 50mT is applied by running an electric
current of up to 4.5A through a coil of copper wire. A first calibra-
tion of the magnetic field strength was performed using a linear magnetic
field sensor for currents between 0 A and 2.5A (Fig. 5.3). The calibra-
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Figure 5.4: Spectroscopic characterization of the atomic ensemble. Cir-
cles show measured values, curves show predictions of first-principles
model (see text). (a) Saturated-absorption spectra acquired with a
natural-abundance cell at room temperature, as a frequency reference.
Horizontal axis shows detuning from the center of the D; spectral line.
(b)-(d) Transmission spectra for the 8°Rb magnetometer cell at tem-
peratures of 22°C, 53°C and 83°C, respectively. For each temperature,
spectra with measured field strengths (in mT) of 0, 12, 24, 37, 49, and
58 are shown, in order of increasing line broadening. Grey vertical line
shows wnoon, the probe detuning. For clarity, parts (a)-(c) have been
offset vertically by 1, 0.75, and 0.5, respectively.

tion range was limited by saturation of the flux-gate voltage. This first
calibration was improved by using the atomic ensemble itself as an ac-
curate way to measure the magnetic field. We took transmission spectra
at various temperatures and magnetic fields and compared the measured
absorption spectra to theoretical predictions (Fig. . Also, the isotope
ratio and the cell temperature were quantified in this way. The frequency
scale of the spectra is determined from simultaneous saturated absorption
spectroscopy. Spectra taken at temperatures 22°C, 53°C, and 83°C, and
fields in the range 0-58 mT are fitted with first-principle model predic-
tions. The grey vertical line indicates the frequency of the NOON state
wroon, 1.5 GHz detuned from the closest ®*Rb transition. This operating
point gives strong Faraday rotation with low absorption over the range
0-49mT. Absorption from the small (0.5%) residual ' Rb component can
be seen in Fig. [5.4l(d). The cell with no buffer gas and no wall coatings
that might preserve polarization, is modeled as a thermal equilibrium,
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Doppler-broadened vapor subject to Zeeman shifts in the intermediate
regime [I33]. The atomic structure is calculated by diagonalization of the
atomic Hamiltonians

F[gso) ﬁ—éiso) +H§;‘OS) +[:Iéiso)’ (51)

t =

where I:Iéiso) is the energy structure of the atom, including fine-structure
contribution, % = gupsd - I is the hyperfine contribution, and H{™ =
B - (g3J + gil) is the Zeeman contribution. This gives field-dependent
energy eigenstates, from which the complex linear optical polarizability
is calculated, including radiative damping. The complex refractive in-
dex ny for o4 polarizations is computed including Doppler broadening
and a temperature-dependent atom density given by the vapor pressure
[134], [133] times the isotope fraction. The transfer function for the cell is
calculated from the integral of the index along the beam path, including
a measured drop in field strength of 15% from the center to the faces
of the cell. Fig. |5.5] shows the computed phase retardation for the o4
polarizations at the frequency of the F=2—F’=1 transition. The differ-
ential o4 retardation produces optical rotation. Contribution of 8Rb is
two orders of magnitude larger than that of 8"Rb, as expected from the
isotopic ratio, and in the opposite sense. Fig. [5.6] shows the attenuation
for both polarizations. It should be noted that for large fields, both, the
absorption and the phase variation increase for o_ polarization. The rea-
son is that for larger fields the Zeeman splitting of the $Rb F=3—F'=2
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Figure 5.5: Phase retardation vs. field strength, computed from model.
Polarizations are shown by solid (o) and dashed (o_) curves. Isotopic
contributions are shown by thick orange ( 8°Rb) and thin blue (837Rb)
lines.
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Figure 5.6: Attenuation vs. field strength, computed from model. Iso-
topic contributions are shown by thick orange ( ®°Rb) and thin blue
(87Rb) lines. (a) Attenuation for o, polarization. (b) Attenuation for
o_ polarization.

transition increases and the o_ line moves closer to the optical frequency
of the NOON state.

5.2.3 Detection stage

After the magnetometer, the polarization-rotated NOON state is sent
through a single-mode fiber to the detection stage. It consists of the
ultra-narrowband filter based on the “interaction-free measurement” idea
presented in Chapter [4] and single-photon detectors. The detection setup
works in post-selection: It selects those NOON state photon pairs that
are at the Rb transition frequency [118| 119].

In the filter setup (Fig. a first Yttrium Vanadate (YVO4) crystal
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splits H and V' components into two parallel beams that travel through
an isotopically pure 3'Rb cell. The atoms are optically pumped by a cir-
cularly polarized laser resonant to the F=2—F’=3 transition of the D,
line at 780nm. At a pump power of 16.6 mW the filter efficiency was
13.8%. After the filter setup, the two separated horizontal (H) and verti-
cal (V) polarization modes are coupled into single-mode fibers, detected
by single-photon counting detectors and processed by counting electronics.
Polarization-resolved coincidence detection, in the H/V basis, efficiently
determines the degree of rotation, and is described by projective measure-
ment. A pair of counters on each polarization channel allows post-selection
of all possible outcomes, i.e., HH, HV, and V'V polarizations. The prob-
ability of observing an outcome i is

P.(B) = Te{ILT(B)5T'(B)}, (5.2)

where p is the two-photon state before the cell, B is the magnetic field,
T(B) describes the transmission through the cell, and II; is the positive-
operator-valued measure (POVM) element for the i’th outcome.

If 15 are the transmission amplitudes for o polarizations, then T(B) =
d1ag(t+, tit_,t_t, %) in the oy basis. In the H/V basis, Iz, Iy and
Iy are diag(1,0,0,0), diag(0,1,1,0), and diag(0, 0,0, 1), respectively. A
completely analogous description is used for single-photon probabilities.
Due to atomic absorption and scattering, |t4| < 1 so that > . P, < 1 in
general.

5.3 Magnetometry results

5.3.1 Super-resolution measurements

The detection apparatus registers both, single and coincident detection
events. When the magnetic field is increased, the V singles detections
show a small oscillation amplitude, due to a small imbalance between
transmission of H and V polarization. This oscillation period is taken as
phase reference (Fig. . The coincidence curves oscillate showing a high
visibility at twice the frequency of the singles curve. It should be noted
that no background was subtracted. All curves are taken between 0 and
50mT and are offset by 8°, due to the orientation of the fiber collimator
before the filter setup.

The NOON state in the circular basis can be written in the following
way in the H/V basis: (|L1, Ly) + ¢®|Ry, Ry))/v/2 = |Hy,Va). When
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Figure 5.7: Magnetometry super-resolution measurements. Singles
(thousands) and coincidences versus field strength in mT. Counts per
120 seconds for V., HH, HV, and V'V outcomes, respectively. Circles
represent measured data with errorbars given by the standard deviation.
Curves show best fit to Eq. with the elements of the state p as free
parameters.

the NOON state rotation is zero, the photons of a pair split on the first
polarizing beam splitter of the filter setup and give maximum HV coinci-
dences for zero field (Fig. . When the magnetic field is increased, the
polarization plane of the NOON state is rotated and the number of HV
coincidences decreases. At a rotation of /4 (at approx. 15mT), the pho-
ton pairs are indistinguishable and perform the HOM effect: Ideally, both
photons of a pair are detected in the HH or in the V'V mode with 50%
probability. This leads to a minimum of HV coincidences and a maximum
of HH and V'V coincidences with an amplitude half as large as for HV
coincidences. For larger rotations this behavior repeats periodically. The

oscillations become faster for larger fields as predicted from the model (see
Fig. [5.5]).

It is also possible to see the small effect of residual 8’Rb: The second
maximum of the HV coincidences curve is higher than the first one because
the first one suffers from some absorption from the 87 line. At the magnetic
field of the second maximum, the 87 line broadens, which results in less
absorption.
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Figure 5.8: Best-fit NOON state density matrix p. Radial lines on
off-diagonal elements indicate phases.

5.3.2 Density matrix

From the coincidence data in Fig. [5.7|and the known field-dependent trans-
mission coefficients ¢4 (B) it is possible to perform polarization quantum
state tomography of the NOON state. The reconstruction procedure is
similar to the standard scheme introduced in Section B.4. No additional
wave plates are necessary, since the polarization rotation in the atomic
ensemble itself gives information in different bases. A least-squares opti-
mization determines p.

The reconstructed density matrix p in the R/L basis is shown in Fig.
5.8 The figure shows the elements of the real part of the matrix with
the phases shown by radial lines on the off-diagonal elements. Large co-
herence between |2, 05) and |0r,2g) components is evident. The density
matrix describes a state with high purity Tr{p?} = 0.88 and low pho-
ton distinguishability [53] (¢~ |pl¢p~) = 0.02. The state show a high
fidelity of (Ny| p|Ny) = 0.90 with the ideal NOON state |Ny) = (|12.0) +
explig] [0.2r))/V/2, ¢ = 0.44 rad. The tomography confirms the genera-
tion of a NOON state with ideal characteristics for atomic measurements:
single-spatial mode, near-perfect indistinguishability, and extremely high
temporal coherence.

5.3.3 Fisher information

In order to quantify the metrological advantage of the NOON state prob-
ing, we analyzed the super-resolution results in terms of Fisher information
(see Section [2.3.3)). From the coincidence data we computed the Fisher
information per incident photon into the magnetometer as a function of
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the magnetic field strength. The colored regions in Fig. [5.9| represent the
amount of information that is acquired by HH, HV and V'V coincidence
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Figure 5.9: Fisher information per input photon in the magnetometer.
Thin black curve shows FI for non-entangled photons of an arbitrary
linear polarization. Thick orange curve shows the “standard quantum
limit,” the largest FI obtainable with non-entangled states. Solid regions
indicate contributions of HH, HV, and V'V outcomes to the NOON-state
FI, calculated using p from Fig.

counts. The orange line shows the “standard quantum limit”, the largest
FI obtainable with the ideally polarized non-entangled state. The black
line shows the largest FI for an input state of linear polarization.

Over a large range of field strengths, the NOON state outperforms the
best non-entangled two-photon state with up to (30 £+ 5)% more infor-
mation. In general, the FI is increasing for larger fields. This is due to
the line shift that leads to a faster polarization rotation and therefore to
a steeper slope of the coincidence data.

The colored regions show several maxima and minima of Fisher in-
formation. Since the FI is related to the derivative of the coincidence
function of Fig. 5.7 the FI is at a minimum for the extreme points of the
coincidence curves. The maxima of FI are not in the middle between a
minimum and a maximum of the coincidence counts, but closer to the min-
ima, because at these points the derivative as well as the relative change
are large. This explains the different field strengths of the maxima, e.g.,
for HH and HV coincidences. Similarly, phase values exist, for which
the single-photon curve shows a minimum. This minimum (and also the
one of the coincidences) depends on the input polarization and a possible
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Figure 5.10: Fisher information per depolarization of the ensemble.

Labeling as in

offset magnetic field. In a real phase estimation, it can be chosen to lie at
a convenient phase, i.e., far away from the phase of interest. In Fig.
this phase has been set arbitrarily (not connected to the phase of V' single

detections in Fig. p.7).

Another interesting way of quantifying the information gain with NOON
states is by calculating the FI taking into account losses in the sam-
ple. We precisely quantify damage to the ®Rb ensemble by comput-
ing the number of scattered photons, given by Tr{pHdep} where Hdep =
diag(syy, s+, s_+,s__) in the o1 basis and the mean number of scat-
tering events is Sq = |ta 5)|2 +1-— |tl()85)|2, where ¢ is the $Rb
contribution to t4. In the same way as above, we can compare FI per
scattering, shown in Fig.[5.10] We find the NOON state has an advantage
of 1.23 + 0.04 relative to the best possible single-photon state (the SQL).
The difference between black and orange curve is larger for the FI per
depolarization, because the photon is partially absorbed in the cell in a
polarization-selective way.

The FI per depolarization is decreasing for field values above 50 mT,
because of the stronger absorption due to the shift of the 8°Rb line. Only
at these field strengths, where absorption starts to become important,
does the metrological advantage of the NOON state decline relative to the
single photon. Thomas-Peter et al. [I35] note that NOON states are more
loss-sensitive than single-photon states, and derive visibility thresholds in
a constant-loss model. Here it is important to distinguish between intrin-
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sic losses, i.e., those due to the ensemble itself, and extrinsic losses such
as imperfect detector efficiency, which can in principle be reduced to arbi-
trarily low levels. Intrinsic losses are included in the FI calculated above,
and because they are field-dependent, provide some information about B,
offsetting the loss of FI due to non-arrival of pairs. Extrinsic losses re-
duce the NOON FI by n?_versus 7., for any single-photon state. Current
technology can achieve extrinsic efficiency of 7ex = 7detMpath, With detector
efficiency nger = 0.95 [136] and source-to-detector path efficiency (includ-
ing escape from the source cavity) npan = 0.984 [I37]. The achievable
advantage, given current technology, is thus 1.21 4+ 0.05 per sent photon
and 1.15 £ 0.04 per scattered photon.
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Physicists use the particle theory on Mondays,
Wednesdays and Fridays, and the wave theory
on Tuesdays, Thursdays and Saturdays.

— William H. Bragg

Squeezed-light atomic magnetometry

Apart from single-photon and NOON states in the discrete-variable regime,
also quantum states in the continuous-variable regime can be employed for
quantum metrology. As the squeezed state shows reduced noise compared
to a coherent state, injecting squeezed light into the open input port of
an interferometer leads to an increase in signal-to-noise ratio of the mea-
surement. This chapter describes the generation, characterization and
the application of polarization-squeezed states of light. Squeezed vacuum
states are produced in an optical parametric oscillator and used as probe
beam in an atomic magnetometer.

6.1 Introduction

The previous chapters described the design and implementation of a source
of atom-resonant NOON states and their application in an atomic magne-
tometer scheme, in which the shot-noise limit is surpassed. As explained
in Section in addition to NOON states, also squeezed states can give
an advantage in phase estimation. While with NOON states it is easier
to come close to the Heisenberg scaling, i.e., to achieve the most infor-
mation per photon, squeezed states can provide more overall information
as they usually contain a macroscopic amount of photons. Recent exper-
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iments, the production of squeezed states in the few-photon regime [138§]
and of squeezed light from a single atom [139] as well as the generation of
“photon-added” and “photon-subtracted” states [140, 141] show the deep
connection between both kinds of non-classical light.

One motivation in the first proposals of squeezed light was to ap-
ply squeezing to shot-noise-limited instruments [55]. To date, the ap-
plication of squeezed light has been demonstrated in polarization inter-
ferometry [80], Mach-Zehnder interferometry [142], atomic spectroscopy
[143], atomic spin measurements [81] and in gravitational wave detection
[144], T45]. Other shot-noise-limited applications that can benefit from
squeezed light are absorption spectroscopy [146], laser gyroscopes [147],
and atomic magnetometers.

The sensitivity of atomic magnetometers is fundamentally limited by
two distinct sources of quantum noise: the projection noise of the atomic
ensemble and the optical shot noise of the probe beam [148], 149, 8, 22]. As
atomic magnetometers approach the standard quantum noise limits, it be-
comes crucial to understand and overcome these limits [I31} 148, [150]. For
magnetometers based on Faraday rotation and optimized for sensitivity,
contributions from projection noise and light shot noise are comparable
[148, [19], and simultaneous reduction of both sources is advantageous. A
pair of techniques for reducing these fundamental noise sources has been
proposed, spin squeezing of the atomic ensemble [I51} 152] and polariza-
tion squeezing of the probe light [153] 148], with potential to reduce the
noise to the Heisenberg limit [22], except in the long-time regime where
spin relaxation is limiting [148]. Recent experiments have demonstrated
spin squeezing using optical quantum non-demolition (QND) measure-
ments [154], [155] I56] or controlled atomic interactions [I57, [I58]. While
the application of spin squeezing in magnetometry has been shown [150],
the proof-of-principle experiment presented in this chapter aims at the
reduction of the other fundamental noise source in optical magnetometry,
the shot noise of light. The results shown in this chapter were published
in [159]. The following section presents the magnetometer’s mode of op-
eration in comparison with other highly-sensitive magnetometers.

6.2 Mode of operation

The heart of the magnetometer used in our experiment is an atomic vapor
cell that contains rubidium atoms at room temperature. By the Faraday



6.2 Mode of operation 111

effect, an axial magnetic field creates a circular birefringence in the vapor.
The resulting rotation of the polarization plane of a linearly polarized
input beam is seen in the detected signal. This rotation is described
in terms of the probe beam Stokes parameters (see Section . The
detected signal is

Sjgout) — S:gln) + SI(VBZ + an)l y (61)

where V is the Verdet constant of the vapor, B is the magnetic field, a
is proportional to the vector component of the atomic polarizability, F
is the collective atomic spin, and [ is the length of the medium. For a
horizontally polarized probe beam, <Sz> is maximal and <Sg(,m)> is zero.
The magnetometer signal comes from the terms VB, and aF,, the latter
being sensitive to field-induced spin precession. Projection noise is present
in I, while shot noise is present in S{™). We work in a regime where these
fundamental noise sources are dominant to show clearly the advantage of
squeezed light for optical magnetometry.

6.2.1 Paramagnetic Faraday effect operation

In one usual mode of operation, based on the paramagnetic Faraday effect
(see Section , a magnetometer operates via precession of a polarized
spin. The initial polarization rotates into the z direction in response to
the field, e.g., from x toward z due to B, as (F,) = |F|uogB,T, where
g is the Landé factor, pp is the Bohr magneton, and 7 is the precession
time [19]. This gives a gain due to precession of G, = 851501”) /0B, =
SzapogT|F|l. Technical noise sources, e.g., in the initial orientation of F,
and environmental noise in B contribute to var(S,) as G, i.e., as |F[*.
Similarly, G, = 851501”) /OB, = S, VI, with associated technical noise.

6.2.2 Normal Faraday effect operation

While important progress has been made toward reducing technical and
environmental noise below the quantum noise [19, [I50], this is far from
trivial and we adopt the simpler strategy of reducing the gain by reducing
|F'|. We work with an unpolarized ensemble, i.e., a thermal distribution
within the hyperfine and Zeeman levels, with (F) = 0. G,, the gain due
to precession and the associated technical noise are then zero, while G,
remains and we operate in the Faraday rotation mode.
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The fundamental noise sources are largely unchanged in this mode of
operation, and we can demonstrate shot-noise-limited performance under
conditions that would be present in a highly-sensitive magnetometer with
greatly reduced technical noise. The thermal distribution has an intrinsic
spin noise of var(F,) = F(F + 1)N4/3, compared to var(F,) = |F|/2 =
FN,4/2 for an ideal polarized state [§]. In the experiment below, the
light is tuned close to the transitions from the F' = 2 manifold of the D,
line of 8"Rb, which contains 5N4/8 atoms and for which F(F +1)/3 =
2. The resulting spin noise detected via the last term in Eq. is ~
5N 4/4, versus &~ N4 for a fully polarized F' = 2 ensemble. The shot-
noise contribution is unchanged. In this way, we can see the full effects of
fundamental noise sources, but with a greatly reduced sensitivity.

6.2.3 Alignment-to-orientation conversion

Even when no additional optical pumping is applied and the atomic system
is operated in the normal Faraday effect mode, polarization properties of
the atomic ensemble can play an important role. The probe beam itself
can lead to a non-negligible optical pumping of the atoms. This regime
in which the Faraday rotation angle shows a nonlinear dependence on the
optical probe power, is called nonlinear magneto-optical rotation (NMOR)
and is explained in detail in [S§].

Although in the presented experiment a relatively weak probe beam
is used, that is composed of the local oscillator beam and the negligible
power of the squeezed vacuum, the intensity of the beam is strong enough
to provoke nonlinear effects. In the following, we consider a situation in
which a magnetic field is applied along the axis of beam propagation.

When the average time interval between two optical pumping events of
an atom becomes comparable to the relaxation time of ground state coher-
ences, which is the case in our experiment, an effect called alignment-to-
orientation conversion (AOC) becomes relevant [160], 88]. AOC is caused
by the optical electric effect in the presence of an external magnetic field
[161].

Orientation in this context refers to the polarization of an atomic en-
semble, i.e., a population imbalance of Zeeman substates mpr and —mpg
[160]. It can also be described as the first (dipole) polarization moment
[162] and can be detected by monitoring a difference in the absorption of
right- and left-circularly polarized light.

In contrast, an atomic system is called aligned if the population in a
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Zeeman substate depends on the absolute value of mp [160]. Alignment
corresponds to the second (quadrupole) polarization moment [162] and can
be produced by optical pumping, but also by any anisotropic interaction
such as collisional excitations [160].

In our experiment, the probe beam optically pumps the atoms, which
leads to alignment. When the atomic alignment axis undergoes Larmor
spin precession around the direction of an applied magnetic field, the pop-
ulation is redistributed, which leads to orientation of the atomic ground
state [163]. In effect, the probe beam intensity influences the atomic po-
larization state, which acts back on the light state leading to a nonlinear
rotation of the optical polarization plane.

6.3 Experimental setup

The experimental setup is based on an optical parametric oscillator (OPO)
designed for squeezing experiments, which was built by A. Predojevié¢ and
coworkers and is presented in [164], [110]. The cavity-enhanced SPDC setup
described in Chapter |3| and this OPO have very similar cavity designs.
The main differences are the following: The PPKTP crystal of the OPO is
phase-matched for type-I SPDC, i.e., this setup achieves double-resonance
without an additional compensation crystal. Another important difference
is that the OPO is pumped at a higher power of 42 mW and therefore closer
to threshold.

The experimental setup is shown schematically in Fig.[6.1 As principal
light source we use an external-cavity diode laser at 794.7 nm, tunable over
the D, transition of atomic rubidium. The frequency can be stabilized by
FM saturated absorption spectroscopy to individual transitions of the D;
line of Rb. The laser output passes through a tapered amplifier and is
split in two parts: The weaker part is spatially filtered with a single-
mode fiber and serves as local oscillator (LO) beam. The stronger part
is frequency doubled to 397.4nm and then sent through a single-mode
fiber for mode-cleaning. After the fiber, a power of 42mW is used to
pump a sub-threshold OPO in which squeezed vacuum is produced. The
nonlinear medium in the OPO is a type-I phase-matched PPKTP crystal
with a length of 1 cm. In contrast to the design presented in [164] [110],
the active cavity lock was improved and a quantum noise lock of the phase
between LO and squeezed vacuum was implemented.

The homodyne detection system is not as sensitive to scattered locking
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Figure 6.1: Atom-resonant polarization-squeezed light setup. SHG, sec-
ond harmonic generation; OPO, optical parametric oscillator; PPKTP,
phase-matched nonlinear crystal; LO, local oscillator beam; PBS, polar-
izing beam splitter; AOM, acousto optical modulator; PZT, piezo-electric
transducer; HWP, half-wave plate; SMF, single-mode fiber; PD, photo-
diode.

light that reaches the detectors as in the case of single-photon detection.
For this reason, the experiment is performed without alternating between
locking and detection periods, i.e., without a mechanical chopper. To
reduce the amount of locking light in the detection, it is sent counter-
propagating to the squeezed light into the cavity. It is possible to perform
measurements with this setup, but the additional noise decreases the qual-
ity of the measured squeezing.

In the improved setup, a locking beam polarized orthogonally to the
squeezed light was injected. In this way, a separation of residual lock-
ing light and squeezing takes place at PBS1 after the OPO cavity (Fig.
. Due to the birefringence in the PPKTP crystal, beams of horizontal
and vertical polarization show different resonance frequencies in the cav-
ity. To achieve double-resonance, the horizontally polarized locking beam
is frequency-shifted by about 150 MHz by an acousto optical modulator
(AOM).

The vertically-polarized cavity output is combined with the horizontally-
polarized LO at a polarizing beam splitter (PBS1) with a degree of overlap
of 99%. The resulting light is horizontally polarized, with squeezed fluc-
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Figure 6.2: Phase-dependent polarization squeezing. Polarization noise
power as the phase of the local oscillator is scanned. Center frequency
1 MHz, zero-span mode, RBW=30kHz, VBW=30Hz. Horizontal trace
shows noise with a polarized (but not squeezed) probe, i.e., with OPO
off, and is taken as the reference 0 dB. The oscillating trace shows noise
with OPO on, including regions below the shot-noise level.

tuations in the diagonal or circular polarization basis. The squeezing is
detected by a balanced detection setup: after a half-wave plate at 22.5°,
a polarizing beam splitter (PBS2) splits the horizontally and vertically
polarized components of the beam and directs them to two photodiodes
of a balanced amplified photo-detector that shows a quantum efficiency of
95%. The signal is then monitored on a spectrum analyzer.

6.4 Polarization squeezing

First, the polarization squeezing is characterized in terms of noise level.
The polarization noise is detected with the spectrum analyzer, as the LO
phase is scanned with a piezo-electric actuator, giving rise to the squeezing
trace shown in Fig. [6.2] The electronic noise is more than 13dB below
the shot-noise level for all phase angles and is subtracted from data. The
minimum of the noise level in the squeezed phase is -3.6 dB below the shot-
noise level and the maximum 7.4 dB above shot noise in the anti-squeezed
phase.

This measurement was performed at a central frequency of 1 MHz with
zero span and a resolution bandwidth of 30kHz, a video bandwidth of
30Hz and a sweep time of 2s. The total detection efficiency after cre-
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Figure 6.3: Passive optical phase stability. Interference signal between
LO arm and SHG-OPO arm over a period of 100 seconds (a) before and
(b) after the improvement of the passive phase stability of the paths.

ation is 82% and includes the escape efficiency (96%), the homodyne effi-
ciency (98%), transmission through the atomic cell (97%) and the optical
elements (95%), and the quantum efficiency of the detector (95%). The
parametric gain, defined here as the ratio between the maximum transmis-
sion of a classical beam through the cavity with and without the presence
of the copropagating pump beam, was measured to be 4.8.

While the degree of squeezing is one of the highest obtained in a diode-
laser-pumped system, it could be further improved by, e.g., a longer non-
linear crystal, a higher finesse of the cavity, a higher escape efficiency of
the cavity or lower losses between the cavity and the detection. A higher
finesse could be achieved by a better AR coating of the crystal endfaces
or by a monolithic cavity design [165].

6.4.1 Phase stability

In Fig. the phase between LO and squeezed vacuum is scanned by
applying an oscillating voltage to a piezo-electric transducer, while the
central frequency of the spectrum analyzer is fixed. For the magnetome-
try application, a fixed phase at the maximum squeezing level has to be
guaranteed.

As a first step, we increased the passive stability of the interferometer
formed by the LO arm and the SHG-OPO-arm (Fig. . The interference
signal was monitored over time. Fig. .(a) shows the signal fluctuations
over a period of 100 seconds. To improve the passive stability that was lim-
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Figure 6.4: Squeezing spectrum. The black trace shows the shot-noise
limit, while the upper green trace shows the anti-squeezed noise level and
the lower green trace the squeezed noise level.

ited mostly by temperature fluctuations in the optical single-mode fibers,
the temperature stability of the whole setup was increased by reducing the
air flow on the optical table with curtains. In addition, the optical fibers
were fixed on the optical table in a way that reduces mechanical stress.
The improved stability is shown in Fig. [6.3(b).

To actively stabilize the phase between LO and squeezed vacuum at
the level of maximum squeezing or maximum anti-squeezing, a quantum
noise lock was implemented [I66]. The difference signal of the balanced
detector is used as input signal in a FM spectroscopy locking scheme.

Fig. shows the squeezing and anti-squeezing levels as a function
of the central frequency of the spectrum analyzer. The lower degree of

squeezing compared to Fig. [6.2] stems from a lower optical pump power of
the OPO.

6.5 Magnetometry

After the characterization measurements, the polarization-squeezed light
is used as probe beam in an atomic magnetometer setup.

It should be noted that, as opposed to the single-photon regime opera-
tion, for squeezing the requirement of narrow bandwidth is easier to fulfill
as the narrowband LO beam selects a narrowband portion of the squeezed
cavity spectrum.
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Figure 6.5: Squeezed-light magnetometry setup. Rb cell, rubidium va-
por cell with magnetic coil and magnetic shielding; SHG, second harmonic
generation; OPO, optical parametric oscillator; PPKTP, phase-matched
nonlinear crystal; LO, local oscillator beam; PBS, polarizing beam split-
ter; AOM, acousto optical modulator; PZT, piezo-electric transducer;
HWP, half-wave plate; SMF, single-mode fiber; PD, photodiode.

6.5.1 Magnetometry setup

The magnetometer consists of a 15cm-long atomic vapor cell at room
temperature that is placed between PBS1 and the detection setup (Fig.
. The isotopically purified atomic vapor contains >99% 8 Rb with a
small concentration of ®Rb. The cell is contained within a single-layer
u-metal cylinder to shield external magnetic fields while a coil within the
cylinder generates the desired field B,.

We lock the laser to the 52Sy/o(F=3)—52Py 5(F’=2) transition of the
D, line of ®Rb. This corresponds to a detuning of about 700 MHz from
the closest 8"Rb resonance. The LO beam has a power of 620 uW and
a beam waist of 950 um inside the vapor cell. For this intensity, beam
shape, and detuning, the magnetometer operates in a regime of non-
linear magneto-optical rotation (NMOR) [19]. A small fraction of the
atoms are optically pumped while passing through the linearly-polarized
probe beam, creating coherences within the F' = 2 manifold. Rotation
of these coherences by the z-polarized magnetic field creates the condi-
tions for alignment-to-orientation conversion [161], 88| [167], again by the
probe beam. Measurements of rotation angle versus input power show a
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Figure 6.6: Faraday rotation measurement. Power of the polarization
signal as center frequency is scanned, RBW=3kHz, VBW=30Hz. The
(upper) black curve shows the applied magnetic signal at 120 kHz above
the shot-noise background of a polarized (but not squeezed) probe. The
(lower) green line depicts the same signal with polarization-squeezing. A
zoomed view around the calibration peak at 120 kHz is shown.

quadratic scaling consistent with this nonlinear mechanism. Unlike optical
self-rotation [168, [169], this nonlinearity does not strongly couple optical
noise into Sy, so long as the rotation angle remains small.

6.5.2 Sensitivity measurements

To measure the magnetometric sensitivity, we observe the Faraday rota-
tion signal in response to an applied sinusoidal magnetic field at a fre-
quency of 120kHz. The sensitivity is measured with two different input
polarization states: a coherent polarization state (OPO off) and a state
squeezed in \S,. Quantum noise locking is used to stabilize the LO phase
during the measurements. In both cases the average polarization is hori-
zontal, due to the strong LO contribution, but the quantum fluctuations
differ. As shown in Fig. the observed power spectrum in both cases
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shows the reference signal due to the applied oscillating magnetic field at
120 kHz above differing noise backgrounds.

The rotation angle was calculated to be ¢ = (I} — L) /([1 + ) =
1.2 yrad, where I 5 are the beam intensities at the two detectors. The
spectrum analyzer frequency is scanned from 80 kHz to 2 MHz, in a sweep
time of 8s. The resolution bandwidth and the video bandwidth were set to
3kHz and 30 Hz, respectively and the signal was averaged over 130 cycles.

The polarimeter signal was calibrated against a linear magnetic field
sensor inserted within the coil and shielding, thus permitting a direct
conversion from measured voltage to axial magnetic field B,. The sensi-
tivity, i.e., field noise density as measured with the spectrum analyzer, is
4.6x10~% T /+v/Hz for a polarized input, and reduced by 3.2 dB to 3.2x 108
T/ vHz with a polarization-squeezed input.

It should be noted that the squeezing extends over >2 MHz of band-
width, allowing magnetic field measurements in the pus-regime with squeez-
ing-enhanced sensitivity. This technique is thus also suitable to improve
us-scale QND measurements [8]. Additionally, the light source could find
application in the storage and retrieval of squeezing in atomic ensembles
[0, 171].
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As for the future, your task is not to
foresee it, but to enable it.

— Antoine de Saint-Exupéry

Conclusions

7.1 Summary

The work presented in this thesis contributes to the quest to develop atom-
resonant quantum light sources and apply them to light-matter interaction
for the use in fundamental research as well as in quantum technologies.
First, a cavity-enhanced SPDC setup was designed and built. The
use of cavity enhancement allowed for ultra-bright generation of photon
pairs. The detected coincidence rate is 1.7x10° photon pairs per second
per mW of pump power, one of the highest brightnesses of indistinguish-
able photon pairs. The cavity shows a good passive stability and is ad-
ditionally actively locked to a CW diode laser. The laser itself is locked
to a rubidium transition, which guarantees atom-resonance of the central
frequency-degenerate down-conversion mode. This is an advantage over
other implementations, in which the cavity is not locked at all [33] or
locked to the pump wavelength [34, [172]. Without any spectral or spatial
filtering the cavity output shows a HOM visibility of 96%. This proves the
high indistinguishability of two photons of a pair, a crucial requirement
for the generation of high-fidelity NOON states in quantum metrology [10]
and for the use in linear optical quantum computation (LOQC) proposals
[23]. The thorough characterization of the photon pair state included a
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full quantum state tomography of the polarization degree of freedom.

The cavity output was converted into a polarization NOON state in
the H/V basis. The most important metrological property of NOON
states, phase super-resolution, was demonstrated with high visibility. Fur-
thermore, the polarization density matrix of the NOON state was recon-
structed showing a fidelity of 99% with an ideal NOON state.

As the cavity output consists of many frequency modes, the output is
not directly atom-compatible. To select the rubidium resonant mode, a
very narrowband filter had to be used. Instead of consecutive filter cavi-
ties |99 (172, O5], we used a novel atomic-based filter, which guarantees a
very robust and intrinsically atom-resonant operation. The filter achieves
a transmission efficiency of up to 20% with a theoretical maximum trans-
mission of 25%.

After a successful demonstration of its performance with classical probe
light [118], the filter was used to select the rubidium-resonant mode of the
cavity-enhanced SPDC process. To efficiently block all other cavity fre-
quency modes, a high out-of-band rejection is crucial. This filter achieves a
high extinction ratio of >35dB over the whole phase-matching bandwidth
of the SPDC process. The ultra-high coincidence count rate enables filter-
ing of both photons of a pair, as opposed to many previous experiments, in
which only one arm was filtered [99, 172, [95]. More than 94% of the pho-
tons are resonant to a rubidium transition frequency with a single-photon
bandwidth of 4.5 MHz, which makes it the first SPDC single-photon source
that has demonstrated atom-resonance of more than a small fraction of
its output.

Since the SPDC process is based on type-II phase-matching, the filtered
photon pairs can be split deterministically by their orthogonal polarization
on a polarizing beam splitter. The detection of one photon of a pair heralds
the presence of the other photon in a state that is a good approximation of
a single-photon Fock state. The figures of merit of a heralded single-photon
source, cross-correlation and auto-correlation functions were measured and
a value of the cross-correlation function of the signal photon of géQ)(O) <
0.040 £ 0.012 was measured, 80 standard deviation below the classical
limit of 1.

Finally, the filtered photon pairs were used as NOON state input in
an atomic magnetometer. The NOON states probe the applied magnetic
field with super-resolution of high visibility. The experimental results were
carefully analyzed in terms of Fisher information. The super-resolution
translates into a phase super-sensitivity as the Fisher information per
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photon pair surpasses the classical limit by up to 30%. This constitutes the
first controlled interaction between an entangled photon pair and atoms.

In addition to the previously discussed quantum states in the discrete-
variable regime, the thesis also reports on the generation, characteriza-
tion and application of quantum states of light in the continuous-variable
regime. An existing optical parametric oscillator setup was improved
and produced atom-resonant polarization-squeezed light with a degree of
squeezing of -3.6 dB. Initially, measurements were performed while scan-
ning the phase between squeezed vacuum and local oscillator beam. Subse-
quently, a quantum noise lock was implemented to lock the phase between
the local oscillator beam and the squeezed vacuum beam to the maximally
squeezed or anti-squeezed phase, respectively.

The application of these states in a magnetometry setup was investi-
gated. Atomic magnetometers are fundamentally limited by two kinds of
noise sources: atomic projection noise and shot noise of light [19]. While
some experiments so far aimed at the reduction of the projection noise of
atoms and obtained spin squeezing of the atomic spin [154, 155, 156 150],
our goal was to reduce the light noise in a magnetometry measurement
below the standard quantum limit. A shot-noise-limited atomic magne-
tometry setup was built and characterized with classical light input. The

application of the polarization-squeezed light improved the measurement
by 3.2dB below the SQL.

7.2 Outlook

There are several possible directions in which the existing setup could be
developed.

One line of applications could be the combination with an atomic dipole
trap setup of about 10° cold rubidium atoms that was built in our group
and is so far mainly used for quantum non-demolition (QND) measure-
ments [89], spin squeezing measurements [8), [I73] and nonlinear magnetom-
etry [I74]. The NOON state setup is already fiber-coupled and could easily
be connected to the trap setup. Measurements with cold atomic ensem-
bles would allow for longer coherence times and higher optical depths. The
squeezing setup is not fiber-coupled because the inevitable fiber-coupling
losses would decrease the amount of squeezing. For this reason, the setup
is mounted on a breadboard that could be moved as a whole to the labo-
ratory of the atomic trap. This would open the possibility to demonstrate
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an atomic magnetometer which shows at the same time reduction below
both fundamental limits, atomic projection noise and light shot noise.

Another possible direction of applications includes further measure-
ments in hot atomic vapors. One example is the study of stimulated
emission processes of a photon by an atom. This fundamental process is
difficult to study, because it requires an atom-resonant deterministic or
heralded single-photon source. The presented single-photon source would
enable such an experiment.

Certain improvements could be made to the setup to increase the coin-
cidence rate further. The current design of the atomic-based filter is based
on the paramagnetic Faraday effect, which sets the maximum efficiency
to 25%. A new filter design was developed and tested in our group that
is based on the normal Faraday effect and has no limitation on the max-
imum efficiency. So far, 71% transmission could be demonstrated [I75].
This would increase the coincidence rate by one order of magnitude. An-
other mean to increase the coincidence rate would be the use of a longer
nonlinear crystal. PPKTP crystals are now available at longer lengths
that could increase the production rate of the SPDC process.

In a more general context, the presented techniques could find applica-
tion in other quantum metrological schemes. While the scalability of the
number of photons in a NOON state remains an issue, progress has been
made recently toward a scalable approach [I5]. Also, the development of
robust and high-efficient quantum memories could enable the generation
of larger NOON states. On the other hand, already high-brightness 2-
NOON states will be useful in further proof-of-principle experiments of
ghost imaging [176] or quantum illumination [177]. The squeezed-light
techniques are already sufficiently mature to be used in real devices, such
as advanced magnetometers or gravitational wave detectors [178].

An interesting and promising development is the integration of optical
setups into tiny devices. Magnetometers smaller than the size of a grain of
rice have been implemented [I79]. Many hundreds or thousands of these
magnetometers could be combined to achieve a high spatial resolution
with applications, e.g., in the imaging of the human heart or brain.

While the thesis demonstrates the application in a quantum metro-
logical context, the same sources are also directly applicable to quan-
tum information tasks. These include linear optics quantum computing
(LOQC), where indistinguishable photons are the main resource as well
as quantum communication, where single photons are exploited as carri-
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ers of quantum information over long distances. In a quantum network,
single photons could transmit information between stationary nodes im-
plemented by atomic ensembles or single trapped atoms. To distribute
the entanglement over distances of many hundreds of kilometers, quan-
tum repeaters will be necessary [180, [I81]. A requirement for quantum
repeaters is the storage of entanglement or squeezing and therefore high-
quality quantum memories [I82] [I83], possibly based on atomic ensembles
[170, 184, 185], 186] or solid state devices [116) 187, 188].

In general, the techniques used in this thesis are very promising candi-
dates for the generation of narrowband atom-resonant single photons, pho-
ton pairs, NOON states and quadrature- or polarization-squeezed states.
These could find application in a variety of experimental studies of atom-
photon interaction at the single-photon level, including interaction with
single atoms, hot and cold atomic ensembles, solid-state devices and Bose-
Einstein condensates. The ability to generate photonic quantum states
compatible with atomic resonances will possibly enable advances in many
fields of optical science including future applications in fundamental re-
search and applied technology that are yet to be explored.






Work. Finish. Publish.
— Michael Faraday
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BMX, BPM und XTC
EMI, CBS und BMG
ADAC, DLRG - ojemine

— Die fantastischen Vier, MfG
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There are three stages in scientific discovery: first,
people deny that it is true; then they deny that it is
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