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Abstract  

In pattern recognition, the use of graphs is, to a great extend, appropriate 

and advantageous. Usually, vertices of the graph represent local parts of an 

object while edges represent relations between these local parts. However, 

its advantages come together with a sever drawback, the distance between 

two graph cannot be optimally computed in polynomial time. Taking into 

account this special characteristic the use of graph prototypes becomes 

ubiquitous. The applicability of graphs prototypes is extensive, being the 

most common applications clustering, classification, object characterization 

and graph databases to name some. However, the objective of a graph 

prototype is equivalent to all applications, the representation of a set of 

graph. To synthesize a prototype all elements of the set must be mutually 

labeled. This mutual labeling consists in identifying which nodes of which 

graphs represent the same information in the training set. Once this mutual 

labeling is done the set can be characterized and combined to create a graph 

prototype. We call this initial labeling a common labeling. Up to now, all 

state of the art algorithms to compute a common labeling lack on either 

performance or theoretical basis. In this thesis, we formally describe the 

common labeling problem and we give a clear taxonomy of the types of 

algorithms. Six new algorithms that rely on different techniques are 

described to compute a suboptimal solution to the common labeling 

problem. The performance of the proposed algorithms is evaluated using an 

artificial and several real datasets. In addition, the algorithms have been 

evaluated on several real applications. These applications include graph 

databases and group-wise image registration. In most of the tests and 

applications evaluated the presented algorithms have showed a great 

improvement in comparison to state of the art applications. 
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Chapter 1 

INTRODUCTION 
 

 
 

1. MOTIVATION 

In pattern recognition, the use of graphs, or similar relational structures, 

as a framework to model problems (where relational information between 

sets of objects is of main importance) is, to a great extend, appropriate and 

advantageous. Consider, as an example, an object recognition application. 

Usually, vertices of the graph represent local parts of an object while edges 

represent relations between these local parts. Because of this clear and 

intuitive representation, since the 80s, graphs have become increasingly 

important. One of the key advantages of using graphs structures is that the 

same representational model is able to fit a wide range of problems from 

image understanding to interaction networks. Consequently, algorithms 

based on graph structures are suitable in a very large problem space. There is 

an interesting review of graph representation models, graph matching 

algorithms and applications in (Conte, Foggia et al. 2004), in addition, to 

have a complete overview of the state of the art one should also consider 

embedding and kernel methods (Bunke and Riesen 2012).  

Given a set of objects/elements which are represented using attributed 

graphs (Wong and You 1985), a graph prototype (Wong and You 1985; 

Wong, Constant et al. 1990; Jiang, Münger et al. 2001) of them is a structure 

addressed to represent or summarize this set. Usually, the graph prototype is 

computed or selected to minimize the distance to all elements it represents.  

The applicability of graphs prototypes is extensive, being the most 

common applications clustering (Bunke, Foggia et al. 2003; Hlaoui and 

Wang 2006; Torsello and Hancock 2007; Xia and Hancock 2008; Lozano, 
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Escolano et al. 2009; Xia and Hancock 2009) and classification (Wong and 

You 1985; Serratosa, Alquézar et al. 2003; Sanfeliu, Serratosa et al. 2004; 

Lozano and Escolano 2006; Ferrer, Valveny et al. 2010) in several fields. In 

addition, graph prototypes can be used in numerous other problems like 

object characterization (Serratosa, Alquézar et al. 2003; Mukherjee, Singh et 

al. 2009) and database constructions (Berretti, Bimbo et al. 2001; He and 

Singh 2006; Serratosa, Solé-Ribalta et al. 2010; Serratosa, Solé-Ribalta et al. 

2011) among others (Chan and Cheung 1992; Jiang, Münger et al. 2001; 

Serratosa, Alquézar et al. 2003; Lozano, Escolano et al. 2009) . The 

advantage of using a graph prototype instead of working with the whole set 

it represents is twofold. Firstly, it is common to obtain a higher recognition 

ratio since the implicit noise in the elements of the set is compensated. 

Secondly, once the prototype is constructed, the application run time is 

reduced since less computational effort is needed. On the other hand, 

depending on the application, graph prototypes tend to over-generalize the 

set they represent distorting application performance, this is clearly seen in 

(Ferrer, Valveny et al. 2010) where classification results are better using 1-

NN classification procedure than the generalized/set median graph. In 

addition, some prototypes can be computationally hard to construct if the 

training set is large. 

Graph prototypes can be constructed using an unsupervised or semi-

supervised learning process. In the unsupervised learning a set of graph is 

presented to the system and neither information about the number of classes 

nor the class each graph belongs to is given. The system decides which 

partitions the set of graphs contain and it construct a prototype for all of 

them. This idea is much related to central graph clustering. But frequently, 

graphs prototypes are constructed using a semi-supervised learning 

procedure. In this type of learning, the system is provided with information 

about the class each graph belongs and the problem is focused on 

constructing the prototype.  

In both types of learning, all graphs that belong to the same class (being 

this class hypothetical for the case of unsupervised learning or known for the 

case of semi-supervised learning) must be mutually labeled before (Bonev, 

Escolano et al. 2007; Xia and Hancock 2008; Lozano, Escolano et al. 2009; 

Xia and Hancock 2009) or while (Serratosa, Alquézar et al. 2003; Sanfeliu, 

Serratosa et al. 2004) the prototype is constructed. This mutual labeling 

consists in identifying which nodes of which graphs represent the same 

information in the training set. Once this mutual labeling is done, that is, we 

know the possible values of each node and edge, the set can be characterized 

and combined to create a graph prototype. This synthesis can be achieved by 

averaging the attributes (Jiang, Münger et al. 2001), modeling the attributes 

with random variables (Wong and You 1985; Bagdanov and Worring 2003), 

creating fuzzy sets (Chan and Cheung 1992), using histograms (Serratosa, 

Alquézar et al. 2003; Sanfeliu, Serratosa et al. 2004) and so on. Note that 
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this initial mutual labeling is crucial to construct a good prototype. In the 

case that the initial mutual labeling is incorrect, the graph prototype could 

contain a noisy representation of the data which will hinder the learning 

process and decrease the performance of the final application. We call the 

result of this initial mutual graph labeling among all the elements of the 

training set a Common Labeling. Specifically, the Common Labeling of a set 

of graphs is a bijective function from the nodes of the graphs to a set of 

labels or virtual nodes. 

To illustrate the aforementioned procedure, Figure 1-3-1 shows an 

example of the process of constructing a graph prototype using a semi-

supervised learning process. Suppose we have a set of hand-drawn electronic 

schemas, and we want to digitalize these drawings. The first step is to obtain 

a model from each component, such as the resistors. To do so, we initially 

generate a graph that represents each resistor in the training set. Then, with 

the set of graphs that represent the resistors, we compute a graph prototype 

which represents the whole set of resistors. To compute the prototype, first it 

is needed to mutually label all training data ( in this case all the example 

resistors ). That is, we need to compute the Common Labeling of the training 

set. In the example, the Common Labeling assigns all the nodes of all the 

graphs to a virtual node set. Each node of this virtual set represents a local 

part of the object. Once this common labeling is known, the prototype can be 

constructed using any of the state-of-the-art methods. 

Since finding the optimal labeling between nodes of two graphs is 

already in an NP problem (Garey and Johnson 1979) in its simplest 

expression, we consider that computing the common labeling of a graph set 

is also at least an NP problem. As a consequence sub-optimal algorithms 

must be provided. 

2. AIMS AND OBJECTIVES OF THE PHD THESIS 

Considering, as exposed in section 1, the crucial importance of a good 

initial common labeling in the construction of a graph prototype and so in 

any of its applications, the main aim of this PhD thesis is to provide fast and 

reliable algorithms to compute a consistent multiple isomorphism between a 

set of graphs. Due to the exponential complexity of the problem, we present 

six different sub-optimal algorithms that return an approximation of the 

optimal and common labeling solution in polynomial time. 

In the way of this research and with the desire to give solid theoretical 

basis to the presented methods and algorithms, two other important fields 

related to structural pattern recognition have been studied. The first one is 

related to the study in depth of the graph edit distance between two graphs. 

Although this distance has been used throughout 30 years, some theoretical 
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aspects never have been studied. In this thesis, we move one step further to 

the comprehension of this distance that has been shown to be appropriate in 

many applications. Additionally, we will analyze several applications where 

these new theoretical aspects can be applied. The second research field 

focuses on a new algorithm to compute the edit distance between two 

graphs. The developed algorithm relies on the association graph, a very solid 

theoretical framework to solve the graph isomorphism problem. Related to 

the main aim of the thesis this pair-wise matching algorithm has been 

extended to the group-wise case. Since the error tolerant consistent multiple 

isomorphism is a generalization of the error tolerant isomorphism problem 

this initial development and evaluation of the pair-wise case represents an 

advantage to ensure the functionality of the algorithm for the group-wise 

case. Finally to evaluate the proposed algorithms, we have selected several 

methods and applications that need to find a consistent multiple 

isomorphism between a set of graphs. Methods involve important fields such 

as synthesis of graph class prototypes, graph database construction and 

group-wise image registration. In this last application the common labeling 

aids to the increase of the quality of individual graph correspondences given 

highly noise applications.  

3. ORGANIZATION  

The thesis document is organized in 7 chapters.  

Chapter 2 is devoted to describe the required concepts for the rest of the 

document. Concepts described overview the basics of graph matching, types 

of bijections between graphs and the state of the art of algorithms to 

compute bijections between two graphs. Once these concepts are 

overviewed, the chapter extends all previous definitions to the group-wise 

case. To this aim, concepts like the multiple isomorphism, consistent 

multiple isomorphism and common labeling are formally defined. Next, the 

state of the art of algorithms to compute a common labeling are detailed. The 

rest of the chapter concerns the analysis of several applications where the 

common labeling problem arises. These applications include graph prototype 

construction and graph databases. 

Chapter 3 describes several new properties of the graph edit distance. 

These new properties, previously unknown, focus on the particularization of 

a class of costs. The properties describe the shape and the interpretation of a 

class of costs. The end of the chapter reviews several possible applications 

of the new properties and give some directions to improve several existing 

graph matching algorithms. 

Chapter 4 describes a new algorithm to compute a bijection between two 

graphs that minimize the graph edit distance. The algorithm relies on the 
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concept of dominant set, which is a generalization of the association graph 

framework to detect similar structures between two attributed graphs.  

 

 
 

Figure 1-3-1: Graph prototype computation example 

 

Chapter 5 describes six new algorithms to compute a common labeling. 

The first two are based on a generalization of the graduated assignment, the 

effectivity of these algorithms is high at the expense of having also a high 

computational cost. Two of these last algorithms center its objective on 

minimizing all pair-wise bijections, considering consistency restrictions, 

among the involved graphs. The other two are focused to minimize explicitly 

the common labeling. 

Chapter 6 evaluates the new proposed methods and compares their 

results with the state of the art algorithms. The first part of the chapter is 

addressed to evaluate the cost of the common labeling obtained as a raw 

measure. The second part evaluates the efficiency of the common labeling 

on several applications such as prototype construction and graphs databases. 

The last part of the chapter is dedicated to describe and evaluate how the 

common labeling can be used as a group-wise image registration algorithm.  

Eventually, chapter 7 draws conclusions and gives directions to further 

work. 
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Chapter 2 

STATE OF THE ART AND DEFINITIONS 
 

 
 

1. GRAPHS AND ATTRIBUTED GRAPHS 

We define a graph as an abstract representation of an object. This object 

is considered to be composed by parts and there exists some relation 

between the parts. The interconnected parts are represented by abstractions 

called vertices (or nodes), and the relations that connect some pairs of 

vertices are called edges (or arcs). More formally, a graph is defined by a 

tuple                , where                     is the set of 

vertices (or nodes) and                       is the set of edges (or 

arcs).          and         , where    and    represent two possible 

domains, assigns problem dependent attributes to vertices and edges 

respectively.  

There are several classifications of graphs depending on the 

characteristics of the composing nodes and vertices. With regard to the 

information associated to the elements that compose the graphs (nodes and 

edges), we differentiate between un-attributed and attributed graphs 

depending if the nodes or edges contain or not contain attributes, that is 

depending whether functions    and    exist. We also differentiate between 

directed or undirected graph. Directed graphs are composed by directed 

edges, which indicate directional information on the relation they encode. 

Edge directionality can also be encoded into an edge attribute.  

From now to the rest of the document, we call attributed graphs to graphs 

where nodes and edges contain attributes over a possible domain, edges are 

not directed. In case some directionality needs to be codified, the relation 

will be encoded into the attribute of the edge. 
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1.1 Types of Correspondences between graphs 

1.1.1 Bijection between two graphs 

Let       
 
   

 
   

 
   

 
  and       

 
   

 
   

 
   

 
  be two graphs of 

order    and    respectively. A bijection between the two graphs, in case 

     , is assumed to be a function        
 

   
 
 which assigns nodes of 

graph    to nodes of graph   . The bijection between the graph edges, 

denoted by   
   

, must be defined accordingly to the bijection of their 

terminal nodes. In other words: 

   
   

    
 

     
 

        
 
    

 
        

 
    

 
 (1.1) 

In addition, we represent the set of all possible bijections by symbol  . 

Depending on the special characteristics of this bijection we can classify 

them in several types. The following two sections give details of two of 

them. 

1.1.2 Graph isomorphism 

Let       
 
   

 
   

 
   

 
  and       

 
   

 
   

 
   

 
  be two un-

attributed graphs with the same order,    =   . A bijection      is an 

isomorphism if and only if for every two nodes     
 

     
 
   

 
  adjacent in 

  , nodes     
 

         
 
         

 
   are also adjacent in    and vice 

versa. This type of bijections between two graphs are said to be edge 

preserving in the sense that every edge in     also exist in    and vice 

versa. Formally,  

Definition 1-1: given two graphs    and   , an isomorphism between 

them is a bijection        
 

   
 
 where 

    
 
   

 
    

 
         

 
         

 
     

  (1.2) 

Two graphs are isomorphic is there exist an isomorphism between them. □ 

 

In case,       or both graphs are not completely isomorphic, bijection  

     cannot assign all nodes either in the domain or in the co-domain. In 

those case the concept of sub-graph isomorphism arises. A sub-graph 

isomorphism         
 

   
  

   
 
 assigns nodes of     to a subset of nodes 

of    with the same characteristics of an isomorphism but restricted to the 

graph induced by   
  

. 

The concept of graph isomorphism in attributed graphs becomes fuzzy, 

and several authors have slightly different definitions depending on the type 

of problem. One approach (Jiang and Bunke 1996; Hidovic and Pelillo 

2004), which is a strict generalization of the original meaning of graph 
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isomorphism restricts the solution to be isomorphic (edge preserving). In 

addition, authors give a numerical value to quantify the quality of the 

bijection with respect to node and edge attributes. Another possible 

definition (Cordella, Foggia et al. 2004), maybe more intuitive than a formal 

generalization, defines the compatibility between two nodes or edges based 

on a semantic similarity measure which asserts if two nodes or edges can be 

defined as equivalent or not ( note that the solution may not be edge 

preserving in the original sense of graph isomorphism ). 

1.1.3 Error tolerant bijection 

When applying graph matching algorithms over real data on real 

applications it is possible that, due to the process of sampling, information 

extraction or modeling, the graph representation of the original data loses 

some structural information. In these situations, graph isomorphic solutions 

for the process of computing correspondences between nodes of both graphs 

may be too restrictive. Is in these situations where error tolerant graph 

matching (Messmer and Bunke 1997; Bunke 1998; Bunke 2000; Pawar and 

Zaveri 2011) solutions must be applied. Several other names have been 

given to the same problem such as error correcting graph matching or error 

tolerant graph isomorphism. However, the concept is equivalent. Error 

tolerant graph matching is not only focused in attributed graphs but also in 

non-attributed graph. In case of non-attributed graphs, the main difference 

with respect to the original graph isomorphism problem relies on that edge 

consistency is not necessarily preserved. Equivalently, in attributed graph, 

edge correspondences given by the solution may not be preserved. In 

addition, attributes of nodes and edges, in case they exist, they are not 

mandatory to match the exact value. From now on to the rest of the 

document, we focus only on attributed graph. However, same methods can 

be applied for error tolerant graph matching using non-attributed graphs. 

Like graph isomorphism, error tolerant bijections relate vertices of one 

graph to vertices of the other graph. This relation allows applying local 

distance measures between nodes and edges and also between node and edge 

attributes. By means of this tight relationship between local costs and the 

global correspondence between nodes of both graphs, graph matching 

algorithms usually compute error tolerant bijections by minimizing some 

objective function which relates vertex and edge correspondences with 

vertex and edge attributes. 

In general, given two graphs       
 
   

 
   

 
   

 
  and    

   
 
   

 
   

 
   

 
  where    

 
     

 
   , the general objective function to 

optimize corresponds to the quadratic assignment problem (Du and Pardalos 

1998) objective function. That is: 
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 (1.3) 

where   represents a continuous or discrete assignment matrix. Usually, in 

case of discrete assignments the matrix is described as a permutation matrix: 

            
           

 
    

 

          
  (1.4) 

on the other hand, if the matrix is defined in a continuous form, is usually 

interpreted as a probability of assigning two nodes: 

               
 

   
 
  (1.5) 

In both cases, we can generalize the restriction of this matrix by: 

 

          

 

   

            

          

 

   

            

                       

 (1.6) 

Cost functions        
      

 
   

 
   and      

      
 

   
 

   assign a cost 

or compatibility value, depending if the problem is addressed to minimize or 

to maximize (1.3), between any edge or nodes correspondence. We represent 

compatibility by   and cost by  . Compatibility and cost values are 

complementary and can be transformed using several functions: 

 

       

  
 

   

  
   

 

 (1.7) 

where   represents a scaling constant to reach the zero compatibility when   

is maximum. We prefer to use the second or the third functions of (1.7) due 

to its lower computational cost. 

A more compact representation of objective function in (1.3) can be 

given by : 

                                             
   

 

   
   

 

   

 

   
   

 

   

 (1.8) 

where the combined compatibility       
   

 is given by: 
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    (1.9) 

since each node forms part of     edges (note that we do not count self-

loops on vertices). 

From now to the rest of the document, we will use this compact 

representation since it ease the notation and it is numerically equivalent. 

1.1.3.1 Graph extension with null nodes 

From the formalization of the error tolerant graph matching problem it 

can be seen that, due to restrictions given in (1.6), the solution is forced to 

match all vertex set   
 

 of the first graph to all vertex set of the second graph 

  
 
. The situation can be involved if both graphs just contain a sub-part in 

common that have to be corresponded and the rest of both graph must 

remain unmatched. In addition, the same situation appears when both graphs 

have different size. Since now, we restricted the size of both involved graphs 

   and    to have the same cardinality,    
 
     

 
   , which obviously 

do not solve the aforementioned problems but give a nice and clear 

optimization problem. To keep these nice properties of the formalization 

given in (1.3) and (1.6), the most used solution (Wong and You 1985; Bunke 

1998; Lohmann and Cramon 2000; Myers and Hancock 2000; Myers and 

Hancock 2000; Gautama, Bellens et al. 2006; Justice and Hero 2006; Ferrer, 

Valveny et al. 2009; Riesen and Bunke 2009; Raveaux, Burie et al. 2010) is 

to extend both graphs with null-nodes that we identify with symbol  . These 

null nodes do not contain attributes and so the cost      
    is defined in a 

slightly different form. We will not focus in this definition because it is 

specific of the problem and also on the graph distance we aim to optimize. In 

section 1.1.4, we will specify this cost for the graph edit distance (Sanfeliu 

and Fu 1983). Considering this new representation, given two graphs    and 

   with    
 
     and    

 
    , the extended graphs should be of size 

   
 
        and    

 
        to allow all possible node 

assignations and the extreme case where any node of both graphs is 

identified to be common. However, this amount of extra nodes increases the 

effective cost of the computation. To reduce this sever drawback of the 

solution, usually some heuristics (Myers, Wilson et al. 1999) can be applied 

to estimate the amount of overlapping between both graphs. Depending on 

the problem is also common to add null edges between nodes which are not 

adjacent. In the same way, null edges are not attributed. 

1.1.4 Graph edit distance 

One of the most widely used methods to evaluate an error correcting 

graph isomorphism is the Graph Edit Distance (Sanfeliu and Fu 1983). The 
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basic idea behind the Graph Edit Distance is to define a dissimilarity 

measure between two graphs. This dissimilarity, equivalently to the idea of 

string edit distance (Navarro 2001), is defined as the minimum amount of 

distortion required to transform one graph into the other. To this end, a 

number of distortion or edit operations, consisting of insertion, deletion and 

substitution of both nodes and edges are defined. Then, for every pair of 

graphs (   and   ), there is a sequence of edit operations, or an edit path 

                          (where each    denotes an edit operation) 

that transform one graph into the other. In general, several edit paths may 

exist between two given graphs. This set of edit paths is denoted by  . To 

quantitatively evaluate which edit path is the best, edit cost functions are 

introduced. These edit functions assign a penalty cost to each edit operation 

according to the amount of distortion that they introduce in the 

transformation.  

Each                   can be related to a univocal graph 

isomorphism        between the involved graphs. In this way, each edit 

operation assigns a node of the first graph to a node of the second graph. 

Deletion and insertion operations are transformed to assignations of a non-

null node of the first or second graph to a null node of the second and first 

graph. Substitutions simply indicate node-to-node assignations. Using this 

transformation, given two graphs,    and     and a bijection      between 

their nodes, the graph edit cost is given by (Definition 7 of (Bunke 1999)): 

                   

        
 
   

 
 

  
 
   

 
    

 

  
 
   

 
    

 

        
 
   

 
 

  
 
   

 
    

 

  
 
    

 

  

        
 
   

 
 

  
 
    

 

  
 
   

 
    

 

         
     

 
 

   
 

   
 
    

 

 
  
 
   

 
    

 

  

         
     

 
 

   
 

   
 
    

 

   
 
    

 

         
     

 
 

   
 

    
 

   
 
   

 
    

 

 

(1.10) 

       
 
    

  and   
   

    
 

     
 

 (1.11) 

where    
 

 and    
 

 refer to null nodes and null edges1,     is the cost of 

substituting node   
 

 of    for node        
 
  of   ,     is the cost of 

 

 
1 we consider a null edge an edge that does not exist on the graph. Null edges do not contain 

attributes. Usually, graphs are extended with null edges to be complete and consequently 

null edges are considered in the cost computation. 
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deleting node   
 

 of    and     is the cost of inserting node   
 
 of   . 

Equivalently for edges,     is the cost of substituting edge    
 

 of graph    

for edge   
   

    
 

  of   ,     is the cost of assigning edge    
 

 of    to a 

non-existing edge of    and     is the cost of assigning edge    
 

 of    to a 

non-existing edge of   . 

Finally, the Graph Edit Distance is defined as the minimum cost under 

the set of all possible bijections  : 

               
      

                  (1.12) 

It is common to encode the graph edit distance problem into an 

optimization framework and solve the problem using a permutation matrix 

instead of computing the edit path explicitly (Torsello and Hancock 2003; 

Justice and Hero 2006; Neuhaus and Bunke 2007; Riesen and Bunke 2009). 

This approach has the advantage of not dealing with equivalent edit paths, 

like in (Ferrer, Valveny et al. 2010). Usually, the objective function to 

optimize is related to the quadratic assignment problem as defined in (1.3) or 

what is the same as (1.8). In this formulation, as commented previously, it is 

usual to extend the graph with null nodes to be of order    
 
     

 
  

       , and the costs     
    and          

    that compose       
   

 are defined 

as: 

 

    

   
  

      
 
   

 
   

 
   

 
    

 
     

 
   

 
    

 

      
 
   

 
   

 
   

 
    

 
     

 
    

 

      
 
   

 
   

 
    

 
     

 
   

 
    

 

  

 

       

   
  

       
 

    
 
    

 
   

 
    

 
      

 
   

 
    

 

       
 

    
 
    

 
   

 
    

 
      

 
    

 

       
 

    
 
    

 
    

 
      

 
   

 
    

 

  

(1.13) 

It is usual that, since null nodes and edges do not contain attributes, to 

model functions    ,    ,     and     with constant costs    ,    ,     and 

   . However, some other definitions exist. Some of them will be explained 

in Chapter 3. 

 

1.1.5 Graph matching algorithms 

The literature on graph matching algorithms is extensive and algorithms 

range from the 70th up to now. We will review the basic literature and 

methods. In addition, since most of the document is focused on the graph 

edit distance, the end of the section is devoted specifically to algorithms that 

minimize that distance. 

To survey graph matching algorithms one can rely on different 

taxonomies. These taxonomies involve types of graphs, types of solutions, 
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optimality of the solution and so on. This section reviews algorithms from 

graph isomorphism, error tolerant graph matching, and among them 

structural matching and attributed graph matching. We will also differentiate 

between optimal and suboptimal algorithms. Several surveys and related 

articles can be found, we highlight (Conte, Foggia et al. 2004; Gallagher 

2006). 

One of the primal problems related to graph matching is the graph 

isomorphism problem. This problem was one of the first problems to be 

studied in depth considering its importance for the pattern recognition 

community and the difficulty to compute solutions in reasonable time.  

The first proposed optimal methods where proposed for non-attributed 

graph. Most of them are based on back-track search (Ullmann 1976) or state 

space representations of the matching process (Cordella, Foggia et al. 1999). 

Since the first proposed methods most of the work has been focused on 

pruning the search space to speed up the matching process (Ballabh 1988; 

Krissinel and Henrick 2004; Battiti and Mascia 2007). But, the problem 

remains of exponential computational cost in the worst case scenario. One 

way to overcome this drawback is to focus on specific graphs such as with 

graph with unique node labels (Dickinson, Bunke et al. 2003). In this way, 

the matching process can fall into polynomial time algorithms to compute 

the optimal solution. Still on the graph isomorphism problem, but moving 

now to the attributed graph case, we can find some works (McGregor 1982; 

Cordella, Foggia et al. 1999). Considering the exponential complexity of the 

general problem several suboptimal solutions have been proposed to 

compute the isomorphism between two graphs in polynomial time. One of 

the most popular is related to the association graph and the Motzkin-Straus 

theorem (Pelillo 1999). This solution will be explained in detail further in 

this chapter. Some other approaches to sub-optimally compute graph 

isomorphic solutions could be found (Massaro and Pelillo 2001; Fosser, 

Glantz et al. 2003; Massaro and Pelillo 2003). 

As commented earlier, since some amount of noise is expected in the 

input data graph, isomorphic solutions applied to pattern recognition 

problems are usually too restrictive. It is in these situations where models 

relying on error tolerant solutions improve performance. In both cases, when 

data is represented by attributed graphs or non-attributed graphs, a large 

amount of solutions have been proposed. Algorithms proposed for non-

attributed graphs, could be based on optimization techniques  (Finch, 

Wilson et al. 1998; Bin and Hancock 2001; Wang and Hancock 2009),  

spectral graph theory (Caelli and Kosinov 2004; Qiu and Hancock 2006), 

some heuristic technique such as (Zhu, Qin et al. 2001)  based on some 

incremental matching plus a refinement process, the association graph 

(Tang, Jiang et al. 2011) or other less popular techniques such as quantum 

walks (Emms, Wilson et al. 2008). When data is represented by attributed 

graph, the literature is still more extensive since attributed graphs are often 
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used in pattern recognition applications. Several optimal algorithms exist 

(Tsai and Fu 1979; Llados, Marti et al. 2001; Cordella, Foggia et al. 2004), 

which as usual are based on a tree search with some pruning heuristics or 

similar procedures (Hlaoui and Wang 2002). It is important to see that with 

attributed graphs, it is possible to obtain a higher degree of pruning since 

more information is considered (structure and attributes). For particular 

graphs, such as  graph with unique node labels, linear time optimal 

algorithms are available (Dickinson, Bunke et al. 2003). 

Taking into account that optimal labelings are usually too expensive to 

compute, even though high pruning heuristics have been designed, a large 

set of suboptimal algorithms have been proliferated. Some of them based on 

optimization techniques (Christmas, Kittler et al. 1995; Wilson and Hancock 

1997; Wyk and Wyk 2004; Schellewald and Schnörr 2005), some others on 

spectral properties of graphs and their adjacency matrices (Umeyama 1988 ; 

Zhao, Luo et al. 2007) or less commonly other techniques (Gori, Maggini et 

al. 2005; Jain and Wysotzki 2005; Othman, Abdullah et al. 2008; Kim, Yun 

et al. 2010). Up to now, we mainly have considered bijective solutions, but 

other types of solutions could be considered, such as a many-to-many 

correspondences (Keselman, Shokoufandeh et al. 2003; Demirci, 

Osmanlioglu et al. 2011). 

Most of the previously cited algorithms are generic graph matching 

algorithms, but since there are several standard distance measures to 

compare two graph (Sanfeliu and Fu 1983; Shapiro and Haralick 1985; 

Bunke and Shearer 1998), there are also several algorithms that specifically 

minimize these distances. We focus now on algorithms that minimize the 

graph edit distance (Sanfeliu and Fu 1983). The proposed algorithms that 

minimize a distance related to graph edit distance between two graphs is 

considerably large. However, not many algorithms to minimize the specific 

graph edit distance as proposed in (Bunke 1998) exist. There is a great 

survey of most of the proposed algorithms in (Gao, Xiao et al. 2010). We 

highlight some and then we describe in detail the graph matching algorithms 

that will be used in the document. 

Since the graph edit distance is a well established distance measure 

between two graphs, it has been applied to a large set of problems. We 

differentiate between two types of input data, trees and graphs. The tree edit 

distance seems more widely used than the graph edit distance. Target 

applications could be addressed to match shapes using shock graphs (Klein, 

Tirthapura et al. 2000; Torsello and Hancock 2003; Sebastian, Klein et al. 

2004), images (Todorovic and Ahuja 2007) or to analysis of glycan 

structures (Fukagawa, Tamura et al. 2011) to name some. In most of the tree 

edit distance proposed solutions, it is common to carry out the matching 

process using the tree closure to be resistant to node merging (Torsello and 

Hancock 2003; Torsello, Robles-Kelly et al. 2007). Thus, the final type of 

data to match are not trees but directed acyclic graphs. More general 
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approaches exist for graph, such as (Llados, Marti et al. 2001; Ambauen, 

Fischer et al. 2003; Berretti, Bimbo et al. 2004; Justice and Hero 2006; 

Neuhaus and Bunke 2007; Riesen, Neuhaus et al. 2007; Riesen and Bunke 

2009). Neuhaus (Neuhaus and Bunke 2007) use a quadratic assignment 

formulation to solve the problem. Justice and Hero (Justice and Hero 2006) 

approach the problem using a linear formulation obtaining especially good 

results. However, just discrete or symbolic labels on nodes can be used. 

Other works (Llados, Marti et al. 2001; Ambauen, Fischer et al. 2003; 

Berretti, Bimbo et al. 2004) with the aim of obtaining a more flexible 

matching process enhance the graph edit distance with some extra 

operations. These operations are related to shift, merge and split node 

operations. Lately, (Riesen, Neuhaus et al. 2007; Riesen and Bunke 2009) 

propose a very fast algorithm to compute the graph edit distance. This 

algorithm is based on the linear assignment problem that can be optimally 

solved with a cost of at most       (Kuhn 1955; Munkres 1957). 

In the following subsection, we will explain in detail three graph 

matching algorithms that will be used throughout the document. 

1.1.5.1 Graduated assignment 

 

The Graduated Assignment algorithm (Gold and Rangarajan 1996) is 

probably the most popular algorithm to compute a sub-optimal solution for 

the graph isomorphism problem. Its cornerstone is how it reduces the 

isomorphism problem to the quadratic assignment problem (Garey and 

Johnson 1979). The proposed development starts by defining the energy of 

an isomorphism between two graphs. Thus, given two graphs    

   
 
   

 
        and       

 
   

 
        where    

 
     

 
    and   

corresponds to a continuous assignation matrix, the objective function 

becomes: 

                                      
   

 

   
   

 

   
   

 

   

 

   

 

   
 

      
  

(1.14) 

In fact, in the original paper (Gold and Rangarajan 1996), the 

normalization constant is     instead of           . We prefer to use 

this constant because it restricts the energy in the range        instead of 

        .  
In (Gold and Rangarajan 1996),      is approximated, at point         

using Taylor series expansion as: 

                               (1.15) 
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Analyzing the approximation it can be seen that:  

             
    

                     
    

              

        
    

           

 

   

 

   

           
(1.16) 

where 

                        

 

   

 

   

       
   

 (1.17) 

Note that the same conclusions can be achieved with the objective 

function in (1.8). That is, 

             
    

                     
    

              

        
    

           

 

   

 

   

           
(1.18) 

The algorithm proposed in (Gold and Rangarajan 1996) minimizes 

              under the assumption that it is minimised at the same point 

in which (1.16) is maximize. Consequently, the problem is equivalent to the 

linear assignment problem (Du and Pardalos 1998), where      represents a 

cost matrix and      represents a doubly stochastic matrix (Sinkhorn 1964) 

which contains the desired assignation probability. 

The Graduated Assignment algorithm proceeds in the following way: 

start with a valid        , compute cost matrix      given by (1.17), apply 

Graduated Assignment to compute      and start again. A pseudo-code of 

the Graduated Assignment is listed in Algorithm 1-1. 

The description of the parameters of the algorithm is given below: 

   : initial value of  . If    is low the algorithm is more likely to 

adapt the isomorphism correctly at the initial steps of the 

algorithm, since        
will have similar values. 

   : latest value of  . If    is high, then the exponential function 

       
 approaches      to a permutation matrix obtaining only 

almost 0 or 1 values. Therefore,      becomes almost a doubly 

stochastic matrix and the discretization of      to obtain the 

resulting bijection may not be required. 
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   : increment of  . The smaller the increment, the better the 

algorithm captures the solution with minimum energy. However, 

the run time is higher. 

    and   : maximum number of iterations of loops in lines 6 and 

line 10 in case      does not converge given a concrete   value. 

If these values are too low, the system will not have time to 

capture the global knowledge. But if they are too high, the run 

time increases without increasing the quality of the isomorphism. 

 

The proposed values for these constants are suggested in Table 1-1. 

Function   indicates a final discretization process to convert the doubly 

stochastic matrix to a permutation matrix. 

 

Algorithm 1-1: Graduated Assignment algorithm. 

 

 Description Value 

   Start value for Graduated Assignment control parameter 0.05 

   Increment rate for Graduated Assignment control parameter 1.075 

   Maximum value for Graduated Assignment control parameter 150 

   Number of iterations with the same control parameter value 4 

   Maximum number of iterations for Sinkhorn method 30 

Table 1-1: proposed value for graduated assignment algorithm. 

1.1.5.2 Bipartite Graph Matching 

The bipartite graph matching algorithm (Riesen, Neuhaus et al. 2007; 

Riesen and Bunke 2009) has lately shown very good performance on several 

1 Algorithm Graduated Assignment(   ,   )  
2       = Initialize(); 
3       
4  repeat until       
5        
6   repeat until       converges or          
7                                

    
   
   

 
   
   

  

8                              
9                          
10       repeat until   converges or          

11                         
           

   
      

12                        
           

   
   

13                              
14    end        
15                             
16   end 
17          
18  end 
19            
20  Return     
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databases. Considering its performance and speed, we consider it a good 

algorithm to compute the graph edit distance.  

The algorithm approximates the graph edit distance (quadratic 

assignment problem) to the linear assignment problem by using a cost matrix 

    
   

. They define the cost matrix as follows. 

Definition 1-2: given two graphs       
 
   

 
        and    

   
 
   

 
        where     

 
    and    

 
   .The cost matrix   is defined 

as:  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
    

   
    

   

    
   

    
   

       
   

       
   

  
    

   
    

   
  
       

   

               
 

   

   

    

    

  

  
  

     

               
 

     

   

      

    
  

  

  

                    
 

        

  

    

    
  

      

  

                   
  

 
 
 
 
 
 
 
 
 
 
 
 

 (1.19) 

where     
   

      
    denotes the node substitution cost and    the graph edit 

distance node insertion and deletion constant. □ 

Using this cost matrix   either the Hungarian algorithm (Kuhn 1955) or 

the Munkres algorithm (Munkres 1957) can be used to compute the bijection 

     that minimize the correspondences. 

Note that the cost matrix given in (1.19), nodes do not consider the edges 

of the graph. To do so, matrix   is proposed to be extended to include edge 

costs. Thus, to each entry of     
   

 the minimum sum of edge edit operations, 

computed through the Munkres algorithms, is added. This solutions assumes 

that adjacent edges of vertex   
 
 should be equivalent to adjacent edges of 

  
 
. Given this new matrix    the linear assignment problem is solved in the 

same way. 

1.1.5.3 Association graph and Dominant sets 

One of the techniques to solve the graph isomorphism problem is through 

the use of association graphs. This framework reduces the graph 

isomorphism problem to the maximum clique problem (Bomze, Budinich et 

al. 1999) which by the Motzkin-Straus (Motzkin and Straus 1965)  theorem 

is proven to be equivalent to a particular quadratic program. 

1.1.5.3.1 Association graph construction 

Given a non-attributed graph       
 
   

 
 , we say that two nodes   

 
 

and   
 

 are adjacent if    
 
   

 
    

 
. Related to this adjacency property of 
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vertices, we define the adjacency matrix of    as an                 

symmetric matrix where: 

       
       

 
   

 
    

 

          
  (1.20) 

Definition 1-3: Given two graphs    and   , we define its association 

graph as            where: 

 

     
 

   
 
 

        
 
   

 
     

 
   

 
    

    
 
   

 
    

 
    

 
   

 
    

 
  

 

    
 
   

 
    

 
    

 
   

 
    

 
 

   
(1.21) 

In addition, we represent its associated adjacency matrix by   . 
Definition 1-4: given a graph  , we call a clique a subset   

     of 

vertices where all vertices are mutually adjacent, that is           
   

          . 

1.1.5.3.2 The Motzkin-Straus theorem 

Let   be an un-attributed graph of cardinality  , and   a point on the 

standard simplex of   dimensions, that is:  

                  (1.22) 

We denote all points in the simplex of N dimensions as   . 

We define the support of   as          where : 

         
     
          

  (1.23) 

In addition, we define the characteristic vector of   as the barycenter of the 

simplex face indicated by the support  .  

   
   

 

   
 
   

    

          

  (1.24) 

Note that    is the point with minimum norm of all the points over the 

simplex faces indicated by the support of  . 

The original paper of Motzkin-Straus relates the aforementioned 

maximum clique problem with the following quadratic form: 

                            

 

   

 

   

 (1.25) 

where   is the adjacency matrix of   and   indicates the transpose of a 

matrix. 

A point    is a global maximizer of   if                 , and a local 

maximizer if                            .    is a strict local 

maximizer if the only point which holds for the            is     . 
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The Motzkin-Straus (Motzkin and Straus 1965) theorem proves a 

connection between the maximum clique problem and the objective function 

given in (1.25). It states that a subset of nodes of   is a maximum clique   if 

and only if its characteristic vector    is a global maximizer of     . The 

equivalent proof is made in (Pelillo and Jagota 1995; Gibbons, Hearn et al. 

1997) for strict local maximizes and maximal cliques. These results had a 

strong impact in the maximum clique problem since it converts a strict 

combinatorial problem to the continuous domain in a solid theoretical 

manner. This allows using a large set of existing quadratic optimization 

methodologies to compute solutions to the maximal clique problem. The 

main drawback of this original formalization is that it contains spurious 

solutions. This spurious solutions are formalized in the following theorem 

(Pelillo and Jagota 1995): 

Theorem 1: Consider a graph   which contains two cliques   and   of 

equal cardinality          . Let                . Then, for 

every         such that        : 

1. If   has exactly        edges crossing     and     then 

     
     

        . 

2. If G has fewer edges than        crossing     and     

then      
     

        . 

 

This drawback was solved in (Bomze 1997) by adding a regularization 

term in the diagonal of the adjacency matrix of the graph. Including this 

regularization term the quadratic form becomes:  

 

 
           

 

 
                

 

   

 

   

 
 

 
   

 

 

   

 (1.26) 

1.1.5.3.3 Computing the graph isomorphism 

Considering the section 1.1.5.3.2, it is not hard to formulate the 

graph/sub-graph isomorphism problem in terms of the association graph and 

the maximum clique problem. Thus, given two graph    and    and its 

respective association graph   , with adjacency matrix   . The graph/sub-

graph isomorphism problem can be stated as: 

    
    

               

 

   

 

   

 
 

 
   

 

 

   

 (1.27) 

Note that quadratic program of (1.27) is closely related to the 

formalization of the graph matching problem given by (1.3). And although 

the search space is different solutions can be straightforwardly adapted since 

each    describes a vertex-to-vertex correspondence given by   in (1.3). 
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1.1.5.3.4 Dominant sets 

The framework described above is restricted to compute the graph 

isomorphism of un-attributed graph using its clique representation in the 

association graph. This represents a strong restriction, since lately it is 

common to represent information using attributed graph what will produce 

weighted adjacency matrices in the association graph. In this sense, the 

above framework cannot be used. There are several extensions of the 

Motzkin-Straus theorem to other types of graph (Gibbons, Hearn et al. 1997; 

Bomze, Pelillo et al. 2000; Rota-Bulò and Pelillo 2008). In this work, we are 

interested in (Pavan and Pelillo 2003) where the Motzkin-Straus theorem is  

extended to edge weighted graphs and is related to the concept of dominant 

set. The concept of dominant set is defined as a group of nodes all connected 

with each other with high internal connection between them. In (Pavan and 

Pelillo 2003; Pavan and Pelillo 2007), they establish a correspondence 

between dominant sets and local solution of the following optimization 

problem:  

    
    

      (1.28) 

where    represents a weighted association matrix, and    represents the 

simplex of   dimensions. 

The dominant set objective function is equivalent to the one defined for the 

un-weighted case, that is (1.27), but with a continuous definition of matrix   

weights.  

Our final aim is to use the association graph framework to compute a 

solution for the graph edit distance problem. As an advance of concept and 

to justify the decision of focusing on dominant sets, it is worth to say that we 

will codify the problem in an association graph where each cell of the 

adjacency matrix will contain the cost of matching the respective elements. 

In this way, isomorphism restrictions may not be fulfilled and all nodes, with 

some restrictions, are susceptible to be matched. This methodology will 

encode every possible bijection as a dominant set in the association graph. 

2. MULTIPLE ISOMORPHISM BETWEEN A SET 

OF GRAPHS 

This section generalizes the concept of pair-wise graph matching to the 

concept group-wise graph matching. In addition, we will overview and 

formally describe several related problems and summarize state of the art 

algorithms. 
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2.1 Multiple isomorphism and related problems 

Let                be a set of   attributed graphs of order    
  , 

   
  , ...,    

  . Assume for the moment that all attributed graphs have 

   
      

        
     nodes.  

Definition 2-1: the set   is a multiple isomorphism of   if it contains 

one and only one isomorphism between attributed graphs in  ,    
                        being       . □ 

Considering Definition 2-1, we compute the cost of a multiple 

isomorphism as the sum of the individual costs for all isomorphisms in φ:                    

                                          
   

 

   
   

 

   

 

   
   

 

   

 

   
   

 

   

 (2.1) 

□ 

Note that in   two isomorphisms exist for any pair of graphs and so it 

contains      and     . Taking into account that a multiple isomorphism 

could be computed using a sub-optimal pair-wise graph matching algorithm 

(Rosenfeld, Hummel et al. 1976; Christmas, Kittler et al. 1995; Gold and 

Rangarajan 1996; Riesen and Bunke 2009; Gao, Xiao et al. 2010),  which do 

not ensure that the result of      and      are the same labeling, the cost of 

(2.1) must consider both bijections. 

With respect to the issue of the number of extra null nodes that should be 

included in each graph, it is worth to say that this number is in general 

unknown and it is application dependant. In general, all graphs should be 

extended with null nodes to have    
        

        
   

    nodes. This 

would allow all graphs not to be labeled to each other in case they are 

absolutely different. As a particular case if our aim is to compute a multiple 

isomorphism, that is a one-to-one correspondence between all nodes of any 

two graphs, it is only required to extend each graph with null nodes to make 

all input graphs be of the same size in this case    
                  

  . On 

the other hand, if we just expect some degree of overlap it is usual, to 

include just some extra null nodes to allow non-common nodes to be 

assigned to null nodes in the final solution (e.g. 10 or 20 percent). Heuristics 

for the pair-wise case could be extended to the multiple isomorphism 

problem. 

 Definition 2-2: the optimal multiple isomorphism is the one that 

minimizes (2.1), formally, 

            
    

         (2.2) 
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We say that the multiple isomorphism   is consistent2 if composing any 

subset of bijections from φ we can define separate partitions of vertices 

(Bonev, Escolano et al. 2007). This concept have already appeared in 

(Bunke, Münger et al. 1999; Jiang, Münger et al. 2001) and also in a more 

fuzzy fashion in some graph prototype generation algorithms (Sanfeliu, 

Serratosa et al. 2004) or generative models (White and Wilson 2008; White 

2009). The main idea is to look for multiple isomorphism where each node 

of each graph is labeled to a single characteristic of the element that graphs 

represent. Thus, given a set of attributed graphs, each partition contains one 

and only one vertex per attributed graph and, in addition, every vertex must 

belong to only one partition. More formally, a consistent multiple 

isomorphism can be defined as: 

Definition 2-3: let   be a multiple isomorphism of Γ.       is a 

consistent multiple isomorphism of Γ if it fulfils that: 

 
            

 
           

 
   

                      
(2.3) 

Furthermore, we define the cost of a consistent multiple isomorphism as 

the cost of the related multiple isomorphism. As opposed to the meaning of 

consistency, we consider any multiple isomorphism which does not fulfill 

(2.3) as inconsistent multiple isomorphism.  

Figure 2-1 shows a consistent multiple isomorphism between three 

attributed graphs, being    . We can distinguish two partitions,    and 

  . Figure 2-2 shows the same attributed graphs with an inconsistent 

multiple isomorphism. In this case, no partitions can be defined since   
  and 

  
  cannot belong to several partitions. 

 

 

 

 
Figure 2-1: Example of consistent multiple isomorphism. 

 

 

 
2 The reader should not confuse our sense of consistent/inconsistent with the meaning of 

consistent estimator used in statistics. 
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Figure 2-2: example of inconsistent multiple isomorphism. 

 

To quantify the degree of consistency in a multiple isomorphism we define 

the consistency index as: 

Definition 2-4 (Consistency Index) : let   be a multiple isomorphism of   

with   graphs of   nodes each graph. We define the Consistency Index as: 

 
        

                  
 
          

 
   

   
 
   
   
   

 
   
   

 
   

             
 

(2.4) 

where   corresponds to the Kronecker delta function. 

□ 

The optimal consistent multiple isomorphism is the consistent multiple 

isomorphism with the minimum cost. Note that the minimum cost may be 

obtained by non-optimal pair-wise isomorphisms since it is restricted to be 

consistent. 

Definition 2-5: let       be a consistent multiple isomorphism of  .  

          

 is an optimal consistent multiple isomorphism of Γ if it fulfils that : 

                 
         

              (2.5) 

□ 

2.2 Common labeling 

Given  , we define a common labeling as a bijective mapping between 

all nodes in the graphs of   to a virtual node set  . We initially construct this 

common labeling through a consistent multiple isomorphism      . 

Consistency requirement is mandatory. If this was not the case, an attributed 

graph node could be labeled to several nodes of the virtual node set which is 

not allowed in the described framework. 

Definition 2-6: let       be a consistent multiple isomorphism of   and 

let                 be a vertex set,    . The common labeling   
                is defined to be a set of bijective mappings from the 

vertices of attributed graphs to   as follows:  
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 (2.6) 

Note that the common labeling defined in Definition 2-6 and the 

consistent multiple isomorphisms defined in Definition 2-3 represent the 

same information. In the consistent multiple isomorphism all pair-wise 

isomorphisms are explicitly described. However, the common labeling 

represents the same information using a compact notation. 

Figure 2-3 represents a set of attributed graphs and a common labeling 

among them. Isomorphism between graphs    and    is represented by     . 

Moreover, it can be seen that    is the identity (2.6) and    depends on     , 

i.e.           
         

  . Finally, we show that    is obtained through 

     and       . 

 

 
Figure 2-3: graphical representation of a common labeling. 

 

We define the cost of a common labeling as the cost of the related 

multiple isomorphism (2.1). 

                   (2.7) 

where   is obtained from   through (2.6). 

Definition 2-7: the optimal common labeling of a set of attributed graphs 

  is the one that obtains the minimum cost.  

            
    

         (2.8) 

 

Note that given  Definition 2-2, Definition 2-5 and Definition 2-7, we obtain: 

                                          (2.9) 
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2.3 Algorithms 

Since the exponential nature of the common labeling problem, no optimal 

algorithm exists neither for graphs with small cardinality nor for small   

sets. However, several sub-optimal methods that deal with the common 

labeling problem, either in an implicit or explicit form, have been proposed 

in the literature. We have classified them into two categories. 

Prototype oriented methods 

Prototype oriented methods were the first ones to appear in the literature. 

Their main purpose is to generate a graph class prototype that represents a 

given set of graphs. In this type of methods, the common labeling is not 

explicitly computed. However, it is usually obtained simultaneously with the 

prototype. They mostly work using two types of prototype synthesis: 

Incremental synthesis and Agglomerative synthesis. In Incremental 

synthesis methodology, applied in (Lozano and Escolano 2003; Serratosa, 

Alquézar et al. 2003; Sanfeliu, Serratosa et al. 2004; Weskamp, Hullermeier 

et al. 2007), the prototype is updated while new graphs are sequentially 

introduced and labeled to the current prototype. Figure 2-4 gives an example 

of computing a prototype of four attributed graphs. The advantage of this 

method is that the learning and recognition processes can be interleaved. 

Nevertheless, the main drawback of the approach is that, depending on the 

processing order, different prototypes can be synthesized from the same set 

of graphs and consequently different common labelings will be obtained. 

Once the prototype is constructed the common labeling can be deduced from 

the sequential labelings computed against the current prototype. In 

Agglomerative synthesis methodology, applied in (Wong and You 1985; 

Serratosa, Alquézar et al. 2003; Sanfeliu, Serratosa et al. 2004; Lozano, 

Escolano et al. 2009), the generated prototype does not depend on the order 

of the graphs although it is an iterative algorithm. At each step of the 

process, the pair of temporal prototypes with the minimum distance is 

merged to generate a new prototype. Figure 2-5 gives an example of 

computing a prototype of four attributed graphs using agglomerative 

synthesis methodology. Note that the graphs are not processed sequentially 

and a distance function guides the synthesis process. The main advantage of 

using this type of synthesis is that, since at each iteration the closest 

prototypes are merged, less error in the matching process is expected. As in 

the incremental methods, the common labeling can be obtained once the 

final prototype is known. 

Prototype oriented methods have the main drawback that in cases where 

the prototype is unable to capture the structural and semantic information of 

the graphs involved at the moment, it is difficult to obtain a good common 

labeling or prototype for the rest of the graph set.  
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Multiple-Isomorphism Oriented methods 

Unlike prototype oriented methods, multiple-isomorphism oriented 

methods are specifically designed to compute a common labeling. That is, 

they explicitly compute a mutual labeling among all graphs from the given 

set. Two types of methods exist. Let’s call them consistent multiple 

isomorphism methods and direct methods. 

Consistent multiple isomorphism methods consist usually in two phases. 

In the first phase they compute all the pair-wise labelings between the 

graphs. Then, in the second phase, they deduce a common labeling applying 

a set of consistency rules or some kind of discretization or cleanup 

methodology over the bijections deduced in the first step. Figure 2-6 

illustrates the process. First using algorithm   all pair-wise labelings are 

computed, then using a cleanup method the final consistent multiple 

isomorphism is computed. 

With regard to these methodologies, we bring attention to the method 

presented in (Bonev, Escolano et al. 2007). This method will be explained in 

detail in the following section.  

Direct methods compute directly the common labeling without 

computing explicitly the pair-wise labelings a priori. Up to the knowledge of 

the author just two methods exists to this aim. The method (Jiang, Münger et 

al. 2001) codify the common labeling solution in an array of labelings that 

are optimized using a genetic search algorithm. This method will be 

explained in detail in Section 2.3.2. The second method (Fober, Mernberger 

et al. 2009) which also use a genetic algorithm is very similar to the first 

one. 

Figure 2-5: agglomerative Synthesis example. 

Figure 2-4: incremental Synthesis example. 
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Finally, even it is not explicitly related to compute a common labeling, it 

is worth mentioning another methodology (Williams, Wilson et al. 1997) 

which uses the common labeling to define a single isomorphism between 

two graphs. In (Williams, Wilson et al. 1997), representations obtained from 

Infra-red, Optical, Cartographic and SAR images must be combined and 

labeled one into the another. Authors of (Williams, Wilson et al. 1997) note 

that using pair-wise labelings to find correspondences among the different 

presented datasets, the pair-wise labeling algorithm (Wilson, Evans et al. 

1995) was not able to recover any correct label between SAR and Infra-red 

images. In (Williams, Wilson et al. 1997), they present a multiple graph 

matching algorithm based on Bayesian inference whereby SAR and Infra-

red images are correctly labeled by using Optical and Cartographic images. 

The main drawback of the methodology is that it cannot be extended to label 

a set of N graphs. However, it clearly shows that, in certain applications 

where precise isomorphism is required, computing a common labeling 

instead of pair-wise labelings between graphs reduces matching errors and 

therefore ensures a better global solution. 

The main advantage of using a multiple isomorphism oriented 

methodologies is that they decouple the common labeling problem from the 

prototype synthesis, solving one of the drawbacks of the prototype oriented 

methods. In addition, methods of the second type compute the common 

labeling considering all the knowledge of the set instead of just using local 

information provided by the pair-wise labelings. Thus, intuitively this type 

of methods should obtain better result than the previous ones. 

2.3.1 Super Graph Partitions methodology 

The Super Graph Partitions method presented in (Bonev, Escolano et al. 

2007) computes the common labeling in a pair-wise fashion. The method 

aims to compute a set of disjoint partitions                 between 

the nodes of each graph in the set  . A partition    contains one node of each 

graph and two nodes of the same graph cannot belong to the same partition. 

Figure 2-6: multiple isomorphism oriented methods scheme. 
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In this way, once the partitions are computed each partition    can be 

assigned to a label    of the virtual set in our definition of the common 

labeling. 

To compute these disjoint partitions, the proposed method applies the 

Graduated Assignment algorithm (Gold and Rangarajan 1996) to compute 

all possible pair-wise labelings between the given set of attributed graphs. 

Thus, the continuous result      of the Graduated Assignment is used to 

compute the partitions. Each cell of           contains the probability of 

labeling a node   
 

 of    to a node   
 
 of   . All this assignations are sorted 

considering its probability and considered in descending order. Assignations 

with the same probability are sorted using a heuristic such as the distance 

between attributes in the nodes. Each assignation that relates    
 
 of    to a 

node   
 
 of   , is assigned to a partition considering the following rules. The 

method starts with an empty set of partitions, that is    . 

 Neither   
 

 nor   
 
 are assigned to any partition in  . In this case 

a new partition    is created and added to  . Both   
 
 and   

 
 are 

assigned to   . 

   
 

 is assigned to some partition    but   
 
 is not. Add   

 
 to the 

partition    if disjoint partition restrictions are satified. 

Otherwise, add   
 
 to a new partition    and add it to  . 

   
 
 is assigned but   

 
 is not. Equivalent case as above, proceed 

in the same way. 

   
 

 is assigned to partition    and   
 
 to partition   . If      , 

no action is needed. Otherwise, replace    and    in   by 

      if super graph restrictions are satisfied. 

Once all cells           are considered, the common labeling can be 

generated as commented above. 

The method presented in (Bonev, Escolano et al. 2007) has a 

computational cost of            , where   represents the number of 

nodes,   the number of graphs in the set and   the number of iterations of 

the graduated assignment. 

2.3.2 Genetic algorithm 

The method proposed in (Jiang, Münger et al. 2001) is not directly 

addressed to compute the common labeling between a set of graph. 

However, since the computation of a common labeling is one of the first 

steps to compute a graph prototype, they implicitly propose a method to do 

so. As introduced in the above section, the method uses a genetic approach 

to compute the common labeling. To this aim, each chromosome 

corresponds to an array of integers that represents the labeling of each graph 

in             to the corresponding median graph    (that can be 
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interpreted as the virtual node set   in our definition). Thus, the final 

chromosome has a size equal to the sum of the cardinalities of the graphs in 

 . Each position of the chromosome corresponds to one node of a graph in   

and contains either 0 or a value in       . Zero indicates that the particular 

node is removed and a value between      indicates that the node is 

substituted by this candidate of   . We illustrate the method using the same 

example they propose in the original paper, see Figure 2-7. Let’s consider a 

set of two graphs           with       ,       . In addition, 

suppose we aim to construct a median graph such that       . Considering 

this example the chromosome                           is defined as an 

array of five positions. The first three positions,            , correspond to 

the nodes of    and the last two,        , to the nodes of    . The first, 

node of    is assigned to first node of    and to the third node of   , nodes 

two of    and    are deleted from the prototype graph   . 
Given a chromosome, one can compute the fitness function value 

depending on the objective function to optimize. In the original article, the 

objective function is related to the median graph that would be constructed 

through the chromosome. However, in our case, since we do not aim to 

compute the median graph, the common labeling objective function in (2.7) 

could be used instead. 

The proposed search strategy is based on roulette wheel sampling to 

select solutions for combination. The combination of the chromosomes is 

done by single point crossover with a consistency check to force solutions of 

the common labeling to be consistent bijections. Also mutation is use to 

randomly change each number of the array with some probability. The 

consistency check is also applied after the mutation operator. 

In the proposed algorithm, some of the initial population of the algorithm 

is created using some heuristic to ease the convergence of the algorithm. The 

rest of the initial population is created randomly, but representing consistent 

bijections between the graphs and the generalized median graph. The 

original paper proposes two termination conditions. The first sets a 

maximum number of iterations, so if we reach that maximum we consider 

the algorithm has finished. The second is related to the convergence of the 

chromosomes to a single solution. In this way, if the fitness functional of all 

the population becomes closer than a given threshold it is considered that the 

algorithm has converged and so the algorithm terminates satisfactory. The 

computation cost of each iteration of the algorithms is low. However, it is 

known that the execution time of genetic algorithms highly depends several 

factors including maximum number of generations or proximity to the 

solution of the initial population. 
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3. CLASS PROTOTYPES AND GRAPH 

REPRESENTATIVES 

We define a graph prototype (Wong, Constant et al. 1990; Bunke, Foggia 

et al. 2003; Lozano and Escolano 2006; Lozano, Escolano et al. 2009) as a 

structure that represents a set or a cluster of graphs. Usually, in a pattern 

recognition application, the system, in the training phase, learns a model 

from a set of training elements. In structural pattern recognition these 

elements are commonly represented by graphs. Each graph of the training set 

corresponds to a perturbed version of the element it represents. Like 

centroid-based clustering (Hartigan and Wong 1979) one can think to 

represent each cluster or set of elements with a prototype. Among the 

possible graph prototypes, we mainly differentiate between two types: class 

prototypes and graph representatives. We consider a graph representative 

a graph in the same domain of the graphs in the training set (Ferrer, Valveny 

et al. 2009). We consider a class prototype as a graph, in a different domain 

of the training (Wong, Constant et al. 1990; Bagdanov and Worring 2003; 

Serratosa, Alquézar et al. 2003; Sanfeliu, Serratosa et al. 2004).  

There are conceptual similarities between graph prototypes or 

representatives and centroids in some P-dimensional Euclidean space. On 

the contrary, differences mainly rely on the computation of the centroid. For 

centroids in a P-dimensional space one can simply compute a point which 

minimizes the sum of squared distances to the individual points, let’s say by 

averaging the individual components. However, to compute a graph centroid 

the issue is completely difference since distance between graphs cannot be 

computed in polynomial time, and so in practice just approximations can be 

achieved. As we saw before, these approximations are computed through 

correspondences between the graphs nodes. Thus, to compute a 

representative or a graph prototype, we require to compute the best 

correspondence possible to a virtual structure which independently 

indentifies the object parts, that is a common labeling. Having this in mind, 

Figure 2-7: chromosome definition and example labeling. 
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we can state that if we want the prototype to capture the features of the 

object it represents, it is crucial to find a good common labeling. In this 

section, we focus our attention on several graph prototypes and two 

representatives, the generalized median and the set median. 

A Generalized Median Graph (Jiang, Münger et al. 2001) is an 

Attributed Graph that minimizes the sum of distances between it and all 

graphs in the training set. The generalized median graph is usually not a 

member of the set. And, in general, more than one Median Graph may exist 

for a given set of graphs. The computation of a Median Graph is of 

exponential complexity. Nevertheless, several suboptimal methods to obtain 

approximate solutions for the Median Graph, in reasonable time, have been 

presented (Bunke, Münger et al. 1999; Ferrer, Valveny et al. 2009; Ferrer, 

Valveny et al. 2010). These methods apply some heuristic functions in order 

to reduce the complexity of the graph distance computation and the size of 

the search space. 

Considering a set of Attributed Graphs             in domain   a 

Median Graph                      is another attributed graph such that: 

           
   

        

 

   

 (3.1) 

Since the synthesis of the median graph can differ, we rely on the following 

definition. 

Definition 3-1: A Generalized Median Graph                      from a 

set of Attributed Graphs Γ and an Optimal Common Labeling   can be 

constructed as another attributed graph where attributes on nodes and arcs 

are computed by: 

           
       

      

          
          

   

 

   

       
        

 (3.2) 

where   corresponds to the Kronecker delta function. In case they exist, 

attributes for edges are computed in an equivalent manner. The main idea of 

(3.2) is that the attribute values of the Median Graph is the mean of the 

values of all the nodes or arcs of the Attributed Graphs it represents. In case 

a node or arc does not exist its value is not considered to compute the mean. 

The Set Median Graph (Jiang, Münger et al. 2001) is an alternative to 

Generalized Median Graph. The difference between the two models consists 

in the search space where the Median Graph is looked for. The search space 

for the Generalized Median Graph is   that is the whole universe of 

Attributed Graphs. In contrast, the search space for the Set Median Graph is 

simply the set of graphs that represents:  
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 (3.3) 

The computation of Set Median Graph is exponential with respect to the 

cardinality of the graphs, due to the complexity of graph distance, but 

quadratic with respect to the number of graphs in the set. In some 

applications, Set Median Graphs are preferred to Generalized Median 

Graphs considering two main reasons. First, practical evaluations show that 

the capacity of Set Median Graphs to represent a set is almost similar to the 

capacity of the Generalized Median Graphs (Ferrer, Valveny et al. 2009; 

Ferrer, Valveny et al. 2010). And second, the synthesis (using the whole set 

of graphs or incrementally) is less computationally demanding. 

A Closure Graph (He and Singh 2006) is class prototype where the 

structure of the attributes is different from the attributed graphs that 

represent. The structurally similar nodes of the set of attributed graphs that 

have different attribute values are represented in the Closure Graph with 

only one node but with more than one attribute. Closure Graphs need the 

attributes in the nodes or edges to be discrete; if this is not the case, an extra 

discretization phase has to be performed. Closure Graphs need a few more 

physical space than Median Graphs. 

Formally, a Closure Graph                      is a graph where the node 

and arc attributes are represented as an array of values in the domain of the 

nodes and arcs of the attribute graphs. The Closure Graph is synthesized 

from a set of Attributed Graphs   and a Common Labeling   as follows: 

                        
                 

                                
     

             
                 

(3.4) 

The reasoning behind (3.4) is that nodes or arcs of the Closure Graph can 

take all values that nodes or arcs of the Attributed Graphs have taken. If a 

node or arc, in the attributed graphs, does not exist, a special null label is 

introduced in the node or arch of the Closure Graph to represent it. 

A First-Order Random Graph (FORG) (Wong and You 1985) is a 

class prototype graph that contains first-order probabilities on nodes and arcs 

attributes. The first-order probabilities are modeled with a random variable 

associated with each vertex or arc which represents the attribute information 

of the corresponding graph nodes and arcs in the training set of Attributed 

Graphs. This random variable has a one-dimensional probability density 

function defined over the same attribute domain of the Attributed Graphs, 

including a null value that denotes the non-instantiation of a FORG graph 

node or arc. 

First Order Random Graphs are the first probabilistic models that 

appeared in the literature to represent a set of Attributed Graphs. It assumes 

that the Attributed Graphs in a set or cluster had similar local parts. 

Nevertheless, in practical applications some graphs can be quite different 
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despite of belonging to the same class. For this reason, representing a set of 

graphs with only first order probabilities seems to be too restrictive. 

Formally, a First Order Random Graph                    is a graph 

where node and arc attribute domains are random variables with values in 

domain      and      (  represents a special null attribute addressed to 

indicate that the node can be null). Probabilities at the nodes and arcs of the 

FORG are related to the model used to model the random variable. In the 

case of the nodes     
             represents the probability that random 

variable     takes value  . Equivalently, for the case of edges,       
    

           indicates the probability that random variable       takes value  . 

A simple approach to model discrete random variables could be to represent 

this probability using a histogram where each position takes the number of 

times that value   has appeared in the training set. That is, 

 
    

    
          

          
   

 
    

(3.5) 

where   represent the Kronecker delta function.  

Random variables on the edges are modeled in an equivalent form but 

conditioned that the terminal nodes exist. 

A Function-Described Graph (FDG) (Serratosa, Alquézar et al. 2002; 

Serratosa, Alquézar et al. 2003) is a model graph addressed to improve the 

representational power of FORGs. It contains first-order probabilities of 

attributes and second-order structural information to describe a set of 

Attributed Graphs. The first order information is equivalent to the FORGs 

trough probability density functions. The second-order structural information 

is qualitative information that describes the joint probability of instantiating 

each pair of vertices or arcs. This information is represented by binary 

relations called Antagonisms, Occurrences and Existences between nodes 

and arcs. FDGs increased the representational power at the cost of increasing 

also the required physical space.  

Two nodes or arcs are antagonistic if they have never taken place 

together in any graph used to synthesize the FDG although these two nodes 

or arcs are included in the FDG as different elementary parts. There is an 

occurrence relation between two nodes or arcs of the FDG if always that 

one of the related nodes or arcs in the graph has appeared; also the other 

node or arc of the same graph has appeared. Finally, there is an existence 

relation between two nodes or arcs if all the graphs in the class described by 

the FDG have at least one of the two nodes or arcs. 

A Second-Order Random Graph (SORG) (Sanfeliu, Serratosa et al. 

2004) is a probabilistic model closely related to FDGs. The main difference 

lies in the fact that the second-order structural information is not defined as 

binary relations but with the specific information of the second-order joint 

probability. Thus, the physical space needed to represent SORGs is much 
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higher than FDGs but also its ability to represent the set of Attributed 

Graphs. A Second-Order Random Graphs are defined similarly to FORGs 

but there are first order and also second order probability density functions. 

 

3.1 Prototype synthesis 

To construct any of the previously defined class prototypes or graph 

representatives, a common labeling among the graphs in the training set   is 

required. There are several methods to construct a graph prototype. The two 

main procedures are closely related to the common labeling construction 

methodologies.  

Using a prototype oriented methodology to construct the prototype, an 

initial prototype is constructed using a single graph to later refine it adding 

some new information iteratively until all the training elements are analyzed. 

The second form corresponds to the Multiple-Isomorphism Oriented 

methods which are based on computing, in an initial phase, a common 

labeling without relying on the prototype effectiveness to represent data. The 

prototype is straightforwardly constructed on a second phase. Refer to 

section 2 for further details. 

4. GRAPH DATABASES 

It is well known that the main bottleneck of graphs based pattern 

recognition applications is the computational complexity of comparing two 

graphs. As a consequence, in practical applications, like the K-NN classifier 

where all training data is required to be compared with the input graph, may 

be prohibitive. To alleviate these problems, some attempts have been made 

to organize a set of graphs into a database. We differentiate between two 

techniques: techniques based on graph indexes and techniques based on 

trees. 

Several techniques based indexes exist (Shasha, Wang et al. 2002; Yan, 

Yu et al. 2004). We emphasize the method developed in (Shasha, Wang et 

al. 2002) called GraphGrep. GraphGrep is based on a table in which each 

row stands for a path inside the graph (up to a threshold length) and each 

column stands for a graph. Each entry in the table is the number of 

occurrences of the path in the graph. Queries are processed in two phases. 

The filtering phase generates a set of candidate graphs for which the count of 

each path is at least that of the query. The verification phase verifies each 

candidate graph by assessing the sub-graph isomorphism between it and the 

query graph. Only sub-isomorphic graphs are returned as correct 

coincidences. Two years later, in 2004, Yan et. al. (Yan, Yu et al. 2004) 
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proposed GIndex that uses frequent patterns as indexing features. These 

frequent patterns reduce the indexing space as well as improve the filtering 

rate. The main drawback of these models is that the construction of the 

indices requires an exhaustive enumeration of the paths or fragments which 

increases the memory and time requirements. Moreover, since paths or 

fragments carry little information about a graph, the lost of information at 

the filtering step seems to be unavoidable. 

With respect to tree organization of databases we highlight two methods. 

The first by Berretti et. al. (Berretti, Bimbo et al. 2001) in 2001. Attributed 

graphs were clustered hierarchically according to their mutual distances and 

indexed by m-trees. Queries are processed in a top-down manner by routing 

the query along the metric tree. Each node of the metric tree represents a 

cluster and it has one of the graphs of the cluster as a representative. The 

graph matching problem, in the tree construction and at query time, was 

solved by an extension of the A* algorithm that uses a look-ahead strategy 

plus a stopping threshold. The second method proposed by He and Singh  

(He and Singh 2006) in 2006 is called Closure-tree. It uses a similar 

structure than the one presented in (Berretti, Bimbo et al. 2001) but the 

representative of the cluster was not one of the graphs but a graph prototype 

called Closure Graph (see section 3) that could be seen as the union of the 

attributed graphs that compose the cluster.  

In the next sections, we explain in detail the concept of metric trees and 

how they are used to speed up graph queries in a dataset. We focus on this 

method because, in chapter 6, it will be used to test how the common 

labeling concept can aid on the construction of the metric tree in graph 

databases. 

4.1.1 Metric Trees 

A metric-tree3 (m-tree) (Ciaccia, Patella et al. 1997) is a method to 

partition a database in a hierarchical set of clusters, collecting similar 

objects. Each cluster contains a routing object and a radius providing an 

upper bound for the maximum distance between the reference object and any 

other object in the cluster.  

More formally, a metric-tree, is a tree of nodes, each containing a fixed 

maximum number   of entries,                  . In turn, each entry is 

constituted by a routing element  ; a reference to the root    of a sub-index 

containing the element in the so-called covering region of  ; and a radius 

   providing an upper bound for the distance between   and any element in 

its covering region,                      . During retrieval, triangular 

 

 
3 Metric-tree uses distance   as a similarity measure. This distance   should fulfill the 

properties of a metric. 
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inequality is used to support efficient processing of queries. To this end, the 

distance between a query element   and any element in the covering region 

of a routing element   can be upper-bounded using the radius    and the 

distance between   and  . 

M-trees for vectorial data can be constructed using several different 

schemes. Each schema proposes specific methods to insert new elements or 

to select different routing elements. Following a static scheme, such as that 

proposed for mvp-trees (Bozkaya and Ozsoyoglu 1999), routing elements 

are selected when the entire database is determined. In this case, the m-tree 

is constructed in a top-down manner, by repeatedly partitioning the database 

through the selection of routing elements which yield a balanced split. 

Following an alternative approach, in (Ciaccia, Patella et al. 1997), the tree 

is constructed dynamically by inserting new elements from the bottom layer 

and promoting routing elements when insertion overflow occurs. 

 

4.1.2 Similarity Queries on Metric Trees 

One of the operations that can be speeded up, when structuring data in 

form of an m-tree, are range queries. These queries are addressed to return 

all elements, in the dataset, which their distances to a query graph   are 

lower than a given threshold. To perform range queries in Metric Trees, the 

tree is analyzed in a top down fashion. Specifically, if      is the range of 

the query and   is the query graph, the following conditions are employed, 

at each node of the tree, to check whether all the elements in the covering 

region of  ,     , can be discarded, accepted or need more exploration. 

The conditions are based on the evaluation of the distance between the 

routing element and the query element       . Several cases appear: 

 If               , we reject all elements deeper from the 

routing element. 

 If                all the elements in the covering region 

of   can be accepted. That is, we accept all element in     . 

 In the critical case where neither of the above cases hold, the 

covering region of  ,     , may contain both acceptable and no 

acceptable elements, and the search must be extended deeper on 

the m-tree by explicitly exploring     . 

4.1.3 Nearest Neighbor Queries on Metric Trees 

The k-nearest neighbor algorithm (K-NN) is one of the most used and 

simple method to classify objects based on a set of training examples. 

Usually, given a set of objects, that compose the knowledge of the system, 

the distance between the query object to all the objects in the knowledge 
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database is computed. Finally, the object is classified as belonging to the 

most common class among its K nearest neighbors. See that the systems rely 

on the distance measure to evaluate the similarity between the queried object 

and the objects in the knowledge database. These distance computations are 

deferred until classification time.  , usually, corresponds to a small positive 

integer (         ) for the specific case of       , the object is simply 

assigned to the class of its nearest neighbor. 

Considering the training set as a knowledge database, structured in a m-

tree fashion, the aim of the Nearest Neighbor Queries is to retrieve the   

elements in a database that have minimum distance between them and the 

queried element. It is assumed that, at least, there are   elements in the 

database.  

The proposed method to perform Nearest-Neighbor queries (Ciaccia, 

Patella et al. 1997) uses a branch-and-bound algorithm, which utilizes two 

global structures: a priority queue    that stores the possibly fruitful tree 

nodes to be explored and an array    that stores the best   elements found 

until the moment. At query time, the   values of    are initialised to a null 

element.    is initialised with one element which is the root of the metric 

tree. Note that    does not have a maximum number of elements. 

Let Q be a query element and     
      the maximum distance from Q to 

any element in NN. The distance     
      is initialized to infinity. In each 

iteration of the search algorithm, the tree node in    with lower distance to 

  is selected, let this node be named   and its children be         . The 

distances between   and all the children of   must be computed. If son    

is a routing node, this node is inserted in    if  

             
      

      (4.1) 

This insertion is done due to it is possible to find an element with lower 

distance than the ones already found. On the contrary, if 

             
      

      (4.2) 

it is not possible that any of their descendants have a distance lower than 

    
      and so, none of the nodes and leaves of the branch will be further 

explored. 

If son    is a leave, that is, a database element, and  

              
      (4.3) 

array     and     
      are updated to consider this element in the 

following way. There are two possibilities: 

 If all    has its   positions full with leaves, then the element 

with higher distance is discarded. Moreover, the distance 

    
      is updated to be the maximum distance from   to any 

element in   . This new value has to be lower than the previous 
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value since     
      acts as a dynamic maximum search 

distance of range queries. 

 If    does not have its   positions full, then, the new tree leave 

    (that is, an element of the database) is inserted in an empty 

position of   . Related to the distance     
     , there are also 

two cases. If    continues to be non full, then, the distance 

keeps its initial value, which is infinity. But, if the new situation 

of    is that all the elements are used,     
      takes the 

maximum value of the distances between the leaves in    and 

 . 

 

With respect the routing element  , it can be defined as one of the 

elements of the sub-cluster or a new element that represents the elements of 

the sub-cluster. The main effect of using a prototype instead of a 

representative is the theoretical reduction of the overlap between sub-

clusters, due to the radius of the covering region should be more tightly 

adjusted. 

Figure 4-1 and Figure 4-2 show an example where the same query is 

performed using the two types of routing nodes. In the example,   is 

compared to a cluster that represents elements   ,    and   . In Figure 4-1 

the cluster is represented with one of the elements in the cluster,   . In 

Figure 4-2 the cluster is represented with a new prototype. In the given 

example the cluster represented in Figure 4-1 must be explored due to 

            
      

     . However, in Figure 4-2 the cluster radius is 

better adjusted and we can ensure that it will not have any desired element 

due to             
      

     . Note that, in metric trees, the smaller 

the radius of clusters are, the lower the number of comparisons that we must 

perform to find the solution. 

 

 

 
Figure 4-1: clusters represented by an element. 
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4.1.4 Graph Databases based on metric distances  

Considering the structure of the m-tree it is clear that the extension to a 

graph databases is not theoretically difficult. In this section, we introduce a 

general construction methodology from which one is able to construct a 

metric tree independently of the type of the routing element. That is, the 

structure of the m-tree and the clusters that are generated in the database are 

independent of the kind of routing node we use in the tree. This fact has only 

relative importance in vectorial databases but on graph databases may be 

fundamental since different graph prototypes can achieve different 

performance and so generate different clusters. Given a graph set  , it is 

crucial to obtain the same structure of the m-tree for all types of routing 

elements, since in the evaluation phase we want to compare the effectiveness 

of the common labeling to compute the prototype and not the prototype 

itself. 

To synthesize the tree, we use a non-balanced tree constructed through a 

hierarchical clustering algorithm with complete linkage (Hastie, Tibshirani 

et al. 2009). Using this procedure, given a set of graphs, the distance matrix 

over the whole set is computed and then a dendogram is constructed. Using 

this dendogram and some horizontal cuts, a set of partitions, that clusters the 

database, is obtained. With these partitions the m-tree is generated. Finally, 

the information,   and   , on the routing elements in the m-tree is inserted. 

In a graph M-Tree,   is corresponds to Graph Prototype (see section 3) 

and    is the maximum distance between the Prototype Graph and any of 

the graphs in the covering region     . Figure 4-3 and Figure 4-4 show an 

example dendogram and its associated m-tree. The elements    are placed 

on the leaves of the dendogram and the routing elements    are placed on 

the junctions between the cuts and the horizontal lines of the dendogram.  

Figure 4-2: clusters represented by a computed prototype 
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4.1.5 Evaluation measures for graph metric trees 

To evaluate the metric trees and the queries performed over them three 

classical indices will be used: Overlap, Access ratio and F-measure. 

Overlap: this index evaluates the quality of the tree itself, without the 

need of performing queries on it. We want the tree nodes to be the most 

discriminative possible, for this reason, the lower is the overlap between the 

covering regions of sibling nodes, the higher is the quality of the m-tree 

since nodes are more discriminative and therefore the time to compute the 

query reduces. 

 

 

 

 

 

Given two sibling nodes    and   , the overlap of their covering regions 

is defined as follows, 

Figure 4-4: m-tree obtained with 

dendogram of Figure 4-3. 

Figure 4-3: example of a dendogram. 
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  (4.4) 

Where          is any distance between the prototype or Attributed 

Graphs. Note that    and    can represent a prototype or an Attributed 

Graph. Recall that the covering region of a node that is an Attributed Graph 

is 0. 

Given a node of the m-tree that is not a leave,  , their own overlap is 

computed as the normalized overlap between their children. The radius of 

the sub-clusters that the children represent is obtained from the parameter 

   in their m-tree nodes. 

      
 

 
  

 
 
          

  

     

  

   

 (4.5) 

where    is the number of sons of the m-tree node   and          are 

its node sons. The own overlap      of a leave is not defined since it is not 

needed. Finally, the general overlap of an m-tree is computed as, 

            
 

  
      

  

   

 (4.6) 

where    is the number of nodes (without considering the leaves) of the m-

tree node  . 

Access ratio: This index evaluates the capacity of the m-tree to properly 

route the queries. Given a query graph  , this index is the number of 

accessed nodes and leaves of the m-tree or the number of graph matching 

operations performed, A. Finally, it is normalized by the number of graphs 

used to generate the m-tree,  . If the Access ratio is higher than 1, then it is 

faster not to use an m-tree since without the m-tree, the system would 

perform less comparisons. 

                       
 

 
 (4.7) 

F-measure: The F-measure is a measure of a test's accuracy computed 

through the Precision and Recall. In the field of information retrieval, 

Precision is the fraction of retrieved elements that are relevant to the search. 

And Recall is the fraction of the elements that are relevant to the query that 

are successfully retrieved. We obtain these two metrics as follows. We 

compute a query with a graph   and a range     . The m-tree returns the   

graphs that the distance between them and   is lower than     . Moreover, 

we compute the distance between the graph   and all the graphs in the 

dataset (without using the m-tree) and obtain the   elements with the 
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minimum distance. Finally, we count the number of relevant elements,  , 

that appear in both sets. Therefore, 

                     
 

 
,                  

 

 
 (4.8) 

                     
  

   
 (4.9) 
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Chapter 3 

MODELING THE GRAPH EDIT DISTANCE 

THROUGH EDIT SURFACES 
 

 
 

1. GRAPH EDIT DITANCE  

Using definition of the Graph Edit Distance given in chapter 2, the 

tailoring of this distance to the application at hand essentially depends on 

   ,    ,    ,    ,     and     functions. Several definitions of these 

functions exist in the literature. We focus first on the definition of 

functions     and     . The most common approaches are the following. The 

first and simplest approach considers cost             where 

      
 
   

 
      if        

 
       

 
             otherwise      , 

  is defined as a distance function over the domain of the attributes. Specific 

examples of this cost can be found in fingerprint verification (Jain and 

Maltoni 2003) where           or in (Bunke 1998; Bunke 1999). The 

second and most frequently used approach corresponds to the case 

where       
 
   

 
      . In this case, node substitution cost depends on 

the attributes of the nodes and possibly on some other parameters    as 

shown in (Neuhaus and Bunke 2006), (Lladós, Martí et al. 2001) and 

(Caetano, McAuley et al. 2009), among others. Similar approaches can be 

used to define    . With regard to    ,    ,     and    , these functions 

usually simply assign a constant cost. However, in particular models they 

can also depend on node or edge attributes (Wong and You 1985; Serratosa, 

Alquézar et al. 2003; Sanfeliu, Serratosa et al. 2004).  

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPLE GRAPH MATCHING AND APPLICATIONS 
Albert Sole Ribalta 
Dipòsit Legal: T.1211-2012 
  
  
 



62 Chapter 3 

 

Nodes and edges can be mapped, by functions    and   , to several types 

of data: nominal, ordinal or modulo. Depending on the data type a particular 

distance function is required (see section 3 of (Serratosa and Sanfeliu 2006)). 

Several specific joint definitions for    ,    ,    ,    ,     and     

functions have been theoretically studied. We highlight (Bunke 1998) and 

(Bunke 1999) which are described in Table 1-1. 

 

Reference                         

(Bunke 

1998), 

(Bunke 

1999) 

                        

(Bunke 

1999) 
    

 
   

 
                        

 
    

 
           

Table 1-1: graph edit cost defined in (Bunke 1998) and  (Bunke 1999). 

 

The specific cases studied in (Bunke 1999) and (Bunke 1998) yield to 

several interesting properties. The costs of first row of Table 1-1 relate the 

graph edit distance with the maximal common sub-graph. In this way, 

computing the graph edit distance with these specific costs leads to the 

computation of the maximal common sub-graph. The cost given in the 

second row has been studied in (Bunke 1999). Note that the cost of inserting 

and deleting an edge is always considered zero. In the definition of (Bunke 

1999) authors assume that graphs are complete graphs and a non-existing 

edge is an edge with a “null” label. In this case, the cost of deleting and 

inserting and edge can be encoded in the edge substitution cost. With this 

definition authors describe several classes of costs that optimize at the same 

final labeling. In this chapter, we follow the same direction and give a 

deepest characterization of these classes of costs. To this aim, we slightly 

modify the graph edit distance definition of Table 1-1 (second row). The 

new definition, we propose, is given in Table 1-2. 

 

                        

    
 
   

 
                  

 
    

 
             

Table 1-2: particularization of Graph Edit Distance 

 

Note that our definition is able to codify the same information. However, 

edge insertion and edge deletions are considered in a separate cost function. 

Besides, we impose the requirement that                     

and                    . This requirement is necessary for our 

development and, moreover, for the graph edit distance to fulfill the 

symmetric property of a distance. 
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2. CLASS OF COSTS AND EDITSURFACE 

A Labeling Space is a 2-dimensional Euclidean space where the 

coordinates correspond to the graph edit insertion and deletion costs. Given a 

pair of graphs, we can select some regions in this space such that all points 

in the labeling space obtain the same optimal labeling (the labeling that 

obtains the graph edit distance). We call each region as Class of Costs. 

Moreover, given the labeling space and two graphs, we can define a function 

defined over all the labeling space where its value in each point is the 

distance value between both graphs. We call this function Edit Surface. 

In this section, we first give some basic definitions and then we present 

two properties of the class of costs and two properties of the edit surface. 

From now to the rest of the chapter, we use the particular specification of the 

Graph Edit Distance given in Table 1-2. Therefore, the labeling space is a bi-

dimensional space with the axis    and   . 

2.1 Specific and complementary definitions 

2.1.1 Definition 2-1: Edit Cost 

Given two graphs,    and   , a bijection     between them and two 

constant values            
, the graph edit cost is given by: 

              
                       (2.1) 

   refers to the number of inserted and deleted nodes and can be computed 

as: 

          
 
   

 
 

     
 
      

 
      

 
     

 
    

 
 

        
 
   

 
 

     
 
     

 
    

 
      

 
      

 
 

 
(2.2) 

   refers to the number of inserted and deleted edges and can be computed 

as: 

           
 

    
 
 

      
 
      

 
       

 
     

 
    

 
 

         
 

    
 
 

      
 
     

 
    

 
       

 
      

 
 

 
(2.3) 

   refers to the cost of substituting nodes and edges, this last cost can be 

computed as: 

 

                                                                                                       

        
 
   

 
      

 
   

 
    

     
 
     

 
    

 
      

 
     

 
    

 
 

 

         
 

    
 
 

      
 
     

 
    

 
       

 
     

 
    

 
 

      
 

    
 
    

 (2.4) 
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  and       

 
    

 
  are computed as: 

       
 
   

 
    

        
 
    

 

          
        

 
    

 
   

          
 

     
 

          
  (2.5) 

and identify the matchings given by bijection  . 

Using this particular definition, the graph edit cost function can be 

represented in a 3-dimensional space where x-axis corresponds to   , y-axis 

corresponds to    and z-axis corresponds to         . Note that          

depends linearly on    and   . 

2.1.2 Definition 2-2: Edit Distance 

Given two graphs    and    and two constant values            
, 

the Graph Edit Distance is defined as: 

 
                 

           
   

             
         

    
   

             
(2.6) 

In other words, the Graph Edit Distance is the minimum cost that can be 

obtained for particular values of    and   . 

2.1.3 Definition 2-3: Class of Cost 

Given two graphs,    and   , and a bijection     between them, a 

class of cost         is the sub-set of values in    
 for which   is the 

bijection whereby the minimum graph edit cost is obtained, 

                     
         

    
               

   (2.7) 

We write      instead of         when no confusion is possible. We 

designate the set of all classes of cost given to graphs    and    by      . 

2.1.4 Definition 2-4: Edit Surface 

Given two graphs,    and   , and a bi-dimensional space composed of 

values         in    
, we define the Edit Surface as,  

                    
    

 

                                         
           

   
             

(2.8) 
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2.2 Properties of the Class of Costs 

Property 2-1. Given two graphs,    and   , any class of cost      is 

either empty or its values form a convex polygon in the bi-dimensional space 

composed of            
.□ 

Given two graphs,    and     and a labeling  . We see that for   to yield 

the Graph Edit Distance at a concrete point          its cost must be less or 

equal than the cost which can be obtained with any other labeling     . 

That is, the following system of inequalities must hold: 

                                         (2.9) 

Each of the above inequalities (one for each   ) divides    
into two parts 

by means of a linear equation. It is known that the intersection of any finite 

set of linear inequalities is a convex polygon (Grunbaum 2003). 

Consequently, each optimal labeling appears only in a single convex 

polygon. 

 

Property 2-2. Given two graphs,    and   , and a class of costs 

       , any class of costs           where         ,       ,        

and        is optimal at the same set of points as     .□ 

 

This property is easily deduced through equation (2.9). 

 

Note that Property 2-2 implies that the graph edit cost is not an injective 

function due to several labeling can give the same optimal cost. 

 

Discussion of property 2-1 and 2-2 

Using Property 2-1, we see that          optimal, tessellates    
 with 

convex polygons. Each polygon defines a class of costs     . A class forms 

a convex polygon with finite area if its values of     and    are finite. 

Otherwise, the area is infinite. 

Figure 2-2 and Figure 2-3 show an example of Property 2-1. Figure 2-1 

shows two graphs of the Letter dataset (Riesen and Bunke 2008). Examples 

correspond to graph 35 and 72 of class A. Figure 2-2 and Figure 2-3 show 

how two labelings are described by the intersection of a set of inequalities, 

each line corresponding to a concrete inequality of (2.9). Figure 2-2 shows a 

finite class of costs and Figure 2-3 shows an infinite class of cost. 

Note that the above formulation allows dividing    
 into convex 

polygons, each of which corresponds to an optimal labeling. Note also that it 

is possible given (2.9) to produce an empty intersection, in this case the 

tested labeling   is never optimal at any        . 
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Knowing that the labeling space is tessellated with labelings, it is 

interesting to see how these labelings tend to be distributed and their relation 

with the values and meaning of    and   , specially for the extreme values 

of                                    . 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-2: example of a finite area 

Figure 2-1: two graphs. 
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Figure 2-3: example of infinite area 

Figure 2-4: diagram of classes of cost. 
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Consider, as an example, graphs    and     of Letter dataset (Riesen and 

Bunke 2008) class A. Figure 2-4 presents the classes of cost in the range of 

                for these graphs computed using an optimal graph 

matching algorithm. The vertical axis corresponds to    values and    

values are shown in the horizontal axis. In addition, Figure 2-5 shows the 

labelings that each class of cost produces. We first analyze the labelings 

computed at              . At this special point every node insertion has 

a cost of zero. Therefore, from the node point of view, the less costly 

assignation is to delete all nodes of the first graph and insert all nodes of the 

second graph. From the edge point of view, note that, if we assign all nodes 

to null the edges will be either substituted if the edge was not initially in the 

graph or deleted if the edge was on the graph; in both cases the edges cost 

will be zeros. Consequently, we can ensure that at point               the 

resulting distance between both graphs will be zero, either because all nodes 

from both graphs will be assigned to null nodes of the other graph or because 

both graphs are isomorphic. Analyzing labelings attached to the vertical axis, 

that is                 , it is clear that from high to low values of    

labelings associated with each class (Figure 2-5) go from substituting all 

nodes (  
    

) to only performing insertions and deletions (  
    

). However, 

an interesting fact is that not all node substitutions are sub-contained in the 

class of costs with lower   . We see that this happens in some classes 

Figure 2-5: labelings related to of classes of cost. 
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but not in others   
    

. Note that 

even if insertion and deletion of edges is not considered, edge substitution it 

is. In the special case where      , notice that if edges do not have 

attributes (that is 
          the problem of computing the Graph Edit Distance turns from 

the quadratic assignment problem to the linear assignment problem. An 

interesting special value when moving over the    axis is the value of 
             . The labeling computed using this value maximizes 

assignation from nodes of the first graph to nodes of the second graph 

considering the minimum number of null assignations required which is 
         . We now consider the labelings we obtain when moving over the 

   axis. That is, we consider values                 . It is obvious that 

different values of    force the result to be more structurally correct. 

However, forcing in addition      , it does not necessarily mean that the 

node attributes are not considered. In fact they are, due to node substitution 

cost is considered. In the example of Figure 2-4, see that as we move    

towards     the classes change to force the labelings to be more structurally 

consistent. Note again how node substitutions are sometimes not sub-

contained in adjacent classes, e.g.   
       

       
    

. In the extreme 

case              , we can affirm that the resulting optimal 

correspondence, if enough null nodes are provided and edges do not have 

attributes, corresponds to the maximal common sub-graph as demonstrated 

in (Bunke 1999). If we aim to obtain the maximal common sub-graph when 

attributes are present in edges, the edge substitution cost must restrict edges 

to have the same attribute and so the edge substitution cost must be defined 

as Table 1-1 row 1. The final extreme value to analyze corresponds to 
             . In most of the cases, while using these costs, the 

resulting labeling maximizes the node substitutions and edge substitutions at 

the same time. However, this double maximization can be troublesome in 

several cases. Considering this issue, we differentiate between two types of 

   (Definition 2-3) sets. The first corresponds to graphs where for value 

              the optimal labeling is equivalent to the optimal labeling 

for value              . That is, the structurally optimal and the 

semantically optimal labelings are equivalent. This is shown in Figure 2-4. 

We consider this situation to be the desired case when applying graph 

matching to pattern recognition. Two similar objects, compared under the 

optimal labeling, should maximize structural and syntactical relations at the 

same labeling. The second type of labeling spaces corresponds to functions 

in which the optimal semantic labeling differs from optimal structural 

labeling. An example is shown in Figure 2-6 and Figure 2-7 which show 

graphs     and     of the letter dataset (Riesen and Bunke 2008) of class A. 

See that optimal labelings when               and               
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differ. When this situation occurs in the application at hand, we must decide 

which labelings we prefer to optimize, structural or semantic. 

 

 

 

 

Figure 2-6: diagram of classes of cost. 

Figure 2-7: labelings related to of classes of cost. 
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2.3 Property of the Edit Surface 

Property 2-3. Given two graphs,    and   , the function 

                 monotonically increases. In other words, 

                                           (2.10) 

where       
    

   ,       
    

  ,   
    

 and   
    

 .□ 

We know from Property 2-1 that the         bi-dimensional space can 

be divided into several classes of cost,         . Each class of cost       is 

represented by its plane equation (2.7). We know from Definition 2-1 that 

values    
     

 and    
 are positive. Thus, we can conclude that within each 

class of cost      , costs monotonically increase. 

It is important to see that where two classes of cost intersect, costs do not 

decrease but remain equal or increase. Two labelings change their optimality 

when costs for both classes are equal, that is, when equation (2.9) for two 

different labelings,  and     is equal. Using this     operator ( ), cost 

cannot decrease and so when two classes intersect, costs keep increasing. 

 

 

 

 

Figure 2-8: two graphs. 

Figure 2-9: example of Edit Surface. 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPLE GRAPH MATCHING AND APPLICATIONS 
Albert Sole Ribalta 
Dipòsit Legal: T.1211-2012 
  
  
 



72 Chapter 3 

 

Property 2-4. Given two graphs    and    and three points,    
   

    
   and       

    
   and       

    
   over the edit surface and 

vertical plane                     where   
    

  ,   
    

 , 

  
    

  and   
    

  .            and        

   
               

                      
        

       
 

  

   
               

                      
        

       
   

That is, the slope of   decreases as we move towards infinity. See Figure 

2-10. 

We know from Property 2-1 that surface generated by 

                          is a composition of planes given by (2.9). 

Each of those planes has the property that given any two points     
   

    
   and       

    
   where   

    
  ,   

    
  slope    is positive 

or zero. This is consequence of being          . 

In this way, given two planes    
   

 and    
   

 generated using (2.6). We 

compute the intersection with the plane                       

giving as a result two lines    and    (see Figure 2-11, Figure 2-12 and 

Figure 2-13). Using operator              we reduce these two lines to a 

two dimensional function. We distinguish two cases: (Figure 2-11)    and    

cross at some point      and      and (Figure 2-12, Figure 2-13) do 

not cross. For the first case,    must be lower than    otherwise lines 

cannot cross, see Figure 2-11. For the second case we distinguish between    

and    cross at some point      and      (Figure 2-12) or are parallel 

(Figure 2-13), in both cases the slope is kept constant. 

For the case of   planes        
   

 an exponential number of combinations 

appear when ordering   lines. Using the above demonstration, we can affirm 

that between two lines the one with small slope will become optimal at some 

point. Thus, given   lines, studying the surroundings of every intersection 

we can reduce the problem to the two lines case. See Figure 2-14. 
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Figure 2-10: illustrative example of property 4. 

 

 

 

 
 

Figure 2-11: lines intersect. Figure 2-12: lines do not 

intersect. 

Figure 2-13: lines are 

parallel. 

 

 

 

 

Figure 2-14: reduction of n lines case to the pair-wise case. 
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3. APPLICATIONS 

In this section, we illustrate how the given properties can assist some 

graph matching problems. We study three applications where the described 

properties can be used. 

3.1 Interactive and Adaptive Graph Recognition 

The aim of the application we present is to learn a model that represents a 

set of graphs such that the labeling obtained by the graph matching 

algorithm is as similar as possible to the labeling between graph nodes 

imposed by a human expert. 

In most applications, the labeling between nodes is only partially 

considered. This is because it is considered in the first stages of the pattern 

recognition process, in which it is desired to find a similarity measure 

between graphs. But, when this similarity value is obtained (the final 

distance value between graphs given the labeling), the knowledge of the 

labeling is not further considered. Nevertheless, we consider that although 

the graph is properly classified or identified, the result of the comparison 

(the final distance value) has not sense if the labeling between their local 

parts is far from the labeling proposed by the human specialist. 

In (Serratosa, Solé-Ribalta et al. 2011) it is defined an interactive and 

adaptive graph recognition model with the aim of increasing the quality of 

the labeling between the graph to be identified and the reference graphs of 

the database. To that aim, the graph recognition model is extended to 

consider the labeling between nodes proposed by a human specialist. This 

new knowledge is incorporated into the system and used to modify the 

weights of the model (such as    and   ) that tune the similarity function 

between graphs. 

 

 

 

The batch training process of the application, shown in Figure 3-1,  

generates the first knowledge of the system that forms the model given a set 

Figure 3-1: scheme of the Interactive and Adaptive Graph 

Recognition Model. 
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(graph, class) pairs and other parameters, such as    and   . The Interactive 

Recognition process generates a first hypothesis                given an 

input graph   and using the model. This hypothesis is composed by a class 

 , a graph with the minimum distance      and a labeling   between both 

graphs. When the human proposes a new labeling  , the interactive process 

generates the final hypothesis    using the model and also the human 

interaction  . Note that,    can be completely different from  . Not only the 

graph and the labeling can be different but also the class. Finally, the 

Adaptive Learning module updates the parameters in the model. 

Specifically, two of these parameters are    and   . Computing the new 

values of these parameters is a process related to the aim of the chapter since 

the new values are obtained through the labeling space. Moreover, the 

proposed algorithm needs Property 2-1 to perform properly. 

 

 

The inputs of the algorithm used to update    and    are the input graph 

 , the labeling imposed by the user   and the final output graph     
 

. The 

outputs of the algorithm are the new values of    and    which maximize 

the labelings proposed by the expert. The main idea of the algorithm is to 

build a histogram of the classes of costs that appeared while using the 

general model. That is, each time the algorithm receives a new input, the 

class of costs is obtained,        
 

   , and added to the histogram. Thus, the 

peak of the histogram (there could be several peaks) represents the values of 

   and    that maximize the similarity of the human labelings with the 

labelings proposed by the system. 

Figure 3-2 (reprinted from (Serratosa, Solé-Ribalta et al. 2011)) shows 

the evolution of values of    and    when new graphs are added into the 

system. The system has been initialized with four different values of    and 

  . The initial values are the most external points. We see that when the 

algorithm converges, the four experiments converge to the same final value 

of    and   . 

Figure 3-2: evolution of    and    in four different initialisations. 
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3.2 Analysis of the behavior of human similarity 

measures 

Given a pair of images that represent objects (pictures, handwritten 

characters...), humans can decide if they are similar or not or even they can 

decide certain degree of similarity. This is because we have an inherent 

similarity function (difficult to be mathematically defined) that may be 

application dependent. When we aim to solve the problem of automatically 

describing this similarity through automatic structural pattern recognition, it 

is usual to convert these images to graphs and apply a distance measure 

between graphs.  

Graph Edit Distance has some application dependent weights that can be 

manually tuned. Some research has been done to automatically obtain these 

weights such that the overall recognition ratio is maximized given a database 

(Neuhaus and Bunke 2006; Neuhaus and Bunke 2007) or the difference 

between the node bijection between both graphs imposed by the specialist 

and the node bijection obtained by the machine is reduced (Serratosa, Solé-

Ribalta et al. 2011). If we have enough theoretical information to understand 

the behavior about the graph distance at hand, it is possible to go a step 

further. It is possible to investigate if the inherent distance measure between 

nodes or between arcs that the user has, given an application, approaches the 

one that the method defines. Property 2-2 states that there could be two 

different labelings between nodes that are optimal at the same class of costs. 

These two labelings can be seen as different interpretation of the 

representation. 

 Suppose we want to compare pictures and we have extracted a region 

adjacency graph from each image. A region adjacency graph is a graph in 

which nodes represent important regions of the images. The attribute of the 

regions may be the average color, the area, the circularity of the region and 

so on. There is an arc between two nodes if regions are adjacent. There could 

be some attributes on the arcs such as the length of the border between 

regions. Suppose we compute the cost class given the labeling imposed by a 

human specialist for all the graph comparisons.  

Then, some different situations can happen: 

 The average value of     of all the cost class is low given all the 

graph comparisons. In this case, the specialist believes the 

semantic information on the nodes is very important. Therefore, 

the specialist considers two images are similar if they have 

similar regions but independently of the position of these 

regions. 

 The average value of    of all the cost class is low given all the 

graph comparisons. This case is the opposite of the last one. The 

user believes the most important aspect while comparing two 
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images is the relation between regions (i.e. their relative position) 

although these regions seem to be very different (i.e. different 

area or color) 

 The area of the union of the cost classes of all the comparisons is 

big although the intersection is small. This means that the 

specialist has different perceptions of the importance of the 

relations (arcs) respect the semantic information (nodes) 

depending on the images. This situation can happen when the 

system is trained by different specialist. 

 An opposite case appears when the area of the union and the area 

of the intersection of the cost classes of all the comparisons is 

small. This case appears when the node bijections between both 

graphs that the user proposes are never the optimal ones or are 

only optimal in a small domain of    and   . In the case that the 

general cost class is elongated through the    axis, the inherent 

distance between image regions of the user performs in a 

different way than the distance between graph nodes of the 

system. On the contrary, in the case that the general cost class is 

elongated through the    axis, the system captures in a different 

way the relations between these regions. 

In this way, by analyzing the application at hand and how the Graph Edit 

Distance behave over the graph representation and the data itself, we are 

able to adapt, change or replace the distance measure we are using. 

3.3 Improving of sub-optimal graph matching 

algorithms 

 Property 2-3 defines that the edit surface increases when    and    

increases. This certainly occurs when using optimal algorithms to compute 

the labelings given the values of    and   . However, we cannot assume 

these properties hold true if we compute the labeling space using suboptimal 

algorithms. Two examples are shown in Figure 3-3 and Figure 3-4, which 

show    obtained by the Graduated Assignment (Gold and Rangarajan 1996) 

using the graphs in Figure 2-5 and Figure 2-7. We see that most of the 

regions computed by the Graduated Assignment are not convex. A good 

approach for improving sub-optimal algorithms that minimize Graph Edit 

Distance would be to modify them to hold for Property 2-1 while predicting 

the labeling given some certain point in the labeling space. 

Moreover, the consideration of Property 2-3 and Property 2-4 in graph 

edit distance result could help sub-optimal algorithms to achieve better 

performance. Figure 3-5 and Figure 3-6 show the EditSuface in a range of 

   and    values. Figure 3-5 is computed using the graphs of Figure 2-5 and 
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Figure 3-6 using the graphs of Figure 2-7. Both figures show two surfaces. 

The first, printed in solid gray scale, is computed using an optimal A* 

algorithm. The second, printed using transparency is computed using the 

Graduated Assignment (Gold and Rangarajan 1996) algorithm. We see how 

the Graduated Assignment does not provide a good approximation for high 

   and relatively low    values. This means that the graduated assignment 

is able to compute very good edge labelings but fail in computing node 

assignments. We see that neither Property 2-3 nor Property 2-4 hold true for 

surfaces computed using the Graduated Assignment algorithm. A simple 

way of improving graph distance computations could be to compute several 

costs for different    and    values and average the results to force Property 

2-3 to hold. Property 2-4 could also be use to filter the shape of the edit 

surface, possibly obtaining with this new corrected surface better 

approximations of the graph edit distance. 
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Figure 3-3: example of class of cost computation using a 

suboptimal algorithm. Graphs used are shown in Figure 2-5. 

Figure 3-4: example of class of cost computation using a 

suboptimal algorithm. Graphs used are shown in Figure 2-7. 
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Figure 3-5: edit surfaces given by an optimal and a sub-optimal graph matching 

algorithm. Used graphs are shown in Figure 2-5. 

Figure 3-6: edit surfaces given by an optimal and a sub-optimal graph matching 

algorithm.  Used graphs are shown in Figure 2-7. 
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Chapter 4 

COMPUTATION OF GRAPH EDIT DISTANCE 

THROUGH DOMINANT SETS4 
 

 
 

In this chapter, we describe a new algorithm to compute the graph edit 

distance based upon the notion of dominant set (Pavan and Pelillo 2003; 

Pavan and Pelillo 2007). Our idea generalizes a well-known method  (Pelillo 

1999) to reduce the problem of graph isomorphism to the maximum clique 

through the notion of association graph. In this case, in the association graph 

we do not look for cliques but for dominant sets, which are a generalization 

of maximal cliques in edge-weighted graphs. 

1. RELATION OF GRAPH EDIT DISTANCE WITH 

THE DOMINTANT SETS 

As described in chapter 2 several algorithms exist to compute the graph 

edit distance between two graphs. In the same way as the other algorithms, 

we focus our computation of the edit distance on the minimization of 

objective function in (1.8) with costs in (1.13) defined in chapter 2. 

In order to minimize the graph edit distance through dominant sets, we 

define the association graph in the following form: 

Definition 1-1: given    and   , we define the association graph 

                   as a tuple of four elements where      
 

   
 
 represents 

the node set,         ,          assigns a real value to each vertex and 

         assigns a real value to each edge.  

 

 
4 This work has been done with the collaboration of Nicola Rebagliati and Marcello Pelillo 

during my stay at Università "Ca' Foscari" di Venezia.  
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As usual, each node of the association graph represents a matching 

between two nodes of the initial graphs. In addition, each edge of the 

association graph represents a matching between two edges of the initial 

graphs.  

Thus, the main idea is to attribute edges of the association graph with the 

graph edit distance cost of labeling an edge of graph    to an edge of   , in 

a similar form as (1.6) in chapter 2. Thus, each clique (or dominant set of 

size  ) will contain the graph edit distance cost of labeling both graphs 

under some bijection. To this aim, we define     as: 

         

 
    

 
      

 
    

 
   

 
 

 
    

 
   

 
    

 
    

    

 
    

 
    

 
    

 

 

 
   

 
    

 
    

 
    

 

          

  (1.1) 

where,  

 

    

 
   

 
    

 
    

         

    
 

  
          

 
    

 
        

 
    

 
  

           

 
    

 
      

 
    

 
        

   
  

   
               

(1.2) 

   corresponds to the maximum value of    and    to adapt the cost to 

compatibility as indicated in (1.4) of chapter 2.  , as usual, corresponds to 

the number of nodes in the graphs (consider that null extensions of the graph 

may be required (see section 1.1.2.1 of chapter 2). Equation (1.2) basically 

inverts the cost of an edge labeling to a compatibility using last 

transformation function given in (1.7) of chapter 2. Parameter   has a 

similar effect to a regularization term. In this way, as   increases from zero 

to one     

 
   

 
    

 
    

  approaches 1. Constants    and   , as we will see in the 

following, are related to the problem setting to compute the Graph Edit 

Distance. In addition the denominator of    has the same effect described in 

(8.9) of chapter 2. 
 To analyze the relation between the graph edit distance problem and the 

dominant set problem we use a vectorial representation of the matching.  

Definition 1-2: given a bijection   between graphs    and   , we 

represent   in the simplex as a barycentric point in some simplex    face:  

          
  

 

 
        

 
     

 

          

  (1.3) 

On the contrary we define the opposite transformation as: 

Definition 1-3: given a point   in the simplex we define the bijection it 

represents as: 
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   (1.4) 

 

Considering Definition 1-2, the dominant set objective function given in 

(1.28) of chapter 2, defining      
   

 
          and         

   , we see 

that: 
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Considering definition of   given in (1.4) of chapter 2 and Definition 1-2, 

 

              
 

  
   

 
   

  
                     

      

 
    

 
        

 
    

 
 

   
 

 

    
     

 

    
     

 

    

 

    

        

 
    

 
      

 
    

 
    

(1.5) 

Note that part of the objective function in (1.5) corresponds to the objective 

function of the Graph Edit Distance given by (1.8) and (1.13) of chapter 2. 

Hence, we can conclude that: 
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              (1.6) 

We see that, if vector   corresponds to a barycentric point on a face of the 

simplex and          , computing the dominant set functional is 

equivalent to computing the graph edit distance of the induced bijection   . 

Thus, a direct consequence of  (1.6) on the bijection that computes the graph 

edit distance    is that: 

               
 

  
  

   

  
                (1.7) 

In addition, note that solutions of the dominant set functional   using payoff 

matrix   does not always correspond to a solution of the graph edit function 

since it may happen that           and so the solution does not 

correspond to a bijection between both graphs. However, increasing the 

parameter   we have a regularization (Pavan and Pelillo 2003) effect over 

matrix   . Consider the following equivalent problem: 

                                 
  

            
  

 (1.8) 

where A is defined considering:  
 

    
 

   

 
    

 
    

   

    
 

  

          

 
    

 
        

 
    

 
             

 
    

 
      

 
    

 
      

 

and         if              ,         otherwise. We see that    

corresponds to the original dominant set problem with payoff matrix (1.1). 

This function maximizes solutions with high internal coherence. The second 

term   , corresponds to the original un-attributed graph isomorphism 

problem as described in (Pelillo 1999). Thus, the second functional 

maximizes maximum/maximal cliques in the association graph defined by 

adjacency matrix   . Note that, since we focus on the error tolerant graph 

matching problem, each possible bijection corresponds to a clique in the 

association graph. In the case of    , the problem corresponds purely to 

the dominant set problem. The main inconvenient of setting     is that it 

is not possible to ensure that the solution of the dominant set corresponds to 

a bijection, it usually corresponds to some correspondence of a subset of 

nodes. Setting     converts the problem to a purely graph clique problem. 

In this case, since every possible bijection in   will form a clique in the 

association graph, we have no information about the cost of node and edge 

local correspondences and therefore we do not compute any distance 

function. Nevertheless, we can ensure that the solution corresponds to the 
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barycenter of a face of the simplex. Values of   between   and   balance 

dominant set solutions and with a bijective solutions with barycentric 

solutions. Thus, moving   from   to   we tight the gap, 

               
 

  
  

   

  
            

 
   (1.9) 

and we approach to equality shown on  (1.5).  

We formalize this intuition with the following theorem, which prove that 

there exist an   value lower than   where maximal/maximum solutions of 

the dominant set problem are in one-to-one correspondence to local/global 

solutions of the graph edit distance problem. 

Theorem 1-1: Given two attributed graphs    and    and its respective 

regularized association graph    as defined in (1.1) and (1.2) there exist a 

value          such that for every      the bijection     induced by the 

support of the maximum dominant set    minimizes the graph edit distance 

between    and   . 

Proof 1-1: we start denoting several values we will use in the proof. We 

denote the optimal dominant set value by: 

   
          

     
                 (1.10) 

the optimal solution for the graph edit by: 

           
   

              (1.11) 

and the dominant set functional value given any bijection by:  

          
    

     
 
   (1.12) 

where   
 

 represents the adjacency matrix of the association graph restricted 

to the support of   , that is to the values where    
  . 

We know from (1.5) that : 

               
 

  
  

   

  
              (1.13) 

and 

                 
 

  
  

   

  
               (1.14) 

We focus on proving that                  , which is the same as: 

                (1.15) 

To that aim let     
  

   
 

. 
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Lemma 1-1 (Positive points in the neighborhood of the barycenter of the 

simplex face) By continuity we know that if  
 

 
    

 

 
      there exist a 

value    such that: 

    
 

 
                (1.16) 

□ 

Lemma 1-2 (Convergence of    with respect to  ). There exist an    such 

that           
      

      
  

 

 
      . 

□ 

Proof 1-2: considering the decomposition of              given in (1.8)

, we know by (Pelillo and Jagota 1995) and (Pavan and Pelillo 2007) that 

objective functions    and    are continuous and derivable in all domain of 

  and clearly they also are with respect to  . Thus, the linear combination of 

both objective functions is also continuous and derivable in all data domain. 

In addition, when    , the problem resembles the maximum clique 

problem; solutions of which, in (Pelillo and Jagota 1995) and (Motzkin and 

Straus 1965), are proven to correspond to strict local maximums of   . 

Besides, the Motzkin-Straus theorem shows that solutions maximizing    

correspond to vectors with the form     
        and so the linear 

combination of objective functions given in (1.8) will tend to converge to 

that solution while   increases. Concluding that, as   increases, solutions of 

(1.8) will tend to converge to the barycenter of the simplex. Thus,  

   
   

   
  

 

 
      

□ 

Extending (1.15) we have that: 

    
  

   
  

  
  

     
 
   

 
  

     (1.17) 

where   
  

 and   
 
 are the best solutions that can be obtained with matrices 

  
  

 and   
 

. Using   definition we have:  

 
   

 
    

      
 
   

  

  
      

 
   

 
  

  

   
 
   

 
  

      
 
   

  

  
      

 
    

  
 (1.18) 

substituting in (1.17) 

    
  

   
  

  
  

     
 
   

  

  
      

 
    

     (1.19) 

considering optimality we know that: 

    
  

   
  

  
  

     
 
   

  

  
     (1.20) 

holds for every  . 
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Considering  
 

 
     

   

 
    compute the graph edit compatibility (note that 

(1.2) converts cost to compatibility) we know that, 

 
 

 
    

 

 
     

 

 
     

   

 
     

 

 
     

  

 
      

and so by Lema1-1 and Lemma 1-2 we know that there exists an    such that:  

    
 
    

     (1.21) 

Concluding that for every     , point   
  

 associated to the optimal graph 

edit distance bijection    will correspond to a maximal dominant set. 

2. COMPUTING THE GRAPH EDIT DISTANCE 

THROUGH THE DOMINANT SET 

FRAMEWORK. 

In order to compute the graph edit distance between to graphs we reduce 

the problem to the dominant set problem, which optimizes the functional 

given in (1.28) of chapter 2 with the payoff matrix defined in (1.1) and (1.2). 

In this way, the problem reduces to the optimization of a non-convex 

quadratic function. To compute the solutions to this last problem, there are 

several solutions available among them we highlight the Replicator 

Dynamics (Pelillo 1999), Exponential Replicator Dynamics (Pelillo 1999) 

and the Infection and Immunization Dynamics (Bulo' and Bomze 2011; 

Bulo', Pelillo et al. 2011). Among them, we recommend the use of Infection 

and Immunization Dynamics because of its good balance between speed and 

performance. Thus, using any of those algorithms to compute the dominant 

set we propose the following algorithm to compute the graph edit distance 

using the dominant set framework: 

21 Algorithm dominant set graph edit distance(     ) 
22              
23      ;            ;          
24 AG=constructAssociationGraph(     , ) (Definition 1-1 and (1.1)) 
25 for itr <maxItr 
26                          

27         
 

       
 
   

       

28     =InImDymAlg(        ) 
29  f=extractBijection(  ) (1.4) 
30                   
31  if                             
32              ;         
33  end 
34            
35 end 
36 Returns       
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Algorithm 2-1: pseudo-code of the dominant set graph edit distance algorithm. 

As we see in Algorithm 2-1, there are several third party algorithms 

involved. The InImDymAlg computes a suboptimal solution of the dominant 

set problem with algorithm in (Bulo' and Bomze 2011). The function 

setAlpha returns an alpha such that the algorithm approaches the graph edit 

distance, this function is detailed in the next section.            generates 

a column vector with random values. And, finally                returns 

true if   is a bijection otherwise returns false. 

3. LOCATING THE CORRECT   

As we see, in Section 2 and Section 1, the algorithm relies on a correct 

value of the   parameter. This value is not easy to compute and, in fact, we 

use a heuristic methodology to compute the value that fulfills our 

requirements. As we saw in Section 1, as we increase the   value its effect 

on the solutions is that approaches more to the clique objective function than 

dominant set objective function. Since each clique corresponds to a 

bijection, the value   should be large enough to force the algorithm to return 

a bijection. On the contrary, large values of alpha will tend to not consider 

the values of the association matrix, which will make difficult for the 

optimization algorithm to find the maximum solution. Since we aim to find 

the lowest value that returns a bijection, we will, for each problem at hand, 

iteratively transverse the possible values of alpha from low to high and take 

the lower value which give a high probability (in the experiment we used the 

    ) to return a bijection between any pair of graph. We usually, do this 

process in an training phase. Once this training phase is done, we set a static 

  to compute the desired bijections. 
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Chapter 5 

COMPUTATION OF COMMON LABELING 
 

 
 

This chapter introduces six new methods to compute suboptimal solution 

to the common labeling problem. For each of them, we describe the 

objective function, how it is approximation and the methodology used to 

find the solution.  

Considering that several algorithms are described through the chapter we 

summarize them in Summary 1. Summary shows the name of the algorithm, 

the computational cost (  refers to the number of iteration of the algorithm, 

  to the number of nodes of the graphs and   the number of graphs in the 

set) and if the algorithm computes the common labeling through a consistent 

multiple isomorphism or directly the common labeling. 

 
Algorithm CC CMI CL 

P-Dim Graduated Assignment              

Agglomerative Graduated 

Assignment 
           

Least squares method              

Average Alignment               

Common Labeling Graduated 

Assignment 
              

Common Labeling dominant 

sets 

          
using (Bulo' and Bomze 2011) 

    

Summary 1: Algorithms summary. 
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1. THE COMMON LABELING THROUGH A CMI 

1.1 CMI using P-Dimensional assignation matrix  

The two algorithm we propose in the next three sections, given a node of 

each graph of the set    , i.e.   
    

      
 , compute the probability that this 

set of nodes represent the same local part of the object. That is, the 

probability that these nodes are labeled to the same node      . The more 

similar the features of each node are (and/or their adjacent vertices), the 

greater is the probability. We represent this probability by     
    

      
  , 

where   
 

 is the node   of the graph   . This probability is defined as the 

joint probability of all the isomorphisms between the graphs of the set and 

the related nodes, 

    
    

      
   

          
     

           
     

    
 (1.1) 

We graphically represent this joint probability as a hypercube. Each 

coordinate of the hypercube is related with a graph and the number of cells 

per coordinate is the number of nodes per graph. Consequently, we represent 

each cell of the hypercube as                   which represents the joint 

correspondence   
    

      
 . Figure 1-1 shows a hypercube of three 

dimensions that represents the joint probability of a set of 3 graphs. The 

value of the highlighted cell in the cube represents the joint probability of 

nodes   
 ,   

  and   
 , which corresponds to the joint probability depicted by 

the bijection in Figure 1-2. Note that in the case that the set is composed by 

only two graphs, the joint probability is represented by a 2-dimensional 

matrix, which is equivalent to the representation that most of the 

probabilistic graph-matching algorithms do (see section 1.1.2 of chapter 1). 

For this reason, we consider the following methodology a generalization of 

the probabilistic graph-matching methodologies. 

Figure 1-3 shows the proposed methodology. Differences with respect to 

the consistent multiple isomorphism methods described in section 2.3 of 

chapter 2 appear in both steps. In the first step, the set of assignation 

matrices is substituted by an assignation hypercube to alleviate the problem 

of taking the individual assignation matrices independently. As a 

consequence, the first step computes a probability hypercube. The second 

step computes the consistent MI. This step is exchanged by a discretization 

process. 
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Figure 1-1: graphical representation of the joint probability. 

 

 
Figure 1-2: representation of probability of Figure 1-1. 

 

 

We present two possible approaches to compute the association 

hypercube. The first approach, called P-Dimensional Graduated 

Assignment, computes the joint probability     
    

      
   considering 

jointly the costs of all the related assignments (1.1). As we will see, the 

algorithm which computes (1.1) is high computationally demanding, due to 

the exponential size of the hypercube. We developed a second approach 

Figure 1-3: scheme to compute a CMI based on an assignation hypercube. Example using 

     . 
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which reduces the computational cost by assuming independence between 

isomorphisms      in (1.1). Certainly, this second approach is an 

approximation of the first one, and consequently the cost of a common 

labeling computed with the first approach is usually lower than the cost of a 

common labeling computed with the second approach. We call this second 

approach Agglomerative Graduated Assignment and in this case, the joint 

probability is computed as follows: 

    
    

    
      

    

          
     

             
     

                
       

   
(1.2) 

In (1.2) each assignation between nodes is considered to be independent 

and so the joint probability can be obtained as a product of the individual 

ones. Using matrix representation of the pre-computed pair-wise 

probabilities, the joint probability of the set of nodes      
    

      
   can 

be expressed as: 

 
         

    
      

             

 

     

    
 
   

 
    

    
    

      
                                    

 (1.3) 

1.1.1 P-Dimensional Graduated assignment 

One of the most efficient algorithms used to compute a sub-optimal 

solutions for the error tolerant graph isomorphism problem between two 

graphs    and    is known as Graduated Assignment (Gold and 

Rangarajan 1996). The aim of this iterative algorithm is to solve the 

quadratic assignment problem (Garey and Johnson 1979) by maximizing the 

objective function defined in (1.2) of chapter 2. Since the optimization 

procedure used by the graduated assignment is proven to be fast and quite 

effective, we follow the same idea. Consider, without lose of generality the 

case of three graphs. The objective function becomes:  

 

              

                                           
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where : 

               
 
     

 
     

 
  is a doubly stochastic matrix 

which represents a function           
    

    
        

defined as          
    

      
       

    
      

   

(1.4) 
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We approximate the function in the point    
     

 
 
 , at time  , using the 

Taylor series expansion, which following the same notation as the original 

paper becomes: 

 

                         
 
  

             
     

 

 

 

 

 

 

                              
 
 
 

      
     

                   
 
         

     

 

 

 

 

 

 

 

(1.5) 

Therefore, 

    
      

                   
      

         
     

 

 

 

 

 

 

               (1.6) 

which can be stated as a linear assignment problem over the gradient on the 

current point         
 
. Thus, the update step becomes: 

                
   

  
                    

 
         

      
   

 
   

 
    (1.7) 

The final algorithm proceeds in three steps, (1st) given an initial point (at 

time  ) compute next assignation (at time    ), (2nd) apply “continuous” 

discretization using   parameter and (3rd) project the results over the triply 

stochastic matrix space. Repeat step 1, 2 and 3 until convergence. 

Equivalently, as the original paper we compute the projection to the 

double stochastic space using the Stinkhorn (Sinkhorn 1964) algorithm 

extended to   dimensions to normalize the multiple assignment matrix  . 

The compatibility         
     

 can be computed similarly, in a joint form, to 

(1.6) of chapter 2. Specifically, 

         
     

       
   

       
   

       
   

 (1.8) 

Since the algorithm may not reach a discrete matrix, we recommend a 

discretization of matrix       . A naive approach to this discretization could 

be to iteratively choose the maximum assignations until discretize matrix    

fulfils: 

 

              

 

   

              

              

 

   

              

              

 

   

              

 (1.9) 
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The cost of the algorithm is linear on the number of iterations and the cost of 

each iteration is       . 

1.1.2 Agglomerative Graduated Assignment method 

Like in the P-Graduated Assignment, we describe the method 

considering that   is composed by 3 graphs. The algorithm is based on the 

assumption that each pair-wise isomorphism is independent with respect to 

the other pair-wise isomorphisms, see (1.3). The algorithm is composed by 

three main steps. The first computes all the probability matrices      (lines 

38 to 40 of Algorithm 1-1). The second computes the joint probability 

          applying (1.3) (lines 41 to 47). The third does the discretization 

process to obtain the final CMI (line 48), 

 

Algorithm 1-1: agglomerative Graduated Assignment algorithm for the case of  |G|=3. 

 

To extend the algorithm to greater cardinalities of  , it is necessary to 

compute step one and step two considering all the graphs. That is, in step 

one we compute all pair-wise labelings and in step two we compute the P-

dimensional hypercube.  

With respect to the computational cost, the first step computes a 

quadratic number of isomorphisms respect to the number of graphs, so the 

cost of the first step is           , where   is the number of iterations in 

the Graduated Assignment. The second step computes the hypercube of    

cells, so the cost is      .  

Several similarities can be noticed with the algorithm in (Lozano, 

Escolano et al. 2009) where all pair-wise computations are performed 

independently and some consistency rules are applied a posteriori. The main 

advantage of algorithm in Algorithm 1-1 is that the joint node probability is 

explicitly computed and consequently the discretization (or consistency 

rules) works on a global fashion.  

Even though the global computational cost has been drastically reduced, 

in comparison with the P-Dimensional Graduated Assignment algorithm, it 

37 Algorithm Agglomerative Graduated Assignment(            ) 
38      = doGraduatedAssignmentMethod(  ,   ) 
39      = doGraduatedAssignmentMethod(  ,  ) 
40      = doGraduatedAssignmentMethod(  ,  ) 
41 for    in all nodes in    
42  for    in all nodes in    
43   for    in all nodes in    
44                                                   
45   end 
46  end 
47 end 
48                        
49 Returns   
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is still exponential with respect to the number of nodes and graphs. For this 

reason, in the following sections, we present several algorithms that compute 

directly a CL without computing the CMI. The main advantage of 

computing directly the common labeling is that we do not need to address 

the problem of computing consistent individual isomorphism because all 

common labeling assignations fulfill this requirement. 

2. COMPUTING DIRECTLY THE COMMON 

LABELING 

2.1 Probabilistic framework 

In the same way as other probabilistic algorithms where assignation 

matrix   is defined as:  

                    
 
    

 
   (2.1) 

we define the probability of matching node   
 
 to a virtual node    as a 

continuous assignation matrix   : 

                
 
      (2.2) 

We consider that the probability of matching a vertex   
 
 of graph    to a 

vertex    of the virtual node set   is the union of probabilities of all the paths 

that goes through the nodes (     
 

 ) of a third graph   . In other words,                           

 

       
 
                

 
    

 
      

 
     

         
 
    

 
      

 
       

         
 
    

 
      

 
       

(2.3) 

It seems logical that the events of matching   
 
 to    through different   

nodes cannot occur simultaneously. For this reason (similarly to (Williams, 

Wilson et al. 1997)), we assume that these events are mutually exclusive. 

Consequently, using the addition rule of probability and the mutual 

exclusivity assumption, (2.3) becomes: 

 

       
 
                

 
    

 
      

 
      

          
 
    

 
      

 
       

          
 
    

 
      

 
      

(2.4) 

In order to compute (2.4) we consider, at this point, that      is 

independent of   . Therefore: 

 

       
 
     = 

          
 
    

 
         

 
       

          
 
    

 
         

 
       

    

(2.5) 
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Now, combining (2.5) with (2.1) and (2.2) we obtain, 

 
                          

 

   

  

            

(2.6) 

Besides, in a similar way, considering the probabilities in matrices    and 

  , we could obtain: 

               (2.7) 

Note that, in case matrices   are orthogonal we could obtain (2.7) from 

(2.6). However, since in our case we cannot assume orthogonality, matrices 

in equations (2.6) and (2.7) may not be equivalent. In the methods, we 

propose, we never consider these matrices to be the same, we just use 

equations (2.6) and (2.7) to compute the probabilities. 

In the following, we will represent with symbol   the set of matrices 

                     related to the multiple isomorphism  . In the 

same way, we represent with symbol   the set of matrices   

              . 

 
Figure 2-1: computation of the probability of matching   

  to    

 

Figure 2-1 shows two attributed graphs and the virtual node set  . In this 

example, the probabilities of matching    to   are computed through the 

probabilities of matching    to    and    to  . Consider as an example the 

expression  represented by a solid line which is computed as the addition of 

the three probabilities (represented by three dotted lines) of matching   
  to 

   through   . These probabilities are : 
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               (2.8) 

 

2.2 Average alignment common labeling 

Assume we have a consistent multiple isomorphism   where the 

bijections are                           . Moreover, we have the 

induced CL                (see (2.6) of chapter 2). Using some 

properties of the composition of functions, we see that are able to compute 

   using any other bijection in   and the corresponding one in  . We can 

derive that equality: 
                              (2.9)

 

holds. Assuming so, we can derive several properties.  

The former report that, if we fix any bijection in   e.g.      
     , we 

are able to compute the set   using only the set   and this reference point, 

i.e. 

                                   (2.10) 

From (2.9) we conclude that   can be computed using several equivalent 

equations. Some of them are shown below: 

 
                                   

                      
(2.11) 

 

 

 

Figure 2-2 illustrates (2.11). 

Figure 2-2: three possible equivalent ways of computing Hp. Each 

way is shown by a line pattern. 
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The latter property concludes that given   and   the related permutation 

matrices F and H it is possible to obtain each matrix of the set   as an 

average of all possible equalities in (2.9). That is, 

    
 

   
                              (2.12) 

where    and      represents a permutation matrix induced with bijections 

   and     . 

All equalities shown above are useful when   form a consistent multiple 

isomorphism, independently how bijections      are computed. However, in 

real data (due to distortion on the object representation, outliers or distortion 

induced by sub-optimality of the matching algorithms), it is usual that 

                  
. Thus, in real applications (2.9) may not hold, 

giving some different values of bijection   . Thus, to compute a single 

solution for the common labeling  , we rely on equation (2.12). The 

intuition is simple, each bijection    can be computed as the maximum 

estimation of all the other bijections      , given a reference set of 

permutations       of the graphs       to the current graph   . In this way, 

each probability         corresponds to the mean of all other assignation to 

the given    node.  We generalize this intuition to the computation of the 

common labeling   . In this way, we relax the domain of matrix   and   to 

the continuous domain as shown in Section 2.1. Consequently, we 

approximate each bijection    as: 

     
 

   
                              (2.13) 

Note that in case we assume Gaussian noise on the distortion of matrices 

    , the sample mean     would be a good approximation of the population 

mean   . Nevertheless, approximation in (2.13) resembles the chicken-egg 

problem where   and   depend one on the other and therefore cannot be 

computed directly. We aim to solve it using consecutive approximations. To 

this aim in sections 2.2.1 and  2.2.2 we describe two algorithms that bases its 

intuition on the approximation given in (2.13). 

2.2.1 Least squares method. 

The first method we present is based on an approximation that considers  

(2.13) as a system of linear equations. Even the method is placed in section 

2, the method does not compute a common labeling directly, but it does it 

using previously computed pair-wise bijection. We place this method here 

because it is based on the probabilistic framework described in 2.1. Since we 

know that a large set of algorithms to compute a bijection between two 

graphs exists, in this algorithm we consider that all the pair-wise bijections 

that compose a multiple isomorphism are known. 
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It is clear that considering   is known and fixed, we could interpret 

(2.13) as a system of linear equations, that in matrix form will look like: 

     
              

              
   

                  

                  
  

              

              
           

     

    
              

              
   

                  

                  
  

              

              
           

 

       

(2.14) 

The system corresponds to a linear system with      equations and      

unknowns: 

                                                                    

                                               
   

                                                                    

 (2.15) 

However, due to the system does not have any independent term, it just has 

one trivial solution        . This trivial solution has a comprehensible 

meaning due to the virtual set L has neither attributes nor structure. One 

solution to convert the problem to an over-determined system is to impose 

some   . Without loss of generality we consider        . Which 

produces the following considerations:      
                as in (2.6) 

of chapter 2. With this restriction, the system of linear equations given in 

(2.15) becomes an over-determined system with      equations and 

        variables. For the case of three graphs, the final over-determined 

system becomes: 

 
 

            

             

             

 

                 
 

 
 

  

  
 

 
    

  
 

     

     
 

     
 

 
(2.16) 

Since the system may not have a solution, we approximate it via the least 

squares approach (Williams 1990), in this way we minimize the square error:  

     
       

     
         

 
 (2.17) 

The cost of solving (2.17) is          (to perform the QR factorization 

using the Gram-Schmidt) plus                     (to solve the 

system using back substitution) (Björck 1974) section 5.7. In addition, we 

have to add the cost of computing all the multiple isomorphism  . 

2.2.2 Average alignment algorithm 

The algorithm we propose uses any error-tolerant graph-matching 

algorithm, that we identify with K, that iteratively updates a 

probability matrix that represents the probability of the isomorphism 
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between nodes. Each step of the algorithm is represented by: 

                                 (2.18) 

where G
p
,G

q 
are a pair of graphs to be compared,         

and 

          are the probability matrices at steps or iterations   and     

and       is a function that executes only one iteration of algorithm 

 . It is assumed that           is a better approximation of the 

labeling      than        . That is, the cost is reduced, 

                                     (2.19) 

 

Algorithm 2-1: Probabilistic Common-Labeling Assignment. 

 

The algorithm has two main steps. In the first one, it updates all     
 

(line 56) computing an iteration of algorithm  . The input of       is a 

previous      approximation computed as described in (2.7). We can ensure 

that at every iteration, we approach to a local minimum due to (2.19). 

However, even if function      
 minimizes the cost of the multiple 

isomorphism it does not guarantee the global consistency (the solution is a 

consistent multiple isomorphism). This is the objective of the second step 

whereby computing (2.13) (line 58)     fulfils this requirement. 

The initialization of   at time 0 (line 51) requires that at least one    
is 

different from a uniform distribution, i.e.     
 

 
     where      

represents a matrix of ones of size      . However, this initialization is not 

so critical in the tested datasets we have used, and the algorithm tends to 

converge to equivalent results given several initialization of this single non-

uniform  . 

 

 
5 depending on the algorithm   we use this step may be removed. 

50 Algorithm Average alignment Common-Labeling     
51    = initializeCL(); 
52 repeat until                  converges or                 
53  for all         
54               ; 
55   for all              
56                                           
57                                                       

58                    
 

   
   

59   end 
60 

5                             
61  end 
62            
63 end 
64          
65 Returns    
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The pseudo-code references two additional functions. The first one: 

                     , is related to a well-documented property that a 

Markov chain may have, the ergodicity. A Markov chain having this 

property tends to converge to a system where any state can be accessed by 

any other state with uniform distribution. From the computational point of 

view, this is equivalent to say that the product of two stochastic matrices 

may tend to converge to a stationary distribution6. We have observed the 

same behavior in product               
t
. Considering that result of 

function      , contains a certain degree of discretization to a permutation 

matrix, we are interested in maintaining this degree of discretization in the 

resulting product of               . In this case, we use the entropy as 

indicator of the degree of discretization. Thus,                applies a 

method similar to the Softmax (Bridle 1990) algorithm by which approaches 

the entropy of                    
to the entropy of             . 

Using this method, the problem is approximated to the problem of finding 

value   
  which minimizes the distance  7     

        
     

              with the restrictions that     
        , where   

represents a linear assignment solver like the Hungarian method. The 

entropy of matrix    is enhanced by approaching it to a discretized version 

using parameter  : 

   
  

     

        
 (2.20) 

It is clear that the Softmax is often used to compute in a continuous way 

the maximum of a vector. Even though we can’t ensure that     
        , 

we expect that using (2.20), in some sense, matrix   
  converges to a 

permutation matrix related to the initial    matrix. In fact, this assumption is 

in practice true for low values of  . This approach to solve the problem 

seems to give good results in practice. However, some other function 

targeted to the same objective could be used.   

A naive approach to compute the best   value could be a binary search 

algorithm to find             which minimizes   . Its computational cost 

would be         . 

The second function referenced in Algorithm 2-1, i.e.                 

guarantees that the matrix is doubly stochastic by applying the method in 

(Sinkhorn 1964). At the end of the algorithm, the CL is obtained through a 

discretization process   (Kuhn 1955; Munkres 1957) of  . 

The cost of the algorithm is lineal with respect to the number of 

iterations. Each iteration computes           calls to the function      . 

 

 
6 with some restrictions, and special systems. 
7 Operation   indicates Hadamard product. 
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Considering the cost of             if   is the Graduated Assignment 

algorithm (Gold and Rangarajan 1996). The global cost of the algorithm is 

               . From now to the rest of the document we will 

consider that   refers to the Graduated Assignment algorithm. 

2.3 Common Labeling Graduated Assignment algorithm 

The idea of this algorithm is to directly compute the common labeling by 

iteratively augmenting the compatibility of the current common labeling by 

continuously updating the set of probabilities  . To this end, we define     

given   using     ((2.7) of chapter 2),     ((2.1) of chapter 2) and the 

relation between   and H (2.7). In this way, the objective function of the 

common labeling becomes: 

     

 

  
     

 

                    

 
 
 
 

                  

 

    
      

 
 
  

    
 

 

 

   
   

 

   
   

 

   

 

   

 

     
   

       
   

 

   
 

            
 

(2.21) 

Since our objective is to compute a common labeling, our new energy 

function depends on the probabilities H instead of F. In addition, the 

common labeling has to represent consistent and bijective isomorphisms 

between the involved graphs and the virtual node set. Consequently, we 

impose    ,     and      . Figure 2-3, Figure 2-4 and Figure 2-5 

show non-valid bijections forbidden by these restrictions. 

 
Figure 2-3: non-valid labeling:      . 
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Figure 2-4: non-valid labeling:    . 

 
Figure 2-5: non-valid labeling:    . 

 

Our optimization procedure is inspired by the Graduated Assignment 

(Gold and Rangarajan 1996) and maximizes     (2.21). 

2.3.1 Derivation of the algorithm 

As commented above, the methodology we present applies a similar 

procedure than the Graduated Assignment algorithm (Gold and Rangarajan 

1996) to compute an approximate solution for the common labeling 

problem. We start our development by computing the Taylor series 

expansion of the compatibility function (2.21) at the initial condition      , 
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in our case, we focus on compatibility instead of energy. The approximation 

turns to be: 

 

       
   

 
 

  
      

 

            
            

 

 

    

 

   
   

 

   
   

 

   

 

   

 

   
   

 

   

 

 
 
 
 

           
            

 

 

    
      

 
 
 

        
   

  

 
 

  
        

                     
  

 

    

 

   

 

   

 

(2.22) 

where, 

 

     

 
      

    
        

               
 

 

   
   

 

   
   

 

   

 

   
   

 

 
 
 
 

           
            

 

 

    
      

 
 
 

       
   

 

(2.23) 

And in a similar manner to the Graduated Assignment algorithm (Gold and 

Rangarajan 1996) we obtain: 

 

      
    

                 
    

            

       
    

        

 
         

 

    

 

   

 

   

 
(2.24) 

Thus, we can deduce that maximizing     is equivalent to maximizing 

(2.24) which could be interpreted as maximizing the assignation with respect 

to the gradient of the function at point      . It is worth commenting that 

for correctness in the derivatives, restrictions    ,     and      , in 

(2.21), are important to derivative (2.22). In case no restrictions were 

applied, second order terms would appear. 

2.3.2 The algorithm 

Algorithm 2-2 maximizes (2.22) and it returns a common labeling   

given a set of graphs Γ. We impose H
1
 to be the constant assignation 

throughout the iterative process. This requirement is necessary because the 

virtual node set does not contain any type of attributes or structure. Forcing 

the nodes of G
1
 to concrete nodes of the virtual node set L, we impose all the 

other graphs to label each other according to this prior labeling. Without loss 
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of generality we impose H
1
 to be the identity matrix. However, we could 

impose any other single    to any other permutation matrix having 

equivalent results, nevertheless to be coherent with (2.6) of chapter 2 we 

prefer to use this static assignation. Despite this restriction, the other 

probability matrices can be initialized to any stochastic matrix. We propose 

to initialize the matrices using a uniform probability. That is,    
 

 
    , 

          . 

Algorithm 2-3 computes function           and obtains all      

 
. The 

computational cost is in general         . Consequently, the total cost of 

Algorithm 2-2 is           , where   refers to the number of iterations 

of loops in lines 69 and 71 of Algorithm 2-2. We see that the main drawback 

of the algorithm is still the high computational cost of function          . 

With the aim of reducing this computational cost, in the next section we 

present an algorithm that obtains an approximation of       

 
. 

 

 

 

Algorithm 2-2: Graduated Assignment Common Labeling algorithm. 

 

 

 

66 Algorithm Graduated Assignment common labeling (     
67      = initializeCL(); 
68          
69   repeat until        
70       
71    repeat until   converges or        )     
72                          

73                          
 

,                
74       repeat until   converges or          

75               
        

         
 
   

 ,                

76                
        

         
   

 ,                

77    end        
78          
79      end 
80              
81   end 
82  Returns    
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Algorithm 2-3: calculus of  . 

 

 

 

 

 Description Value 

   Start value for Graduated Assignment control parameter 0.05 

   Increment rate for Graduated Assignment control parameter 1.075 

   Maximum value for Graduated Assignment control parameter 150 

    Number of iterations with the same control parameter value 4 

    Maximum number of iterations for Sinkhorn method 30 

Table 2-1: Algorithm 2-2 parameter, summary and reference values. 

 

Table 2-1 shows the description of the parameters of the algorithm 

presented in Algorithm 2-2 and a reference value. The performance and the 

run time of the algorithm depend highly on some of these parameters’ 

values. All parameter values but     and    are set to the same values of the 

original article (Gold and Rangarajan 1996) suggests. The values of     and 

   are taken lower and higher respectively to obtain a good solution despite 

the initial values of   . 

   and    are quite independent of the application and they can be 

considered more or less generic. However, the values of    and    are 

application dependant and if they are not correctly tuned, the algorithm 

could return a not well approximated common labeling. To illustrate the 

problem, consider that we want to obtain the common labeling of three 

different sets   ,   ,   . We could suppose that cardinality of these sets is 

83 Algorithm                  
84  for all        
85    for  a in all nodes in    
86    for     in all nodes in   
87               

 
   

88        for all            
89     for  i in all nodes in    
90           for  b in all nodes in   ,     
91             for  j in all nodes in   ,     
92              
93        for     in all nodes in        
94                                  
95        end 
96             

 
      

 
                   

    

97       end 
98           end 
99     end 
100    end 
101   end 
102  end 
103 Returns   
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      ,        ,        . For this concrete example, we consider that 

all of the attributed graphs in   ,    and    are the same one. In the current 

example we used the first element of class V of the Letter Dataset (Riesen 

and Bunke 2008). The order of the graph is low, it has only 3 nodes. For 

each set, we compute the values of     
          . Table 2-2, Table 2-3 

and Table 2-4 show the values obtained at the first step of the algorithm. 

 
   using    

1.038 0.464 0.460 

0.501 1.296 0.386 

0.498 0.387 1.306 

Table 2-2:    using 3 

attributed graphs. 

   using    

3.33 2.75 2.75 

3.05 3.84 2.93 

3.05 2.94 3.86 

Table 2-3:    using 10 

attributed graphs. 

   using    

6.60 6.02 6.02 

6.69 7.48 6.57 

6.71 6.59 7.51 

Table 2-4:    using 20 

attributed graphs. 

Note that the values of     
  are at least dependent on the number of 

attributed graphs in the set. Figure 2-6 shows      ,      . The three 

grey columns represent the range of values of Table 2-2, Table 2-3 and 

Table 2-4 respectively. In the case of   ,       has high values, 

consequently the exponential function is too discriminative at the first step 

   of the algorithm. If we desire to automatically calibrate    and   , we 

propose to normalise matrices    before applying the exponential function, 

in this way       return values independent of the application. Another 

solution which was experimentally proven, and seems to work quite well, is 

to take           . 
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2.3.3 Reduction of the computational cost of            

Algorithm 2-4 shows an algorithm that computes an approximation of 

(2.23), the approximation is computed by relaxing constraint       in 

(2.23). It can be seen that, with graphs of reasonable number of nodes, the 

noise introduced by the non-valid isomorphism when       is not 

significant. Given a graph set   with graphs of order  , the percentage of 

non-valid isomorphisms when       is given by      . Note that, for 

instance, with        the percentage of non-valid isomorphisms taken into 

account is just 5%. Using this relaxation,   can be sub-optimally computed 

in          instead of         . Consequently, the final cost for 

Algorithm 2-2 becomes           . 

 

Figure 2-6: function      . Grey columns represent the range of values in  

Table 2-2, Table 2-3 and Table 2-4 respectively 
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Algorithm 2-4: calculus of         . 

2.3.4 Statistical evaluation of the convergence 

The convergence of the Graduated Assignment (Gold and Rangarajan 

1996) has been studied (Rangarajan, Yuille et al. 1999). Since our algorithm 

follows the same optimization procedure we assume that the convergence 

properties are inherited. In this section, with the aim of a better 

understanding the proposed algorithm, we experimentally analyze its 

convergence. We study two features of the algorithm. The first aims to 

analyze how the algorithm tends to decrease the energy at each step. The 

second aims to analyze how it tends to converge to a stable solution. The 

dataset used in this study is the same as the one used in the experimental 

validation (see section 4.3 of chapter 7). The values we show are the average 

of 1050, 1080 and 1584 executions of the algorithm in Algorithm 2-2 (with 

Algorithm 2-4) using the synthetic, Letter and GREC dataset, respectively. 

In total, we performed 3714 experiments.  

Figure 2-7 and Figure 2-8 show two examples of the value of energy 

          (2.21) at each step and throughout the execution of the 

algorithm. For each example, the evolution of the energy is different, 

although they do have similar shapes. We have parameterized these shapes 

at 5 intervals; the intervals are defined as {1%, 24%, 50%, 24% and 1%} of 

the E
CL

 final value. Each interval represents a part of the shape with equal 

characteristics. Interval 1: initial non-sloping part. Interval 2: curvature. 

Interval 3: central high-sloping part. Interval 4: curvature. Interval 5: final 

non-sloping part.  Figure 2-9 shows the mean angle of the intervals of the 

3714 experiments. 

104 Algorithm                 
105  for all       
106             
107   for all            
108                     
109    for  a in all nodes in    
110         for  i in all nodes in    
111           
112      for  b in all nodes in   ,     
113       for  j in all nodes in   ,     
114                              

    

115       end 
116      end 
117      for     in all nodes in   
118            

 
      

 
             

119      end 
120     end 
121     end 
122   end 
123  end 
124 Returns Q 
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Figure 2-7: interval description. 

Figure 2-8: interval description. 
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To evaluate how the algorithm reduces energy at each step we present 

Figure 2-11 and Figure 2-10. Figure 2-11 shows the probability of having a 

concrete percent of E
CL

 reduction at a concrete interval. Figure 2-10 shows 

the probability of having a concrete percent of E
CL

 increment in every 

particular interval. These histograms have been computed using the sum of 

values at each interval which reduces (Figure 2-11) or increases (Figure 

2-10) the energy. Although we see in the figures that the probability of 

observing increments of E
CL

 is not low when the size of increment is small, 

the mean value of decrements is much smaller than the mean value of 

increments. We can see that, with high probability, the increments are likely 

to appear when slope is low, in other words at the first and last interval. 

However, these increments are approximately 60 times lower than the 

decrements. Value of intervals two, three and four show the increments are 

also much smaller than the decrements. 

 

 

 

 

 

 

 

 

 

Figure 2-9: mean shape discretized in the 5 intervals. 
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Figure 2-10: increment of energy. 

Figure 2-11: decrement of energy. 
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3. COMPUTING THE COMMON LABELING 

THROUGH DOMINANT SETS8 

The last method, we propose, to compute a common labeling is based on 

the association graph framework detailed in chapter 2. The main idea is 

based on encoding each possible common labeling solution as a clique in the 

so called association graph. Equivalently to the algorithm used to compute 

the graph edit distance for a pair of graphs, since we are focused in the error 

tolerant graph matching, and in particular in the graph edit distance, we do 

not rely on computing the maximum/maximal clique of the association graph 

but on computing the dominant set. 

To fulfill structural and transitive properties of the common labeling, we 

use the same idea detailed in Section 2.1. That summarizing, labels each 

graph to a virtual node set  . Several definitions for the association graph 

can be considered. However, we propose to define the association graph as 

follows.  

Definition 3-1: given a set of graphs              , we define the 

association graph                    as a tuple of four elements where 

       
        

      represents the node set,          represents 

the edge set,          assigns a real value to each vertex and          

assigns a real value to each edge. □ 

In our case, each node of the association graph relates two nodes, let’s 

say   
 

 and   
 
 to a single element in the virtual node set  . Consequently, 

each edge of the association graph relates an edge    
 
   

  
  to another edge 

   
 
   

  
  labeled to the same pair of nodes of the virtual set. Note that a 

priori   could be different than    and   different than   . 
Definition 3-2: given a solution of the dominant set objective function: 

 
                         

    

   

    

   

 

                   

(3.1) 

where                           . We denote the dominant set 

induced by the solution vector   as                  
       where     

   
 
   

 
         if     , and, edges of    belong to     if both terminal 

nodes belong to    . 

Definition 3-3: We define the consistent multiple isomorphism given 

    as: 

 

 
8 This work has been done with the collaboration of Nicola Rebagliati and Marcello Pelillo 

during my stay at Università "Ca' Foscari" di Venezia. 
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  (3.2) 

Definition 3-4: We define the matching matrix    given    : 

          
                     

 
   

 
        

          
  (3.3) 

3.1 Definition of the association matrix 

Considering the initial definitions of this section we see that functions     

and     are of crucial importance in the definition of the problem we face. 

These functions will give costs to the edges of the association graph, and 

consequently the maximum clique (or dominant set in our case) will be 

computed relying on this information. Considering this reasoning, we 

compute the weights of the association graph in the following way:  

 

                          

 

 
 
 
 
 
 
 

 
 
 
 
 
 

 9

 

 
 

 

 

                 
                 
                 
                  

         

 

 
 

 

 

 

 
 

 

 

                 
                 
                 
                  

         

 

 
 

 

                                          

            
                                  

          

  
(3.4) 

the first row assigns   value to the edge of the association graph where the 

labeling violates the restrictions of the common labeling shown in Figure 

2-3, Figure 2-4 and Figure 2-5, self labeling and also to loop edges. Since 

this will indicate there is no edge between both nodes, these two nodes 

cannot form part of the same clique (or dominant set) and cannot form part 

of the same solution. The second value represents the cost of matching an 

edge         of graph    to edge         of graph   , this may have 

different definitions depending on the objective function we aim to optimize, 

we use the graph edit distance cost given in chapter 2. Eventually, last cost 

                             is assigned when the labeling is consistent 

but nodes belong to different graphs and consequently the cost of matching 

the respective edge cannot be computed. See that, due to restrictions on (3.4)

 

 
9 A low value   might have the same results as zero and increase the efficiency of the 

optimization algorithm 
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, transitivity between nodes in the consistent multiple isomorphism that we 

compute, are implicitly fulfilled in the clique solutions since two nodes that 

belong to the same graph cannot be labeled to the same virtual element   . 
Consider as an example non-consistent labelings in Figure 2-2 in chapter 2. 

Three of the nodes in the association graph that should appear on the clique 

for that multiple isomorphism to be a solution are:    
    

     ,    
    

      

and    
    

     . See that labeling   
    

       
    

        and so 

nodes two and three would have zero cost and cannot form part of the same 

solution. Two solutions to solve the problem would be to set second element 

of second node to   
  or second element of third node to element   

 . 

3.2 Minimization of the Multiple Graph Edit Distance 

In order to minimize the common labeling using the graph edit distance, 

we compute the cost of labeling two edges in the association graph as: 

 
          

        

 

   
 

   
                                                  

   

   
         

 

   
             

 
 

(3.5) 

   and   , represent two constants values addressed to allow the system to 

compute the graph edit distance and  , equivalently to section 1 of chapter 4 

is a parameter addressed to move the solution to the barycenter of a simplex 

face. Parameters    and    will be deduced at the end of the section. To 

reduce the problem to the objective function of the common labeling, we 

represent each possible consistent multiple isomorphism in the simplex as a 

vector where each position corresponds to a node in the association graph. 

 Definition 3-5: given a common labeling  , we define          be 

a barycenter vector as:  

           

 
 

  

       
   

        

        
             

 

          

  (3.6) 

Considering Definition 3-5, we analyze the functional that dominant sets 

optimize. So, given a dominant set solution   , and defining    as a  matrix 

of       positions where      
             . The functional becomes: 

                
   

      

    

   

    

   

 (3.7) 
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since positions that do not belong to the common labeling will add zero to 

the functional we exclude to those values. Since we know that the consistent 

multiple isomorphism will contain         non-zero values, we know 

that        
 

        . In addition we define         
   . Thus,  

      
   

      

    

   

    

   

 
 

         
 
 
        

   
   

   

 (3.8) 

substituting in (3.8) definition on (3.4) and (3.5), and considering mappings 

of (3.2) and (3.6) we get: 

 
           

 
 

         
 
 
                  

                    

 

    
     

 

    
     

 

    

 

    

 

   
   

 

   

  

 
 

         
 
 
                   

            

 

             
            

 

    
     
     

 

    
     

 

     

 

    

  

 
 

         
 
 
                   

            

 

             
            

 

    
     
     

     

 

    
     

 

    

  

 
 

         
 
 
                   

            

 

             
            

 

    
     
     

 

    
     
     

 

    
     

 

    

 

 

 

 
           

 
 

         
 
 
                  

                    

 

    
     

 

    
     

 

    

 

    

 

   
   

 

   

  

  
             

         
 
 

 
         

         
 
 
 

              

         
 
 

 

 

(3.9) 

The first term of (3.9) corresponds to positions of the second row of (3.4) 

and the rest to positions of the third row of (3.4). 
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(3.10) 

We see that, equivalently to the case of minimizing the graph edit distance, 

using the dominant set framework detailed in chapter 4, the computation of 

          is proportional to the functional of the consistent multiple 

isomorphism defined in chapter 2. Consequently, we know that: 

              
     

   
          (3.11) 

However, once again, solutions given by solution vector   may not 

correspond to bijections and usually, just a subset of matchings is returned. 

However, using theorem described in section 1 on chapter 4 and since every 

possible consistent multiple isomorphism is encoded as clique in the 

association graph, we can ensure that there is an    such that the functional in 

Definition 3-2 returns a consistent multiple isomorphism. In addition, using 

the same theorem we can ensure that, for all      there exists a one-to-one 

correspondence between local solutions of the graph edit distance and 

maximal cliques in the association graph. 

3.3 Algorithm to compute a consistent multiple 

isomorphism using the dominant set framework 

The algorithm we propose to compute a suboptimal solution for the 

common labeling problem is on the same lines as the one proposed to 

compute the graph edit distance between two graphs. Thus, the algorithm 

sets a static   and computes several suboptimal solutions using several 

random initialization points either near the barycenter of the simplex or 

uniformly distributed on the simplex. We consider the output of the 

algorithm the best solution found. For self contentment of the chapter we 

include the pseudo-code of the algorithm: 
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Algorithm 3-1: pseudo-code of the dominant set graph edit distance algorithm. 

125 Algorithm dominant set consistent multiple isomorphism     
126              
127      ;            ;         
128 AG=constructAssociationGraph       ((3.4) and (3.5)) 
129 for itr <maxItr 
130                            

131         
 

       
    
   

       

132  x=InImDymAlg(         ) 
133       = extractBijections(x) ((3.2) or (3.3)) 
134                   
135  if                                 
136              ;             
137  end 
138            
139 end 
140 Returns       
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Chapter 6 

EVALUATION AND APPLICATIONS OF THE 

COMMON LABELING 
 

 
 

1. DATASETS DESCRIPTION 

In this section, we will review the datasets used in the evaluation of the 

algorithms presented in chapters 4 and 5. 

1.1 Letter dataset 

The first dataset, called Letter, was created at the University of Bern 

(Riesen and Bunke 2008). The dataset considers the fifteen capital letters of 

the Roman alphabet that are composed of straight lines, i.e. A, E, F, H, I, K, 

L, M, N, T, V, W, X, Y, X. The dataset contains three subsets with different 

distortion levels: low, med, high. In all tests only the high distortion subset 

was considered. For each subset and a particular letter, 150 examples are 

given.  

The letters are converted into graphs by assigning straight lines to edges 

and terminal points of the lines to nodes. Nodes are attributed with a two-

dimensional attribute that represents the Euclidean position       of the 

terminal point in the plane. Figure 1-1 shows one example of letters A, E, H 

and M for the high distortion subset. Table 1-1 shows the basic statistics for 

the Letter dataset. The main characteristic of this dataset is the high 

distortion among elements of the same class.  
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Property Value 

Number of classes 15 

Elements per class 150 

Maximum number of nodes 9 

Minimum number of nodes 2 

Mean number of nodes 4.6 

Maximum number of edges 18 

Minimum number of edges 0 

Mean number of edges 9 

Table 1-1:  characteristics of the Letter dataset. 

1.2 GREC dataset 

The GREC dataset, created at the Universitat Autònoma de Barcelona 

(Riesen and Bunke 2008), is composed of 22 classes and 50 noisy graphs per 

class. Graphs represent symbols from architectural and electronic drawings. 

Each symbol is modeled using straight lines and, equivalently to the Letter 

dataset, images are converted into graphs by assigning a node to each 

junction or terminal point and an edge to each line. Nodes are attributed with 

the Euclidean position in the two-dimensional space corresponding to the 

location of the terminal point. Edges do not contain attributes. Several 

example images of this dataset are shown in Figure 1-2. In addition, graph 

representations of classes 11, 12 and 13 are shown in Figure 1-3. Table 1-2 

summarizes the dataset characteristics. 

 

Figure 1-2: example images from where GREC dataset is extracted. 

Figure 1-1: example of Letter dataset, letters A, E, H and M. 
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Property Value 

Number of classes 22 

Elements per class 50 

Maximum number of nodes 24 

Minimum number of nodes 4 

Mean number of nodes 11 

Maximum number of edges 58 

Minimum number of edges 4 

Mean number of edges 23 

Table 1-2: characteristics of the GREC dataset. 

1.3 Synthetic dataset 

The third dataset, we used, is created synthetically, this allows us to 

experiment with different and controlled noise levels and fixed number of 

nodes per graph. Each class was created as follows. We randomly generate a 

base graph of   nodes with two-dimensional random attributes in the range 

 v=[0..100, 0..100]. Edges are defined by the Delaunay triangulation. Then, 

with this base graph, we created   other graphs by: 1) generating Gaussian 

noise at every node with standard deviation        , 2) removing   
      percent of nodes randomly, 3) inserting         percent of 

nodes (with random attributes) and 4) changing the state of         

percent of edges.  Figure 1-4 shows, in diagram form, how to create each 

synthetic class. In addition, Figure 1-5 and Figure 1-6 show two synthetic 

classes. The first column of each example represents the base graph and the 

other columns represent three synthetically created graphs computed using 

this first base graph. Figure 1-5 was created using     ,    ,       

and        , Figure 1-6 using     ,    ,       and        . 

1.4 COIL 

The COIL-100 database (Riesen and Bunke 2008) consists of images of 

100 different objects (100 classes). Images of the objects are taken at 

Figure 1-3: examples of GREC dataset. Examples of classes 11, 12 and 13. 
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intervals of 5 degrees; therefore, there are 72 images per object. The Harris 

corner (Harris and Stephens 1988) detection algorithm is used to extract 

corner features from the images. Based on these corner points, a Delaunay 

triangulation is applied. The result of the triangulation is then converted into 

a graph by representing lines by undirected edges and ending points of lines 

by nodes. Nodes are labeled with a two-dimensional attribute identifying its 

position. Edges do not have attributes. In the performed tests, we will 

consider images taken at angles 0, 10, 20,... represent the test set and angles 

taken at angles 5, 15, 25,... represent the reference set. Some examples of the 

images of this dataset are shown in Figure 1-7. In addition, Table 1-3 

summarizes the dataset characteristics. 

 

 

 

 

Figure 1-4: synthetic dataset construction procedure. 

Figure 1-5: examples from Synthetic dataset created using       ,      ,         

and        . 
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Property Value 

Number of classes 100 

Elements per class 72 

Maximum number of nodes 15 

Minimum number of nodes 3 

Mean number of nodes 12 

Maximum number of edges 76 

Minimum number of edges 6 

Mean number of edges 54 

Table 1-3: characteristics of the COIL dataset. 

Figure 1-6: examples from Synthetic dataset created using       ,      ,         

and        . 

Figure 1-7: COIL images of 100 different objects. 
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1.5 Fingerprint 

Image fingerprints are converted into graphs by filtering the images, 

extracting regions and obtaining the ridges (Neuhaus and Bunke 2005). 

Ending points and bifurcation points of the ridges are represented by nodes. 

Undirected edges are inserted to link nodes that are directly connected 

through a ridge in the skeleton. Each node is labeled with a two-dimensional 

attribute giving its position. Edges do not have attributes. The original 

fingerprint database is based on the NIST-4 reference database of 

fingerprints (Watson and Wilson 1992). It consists of 2,800 fingerprint 

images totally out of the 4 classes arch (A), left (L), right (R), and whorl (W) 

from the Galton-Henry classification system. Each of the four classes has 

been equally divided into the test set and the reference set. An example of 

each class is given in Figure 1-8. In addition, Table 1-4 summarizes the 

dataset characteristics. In this dataset, elements are not homogeneously 

distributed per classes. Thus, Table 1-4 presents the number of elements per 

class. 

 

 

 

Property Value 

Number of classes 4 

Elements per class        ,        ,        ,         

Maximum number of nodes 26 

Minimum number of nodes 2 

Mean number of nodes 6 

Maximum number of edges 44 

Minimum number of edges 1 

Mean number of edges 7 

Table 1-4: characteristics of the fingerprint dataset. 

1.6 Shapes 99 

This dataset (Sebastian, Klein et al. 2004) contains shapes of objects and 

animals. The dataset contains 99 shapes uniformly distributed in 9 classes 

consisting of 11 shapes each. Shapes of both datasets are represented using 

shock graphs (Siddiqi, Shokoufandeh et al. 1999). Shock graphs are 

Figure 1-8: Fingerprint examples, one per class. 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPLE GRAPH MATCHING AND APPLICATIONS 
Albert Sole Ribalta 
Dipòsit Legal: T.1211-2012 
  
  
 



6. EVALUATION AND APPLICATIONS OF THE COMMON 

LABELING 

125 

 
constructed as section 2.5 of (Macrini 2003) shows. Each node of the shock 

graph is attributed with information regarding the node type and the length 

of the segment it represents. Edges connect nodes considering the shock 

graph hierarchy. The dataset if fully represented in Figure 1-9. Statistics on 

the number of nodes and edges are shown in Table 1-5. 

1.7 Shapes 216 

This dataset (Sebastian, Klein et al. 2004) contains shapes of objects and 

animals. The dataset contains 216 shapes uniformly distributed in 18 classes 

consisting of 12 shapes each. Shapes of both datasets are represented using 

shock graphs (Siddiqi, Shokoufandeh et al. 1999). Shock graphs are 

constructed as section 2.5 in  (Macrini 2003) shows. Each node of the shock 

graph is attributed with information regarding the node type and the length 

of the segment it represents. Edges connect nodes considering the shock 

graph hierarchy. The dataset if fully represented in Figure 1-10. Statistics on 

the number of nodes and edges are shown in Table 1-6. 

 

 

 

Property Value 

Number of classes 9 

Elements per class 11 

Maximum number of nodes 22 

Minimum number of nodes 2 

Mean number of nodes 11 

Maximum number of edges 46 

Minimum number of edges 2 

Mean number of edges 22 

Table 1-5: characteristics of the Shapes 99 dataset. 

Figure 1-9: Shapes 99 dataset. 
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1.8 Feature Space Dataset  

This dataset10 is addressed to evaluate methods which aim to register a set 

of images. For each class the dataset contains a set of sequentially 

transformed images, including rotations, zoom and shear. We used three 

images sequences extracted from the Image Matching: Planar Scenes 

section. These image datasets are New York, Van Gogh and Asterix. The 

first dataset contains 35 images of the New York city. Figure 1-11  shows 4 

sequential images of that dataset. The second dataset contains 17 images 

from a Van Gogh painting. Figure 1-12 shows a set of 4 sequential images of 

that dataset. The last dataset contains 17 images of drawings. Figure 1-13 

shows a set of 4 sequential images of this last dataset. 

 

 

 

 
10 http://www.featurespace.org/ 

Figure 1-10: Shapes 216 dataset. 
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Property Value 

Number of classes 18 

Elements per class 12 

Maximum number of nodes 39 

Minimum number of nodes 2 

Mean number of nodes 9 

Maximum number of edges 90 

Minimum number of edges 2 

Mean number of edges 18 

Table 1-6: characteristics of the Shapes 216 dataset. 

 

    
Figure 1-11: sequence of images from New York dataset. 

 

    
Figure 1-12: sequence of images from Van Gogh dataset. 

 

    
Figure 1-13: sequence of images from Asterix dataset. 

 

Images are modeled using a set of salient points. Salient points from each 

image have been extracted using the Harris operator (Harris and Stephens 

1988). We thresholded each image to contain around 50 salient points. 
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2. EVALUATION OF THE EDIT DISTANCE WITH 

DOMINANT SETS 

To evaluate the method presented in chapter 4, addressed to compute the 

graph edit distance between two graphs, we compare the performance of the 

Dominant Set algorithms (DS) with the Graduated Assignment (GA) 

algorithm (Gold and Rangarajan 1996) and the Bipartite Graph Matching 

(BP) in (Riesen, Neuhaus et al. 2007). The dominant set algorithm builds the 

regularized association graph    and then run the InImDym dynamics (Bulo' 

and Bomze 2011) with     different initializations. After a training phase on 

a subset of the data, we set       and       because these values 

empirically gave high probability of returning a dominant set supporting a 

full bijection between both graphs.  

Since we wanted to evaluate the algorithms in different settings of the 

graph edit distance we do not, a priori, fix values for    (the vertex 

insertion/deletion cost) and    (the edge insertion/deletion cost); instead, we 

report the performance for several values. 

We evaluate the competing algorithms over three datasets, previously 

presented in section 1: the GREC dataset, the Shapes 99 dataset and the 

Shapes 216. We present two different results. First results evaluate the cost 

value of the graph edit distance. The second ones relate the improvement 

that the new method achieves on a clustering application with the 

improvement on the graph edit distance computation. For the first 

experiment, we evaluate the expected matching error per assignation given 

two graphs. Considering two different bijections which have been computed 

using the same pair of graphs, the lower the error we get, the better is the 

bijection. To give a relative value, results are normalized by the number of 

assignations. The values presented are computed as follows:  

 
             

          
 (2.1) 

where   corresponds to the bijection returned by any of the compared 

algorithms.  

For each of the three datasets, two values are presented. The first value 

corresponds to the expected error per intra-class assignations, and the second 

value to the expected error per inter-class assignations. For the intra-class 

distance evaluation, we performed 4840 tests for the GREC dataset, 1089 for 

the shapes 99 and 2592 for the Shapes 216. For the inter-class, we performed 

43596 tests with the GREC dataset, 8712 with the Shapes 99 dataset and 

44064 with the shapes 216 dataset. We evaluate performance of the 

algorithms at points                   ,                 , 
                 and                  for the GREC dataset and at 

points                 ,                ,                 and 
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                 for the Shape datasets. Results are shown in Table 2-1. 

Each cell of the table represents the mean expected error per assignation of 

all the tests. Lower values of each individual experiment are highlighted. We 

see that the algorithm presented in chapter 4 improves in all performed tests. 

In addition, to the evaluation of the graph edit distance value, we 

evaluated the improvement on clustering a set of attributed graphs. We 

expect that achieving a better approximation of the graph edit distance leads 

to a better classification. For this experiment, we cluster    randomly 

chosen graphs per each class of the GREC Dataset (220 graphs), and all the 

graphs that compose the shapes datasets (99 and 216). To cluster the graphs, 

we used the dominant set peeling algorithm of (Pavan and Pelillo 2007). For 

each pair-wise distance matrix   computed with each of the algorithms we 

build a similarity matrix                . The vertex with higher 

dominant set weight is chosen as the representer of the cluster. Table 2-2 

presents the best results obtained for each individual algorithm. Different 

algorithm maximize results at different         points, these points 

correspond to: 

 
                                  

                                 

                                 
 

 

Columns labeled with Val contain intra-class sum of distances of each 

cluster. Columns labeled with Err indicate percentage of errors in clustering. 

We consider an error every element in the cluster which its class do not 

correspond to the class of the chosen representer. Results show significant 

improvement at all, except two, points on the sum of distances and best 

results on classification match those of the best one among (GA,BP). 

 

 
                                      

  Intra Inter Intra Inter Intra Inter Intra inter 

GREC DS 18.9 42.3 21.2 72.9 22.4 80.8 23.6 105.3 

GA 20.1 44.9 21.4 75.6 22.5 83.4 23.8 107.8 

BP 20.6 46.0 22.7 76.1 27.1 98.6 28.3 120.5 

Shapes 99 DS 3.31 5.58 4.36 8.37 5.35 10.0 6.30 12.5 

GA 3.37 5.76 4.39 8.44 5.43 10.1 6.41 12.7 

BP 4.50 6.77 5.58 9.59 9.49 14.4 10.5 16.9 

Shapes 216 DS 3.74 5.81 4.99 8.70 6.21 10.44 7.32 12.98 

GA 3.90 6.13 5.06 8.90 6.39 10.73 7.46 13.24 

BP 4.83 6.91 6.09 9.84 9.74 14.07 10.86 16.62 

Table 2-1: Graph edit distance results using inter and intra class comparisons. 
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  Val Err Val Err Val Err 

GREC DS 56684 0.09 56684 0.09 56684 0.09 

GA 58597 0.09 58597 0.09 58597 0.09 

BP 70908 0.1 70908 0.1 70908 0.1 

Shapes 99 DS 5499 0.24 5499 0.24 6402 0.36 

GA 6607 0.27 6607 0.27 6231 0.38 

BP 9884 0.32 9884 0.32 6541 0.30 

Shapes 216 DS 18429 0.44 13291 0.50 17150 0.59 

GA 20292 0.52 12689 0.47 17740 0.52 

BP 27595 0.50 14899 0.55 22573 0.44 

Table 2-2: results of clustering. 

3. EVALUATION OF THE COMMON LABELING 

ALGORITHMS 

To evaluate the common labeling algorithms, we present several tests. 

Each test corresponds to the evaluation of a type of methods presented in 

chapter 5: methods to compute the common labeling though a consistent 

multiple isomorphism and methods that compute the common labeling 

directly. Eventually, the best method is compared with the dominant set 

methodology. 

3.1 Evaluation of algorithms that compute a consistent 

multiple isomorphism 

In this section, we present evaluation of the algorithms that compute the 

common labeling by computing a multiple isomorphism or that compute the 

consistent multiple isomorphism directly. To this aim, we evaluate the 

algorithms presented in section 1.1.1, 1.1.2, 2.2.1 of chapter 5. We compare 

its performance with the Average Alignment Common Labeling method 

(presented in section 2.2 of chapter 5) that directly computes the common 

labeling and with the method presented by Bonev. in (Bonev, Escolano et al. 

2007; Lozano 2008). 

All these algorithms share in common that they keep or obtain all pair-

wise matching. This fact makes some of those algorithms to have high 

computational cost; we refer to P-Dim GA and Agglomerative GA or to 

obtain worst results than methods that compute directly a common labeling. 

A summary of the algorithms that will be evaluated is given in Table 3-1. 

The Graduated Assignment has been the graph matching algorithm,  , used 

in method 2.2. 

The ground truth used in this section is the multiple isomorphism (MI) 

computed using (Gold and Rangarajan 1996). This MI is obtained by 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPLE GRAPH MATCHING AND APPLICATIONS 
Albert Sole Ribalta 
Dipòsit Legal: T.1211-2012 
  
  
 



6. EVALUATION AND APPLICATIONS OF THE COMMON 

LABELING 

131 

 

applying         times the graph-matching algorithm. Unquestionably, 

in most of the cases, the result is a non-consistent MI and so a final CL 

cannot be obtained. The aim of using this solution as a ground truth is 

twofold. First, we know the initial Consistency Index ( (2.4) in chapter 2 ), 

which can be used as an indicator of the effort that the algorithms have to do 

to get a consistent MI. Second, we can deduce the increase of cost of 

imposing the MI to be a CMI. 

 
Algorithm CC Main features 

(Bonev, Escolano et al. 2007)          

 Single pair-wise error could 

derive to bad global result. 

 Global knowledge is only 

considered at the end of the 

process. 

P-Dim GA          
 Cost make unfeasible its use 

when N > 3 & R>15. 

Agglomerative GA        
 Cost make unfeasible its use 

when N > 3 & R>15. 

Least squares method          

 Rely completely on previous 

computed pair-wise labelings, 

which could derive in global bad 

result 

 Global knowledge is only 

considered at the end of the 

process. 

Average Alignment          

 Convergence is not 

mathematically guaranteed, 

however all tested examples have 

converged. 

Table 3-1: Comparison of the algorithms evaluated in this section. 

 

 The selected methods have been evaluated using three datasets: the Letter, 

the GREC and the Synthetic. Those datasets are described in section 1. To 

compare the algorithms, the cost of the returned consistent multiple 

isomorphisms was considered. See Definition 2-5 of chapter 2. The specific 

distance function of the cost computation,       
   

 , was evaluated as the graph 

edit distance cost of assigning edge    
 

 to edge     
 

. That is: 

       
   

      
         

           
    (3.1) 

and for the case of the P-Dim GA algorithm: 

         
     

       
   

       
   

       
   

 (3.2) 

like (1.8) of chapter 5 shows. Where, 
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(3.3) 

The specific parameters of    and    are shown in Table 3-2. These costs 

will also be used in section 3.2. 

We present two experiments. The first addressed to compare the P-Dim 

GA and Agglomerative GA. Results of the tests are presented in Table 3-3, 

Table 3-4, Table 3-5, Table 3-6 and Table 3-7. The two first rows of each 

table show the mean cost (mean values of equation (2.1) of chapter 2) and 

the mean Consistency Index (mean values of equation (2.4) of chapter 2) for 

the ground truth algorithm. The rest of rows show the mean cost (mean 

values of equation (2.7) of chapter 2) obtained using the evaluated 

algorithms. The Consistency index for the CL algorithms is not shown due 

to is always 1 since all algorithms obtain a CMI. To present a summarized 

version of the tests we grouped the results in three different ways. The first, 

groups the data by number of graphs per test. In this way (referring to Table 

3-3, Table 3-4 and Table 3-5), cell [P-Dim GA, P=3] of Table 3-3 represents 

the mean of: 12 random experiments for class ‘A’, 12 random experiments 

for class ‘E’,…, and 12 random experiments for class ‘Z’; the cell [P-Dim 

GA, N=3] of Table 3-4 represents the mean of: 12 random experiments for 

class ‘1’, 12 random experiments for class ‘2’,…, and 12 random 

experiments for class ‘22’. An empty cell means that the test could not be 

performed due to the computational cost of the algorithms. The second way 

(referring to Table 3-6) presents the data grouped by noise levels instead of 

by size of  . In this way, each cell represents the mean of 5 experiments 

with different sizes of   ( ) and different sizes of graph ( ) with a concrete 

noise level. Finally, the third way (Table 3-7) presents the results grouped by 

number of nodes per graph. The second and third way is only applied to the 

synthetic tests due to with the other datasets the grouping constant is 

unknown or variable. 

 
Dataset         

Letter 1 1 

GREC 80 20 

Synthetic 80 20 

Table 3-2: constant values for the graph edit distance. 
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Letter Elements per test 

Ground Truth P=3 P=5 P=7 P=10 P=15 P=20 

Cost 34.2 111.5 233.4 501.0 1175.8 2119.1 

Consistency Index 0.88 0.90 0.91 0.89 0.90 0.89 

Common Labeling 

P-Dim GA 34.6 - - - - - 

Agglomerative GA 34.8 - - - - - 

Average Align. 35.3 112.5 235.9 507.2 1187.9 2138.8 

(Bonev, Escolano et 

al. 2007) 
35.0 114.6 241.9 537.2 1297.4 2426.4 

Table 3-3: results using the Letter Dataset. 

 

 

 
GREC Elements per test 

Ground Truth P=3 P=5 P=7 P=10 P=15 P=20 

Cost 4120.4 13454.7 28574.0 62322.5 143324.6 260500.4 

Consistency Index 0.82 0.83 0.82 0.82 0.83 0.83 

Common Labeling 

P-Dim GA 4180.3 - - - - - 

Agglomerative GA 4202.4 - - - - - 

Average Align. 4340.0 14163.3 30497.6 66745.3 154700.5 282687.6 

(Bonev, Escolano et 

al. 2007) 
4216.1 14173.9 30699.1 67383.4 157939.8 291606.3 

Table 3-4: results using the GREC Dataset. 

 

 

 
Synthetic Elements per test 

Ground Truth P=3 P=5 P=7 P=10 P=15 P=20 

Cost 22290.6 74148.0 155692.0 333676.8 777485.5 1408808.8 

Consistency 

Index 
0.62 0.62 0.63 0.62 0.62 0.62 

Common Labeling 

Average Align. 24092.2 80987.7 170741.5 367224.3 857036.0 1563486.6 

(Bonev, Escolano 

et al. 2007) 
24339.1 86899.4 190437.3 426117.1 1041782.5 1927068.1 

Table 3-5: Results using the synthetic dataset, grouped by   size. 
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Synthetic Noise level 

Ground Truth                              
Cost 175013.6 330436.7 546550.2 608170.9 649713.4 

Consistency 

Index 
0.92 0.76 0.63 0.48 0.44 

Common Labeling 

Average Align. 202869.3 401299.9 732324.4 826659.0 917383.7 

(Bonev, Escolano 

et al. 2007) 
233356.8 386921.0 594172.2 649715.7 688807.8 

Table 3-6: Results using the synthetic dataset, grouped by Noise Level. 

 

The second experiment evaluates the least squares method. In this 

evaluation we compare the Least Squares methodology to the Average 

Alignment algorithm and the method of Bonev et al. presented in (Bonev, 

Escolano et al. 2007). In this evaluation we also select as   algorithm the 

Graduated Assigment (Gold and Rangarajan 1996). The evaluation of these 

three algorithms has been performed using the Letter and the Synthetic 

dataset (with a single configuration of     ). With the aim of obtaining 

non-biased results, the experiments were performed 10 times in both 

datasets. 

Results are presented in Table 3-8, Table 3-9 and Table 3-10. Table 3-8 

show the results on the Letter dataset, Table 3-9 and Table 3-10 on the 

Synthetic dataset.  

Analyzing the results obtained with the P-Dim GA and the 

Agglomerative GA, we see that the P-Dim GA algorithm obtains the best 

results with     in the Letter and GREC dataset. The performance of the 

P-Dim GA is nearly followed by the Agglomerative GA Assignment 

algorithm which obtains the second lower cost with    . 

Comparing the polynomial time algorithms, the Average alignment 

algorithm obtains better costs than the other methods in all experiments 

except for the case of     in the Letter and GREC (Table 3-3 and Table 

3-4) datasets and on the Synthetic dataset (Table 3-10). 

With respect to the Least Squares method, results improve the method 

presented in (Bonev, Escolano et al. 2007). However, its performance is kept 

below the Average alignment algorithm. It is important to notice that the 

Average alignment algorithm do not only rely on static pair-wise matching 

but also on the global knowledge of the set. It is important to see that under 

low noise (such as      ), where no random node insertion and deletions 

are produced, all algorithms obtain the same results, see Table 3-9. This is an 

important fact since we can conclude that the algorithm’s performance is 

closely related to outliers. 
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Synthetic Number of Nodes 

Ground 

Truth 
N=5 N=10 N=15 N=20 N=25 N=30 

Cost 14661.5 51122.6 100589.1 181956.1 271304.5 386531.1 

Consistency 

Index 
0.78 0.69 0.67 0.61 0.61 0.60 

Common Labeling 

Average 

Align. 
15886.0 55112.1 106980.1 196417.7 297808.7 429228.6 

(Bonev, 

Escolano et 

al. 2007) 

24643.4 80792.1 150082.4 262657.7 376148.0 528333.2 

cont ... 

Ground 

Truth 
N=40 N=50 N=60 

Cost 675889.4 982758.1 14933399 

Consistency 

Index 
0.57 0.57 0.54 

Common Labeling 

Average 

Align. 
759009.1 1096150.2 1638759.6 

(Bonev, 

Escolano et 

al. 2007) 

888340.0 1322784.7 1911183.7 

Table 3-7: Results using the Synthetic Dataset, grouped by number of nodes per graph. 

 

 

 

 

 
Letter Elements per test 

Ground Truth P=3 P=5 P=7 P=9 P=10 

Cost 19.42 66.14 137.59 236.51 295.40 

Common Labeling 

Least Squares 19.97 66.58 139.17 240.27 298.75 

Average Align. 19.95 65.73 138.43 237.51 296.17 

(Bonev, Escolano et 

al. 2007) 
19.74 67.15 141.04 241.91 306.91 

Table 3-8: results using the Letter Dataset. 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPLE GRAPH MATCHING AND APPLICATIONS 
Albert Sole Ribalta 
Dipòsit Legal: T.1211-2012 
  
  
 



136 Chapter 6 

 

 

 
Synthetic Noise Level 

Ground 

Truth 
                                    

Cost 2280.7 7891.7 11912.9 12568.4 13764.2 13972.7 

Common Labeling 

Least 

Squares 
2280.7 8694.8 12912.6 13382.5 14886.4 15056.0 

Average 

Align. 
2280.7 8298.6 12533.2 13108.1 14612.3 14777.8 

(Bonev, 

Escolano 

et al. 

2007) 

2280.7 11066.0 17535.6 18153.1 20629.1 21347.6 

Table 3-9: Results using the synthetic dataset, grouped by Noise Level. 

 
Synthetic Elements per test 

Ground Truth P=3 P=5 P=7 P=9 P=10 

Cost 1333.0 4518.7 9470.2 16282.1 20388.2 

Common Labeling 

Least Squares 1400.4 4838.3 10200.4 17608.9 21962.9 

Average Align. 1442.7 4716.4 9899.1 17118.5 21498.9 

(Bonev, Escolano et 

al. 2007) 
1534.0 6081.7 13474.8 23641.5 31111.47 

Table 3-10: Results using the synthetic dataset, grouped by   size. 

 

The Consistency Index values in Table 3-3, Table 3-4 Table 3-5 and 

Table 3-7 seem to be stable with different values of   and  ; however, in 

Table 3-6 quickly decreases when noise becomes higher. We could conclude 

that the effort that the algorithms must do to compute a CMI/CL does not 

depend neither on the size of Γ nor on the number of nodes per graph but 

highly depends on the noise of the dataset. 

3.2 Evaluation of algorithms that compute directly a 

common labeling 

In this evaluation, we compare the performance of the algorithms that 

explicitly compute the common labeling. To this aim, we evaluated the 

Common Labeling Graduated Assignment against the method in (Bonev, 

Escolano et al. 2007). We do not consider the Average Alignment algorithm 

because the Common Labeling Graduated Assignment algorithm  (using 

algorithm 2-4 to compute each  ) is equivalent to the Average Alignment 

algorithm but without any numerical trick (see section 2.2.2). 

In each experiment, we compute the pair-wise cost of the resulting 

common labeling,          (equation (2.1) of chapter 2). Moreover, we 

compute          through the Graduated Assignment (Gold and 
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Rangarajan 1996) and also the Consistency Index ((2.4) of chapter 2 ) of the 

related multiple isomorphism. We compute          because it is a lower 

bound of          due to inequality (2.9) of chapter 2. Furthermore, the 

Consistency Index shows how good the lower bound is. With high 

Consistency, the          usually is close to         . In some specific 

cases which are not reflected in the results presented here, we obtain 

                 . This is because the algorithms used are sub-optimal 

and the presented algorithm obtains a better solution than the solution 

obtained by the Graduated Assignment. 

The algorithms are evaluated over three databases: synthetic, Letter and 

GREC. The synthetic one with parameters                 ,   
                 and                        . With the aim of 

obtaining non-biased results, we performed 7 experiments per configuration 

and we averaged the results. Therefore, with the synthetic dataset, we 

performed a number of 7 (rounds) x 6 (N values) x 5 (P values) x 5 (Noise 

Levels) = 1050 experiments. The second dataset was the Letter dataset. 

From each class, we randomly selected                     graphs, to 

generate the common labeling. With this dataset, we performed 12 rounds 

obtaining a number of 15·6·12=1080 experiments. The last dataset used was 

the GREC. For each class and different                    values, we 

performed 12 rounds obtaining a number of 22·6·12=1584 experiments.  

Table 3-11, Table 3-12 and Table 3-13 show the cost and the Consistency 

Index values obtained using the synthetic dataset.  

In Figure 3-1 and associated Table 3-11, values are shown depending on 

the number of graphs in  . That is, the experiments done with different 

number of nodes and different levels of noise have been averaged.     

computed by (Bonev, Escolano et al. 2007) clearly increase with a greater 

rate than the Common Labeling Graduated Assignment. This last algorithm 

seems to be very close to the ground truth used. For those experiments the 

related Consistency Index is kept almost constant.  

In Figure 3-2 and Table 3-12, results have been grouped by number of 

nodes. We see that when the number of nodes increases results show that the 

proposed algorithm also improves. The Consistency Index seems to be 

stable.  

Finally, in Figure 3-3 and Table 3-13, results have been grouped by the 

level of noise. In these results, there is a clear increase in the cost and 

decrease of the Consistency Index. As a conclusion for the experiments 

using the Synthetic dataset, the presented method obtains lower cost than the 

method presented in (Bonev, Escolano et al. 2007) and moreover quite close 

to the    . It is worth emphasising that the computational cost of the 

Graduated Assignment Common Labeling and (Bonev, Escolano et al. 2007) 

are similar. 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPLE GRAPH MATCHING AND APPLICATIONS 
Albert Sole Ribalta 
Dipòsit Legal: T.1211-2012 
  
  
 



138 Chapter 6 

 

 

 

 

 
Figure 3-1: results on synthetic dataset grouped by Γ size. 

 
 

 

 

 
Synthetic Elements per test 

Ground Truth P=3 P=5 P=7 P=10 P=15 P=20 

Cost 1860.8 5958.6 12020.6 27773.9 59465.1 92165.0 

Consistency 

Index 
0.71 0.74 0.76 0.74 0.74 0.77 

Common Labeling 

CL Grad. Ass.  1949.9 6479.1 13136.2 30824.1 66512.2 102151.9 

(Bonev, 

Escolano et al. 

2007) 

2563.4 10704.9 24438.9 65694.7 155269.3 252599.1 

Table 3-11: results on synthetic dataset grouped by Γ size. 
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Figure 3-2: results on synthetic dataset grouped by number of nodes per graph. 

 

 

 

 

 
Synthetic Number of nodes in the graphs 

Ground Truth N=5 N=7 N=10 N=15 N=20 

Cost 15144.8 20636.7 35958.6 45933.1 40500.2 

Consistency 

Index 
0.79 0.80 0.72 0.71 0.65 

Common Labeling 

CL Grad. Ass.  16548.9 22542.5 40142.0 51024.3 45283.8 

(Bonev, 

Escolano et al. 

2007) 

34744.1 45231.4 91210.9 123037.4 111313.5 

Table 3-12: results on synthetic dataset grouped by number of nodes per graph. 
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Figure 3-3: results on synthetic dataset grouped by noise level. 

 

 
Synthetic Elements per test 

Ground Truth                                

Cost 7933.5 18735.0 41090.1 41856.8 46204.1 

Consistency 

Index 
0.98 0.90 0.67 0.63 0.53 

Common Labeling 

CL Grad. Ass.  8322.1 20560.48 45847.6 46707.8 51424.4 

(Bonev, 

Escolano et al. 

2007) 

10214.7 34907.2 107474.1 110535.34 134925.1 

Table 3-13: results on synthetic dataset grouped by noise level. 

 

Figure 3-4, Figure 3-5, Table 3-14 and Figure 3-6, Figure 3-7, Table 3-15 

show the results of the GREC and Letter datasets grouped by class number 

and by number of graphs per test. In all the cases, the presented algorithm 

obtains lower     than the algorithm in (Bonev, Escolano et al. 2007). 
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Figure 3-4: results on GREC dataset grouped by class element. 

 

 
 

 

 
Figure 3-5: results on GREC dataset grouped by Γ size. 
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GREC Elements per test 

Ground Truth P=3 P=5 P=7 P=10 P=15 P=20 

Cost 6367.2 19832.0 41766.7 91447.13 199966.6 352319.8 

Consistency 

Index 
0.76 0.77 0.77 0.77 0.77 0.78 

Common Labeling 

CL Grad. Ass.  6881.4 22546.0 48692.6 106480.1 241120.1 430309.5 

(Bonev, 

Escolano et al. 

2007) 

7986.9 33134.7 79075.0 206428.7 482576.5 879728.5 

Table 3-14: results on GREC dataset grouped by Γ size. 

 

 

Figure 3-6: results on Letter dataset grouped by class element. 

 

The increase of the difference between (Bonev, Escolano et al. 2007) 

algorithm and the ground truth is due to the presented costs in section 3.1 are 

normalized by the number of nodes that contain the final consistent multiple 

isomorphism of each independent solution. In this way, the method of 

(Bonev, Escolano et al. 2007), since has tendency to add extra null nodes, its 

normalization constant tends to be higher and therefore the final cost lower. 

In the experiments of section 3.2, the normalization constant is the same for 

all algorithms. This constant is set to the maximum cardinality of any graph 

in the set  . 
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Figure 3-7: results on Letter dataset grouped by Γ size. 

 
Letter Elements per test 

Ground 

Truth 
P=3 P=5 P=7 P=10 P=15 P=20 

Cost 38,71196 124,0034 263,6053 569,478 1318,964 2397,597 

Consistency 

Index 
0,85 0,86 0,88 0,86 0,87 0,86 

Common Labeling 

CL Grad. 

Ass. 
39,0907 125,7602 268,2897 580,9397 1352,212 2453,062 

(Bonev, 

Escolano et 

al. 2007) 

38,90543 127,6072 276,0038 609,2057 1419,612 2744,525 

Table 3-15: results on Letter dataset grouped by Γ size. 

3.3 Evaluation of the Common Labeling Dominant Sets 

This section presents preliminary evaluation of the Common Labeling 

Dominant Set algorithm (the dominant set was computed with the same 

configuration as section 2). We evaluate two different aspects; the first 

corresponds to the efficiency on minimizing the common labeling cost and 

the second evaluates the efficiency on computing the Generalized Median 

Graph. Intuitively, the improvement of the pair-wise distance should be 

related to the performance of the Median graph that will be constructed. The 

Median graph is computed as section 3 of chapter 2 shows, with the special 

characteristics that if a node does not increase the 0.5 probability of 

appearing it is not included in the median graph. 
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As a difference between this and the other tests in the above sections the 

cost computation between node attributes is computed as: 

     

   
  

      
 
       

 
  

 
  

 
   

 
    

 
     

 
   

 
    

 

    
 

   
 

    
 
     

 
    

 

    
 

    
 
     

 
   

 
    

 

  (3.4) 

The evaluation is done with two datasets; one corresponds to the Letter 

dataset and the second one to the Synthetic dataset (with neither node 

removal nor insertion).  

Table 3-16 and Table 3-18 present the results of the common labeling 

cost. Each cell of the tables represents the mean value obtained with 12 

experiments. In each experiment,   graphs were chosen randomly and its 

common labeling was computed. Table 3-17 and Table 3-19  show the 

results for the second experiment. Each Generalized Median Graph was 

constructed using the common labeling obtained in the first experiment, so 

each cell represents the mean sum of distance to the constructed Generalized 

Median Graph of 12 experiments. Best values of each experiment are 

highlighted.  

 
Letter Dataset 

Common Labeling 

Cost 

Elements per test 

Algorithm P=3 P=5 P=7 P=9 P=11 

Dominant Set 

Common Labeling 
77.1 343.1 814.4 1544.3 2492.1 

Common Labeling 

Graduated 

Assignment 

94.2 383.9 884.2 1595.0 2506.4 

(Bonev, Escolano et 

al. 2007) 
116.7 480.9 1117.9 1930.9 3125.5 

Table 3-16: sum of pair-wise distances evaluation on the Letter dataset 

 

 

 
Letter Dataset 

SUM OF 

DISTANCES TO 

MEDIAN 

Elements per test 

Algorithm P=3 P=5 P=7 P=9 P=11 

Dominant Set 

Common Labeling 
31.2 65.4 102.2 142.9 182.9 

Common Labeling 

Graduated 

Assignment 

38.1 72.5 111.3 147.3 184.5 

(Bonev, Escolano et 

al. 2007) 
45.9 88.9 136.6 172.7 221.0 

Table 3-17: sum of distances to median on the Letter dataset. 
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Synthetic Dataset 

Common Labeling Cost 
Noise Level 

Algorithm       30    0   50 

Dominant Set 

Common Labeling 

P=3 3048.5 3536.7 3503.3 

P=5 16444.1 15915.4 15730.9 

P=7 35196.6 39111.7 37784.4 

P=9 64860.0 73279.2 70345.9 

P=11 104717.9 116287.8 111590.4 

Common Labeling 

Graduated 

Assignment 

P=3 3340.5 3907.0 3906.5 

P=5 16369.8 16336.9 15588.5 

P=7 31965.6 36943.0 35756.8 

P=9 58085.7 67472.9 65958.0 

P=11 93432.9 106847.3 100534.0 

(Bonev, Escolano et 

al. 2007) 

P=3 6180.1 6308.0 6496.1 

P=5 23399.4 23379.3 26514.8 

P=7 59411.8 56101.1 59845.8 

P=9 108333.4 94407.6 100613.3 

P=11 167143.1 143993.8 171575.2 

Table 3-18: sum of pair-wise distances evaluation on the synthetic dataset. 

 

 

 
Synthetic Dataset 

SUM OF DISTANCES TO 

MEDIAN 

Noise Level 

Algorithm       30    0   50 

Dominant Set 

Common Labeling 

P=3 1257.7 1417.2 1402.4 

P=5 3181.3 3162.8 3027.9 

P=7 4559.8 5035.6 4798.1 

P=9 6216.5 7074.8 6703.3 

P=11 7962.7 8962.2 8576.0 

Common Labeling 

Graduated 

Assignment  

P=3 1350.6 1550.4 1572.9 

P=5 3171.7 3136.2 2951.8 

P=7 3987.5 4518.4 4456.0 

P=9 5399.2 6176.5 6137.2 

P=11 6869.8 7849.6 7463.0 

(Bonev, Escolano et 

al. 2007) 

P=3 2490.0 2414.9 2519.9 

P=5 4645.0 4555.5 5139.1 

P=7 7797.6 7304.7 7896.2 

P=9 10500.6 9351.4 9762.1 

P=11 12945.0 11480.5 13178.7 

Table 3-19: sum of distances to median on the synthetic dataset. 
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Analyzing the results, we see that the Common Labeling Dominant Set 

algorithm is able to obtain better results than the Common Labeling 

Graduated Assignment on the Letter dataset. On the synthetic dataset, the 

tendency changes as we increase the number of elements per set. 

Considering the size of the association graph, these results are reasonable 

because of the complexity of the dominant set problem. Results of the 

dominant set are susceptible to improve by either testing more random 

initialization, doing some other less naive initialization or applying some 

heuristics to reduce size of the association graph. 

With respect to the distances to the Generalized Median Graph, we see 

there is a clear relation with the minimization of the pair-wise distances. The 

lower the common labeling cost, the better the median graph that will be 

constructed. 

4. EVALUATION OF GRAPH PROTOTYPE 

CONSTRUCTED USING A COMMON LABELING 

4.1 Evaluation of the computation of the generalized 

median graph with a common labeling 

Assuming that computing the common labeling of set of graph we 

minimize the distance to the Generalized Median Graph, in the following 

tests we evaluate the Common Labeling Graduated Assignment approach to 

construct it. In this way, we compare the Common Labeling Graduated 

Assignment approach with two other standard approaches to compute the 

common labeling: the hierarchical construction and the genetic 

construction11 presented in (Bunke, Münger et al. 1999). To have some 

reference point on the results we also compare the results with the set 

median. We consider the set median as a ground truth. 

To evaluate the performance of the median graph obtained with the 

compared methods, we perform similarity queries over a graph database. To 

do so, as explained in section 4.1.4 of chapter 2, we construct an m-tree 

where routing nodes are represented using median graphs. This median 

graph is computed considering the common labeling obtained with the 

evaluated methods. 

The evaluation has been done with three datasets: the Letter, the GREC 

and the Fingerprint. For each dataset an m-tree was constructed taking 100 

random graphs from the corresponding dataset. To evaluate the goodness of 

 

 
11 200 chromosomes of initial population, 50000 generation, crossover set to 0.5 and mutation 

probability to 0.1.  
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the constructed m-trees, 50 range queries considering 7 different ranges 

where executed. Since each datasets may distribute elements along the m-

tree with different distances, the ranges of the queries where normalized 

among the three datasets. The range of the query was computed as      
       where       is the maximum distance between any graph in the 

m-tree and              . For each range, we present the mean of the 50 

queries. 

We split the results in two parts. The first part shows the overlap of the 

m-trees, this overlap is computed as section 4.1.5 of chapter 2 shows. The 

second part shows the performance of the queries. For this second part, we 

analyze the access ratio (that represents the efficiency) and the F-measure 

(that represents the effectiveness). 

Overlap of the m-trees (Table 4-1). The Graduated Assignment and the 

Genetic method compute a Common Labeling of the whole sub-cluster in 

each level of the m-tree. For this reason, when there is a large difference 

between graphs (GREC) it is hard for both global methods to uniquely label 

all nodes to a single characteristic (in this case we consider that the set of 

graph should be represented by a set of prototypes instead of a single one) 

consequently the radius of the m-tree node    increase. For this reason, the 

overlap is higher than the other two methods. The smaller are the graphs 

(Fingerprint), the better the methods that compute a common labeling 

perform. 
 

 Overlap 

 
Set Median 

(Berretti, Bimbo 
et al. 2001) 

Hierarchical M. 
(Serratosa, Solé-

Ribalta et al. 2010) 

Generalized median 
with Common 

Labeling Graduated 
Assignment   

Genetic Median  
(Bunke, 

Münger et al. 
1999) 

COIL-RAG 0,16 0,02 0,04 0,52 

Fingerprint 0,05 0,02 0,00 0,01 

GREC 0,02 0,07 0,20 0,20 

Table 4-1: Overlap of the m-trees using the four methods and the three databases. 

 

Access ratio and F-measure (Table 4-2). Considering that in the three 

experiments we have obtained not correlated results, access ratio seems to be 

very dependent on the dataset. Nevertheless, the F-measure seems to be 

more constant in the three experiments. The median computed with the 

Graduated Assignment Common Labeling obtains the highest F-measure. It 

is important to consider both measures together. When the access ratio is 

higher than 1, it has no sense to use the m-tree since queries perform more 

comparisons than if the database had not structure. In general, when the 

cardinality of the graphs is high, and also their dissimilarity, the methods 

that use a global common labeling tend to have an access ration higher than 

1 due to it is hard for these methods to find a good common labeling 
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between all the graphs. In the cases that the access ratio is almost zero, the 

m-tree decides if the query is accepted or discarded in the root of the m-tree. 

4.2 Evaluation on constructing other graph prototypes 

Considering the clear relation between the common labeling problem and 

the construction of graph prototypes, in this section, we evaluate the 

suitability of the Common Labeling Graduated Assignment algorithm to 

compute several graph prototypes. We compare the obtained results with the 

set median. Equivalently to the evaluation done on section 4.1, result of the 

common labeling are used to compute the graph prototypes. These resulting 

prototypes are used to construct a graph metric-tree. In this section,     

queries are performed. Six prototypes have been used: the set median, the 

generalized median, the closure graph, first order random graphs, function 

described graphs and second order described graphs. All those prototypes 

are described in detail in chapter 2. The Set Median does not use the 

common labeling algorithm, since it does not need it. The other 5 use the 

common labeling algorithm and so the labelings between nodes of the 

involved attributed graphs are exactly the same for the 5 prototypes. This 

fact is important since we want to see the relation between the common 

labeling and every particular graph prototype. The evaluation was performed 

over three datasets: the Letter, the COIL, and the GREC. 

For each dataset an m-tree was constructed taking 100 random graphs 

from the corresponding dataset. To evaluate the goodness of the constructed 

m-trees 50     queries considering           were performed. For each 

 , we present the mean of the 50 queries. Results are shown in Table 4-3. 

With regard to the Generalized Median Graph performance in COIL and 

Letter datasets, we see that the Set Median, without the need of computing 

the common labeling, obtains better results than the Generalized Median. 

We assume that this fact is due to the graphs and classes involved are so 

different that the Generalized Median Graph is forced to over-generalize the 

cluster that represents and consequently tree nodes have large radius. This 

assumption is based on that with the same common labeling other graph 

prototypes are able to achieve better performance than the set median. 

Closure Graphs are very dependent on the data and on the discretization 

process. For this reason, it is usual to have very different performance with 

different datasets in both measures: F-Measure and Access Ratio. 

Finally, results on the three probabilistic prototypes (FORG, FDG and 

SORG) show that the common labeling succeed on providing good enough 

initial labeling to obtain a good representation of the cluster. 
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Table 4-2: Access Ratio and F-measure obtained using the three databases. The horizontal 

axis represents the evaluation of     . 
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Table 4-3: F-Measure and Access Ratio obtained using the three datasets. 

5. ALIGMENT OF SEQUENTIAL IMAGES WITH 

THE COMMON LABELING FRAMEWORK 

Determining sparse correspondences between sets of features is a 

recurrent problem in computer vision. It arises at the early stages of many 

computer vision applications such as 3D scene reconstruction, object 

recognition, pose recovery and image retrieval, among others. The use of 

local image contents may not suffice to get a reliable correspondence 

between points of two images under certain circumstances e.g. large 

rigid/non-rigid deformations. This is the case of the model fitting paradigm 

RANSAC (Fischler and Bolles 1981) which is extensively used in computer 
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vision to reject outliers or the Iterative Closest Point (ICP) method (ZHANG 

1992) that attempt to simultaneously solve the correspondence and the 

alignment problem. The mentioned approaches suffer from two major 

drawbacks. On the one hand, most of these optimization strategies rely on 

reasonable initial guesses in order to find the global optimum. On the other 

hand, if there is too much deformation between both images, their 

underlying geometrical models may fail to accommodate the transformation 

relating them, even under a reasonable initial guess. 

To solve the aforementioned drawbacks and inspired by the article 

(Williams, Wilson et al. 1997) it seems clear that consideration of global 

knowledge (when possible) instead of local pair-wise matchings should 

increase performance on the computation of the individual pair-wise 

matchings. Hence, we face the correspondence problem in a group-wise 

manner. In this way, the flow of information among the pair-wise relations 

of the group has several advantages. It helps to constrain the search of the 

method towards a globally convenient direction. This contributes to avoid 

poor local optima. In addition, it alleviates the limitations inherent to the 

geometrical models. 

In this section, we do not work specifically with graphs but with sets of 

points. However, since the alignment method looks for relational 

information between local points and its neighbors, a sort of alignment 

between relational structures is performed. To solve this problem, the 

Common Labeling Graduated Assignment, proposed in section 2.3 of 

chapter 5, is adapted to consider affine transformations among the element 

of the set.  

Related to the field of group-wise point registration when data is a sparse 

set of points we highlight the following work. In (Fergus, Perona et al. 2007) 

a method to learn objects and detect parts of objects is presented. The model 

is learned taking images that represent the selected object from the same 

point of view and without background. The method does not explicitly 

address the problem presented here since its aim is to construct a model for 

object recognition. Another related work is presented in (Wang, Vemuri et 

al. 2008), which performs alignment of sparse data points taking into 

account that points contain non-rigid deformation. The most similar method 

to the one presented here could be (Cootes, Twining et al. 2010). It is based 

on group-wise point set correspondence but it has no consideration about 

outlier detection, which makes its applicability not feasible with the 

particular problem it is presented here. This last work was evaluated using 

two hand-made labeled data sets.  
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5.1 Particularization of the definitions of multiple 

isomorphism and common labeling of a set of points 

We start by particularizing the matching problem between sets of points 

instead of between graphs. In this way, several definitions given in chapter 2 

are overwritten. Let        
 
    

 
       

 
   be a set of points with    

elements. In our method, these types of sets represent images and their 

elements are salient points extracted from them. Equivalently to the original 

definition, we represent the set of images by the set               . 
Each    in   is the characterisation of an image. Following this notation, the 

correspondences between salient points of a set of images are characterized 

by the labelings between the elements of the sets     in  . Note that outlier 

points in images are also represented as elements in   . These outlier points 

in the images do not correspond to other points on the other images and so 

the corresponding elements in the sets have not to be labeled from or to these 

elements. 

Definition 5-1 (labeling between two sets of points). Given two sets of 

points        
 
    

 
        

 
   and        

 
    

 
        

 
   with    and    

elements, a labeling      between these sets assign elements of the first set 

to elements of the second set         
 
     

 
 . Equivalently to the graph 

matching framework described in chapter 2, we represent this labeling as a 

permutation matrix: 

            
         

 
     

 

          
  (5.1) 

Note that some points may remain unlabeled, since the cardinalities of the 

sets are different. 

Definition 5-2 (multiple labeling between sets of points). Let   
             be a set of   sets of points, each with a particular number of 

elements   ,         . The set   is an error tolerant multiple 

isomorphism of Γ if it contains one and only one labeling between any set of 

points,                          .  
The definition of the common labeling can be extended in the same 

fashion. 

5.2 Relation of the common labeling with support 

functions  

Equivalently to the cost of the common labeling on graphs, we define the 

cost of matching a set of points as the sum of individual pair-wise 

matchings. That is, 
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(5.2) 

where               indicates the relaxed version of the common 

labeling bijections as shown in chapter 2. 

We can easily see in (5.2) the influence of matchings     
 

    
 
 over 

   
 

    
 
. This influence is identified as    

  
 in (5.2) and will be described in 

detail in the next section. 

5.3 Pair-Wise Compatibility Coefficients 

Given two sets of points        
 
    

 
        

 
   and 

       
 
    

 
        

 
  , where    

 
     

 
    

 
 

 
 and    

 
     

 
    

 
 

 
 

contain column vectors with the two-dimensional coordinates (horizontal 

and vertical) of each point, in this section we will describe the details of the 

computation of the compatibility coefficients       
   

 appearing in equation 

(5.2).  

This quantity    
  

, also known as the support function, is addressed to 

measure the support for the match    
 

    
 

 received from the rest of the 

matches    
 

    
 
. This is a common strategy followed in the probabilistic 

relaxation approaches (Rosenfeld, Hummel et al. 1976; Hummel and Zucker 

1983). 

The main idea underpinning our computation of the support function is 

that two points    
 

 and    
 
 from two different images   and   are in 

correspondence as long as they show similar spatial distributions in 

comparison to the rest of the points around them. 

Geometric evidence is widely used to solve the correspondence problem. 

In order to be robust to arbitrary initial poses of the point-sets under a certain 

geometric assumption, we need to include the estimation of the alignment 
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parameters into the problem. Thus, we redefine the support function in the 

following way: 

    
  

    
   

                  
   

    
   

  

  

   

  

   

 (5.3) 

where           corresponds to the globally propagated probability to match 

nodes  ,   of graphs  ,   and       
   

    
   

   is the compatibility of the 

simultaneous matches    
 

    
 
 and     

 
    

 
 given the affine parameters 

   
   

. 

Without lose of generality, transformation parameters, in this new 

formulation, attain robustness to affine pose of the point-sets by selecting the 

pose configuration that leads to the maximum support. 

With respect to classical point-set registration methods, our approach has 

the particularities that it is targeted to multiple point-set registration and that 

alignment parameters are local to each correspondence hypothesis   
 

   
 
 

instead of being a property global to all the points in the set. 

Since we compare relational geometric measurements, we define the new 

coordinate vectors     
 

     
 

    
 
  and     

 
     

 
    

 
 , that represent the 

coordinates of the points    
 
 and    

 
 relative to     

 
 and    

 
, respectively. 

We define the compatibility between two relational geometric 

measurements     
 

 and     
 

 under the action of the affine parameters    
   

 as: 

       
   

    
   

         
 

         
 
 

 

 
 (5.4) 

 

where    
   

 is a     non-singular matrix representing affine transformation 

parameters (note that     
 

 and     
 

 are already invariant to translation),     
  is 

the squared Mahalanobis distance with covariance matrix  , and   is a 

thresholding quantity that controls the outlier process. The estimation of 

  parameter will be detailed in the next section. 

According to the proposed measure, the more dissimilar are the relations, 

the lower is their compatibility. The scale of this comparison is effectively 

controlled by matrix    
  

  

   
  , a diagonal matrix of variances which 

may be empirically estimated from the data. With these ingredients, the 

optimal transformation parameters    
    

 that maximize equation (5.3) are: 

    
    

        
  

  
   

                
 

     
   

    
 
 
 
        

 
     

   
    

 
 

  

   

  

   

 (5.5) 
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where    
    

  
      

      
 . We have discarded the constant quantities not 

depending on the alignment parameters in the substitution of (5.4) to (5.3). 

Note that we have turned the maximization into a minimization by reversing 

the sign. Consider the following residuals from the alignment of points     
 

 

and     
 

: 

 

   
    

    
  

        
  

       
  

  

   
    

    
  

        
  

       
  

  

(5.6) 

Then, the objective function of equation (5.5) is equivalent to the following 

expression: 

                
   

    

  
 

 

  
   

    

  
 

 

 

  

   

  

   

 (5.7) 

Taking derivatives of   with respect to    
   

 we obtain the following 

expressions: 

 

  

    
             

   
  

    
    

  
 

  

   

  

   

  

    
             

   
  

    
    

  
 

  

   

  

   

  

    
             

   
  

    
    

  
 

  

   

  

   

  

    
             

   
  

    
    

  
 

  

   

  

   

 (5.8) 

The optimal transformation parameters    
    

 are found by solving the set 

of equations: 

 
  

    
     

  

   
    (5.9) 

with respect to the alignment parameters. This linear system can be 

expressed in matrix form        , where   is a     matrix and    

                 
  and     are 4-column-vectors. This can be solved by 

matrix inversion (i.e.,          ). In some special cases where for all 
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           , all    
  

 and    
  

 are linearly dependent with the same linear 

relation, e.g.    
  

     
  

    , matrix   may not be full rank and so not 

invertible. These cases are rare to happen in real images. In fact, we expect 

that the feature selector algorithm implements some mechanism to detect 

and rectify this type of data. 

5.4 Outlier Detection, setting a value of   

According to our purposes, a point    
 

    (or    
 

   ) is considered 

an outlier as far as there is no point    
 
             (or    

 
            ) 

which presents a support    
  

 (5.3) above a given threshold.  

Substituting the compatibilities of equation (5.5) into equation (5.4), the 

final expression for the supports becomes: 

    
  

                    
 

     
    

    
 
 

 

 
 

  

   

  

   

 (5.10) 

where    
    

 are the optimal transformation parameters computed using 

equation (5.5). 

The parameter   plays the role of the robustness parameter used by 

(Rangarajan, Chui et al. 1997; Gold, Rangarajan et al. 1998). It controls 

whether the geometrical compatibility term contributes either positively (i.e., 

       
 

     
    

    
 
 

 

 
) or negatively to the support measure. 

We model the outlier detection process as an assignment to (or from) a 

special point. This is similar to null vertex assignments in (Wong and You 

1985). The concept of null vertices is explained in detail in chapter 2. We 

consider as outliers all the assignments   
 

   
 
 such that    

   
  . 

The threshold   represents the quantity from which the compatibility 

starts to contribute negatively. Therefore, it seems reasonable to express   in 

terms of a squared Mahalanobis distance, i.e.       
 

 
. If we express the 

threshold distance vector proportionally to the standard deviations of the 

data, i.e.             , the expression of   becomes: 

             
   

  
 

 

  
   

  
 

 

     (5.11) 

considering that   matrix is diagonal. Rangarajan et al. (Rangarajan, Chui et 

al. 1997; Gold, Rangarajan et al. 1998) do not address the estimation of this 

parameter in their paper. On the contrary, we define   as a function of the 

number   of standard deviations permitted in the registration errors in order 

to consider a relation plausible. 
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5.5 The algorithm 

Considering the objective function in (5.2) for multiple point set 

matching, we focus on substituting to it the support function deduced in 

Section 5.3.  

The problem becomes then one of joint estimation of correspondence and 

alignment parameters in which the recovery of the correspondences is 

influenced by the pose of the point-sets and vice-versa. Most point-set 

registration methods consist of an iterative process that alternates alignment 

and correspondence updates. Several approaches exist in order to solve this 

chicken-egg problem. For example, the well-known ICP (ZHANG 1992), 

Robust Point Matching (RPM) (Rangarajan, Chui et al. 1997; Gold, 

Rangarajan et al. 1998) or the Expectation-Maximization Algorithm (Jian 

and Vemuri 2005; Myronenko and Song 2010; Horaud, Forbes et al. 2011; 

Jian and Vemuri 2011). 

To optimize our objective function, we propose to use a similar dual step 

solution based on first maximizing the point-to-point alignment to later 

maximize the correspondences. We base our method on the Common 

Labeling Graduated Assignment proposed in section 2.3 of chapter 5. In this 

way, our proposed maximization procedure has the following steps: start 

with a valid      at time  , maximize alignment with respect to the rest of 

points (5.5), compute cost matrix using costs in (5.3), apply Graduated 

Assignment to compute next        and start again until convergence is 

reached. An outline of the procedure is given below. 

 

Algorithm 5-1: MSP-Alignment algorithm 

 

where   ,   ,       and    correspond to the parameters of (Gold and 

Rangarajan 1996) and are application dependant. We used the values 

141 Algorithm MSP-Alignment     
142      = initializeCL(); 
143          
144   repeat until         
145    repeat until   converges or        )     
146            

 
                                        

147                          
 

,                
148       repeat until   converges or          

149               
        

         
 
   

 ,                

150                
        

         
   

 ,                

151    end        
152      end 
153              
154   end 
155  Returns    
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proposed in chapter 2. Function          optimizes the alignments and 

the point-to-point assignations, an outline of the procedure is given below: 

Algorithm 5-2: auxiliary function of Algorithm 5-1. 

 

To compute the      

 
 value one could also use an approximated version 

similar to the one given in Algorithm 2-4 in chapter 2. 

Taking into account our definition of outlier detection, we require to adapt 

the Sinkhorn normalization  (Sinkhorn 1964) to consider them. Recall first 

that the resulting      

 
 values could be negative. However, after the 

exponentiation all values become strictly positive and therefore we can 

assume the Sinkhorn normalization can be applied. In the normalization over 

matrix  , we keep in mind that outliers are special assignation that only 

satisfy one-way constraints, in this way we can easily consider several points 

as outliers. To this aim, we enhance each matrix   with an extra row and 

column, following a similar procedure than the slacks in (Gold and 

Rangarajan 1996). We initialize these extra row and column with the value 

of 1. We aim to detect outliers, that is points which have    
   

       or  . 

We know that      if    , thus it is expected that points which have all 

possible assignations negative are assigned to this special row or column. 

Finally, when the Sinkhorn method has finished the extra row and column 

are removed leading to the resulting matrices of global assignments  . 

Note that now   cannot be theoretically considered a probability 

assignation matrix, due to             

   , neither for rows nor for 

columns. However, we still can ensure that             

    and that each 

individual value is positive. So, what it was a probability matrix  , now it 

can be assumed to be a fuzzy assignation matrix. 

156 Function          input             
157 returns      

  
158   For             
159                   
160     For         
161       For             
162         For              

163                

 
      

 
                                

       

 
  

164         End 

165       End 
166     End 

167   End 
168 End Function 
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5.6 Evaluation of the common labeling registration 

algorithm 

To evaluate the effectiveness of the presented method a series of group-

wise image registration experiments are done. We use real images from the 

database in (Mikolajczyk, Tuytelaars et al. 2011). Feature points from each 

image have been extracted using the Harris operator (Harris and Stephens 

1988). We use the following datasets: New York, Van Gogh and Asterix. 

This datasets are explained in detail in section 1. Each test is performed on a 

group of   images. The following four methods are compared. (1) Pairwise 

ICP+RANSAC, which applies the well-known ensemble ICP+RANSAC 

between each pair of images. (2) Confident ICP+RANSAC, which computes 

the labelings between the most similar pairs and infers the rest by 

composition (this method exploits the prior knowledge about the underlying 

order of the images). A very similar strategy is used in (Williams, Wilson et 

al. 1997). (3) Pair-wise common labeling, which applies the proposed 

approach independently to each pair of images (note that, given two images 

   and    this approach considers two bijections      and     ) and (4) 

Group-wise Labeling, which applies the proposed approach jointly to all the 

images of the group. This method is the prime motivation of the work. The 

aim of the comparison is to elucidate the benefits of the group-wise approach 

vs. the pair-wise one. All the methods have been initialized with the results 

of the matching by correlation. Regardless the labelings are computed in 

either pair-wise or a group-wise fashion, results are evaluated in a pair-wise 

basis. The DLT algorithm (Kovesi 2009) was used to compute the 

homography corresponding to a given labeling between two images. Since 

ground truth homographies are available, the accuracy was measured 

through the mean projection error (MPE) in pixels.  

Table 5-1, Table 5-2 and Table 5-3 show the results of the New York, Van 

Gogh and Asterix datasets using groups of      images. From top to 

bottom, each cell contains the MPE of Pair-wise ICP+RANSAC, Confident 

ICP+RANSAC, Pair-wise Labeling and Group-wise Labeling. Images are 

arranged in rows and columns of the tables according to their logical order. 

The diagonal cells are empty since they correspond to self-labelings. 

Analyzing the results, we see that the common labeling approach obtains 

usually the lowest mean projection error. 

This fact is clear with distant images; see for instance row        and 

         where in all datasets the common labeling error is much lower 

with respect to all other methods. In some cases, with adjacent images the 

pair-wise labeling method obtains better labelings, e.g. row          and 

column          of Table 4-3 and Table 5-1. However, the difference 
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between this method and the common labeling method is low, recall that the 

mean projection error is in pixels. 

 

 

 

 

 
 

Table 5-2: results using Van Gogh. We have used 14 groups of     

images (i.e., results are averaged over 14 experiments).   

Table 5-1: results using New York. We have used 25 

groups of     images (i.e., results are averaged over 25 

experiments). 
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In addition to MPE, we show three particular examples (Figure 5-1, 

Figure 5-2, Figure 5-3, Figure 5-4, Figure 5-5 and Figure 5-6) of labelings 

obtained with the pair-wise method and the common labeling method. 

Figure 5-1 and Figure 5-2 show an example on the Asterix dataset, Figure 

5-3 and Figure 5-4 an example on New York dataset and finally Figure 5-5 

and Figure 5-6 an example on the Van Gogh dataset. See how the method is 

able to remove incorrect matches, increase the amount of point matches 

found and select better point matchings. The first case is clearly seen in the 

Asterix example, the common labeling is able to detect that the points from 

the belly of Obelix do not correspond to the top letters. The second case is 

exemplified in the New York, the common labeling is able to match a 

greater amount of points with a better accuracy. Finally, in the Van Gogh 

example, the common labeling method is able to correct several point 

matchings giving more than an acceptable result. 

 

Table 5-3: results using Asterix. We have used 17 groups of     images 

(i.e., results are averaged over 17 experiments).   
 

Figure 5-1: concrete labelling example of Asterix dataset obtained 

using pair-wise method. 
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Figure 5-2: concrete labelling example of Asterix dataset using 

obtained using common labelling method.    

Figure 5-3: concrete labelling example of New York dataset using 

obtained using pair-wise method. 

Figure 5-4: concrete labelling example of New York dataset using 

obtained using common labelling method.    

Figure 5-5: concrete labelling example of Van Gogh dataset using 

obtained using pair-wise method. 
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Figure 5-6: concrete labelling example of Van Gogh dataset using 

obtained using common labelling method.    
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Chapter 7 

CONCLUSIONS AND FUTURE WORK 
 

 
 

The thesis has addressed the problem of computing a common labeling 

among a set of graphs. The common labeling of a set of graphs is defined as 

the joint labeling from each graph of the set to a virtual node set. Each node 

of the virtual set conceptually identifies equivalent parts of the objects each 

individual graph represents. The common labeling concept is equivalent to 

the pair-wise minimization of the local labelings with transitivity restrictions 

between node correspondences. 

The common labeling concept is of crucial importance in several graph 

pattern recognition applications. These applications include graph prototype 

synthesis and therefore all possible applications of graph prototypes.  

Up to now, only few methods to compute the common labeling have 

been proposed. The initial ones date back to the 80s with the development of 

random graphs (Wong, Constant et al. 1990), and their performance highly 

depend on the prototype efficiency to model the data. More sophisticated 

algorithms appear later, in 2000 and 2008, (Jiang, Münger et al. 2001; 

Lozano, Escolano et al. 2009). These algorithms model the problem 

independently of the prototype construction. All state of the art algorithms 

lack on either performance or theoretical basis. The prototype based ones 

rely on modeling the graph set with very few data (two samples) at the initial 

steps, which is obviously impractical if data contains some amount of noise. 

In addition, they rely on the prototype performance which might be 

counterproductive. The main advantage is that these algorithms are faster 

than the others due to less graph matching operations are performed. The 

other two algorithms proposed to solve the common labeling problem are 

either too heuristic (Lozano, Escolano et al. 2009) or too computational 

demanding (Jiang, Münger et al. 2001). Considering the drawbacks of the 

existing algorithms and the performance they obtain, we have analyzed the 
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problem from the theoretical and practical point of view. This chapter 

summarizes the main conclusions of the work and overviews several future 

work. 

1. CONCLUSIONS 

 We summarize the conclusions of this work from three points of view: 

theory, algorithms and applications. For each point the contributions and 

obtained results will be described. 

1.1 Theory 

Chapter 3 focuses on the graph edit distance measure to compare the 

similarity between two graphs. The main contribution has been to formalize 

several theoretical concepts related to the classes of costs. In addition, we 

characterize the shape of each class of cost and we develop intuition behind 

the labeling each class of cost produces. Besides, we give a formal 

description of the edit surface and we characterize its shape. Related to the 

new described properties of the graph edit distance several directions of its 

applicability on real applications are proposed. A well understanding of the 

graph edit distance is necessary to decide if the provided model is suitable 

for the problem at hand. In this way, the defined concepts enlarge the 

knowledge of the graph edit distance and may be determining on the solution 

of the problem one proposes. 

With the aim of extending the pair-wise graph edit distance problem to 

the group-wise one, an effective method to compute the graph edit between 

two graphs was developed. The method provides a completely different 

formalization of the problem. This formalization, based on the concept of 

dominant sets, allows mapping the most purely combinatorial problem to an 

optimization one. Theoretical foundations to prove that both problems are 

equivalent are given. The advantage of the new formalization is twofold. On 

one hand, the developed theory describes a connection between dominant 

sets and the graph edit distance, this connection is not obvious since 

dominant sets usually represent a subset of node-to-node assignments and 

from them the edit path cannot be constructed. On the other hand, new 

theory describes a connection between the graph edit distance and 

evolutionary game theory, this connection allows using fast and reliable 

optimization algorithms to compute the solutions of the graph edit distance 

problem.  

Related to the main goal of the thesis, we have formally characterized the 

common labeling problem and we have related it to the multiple 

isomorphism and the consistent multiple isomorphism problem. In addition, 
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a methodology to adapt the solutions is provided. Considering the given 

formalization, a probabilistic framework to compute the graph edit distance 

was developed. This new framework allows the construction of reliable and 

effective algorithms to compute sub-optimal common labeling solutions. 

With respect to the application of the common labeling to real 

applications, experimental evidences of the relation of the common labeling 

with the graph prototypes synthesis problem are given. These experimental 

evidences show that the better the common labeling obtained, the better the 

prototypes that will be constructed. This connection represents a new point 

of view of graph prototype construction since the synthesis process and the 

construction process can run independently. This connection is of crucial 

importance in probabilistic graph prototypes, since, using the classical 

sequential or hierarchical synthesis, at the initial steps, a model must be 

constructed using very few samples of the random variable which produces 

sever modeling errors that enhance as the iterative synthesis goes on. 

1.2 Algorithms 

This thesis has provided to the scientific community several algorithms, 

which its efficiency has been experimentally proven. These algorithms are 

target several specific problems. We describe each independently in the 

following lines. 

The first algorithm provided is addressed to compute the graph edit 

distance between two graphs. The proposed algorithm has been evaluated 

considering several state of the art algorithms. Considering the obtained 

results, it could be stated that the proposed algorithm represents an advance 

on the graph edit distance computation. Besides to the single problem of 

computing the distance between two graphs, the method has been evaluated 

on a clustering application. Results show that, in addition to obtaining better 

distance measures, the obtained distances allow a better separability between 

the clustered objects. 

With respect to the main objective of the thesis, 6 algorithms have been 

provided: P-Dim Graduated Assignment, Agglomerative Graduated 

Assignment, Least squares, Average Alignment, Common Labeling 

Graduated Assignment and Common Labeling Dominant Sets. We can 

divide the algorithms in two types considering the approach of the problem 

they use. The first type considers 4 algorithms which are focused to compute 

a common labeling through a consistent multiple isomorphisms. The 

algorithms are: P-Dim Graduated Assignment, Agglomerative Graduated 

Assignment, Least squares and Common Labeling Dominant Set. The P-

Dim Graduated Assignment algorithm obtains the consistent multiple 

isomorphism considering all graphs at once. This algorithm has been 

experimentally proven to be the most effective one. The Agglomerative 
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Graduated Assignment and the Least squares algorithm rely on a pair-wise 

matching computed in an initial step. These algorithms also provide results 

that improve state of the art. The main advantage of these two algorithms 

with respect to the first one is the lower computational complexity. In 

addition, since individual pair-wise matchings are computed in an initial 

phase and they do not rely one on the other, these individual matchings can 

be computed in parallel, which becomes an advantage considering the 

exponential nature of the problem. The Common Labeling Dominant Set 

algorithm is proven to be more effective than methods that compute directly 

the common labeling in some datasets. However, its computational 

complexity is high. With respect to methods of the second type, we provide 

two algorithms: Average Alignment and Common Labeling Graduated 

Assignment. These methods compute directly a common labeling solution 

without previously computing a consistent multiple isomorphism. This direct 

computation allows the algorithms to reduce the computational complexity 

of the problem. The two algorithms improve state of the art algorithms. Best 

results have been obtained using the Common Labeling Graduated 

Assignment. Both algorithms share advantages and drawbacks. The main 

advantage is the speed to complete the matching process. Even the 

computational complexity of each iteration is higher than in the Common 

Labeling Dominant Set algorithm orders of magnitude less iterations are 

necessary if the graphs are similar. In addition, the amount of memory that 

the common labeling oriented algorithms use is quite lower than the 

algorithms that rely on computing a consistent multiple isomorphism. 

Moreover, often the cost matrix can be computed in an initial step of the 

algorithms which even increases the speed further. A specific drawback of 

this type of methods is that it is hard to analyze the theoretical framework, 

since the graduated assignment is a combination of heuristic intuitions and 

optimization mechanisms. 

A general drawback of the algorithms presented in the thesis is the 

treatment of null assignations. To consider all possible matching solutions, a 

large amount of null nodes must be inserted into the initial graphs. This fact, 

even the computational complexity of the problem is the same, increases the 

size of the input data and considering the exponential nature of the problem 

this issue may produce a sever increase of the computational time. 

With respect to the performance of both types of algorithms, it is 

important to highlight that common labeling oriented ones give better results 

with lower computational cost.  
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1.3 Applications 

Along the thesis, several applications have been used to evaluate the 

proposed algorithm. In most of the experiments, the proposed algorithms 

improved state of the art algorithms. 

1.3.1 Interactive and Adaptive Graph Recognition. 

Some of the new graph edit distance properties, formalized in this thesis, 

have been applied to learn, using an interactive and an adaptive framework, 

the graph edit distance constants. In each step, the framework aims to 

improve the knowledge on the graph edit constants given two graphs and the 

current bijection between them. The problem was reduced to compute the 

class of costs that belong to the given labeling. In particular, the shape of the 

class of cost was used to speed up the computation of all the classes of costs 

in a given region of the edit surface. Considering that each class of costs 

forms a convex polygon, the basic idea relies on that given two points that 

belong to the same class of costs all points between those also belong to the 

same class of costs. Using this property, the algorithm could save 90% of the 

cost computations to label each point of the edit grid to a class of costs. 

Thus, the learning algorithm becomes 90% faster than the naive solution 

based on computing all the bijections in the given region of the edit surface. 

1.3.2 Graph clustering application. 

We proposed an algorithm to compute the graph edit distance based on 

the concept of the dominant sets. Besides evaluating the cost improvement 

we also evaluate the effectivity of the computed costs in a clustering 

application. Thus, given a set of graphs where graphs belong to different 

classes, its pair-wise distances where computed using the presented 

algorithm and two other state of the art algorithms. Given this pair-wise 

matching matrix a clustering algorithm based on a peeling procedure was 

applied. Results show a great improvement on the minimization of the sum 

of intra class distances, however this improvement was expected since a 

improvement on the pair-wise distance matrix values was already observed. 

With respect to classification results some improvement were also observed. 

All tested algorithms, the Dominant Set matching, the Bipartite Graph 

Matching and the Graduated Assignment, gave an equivalent classification 

result when they were applied on the GREC dataset. On the Shapes 99 

dataset, the presented algorithm improved the Bipartite Graph Matching and 

gave equivalent results than the Graduated Assignment. On the last dataset, 

the shapes 216, the Dominant Set algorithm improved the graduated 

assignment and gave equivalent results than the bipartite graph matching. 
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As a conclusion, we can state that the presented algorithm, in addition of 

obtaining better graph edit distance results, is able to give better results on 

classification than state of the art algorithms. However, this improvement 

also depends on the problem since it may happen that improvement on the 

distance computation, if distance does not adequately model the problem, is 

not reflected with an improvement on classification. 

1.3.3 Graph prototype construction and metric trees 

Most of the evaluation of the common labeling algorithms has been 

based on the evaluation of the resulting common labeling cost. However, we 

also tested the common labeling graduated assignment over several real 

applications. In this section, we focus on graph prototype construction and 

an application of them, the metric trees. To evaluate the effectivity of the 

common labeling on computing a graph prototype, we first evaluated the 

goodness of the Generalized Median Graph synthesized. Thus, given a 

training set of graphs a Generalized Median Graph was constructed using the 

Common Labeling Graduated assignment, a hierarchical synthesis procedure 

and a classical genetic approach. With this three synthesis procedures we 

constructed a metric tree of graphs. The Generalized Median Graph 

constructed using the Common Labeling Graduated Assignment show 

improvement over the other methodologies. In addition, we used the 

proposed methodology to compute several other graph prototypes. Results 

also showed that the common labeling methodology could satisfactory be 

used to that aim. 

As a general conclusion, it is important to say that global methodologies 

to compute a common labeling, such as the Common Labeling Graduated 

Assignment or the genetic approach are supposed (and we experimentally 

prove that) to achieve better prototype than local ones such as the Super-

Graph approach in (Lozano, Escolano et al. 2009) or the Hierarchical 

synthesis. The basis of this affirmation relies on that they consider all the 

knowledge of the set. 

1.3.4 Image registration 

The last application that we considered is the group-wise registration of 

images. To that aim, the Common Labeling Graduated Assignment was 

modified to consider affine transformations between different images in the 

set. The proposed algorithm was evaluated over three different datasets that 

include zoom, rotation and shear. The improvement on the mean projection 

error was compared with the classical approach of using ICP to compute 

alignment and correspondences plus RANSAC for outlier detection. The 

common labeling approach showed a great improvement over that classical 

methodology. The improvement we observed was manifold. The proposed 
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method was able to discard incorrect matches and increase the amount of 

point matches found. 

2. FUTURE WORK 

In spite of the large set of contributions of the document, in each of the 

parts there is still room for improvement and some open questions are still 

left open. In the following points, we give details and directions to improve 

methodologies presented and some future research directions.  

 In chapter 2 two different, but equivalent, formulations are given for the 

graph matching objective function (1.3) and (1.8). Even the objective 

function share the same optimal values, the shape of the hyper plane 

they generate seems to be quite different. In this way, several performed 

experiments showed that depending on the problem and the optimization 

algorithm both formulations give very different results. A deepest study 

in this direction may give theoretical foundations to conclude which one 

should be used. 

 In chapter 3, several properties of the graph edit distance have been 

presented. These properties mainly characterize each class of costs and 

describe the shape of the associated edit surface. Several directions to 

apply the properties have been given in the chapter. We highlight one of 

them. We saw in the chapter that several suboptimal algorithms decrease 

its performance on computing the graph edit distance in particular areas 

of the edit space. Considering that, thanks to the new properties, it is 

possible to analyze and model this fact; filtering mechanisms can be 

developed to improve the decay of performance.  

 In chapter 4, a new algorithm, based on Dominant sets, has been 

presented. The algorithm is addressed to compute the graph edit distance 

between a pair of graphs. The algorithm relies on a strong theoretical 

basis which ensures that maximal solutions of the graph edit distance 

problem are maximal solutions of the suggested model. The main 

drawback relies on the used optimization procedure. This procedure, 

similar to a gradient ascent method, needs on an initial starting point to 

start the optimization procedure. These initial points, were chosen 

randomly in the simplex. Better heuristics should be chosen to obtain 

still better results and, what is more important, in a faster way. 

 Chapter 5 provides several algorithms to compute a common labeling 

between a set of graphs. Some of the algorithms or parts of them can be 

improved. Starting from the two first algorithms that compute a common 

labeling through a probabilistic hypercube, they need a post 

discretization process to obtain a discretize permutation matrix set. 

Consequently, the discretization process is performed by iteratively 
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choosing the best assignation possible until a bijection is found. Several 

approaches similar to the Hungarian algorithms could be developed to 

perform this discretization in a more global fashion, possibly improving 

the final bijection. The third method presented relies on the Least 

squares methodology to compute an approximation of the common 

labeling. This method computes the common labeling as the average of 

the possibly noisy local common labelings found by any independent 

bijection between the graphs of the set. The problem could be 

reformulated by modeling the system as an over-determined system 

where each equation is one of the noisy common labeling solutions. This 

approximation closely resembles the spirit of computing a linear 

regression between a set of samples. With respect to the dominant set 

algorithm, the main drawback that should be improved is the size of the 

association matrix. The matrix becomes too large with just few nodes 

per graph and few graphs per set. Analyzing the information that the 

association matrix contains, we see that just a small part of it contain 

node-to-node matching information, the resting part contains 

consistency restrictions. Considering this fact, we assume there must be 

another codification possible of the common labeling problem into the 

association graph framework which minimizes this large amount of 

consistency restrictions. 

 

Regarding the chapter of applications, several future lines of research are 

considered. 

 

 In the thesis, it is stated that the common labeling problem and the 

computation of graph prototypes is closely related, and experimental 

validation shows that in fact it is. However, theoretical connection 

should be found that connect both problems. 

 The m-tree applications of the graph prototypes constructed using the 

common labeling show very different access rate and performance per 

prototype. We consider that an m-tree with several graph prototypes per 

node might improve both the access rate and the performance of the 

application. Besides, considering that the performance of the m-tree is 

related to the triangle inequality, if this property of the distance 

computations is not preserved, at query time, between the query object 

and the elements in the database most of the theoretical foundations of 

metric trees cannot be applied. Since the common labeling enforces this 

triangle inequality restrictions it would be of great interest to find a 

connection between querying algorithms and the common labeling 

problem. 

 The group-wise registration framework, presented in chapter 6, have 

been shown to be a particular formalization of the common labeling 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPLE GRAPH MATCHING AND APPLICATIONS 
Albert Sole Ribalta 
Dipòsit Legal: T.1211-2012 
  
  
 



CONCLUSIONS AND FUTURE WORK 173 

 

problem, where affine transformations are considered between points. 

This formalization of the group-wise matching problem has 

experimentally shown great improvement with respect to classical 

algorithms. However, the outlier detection is a bit tricky. New outlier 

detection mechanism, that theoretically fit the formalization in a clear 

form, should be provided. 

Besides, in chapter 6, we highlighted that the main difference between 

the proposed method and state of the art methods to compute the 

transformation parameters rely on that we consider these parameters 

independent for each point. These considerations are useful when 

objects are moving in independent directions between images, however 

if images do not contain moving objects, this independence 

consideration may drive the algorithm to bad results. Some annealing 

parameter should be included in the algorithm to force that in the final 

results all transformation parameters are equivalent. 

 With the aim of improving speed of some of the proposed algorithms, it 

will be interesting to get rid of the laborious task of increasing the 

graphs with a large amount of null nodes. Several works, such as 

(Fukagawa, Tamura et al. 2011) provided several formalizations where 

the null extensions of the graphs are not required. However, the work of 

(Fukagawa, Tamura et al. 2011) just consider the tree edit distance. It 

will be of great interest for the community to analyze if these theoretical 

foundations are extendable to the graph case. 
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