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Abstract

The basic concept behind the architecture of a general purpose CPU core
conforms well to a serial programming model. The integration of more
cores on a single chip helped CPUs in running parts of a program in paral-
lel. However, the utilization of huge parallelism available from many high
performance applications and the corresponding data is hard to achieve
from these general purpose multicores. Streaming accelerators and the
corresponding programing models improve upon this situation by provid-
ing throughput oriented architectures. The basic idea behind the design
of these architectures matches the everyday increasing requirements of
processing huge data sets. These high-performance throughput oriented
devices help in high performance processing of data by using efficient
parallel computations and streaming based communications.

The throughput oriented streaming accelerators – similar to the other pro-
cessors – consist of numerous types of micro-architectural components in-
cluding the memory structures, compute units, control units, I/O channels
and I/O controls etc. However, the throughput requirements add some spe-
cial features and impose other restrictions for the performance purposes.
These devices, normally, offer a large number of compute resources but re-
strict the applications to arrange parallel and maximally independent data
sets to feed the compute resources in the form of streams.

The arrangement of data into independent sets of parallel streams is not an
easy and simple task. It may need to change the structure of an algorithm
as a whole or even it can require to write a new algorithm from scratch for
the target application. However, all these efforts for the re-arrangement of
application data access patterns may still not be very helpful to achieve the
optimal performance. This is because of the possible micro-architectural



constraints of the target platform for the hardware pre-fetching mecha-
nisms, the size and the granularity of the local storage and the flexibility
in data marshaling inside the local storage. The constraints of a general
purpose streaming platform on the data pre-fetching, storing and maneu-
vering to arrange and maintain it in the form of parallel and independent
streams could be removed by employing micro-architectural level design
approaches. This includes the usage of application specific customized
memories in the front-end of a streaming architecture.

The focus of this thesis is to present architectural explorations for the
streaming accelerators using customized memory layouts. In general the
thesis covers three main aspects of such streaming accelerators in this
research. These aspects can be categorized as : i) Design of Applica-
tion Specific Accelerators with Customized Memory Layout ii) Template
Based Design Support for Customized Memory Accelerators and iii) De-
sign Space Explorations for Throughput Oriented Devices with Standard
and Customized Memories

This thesis concludes with a conceptual proposal on a Blacksmith Stream-
ing Architecture (BSArc). The Blacksmith Computing allow the hardware-
level adoption of an application specific front-end with a GPU like stream-
ing back-end. This gives an opportunity to exploit maximum possible data
locality and the data level parallelism from an application while providing
a throughput natured powerful back-end. We consider that the design of
these specialized memory layouts for the front-end of the device are pro-
vided by the application domain experts in the form of templates. These
templates are adjustable according to a device and the problem size at the
device’s configuration time. The physical availability of such an architec-
ture may still take time. However, simulation framework helps in architec-
tural explorations to give insight into the proposal and predicts potential
performance benefits for such an architecture.
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1

Introduction

Stream processing is being used extensively from the smart-phones to high perfor-

mance supercomputing machines. It is no more surprising to say that the streaming

devices promises to be a major computing force in the coming decades. Generally, the

stream processing uses streaming architectures like GPUs, Cell/BE and application

specific designs on the reconfigurable devices. The basic architecture of a streaming

device decouples computations from the memory accesses. This makes it possible to

improve upon the both (i.e. computations and communications) architectural aspects

independent of each other across a streaming interface. The compute components in

the streaming architecture consume and produce unbounded data vectors. These kind

of architectures can deliver performance if-and-only-if the data-management front-end

of a device is able to arrange data-sets in the form of independent sets of streams.

Software based approaches are normally required to accomplish the job of data de-

coupling and its arrangement. However, these approaches may not perform efficiently

for arbitrary application domains. This is because of a possible mismatch between an

application requirement of a memory configuration and the available hardware mem-

ory structure on the target generic streaming architecture. Therefore, an application

specific hardware support could be very beneficial to increase the performance for

many applications by improving the management of data before that it is streamed to

the compute units. This application specific management of data results either or both

as an increase in the data locality for the application data and an optimized data level

parallelism for the streaming back-end.

1



1. INTRODUCTION

This chapter presents an overall view of the thesis work which centers upon the

architectural explorations for the streaming accelerators with customized front-ends.

The chapter starts by giving a general introduction on the streaming architectures. This

is followed by an unveiling of our conceptual streaming model along with its high level

descriptions. The chapter also present an overall view of the contributions made during

this thesis work. Before summarizing the chapter, we will briefly look at some of the

existing streaming accelerators and as well the organization of this thesis document.

1.1 Streaming Architectures

The extensive research of last many decades to improve upon the general purpose sin-

gle core architectural features like the branch predictions, pipelining, out-of-order pro-

cessing and frequency scaling have nearly touched their corresponding walls. This is

because the research is almost saturated for further improvements in the first two while

the out-of-order processing causes an extreme microarchitectural complexity of a pro-

cessor to get small benefits for suitable applications. Increasing the device frequency

while reducing the feature size is beneficial for all applications but higher power dis-

sipation and fault tolerance issues do not allow to further improve the performance by

scaling the frequency. Therefore, the negative slope for the performance opportunities

from further improvements on top of the single core processors have sharply shifted

the research focus to the parallel computing architectures, algorithms and techniques.

This trend of exploring the parallel paradigms expected to continue deep into the fu-

ture [6]. However, the last decade’s research efforts have already laid-down a strong

foundation for the future parallel computing.

In a comparison to the traditional parallel computing on general purpose cores,

the streaming architectures have exhibited significant performance advantages in the

application domains such as multi-media, graphics, digital signal processing and some

scientific applications. The other application domains like the ones using data in the

form of non-linear grids could also utilize the potential of stream computing. This may

require the corresponding algorithms to go through some radical changes to exploit

the streaming architectures. These changes make possible the decoupling of the data

accesses from the computations and their separate optimizations.
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1.2 Target Computing Architecture

Sout-1
a

Sout
Kernel-2

Sout-1b Kernel-3

Kernel-1

Sout-2

Sout
-3

Kernel-4
Sin

Figure 1.1: An example view of data flow in a streaming execution

An example view of the data flow through a streaming device is shown in the

Figure 1.1. The figure shows that a stream (Sin) of data is processed by a kernel-1.

The output data stream from this kernel is split into two parallel work loads. These

work loads are processed by two different kernels (kernels-2 and 3). The processed

outputs from these kernels are combined and further computed by kernel-4. Later, the

results are written back as an output stream (Sout).

The streaming architectures lead to throughput oriented computing on devices with

parallel streaming architectures. These throughput oriented architectures execute par-

allel workloads while attempting to maximize total throughput, even though sacrificing

the serial performance of a single task [7]. The streaming devices, normally, offer a

large number of compute resources but restrict the applications to arrange parallel and

maximally independent data sets to feed the compute resources as streams. That’s why

the streaming applications use a data-driven approach. The performance for these ap-

plications on an arbitrary platform depends how well the data is managed into streams

before forwarding to the compute components.

1.2 Target Computing Architecture

The efficient data management is a key to the performance for many HPC applica-

tions [8]. The programmable devices normally support efficient utilization of data by

providing a fixed architecture of caches or scratch pad memories [9]. These caches

or scratch pad memories are designed on the basis of few heuristics that are generic

enough to provide varying degree of performance enhancement for various applica-

tions. However, the performance for certain applications on a device can still be im-

proved by providing more customized memory layouts for those applications. In order

to highlight the possibilities of this memory customization for a stream of data using

3
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CABAC
Stream Decoder

Macroblock
   Reconstructions

 Compressed

 Video (H.264)

Prediction & Residual 
Data

 Uncompressed

 Video 

MBs 
Processed

MBs in flight

MBs to be 
Processed

Figure 1.2: H.264 video decoder (Top), 2D-Wave approach for exploiting MB parallelism
(Bottom Figure Source : [1]). The arrows indicate the MBs dependencies.

an application specific front-end, we show an example of H.264 video decoder. The
top of the Figure 1.2 shows the video decoder in the form of two blocks. The CABAC
entropy decoding block is extremely sequential by its nature. It provides parallelism
only at frame or slice (slice can constitute a full frame or part of the frame) level of
the compressed video stream. However, once a video slice is decoded, it is possible
to identify the Macroblocks (MBs) boundaries. The bottom of the figure shows that
the MBs with identical Ts can be executed in parallel [1] during the Macroblock re-
construction phase. However, this reconstruction process faces an ordered sparsity in
the data because of the information required from previously decoded MBs as shown
by the arrows in the Figure 1.2. The MBs reconstruction process can be accelerated
with the support of a specialized memory layout. This layout would need a customized
memory structure consuming a local memory of size less than the size of the memory
to hold data for twice the number of MBs in the principal diagonal of the slice. This
special memory structure can hold MB’s data in an independently accessible form for
the process of parallel decoding of the blocks by a large number of compute units in the
back-end. Moreover, the functionality attached to the design of this specialized mem-
ory architecture will also keep the left, top and diagonal data dependencies from the
previously decoded blocks in the required ordered for all the macroblocks decode-able
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Figure 1.3: The simplified model of target computing architecture

in parallel.

A simplified form of our target architectural model is shown in Figure 1.3. It can

be seen from the figure that the model can be partitioned into three representative

main blocks. The global memory interface is based on a memory controller. We con-

sider this interface to be based on a programmable pattern based memory controller

(PPMC) [10] for fetching large data sets. Next, it comes the region for the application

specific memory layouts. These application specific customizations of the memory

layouts can be achieved using coarse grained or fine grained reconfigurable regions.

However, it is also possible that a set of applications can share a common customized

memory layout [11]. This memory layout reorganizes data basically for two reasons :

i) Data arrangement for distribution as parallel work loads and (ii) Transformation of

data from a memory default arrangement to an application required arrangement. The

transformation of data arrangement inside specialized memory is important for many

applications. A simple example is the memory layout for the FFT (decimation in time)

where data is written sequentially to the layout while it is read in a bit-reversed order.

Therefore, our model keeps separate write and read interfaces. The customized mem-

ory region of the model can reshape and unfold data-sets specific-to-an-application

requirement by configuring and incorporating domain specific architectural templates

developed by the domain experts [12]. This means that the programmer does not need

to worry about the hardware related programing and configuration constraints while

using this architectural model. By using this model, the memory load/store operations

no longer need to be scheduled amongst compute operations. Moreover, now the op-
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timal scheduling of operations does not depend upon memory latencies and therefore

does not effect the scheduling of computations. The model’s third block consists of

the parallel compute units. The architecture – in general – expects the compute units

performing logical and arithmetic operations. However, there is no constraint for incor-

poration of specialized compute units. Each compute unit supposed to keep a register

storage and a combination of compute units can share data across a small local mem-

ory. The parallel compute units in the back-end of the model communicate with this

configurable front-end part through a group of commands, controls and status registers

and a large set of index based circular buffers. These index based buffers exploit a pro-

graming model supporting indexed based accesses of data. The group of commands,

controls and status registers help to synchronize the front-end with the back-end. The

scope of this thesis does not cover the details on the programing model. However, as

described in Chapter 8, CUDA [13] programing model with extensions can support

our target computing architecture.

In this thesis work, initially, on the top of this abstract target computing platform

we implemented some application specific accelerator designs. Later, we suggested

a template based design methodology to generate and map customized memory ac-

celerators for this target computing architecture. Finally, we proposed a Blacksmith

Computing Architecture (BSArc) with the underlying concept from the same target

computing model.

1.3 Thesis Contributions

The main contributions of this thesis can be categorized into three parts. The first

part is based on the proposals for the application specific designs of the accelerators

with customized memory layouts. The second part of the work studies the template

based generic design support mechanism for the customized memory accelerators. The

last part of the contributions explores the design space for the throughput oriented

accelerators with standard/customized memory designs.

6



1.3 Thesis Contributions

1.3.1 Design of Application Specific Accelerators with Customized
Memory Layouts

—(1)— 3D stencil computations are compute-intensive kernels often appearing in

high-performance scientific and engineering applications. The key to efficiency in

these memory-bound kernels is full exploitation of data reuse. We proposed a state of

the art streaming accelerator for the 3D Stencil kernels. The design of the architec-

ture makes it possible to maximize the reuse of data by handling the input data volume

through a specialized 3D memory hierarchy. The 3D-memory keeps busy the back-end

compute units to maximum throughput. Our proposal also shows the scalability of the

accelerator for various sizes of stencils. This makes it possible to map the design to dif-

ferent sizes of reconfigurable devices or ASICs. This contribution was recognized by

the IEEE Conference on Field-Programmable Technology 2009.

—(2)— Reverse Time Migration (RTM) is a real-life application with a requirement

of huge computations for the seismic imaging of geologically complex subsurface ar-

eas. The economic value of the oil reserves that require RTM to be localized is in

the order of 1013 dollars. But RTM requires vast computational power, which some-

what hindered its practical success. We ported our 3D-stencil streaming accelerator

to implement the most time consuming computational kernel acoustic wave equation

(AWE) solver for the 3D-RTM application on Altix-4700 system. Later, the perfor-

mance of the application was projected on the HC-1 accelerator by mapping the hard-

ware design of the application for Multi-FPGA implementation. This work appears

in the IEEE Journal Transactions on Parallel and Distributed

Systems, January 2011.

—(3)— The findings of our work on 3D-Stencil and RTM reveal that the usage of

specialized data organization is very beneficial from performance point of view for an

application. However, it can restrict the generality of the architecture. Therefore, we

proposed an idea of specialized but at the same time a common memory layout for

various application kernels. The benefit of such a scheme – other than the benefits of

architectural specialty along with generality – also gives a possibility of the data-reuse

across different application kernels. This contribution was published in the IEEE
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proceedings for the Conference on Field Programmable Logic

and Applications 2010.

1.3.2 Template Based Design Support for Customized Memory Ac-
celerators

—(1)— The last proposal on the common memory layout draw a sketch of a multi-

level memory hierarchy. It also outlines the general characteristics for the flow of data

through the common memory layout. This means that the proposal helps in narrowing

down the design space for automated generation of an application specific memory

structure. However, the fine details of the data flow for an application and the scalabil-

ity of the memory design according to a target device and/or the problem size still re-

quire an automated mechanism. This lead us to propose a HLL translation tool named

DATE (Design of Accelerators By Template Expansion System). This tool use a library

based approach. It keeps templates for specialized memory structures, compute units

and the interconnects to generate a design according to the user given parameters. This

work is presented in HiPEAC Workshop on Reconfigurable Computing

2011. An extended version of the same work is accepted for the Elsevier’s

Journal of System Architecture.

—(2)— We used our last work on the DATE tool to propose a Throughput Oriented

Template based Streaming Accelerator. In general, the throughput oriented streaming

accelerators offer a large number of compute resources but restrict the applications to

arrange parallel and maximally independent data sets to feed the compute resources as

streams. Therefore, the design specialization for – both – the compute units and the

local memory structures could improve the performance efficiency for such devices.

This makes the basis for our proposal on an template based architecture design for the

reconfigurable accelerators (TARCAD). This template accelerator accommodates the

application specific compute units and the application specific memory structures with

generic types of system level control and the I/O channels under our DATE based de-

sign generation scheme. This contribution was recognized in the IEEE Symposium

On application Specific Processors 2011.
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1.3 Thesis Contributions

1.3.3 Deign Space Explorations for Throughput Oriented Devices
with Standard & Customized Memories

—(1)— The purpose of the throughput oriented TARCAD (Template Architecture for

Reconfigurable Accelerators) is conceptually very close to the GPU design concept.

The main difference is that a GPU is not reconfigurable and a TARCAD does not have

a generic programming model. We came with an idea of combining the interesting fea-

tures from both architectures to propose potentially a new heterogeneous architecture.

This lead us to develop a simulator for GPU kind of streaming architectures and re-

sulted in the form of SArcs (Streaming Architectural Simulator). SArcs is a trace based

simulation tool chain. Its framework uses GPU performance modeling based on run-

time CPU code explorations on a streaming simulator which is a part of the designed

framework. To the best of our knowledge SArcs is the first trace-based GPU architec-

tural simulator which does not require a physical GPU environment or any GPU related

tool-chain. This contribution is from our paper accepted in ACM International

Conference on Computing Frontiers; May 15th, 2012.

—(2)— The SArcs framework, on the one hand, is very useful for the design space

explorations for the future GPU devices and on the other hand, it can be used for perfor-

mance evaluation of different applications on the existing GPU generations with a good

accuracy. The framework exploits the fact that an application compiled for any archi-

tecture would require to transact the same amount of data with the main memory in the

absence of registers or cache hierarchy. Moreover, the computations inside an applica-

tion can be simulated by the target device latencies. We use SArcs for the design space

explorations of GPU like streaming architectures and show that the configurations of

the computational resources for the current Fermi GPU device can deliver higher per-

formance with further improvement in the global memory bandwidth for the same de-

vice. This work is a part of the research report: UPC-DAC-RR-2012-6.

—(3)— We Proposed a Blacksmith Streaming Architecture (BSArc) for high perfor-

mance accelerators. The Blacksmith Computing on BSArc uses a forging front-end

to efficiently manage data according to the application nature. A large set of sim-

ple streaming processor in the back-end can fetch this arranged data to run compu-
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tations on it. We apply this concept to a SIMT execution model and present it as a
part of a modified GPU like device supporting an Application Specific Frond-End.
The accuracy of the base line simulator was established against the NVIDIA’s Fermi
architecture (GPU Tesla C2050) using L2 cache. We evaluate the performance dif-
ference for the Blacksmith Computing based architectural approach against the stan-
dard L2 cache base configuration of the GPU like device by using our SArcs simu-
lator. The performance of Blacksmith Architecture show highly promising results as
compared to the newest GPU generation i.e. Fermi. This contribution is recognized
by the ACM International Conference on Computing Frontiers;

May 15th, 2012.

1.4 State of the Art of Streaming Accelerators

The topic of streaming architectures is very vast. A lot of work has been done previ-
ously on the streaming accelerators like the one GOPS streaming processor presented
by Khailany et al [14]. This processor contains 16-lane data-parallel unit (DPU) with
5 ALUs per lane, two MIPS 4KE CPU cores, and I/Os. This architecture designed
to support applications such as video encoding, image filtering, wireless signal pro-
cessing and scientific computing. The memory interface for the processor includes
two 64b DDR1/DDR2 666Mb/s memory channels for 10.7GB/s total. The proces-
sor works under a VLIW instruction set. The Stanford project of Merrimac [15] –
in comparison to the general purpose cluster based scientific computers – develops
a stream-based supercomputer. The focus of the project is to reduce the memory
bandwidth requirement from representative applications by organizing the computa-
tion into streams and exploiting the resulting locality using a register hierarchy. The
Crypto engine in Sun Ultra-SPARC T2 [16] contains a Streams Processing Unit (SPU)
offering encryption/decryption and offloading of the hash-operations. This cryptogra-
phy streaming accelerator can work efficiently on large chunks of data because of an
integrated direct memory access (DMA) engine inside SPU. This allows the acceler-
ator to access the L2 cache without having to go through the regular pipeline. Bove
and Watlington proposed Cheops [17] which is a media processing system for video
streams. Cheops framework uses individual specialized processing units – the stream
processors – typically comprised of multiple parallel computing elements. Multiple
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stream processors acts simultaneously as one processor module. The processor mod-

ule comprises of eight dual ported dynamic memory (VRAM) units communicating

through a full crosspoint switch with up to eight stream processing units. In Cheops

system, multiple processor modules may be placed in the backplane of the system to

form a huge parallel system. The SYDAMA-II [18] system proposes an architecture

based on two main parts. The low level computing part directly map the streaming

data flow graphs of image processing applications to one or more stream processing

elements. The second part of the architecture consists of general purpose processing

to handle algorithms at higher level and as well to run the operating system.

In the following we will describe in more detail some prominent architectures re-

searched in the past or available as commercial products.

1.4.1 Imagine

Imagine [19] is a programmable streaming processor shown in the Figure 1.4-a. This

processor handles data and computations in a decoupled manner. The Imagine archi-

tecture achieves this decoupling by programming the processor at two levels : kernel

level and application level. Kernel code is kept inside the controller of the imagine

processor shown in the Figure 1.4(a). The kernel code use 48 ALUs organized as 8

SIMD clusters to run computations on the stream elements. These clusters take data

from the Stream Register File and provide it to the ALUs under the controller’s pro-

gram. The application level program manipulate the streams and pass these between

the kernel functions.

Each of the SIMD cluster contains 6 ALUs, large number of local register files and

executes completely static VLIW instructions. The memory system, the host inter-

face, network-interface, arithmetic clusters and the controller interact for transferring

streams to and from the stream register files. The most important feature of the imagine

processor is considered its multi-level high memory bandwidth to efficiently operate 48

ALUs. The maximum bandwidth achieved at the register file level is 435GB/s which

is approximately 17× more than the available bandwidth with the external memory.

This register level bandwidth is an ideal one and requires application level software to

somehow forward the streams by increasing its reuse 17× to keep busy all the compute

units.
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Figure 1.4: Streaming processors: (a) Imagine (b) Raw

1.4.2 Raw

In the design of RAW processor [20] (shown in the Figure 1.4-b), the most innovative

feature is its on-chip interconnect and its interface with the processing pipeline. The

tiled architecture of RAW processor connects its 16 processing tiles (Figure 1.4-b) us-

ing four 32-bit full duplex on-chip networks. Two of the network routs are specified at

compile time (i.e. static) while the other two networks could be specified at run time.

These networks are exposed to the software under RAW ISA. RAW uses Raw Stream

Compiler to map pipeline parallel code onto the networks. This allows the program-

mer to directly program the wiring resources of the processor. This means that the

programmer can transfer data streams to different combinations of the Tiles according

to an application need. Each Tiles can run computations on a stream of data using its

8-stage in-order single-issue MIPS style processing pipeline, a 4 stage single precision

pipelined FPU and 32 Kbyts of data cache.

1.4.3 IBM Cell/B.E

The Cell/B.E. [21] (Figure 1.5-a) is an example of a SoC with a general purpose pro-

cessor and SIMD accelerators. It is a multi-core chip composed of a general 64-bit

PowerPC processor core (PPE) and 8 SPEs (SIMD processors called Synergistic Pro-

cessor Elements) that have a small scratch-pad memory called local store (LS). A high
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Figure 1.5: (a) IBM Cell/B.E (b) GPU

speed bus (EIB, Element Interconnect Bus) is shared among all components, allowing

all of them to directly access main memory through the Memory Interface Controller.

There are two types of storage domains within the Cell/BE architecture: the main stor-

age domain and the local storage domain. The local storage of the SPEs exists in the

local storage domain. All other kind of memories are in the main storage domain.

Each SPE can only execute SIMD instructions (including data load and data store op-

erations) from within its own associated local storage domain. Therefore, any required

data transfers to, or from, storage elsewhere in a system is always be performed by

issuing a memory DMA command to transfer data between the local storage domain

of the individual SPE and the main storage domain. The memory unit for each SPE

can typically support multiple DMA transfers at the same time and can maintain and

process multiple memory requests.

1.4.4 GPU

GPUs [22] (Figure 1.5-b) adopt a streaming based compute methodology in their ar-

chitectures. These devices expect from the user to efficiently arrange parallel sets of

data for the computations. A single GPU device contain hundreds of simple process-
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ing cores. These use multi-threading (SIMT) to keep a high throughput and hide the
memory latency by switching between thousands of threads. Generally, the architec-
ture of a GPU device consists of dual level hierarchy. The first level is made-up of
vector processors, termed as streaming multiprocessors (SMs) for NVIDIA GPUs and
SIMD cores for AMD GPUs. Each of the vector processor contains an array of simple
processing cores, called streaming processors (SPs). All processing cores inside one
vector processor can communicate through an on-chip user managed memory, termed
local memory for the AMD GPUs and shared memory for NVIDIA.

1.5 Thesis Organization

This thesis document consists of eight chapters in total. This – first – chapter gives a
general introduction to the work and the last chapter (chapter 8) contains the conclu-
sions and the future work. The second and third chapters of this document covers the
application specific design of customized memory for structured grid application and
its generalization. These correspond to the contributions mentioned in Section 1.3.1.
The details on the template based accelerator designs related to the contributions listed
in Section 1.3.2 can be found in chapters 4 and 5 respectively. The chapters 6 and
7 contain information on the streaming architectural simulator and the corresponding
design space explorations regarding the contributions listed in the section 1.3.3 of the
current chapter.
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1.6 Summary

1.6 Summary

Streaming accelerators are becoming widely dominant for a range of application do-
mains including the scientific, the web and the digital signal processing. These acceler-
ators are also being considered as an interesting choice from the embedded processing
to high performance computing. The basic reason of this growing popularity for these
architectures is their throughput oriented nature. However, this throughput imposes
a requirement on the continuous availability of data for the compute units. This re-
quires to maximally exploit data locality and a way to arrange data in the form of
independent parallel data sets. The software based approaches using general purpose
caches and local memories are beneficial to some extent. However, the task of efficient
data management for the throughput oriented devices could be improved by providing
application specific front-end to a streaming architecture.

The current chapter has presented an overall view of this thesis document. In the
next chapter, we will start by presenting a detailed study on a customized memory de-
sign for the structured grid application domain. The chapter will further show how such
design can be used in accelerators for a real life oil and gas exploration application.
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2

A Design of Streaming Architecture
for Structured Grid Application

Stencil computations are extensively used in structured grid applications. These have
wide spread usage in the real life. Reverse Time Migration (RTM) is one of those real
life applications that uses stencil computations. In this chapter, we present two studies:
i) A generic design of a streaming architecture for 3D-stencil. (ii) Implementation of
RTM using application specific design of the 3D-stencil.

The first study explores the design aspects for 3D-stencil implementations that
maximize the reuse of all input data on a FPGA architecture. The work focuses on the
architectural design of 3D stencils with the form n×(n+1)×n, where n = {2, 4, 6, 8}.
The performance of the architecture is evaluated using two design approaches, “Multi-
volume” and “Single-Volume”. When n = 8, the designs achieve a sustained through-
put of 55.5 GFLOPS in the “Single-Volume” approach and 103 GFLOPS in the “Multi-
Volume” design approach in a 100-200MHz multi-rate implementation on a Virtex-4
LX200 FPGA. This corresponds to a stencil data delivery of 1500 bytes/cycle and 2800
bytes/cycle respectively. The implementation is analyzed and compared to two CPU
cache approaches and to the statically scheduled local stores on the IBM PowerXCell
8i. The FPGA approaches designed here achieve much higher bandwidth despite the
FPGA device being the least recent of the chips considered. These numbers show how

1
Chapter 2 is based on the publications :

(1) Exploiting Memory Customization in FPGA for 3D Stencil Computations;
Muhammad Shafiq, Miquel Pericas, Raul de la Cruz, Mauricio Araya-Polo, Nacho Navarro and Eduard Ayguade appeared in IEEE ICFPT December 2009, Sydney, Australia
(2) Assessing Accelerator based HPC Reverse Time Migration; Mauricio Araya Polo, Javier Cabezas, Mauricio Hanzich, Felix Rubio, Enric Morancho, Isaac Gelado,
Muhammad Shafiq, Miquel Pericas, Jose Maria Cela, Eduard Ayguade, Mateo Valero appeared in IEEE Journal TPDS, Special Issue January 2011
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a custom memory organization can provide large data throughput when implementing

3D stencil kernels.

The second study shows the mapping of RTM on the reconfigurable device. RTM

is a proven most advanced seismic imaging technique for making crucial decisions

on drilling investments. However, RTM requires vast computational power, which

somewhat hinders its practical success. Our mapping of RTM as an application spe-

cific design uses 8 × 9 × 8 specific 3D-stencil memory design. The performance of

the kernel is projected for HC-1 Convey machine. We compare the performance of

RTM algorithm on FPGA system against the implementations for Intel Harpertown,

the IBM Cell/B.E. and NVIDIA Tesla. All streaming accelerator based implementa-

tions outperform the traditional processor (Intel Harpertown) in terms of performance

(10x), but at the cost of huge development effort. GPU remains the best between the

accelerator based implementations. These results show that streaming accelerators are

well positioned platforms for these kind of workloads.

2.1 High Performance Computing for Structured Grids

The necessity for High Performance Computing (HPC) will keep increasing as there is

always a problem that needs more computational power than currently available. How-

ever, the last years technological issues have put an end to frequency scaling, and hence

to traditional single-processor architectures. Thus, processors designers and applica-

tion developers have turned to multi-core architectures and accelerators in the search

for performance. During this quest, one of the possible solution found for the new

HPC generation hardware is to use reconfigurable logic device (e.g. Xilinx FPGAs).

These devices use a design approach based on configurable hardware [23]. Inside an

FPGA, the hardware logical layout is configured before doing the computation, usually

by generating a custom computation unit and replicating it as many times as possible.

This allows FPGAs to achieve higher performance even while running at frequencies

far below ISA processors or accelerators. However, this performance does not come

for free: the development cost increases. As these architectures are all different from

traditional homogeneous processors, they have their own particularities. Considerable

effort must be invested to adapt the algorithm to the architectural features.
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Reverse Time Migration (RTM) [24] is the structured grid application that we con-

sider as a case study for the application specific design in this chapter. RTM imple-

ments an algorithm based on the calculation of a wave equation through a volume

representing the earth subsurface. RTM’s major strength is the capability of showing

the bottom of salt bodies at several kilometers (∼6 km) beneath the earth surface. In

order to understand the economical impact of RTM we just have to review the USA

Mineral Management Service (MMS) reports[25]. The oil reserves of the Mexican

Gulf under the salt layer are approximately 5 × 1010 barrels. Moreover the reserves

in both Atlantic coasts, Africa and South America, are also under a similar salt struc-

ture. A conservative estimation of the value of all these reserves is in the order of 1013

dollars. RTM is the key application to localize these reserves. RTM is the method

that produces the best subsurface images, however its computational cost (at least one

order of magnitude higher than others) hinders its adoption in daily industry work.

In the complete algorithm of RTM, the most time consuming and data intensive ker-

nel implements the stencil computations. Stencils use nearest neighbor computations.

These algorithms are frequently found in scientific, engineering and digital signal pro-

cessing applications. Due to their importance, these applications have been studied

in great detail. Single-dimension nearest neighbor computations are best approached

using streaming techniques. The input data is temporarily stored in a FIFO buffer and

the output is computed using the data available in the FIFO. 1D stencils are basically

single-dimension FIR filters. When stencils operate on more than one dimension, the

streaming approach is not directly applicable. In this case a combination of domain

decomposition and streaming is a better way to process the input data. Many applica-

tions involve multidimensional nearest neighbor calculations: 2D stencils are common

in image processing applications and 3D stencil computations appear, among others, in

seismic imaging and in computational electrodynamics (FDTD). As the number of di-

mensions increases, not only the number of input points per output point increases but

also memory accesses become more sparse. For this reason stencil computations easily

get memory bound and hardware caches are less efficient. The key to alleviating these

problems is to maximize the reuse of input points occurring when computing adjacent

points. For example, a 3D stencil computation operating on {x, y, z} input points will

use each point up to x×y×z times. Keeping these points in fast and specialized local

memories can considerably reduce the required external bandwidth.
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Attempts to implement 2D and 3D stencils in hardware have been presented in lit-

erature. Durbano et al. [26] were among the first to propose a FPGA implementation

of 3D stencils as part of a complete accelerator system for FDTD (Finite Difference,

Time Domain) simulation. A more detailed description of a 3D stencil FPGA imple-

mentation was presented by He et al. [27]. In this work the authors propose to exploit

data reuse by streaming the planes through multiple FIFOs. The main limitation of

these works is that they focus on so-called single-point stencils (i.e. 2 × 3 × 2 sten-

cil). Despite having been extensively studied, most real-life applications require higher

order stencils.

In the first part of the chapter, we study a generic implementation for symmet-

ric stencils of type n × (n + 1) × n where n = {2, 4, 6, 8, ..}. The contribution of

our work is twofold. First, we evaluate the impact on performance for various map-

pings of a decomposed volume to the Virtex-4 FPGA’s fine-grained distributed and

block memory system [28] and, second, we evaluate the performance in terms of inter-

nal data bandwidth achieved by our proposed 3D memory architecture in comparison

to various conventional memory organizations, including the Itanium2 cache subsys-

tem [29], the PPC970MP’s subsystem [30] and the CellBE’s scratchpad memories (the

local stores) [31] implemented by Raul de la Cruz and Mauricio Araya-Polo [32].

Exploiting data layout customization in FPGA we find that a distributed three-level

data cache implementation can considerably increase the amount of data processed per

cycle.

2.2 3D Stencil Computations

Stencils are used in numerous scientific applications like, computational fluid dynam-

ics, geometric modeling, electromagnetic, diffusion and image processing. These ap-

plications are often implemented using iterative finite-difference techniques that sweep

over a 2D or 3D grid, while performing computations called stencil on the nearest

neighbors of the current point in the grid. In a stencil operation, each point in a multi-

dimensional grid is updated with weighted contributions from a subset of its neighbors

in both time and space. In a 3D stencil, each point’s computation needs to access data

from the three axis of a volume as shown in the Figures 2.1(a) & (b) for 3D stencil
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i n t i t e r j = Size Z−a x i s ;
i n t i t e r k = Size X−a x i s * Size Z−a x i s ;

f o r ( k =4; k<Size Y−a x i s−4;k ++) / / Y−a x i s
f o r ( j =4 ; j<Size X−a x i s−4; j ++) / / X−a x i s

f o r ( i =4 ; i<Size Z−a x i s−4; i ++) / / Z−a x i s
{

i t e r = k * i t e r k + j * i t e r j + i ;

/ / STENCIL ON PLANES ( Y−AXIS )
Cp o in t =

C[ 0 ] * ( p [ i + j * i t e r j +( k−4)* i t e r k ] + p [ i + j * i t e r j +( k−3)* i t e r k ] ) +
C[ 1 ] * ( p [ i + j * i t e r j +( k−2)* i t e r k ] + p [ i + j * i t e r j +( k−1)* i t e r k ] ) +
C[ 2 ] * ( p [ i + j * i t e r j +( k +1)* i t e r k ] + p [ i + j * i t e r j +( k +2)* i t e r k ] ) +
C[ 3 ] * ( p [ i + j * i t e r j +( k +3)* i t e r k ] + p [ i + j * i t e r j +( k +4)* i t e r k ] ) ;

/ / STENCIL ON COLUMNS ( X−AXIS )
Cp o in t = Cp o in t +

C[ 4 ] * ( p [ i +( j−4)* i t e r j +k* i t e r k ] + p [ i +( j−3)* i t e r j +k* i t e r k ] ) +
C[ 5 ] * ( p [ i +( j−2)* i t e r j +k* i t e r k ] + p [ i +( j−1)* i t e r j +k* i t e r k ] ) +
C[ 6 ] * ( p [ i +( j +1)* i t e r j +k* i t e r k ] + p [ i +( j +2)* i t e r j +k* i t e r k ] ) +
C[ 7 ] * ( p [ i +( j +3)* i t e r j +k* i t e r k ] + p [ i +( j +4)* i t e r j +k* i t e r k ] ) ;

/ / STENCIL ON POINTS ( Z−AXIS )
Cp o in t = Cp o in t +

C[ 8 ] * ( p [ ( i−4)+ j * i t e r j +k* i t e r k ] + p [ ( i−3)+ j * i t e r j +k* i t e r k ] ) +
C[ 9 ] * ( p [ ( i−2)+ j * i t e r j +k* i t e r k ] + p [ ( i−1)+ j * i t e r j +k* i t e r k ] ) +
C[ 1 0 ] * ( p [ ( i +1)+ j * i t e r j +k* i t e r k ] + p [ ( i +2)+ j * i t e r j +k* i t e r k ] ) +
C[ 1 1 ] * ( p [ ( i +3)+ j * i t e r j +k* i t e r k ] + p [ ( i +4)+ j * i t e r j +k* i t e r k ] ) ;

Volume out [ i t e r ] = C po in t + C[ 1 2 ] * p [ i t e r ] ;
}

(a) (b)

Figure 2.1: Odd-symmetric 3D stencil for n=8 (8×9×8 stencil) : (a) 3D- stencil algorithm
where p[..] represents input volume and C[..] are the constants ), (b) Points access pattern
form 3-dimensions

algorithm and 3D accesses respectively. The three for loops in the algorithm corre-

spond to the accesses from the three dimensions of the input volume p[]. The constant

weights could be identified as C[] in the Figure 2.1(a). The algorithm and the stencil

access pattern show that 3D stencil computation increases the complexity not only by

increasing 3 times the number of computations but also due to the sparse data access

pattern arising from a volume linearly laid out in memory.

This work focuses on two design approaches for 3D-stencil computation cores to

compute stencils with dimensions {n × (n + 1) × n} where n: 2, 4, 6 and 8. Our

first approach is based on a “Multi-Volume” design which intends to use maximum

possible number of modules for the same stencil although by compromising the base

volume size. The base volume is the one without extension for the boundary points

in contrast to the extended volume dimensions as shown in Figure 2.2. Various base
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Stencil A:2× 3× 2 B:4× 5× 4 C:6× 7× 6 D:8× 9× 8

1 32× 256 32× 256 16× 256 16× 256

2 16× 512 16× 512 8× 512 NA
3 8× 1024 8× 1024 NA NA
4 4× 2048 NA NA NA
BRAM 276 276 256 320
BLOCKS

Table 2.1: Dimensions (Xdim× Zdim whereas Ydim=∞) for various volume decom-
positions and their BlockRAM consumption in the Multi-Volume Design Approach. Total
Data-Engines in Front-End = 3 (for n=2), 2( for n=4,6,8).

volume sizes, as shown in Table 2.1, have been used for performance evaluations.

The base volume sizes used in the “Single-Volume” approach are shown in Table 2.2.

Out of the 336 18Kb BRAM blocks present in the Virtex4-LX200, 320 blocks were

reserved for storing volume data. The rest of BRAM blocks were to meet the internal

requirement (e.g. FIFOs) of the design.

In both cases the base volume sizes (Xdim, Zdim and Ydim) as shown in the cor-

responding tables represent the {x, z} dimensions while the third dimension {y} is

streamed into the core for any number of planes (n+ 1 −→∞). In order to evaluate

performance overheads for different decompositions in these cases, we have used a

main input volume with dimensions 4096 × 2048 × 8192. This volume has been se-

lected to keep it evenly decomposable for most of the cases in Tables 2.1 and 2.2.

On the other hand, in order to compare the performance with other implementations

(Itanium2, PowerPC970 and Cell/B.E.), we have used stencil for n=8 and the input

volume is taken from an implementation of a reverse-time migration kernel [33] which

makes intensive use of the same stencil (8×9×8) to solve the partial differential wave

equation.

The input volume normally needs to be extended at its boundaries to compute the

stencil on all points lying on the boundaries of input volume. In order to accommo-

date this boundary condition for the input volume, our core architectures accepts base

volumes, extended by n/2 points in each dimension (extended base volume). Fig-

ure 2.2(b) shows input volume decomposition. Our proposed 3D-Stencil architecture

can handle any size of large volume decomposed into the “extended base volumes”.

In a decomposed volume, consecutive sub-volumes are required to be overlapped for

n/2 points in two dimensions. This decomposition of large volume into sub-volumes
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Stencil E:2× 3× 2 F:4× 5× 4 G:6× 7× 6 H:8× 9× 8

1 160× 256 96× 256 64× 256 48× 256

2 40× 1024 32× 768 32× 512 24× 512

3 20× 2048 16× 1536 16× 1024 16× 768

4 10× 4096 6× 4096 8× 2048 12× 1024

BRAM 320 306 296 300
BLOCKS

Table 2.2: Dimensions (Xdim× Zdim whereas Ydim=∞) for various volume decom-
positions and their BlockRAM consumption in the Single-Volume Design Approach. To-
tal Data-Engines in Front-End : 1
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Figure 2.2: (a) 3D-stencil core and interfaces, (b) Extended base volume, partitioned
volume and axis conventions

of extended base volumes can be processed sequentially with same processing unit or
it can be distributed over a set of processing elements for parallel computation. For
a clearer picture, the convention used to understand the axis of the volume is shown
in Figure 2.2(b) which mentions: Y-axis (planes in the volume), X-axis (columns in a
Plane), and Z-axis (points in a column).

It is apparent from the Figures 2.1(b) that the 3D stencil computations need 3 × n

operands (n operands from each axis) before it can fully compute one point of the
output volume. In addition to these 3 × n operands, an operand corresponding to the
central point is also required. Since our 3D-stencil core is designed to compute single
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precision floating point data or 32 bit integer operands, the core needs (3× n+ 1)× 4

bytes for each computed point. Besides this large data requirement, it needs 3×n/2+

1 multiplications and 3× n addition operations for computing one output point.

Since stencil computations sweep on consecutive neighboring points in all direc-

tions, with a specific arrangement an extensive data reuse is possible. In our case,

an exclusively accessible arrangement of data for minimum n + 1 consecutive planes

corresponding to Y-axis makes it feasible to get all operands needed from Y-axis and

as well for other two axis. Thus, an architecture with specialized data layout can be

designed which makes available all required operands from X-axis and Z-axis by utiliz-

ing previously fetched data from Y-axis to compute a single point. Such architecture

can sustain the availability of all input operands to compute a point just by fetching

only one new operand from Y-axis rather than fetching {3 × n + 1} operands from

three axis. This means that the architecture for specialized data layout would give a

(3 × n + 1)-fold increase in data bandwidth at the input of Back-End compared to

the input bandwidth of the data Front End. For example, a fetch cycle with M new

operands can ideally increase the data bandwidth up to ((3× n+1)×M) times at the

input of the Back-End for the stencil computation. However, the practically achievable

external–to–core bandwidth normally remains one of the major factors that limit the

scaling of the core architecture.

2.3 3D Memory Organizations for Stencil Computations
in Reconfigurable Logic

In this section we present a generalized data engine for algorithms based on 3D sten-

cils. The 3D-Stencil core designs are based on three main modules: the Front-End, the

Back-End and the Controller. The architecture of every module can be scaled accord-

ing to the available external–to–core data bandwidth and on-chip resources of FPGA

device. Our configuration of the core is based on Virtex-4 FPGA device XC4VLX200-

10. The FPGA is present in an SGI RASC RC100 board part of an SGI Altix 4700

system. In this configuration the FPGA can achieve a maximum external data band-

width of 3.2GBytes/Sec/Direction when using streaming DMA. A simplified view of
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the core environment is shown in Figure 2.2(a). Next we will elaborate on the structure

and working principles of each module in the 3D-Stencil core.

2.3.1 Front-End (Data-Engine)

The Role of Front-End in 3D stencil core can be seen as a specialized data cache

backing an arithmetic logic unit. The Front-End can consist of multiple Data Engines

(“Multi-volume Design” approach) or of a single Data Engine (“Single-Volume” ap-

proach). Therefore, the Data Engine is a basic building block of the Front-End. It

consists of multiple sub-modules. These sub-modules include an external memory

interface (Streaming DMA in our case), three levels of internal memory hierarchy,

circular write control and circular read control for each level of memory. Along with

management of three memory levels, the architecture offers independent read and write

ports at each level. This capability is achieved by using dual ported block RAMs. In

other words, the Data-Engine, besides streaming interface, consists of a specialized

3D memory layout and 3D write and read control corresponding to the three dimen-

sions of the input volume. The Data-Engine’s internal structure – consisting of three

memory layers (Y-layer, X-Layer and Z-Layer) – is shown in Figures 2.3(a) and (b).

The architecture shown in the Figure 2.3(b) is a subset of the architecture shown in

Figure 2.3(a). This subset implements a 8 × 9 × 8 specific simplified memory layout

for 3D-stencil. The three memory layers (Y-layer, X-Layer and Z-Layer) implements

n+1 memory structure where n belongs to n × (n + 1) × n, for n = 8. This specific

example (Figure 2.3-b) uses one-side write and other side read at each level of dual

ported memory blocks. The 8× 9× 8 specific special purpose data engine for the 3D

stencil computation is used in our RTM mapping as discussed in the Section 2.4.2.

To exactly understand the functionality of the generic design of Data-Engine (Fig-

ures 2.3(a)), it is important to correctly understand the pattern of data required to com-

pute output points. In Figure 2.3(a), we can see exactly next to the “STREAM Read

Controller”, the first layer of memory, representing Planes corresponding to the Y-axis

of the volume (therefore named Y-layer). This first layer in the Data-Engine’s memory

hierarchy consists of 256bit × Xdim sized n + 2 dual ported block RAMs. Here the

value “Xdim” corresponds to the dimensions (Zdim, Xdim, Ydim) given in Tables 2.1

and 2.2. The architecture keeps one extra plane (n+2 structure) thus the total number
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Figure 2.3: (a) Generic architecture of Data-Engine : Implementing three memory levels
(Y-Layer, X-Layer, Z-Layer). “Pr0/Cr0” and “Pr1/Cr1“ are the plane/Column read point-
ers for lower and upper halves respectively at Y-Layer and X-Layer, (b) 8× 9× 8 specific
simplified (one-side write and other side read at each level) layout of the special purpose
data engine for the 3D stencil computation used in RTM mapping.

of planes managed is n+2. This additional (n+2)th plane is used for exclusively writ-

ing the data using both of its ports and at the same time it is possible to read all the

other n+1 planes from their two ports. This means that at any time one plane would be

working in a dual write address mode for both of its ports and all other planes would

be in a dual read address mode at the same time. However, the 8 × 9 × 8 specific ar-

chitecture shown in the Figure 2.3(b) uses only n+1 planes. Therefore, in this simple

case all planes (also columns and points) are read from one side of dual ported memory

blocks in the corresponding layer and the other side of the memory blocks are fixed

for writing. Our architecture logically splits each plane in two halves as shown in Fig-

ure 2.3(a). The two address pointers Pr0 (plane read pointer for lower half) and Pr1

(plane read pointer for upper half). This technique effectively doubles the throughput

of the Data-Engine at the cost of maintaining one extra plane inside FPGA using few

more BRAMs.

All planes in Y-Layer are sequentially writable at the time in turn when a plane’s
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status becomes n+ 2th. Other n+1 planes are possible to read in parallel. This means

that one write to Y-layer is of 256bit× 2 where factor 2 corresponds to dual port write.

A read from this layer is possible for 256bit×2×(n+1) where factor 2 is the dual port

read. The read side inherits a minimum latency of one clock cycle. The second layer

of memory is labled as Column and corresponds to X-axis of input volume (named

X-Layer) This layer has exactly the same features as that of Y-layer except that its

size is 256bit × Zdim × n+ 2 where Zdim corresponds to the dimensions given in

Tables 2.1 and 2.2. Both X-layer and Y-layer memories are created by using internal

Block RAMs of the FPGA. The third memory layer corresponds to Z-axis (Z-layer)

and it is based on FPGA registers. Its total size is 1536bits.

2.3.2 Working Principle of the Data-Engine

At host interface, input and output volume(s) are streamed into FIFOs of the 3D-Stencil

core as shown in the Figure 2.2(a). The number of streaming channels used in the

design varies according to the “Multi-Volume or Single-Volume” approach used. The

SGI Altix 4700 provides four input and four output DMA streaming channels which

are enough to support both design approaches. In order to synchronize the operation of

the Data-Engine(s) with stalls in the input/output stream, each FIFO maintains an upper

bound and lower bound to activate and stall all the data management sequences of the

Engine. The Compute-Engines in Back-End, however, always continues working if

any data is available in its pipelines.

As soon as a FIFO crosses the upper-bound limit, the corresponding Data-Engine

starts working. The Stream Interface Controller prefetches the data of extended base

volume from the external memory into the Y-layer. As soon as last plane (Y+ n/2+1) in

Y-layer starts to fill, an overlapped prefetch operation is started jointly by the circular

read controller (Planes) and circular write controller (Column) to fill the X-layer from

the Yth plane. The prefetch sequence ends by the circular write controller (Points)

after filling the Z-layer by fetching data from the Xth column. The prefetch opera-

tion is instantly followed by simultaneous reading of X, Y, Z-oprands as shown in

Figure 2.3(a) and by forwarding these operands to the Back-End through a multirate

interface (Figure 2.2).
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The prefetch operation is required at the start of every extended base volume. Af-

ter prefetch phase, computations are overlapped with data fetched from the FIFO’s to

Y-layer, Yth plane to X-layer and Xth column to Z-layer. If FIFO(s) touches a lower

bound, Data-Engine is stalled until upper bound is not reached. The writing and read-

ing for each layer continues in a round circle at its both ends. The circular write is

quite simple. For example, when finishing writing to Y+n/2+1 plane the two writing

pointers for lower and upper half of the plane are taken to the Y-n/2 plane. On write

completion to Y-n/2 the pointers are taken to Y-n/2+1 and so on. Same separate pro-

cesses of writing are valid for the other two layers. On the reading side, these layers

are accessed such that all planes, all columns and all points corresponding to the three

layers are read simultaneously in the same clock cycle. As soon as any layer is read to

its top, all pointers to its units (plane or column) are shifted by one. For example in the

case of the X-layer, the two read pointers for the X+n/2 column will become X+n/2-

1 and the pointers for the X-n/2 will become X+n/2+1 and so on. It is same for the

Y-layer but a little different in Z-layer, where data is shifted rather than the pointers.

The prefetching phase ends while starting a write to the last plane (Y+n/2+1). After

this prefetch phase, writing to a plane of layer is automatically followed by the read

cycles because write operations, which now are overlapping computations, are still

continued to fill up to the last plane. This phase difference is important for correct

data read otherwise an over-write of data is possible after an arbitrary time even due

to a minor mismatch in read and write rate. This difference in write and read rate is

possible because of some regular stalls on the read side. These stalls occur at plane

and column boundaries. Data from central (Yth) plane is forwarded to X-layer but as

soon as this plane is finished sending data to X-Layer, the plane pointer is shifted by

one, ie. Y+1 plane is now Yth plane therefore it is necessary that all data present in

X-layer must be fetched from the new plane. The same case is true for the Xth column

to the Z-layer. Therefore a latency of n × Zdim/(256 × 2) Cycles occurs after each

shift of read pointers in the Y-layer and a latency of n/2 cycles occurs at each shift of

read pointers to the X-layer.

Data-Engine utilizes between 75% to 95% of the Block RAMs and from 14% 63%

slices on Virtex-4 Lx200 device that depends upon the design approach used, stencil

size and selected decomposition dimensions.
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Figure 2.4: Architecture of Compute-Engine in the Back-End for n=8 stencil type. C(0) to
C(12) are the constant coefficient multipliers of the stencil. P0 to p23 and Cp are the input
data operands coming from Front-Engine. Cp is the central point of an odd symmetric
stencil

2.3.3 Back-End (Compute-Engine)

This module of the 3D-stencil core also scales based on the design approach (Multi-

volume or Single-Volume) used for the Front-End. Therefore the Back-End is normally

based on multiple instantiations of a Compute-Engine. Each Compute-Engine outputs

values at the rate of 1 result/cycle

The Compute-Engine works at 200MHz (Figure 2.2) which is twice the operating

frequency of Data-Engine. As shown in Figure 2.3(a), the Data-Engine can arrange

operands (Yopr, Xopr, Zopr, CP) for computing 16 points in parallel. These operands

are forwarded to the Compute-Engines in the Back-End. A multirate data interface

takes care of transacting the data (operands and results) between the Front-End and

Back-End in a correct way. The computation requirement of 16 points per cycle, posed

by the Data-Engine needs a Back-End with 8 Compute-Engines working in parallel at

twice the rate of the Front-End.

Each of the Compute-Engine in Back-End takes 3 × n + 1 variable operands

mentioned as “Pn and Cp” corresponding to “Yopr, Xopr, Zopr and CPopr”. It also

takes a number of constants coefficients mentioned as “Cn”. These constants are

fed through some of I/O registers directly writeable by a Host, outside of the FPGA.

Each Compute-Engine implements a binary tree for computing output as shown in Fig-

ure 2.4. A small FIFO is also implemented to accommodate the latency for the odd
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operand before it is added in the binary tree. A summary of sustained performance for
the FPGA implementation of the 3D memory organization with 8 × 9 × 8 3D stencil
is shown in table 2.5.

2.3.4 Control-Engine

This module is responsible for synchronizing the data flow in the whole architecture.
It takes care of synchronizing the Host Interface, the Data-Engine and the Compute-
Engines. As mentioned in subsection 2.3.1, the 3D data layout is forced to stall at
certain positions during the execution, therefore the control engine is responsible for
managing the effects of these stalls. The Control-Engine, in fact, integrates all stalls to
a single major stall at plane boundaries so that Stream Interface Controller can transfer
data in larger chunks to the input FIFO(s).

2.3.5 Evaluations

In our evaluations for FPGA based 3D-stencil kernel, we compare with the IBM Pow-
erXCell 8i and two homogeneous Processors: Itanium2 and PowerPC970.

The two main problems for the implementation of stencils on homogeneous pro-
cessors are the access pattern and the low computation/access ratio. Only in the one
direction of the 3D-stencil, the points are consecutive in memory. Therefore, the ac-
cesses to memory for the other directions are very expensive in terms of L2/L3 cache
misses. This forces us to be careful with the way the data is placed and accessed for
these systems with regular caches. One of the main approaches when trying to dimin-
ish the memory access cost is the idea of blocking [34; 35]. The goal of this technique
is to fill the cache levels in order to maximize the locality of the data being accessed,
hence diminishing the necessity of accessing slower memory levels for getting the
data. In practical terms, the blocking technique divides the dataset in blocks that fit
the memory hierarchies. The evaluated processors, their cache hierarchies and other
specifications can be obtained from table 2.3.

The Cell/B.E. is an example of a SoC with a general purpose processor (PowerPC)
and SIMD accelerators. It is a multi-core chip composed of a general 64-bit Pow-
erPC Architecture processor core (PPE) and 8 SPEs (SIMD processors) that have a
small scratch-pad memory called local store (LS). A high speed bus (EIB, Element
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PowerPC970MP Itanium2 Montecito PowerXCell 8i Virtex4-LX200

Num. cores 2 2 8 1
Frequency (GHz) 2.3 1.6 3.2 <500MHz
Peak (Single Precision GFlop/s) 36.8 25.6 204.8 NA
L2-D p/core (KB) 1024 256 512 (PPE) 756 KB (Block RAM)

256 (SPE)
L3-D (MB) NA 8 NA NA
Max.Power (Watts) 130 80 157 115
Year of Introduction 2005 2006 2008 2005

Table 2.3: Processor technical specs. Peak GFlops are obtained considering SIMD exten-
sions

Interconnect Bus) is shared among all components, allowing all of them to directly

access main memory through the Memory Interface Controller (MIC). Due to the size

of the 3D data to be processed it is necessary to split the data for parallel process-

ing. This splitting (or blocking) has to respect LS size and optimize the bandwidth.

In the Cell/B.E. based implementations, the data space is divided and scattered among

the SPEs. The 3D space is blocked in X direction, then each sub-block given to one

SPE to be processed. Y direction is again traversed by a streaming of ZxX planes.

In this architecture the memory management is programmer duty. In order to achieve

efficient scheduling of data transfers to/from the main memory and the LS, we use

double-buffering technique, as explained in [36], thus we almost completely overlap

computation time and memory transfer time.

The estimates for the maximum power required at chip level for the target architec-

tures are also shown in the table 2.3. These power estimates are taken from the power

specifications for the corresponding chip (IBM PowerXCell 8i, PowerPC970 and Ita-

nium2) boards integrated into IBM QS-22, IBM JS-21 and Altix-4700 machines re-

spectively. The FPGA power ratings are taken from the specifications of the boards for

RC100 [37] and the host in the Altix-4700 system.

2.3.6 Results and Discussion

Figure 2.5 shows the internal data throughput of the different stencil implementations

as a function of the number of frames (i.e. z, x planes). As can be seen from this

figure, a small number of frames has a large impact on the performance. This is mostly

because of the higher data latencies as compared to the stencil execution time in these
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Figure 2.5: Internal Bandwidths (Bytes/Second) achieved for Multi-Volume and Single-
Volume design approaches
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(a) Ratio: Internal BW / External BW (b) Ratio: Internal BW / External BW
(Multi-Volume Design) (Single-Volume Design)

Figure 2.6: Ratios between Internal and external Bandwidths for Multi-Volume and
Single-Volume design approaches

cases. Among the “Multi-Volume Design” implementations, D1 achieves the highest

throughput at 280 GBytes/s. Among the ”Single-Volume” designs the best configu-

ration is H4, which obtains 150 GBytes / second. The Figure 2.6 shows the ratios

between internal and external bandwidths. In this figure, higher bars indicate better

usage of external bandwidth (i.e., less overhead).

Table 2.4 presents an evaluation of the efficiency (throughput per slice) of the dif-

ferent stencil approaches. We compare the Multi-Volume approach with the Single-

Volume design. The numbers are for the best performing volume decomposition. As

expected Single-Volume designs are somewhat more efficient than the Multi-Volume

designs (6%-14%). This difference increases with higher order stencils.

Throughput data for the different processors has been collected in Table 2.5. The

table makes it evident that a big gap exists between dynamic cache hierarchies and

statically scheduled accelerators. There are about two orders of magnitude difference

between conventional processors and the considered accelerators. For the case of the

8×9×8 stencil, the impressive internal bandwidth of the FPGA (2783 bytes per cycle)

allows it even to outperform PowerXCell 8i processor despite the fact that processor

is clocked more then 30 times faster (3.2GHz vs 100MHz). Moreover, the customized

implementation of 3D-Stencil achieves the best green ratio (GFlops/watts) as com-

pared to all other best implementations based on blocking technique. Also interesting

is the fact that the Virtex4 LX200 is actually the oldest of all hardware analyzed. We
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Multi Volume (3, 2, 2, 2) Single-Volume (1, 1, 1, 1)
A:2× 3× 2 B:4× 5× 4 C:6× 7× 6 D:8× 9× 8 E:2× 3× 2 F:4× 5× 4 G:6× 7× 6 H:8× 9× 8

V4LX200 Slices (%) 40569 (46%) 39666 (45%) 52310 (59%) 64922 (73%) 12632 (14%) 18942 (21%) 25264 (28%) 31570 (35%)
Throughput per Slice 3.2410 4.031 4.1889 4.2119 3.4934 4.2835 4.6444 4.8142

MB/slice

Table 2.4: Slice counts and throughput per slice for Multi-Volume and Single-Volume
Approach. The selected domain decomposition (Tables 2.1 and 2.2) is the one delivering
the highest throughput as in Figure 2.5

.

expect to see considerable gain when using more recent Virtex-6 or Virtex-7 hardware.

PowerPC970MP Itanium2 Montecito PowerXCell 8i Virtex4-LX200 (D1 implementation)

GFLOPS 0.81 (naive) 0.5 (naive) 59.4 (blocking) 103 (blocking)
1.14 (blocking) 0.69 (blocking)

Output Points / Second 30.8× 106 18.6× 106 1605× 106 2783× 106

Operation Frequency 2.3 GHZ 1.6 GHz 3.2 GHz 100 MHz (Data)
200 MHz (Compute)

Stencil Data Throughput 3.08 GB/s 1.86 GB/s 160.5 GB/s 278 GB/s
Normalized Data Throughput 1.34 bytes/cycle 1.16 bytes/cycle 50.2 bytes/cycle 2783 bytes/cycle
Green ratio [GFlops/watts] (Blocking) 0.0087 0.0086 0.378 0.90

Table 2.5: Performance values for all Architectures when computing the 8x9x8 stencil.
Native compilers (xlc,icc) have been used at -O3 optimization level. Internal BW refers to
the bandwidth observed by the 3D stencil algorithm

It is however important to note that, despite the efficient data reuse which reduces

the external bandwidth, at such high rates, external bandwidth will also need to be very

fast. For the V4LX200 implementation, this means that 22.24 GBytes/s (11.12 GB/s

in each direction) are required to operate without stalls. High performance hardware

needs to be developed in order to provide such bandwidths. For example, our devel-

opment system (SGI Altix 4700) provides only 3.2GB/s per direction, which is only

about one fourth of the required bandwidth.

2.4 RTM Algorithm and its Mapping on FPGA

Seismic imaging tries to generate images of the terrain in order to see the geological

structures. The raw data for the seismic imaging is collected by producing acoustic

shots. Due to the fact that these acoustic shots (medium perturbation) are introduced

in different moments, we can process them independently. The most external loop of

RTM sweeps all shots. This embarrassingly parallel loop can be distributed in a cluster
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or a grid of computers. The number of shots ranges from 105 to 107, depending on the

size of the area to be analyzed. For each shot, we need to prepare the data of the

velocity model, and the proper set of seismic traces associated with the shot.

In this chapter we are only interested in the RTM algorithm needed to process one

shot, what we will call the RTM kernel. Figure 2.7 shows the pseudo-code of this

algorithm. RTM is based on solving the wave equation two times. Firstly, using as left

hand side the input shot (forward propagation), and secondly using as right hand side

the receiver’s traces (backward propagation) as shown in the Figure 2.7. Then, the two

computed wave fields are correlated at each point to obtain the image.

Forward propagation Backward propagation

input: velocity model, shots input: velocity model, receivers’ traces,
forward wavefield

output: forward wavefield output: image

1: for all time steps do
2: for all main grid do
3: compute wavefield
4: end for
5: for all source location do
6: add source wavelet
7: end for
8: for all ABC area do
9: apply ABC

10: end for
11: for all main grid do
12: store wavefield
13: end for
14: end for

1: for all time steps do
2: for all main grid do
3: compute wavefield
4: end for
5: for all receivers location do
6: add receivers data
7: end for
8: for all ABC area do
9: apply ABC

10: end for
11: for all main grid do
12: load forward wavefield,

correlate wavefields
13: end for
14: end for

Figure 2.7: The RTM Algorithm

The statements in Figure 2.7 stands for the following:

• Line 3: Computes the Laplacian operator and the time integration. Spatial dis-

cretization uses the Finite Difference method [38], and time integration uses an

explicit method. Typically, for stability conditions 103 points per each space
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dimension and 104 time-steps are needed. Also, this is the most computational

intensive step.

• Line 6: Is the source wave introduction (shot or receivers).

• Line 9: Computes the absorbing boundary conditions (ABC).

• Line 12: Does the cross-correlation between both wave fields (backward only)

and the needed I/O.

2.4.1 RTM Implementation Problems

RTM implementations have well known hotspots, on top of that, when the RTM imple-

mentation has as target platform a heterogeneous architecture, the list of those hotspots

increased in particularities but not in diversity. We can divide the hotspots into three

groups: memory, Input/Output and computation. In the next items, we will describe

these groups:

2.4.1.1 Memory

RTM is the contemporary best migration algorithm for subsalt imaging. RTM memory

consumption is related to the frequency at which the migration should be done. Higher

frequencies (e.g.: over 20-30Hz) may imply the usage of several GiB (> 10 GiB) of

memory for migrating one single shot. The total amount of required memory could

be greater than the amount available in a single computational node, forcing a domain

decomposition technique to process one shot.

A 3D Finite Differences stencil has a memory access pattern [39] that can be ob-

served in Figure 2.8 (c), the stencil is represented by the cross-shaped object (Fig-

ure 2.8(a)(b)). As can be seen from Figure 2.8 (c), only one direction (Z in that case)

has the data consecutively stored in memory, then accesses to memory for other direc-

tions is very expensive, in terms of cache misses. The stencil memory access pattern

is a main concern when designing the RTM kernel code [40], because it is strongly

dependent on the memory hierarchy structure of the target architecture. Besides, due

to the reduced size of the L1, L2 or L3 caches, blocking techniques must be applied
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Figure 2.8: (a) A generic 3D stencil structure, (b) a 3D 7-point stencil, and (c) its memory
access pattern.

to efficiently distribute the data among them [35], at least for classical multi-core plat-

forms. Moreover, modern HPC environments (e.g. Cell/B.E or SGI Altix) have a Non

Uniform Memory Access (NUMA) time, depending on the physical location of mem-

ory data. Thus, a time penalization may be paid if data is not properly distributed

among memory banks.

2.4.1.2 Input/Output

We divided the I/O problem into three categories: data size (> 1 TiB), storage lim-

itations and concurrency. On one hand, looking for high accuracy the spatial dis-

cretization may produce a huge computational domain. On the other hand, the time

discretization may imply large number of time-steps.

RTM implementations store the whole computational domain regarding the num-

ber of time-steps (line 12 in Fig 2.7), which may overwhelm the storage capacity (>

300 GiB). In order to avoid that RTM becomes an I/O bounded application, it is manda-

tory to overlap computation and I/O using asynchronous libraries. Additionally, some

data compression techniques can be used to reduce the amount of data transferred. Fi-

nally, the correlation can be performed every n steps at the expense of image quality

(we call this rate stack).

As a distributed file system is generally used for sharing the global velocity model

and seismic traces, negative behavior could be observed as the number of shots concur-

rently accessing the shared data increases. Therefore, using global file systems impose
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new constraints: the required available storage network bandwidth and the maximum

number of concurrent petitions that can be served.

2.4.1.3 Computation

In order to efficiently exploit the vectorial functional units present in modern proces-

sors, we have to overcome two main problems: the low computation vs memory access

(c/ma) ratio and the vectorization of the stencil computation. In order to use the pool

of vector registers completely, unrolling techniques are needed.

The low c/ma ratio means that many neighbor points are accessed to compute just

one central point, and even worse, many of the accessed points are not reused when

the next central point is computed. This effect is called low data locality ratio. For

instance, the generic stencil structure in Figure 2.8 (a) defines a (3 × (n × 2)) + 1

stencil. If n = 4 then 25 points are required to compute just one central point, then the

c/ma ratio is 0.04, which is far from the ideal c/ma = 1 ratio. To tackle this problem

strategies that increase data reuse must be deployed.

2.4.2 Application Specific Design of RTM

To maximize performance and minimize off-chip accesses we concentrate on maxi-

mizing data reuse in the 3D stencil. Four streams are used for the input volumes in the

forward phase (current volume, previous volume, illumination and velocity volume)

and one output stream is used for the output volume, one for the illumination and an-

other for the compressed output (only when disk writes need to be performed). In the

backward phase the illumination stream is replaced by the correlation stream.

A special purpose cache focusing on data reuse has been designed based on the

FPGA internal Block-RAM (BRAM). In the ideal case, every point of the previous

volume loaded onto the FPGAs Block-RAM would be used exactly 25 times before

it is removed from the FPGA, as there are 25 stencil computations that make use of

every point. In practice, however, the reuse ratio is slightly lower because no output is

generated for ghost points. However, one benefit of our modeled platform is its global

shared memory which allows to proceed computation without the need of communi-

cating the ghost points between time-steps. The sub-volumes are sized such that 9 con-

tiguous planes can be kept simultaneously in the BRAMs (Figure 2.3-b). These planes
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form the smallest volume that allows to compute a plane of the output sub-volume.

To complete the remaining planes of the output sub-volume two techniques are used.

First, internally, planes are streamed from the sub-volumes in Y-direction. Second,

externally, domain decomposition is used to partition the volume into sub-volumes in

the Z and X axis. This completes the computation of the whole dataset. Because the

stencil requires access to volume points from the neighboring sub-volumes, the real

sub-volume that is streamed already includes these ghost points.

The stencil data is laid out internally in the FPGA BRAM in a 3-level memory hier-

archy (Figure 2.3-b) from which all necessary input points can be read in a single cycle.

For the Virtex4-LX200 device present in the SGI Altix 4700, the dimensions of the ex-

tended sub-volume (i.e., including ghost points) are 200 points in the Z-dimension and

75 in the X-dimension. No output points are being computed for these ghost points.

Therefore the reuse degree is slightly smaller, 21.44 for the sub-volumes used in this

mapping. We assume the same dimensions for the Virtex-5 chip even though this chip

has more on-chip memory and might thus enable somewhat larger sub-volumes with

less overhead. Planes are streamed sequentially in the Y-direction, thus there is no

limit on the number of planes in this direction. Thanks to data reuse and an aggressive

data cache, this design can internally generate a huge supply of data. Unfortunately

this supply cannot be matched by the compute units. This happens because synthe-

sizing floating point (FP) units on FPGA chips is costly in terms of area. In general,

implementing standard floating point on FPGA should be avoided due to the complex-

ity of the IEEE754 standard, which requires, among others, continuous normalization

after each operation and handling rounding modes, NaNs, etc. For FPGA it is much

more efficient to use fixed point units, which can better map to the available DSP units.

For RTM an interesting option to reduce area is to avoid rounding, and normalization

between each partial FP operation and do it only once before the data is stored back to

main memory such as in [41]. On the other hand, the data front-end can easily scale to

much higher bandwidth [42].

In this basic implementation the compute units are standard data-flow versions of

the stencil and time integration. In one Virtex4-LX200, two compute units are imple-

mented running at twice the frequency of the data front-end. This allows the basic

design to generate 4 output points per cycle. However, factoring the plane and column
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switching overheads in results in a steady state performance of 3.14 points/cycle (1.57

results/cycle per compute unit).

Using Xilinx ISE 11.1 we conclude that even without implementing the single nor-

malization option, three compute units can be implemented in each of the 4 Virtex5

LX330 devices present in the modeled FPGA platform (CONVEY HC-1). Each com-

pute unit consists of 27 adders and 16 multipliers. We expect the data cache to run

at 150MHz and compute unit at 300 MHz. This configuration will deliver a steady

state performance of 18.84 points/cycle at 150 MHz. Thus, the FPGA model requires

36 GiB/s of input bandwidth (3 Volumes × 18.84 × 67/63 sub-volume overhead ×
4 bytes/point x 150MHz) and 11.3 GiB/s of output bandwidth. This is less than the

80 GiB/s that the coprocessor memory can provide. Given that memory access pat-

terns are completely deterministic an intelligent memory scheduler should not have

problems exploiting this bandwidth by minimizing memory bank access conflicts.

We complete the estimation by also analyzing the performance that can be ob-

tained if we also accelerate the remaining parts of the code: the absorbing boundary

conditions, the illumination, correlation and the compression/decompression.

2.4.2.1 ABC

Regarding the boundary conditions, they can be implemented using the same logic as

the 3D stencil and time integration, but streaming planes from the volume ghost points.

This way we reuse the slices of the stencil and only implement little additional logic.

This will not deliver the best performance and will not be very efficient, but since the

processing of ghost points is small compared to the stencil (less than 10% additional

points for the volumes considered here) we do not consider it critical to accelerate this

even further.

2.4.2.2 Correlation and Illumination

These operations should also be accelerated. These two embarrassingly parallel oper-

ations are very simple computationally, but they require reading and writing a whole

volume. They can be computed just after completing the stencil and time integration.

Given that reading and writing a volume to/from coprocessor memory proceeds at

11.3 GiB/s, we need 22.6 GiB/s to accommodate this operation without performance
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penalty. Overall, the computation requires 70 GiB/s, still below the 80 GiB/s maximum

bandwidth.

2.4.2.3 Compression and decompression

These steps are necessary to reduce the I/O requirements. We integrate these computa-

tionally simple operations into the stencil processing unit, both to compress a volume

during forward and store it, and to decompress it during the backward phase. This

requires 11 GiB/s more data bandwidth because a new volume is generated. Fortu-

nately these operations can be performed when no illumination and correlation are

being computed.

2.5 Results and Discussion

We have carried out experiments to verify first the numerical soundness, and second

the performance of the implementation. The experimental results show the appealing

 0

 10

 20

 30

 40

 50

 60

 250  300  350  400  450  500

E
xe

cu
tio

n 
T

im
e 

[s
]

Problem dimension [points]

NVIDIA Tesla C1060
IBM Cell/B.E.

FPGA (CONVEY HC-1)
Intel Xeon E5460

Figure 2.9: Elapsed times for computation only experiments, 100 steps, forward and back-
ward

43



2. A DESIGN OF STREAMING ARCHITECTURE FOR STRUCTURED
GRID APPLICATION

performance of the GPUs, Cell/B.E and FPGA with respect to the traditional multi-

core architecture. The results are averages over repeated runs, to eliminate spurious

effects (e.g. bus traffic, or unpredictable operating system events).

Figure 2.9 shows that all the accelerators outperform the homogeneous multi-core

from 6 (Cell/B.E.) to 24 times (Tesla C1060). The Tesla C1060 outperforms all other

accelerators because: is more recent than the Cell/B.E., its hardware characteristics

and mainly its architecture is well suited for the algorithm mapping.
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Figure 2.10: RTM forward and backward with stack 5, and high level of compression.
Hypernode is a technology proposed by IBM for providing high-performance I/O, for
instance for the Cell/B.E. platform.

It is observed during our work on RTM mappings to different accelerators that the

I/O technologies attached to the tested architectures become an important bottleneck.

This is because the accelerators deliver ready to be stored data at a rate that the I/O

is unable to handle. In order to avoid this problem, we take advantage of two main

strategies: increase the stack rate or apply data compression. Figure 2.10 depicts the

I/O requirements for some RTM test cases, where the stack has been set to 5 steps,

compression is in place and the dimension problem ranges from 256 to 512 cubic

points. As can be observed, under the mentioned conditions a Hypernode (similar to a

44



2.6 Summary

SATA 2 10000 RPM disk), can not handle the work for every accelerator, further for
GPU and FPGA cases the need for better I/O technologies is a must. If the compression
level have to be reduced, even for Cell/B.E. case there will be a severe I/O bottleneck.

2.6 Summary

In this chapter we have presented a generalized implementation of 3D-Stencil and its
specific mapping for RTM. The performance analysis of 3D stencils was presented
for various memory organizations: CPU cache hierarchies, ScratchPad Memories (the
Local Stores in the CellBE) and a distributed 3D memory scheme implemented on a
FPGA. The key to efficiency in stencil computations is to maximize data reuse fetching
input data only once. The presented FPGA implementation not only shows how this
can be achieved, it also demonstrates how this approach provides tremendous internal
bandwidth to the compute units. On a Virtex4-Lx200, the normalized bandwidth (i.e.,
bytes per cycle) is, even compared to the accumulation of the 8 CellBE SPEs, 56 times
larger when operating on the 8× 9× 8 stencil.

The performance analysis for the RTM shows that GPUs, Cell/B.E. and FPGAs
outperform traditional multi-cores by one order of magnitude. However, in general, a
great development effort is required – for this performance achievement – mainly be-
cause the programming environments are still immature. In particular, the RTM port-
ing to FPGA is the one that requires most effort. All operations need to be described in
HDL. IP cores provided by Xilinx CoreGen were used to increase productivity. How-
ever, for the future, high-level productivity tools will be critical to allow developers
harness the potential of FPGA technology.

This chapter presented case studies specific to the implementations of 3D-Stencils
in structured grid domain. The next chapter (Chapter 3) show how a 3D memory
hierarchy can be very useful for mapping different application kernels as a sub-set of
such a multi-level memory layout.
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Generalization of 3D-Memory as a
Common Memory Layout

Reconfigurable devices like FPGAs are mostly utilized for customized application de-

signs with heavily pipelined and aggressively parallel computations. However, little

focus is normally given to the FPGA memory organizations to efficiently use the data

fetched into the FPGA. This chapter presents a Front End Memory (FEM) layout based

on BRAMs and Distributed RAM for FPGA-based accelerators. The presented mem-

ory layout serves as a template for various data organizations which is in fact a step

towards the standardization of a methodology for FPGA based memory management

inside an accelerator. We present example application kernels implemented as special-

izations of the template memory layout. Further, the presented layout can be used for

Spatially Mapped-Shared Memory multi-kernel applications targeting FPGAs. This

fact is evaluated by mapping two applications, an Acoustic Wave Equation code and

an N-Body method, to three multi-kernel execution models on a Virtex-4 Lx200 de-

vice. The results show that the shared memory model for Acoustic Wave Equation code

outperforms the local and runtime reconfigured models by 1.3–1.5×, respectively. For

the N-Body method the shared model is slightly more efficient with a small number

of bodies, but for larger systems the runtime reconfigured model shows a 3× speedup

over the other two models.

1
Chapter 3 is based on the publication:

FEM : A Step Towards a Common Memory Layout for FPGA Based Accelerators; Muhammad Shafiq, Miquel Pericas, Nacho Navarro, Eduard Ayguade appeared in 20th
IEEE International Conference on Field Programmable Logic and Applications, Milano, ITALY, September 2010
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3.1 Application Specific Front-Ends

Application specific hardware designs are considered as potential candidate for accel-

erating applications by introducing specialized data paths and specialized computa-

tions as required by the application. One way to implement customized application

architectures is by using fine grained reconfigurable Field Programmable Gate Ar-

rays (FPGAs) technology. These devices normally operate at an order of magnitude

lower frequency than that of fixed logic devices. However, performance gains are pos-

sible due to parallelism and potential elimination of overheads. Since external data

bandwidth is often limited [43], it is necessary to build efficient memory management

strategies by using FPGA local memory. However, FPGA based designs like [44; 45]

and many others give only little attention to the efficient data management strategies

for on-chip data-reuse, loop-unrolling and data-movement. One principal reason is that

HDL developers do not have any application level standard view of the memory layout

that they can conceive in their designs for their applications. Therefore, with some

exceptions like [46] or [32], most of the application specific implementations remain

more focused on computations while on-chip memory is only used for lookup-data or

to stream data through simple FIFOs. This is why if we look at various FPGA based

implementations of web applications [45; 46], sequence alignment algorithms [47; 48],

signal processing kernels [32; 44; 49; 50; 51; 52] and many others, we will observe al-

most no harmony between the memory layouts used for each implementation.

This work is a step towards the harmonization of front-ends of various FPGA based

application specific architectures for an efficient arrangement of data before it is for-

warded to the compute back-ends. The main contributions of this work are:

• We present a template memory layout that implements a Front End Memory

(FEM) on FPGA for various applications.

• We show how the template memory layout can be specialized for various exam-

ple kernels.

• We evaluate the template memory layout using two applications and three ways

(Section 3.2) to map multi-kernel applications to reconfigurable hardware layout.
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3.2 Compute Models for Multi-Kernel Applications

Although much research has focused on individually accelerating compute-intensive
kernels, real HPC applications actually consist of many kernels [53]. Accelerating
these applications on hybrid CPU-FPGA machine will need to focus on the integration
of the accelerated kernels with the rest of the system in order to overcome the natural
limits expressed by Amdahl’s law. However, if porting of the full compute-intensive
section of the application to the FPGA subsystem is possible, then the remaining Host-
FPGA overheads and host computations can be mostly neglected. However, this proves
challenging because it requires to integrate multiple different kernels into a single de-
sign and to efficiently manage data.
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Figure 3.1: Compute Models that are evaluated in this work

One of the main complexities of mapping multiple kernels to an FPGA device is
how to share data across kernels. The following list describes different ways to map
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more than one kernel on an FPGA so that kernels can share data. In this chapter we

focus on a simplified machine architecture that consists of a host with main memory,

and an FPGA that can receive data streams from the main memory. The data arrange-

ment and stream generation needs to be fixed by the application. We consider that an

application is implemented on an arbitrary FPGA having enough slices to accommo-

date the target application. Figure 3.1(a) shows the machine model considered in this

design.

3.2.0.4 Full Reconfiguration (FRC)

Each kernel maps to the complete FPGA (Figure 3.1(b)) and can make use of all

BRAMs for its storage purposes. When a kernel finishes and a new kernel needs to

start, the FPGA is reconfigured and a new bitstream is loaded. This model incurs the

overheads of reconfiguration and the need to checkpoint/restore the data across recon-

figurations. The benefit of this model is that kernels can store a larger working set in

the FPGA.

3.2.0.5 Spatially Mapped-Local Memory (SM-LM)

In this model (Figure 3.1(c)), all kernels are mapped at the same time on the FPGA.

Data Storage is partitioned among the kernels so that each one has exclusive access to

its working set. This model overcomes the overheads of reconfiguration, and is simple

to implement. However, it can only store a smaller copy of local data and it may require

to move data from one local store to the next one before the following kernel can be

executed.

3.2.0.6 Spatially Mapped-Shared Memory (SM-SM)

This model is similar to the previous one, but instead of keeping local copies of data,

a shared memory model is implemented that fronts all back-ends as shown in Fig-

ure 3.1(d). This model removes the working set constraints and data movements im-

posed by the previous model. However, it has slightly increased complexity in the

design of the shared memory which can result in area overheads and slower execution

frequency.
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3.3 Front End Memory Layout For Reconfigurable Ac-
celerators

The memory layout-focused FPGA-based compute model shown in Figure 3.2(a) is

the generic block diagram of the FPGA based computing architecture pursued in our

proposal. This architectural model includes a front-end memory layout and a back-end

compute-block along with the major data-paths. The front-end memory layout deals

with the memory management issues for an accelerator while the back-end performs

computations. The front-end and the back-ends work in a tightly coupled configura-

tion, however, the flow of data inside the front-end layout can be changed as required

by the back-ends. This is shown for various examples in Section 3.3.1. In case an appli-

cation is using the FEM layout for implementation of different data-flows for different

application kernels then in order to select a data-flow control for a specific kernel, we

need to send the identification of the control-flow to the FPGA compute model. This

identification includes, but is not limited to, the type of required kernel and the size of

the data, that will be streamed from host to FPGA during the phase of execution for

selected kernel. This startup information can vary in identification parameters from

selection of one kernel to another one.

The FEM layout or a subset of the layout can be used by various application ker-

nels. The layouts provide a front-end for dynamic data organization inside the FPGA.

This front-end layout is based on three levels. Level-1 is a set Sn of n memory blocks

having depth Dl1 and width Wl1. Each memory block in this level can be accessed

to a finer granularity Gbits on the horizontal front. For example in the evaluation we

use S9, Dl1 = 4096, Wl1 = 128 and G32 or G64. The evaluation considers 32-bits or

64-bits as the basic data types for kernels. The second level (Level-2) has the same

number of blocks as in Level-1 but with different depth (Dl2 = 64) and same width

(Wl2 = 128) as that of Level-1. Moreover, at this level access granularity remains

constant and equal to that of width Wl2. The third level is based on a register set of

size 128 × k with capability to shift-right on-demand for 32 ×m bits where k and m

are arbitrary numbers chosen according to the implementation of the kernel. The third

level is implemented using distributed RAM while Levels 1 and 2 are implemented

using BlockRAMs.
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Figure 3.2: FEM based conceptual machine architecture (a) and Front-End Memory Lay-
outs for various kernels shown in the sub-figures b, c, d, e and f
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The writing to the three-level memory blocks is controlled by the Mem-in-Control

(Memory Input Control) block and the data read from this layout is controlled by the

Mem-out-Control (Memory Output Control) block. These mem-in/out-control blocks

are specialized units to support various data flows in multiple directions and up to three

dimensions corresponding to three levels according to the selection of the kernels at

compile time. These specialized memory controls can also implement conditional ex-

ecution of some states for run-time selection of different application kernels whose

data sets are part of the memory layout or a sub-set layout. These control blocks can

also use a Direct Data Transfer (DDT) Channel, shown in Figure-3.2(a), to directly

forward the stream data by bypassing the layout if needed by the kernel. The Constant

Transfer (CT) channel can be used same as DDT channel by the mem-in/out-control

to transfer constant data to the back-ends. The computed results in the back-end are

directly forwarded by the back-end control to the external memory controller and/or

sent to Mem-in-Control for saving in blocks of Level-1. All data flows are imple-

mented according to the need of an application kernel. However, FEM supports data

flow only from top to bottom i.e. from Level-1 to Level-2 and Level-2 to Level-3. Any

level can bypass its data directly to compute-block. However, skipping is not allowed

across levels which means Level-1 can not forward data to Level-3 by skipping Level-

2. Mem-in-Control allows Level-1 to be simultaneously written by both data coming

from the external memory controller as well as data being fed back from the compute

blocks. Multiple blocks can be written with the same data in parallel and all blocks at

all levels can be read in parallel. This in-fact gives FEM architecture an opportunity to

increase the internal bandwidth of the data and do parallel loop-unrolled computations.

3.3.1 Example FEM layouts for Scientific Kernels

In this section we show how several different kernels can be implemented using the

FEM layout that has just been introduced.

3.3.1.1 Digital Filters

Figure-3.2(b) corresponds to an infinite impulse response (IIR) filter. A finite impulse

response (FIR) filter can be selected as a sub-set layout by ignoring the feedback path

(pool-1, pool-2 etc.). The input data samples pass by the Input Data Block, Buffer-1
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and are arranged in fir-shifter before being forwarded to the back-end. The fir-shifter

works such that multiple sets of time shifted samples can be forwarded to back-end
for parallel computations of multiple points. For IIR, Pool-1 and Pool-2 contains the
feedback data (FIR computed data) transferred from compute-block. The FIFO buffer
(Pool-2) absorbs the multipliers’ and adders’ latencies inside Compute Block during
computations on the pool-1 data before it is added to the the pool-2 data.

3.3.1.2 Sparse Matrix-Vector Multiplication (SpMVM)

FEM can accommodate two types of memory layouts for SpMVM (SpMVMs &
SpMVMl). The difference between these two types is the size of the vector that is
kept inside the FPGA’s memory. In case of SpMVMs the maximum vector length
could be up to Dl1 × Wl1/Gbits with each entry of size Gbits. This vector would
only need to be sent once to the FPGA. Inside the FPGA seven copies of the vec-
tor are maintained as shown in Figure-3.2(c). Each copy is accessed as independent
Wl1/Gbits channels making the data flow deterministic for parallel multiplications. On
the other hand, SpMVMl stores only one copy of the vector with maximum size of
Dl1 ×Wl1/Gbits × (n − 2). This version, however, can have non-deterministic laten-
cies because requests for a data set present in the same vector block need first to be
arbitrated before being fetched and arranged into FIFOs at Level-2.

3.3.1.3 Fast Fourier Transform (1D & 2D)

The FEM layout for fast fourier transforms (FFT) is presented in Figure-3.2(d). For 2D
FFT, the size of 2D-Frame must be lesser than Dl1×Wl1/Gbits× (n−5) of Gbits sized
data elements. FEM memory layout follows the data organization concept presented
in [52] for 1D Radix-4 FFT (decimation in frequency). It further extends the same idea
for handling 2D Radix-4 FFT by enabling feedback of 1D FFT data to Level-1 and
incorporating Level-2 as a buffer for selected set of data from Level-1.

3.3.1.4 N-Body (Naive/Barnes-Hut), DFT (1D/2D) and Matrix Multiplication

The architectural layout shown in Figure-3.2(e) works as a memory structure for the
following kernels: N-Body naive/ Barnes-Hut, discrete fourier transform (1D/2D)

and matrix-vector or matrix-matrix multiplication. This layout fits for the applications
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kernels with property of large repeated interactions between various sets of data. In

these applications, in most cases, one set of data remains constant over a long period

of time before it is replaced by another set of data. In this layout a chunk of data is

pre-fetched from external memory and arranged into FPGA FEM blocks such that for

every cycle, the set of different blocks should be able to feed data as parallel operands

to the compute block in the back-end.

3.3.1.5 Acoustic Wave Equation Solver (AWE)

The AWE solver has two main kernels: Wave Front Computation (WFC) and Bound-

ary Point Computation (BPC). Figure-3.2(f) shows FEM layout for the WFC kernel for

which we use a 4-point 3D even symmetric stencil with time integration. For the BPC

kernel we use a one point 3D stencil with time integration which can be implemented

as a subset of the WFC layout. The FEM layout for AWE follows the memory orga-

nization concept given in [32]. However, there are some differences. In this work the

solver uses only 9 blocks at Level-1 and Level-2 (shown as planes and columns) while

keeping a 12 point shift register at Level-3. Writing and reading is done exclusively

for each block in the same circular read/write control for Mem-in/out-Control. This

FEM layout produces enough internal data bandwidth to accommodate two compute

modules in the back-end. The compute modules also contain a time-integration part

which only adds a latency corresponding to a new floating point module and directly

uses two more volumes in its computations forwarded through the DDT channel.

3.4 Evaluations

Two example applications, namely the 3D- Acoustic Wave Equation Solver and an

N-Body Hermite algorithm, have been mapped on the three execution models of the

FPGA based computing system. These models include Fully Reconfigurable Compute

(FRC) Model, Spatially Mapped-Local Memory (SM-LM) compute model and Spa-

tially Mapped-Shared Memory (SM-SM) model. The details on these models have

been discussed in Section-3.2. The evaluated multi-kernel applications have been im-

plemented in Verilog HDL using ISE 9.2i and tested on a Virtex-4 Lx200 [28] device,
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Table 3.1: Comparison of resources (FEM layout & Controls) required by AWE Solver
and N-Body Hermite Algorithm for the three computing models.

AWE Solver N-Body (Naive)
Total Slices Total BRAMS Approx. Slices Approx. BRAMS

FRC 17818(max) 307(max) 7518 (max) 312(max)
SM-LM 25734 322 13518 312
SM-SM 17818 307 10518 320

attached to an Altix-4700 [37] machine. Table 3.1 shows the resource usage in terms
of slices and BlockRAMs for both the applications.

3.5 Results and Discussion

In following, we discuss the results of AWE solver implementation which is followed
by a detailed discussion on the N-Body related results.

3.5.1 AWE (WFC, BPC) Solver

The acoustic wave solver has two main kernels: Wave Field Computation (WFC) and
Boundary points Computations (BPC). These kernels have similar structure and share
the following main properties:

• WFC implements a four point even symmetric 3D-Stencil while BPC is a one
point even symmetric stencil.

• WFC and BPC both involve time integration using two previous volumes.

• In the case of volume decomposition into sub-volumes, BPC kernel is required
only for the sub-volumes including the boundary points of the main volume.

The WFC kernel is implemented as shown in Figure-3.2(f). However, the other kernel
(BPC) is implemented as small subsets of the same layout by enabling the process for
only three blocks at Level-1 and Level-2 because it implements only a single point
stencil and computes only the wave front side of the boundary points. AWE uses
in total three volumes of data, of which two are directly consumed by the back-end
through the DDT channel, and only one (the current) volume is managed by the FEM
memory layout to exploit data reuse.
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The FEM layout for AWE, working at 100MHz, supports computation of 3.14

points/cycle [32]. In SM-SM model, two kernels are selected conditionally while SM-

LM model implements them in parallel. The results shown in Figure-3.3(a,b) corre-

spond to different sizes of input volumes, computed for 500 time steps. The results

show that the Full Reconfiguration (FRC) execution model performs the worst com-

pared to the other two models. This is because a fixed time for re-configuration of the

device (128ms@50MHz [28]) is needed for every time-step as many times as there are

different kernels. Further use of data fetched for WFC kernel for the boundary blocks is

not possible in FRC scheme. However, The SM-SM takes significantly less execution

time (0.66 ×) than the SM-LM model even though the SM-LM model allows the BPC

kernel to execute in parallel to WFC. This happens because the shared model can use

bigger sub-volumes with lesser overheads due to the shared memory between sub-set

layouts of the two kernels which is not the case in the local memory organization. The

device resource usages are also better for the SM-SM model than the SM-LM because

of less replication. The FEM property of common layout makes it feasible for SM-SM

model to utilize the same layout for the three kernels. Only a conditional selection is

needed at Mem-out-Control for selecting one or multiple kernels to forward the data at

an arbitrary time during the execution.

3.5.2 N-Body Hermite Algorithm

The FEM layout for N-Body naive method presented here, uses a 3-Dimensional Her-

mite Scheme. The 3D-Hermite algorithm computes movement of bodies using the

newtonian gravitational force. This kernel is compute intensive and offers the possi-

bility of high data reuse. The algorithm is based on the following three main computa-

tional kernels, executed for N bodies over an arbitrary number of time steps:

• Prediction of Bodies Movement (PBM)

• Computation of Newtonian Forces (CNF)

• Correction of Bodies Movement (CBM)

The basic description of the N-Body system is represented by a set of three pa-

rameters for each body. These include mass of body, 3D initial velocity and 3D initial
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Figure 3.3: AWE and N-Body Performance Evaluation for FRC,SM-LM and SM-SM
Compute Models

position. During execution of the algorithm, the CNF kernel generates two more pa-
rameters corresponding to 3D-acceleration and 3D-jerk and the CBM kernel produces
two additional parameters corresponding to the updated velocity and position for each
particle. In addition to this, the system also needs to maintain two parameters corre-
sponding to the old Jerk and the old acceleration for a body to be used in CBM. This
means that an active N-Body system needs to maintain eight parameters which in turn
correspond to 25 double precision data elements for each of the bodies in the system.
The FEM layout arranges bodies data in the horizontal order in sets of memory blocks
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at Level-1 such that all data corresponding to at least two bodies is accessible in the
same cycle. A system with a large number of bodies (not fitable inside BRAM) is
processed by a decomposition of the system into subgroups.

The computational complexity of PBM and CBM is O(N) while for CNF, it is
O(N2). Moreover, the computations in PBM, CNF and CBM require fetching 12,
7 and 18 data elements (with each element requiring 8 bytes), respectively, for each
body. PBM and CBM perform computations as the data arrives. This means that these
kernels do not need large storage using BRAMs. However, CNF uses BRAMs to store
the maximum possible number of bodies (i.e. mass and predicted position and velocity
parameters). We consider the accelerator to be working at 100MHz with external data
bandwidth of 1GB/s/direction for 500 time steps using various system sizes as shown
in the Figure 3.3(c,d).

In the FRC and SM-LM models, the three kernels execute sequentially. Therefore,
the data per point ratio for these models is the same, as is apparent from Figure 3.3(d).
However, in the case of the SM-SM model, the sharing of memory by kernels makes
it possible to use the four parameters for predicted values of velocity and position and
new values for acceleration and jerk from inside the accelerator. This makes the exter-
nal data per point ratio better than for FRC and SM-LM. The execution time for the
SM-SM model (Figure 3.3(c)) also performs slightly better than the other two models
for systems with a small number of bodies. Here FRC loses efficiency due to overhead
of the reconfiguration time and some latency. The SM-LM model remains inefficient
in this case (small N-Body system) due to the latency produced by PBM computations
on the first group of bodies before these can be forwarded to the CNF computational
kernel. However, for larger N-Body systems, these reconfiguration and latency factors
are negligible for FRC and SM-LM compared to the overall computation time of the
system. Moreover, the FRC model shows better execution time (3×) as compared to
other models due to the availability of full chip resources that makes it possible for
each kernel to use more compute units.
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3.6 Summary

This work is a step towards standardization of a common memory layout for FPGA
based accelerators. In this work we have presented the FEM layout for FPGA based
accelerators and shown with various examples that the idea works for a range of appli-
cation kernels. Further, the concept of a FEM based common memory layout enables
the conditional selection of multiple kernels, using the same or a subset of the layout.
This configuration has the potential to result in a shared memory computational model
which we have then compared with other execution models for two applications. The
results reveal that the shared memory model gets better performance in solving the
Acoustic Wave Equation while full reconfiguration model improves the execution time
for the computationally intensive N-Body algorithm for systems with more than 8K
bodies. However, for both applications the requirement of external data per point ratio
remains best for the shared memory model.

This chapter has presented a motivational study showing that various application
kernels can be designed by using a similar memory structure. The usability of such
a memory layout can be limited because of the fact that different application kernels
can require different data-flow paths. Therefore, all data-flows may not be possible
to model in a common way on top of a common memory layout. This motivates to
develop systems that can map different kernels on top of a common memory layout in
a generic way. This makes the basis of our next chapter which proposes a source to
source translation tool for template based design expansions targeting reconfigurable
devices.
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Template Based Design Support for
Customized Memory Accelerators
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4

The DATE System

Past research has addressed the issue of using FPGAs as accelerators for HPC sys-
tems. Such research has identified that writing low level code for the generation of
an efficient, portable and scalable architecture is challenging. We propose to increase
the level of abstraction in order to help developers of reconfigurable accelerators deal
with these three key issues. Our approach implements domain specific abstractions for
FPGA based accelerators using techniques from generic programming. In this chapter
we explain the main concepts behind our system to Design Accelerators by Template
Expansions (DATE). The DATE system can be effectively used for expanding individ-
ual kernels of an application and also for the generation of interfaces between various
kernels to implement a complete system architecture. We present evaluations for six
kernels as examples of individual kernel generation using the proposed system. Our
evaluations are mainly intended to provide a proof-of-concept. We also show the usage
of the DATE system for integration of various kernels to build a complete system based
on a Template Architecture for Reconfigurable Accelerator Designs (TARCAD).

4.1 Templates in Reconfigurable Computing

Previous research like the ones presented by Shafiq et al. [32], Lin et al. [46] and Chao
et al. [52] has shown how FPGAs can achieve high performance on certain kernels by

1
Chapter 4 is based on the following works:

(1) A Template System for the Efficient Compilation of Domain Abstractions onto Reconfigurable Computers; Muhammad Shafiq, Miquel Pericas and Eduard Ayguade
appeared in HiPEAC WRC January 2011, Heraklion, Greece
(2) A Template System for the Efficient Compilation of Domain Abstractions onto Reconfigurable Computers; Muhammad Shafiq, Miquel Pericas, Nacho Navarro and
Eduard Ayguade, Accepted for Journal of System Architecture. [Pending Publication]

63



4. THE DATE SYSTEM

customizing the hardware to the application. However, applications are getting more

and more complex, with multiple kernels and complex data arrangements. The efficient

management of the memory, compute modules and their interfaces is a task that is dif-

ficult for performance. This is because different applications exhibits different data

access patterns, forcing the architecture designers to keep a generic interface between

the memory management unit and the compute units. This results in a compromise

on the performance because of the generic way of data transactions. The performance

can be improved if data is marshaled according to application need before writing to

the local memory and then a generic interface between (local) memory and compute

units can deliver better performance by accessing aligned data. However, it is not easy

to achieve this concept even by using fully configurable devices. Many studies like

the ones by Henry [54] and Araya-Polo et al. [3] highlights that accelerating applica-

tions of various kernels is not an easy task on reconfigurable accelerators. It requires

significant effort of the application programmer to make an efficient implementation

of each kernel and as well handle an efficient flow of data between these kernels. In

our view, the implementation of individual kernels can be done in a better way by the

domain experts and application programmers may only concentrate on the flow of data

between these ready-made kernels.

Achieving notable speedups for HPC applications by using reconfigurable devices

is not the only requirement. Portability and scalability of the architectures are also of

great concern. Contemporary methods for the development of customized architec-

tures using HDLs (Hardware Description Languages) or using HLS (High-level syn-

thesis) tools allow portability and scalability of a kernel implementation to an arbitrary

extent largely dependent upon the design of the tool. However, this work proposes

to increase the level of abstraction on top of a HDL or HLS tool for ultimate genera-

tion of an RTL for a reconfigurable device. Conceptually, this gives an opportunity to

translate the domain specific code for any selected target HDL tool like Verilog [55],

VHDL [56] or for an HLS tool like ROCCC [57], GAUT [58], Autopilot [59] etc. This

makes our proposal – presented in this work – an interesting choice for better potabil-

ity and scalability by choosing from any of the supported HLS tools for mapping the

domain abstractions into a code compilable by that selected tool.

In the existing systems with high level abstrations, the most widely used are the

C++ Templates [60] for general purpose computing. The methodology of sofware ab-
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straction has also enabled domain specific libraries to be developed for dense/sparse

algebra, spectral analysis, structured grids for solving PDEs, and also parallelization

and domain decomposition [61; 62]. Similarly, Catanzaro et al. [63] from UC Berke-

ley presents case studies for source to source transformations of high level abstractions

done in productivity languages Ruby and Python to performance oriented languages

C++ and CUDA targeting multicore x86 and multicore GPUs. A recent keynote by

Truchard [64] and the work done by Bhatt et al. [65] propose LabView and MATLAB

packages respectively for describing problems in high level abstractions. Kulkarni

et al. [66] and Rubow et al. [67] present CLIFF and CHIMPP frameworks respec-

tively, both of which are a mapping of a network domain specific language “CLICK”

to FPGA platform. A qualitative study done by Vajda et al. [68] proposes language

oriented software engineering (LOSE) to create domain specific high level develop-

ment environments usable by domain experts. On the accelerators side CUDA Tem-

plates [69], VHDL generics [56] and the Xilinx CoreGen tool [70] are some examples

of the template systems and its variant forms. However, both CoreGen and VHDL

Generics suffer from the fact that substitution is performed at a level too close to the

implementation (namely at netlist level). In these conditions high level optimizations

such as loop unrolling, code hoisting or dependency analysis are not possible. Our

intention in the template based design approach is to support all problem domains in

a generic way by using both substitution and code expansion on top of a high level

programming language, allowing developers to specify domain abstractions and at the

same time generate high performance implementations.

In this work we explore the possibility of using generic programming as a way to

generate high performance FPGA implementations for individual kernels and to gen-

erate the interfaces between various kernels to be integrated into an efficient system.

The generation of kernels and the integration at the system level, both use high level

domain abstractions. Templates are used to implement domain specific constructs.

The proposed template system is used for two types of source to source translations:

i) C to C, ii) HDL to HDL. In the first case, the system offerers translations of high

level domain abstractions in the source code to a C version specific for a C to HDL

compiler. These C to HDL compilers (eg. ROCCC, GAUT etc) then further apply op-

timizations like the loop unrolling, code hoisting along with data dependency analysis
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before generating the host code. The domain experts – while writing the domain spe-

cific templates– can accommodate specific optimization directives related to the tool

by using control directives of C (e.g #ifdef, #def etc). This allows the tool directives to

be automatically inserted in the final output. In the case of HDL to HDL translations,

loop unrolling, code hoisting and dependency analysis like processing is not required.

However, the template system does a very fine job by offloading the dirty work of scal-

ing the data-paths, scaling of control structures and as well scaling the functionality

by using a template architecture for the system. In our current work, the system level

integrations use only HDLs and HDL templates.

This chapter explains the core idea of the system using the example of a simple FIR

filter. We also explain how the DATE system can be very helpful for combining various

modules in an envelop of a Template Architecture for Reconfigurable Accelerators De-

signs (TARCAD). Moreover, we evaluate the DATE system for six kernels from three

individual complex domain classes: Multidimensional Stencil, Multidimensional FFT

and Digital Filters. Further, it is also recommended to refer to our TARCAD work

[8] which is based on the template expansion system and presents further case stud-

ies from other application domains. Our evaluation are based on expansions of the

templates using DATE system in combination with the HLS and RTL tools. Different

tools use very different internal designs and their outputs can not be compared mean-

ingfully (Sarkar et al. [71]). Therefore, our evaluations are mainly intended to give a

proof-of-concept.

Memory
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Figure 4.1: Streaming Environment with programmable streaming memory controller
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4.2 Background

Our proposal on the template system for reconfigurable accelerators to support com-

plexity and minimize the glue code is based on modern programming techniques. As

a compute model that supports acceleration of full applications we will assume a vari-

ation of the streaming dataflow model. The layout of the proposed computing model

is shown in Figure 4.1. In a traditional streaming dataflow model, data is read from

memory in chunks of sequential data. These chunks are fed into the accelerator, which

processes them and generates another data stream corresponding to the result. Within

the accelerator, a pipeline of tasks processes the code, possibly making use of some

local storage for tasks such as buffering or data reuse. Thus, the complexity of (FPGA)

accelerator code is only limited by how many operations one can fit. Streaming itself

is often limited in the form of memory accesses that it can support. Therefore, in our

model we consider an external streaming memory controller to have more intelligence

and to offer data access patterns that are not only linear, but which can be programmed

with techniques with loop nests such as those described by Ketterlin et al. in [72] and

Hussain et al. in [73]. The result is similar to the decoupled access execute (DAE)

architectures proposed by Smith et al. [74] and provides a much more general execu-

tion model. Of course, many problems exist that cannot be expressed as a streaming-

accelerator problem. Problems such as database processing, tree sorting, etc, have tight

memory read-write-read cycles, little computation and very unpredictable control flow

which do not fit in this model. However, this is no way a constraint for our proposed

template system. It is just a matter of choice for a system. A non-streaming model

can be designed by selecting templates of the modules which can work efficiently for

randomly addressed accesses.

Most FPGA-based application accelerators have focused on implementing simple

kernels in FPGA and executing the remaining parts of the application in a host. The

approach works effectively if applications consist largely of a single (possibly param-

eterized) kernel or a set of kernels that can be spatially mapped on hardware provided

that the rate of synchronizations between host and accelerator is sparse enough. Many

applications do, however, not correspond to this simple model, and this is a trend that

is changing even further as mentioned by Dongarra et al. [75]. As applications evolve,

their complexity increases as new components are integrated into the code base and
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platform specific optimizations are introduced. The glue code necessary to handle

multiple components requires the developer to write control code that is difficult to

scale, manipulate and not always portable. Therefore, the focus of this work is to pro-

vide a base platform to handle these every day increasing design complexities in an

automated way but not at the cost of performance loss for the resultant reconfigurable

accelerators.

4.3 The DATE System

The DATE (Design Of Accelerators by Template Expansion) system is shown in Fig-

ure 4.2. The basic idea of the DATE system is to support the translation of template

based HLL (High Level Language) programs to a notation acceptable by an arbitrary

set of HLS (High Level Synthesis) tools or RTL (Register Transfer Level) synthesis

tools. These tools then help either individually or in a combination to generate func-

tionally equivalent hardware for a reconfigurable device. The DATE system is devel-

oped keeping in mind the contemporary and future needs of reconfigurable accelerator

designs for HPC applications. The system generates output either in C (always compat-

ible to an HLS tool) or HDL (Verilog or VHDL) forms. The dual type of output makes

the DATE system a potential tool aligned with the contemporary needs. The transla-

tion of HLL descriptions to C makes it possible to utilize the contemporary and future

outcomes from the large number of development efforts being made for a generic C

to HDL/Netlist (i.e HLS) tool. Second, it also gives an opportunity to the system to

generate Direct HDL from HLL domain abstractions for specialized architectures not

efficiently conceivable by a generic HLS tool. Inside the DATE system, our main focus

is on the Domain-Translator which is developed as a prototype by using Python and its

extensions. It is important to explain the working principle of the whole system before

understanding the focused part.

4.3.1 The DATE System : From The Front-Side

The DATE System accepts a HLL code that uses abstract constructs and methods to

implement domain specific computing. The HLL coding style for the input of the
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Figure 4.2: The Architecture of the DATE System

system follows closely the syntax and semantics of C++ language. The implementa-

tion of the front-side (language parser and AST processor) of the DATE system is not

an objective of this work. We are using command line inputs to model the data-set

coming from the front-side of the DATE System. This data-set is passed-on to the

Domain-Translator (Section 4.3.3). However, for an extended automated tool set, the

input source code will be passed through a parser at the front-side to get an abstract

syntax tree (AST). An AST-Processor will process this AST in combination with the

original source code and the directory of the domain specific templates available from

the Template-Library of the DATE system to retrieve the domain specific information

related to FBTs, DACs, Abstract Methods and other parameters. These inputs (cur-

rently as command line inputs) to the DATE system are described in the forthcoming

sections.

4.3.1.1 Functional Bucket Types (FBT)

FBTs are domain specific abstract data types which need some predefined periodic op-

erations on their data before it is forwarded to the computational parts. For example,

in the case of a simple FIR filter, every time step the data samples of type Data Type

are shifted for one sample inside a filter window so that the most recent TAP number

of samples can be used in computations. It can be noticed in this example that data

needs to go through some operations (periodic shifting in an order) before that any

computations are applied on it. This motivates to decouple data and its movements
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from computations. Therefore, the concept behind FBT is to represent a data set in

containers called Buckets along with cyclic operations (called function) on these con-

tainers before forwarding for any computations. These containers are created from

BRAMS and/or Registers and cyclic operations are performed in a state machine.

4.3.1.2 Read/Write Data Access Channels (DACs)

DACs make it possible to access data from FBTs with an arbitrary granularity and

interleaving, both defined through parameters.

4.3.1.3 Abstract Methods

The DATE system expects that the input HLL code would be using generic program-

ming constructs like class templates, function templates, etc. Therefore, the abstract

methods declared in HLL code and available in the Template Library of the DATE

system are forwarded to the Domain-Translator (more details in Section 4.3.3). Any

procedural methods used inside the HLL code would need to pass through the HLS

tool directly as shown by the block “Generic C Algorithm” in Figure 4.2.

4.3.1.4 Parameter Set

The translation process also requires the related parameters, arguments and type spec-

ifiers from the HLL source to expand and generate the code for FBT’s, DACs and

Abstract Methods.

4.3.1.5 System I/O

In the case of the system I/O, currently the DATE system considers that the global

memory access by the reconfigurable accelerator is based on a programmable stream-

ing memory controller (Figure 4.1) based on the proposal of Hussain et al. [10]. The

controller fetches complete data patterns and forward them to the accelerator as data

stream.
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4.3.1.6 The Translations

The Buckets in FBTs are translated to dual ported memory modules which are accessi-

ble independently on one side by the system I/O for streamed data and from the other

side by the Data Access Channels (DACs). The DACs are translated to the internal

data and address buses. The abstract methods access data from the FBTs in a pattern

through the DACs. This data access functionality of the DACs is translated to the be-

havior of the bus controller inside the hardware of an abstract method. The abstract

methods are also kept as function templates in the template library of the DATE system

and these are expanded according to the type of the domain to which the methods be-

long to. The example shown in Figure 4.3 helps to clarify the domain abstracted HLL

mappings done during the translation process. This example presents a simple domain

of a FIR (Finite Impulse Response) filter. The FBTs are parameterized for the size of

buckets (here one bucket stores only one sample of data) i.e. int16, int32, long or an

arbitrary structure and the number of buckets (TAPs) inside the filter. Moreover, the

shift operations –required for an FIR domain– are also part of the FBT template.

4.3.1.7 DATE Input Source Code Types (Implicit and Explicit)

The FBT’s data is accessed by using the DACs. However, the DATE system differ-

entiates between the different input HLL codes or parts of a single HLL source code.

This differentiation is done on the basis of the behavior needed for the DACs and the

usage of the data fetched from FBTs using these DACs. If the behavior of DACs and

the usage of data is inherited by an abstract method corresponding to a domain then

the code is taken as an implicit implementation as shown in Figure 4.3 (Implicit Type

of HLL Code). Otherwise, if the behavior of DACs and the usage of data is done by

using control programming constructs then the DATE system considers it as an explicit

implementation as shown in Figure 4.3 (Explicit Type of HLL Code).

For implicit codes, along with the FBTs and DACs templates, the abstract methods

are also maintained as templates in the Template-Library of the DATE System. The

FBT’s templates and method’s templates are expanded separately and connected to

each other based on the DAC’s templates. The implicit expansions of templates by

the DATE System are actually the original goal of the DATE system for flexible and

efficient mapping of domain abstractions onto reconfigurable computers. However, the
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const T  c{} =: coefficients; 
const T sym=: ASYM;

FIR <FBT, T, TAP > D;          

istream_channel <T> in; 
ostream_channel <T>out; 
stream(in.start ,in.end, D);  

FIR <DAC> H (D);               
T temp;                                  
if (sym== ASYMMETRIC)     
          while   ( ! H.End) {      
             while (! c.end)          
              temp =: 
temp+c.get x H.get;          
out.write= temp;                   
  }                      

const T  c{} =:coefficients ;  
const T sym=: ASYM;

FIR < FBT, T, TAP > D;

istream_channel <T> in; 
ostream_channel <T>out; 
stream(in.start ,in.end, D);

 

out.write =: fir( D, c, sym);    
       

FBT
Templates

I/O
Templates

Methods
Templates

Global Memory Access
In/Out Channels Properties

CnC1 C2 C3

S2 … ... Sn+pSwS1

Output 

Cs are 
constant 
coefficients

Number Of Latest N samples  in FIR TDC

                                            Shift Left                                       DA-Channel
Templates

Implicit Type of HLL CodeExplicit Type of HLL Code Mappings  Accelerator's Architecture

Figure 4.3: An example of explicit and implicit coding styles with their mappings for the
generation of an accelerator architecture

DATE system is also being extended to handle the explicitly styled HLL codes. In the

case of the explicit implementations, expansions for FBTs are generated by the DATE

system but the algorithmic part having control coding constructs is forwarded to a C-to-

HDL compiler. The interface between the two parts (i.e. the FBTs and the algorithmic

HDL generated by a C-to-HDL compiler) can be written manually or integrated in an

automated way under TARCAD system (Section-4.4).

4.3.2 The DATE System : At The Back-End

The Back-End side of the DATE system (right side of Figure 4.2) generates outputs ei-

ther in C or HDL forms. This is purely dependent on the availability of a template type

(HDL-Template or C-Template) for a domain inside the Template-Library. However,

it can also be a matter of choice.

4.3.2.1 Template’s Expansion to C

The DATE system can expand HLL templates into C-codes. The generated C codes

are specifically compatible to an HLS tool. Template expansion targeting HLS uses

C-based templates corresponding to the abstract classes/methods declared in the input

source code. The ultimate goal of the generated C-code is to be later translated to some

kind of hardware description format like an HDL or a netlist, etc. As far as we know,

till this date all publicly available tools for C-to-HDL or C-to-Netlist compilation use
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a subset of the C language and add extensions for more comprehensive types. These

practical facts also need to be considered by the DATE system while expanding a

template into a C-code so that the generated code can be tested using available C

to HDL tools. Currently, we are keeping DATE output in a C format compatible to

ROCCC [57] which is an open source C-to-HDL compiler. The C-code generated

by DATE is also used for compilation by the GAUT [58] tool. We use GAUT for

evaluation purposes, therefore the coding style adjustments needed by GAUT are done

manually. However, an extension in the DATE system to cover broader range of data

types along with adjustments in function interfaces can make it work for GAUT and

other HLS tools.

4.3.2.2 Template’s Expansion to HDL

The DATE system also outputs codes in HDL format. In case of D-HDL (Direct HDL),

HDL templates are expanded by the DATE System’s from its template library (more

information in 4.3.4). However, G-HDL (HDL generated by C-to-HDL compiler) is

produced first by templates expansions to C by the DATE system and then using a C-to-

HDL tool. The I-HDL (Interface HDL) is used optionally, it is generated at Interface

Builder by selection of a template interface out of a predefined set of interfaces. I-HDL

provides an interface between the D-HDL with the G-HDL. Currently the DATE Sys-

tem generates Verilog based HDL implementations. ROCCC and GAUT both generate

VHDL modules therefore for a multi-module application we obtain mixes of Verilog

and VHDL designs. This does not make much difference because contemporary syn-

thesis tools can work well for these kinds of designs.

4.3.3 The DATE System Center: The Domain-Translator

The Domain-Translator takes as input the domain specific types for the FBTs, DACs,

Methods and related parameters (data types, arguments, constants, dimensions etc.) as

shown in Figure 4.2. In the case of implicit types of codes (Section 4.3.1), the DACs

are the parts of the template definitions of abstract methods and FBTs. However, the

DATE system extensions (more information in Section 4.4) to integrate multiple ker-

nels in one system uses separate templates for the DACs. A domain specific template
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Figure 4.4: Internal Flow of the Domain Translator

in the Template-Library can contain three types of Sub-Template definitions as shown

in Figure 4.4 and discussed below.

• System-Template: Defines the top-level functionality and template connectivity

between the system and the module.

• Module-Template: Defines a template with a data access pattern for the method

and operations on the data.

• Component-Template: Keeps templates for the components (adders / multipliers

/square roots/special functions etc.) used in the template module.

These Sub-Template definitions are maintained in either or both languages (C or

HDL) for which the ultimate translation is required. Each one of these Sub-Template

types can contain further three types of Template-Constructs.

• Overload Identifiers : Makes it possible for the Domain-Translator to choose

and insert an appropriate Component-Template for a Module-Template. The

Module-Templates of an application can also works as Component-Templates

for another application.

• Type-Names: These define the data types being utilized in a Sub-Templates.

• Code Gen Rules: Allows the identification of the part of a code and its generation

with induction of variables where required.
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The Domain-Translator uses Type-Names from the Template-Constructs for pro-

cessing the other two constructs (i.e. Overload-Identifiers and Code Gen Rules) in its

final Template-Conversion stage as shown in Figure 4.4. The Overload-Identifiers are

used to insert a code specific to the overloaded operator or the overloaded function to

make the template meaningful and functionally correct in its ultimate expansion. This

inserted code can even be a sort of a Sub-Template type or a simple function or an op-

erator. The Code Gen Rules generates code based on definitions of the rules inside the

Domain-Translator design. The Type-Names are only substituted according to the type

parameters provided by the application programmer at compile time. The Domain-

Translator treats both the C-based sub-templates and HDL-based sub-templates in the

same way. However the sub-templates are themselves should be in the same language

for which output is required.

4.3.3.1 Template Design

The DATE system isolates the domain experts from the application programmers by

raising the level of program abstractions. These high level abstractions are translated

by the DATE system to the HLS or HDL specific code facilitating the application

programmers to get efficient and fast implementations of the RTL codes for arbitrary

kernels. Otherwise, the programmer would need to write the domain specific code

manually by possibly consuming more development time as can be seen from the Fig-

ure 4.15. Moreover, the ultimate performance will also depend upon the application

programmer’s expertise for the domain under implementation. Therefore, we assume

that a template for a kernel would be designed by the kernel’s domain expert rather

than an application level programmer.

In general, the template designer should be aware of all or most of the the possible

expansions a kernel would need in the future. This makes it possible for the designer

to list the input parameters those could be used as a set of external parameters to the

DATE system for specific code generation. Moreover, the domain expert while devel-

oping the template should also be able to identify those locations of the code which

could be expanded either based on the Overload Identifiers or the Code Generation

Rules. The template designer will use all this information along with the set of Type-

Names, Overload Identifiers and the Code Generation Rules provided by the DATE
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system to implement a template for a kernel. The DATE system supports user defined

Type-Names and Overload Identifiers. However, Code Generation Rules are only used

which are defined by the DATE system. The implementation of System-Template for

a kernel is compulsory. However, writing the Module-Templates and the Component-

Templates are optional. This depends upon the choice of the designer to keep the

template based kernel designs modular or just as system level implementations.

4.3.4 The Date System : Template Library

We explain the internals of the Template Library with a simple example of a digital

filter from the FIR (Finite Impulse Response) domain as shown in Figure 4.3. Gen-

erally a FIR filter takes N of the most recent input samples, multiplies them by N

coefficients and sums the result to form one output Yn. In this example the FIR’s FBT

is parameterized for the size (i.e. Data Type like int32 or long etc.) of the Buckets

and the total number of Buckets (i.e. TAPs) inside the filter. We will consider that one

Bucket stores only one sample of data. Moreover, the FBT also contains periodic shift

operations as a property of the FIR domain.

1 t empla te < typename Data Type , typename TAP >

2 module F i l t e r C o n t a i n e r D a t a T y p e ( r e s e t , c lk , F i l t e r E n a b l e , C u r r e n t I n p u t ,
3 DelayedValues , Vl idDValues ) ;
4 i n p u t r e s e t ;
5 i n p u t c l k ;
6 i n p u t F i l t e r E n a b l e ;
7 i n p u t [ Data Type−1:0] C u r r e n t I n p u t ;
8 o u t p u t [TAP* Data Type−1:0] De layedVa lues ;
9 o u t p u t Vl idDValues ;

10 r e g De layedVa lues ;
11 r e g Vl idDValues ;
12 a lways @ ( posedge c l k o r posedge r e s e t )
13 b e g i n
14 i f ( r e s e t )
15 b e g i n
16 Vl idDValues <=1’d0 ;
17 De layedVa lues <=0;
18 end
19 e l s e b e g i n
20 i f ( F i l t e r E n a b l e ) b e g i n
21 De layedVa lues <= ( De layedVa lues << Data Type )|{TAP* Data Type−Data Type , C u r r e n t I n p u t } ;
22 end
23 Vl idDValues <= F i l t e r E n a b l e ;
24 end
25 end
26 endmodule

Figure 4.5: Direct HDL : Template for FIR Shifter Module

76



4.3 The DATE System

4.3.4.1 Example HDL Template (The FIR Domain)

Figure 4.5 shows a template for a FIR Shifter-Module maintained in the Template-
Library for generating a Direct HDL code using the DATE system. This Shifter-
Module only works for the shifting of data samples. This simple template uses the
Type-Names for adapting itself at compile time according to the declaration of the
HLL Filter class. As described in Section 4.3.3, Type-Names are only substituted by
the DATE system. Therefore, for this code expansion only the parameters passed to
the Domain-Translator corresponding to Data Type and TAP are substituted at the ap-
propriate places.

The HDL template for the System-Module of the FIR computational part is shown
in Figure 4.6. This module also uses Type Names and substitutes three parameters cor-
responding to Data Type, TAP and CONST VALUES (the constant filter coefficients).
The system module also uses Code Gen Rules to generate terms with multiplication

1 t emplate < typename Data Type , typename TAP , typename CONST VALUES >

2 module F i l t e r M e t h o d D a t a T y p e
3 ( r e s e t , c lk , F i l t e r E n a b l e , C u r r e n t I n p u t , F i l t e r O u t P u t , O u t p u t V l i d ) ;
4 i n p u t r e s e t ;
5 i n p u t c l k ;
6 i n p u t F i l t e r E n a b l e ;
7 i n p u t [ Data Type : 0 ] C u r r e n t I n p u t ;
8 o u t p u t [ Data Type−1:0] F i l t e r O u t P u t ;
9 o u t p u t O u t p u t V l i d ;

10 wi r e [TAP* Data Type−1:0] De layedVa lues ;
11 wi r e VlidDValue ;
12 r e g F i l t e r O u t P u t ;
13 r e g O u t p u t V l i d ;
14 wi r e [ Data Type : 0 ] c o e f [TAP : 0 ] ;
15 t emplate <r u l e DECLARE TAP>
16 a s s i g n c o e f [ ${D e c l a r e I n d e x }]= {${D e c l a r e V a l u e}} ;
17 template<r u l e DECLARE TAP> wire [ Data Type−1:0] i t e r ${D e c l a r e I n d e x} ;
18 template<r u l e DECLARE TAP>
19 a s s i g n i t e r ${D e c l a r e I n d e x} = DelayedVa lues [ Data Type * ( ${D e c l a r e I n d e x}+1)−1 :
20 Data Type * ${D e c l a r e I n d e x } ] ;
21 F i l t e r C o n t a i n e r D a t a T y p e f c D a t a T y p e ( r e s e t , c lk , F i l t e r E n a b l e , C u r r e n t I n p u t ,
22 DelayedValues , VlidDValue ) ;
23 a lways @ ( posedge c l k o r posedge r e s e t )
24 b e g i n
25 i f ( r e s e t ) b e g i n
26 O u t p u t V l i d <=1’d0 ;
27 F i l t e r O u t P u t <=0;
28 end
29 e l s e b e g i n
30 i f ( VlidDValue ) b e g i n
31 template<r u l e ADDA TAP>F i l t e r O u t P u t <=c o e f [ ${D e c l a r e I n d e x }]* i t e r ${D e c l a r e I n d e x}
32 end
33 Outpu tVl id<=VlidDValue ;
34 end
35 end
36 endmodule

Figure 4.6: Direct HDL : Template for FIR System Module

77



4. THE DATE SYSTEM

and addition according to the number of TAPs. In the next step, the multiplication and

addition signs in the code are taken as Overload Identifiers and activate the insertion

of related Component-Templates in the form of instantiation of modules for multipli-

ers and adders. These Component Templates further use Type Names to modify the

component parameters. For example, in the case of Xilinx tools [76] the command file

(.xco) for the CoreGen [70] is updated with the widths of input and output operands

according to the Data Type. The DATE system then uses coregen shell command to

generate the new multipliers and adders for the FIR filter. Further details on the Code-

Gen Rules are given in the next section.

4.3.4.2 Example C Template (The FIR Domain)

The Sub-Templates for Module and System for the FIR filter domain to generate a

C-code for ROCCC are shown in Figures 4.7 and 4.8. Both of the templates use Type-

Names and the CodeGen Rules but Overload Identifiers are not needed in this case.

The substitution of the Type-Names is done exactly the same way as described for

Direct HDL generation. The module template uses two rules at different places of the

code as shown in Figure 4.7. The rule <rule DECLARE TAP> generates TAP number

of variables of type ROCCC int Data Type. The rule <rule ADDA TAP> is used to

generate code based on the code following the rule declaration until it encounters the

end of line . This rule means that the Domain-Translator should “ADD right side of

the equal operator for TAP times and assign to the left side”.

In the System-Template, along with similar Template Constructs and other code

generation rules, <rule InsFCallArg TAP FIR 1> is declared to insert TAP number of

arguments in the FIR function call starting from the first place in the argument list. The

identifier Declare Index, used in different rules is considered as an internal variable of

the Domain-Translator. This internal variable is used to substitute any incremental

values in a generated code. In the FIR case, the internal variable starts from zero value

for the times the code is repeated in its generation. The Domain-Translator maintains

various types of internal variables to support the generation of variable names inside

the expanded code at compile time. All identifiers in a template starting from a “$”

sign represent some kind of internal variables of the Domain-Translator.
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1 t emplate < typename Data Type , typename TAP ,
2 typename CONST VALUES >

3 t y p e d e f i n t ROCCC intData Type ;
4 t y p e d e f s t r u c t
5 {
6 t emplate < r u l e DECLARE TAP > ROCCC intData Type A${D e c l a r e I n d e x} i n ; / / I n p u t s
7 ROCCC intData Type r e s u l t o u t ; / / O u t p u t s
8 } F I R t ;
9 F I R t FIR ( F I R t f )

10 {
11 c o n s t ROCCC intData Type T [TAP] = {CONST VALUES} ;
12 t emplate < r u l e ADDA TAP >f . r e s u l t o u t = f . A${D e c l a r e I n d e x} i n * T [ ${D e c l a r e I n d e x } ] ;
13 r e t u r n f ;
14 }

Figure 4.7: C Template : FIR Computational Module
1 t emplate < typename Data Type ,
2 typename TAP >

3 t y p e d e f i n t ROCCC intData Type ;
4 # i n c l u d e ” roccc−l i b r a r y . h ”
5 vo id f i r S y s t e m ( )
6 {
7 ROCCC intData Type A[ 1 0 ] ;
8 ROCCC intData Type B[ 1 0 ] ;
9 i n t i ;

10 ROCCC intData Type myTmp ;
11 f o r ( i = 0 ; i < 100 ; ++ i )
12 {
13 t emplate <r u l e I n s F C a l l A r g TAP FIR 1 > FIR (A[ i +${D e c l a r e I n d e x } ] ,myTmp) ;
14 B[ i ] = myTmp ;
15 }
16 }

Figure 4.8: C Template : FIR System Template

4.4 Generation of Complete System Architecture Us-
ing DATE System

An extension of the DATE system is used to map and integrate multiple kernels on

top of a template architecture TARCAD [8]. This extension of the DATE system uses

a TARCAD-Template-Library to connect various blocks of TARCAD. The motiva-

tion behind the TARCAD based design framework is to harmonize the implementation

of data-flow architectures for various FPGA-based applications written in HDLs (e.g.

Verilog, VHDL) and High Level Languages (HLL). The architectures generated by

HLL to HDL/Netlist tools (e.g. such as ROCCC [77] or GAUT [58]) also follow a

simplified and standardized compilation target, but they have been designed specif-

ically as compiler targets, which reduces their applicability to HDL designers. The

TARCAD proposal is based on an architectural template that allows to efficiently ex-

ploit FPGAs supported by a simple programming methodology. TARCAD not only

79



4. THE DATE SYSTEM

Template Based 
System

Application Specific Compute Engine (cE)

Pattern Based External Memory Interface

Application Specific Memory Layout (mL) 

Output  Data Distributer for cE

Input Data Manager for mL

Programmable 
Components

Domain 
Specific

Components

HLS
Based

Components

Accelerator
Architecture

Figure 4.9: TARCAD Conceptual Diagram

enables HDL designers to work on a highly customizable architecture, it also defines

a set of interfaces that make it attractive as a target for a HLL-to-HDL compilation

infrastructure.

As it appears from its name, TARCAD (Template Architecture for Reconfigurable

Accelerator Designs) is a proposal based on a template architecture which consists of

a number of existing modules. The user is given liberty to make a design of his desire

for local memory and compute units. The user also writes a program for TARCAD’s

central control to guide the application execution. The generation of a new architec-

ture based on TARCAD needs to precisely adjust the interfaces between the existing

modules of the TARCAD and the user modules. The adjustment of these interfaces is

not just the actual task but our template system also scales the internal data paths and

controls of the existing modules accordingly. In this regard, the DATE system can be

very useful for mapping applications correctly on such a generic architectural layout

(TARCAD).

4.4.1 DATE System for Generation of TARCAD Based Designs

A conceptual diagram of TARCAD is shown in Figure 4.9. The left side of the fig-

ure shows the basic concepts used in the TARCAD proposal. The right side of the

figure shows that the TARCAD layout can be partitioned into minimum three repre-

sentative main blocks: The External Memory Interface , The Application Specific Data

Management Block and The Algorithm Compute Back-End. A fourth important part of

TARCAD – not shown in this figure – is attributed as Event Managing Block which

acts as a supervisor for the whole TARCAD based system. These main blocks also
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4.4 Generation of Complete System Architecture Using DATE System

have their constituent sub-blocks to help in the generation of a complete working sys-

tem. More details on TARCAD architectures can be found in a work done by by Shafiq

et al. [8].

The motivation behind the TARCAD layout is to support efficient mapping of ap-

plications on TARCAD’s partitioned layout. TARCAD has its own modules (blocks)

and it also accepts modules (blocks) from the user. Therefore, specific mappings for

a designs require to physically interface different blocks and sub-block as shown from

a high level view in Figure 4.10. This interface management is important to correctly

plug-in different design modules to realize a TARCAD based design. The template

interfaces of the TARCAD can be scaled to correctly map flow of data between var-

ious modules. These interface changes for a reconfigurable device can be made only

at compile time. Therefore, we are propounding the implementation of the TARCAD

using a template expansion method based on the DATE system.

The proposed application of DATE system for TARCAD architecture generation is

based on two steps as shown in Figure 4.11. In the first step, the DATE system is used

to generate RTL or C for a HLS tool from a domain description. In case of a C-code

specific to a HLS, it is passed through the HLS tool along with any other hand written

C based modules. Once all modules are converted to physical RTLs, these are again fed

to the DATE system as a second step to map on the TARCAD layout. In order to map

the RTLs on TARCAD, the user may need to provide a set of external parameters along

with the RTLs to the DATE system. These parameters also include the identification of

various modules corresponding to various TARCAD blocks. The DATE system uses a

TARCAD based template library while building the interfaces between the input RTLs

and the existing modules of TARCAD. The availability of the DATE system allows
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to independently design specialized architectures for various parts of the kernel in a

data-flow envelope supported by the TARCAD architectural layout.

4.5 Evaluations

In our evaluation we use six example kernels from three domain abstractions: FIR fil-

ter, Multidimensional Stencil and Multidimensional FFT. The FIR domain abstractions

are already explained in Section 4.3 to present the basic methodology of the DATE sys-

tem design. In the following we discuss the remaining of the two domains.

4.5.1 A Stencil Template Scalable to Multidimensional Stencil

A stencil is a kind of filter that can be extended to multiple dimensions. The scalability

of our stencil template from the basic template declarations for the architecture shown

in Figure 4.12(a) to the evolution of the architecture presented in Figure 4.12(b) em-

phasizes the potential of the template expansion system of DATE. We only discuss the

FBT part of the basic stencil template which makes it possible to maximize the reuse

of data by its efficient handling of data. The computational template module of the

stencil is just a representative of a reduction tree consisting of simple multiplications

and additions. The FBT template for the abstract stencil domain follows the memory

organization concept given by Shafiq et al. [32] with the difference that the writing

and reading at different levels (corresponding to different dimensions) is done exclu-

sively but in parallel on both sides of the dual ported BRAM-Blocks (here Buckets).

This means that in our case, one side of the dual ported memory is fixed for writing

82



4.5 Evaluations

Bucket-N
(B-N)

. . .
Bucket-(N-2)

(B-(N-2)) ... Bucket-2
(B-2)

Bucket_1
(B_1)

                               FBT Size (Parameter)

             

Bucket  Size)

D
ata S

am
p

le
s 

1
,(2N

+
1),(3N

+
1),..

D
ata

 S
am

p
le

s 
2,(2N

+
2),(3N

+
2),..

D
a

ta S
am

ples 
,..

D
ata S

am
ples 

(N
-2),(2N

+
(N

-2)),(3N
+

(N
-2)),..

D
a

ta
 S

am
p

les 
(N

-1),(2N
+

(N
-1

)),(3N
+

(N
-1)),..

D
ata S

am
ples 

N
,2

N
,3N

,..

Input channel 
(Single Circulating  Channel)

D
ata S

a
m

p
les

 
1,(2N

+
1),(3N

+
1),..

D
ata S

a
m

p
les

 
2,(2N

+
2),(3N

+
2),..

D
ata S

am
p

le
s 

,..

D
ata

 S
am

p
les 

(N
-2),(2N

+
(N

-2)),(3
N

+
(N

-2
)),..

D
ata S

a
m

p
les

 
(N

-1),(2N
+

(N
-1)),(3N

+
(N

-1)),..

D
ata

 S
am

p
les 

N
,2N

,3
N

,..

OutPut Channels
(N Circulating  Channels)

(a)

Sample-N

(Bucket-N)
. . .

Sample-(N-2)

(Bucket-(N-2))
...

Sample-2

(Bucket-2)

Sample_1

(Bucket-1)

D
ata S

a
m

ples 
F

ro
m

 2
n

d D
im

.

Input Channel
(Single Circulating  Channel)

OutPut Channels
(N Circulating  Channels)

Column-N

(Bucket-N)
. . .

Column-(N-2)

(Bucket-(N-2))
...

Column-2

(Bucket-2)

Column_1

(Bucket-1)

C
olum

n D
ata 

F
ro

m
 3

rd D
im

.

Input channel
(Single Circulating  Channel)

OutPut Channels
(N Circulating  Channels)

Plane-N

(Bucket-N)
. . .

Plane-(N-2)

(Bucket-(N-2))
...

Plane-2

(Bucket-2)

Plane_1

(Bucket-1)

Input Channel
(Single Circulating  Channel)

OutPut Channels
(N Circulating  Channels)

Plane Data 
From External 

Source

C
O
M
P
U
T
E

B
L
O
C
K

(b)

Figure 4.12: The Basic FBT Template structure for the abstract Stencil Domain (a), Gen-
eration of FBT for 3-Dimensional Stencil (b)
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and the other side for reading. As compared to the design presented by Shafiq et al.
[32] for a fixed 8 × 9 × 8 points (odd-symmetric), 32bit, 3D-Stencil architecture, our
FBT template generates a flexible implementation of a stencil that can be 1D, 2D or
3D of various sizes stencils and handling different Data Types. The declaration of this
stencil class in HLL is parameterized with “P” point stencil, having “Dim“ number of
dimensions that uses data samples of type “T”. The FBT template for the basic sten-
cil is constructed by keeping in mind some basic requirements described in following
sections.

4.5.1.1 Stencil Type

Stencil Type is the total number of points from a dimension used in computation of
a single output point. The stencil type can be even or odd symmetric. Therefore, the
parameter Stencil Type also contains “e“ or “o“ as identifier along with the number of
points. For example, in case of 8 × 9 × 8 stencil. The stencil type will be ”8 o“. The
stencil type defines the number of Buckets in the FBT. Figure 4.12(a) shows N-Buckets
in the stencil FBT.

4.5.1.2 Stencil Dimensions

The FBT for each dimension can consist of one or more Buckets of data depending
on the stencil type. The size of these Buckets plays an important role in forming a
multidimensional stencil. For example, in a 1D stencil, each Bucket might only hold a
single sample. However, in a 2D stencil each Bucket for the second dimension can hold
a full column (i.e. all data samples from 2nd dimension). The size of the Buckets for
a dimension is described by the sample’s Data Type and the number of data samples
in the dimension. The sizes of DACs (bus connections with Buckets) should also be
expanded in compliance (i.e. size of address and data buses) with the sizes of the
Buckets.

4.5.1.3 Parallel Computations

The requirement of parallel computations defines the number of samples accessible
in one cycle from a Bucket. In this case, a Bucket can have multiple consecutive
samples accessible in the same cycle. This also makes the DACs (buses) to be defined
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Figure 4.13: 2D-FFT Architecture

as of the same size as of the Buckets widths so that all samples maintained for parallel
computations should be accessible in the same cycle.

4.5.2 2D-FFT Translations

FFT (Fast Fourier Transform) adopts Divide-and-Conquer approach in DFT (Discrete
Fourier Transform) algorithm to make the computation more efficient. In our evalua-
tions of the DATE system for the two dimensional FFT (2D-FFT), we use an architec-
ture based on two main parts, the data management part and the 1D-FFT computational
part instantiated twice as shown in Figure 4.13. The data management part maintains
internal 2D-Frames for transposed accesses by the second 1D-FFT module. The in-
ternal 2D-Frames are managed by toggling the writing (WR) and reading (RD) sides
for the horizontal and vertical order of the BRAMs on the alternative frames. This
specialized memory layout is hard to generate by HLS tool. Therefore, this memory
management part of the 2D-FFT architecture is only kept in the DATE library as a tem-
plate in the HDL. This template can be used by the DATE system to increase the size of
individual memory block and the number of independent memory blocks according to
the X and Y dimensional parameters passed to the system. The read and write widths
of the memory blocks are decided based on the width of the data samples (Data Type).

In case of the computational part (1D-FFT), C and HDL templates are built as
domain abstraction that can expand to Radix-2 implementations. The FFT (1D-FFT)
template takes two parameters: the Data Type and the Points (points to be computed
for FFT). Currently the FFT templates (C & HDL) can be expanded to 64 point compu-
tations for various data types. The Code Gen Rules operates on the Butterfly compute
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templates to expand the code for the FFT according to the parameter for the number

of points in the HLL code. The Butterfly module takes two numbers each of which has

a real and an imaginary part. Twiddle factor (real and imaginary) is an other standard

FFT parameter used in FFT computation which is declared as an array of constants and

selected for each stage of the Butterfly unit by the Overload Identifiers. The template

design uses the basic Butterfly unit instantiations by passing relevant over loaded Twid-

dle factors and sample values in different instantiations. A template based bit reversal

module with ability of multiple bit reversals for parallel access of data is expanded at

the system level module.

4.5.3 Handling Applications with Multiple Kernels

DATE system can handle multiple kernels an application working at the same time.

Currently, the DATE system only support implicit type of HLL descriptions for these

kernels. Figure 4.14 shows an example implementation of Reverse Time Migration

(RTM) technique. More details on RTM can be found in a work done by Araya-Polo

et al. [3]. This application consists of three main kernels, The Stencil Computation,

The Time Integration and The Boundary Point Computation. The first four lines in

Figure 4.14 show initializations of stencil size for the stencil kernel, stencil size for the

boundary point computational kernel, input volume size and the extended volume size

respectively. The next four lines of code shows initialization of constant coefficients

needed for the three kernels. Lines 8 and 9 declare the stencil’s FBT (specialized

stencil memory template) for feeding data to stencil and boundary point computational

kernels respectively. Lines 10 to 14 declare data streams and initialize them with the

1  const     P    =: {8,9,8};                                             
2  const     B    =: {2,3,2};                                           
3  const    Sv   =: {K,M,N};                                           
4  const    Sev  =:{K+8,M+8,N+8};                               
            

5  T  cb{} =: {boundary_point_coefficients};             
6  T  ct{}  =: {time_integration_coefficients};             
7  T  cs{} =: {stencil_coefficients};                             
 

8  STENCIL <3D, T, P > SD898;  // 4-Point Stencil     
9  STENCIL <3D, T, B > SD232;  // 1 Point Stencil 

10   istream_channel   <T,Sev> In1;                                 
11   istream_channel   <T,Sv>   In2,In3;                             
12   ostream_channel  <T,Sv>  Ost;                                 
13   ostream_channel  <T,Sv>  Oti;                                 
14   ostream_channel  <T,Sv>  Obp;                                 

15   stream(In1.start ,In1.end, Sev, SD898);                      
16   Ost =: Compute_3DStencil (SD898,T,P,cs);                
17   Oti  =: Compute_Time_Integration(Ost,In2,In3,T,ct); 
18   stream(Oti.start ,Oti.end, Sv, SD232);                     
19   Obp=: Compute_Bounday_Point(SD232,T,B,cb); 

20   stream(Obp.start ,Obp.end,Sv , OUT);

Figure 4.14: Implicit Type of HLL Description for RTM Implementation
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sizes and data type T. The streams In2 and In3 are directly fed to the Time Integration

kernel. The stream functions in lines 15,18 and 20 connect data streams to a memory or

an I/O and allow moving data into them. Lines 16,17 and 19 incorporate the template

expansions for the three kernels of the application.

4.5.4 Results and Discussion

The evaluation of the DATE System is done by using three abstract domain classes:

FIR , FFT and Multidimensional (MD) Stencil. FIR and FFT abstractions are main-

tained in the Template Library for both kinds of templates (i.e. C-templates and HDL-

templates). From the abstract class declarations for these example classes inside the

HLL source code, the DATE system generates a C code and Direct HDL code using

respective templates. The C codes generated for the abstract classes FIR and FFT are

compatible with the ROCCC C to HDL tool. However to use the GAUT tool in our

evaluation we do manual adjustments in the generated C codes to be able to correctly

compiled by the GAUT tool. In the case of the MD Stencil, we need a special FBT

architecture therefore the stencil domain keeps only the HDL template and generates

the Direct HDL code.

The real benefit of the proposed DATE System is that it helps isolate the appli-

cation programmers from the domain experts. This makes things easier for the ap-

plication programmers to port their designs to FPGAs. In our view, measuring this

”ease” can not be done realistically because of the possible huge variance in exper-

tise between the application programmers. However, the Figure 4.15 shows “ease“
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in terms of relevant development time in our case. The figure shows Normal and

Template based implementations of the kernels. The Normal case in the Figure 4.15

represents implementations either using ROCCC or HDL while the Template based

implementations use either C or HDL templates . Only in the case of 2D-FFT (for

both Normal and Template based implementations), ROCCC is used to generate 1D-

FFT HDL. This is true for the Normal C case and the C code generated from the C

Template. The data management part is written in HDL (Normal HDL and HDL Tem-

plate). Two instantiations of the HDL for 1D-FFT are used to integrate along with the

special memory organization to generate a 2D-FFT architecture. The implementation

time for the Normal implementations of different types of stencils are taken from our

work on 3D-Stencil [32] while other timings are observed during the development of

current work. The results shows that the template based design time is almost constant

for all implementations. It is evident from the Figure 4.15 that the template system

support can effectively increase the productivity of the application programmer to a

great extent . The only exceptions may occur where the kernels are pretty small but

still in such cases a novice to a C to HDL tool or the direct HDL programming can

have potential benefits from using templates and template system.

Table 4.1 shows different template parameters (Bits for Data Types, TAPS, Points)

Table 4.1: DATE System Evaluations are done on Virtex-4 LX200 device using Xilinx
ISE 11.1 tool suite. In-case of 2D-FFT, the table shows only results for the computational
FFT (1D-FFT) part with templates for both C and HDL. The memory part uses less than
5% of Block RAMs (square frames) and less than 2% of slices to implement WR and RD
toggling logic in our example case studies

FIR FFT Stencil(MD)
Bits Taps, Points Resource ROCCC GAUT Direct ROCCC GAUT Direct Direct(1D) Direct(2D) Direct(3D)

Slices 675 283 28 1383 5489 705 767 1180 1632
6-TAPs (FIR) DSP48 3 5 11 18 30 37 - - -

16 8-Point(FFT) BRAM 0 0 0 0 0 0 0 5 155
2-Point(Stencil) Freq (MHz) 134 118 270 156 99 127 330 242 156

Slices 958 674 67 7600 13868 4356 980 2275 3876
12-TAPs (FIR) DSP48 5 5 23 40 84 83 - - -
16-Point(FFT) BRAM 0 0 0 0 0 0 0 9 280
4 -Point(Stencil) Freq (MHz) 135 109 213 140 83 102 322 216 121

Slices 957 594 30 2628 12425 1740 1187 2420 4563
6 -TAPs (FIR) DSP48 12 9 11 72 72 74 - - -

32 8-Point(FFT) BRAM 0 0 0 0 0 0 0 5 155
2-Point(Stencil) Freq. 128 73 265 144 66 110 356 230 134

Slices 1529 1266 60 52056 43081 22500 2350 4751 7127
12-TAPs (FIR) DSP48 18 15 23 87 72 92 - - -
16-Point(FFT) BRAM 0 0 0 0 0 0 0 9 280
4-Point(Stencil) Freq (MHz) 128 71 205 127 56 76 290 207 101
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used as the test cases in DATE system evaluations for the correct expansions of the

example domains. The HDL codes generated by ROCCC, GAUT and the DATE sys-

tem are compiled by Xilinx ISE-11.1 tool suit for a Virtex-4 LX200 as the target de-

vice. Results for the usage of slices, DSP48 modules, BRAM Blocks and estimated

frequency (after synthesis) are shown in Table 4.1. Our goal in this work is not to com-

pare the performance of different C to HDL compilers or the manual implementations.

This largely because most of the existing C to HDL compilers are based on certain

heuristics – for source to source translations – adopted by each developer at its own in

the absence of any standard. The optimizations performed during HDL generation pro-

cess varies a lot depending on the style in which the original code is written. A minor

variation in the C-code can drastically change the performance (execution time, power

consumption or area usage etc) of the resultant HDL. Therefore, the idea of comparing

the performance or speedup from HDLs generated by different C to HDL compilers

for the same C-code is simply not valid and the results would be misleading. This fact

is also highlighted by Sarkar et al. in a recent study [71] on various HLS (High Level

synthesis) tools.

Our work presents a case study and shows the potential of the DATE system for

dealing with codes including HLL domain abstractions. However, from the data in

Table 4.1, an interesting observation is that the ROCCC tool generates architectures

with lesser variations in the operational frequencies. This means it generates balanced

pipelined architectural designs. HDLs generated from HDL based templates shows

that the Overload Identifiers use larger number of of DSP48 modules as compared to

the other tools. This can be a better approach to run systems at higher frequencies.

However, a balance in resources would be necessary when compiling multi-kernel

domain abstractions. BRAMs are not used by any kernel except the Direct-HDLs for

the special front-end memory architecture of MD Stencil and 2D-FFT. The front-end

memory templates presented here are only for the generation of FBTs as specialized

front-end architectures. Therefore the DSP48 modules are not expected to be generated

in these case.
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4.6 Summary

Domain abstractions are an efficient way of handling complex applications. In addi-
tion, these enable high performance by keeping the developers from handling low level
system details. In this work we present a template system (DATE) which uses domain
abstractions for reconfigurable accelerator designs. This work is a step towards mak-
ing the accelerator designs highly customized and more efficient. Our approach has
the potential to support the scalability of the architectural designs by just varying few
input parameters. This also enables the portability of accelerator architectures to vari-
ous sizes of small and large FPGA devices. Further, the standard output generated by
the DATE system makes it platform independent. We have evaluated the system for six
kernels from three example abstract domains (FIR, FFT and a special Stencil Archi-
tecture) and their expansions. The results are promising and motivate further research
in supporting application complexity and performance using the current approach.

This chapter briefly discuss how DATE system can be very helpful to generate
a complete system based on TARCAD, a standard architecture template for custom
reconfigurable accelerators. The next chapter of this document extends the study on
TARCAD for the complete template based accelerator designs.
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5

A Throughput Oriented Template
Based Streaming Accelerator

In the race towards computational efficiency, accelerators are achieving prominence.

Among the different types, accelerators built using reconfigurable fabric, such as FP-

GAs, have a tremendous potential due to the ability to customize the hardware to the

application. However, the lack of a standard design methodology hinders the adoption

of such devices and makes the portability and reusability across designs difficult. In

addition, generation of highly customized circuits does not integrate nicely with high

level synthesis tools.

In this work, we introduce TARCAD, a template architecture to design reconfig-

urable accelerators. TARCAD enables high customization in the data management and

compute engines while retaining a programming model based on generic programming

principles. The template provides generality and scalable performance over a range of

FPGAs. We describe the template architecture in detail and show how to implement

five important scientific kernels: MxM, Acoustic Wave Equation, FFT, SpMV and

Smith Waterman. TARCAD is compared with other High Level Synthesis models and

is evaluated against GPUs, a well-known architecture that is far less customizable and,

therefore, also easier to target from a simple and portable programming model. We

1
Chapter 5 is based on the publications:

(1) TARCAD: A Template Architecture for Reconfigurable Accelerator Designs; Muhammad Shafiq, Miquel Pericas, Nacho Navarro, Eduard Ayguade; appeared in IEEE
Symposium On application Specific Processors, San Diego, CA, 2011
(2) PPMC : A Programmable Pattern based Memory Controller Tassadaq Hussain, Muhammad Shafiq, Miquel Pericas, Nacho Navarro, Eduard Ayguade appeared in The
8th IEEE/ACM International Symposium on Applied Reconfigurable Computing, March 2012, Hong Kong
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analyze the TARCAD template and compare its efficiency on a large Xilinx Virtex-6
device to that of several recent GPU studies.

5.1 Customized Accelerators

The integration levels of current FPGA devices have advanced to the point where all
functions of a complex application kernel can be mapped in a single chip. However,
these high density FPGAs appear just like a sea of logic slices and embedded hard IP
resources such as general purpose processors, multi-ported SRAMs and DSP slices.
The final performance depends on how well the FPGA application designer maps an
application to the device. This practice is problematic for several reasons. First, it is a
low-level approach that requires a great deal of effort for mapping the complete appli-
cation. Second, reusability of modules across projects is significantly reduced. And,
last but not least, it is difficult to compare hardware implementations that adhere to
different high-level organizations and interfaces. This emphasizes the need to abstract
out these particular hardware structures in a standard architectural design framework.

The tremendous potential of reconfigurable devices to exploit both the customized
data layout inside the local memory and the intrinsic parallelism of an algorithm has
attracted many application designers to design accelerators on top of these devices. As
a result, a plethora of application kernels from the HPC domain have been ported to
these devices. However, most designs are tied to a specific environment due to the lack
of a standard design methodology. In fact, this is a long standing challenge and the fu-
ture reconfigurable devices will not become mainstream accelerators if they are unable
to solve the implementation of applications in a well defined, simple and efficient way.
The architectures generated by HLS (High Level Synthesis) tools (e.g. ROCCC [77]
or GAUT [58]) also follow a simplified and standardized compilation target, but they
have been designed specifically as compiler targets, which limits their applicability
to HDL designers. In addition, these models are too constrained to support complex
memory organizations or unorthodox compute engines which are often required to best
exploit FPGAs.

This work is a step towards the harmonization of data-flow architectures for vari-
ous FPGA-based applications written in HDLs (e.g. Verilog, VHDL) and HLLs (High
Level Languages). We propose an architectural template named TARCAD that allows
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to efficiently exploit FPGAs using a simple programming methodology. The method-

ology uses a retargetable template expansion system based on metaprogramming tech-

niques called DATE [12]. TARCAD not only enables HDL designers to work on a

highly customizable architecture, it also defines a set of interfaces that make it attrac-

tive as a target for an HLS compilation infrastructure.

TARCAD defines both a high-level model for the computation flow as well as

a strategy for organizing resources, managing the parallelism in the implementation,

and facilitating optimization and design scaling. Following DeHon’s taxonomy, these

two correspond to the fields of compute models and system architectures [78]. Simi-

larly to TARCAD, Coarse-Grained Reconfigurable Architectures (CGRA) also define

stricter compute models and system architectures. PipeRench [79], MUCCRA [80]

or ADRES [81] are examples of CGRA architectures. A related architecture is the

so-called Massively Parallel Processor Arrays (MPPA), which are similar to CGRAs,

but include complete, although very simple, processors instead of the functional units

featured within CGRAs. PACT-XPP [82] is an example of a MPPA-style architec-

ture. Defining a compute model and a system architecture are not only specific to chip

design. Several efforts have concentrated on defining environments in which to ac-

commodate FPGA chips. Kelm et al. [83] used a model based on local input/output

buffers on the accelerator with DMA support to access external memory. Brandon et

al [84] proposes a platform-independent approach by managing virtual address space

inside their accelerator. Several commercially available machines like the SGI Altix-

4700 [37] or the Convey HC-1 [85] propose system level models to accelerate applica-

tion kernels using FPGAs. These models combine a CPU with one or multiple FPGAs

running over a system bus. Another option is to integrate CPU and FPGA directly in

a single chip. Several research projects have covered this possibility. In the Chimaera

architecture [86], the accelerator targets special instructions that tell the microproces-

sor to execute the accelerator function. The accelerator in Molen processor [87] uses

some exchange registers which get their data from processor register file.

This chapter discusses the generic architectural layout of the TARCAD template

for reconfigurable accelerators. The proposed architecture is based on the decoupling

of the computations from the data management of the application kernels. This makes

it possible to independently design specialized architectures for both parts of the ker-

nel in a data-flow envelope supported by our architectural layout. Computation scales
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depending on the size of the FPGA or the achievable bandwidth from the specialized

memory configuration that feeds the compute part. TARCAD can also be a basis to de-

velop a Reconfigurable GPU-like architecture under a streaming programming model.

This new GPU can be highly efficient in its memory accesses by using a fully config-

urable front-end for custom memory layouts. However, the study of this architecture is

left as future work. The current work evaluates the architectural efficiency of an FPGA

device for several applications using TARCAD and compares it with GPUs. This is

an interesting comparison because both platforms require applications with data level

parallelism and control divergence independent kernels.

5.2 The TARCAD Architecture

5.2.1 Accelerator Models for Supercomputing

The TARCAD proposal targets both HDL accelerator designers by providing them

with a standard accelerator design framework, as well as HLS tool developers by giving

them a standard layout to map applications on. Furthermore, TARCAD can act as a

top model to design new ASICs or the aforementioned Reconfigurable GPUs. HLS

tools (e.g. ROCCC [77] and GAUT [58]) define an architectural framework into which

they map the algorithmic descriptions. The basic compute model for ROCCC requires

streaming data inputs from an external host. This data is stored in smart buffers before

being consumed by the compute units and then again before being sent back to main

memory. The GAUT architecture, on the other hand, provides an external interface

to access data based on data pointers. The memory model of GAUT is simple and

can keep large chunks of data using BRAM as buffer memory. GPUs are another

architecture that is nowadays highly popular. GPUs use their thread indexes to access

data from up to five dimensions. A large number of execution threads help hiding

external memory data access latencies by allowing threads to execute based on data

availability.

A simple high level view of TARCAD is shown in Figure 5.1. The microarchi-

tectural details of the TARCAD layout are presented in Figure 5.2. It is evident from

the figures that the TARCAD layout can be partitioned into four representative main

blocks and their constituent sub-blocks. A detailed description for these main blocks
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Application Specific Compute Engine (cE)

Intelligent External Memory Interface

Application Specific Memory Layout (mL) 

output  Data Distributer for cE

Input Data Manager for mL

Figure 5.1: A High Level View of TARCAD

(External Memory Interface, Application Specific Data Management Block, Algorithm

Compute Back-End and the Event Managing Block) follows.

5.2.2 The External Memory Interface

In general, the nature of accelerators is to work on large contiguous data sets or streams

of data. However, data accesses within a data set or across multiple data sets from an

algorithm are not always straight forward. Therefore, accelerators can be made more

efficient by providing some external support to manage the data accesses in a more

regular way. TARCAD supports a Programmable Memory Controller (PMC) as an

external interface to the main memory. This controller is inspired from work done by

Hussain et al. [73]. It helps to transfer pattern-organized blocks of data between the

accelerator and the global memory. Among different options, PMC improves the ac-

celerator kernel performance by providing programmable strided accesses. This makes

it possible for PMC to directly handle 1D, 2D and 3D tiling of large data sets rather

than doing the same in software at the host processor.

5.2.3 The Application Specific Data Management Block

TARCAD’s application specific management block helps arranging data for efficient

usage inside the computations. This block consists of four sub-blocks identified in

Figure 5.2 as Data-Set (DS) Manager, Configurable Memory Input Control, Algorithm

Specific Memory Layout and the Programmable Data Distributer. Out of these sub-

blocks, the Algorithm Specific Memory Layout (mL) plays a central role in designing
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an efficient accelerator by providing rearrangement and reuse of data for the compute

blocks. The memory layouts can be common for various applications as shown by

Shafiq et al. [11]. TARCAD can also adopt a similar common memory layout but in

this chapter we only consider that a memory layout for an application is customized

using the block RAMs (BRAMs) of the device.

The data writing pattern to a customized memory layout can be very different from

the reading pattern from the same layout. Let us consider a simple example of MxM

in which PMC can access matrices in row-major order from the external memory. In

the case of data for the multiplicand matrix, the internal memory layout could either be

written in the same row-major order followed by reading in the transposed (column-

major) order from the memory layout or vice versa. Therefore, TARCAD keeps sepa-

rate write and read interfaces (CFG MEM-IN-CONTROL and the Programmable Data

Distributer) to the memory layout block as shown in Figure 5.2. The preset FSM based

memory input control expects various streams of independent data sets through the

streaming FIFO channels (DS-ix). Each of the DS-ix can have multiple sub-channels

to consume the peak external bandwidth. However, all sub-channels in a DS-ix repre-

sent the same data set.

The Data-Set Manager provides a command data interface between the reconfig-

urable device and the external-to-device PMC unit. This Data-Set Manager helps to
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Figure 5.2: TARCAD architectural layout
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fill the DS-ix streaming FIFOs. On the reading side of the memory layout, the Pro-

grammable Data Distributer is used. This data distributed is also a FSM. However,
it is programmable in the sense of distributing different sets of data to the different
instantiations of the same compute block (see Section 5.2.4).

5.2.4 The Algorithm Compute Back-End

The compute Back-End consists of the Branch-Handlers, Compute Block Instantia-

tions and Configurable Memory Output Control. The compute block is the main part
of this Back-End and it can have multiple instantiations for an algorithm. Each instan-
tiation of the compute block interfaces with the programmable data distributer through
its Branch-Handler. These Branch-Handlers are similar to FIFO buffers. They support
data prefetch and help to reduce the time penalty in case of branch divergence in the
compute block.

The TARCAD architecture expects a compute block as a combination of arithmetic
compute units with minimal complexity in the flow of data inside the compute block.
All compute blocks either keep a small set of their computational results in the local
memory (LM) shareable with other instantiations or forward the results to configurable

memory output control (CFG MEM-OUT-CONTROL). CFG MEM-OUT-CONTROL

collects data from the compute blocks for specific set of output data set (DS-Ox). The
results collected at CFG MEM-OUT-CONTROL are either routed back to the global
memory by the Data-Set Manager or written back to the CFG MEM-IN-CONTROL.

5.2.5 The Event Managing Block

The role of Event Manager is to guide and monitor the kernel mapped on TARCAD.
The Event Manager can be a FSM or a simple processor with multiple interrupt in-
puts. Here we consider the Event Manager to be a FSM. In general each event in the
Event Manager guides and monitors any single phase of kernel execution. The event
manager is initialized by the user before the execution of a kernel. It holds informa-
tion like the set of events (signals from various blocks) for each phase, input/output
memory pointers and the data sizes for different data sets used in the execution of each
phase of a kernel. The Event Manager monitors the execution of the kernel and takes
actions at the appropriate event. The actions are in the form of exchanging information
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(setting/getting state data by the event manager) with all the other state machine based

blocks. The Event Manager keeps a set of counters shared in all phases while a set of

registers for each phase initialized by the user.

5.3 TARCAD Implementation

The motive behind the TARCAD layout is to support efficient mapping of application

specific accelerators onto the reconfigurable devices. Therefore, these specific map-

pings of various designs require to physically change or scale the data paths, FSMs,

the special memory layouts and the compute blocks. These changes for a reconfig-

urable device can be made only at compile time. Therefore, we are propounding the

implementation of TARCAD using a template expansion method. This is a template

metaprogramming process that generates a specific HDL of the accelerator based on

the TARCAD layout. The template expansion is provided by our prototype translator

called Design of Accelerators by Template Expansion (DATE) system [12]. This is

an in-house research tool to support template based expansions for high level domain

abstractions. The simple block diagram in Figure 5.3 shows the flow of the DATE

system. The main inputs from the user to the DATE system are annotated HDL based

template code for the compute block and the data flow definitions for the memory lay-

out. The annotations used in coding the HDL are similar to those used in the DATE

templates [12]. A set of parameters is also passed to the DATE translator to adjust

and generate other HDL design modules by using the TARCAD templates for various

blocks maintained inside the TARCAD template library. For example, some important

parameters related to the Event Manager are the total number of phases through which

a kernel will execute, the total repetitions of a phase, the maximum number of events

connected to that phase, the total number of data pointers used in the phase and the

equations for memory block accesses for each of the pointers in the phase. However,

the actual list of data pointers, the monitoring and activation events and the event’s

target blocks are initialized using special commands directly by the Data Set manager

at the execution startup or during the runtime.
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Compute Unit's 
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Figure 5.3: TARCAD Implementation: Environment of the DATE System

5.4 Application Kernels on TARCAD

The TARCAD layout can be mapped for all kinds of application kernels. The following

section presents some example application kernels mapped on TARCAD.

5.4.1 Matrix-Matrix Multiplication (MxM)

Matrix-Matrix multiplication offers numerous design possibilities. Here we use a

memory layout and compute block which are efficient for large sized matrices. The

matrices are accessed in the same “row major order“ from the external memory.

As shown in the Figure 5.4 (a), matrices A and B are fetched in the order of one

row and multiple columns. The process of fetching matrices’ data and writing the re-

sults back is managed by the Event Manager with the help of the Data Set Manager

and CFG MEM-IN/OUT-Controls. A small piece of pseudo code which represents the

Event Manager FSM for the data fetch requests is shown in Figure 5.4 (b). In order to

make it clear, the FSM actions are non-blocking (i.e simultaneous but based on con-

ditions) and the purpose of the sequential pseudo code is just to give the basic idea of

the mechanism. The structure of this FSM already exists as a template in the DATE

Translator library (Figure 5.3). However, an arbitrary number of registers to keep ker-

nel specific information are created from the parameterized information at translation

time. For example in Figure 5.4 (b), ISa and ISb are registers created for the initial

source pointers to access matrices from external memory. FSa and FSb are the tuple

registers for the fetch source pointers (the current pointers). FSaz and FSbz repre-

sent the registers for the fetch sizes of data. The source size registers are mentioned

as SSra and SSmb. The external parameters to the DATE System also include simple

equations to generate data accesses in big chunks, like “FSa = ISa + i × SSra“

where “i“ is an internal incremental variable. The parameterized inputs also create two
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1   ISa     =  A_pointer
2   ISb     = B_pointer  
3   SSra   = A_row_size
4   SSmb = B_matrix_size
5   loop(EVre) :
6   if (EVrr) : i=0 ; i++
7   FSa   = ISa + i x SSra
8   FSaz = SSra 
9   FSb   = ISb
10 FSbz = SSmb
11 end_if   
12 end_loop 

(a) (b)

Figure 5.4: MxM : (a) Matrices elements’ distribution into application specific memory
layout and (b) Pseudo code for matrices data accesses by the Event Manager

events, the ”row request event“ (EVrr) and the “rows end event“ (EVre) coming from

the CFG MEM-IN-Control and CFG MEM-OUT-Control respectively. These events

are monitored by the Event Manager.

At runtime, the FSM of the Event Manager corresponding to the pseudo code

shown in Figure 5.4 (b) initializes the registers ISa, ISb, SSra and SSrb. This is done by

using special initialization commands from an external host. These commands are de-

coded by the DATA Set Manager and forwarded to the Event Manager. The DATA Set

Manager can also hold multiple requests from the Event Manager and forward these

requests consecutively to the programmable memory controller (PMC). As in lines 5

and 6 of the pseudo code, the Event Manager monitors the event signals EVrr and EVre

and sends the tuples of data for the external memory fetch pointers and their sizes to

the Data Set Manager along with necessary control signals. This starts the fetching

of data by the PMC from both matrices A and B from external memory. The physical

data transactions are directly handled by the Data Set Manager and the CFG MEM-

IN/OUT-Controls. The FSMs at CFG MEM-IN/OUT-Controls are also built based on

their own parameterized information and take care of the generation of the events EVrr

and EVre at the appropriate execution time.

During the run, one row of Matrix A is fetched from the external memory into a

single circular buffer and used element by element in each cycle while the fetched row

from Matrix B is scattered around the multiple circular buffers equal to the number of

compute block instantiations in the back-end. Therefore, the dot product of an element

from the row of Matrix A is done with multiple columns of Matrix B. Each instantiation
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of the compute block accumulates the results for the element wise dot product of a row

(Matrix A) and a column (Matrix B).

5.4.2 Acoustic Wave Equation (AWE)

A common method to solve the Acoustic Wave Equation (AWE) numerically consists

of applying a stencil operator followed by a time integration step. A detailed descrip-

tion of the AWE solver and its implementations is provided by Araya et al. [3]. In our

TARCAD based mapping of the AWE solver, the two volumes of previous data sets

for the time integration part are forwarded to the compute block by using simple FIFO

channels in TARCAD’s memory layout. Our implementation of the stencil operations

follows the memory layout of an 8 × 9 × 8 odd symmetric 3D stencil as shown by

Shafiq et al. [32].

In our TARCAD based mapping of the AWE kernel, we consider real volumes of

data that are normally larger than the internal memory layout of the accelerator. There-

fore, a large input volume is partitioned into its sub-volumes as shown in Figure 5.5

(a). A sub-volume block also needs to copy the so-called ”ghost points” (input points

that belong to the neighboring sub-volume). For example, Block 7 shown in Figure 5.5

(a) needs to be fetched as an extended block that includes ghost points from the neigh-

boring Blocks 2, 6, 12 and 8. However, these ghost points are only required for the one

volume being used in stencil computations.

     
 X= N

Z=M

Y=P=∞

0

Partitioned 
Blocks

1 2 3 4

5 6 7 8 9

10 11 12 13 14

1   ISa     =  V1_pointer
2   ISb     =  V2_pointer  
3   ISc     =  V3_Pointer
4   BnV1=BnV2=BnV3= 0  
5   loop(EVbe) :
6   if (EVrb) : 
7   FSa     = ISa 
8   FBv1   = BnV1++ 
9   FSb     = ISb 
10 FBv2   = BnV2++
11 FSc     = ISc 
12 FBv3   = BnV3++
13 end_if   
14 end_loop 

(a) (b)

Figure 5.5: Odd symmetric 3D stencil: (a) Large input volume partitioned into sub vol-
umes (b) Pseudo code for sub-volume accesses by the Event Manager
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The TARCAD layout supports offloading the management of block-based data ac-

cesses to the programmable memory controller (PMC). In the AWE case, for simplic-

ity, TARCAD accesses the same pattern of the extended sub-volumes for all three input

volumes. The CFG MEM-IN-CONTROL discards the ghost points accessed for the two

volumes used in time integration. The PMC is programmed by the host to access the

three volumes of data –block by block– on the request of the Event Manager. The

example pseudo code for the FSM of the Event Manager is shown in Figure 5.5 (b).

In the first three lines of the pseudo code, the FSM initializes the initial source

pointers (ISx) for the three input volumes. In the next line, a reset to zero of block

counts (BnVx) for the sub volumes is done. Similar to the MxM kernel case, the Event

Manager of AWE monitors two events. One event, ”Block Ends“ (EVbe), is sourced

from the CFG MEM-OUT-CONTROL and ends the execution of the kernel while the

other event ”Block Request” (EVbr) comes from the CFG MEM-IN-CONTROL and

initiates a new request of the block. Inside the control structure, the FSM updates three

tuples of parameters corresponding to the three input volumes. Each tuple consists

of the base pointer of the volume (FSx) and the block number (FBvx). These tuples

of data are used by the Data-Set Manager to access external data through the pro-

grammable memory controller. The flow of data between the Data-Set Manager and

CFG MEM-IN-CONTROL is synchronized with handshake signals between the two

interfaces.
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5.4.3 Smith Waterman (SW)

The implementation of Smith Waterman algorithm results in a systolic array of pro-

cessing cells. This kind of data flow is also well suited to map on the compute blocks

of the TARCAD architecture. The left part of Figure 5.6 shows the TARCAD-based

systolic array of processing cells that results from joining a number of compute blocks

to run the SW kernel. Each of the compute blocks consists of an algorithm specific

processing cell. This processing cell, in our case, consists of the Smith Waterman

compute architecture proposed by Hasan et al. [88]. The input data for a compute

block constitutes only a single branch set that consists of Ax, By (the two sequences)

and Mup, MDiag (the top and diagonal elements) from the similarity matrix. MLD rep-

resents the current data passed through the LM to the next compute block as left side’s

Matrix M data. This data word is also passed in stair case flow to be used as a diagonal

data element.

The generic layout of the compute block in TARCAD is shown in Figure 5.6

(Right). Each compute block keeps a dual ported local memory (LM) for low-latency

communication of data with other compute blocks. Each word of this local memory

is also accompanied by a valid bit which describes the validity of the data written to

it. This valid bit is invalidated by the receiving compute block. In case the receiving

blocks are more than one then only one of them can drive the invalidation port of the

source compute block and others work synchronous to it. Inside a compute block the

LM is written as a circular buffer, therefore, the invalidation of the valid bit does not

create any read/write hazards for few (equal to number of words in LM) consecutive

cycles for the LM data between the source and destination. The width and depth of the

LM is parameterized and it can be decided at translation time. Moreover, each com-

pute block also has a local memory read and invalid control (LM R/I Ctrl) for reading

and invalidating a word of the source block’s LM. The read word is placed into a FIFO

which is readable by the compute block’s algorithm specific processing cell.

5.4.4 Fast Fourier Transform (FFT)

The TARCAD layout is flexible and can also integrate with third party cores. For the

FFT case, we show in Figure 5.7 how TARCAD interfaces with an FFT core gener-

ated by Xilinx CoreGen [70]. TARCAD interfaces and controls the single or multiple
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Figure 5.7: Mapping an existing FFT core on TARCAD

input/output streams of data corresponding to one or more instantiations of the FFT

cores.

5.4.5 Sparse Matrix-Vector Multiplication (SpMV)

In our TARCAD based mapping of the SpMV kernel, we use an efficient architecture

that is based on a row interleaved input data flow described by Dickov et al. [89].

TARCAD’s FSM in CFG MEM-IN-CONTROL uses a standard generic Sparse Matrix

format and converts it internally to the row-interleaved format before feeding to the

compute block. However, this methodology needs to know in advance (at translation

phase), the maximum possible number of non- zero elements in any row of the matrix.

This information helps the translator to correctly estimate the maximum number of

rows possible to decode and maintain inside the SpMV memory layout.

5.4.6 Multiple Kernels On TARCAD

TARCAD can handle multiple algorithms working at the same time. In general, each

algorithm should be maintained with separate data paths, memory organization and the

compute units. Only data requests to the global memory (through the Data-Set Man-

ager) are shared. However, design schemes like a spatially mapped, shared memory

layout as shown by Shafiq et al. [11] can help to use shared data for certain kernels

with different types of compute block instantiations.
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5.5 Evaluations

To evaluate TARCAD, we simulate the mappings of various application kernels as

presented in section-5.4 by using a Xilinx Virtex-6 XC6VSX475T device. The HDL

designs were placed and routed using the Xilinx ISE 12.4 environment. The Virtex-6

device used in our evaluations has a very large number (more than 2K) of DSP48E1

modules. Therefore, we did maximum possible instantiations of the compute blocks

for the kernels and used the device’s maximum operational frequency after place-and-

route for all the back-end instantiations. The external memory support for TARCAD is

dependent on the board design. Xilinx Virtex-6 FPGAs can achieve a maximum exter-

nal data bandwidth of 51GB/s [90]. However, in our simulated evaluations for TAR-

CAD we assume an aggressive external memory interface with multiple memory con-

trollers, providing an aggregate peak bandwidth between 100GB/sec to 144GB/s. This

simulated external memory interface performance is similar to what can be achieved

today by GPUs.

In our evaluations, the efficiency of the application kernels mapped on the TAR-

CAD layout are compared with state of the art implementations of the same kernels on

various GPU devices. The choice of the GPU based implementation is based on two

points. One is that the GPU implementation is selected out of the available ones for

the best possible GPU device and second, we are able to reproduce the same input test

data for the TARCAD based implementations. The architectural efficiencies shown in

Figure 5.8 are defined differently for the kernels using floating point computations and

cell updates. These efficiencies are computed using Equations 5.1 and 5.2.

EFFflops = FLOPStotal/FLOPSmax (5.1)

EFFcups = CUPStotal/Freqopr (5.2)

In Equations 5.1 and 5.2 total refers to the achieved FLOPS or CUPS for an application

while max and opr represent the maximum FLOPS for a device and the operational

frequency of the device, respectively.
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Table 5.1: Applications Mapped to TARCAD using Virtex-6 & ISE 12.4

Applications Compute Freq DSP48E1 Slices BRAMs
Blocks (MHz) (36Kb)

MxM 403 105 2015 49757 432
AWE Solver 22 118 2008 45484 677
SW 4922 146 2012 63989 85
FFT 4-48 125 472-2016 48K-59K 0-1060
SpMV 134 115 2010 33684 516

5.6 Results and Discussion

The overall performance (Figure 5.8 (a-e : Right Y-axis)) for various kernels mapped

on TARCAD remained lower than 100 GFlops (or GCUPS for SW). This is consider-

ably lower than that for the reference performances on GPUs. It is important to note

that the right-axis of the plots in Figure 5.8 only corresponds to the FPGA performance

and the corresponding GPU performance can be seen in reference implementations for

MxM [2], AWE [3], SW [4], FFT [2] and SpMV [5]. The lower performance for TAR-

CAD based implementations of these kernels is an expected phenomena as the current

reconfigurable technology operates at an order of magnitude lower operational fre-

quency (see Table-5.1) for the mapped designs. However, if we look at the efficiency

of the TARCAD mapped applications, these are quite promising due to the customized

arrangement of data and compute blocks. In the following we will discuss efficiency

of each kernel. In support to the discussion, the total number of compute units instan-

tiated along with their operational frequencies and the usage of chip resource are given

in Table 5.1. The numbers for FFT correspond to the implementations for 128 points

to 65536 points and frequency is chosen for the lowest value.

5.6.1 Matrix-Matrix Multiplication (MxM)

In the case of MxM, we can observe from Figure 5.8 (a) that the efficiency of the

TARCAD-based implementation is on average 4 times higher than that for GPU. How-

ever, for smaller size of matrices the efficiency is relatively lower because of two

factors: The first case occurs when the number of columns in Matrix B is less than

403 (total compute block instantiations). The second case occurs when the number
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Figure 5.8: Architectural Efficiency for TARCAD and GPU based Kernels. Performance
Numbers are only shown for FPGA based Designs. The device used for FPGA is Virtex-
6 XC6VSX475T and the corresponding GPUs are (a) MxM (GPU: Tesla C2050 [2]) (b)
AWE (GPU: Tesla C1060 [3]) (c) SW (GPU: Tesla C1060 [4]), (d) FFT (GPU: Tesla
C2050 [2]) (e) SpMV (GPU: GTX 280, Cache Enabled [5])
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of columns are not multiples of 403. Both cases result in unoptimized usage of the

available compute units on TARCAD.

5.6.2 Acoustic Wave Equation (AWE)

The TARCAD mapped memory layout for the AWE kernel can handle sub-volumes

of size 320 × 320 × ∞ in the Z, X and Y axes respectively. The results for AWE

(Figure 5.8 (b)) show that TARCAD-based AWE kernel efficiency reaches 14 times

that of the GPU based implementation. However, then it drops to 5× for 384-point 3D

volumes. This is because 384 is not the multiple of the basic size (320× 320×∞) for

AWE managed specialized memory layout and suffers huge data and computational

overhead. However, this penalty starts reducing with an increase in the size of the

actual input volumes.

5.6.3 Smith-Waterman (SW)

The Smith Waterman’s implementation on TARCAD is approximately 3 times (Fig-

ure 5.8 (c)) more efficient than the referenced GPU-based efficiency. In fact, this edge

in architectural efficiency of TARCAD is only a result of the customized mapping for

the computing cells and the systolic array. The front-end data management only takes

care to buffer new sequences for comparison or for feeding back the results from the

cells on the boundary of the systolic array through CFG MEM-OUT-CTRL, Data Set

Manager and CFG MEM-IN-CTRL path.

5.6.4 Fast Fourier Transform (FFT)

The memory requirement for the floating point streaming based implementation of

Xilinx’s FFT core increases rapidly for larger number of points. In the case of the

TARCAD-based mapping, the instantiations of the FFT kernel for 16384 or larger

points are limited by the total available BRAM of the device. This limitation is ac-

cordingly apparent from the plot shown in Figure 5.8 (d). However, for the lower

number of points (equal or lower than 8192), the instantiations of FFT compute blocks

are dictated by the total number of DSP48E modules available on the device.
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5.6.5 Sparse Matrix-Vector Multiplication (SpMV)

In the SpMV mapping on TARCAD, we modified the original design of Dickov et
al. [89] to a special yet generic compute block for handling any kind of laplacian data.
This design handles a three point front-end which accumulates three dot products at a
time from a row. However, the inefficiencies (Figure 5.8 (e)) for this laplacian specific
compute block appear when the non-zero diagonals in the laplacian matrix are not a
multiple of 3.

5.7 Summary

In this chapter we have presented our developments towards a unified accelerator de-
sign for FPGAs that improves FPGA design productivity and portability without con-
straining customization. The evaluation on several scientific kernels shows that the
TARCAD template makes efficient use of resources and achieves good performance.
In this work we have focused on showing how efficient architectural mapping can be
achieved for HDL-based designs. Our TARCAD design also targets adoption by High
Level Synthesis tools as a main goal in order to provide interoperability and high cus-
tomization to such tools.

Although we have shown that TARCAD is more efficient than GPUs, final perfor-
mance is often worse due to the slower operational frequencies of FPGAs. Design-
ing a reconfigurable GPU based on the TARCAD architecture is an interesting idea
to improve the final performance. However, the challenge is how to evaluate such a
hybrid GPU. This motivates the development of simulator for GPU like streaming ar-
chitecture. The next chapter of this thesis document present a complete simulation
framework developed for GPU like streaming devices.
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6

A Simulator Framework for
Performance Characterization of
Streaming Architectures

Streaming architectures like GPUs and reconfigurable devices with application specific
designs are offering an interesting solution for high performance parallel computing.
However, a lack in the availability of easy to experiment simulation tools for these
streaming devices has severely restricted the researchers in computer architecture from
vast level of explorations in this direction.

In this work, we present a framework for a trace driven simulator (SArcs: Streaming

Architectural Simulator) targeting GPU like devices. Our proposed framework func-
tions as a standalone system. It uses GPU performance modeling based on runtime
CPU code explorations. Therefore, it does not require its users to have any kind of
GPU environment. By using our simulation framework, researchers can perform new
architectural explorations or just go for a performance estimations for their applications
by configuring the simulator specific to a target device. To the best of our knowledge
SArcs is the first trace-based GPU architectural simulator which does not require a
physical GPU environment or any GPU related tool-chain.

We evaluate SArcs for the timing correctness against a real GPU device (Tesla
C2050) based on the NVIDIA Fermi generation. We evaluate our simulator by us-

1
Chapter 6 is from the following publication:

BSArc: Blacksmith Streaming Architecture for HPC Accelerators ; Muhammad Shafiq, Miquel Pericas, Nacho Navarro, Eduard Ayguade; Accepted in ACM International
Conference on Computing Frontiers, Cagliary Italy; May 15th, 2012.
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ing multiple micro-kernels and application kernels. The results show that the simu-

lated performance for the evaluated kernels closely follow the trend of real executions.

The averaged error as compared to real GPU executions remains around 20%. This

error mainly comes from compiling codes for different Instruction Set Architectures

(ISA). However, the usage of CPU ISA projections over GPU ISA offer a platform-

independent simulator to research GPU-like architectures.

6.1 Simulators and Computer Architecture Research

Advancements in computer architecture research have drastically changed the world

by offering a range of devices, from abundant types of hand-held computing gadgets

to multi-Petaflop supercomputers. Many high performance computing centers are now

moving to heterogeneous solutions consisting of general purpose CPUs along with

streaming accelerators like GPUs and reconfigurable devices. This is evident from the

fact that in late 2011, at least, three out of the top five [91] supercomputers in the world

belong to this class of heterogeneous systems. It shows the enormous performance

potential of such systems, which have GPUs working as accelerators for the CPUs.

GPUs and CPUs in a machine can run in parallel but execute different types of codes.

In general, the CPUs run the main program, sending compute intensive tasks to the

GPU in the form of kernel functions. Multiple kernel functions may be declared in the

program but in general only one kernel is executed on one GPU device at a time.

GPU computing has become an effective choice for the fine-grained data-parallel

programs with limited communications. However, these are not so good for programs

with irregular data accesses and a lot of communication [92]. This is because the origi-

nal architecture of GPU was designed for graphics processing. In general, these graph-

ical applications perform computations that are embarrassingly parallel. Later, the

GPU architecture was improved [93] to be able to perform general purpose computing

like a general purpose processor under CUDA [13] and OpenCL [94] like program-

ming models. However, the performance from these devices is still largely dependent

on the arrangement of data, whether coalescing is possible and if data sets are inde-

pendent [95]. Therefore, on the one hand, all this imposes a need for writing new

algorithms focusing on exposing parallelism in the data to get performance from these
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devices and, on the other hand, further improvements are necessary in the GPU archi-

tecture to make it less sensitive to the nature of applications. These requirements can

be met rapidly with the availability of an easily usable simulation infrastructure for

GPU-like streaming devices.

If we look at the history of simulation environments like SimpleScalar [96], Sim-

ics [97], PTLsim [98], M5 [99], TaskSim & Cyclesim [100] etc, available for research

on general purpose processor architectures, it becomes evident that streaming architec-

tures like GPUs are lacking of similar level of support from the simulation infrastruc-

tures. No-doubt, there exist some good efforts in the development of GPU simulation

environments. These efforts mostly adopt the analytical methods but efforts also have

been made to develop GPU simulation tools. In analytical methods, two interesting

contributions are from Hong et al. Initially they proposed a GPU performance model

[101] and later extended it as integrated performance and power model for GPUs [102].

CuMAPz is a CUDA program analysis tool proposed by Y. Kim and A. Shrivastava

[103]. The CuMAPz approach is compile-time analysis . Therefore, It can not Han-

dle any information that can only be determined during run-time, such as dynamically

allocated shared memory, indirect array accesses, etc. In 2009, A. Bakhoda et al.

proposed a detailed GPU simulator [104] for analyzing the CUDA Workloads. A GPU

adaptive performance modeling tool [105] presented by Baghsorkhi et al. GROPHECY

[106] takes as input a modified CPU code called Code Skeleton from the user to tune it

for a GPU based implementation. GpuOcelot [107] is another interesting compilation

framework for heterogeneous systems. GpuOcelot provides various back-end targets

for CUDA programs and analysis modules for the PTX instruction set. In addition

to the current standalone framework of SArcs, we are planning to use GpuOcelot as

a front-end of SArcs to enable a provision to also generate traces directly from the

PTX code. MacSim [108] is a GpuOcelot-based trace driven simulation tool chain for

heterogeneous architectures. The idea behind MacSim is to convert the program trace

to RISC style uops and then simulate these uops. SArcs, on the other hand, controls

the trace generation process. The generated trace is either from a CPU code or a PTX

based GPU code, thus SArcs can directly map and simulate the real trace for a GPU

generation. It gives an opportunity to researchers in computer architecture to be able to

explore various possibilities to improve current GPU designs. The SArcs framework

is equally beneficial for application programmers. They can use it for performance
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estimations of their applications by configuring the simulator to model a specific GPU

device.

Our proposal on SArcs contributes in computer architecture research by providing

an automated framework for simulations of streaming architectures like GPUs. SArcs

can be used either as a standalone system – completely independent of a streaming en-

vironment – or it can be connected to other existing simulation related tools. However,

this work only intends to present SArcs as an independent simulation infrastructure for

GPUs which does not require to have a physical GPU or any GPU related software

tool-chain. SArcs is a trace driven simulation framework and exploits the fact that an

application compiled for any architecture would require to transact the same amount of

data with the main memory in the absence of registers or cache hierarchy. Moreover,

the computations inside an application can be simulated by the target device latencies.

The instruction level dependencies in GPU like architectural philosophy pose least im-

pact on the performance because of zero-overhead switching between the stalled and

large number of available threads. SArcs creates an architectural correlation with the

target device by passing the source code through a source to source translator followed

by a thread aware trace generation. This trace is used by a device mapping process

which transforms the trace into a SIMT trace specific for a GPU architecture. The

SIMT trace is passed through a cycle accurate simulator to get the performance and

related statistics.

The modules of SArcs are written in C or C++. These are enveloped inside a python

script to run in an automated way which starts by grabbing the application source file

and finalizes showing performance results. To the best of our knowledge SArcs is the

first trace based GPU architectural simulator which can also be used independent of

the requirements of having any kind of GPU environment. We compare our simulator

for the performance characterizations against a real GPU device (Tesla C2050). In our

evaluations we use a set of five micro-kernels, to minutely explore different aspects of

the simulator in comparison to the real performance of the GPU device. Further, we

evaluate three different application kernels from Matrix-Matrix Multiplication, Vector

Reduction and 2D-Convolution. The results show that the averaged error for SArcs

simulated performance is around 20% of the real executions on GPU. It shows the

potential of the SArcs framework, which offers a platform-independent simulator to

research GPU-like architectures.
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6.2 The Simulator Framework

The basic goal of SArcs is to provide a simulation platform for streaming architectures

that could be used for applications performance analysis or to experiment around the

architectural innovations. These objectives are achieved by working through different

stages of the SArcs framework. These stages – as shown in Figure 6.1 – consist of

the Trace Generation, the Device Mapping, the Device Simulation and the Results

Analysis. The Figure 6.1 also shows that these stages are executed in different steps.

All steps – from reading a CUDA source file (step-1) to the analysis of simulation

results (step-6) – are automated under python and its extensions like SciPy, NumPy

etc. The steps 3 to 5 can be repeated for the number of device kernels in an application

and/or as many times a device kernel requires to run with different inputs. The details

on different stages of the SArcs framework are given in the next sections.

6.3 Trace Generation

SArcs supports CUDA programming model. The users of SArcs are only required to

write a plain CUDA program (The main and the device kernel(s)) for an application.

The users can use CUDA specific API’s inside the device kernel. However, it is not

allowed to call any application specific API’s for the standalone version of SArcs. The

CUDA source files for an application are processed by a source to source translator

(S-S Translator) before compilation with the g++ compiler in step-2 as shown in the

Figure 6.1. After compilation, the generated binary of the application is forwarded to

a thread aware tracing tool (TTrace tool) to generate the traces. The details on S-S

Translator and TTrace tool are given below:

SIMT
Tool

External Parameters :   

S-S Translator
app.cpp 
   

 g++ Binary
 

TTrace
Tool

Thread 

Traces

SIMT
   

  Trace  
GSCore

Execution
Statistics

Step-1 Step-3 Step-4 Step-5Step-2

app.cu

Trace Generation Device Map Device Simulation
 

Results Analysis

Step-6

Figure 6.1: The Framework of SArcs
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�
1 # d e f i n e g l o b a l e x t e r n ”C” a t t r i b u t e ( ( n o i n l i n e ) )
2 # d e f i n e d e v i c e i n l i n e
3 # d e f i n e cudaMemcpyHostToDevice 1
4 # d e f i n e cudaMemcpyDeviceToHost 2

6 t y p e d e f s t r u c t {
7 u n s i g n e d long x ;
8 u n s i g n e d long y ;
9 } s t r u c t b l o c k I d x ;

11 t y p e d e f s t r u c t {
12 u n s i g n e d long x ;
13 u n s i g n e d long y ;
14 } s t r u c t b l o c k D i m ;

16 s t r u c t b l o c k I d x b l o c k I d x ;
17 s t r u c t b l o c k D i m blockDim ;

19 c l a s s dim3 {
20 p u b l i c :

22 u n s i g n e d long x ;
23 u n s i g n e d long y ;

25 dim3 ( l ong dimx ) : x ( dimx ) , y ( 1 )
26 {}
27 dim3 ( l ong dimx , long dimy ) : x ( dimx ) , y ( dimy )
28 {}
29 } ;

31 vo id cudaMal loc ( vo id ** memptr , u n s i g n e d long memsz )
32 {
33 *memptr = ( c h a r * ) ma l lo c ( memsz ) ;
34 }
35� �

Figure 6.2: Some example declarations & definitions in modified cuda header file
(“mcuda.h”)

�
1 / * k e r n e l n a m e dimGrid , d imBlock >>> ( a d , b d , c d , i t e r ) ; * /
2 blockDim . x = dimBlock . x ;
3 blockDim . y = dimBlock . y ;
4 p r i n t f ( ”GDim . y , GDim . x , BDim . x , BDim . y , BId . y , BId . x , TId . y , TId . x\n ” ) ;
5 p r i n t f ( ”:>REF:>%p %p %p %p %p %p %p %p<:REF<:\n ” , &dimGrid . x ,& dimGrid . y ,& blockDim . x ,& blockDim . y ,
6 &b l o c k I d x . y ,& b l o c k I d x . x ,& t h r e a d I d x . y , &t h r e a d I d x . x ) ;

8 p r i n t f ( ” BId . y , BId . x , TId . y , TId . x , GDim . y , GDim . x , BDim . x , BDim . y \n ” ) ;
9 p r i n t f ( ”:>PAR:>%l d %l d %l d %l d %l d %l d %l d %ld <:PAR<:\n ” , dimGrid . x , dimGrid . y , blockDim . x , blockDim . y ,

10 b l o c k I d x . y , b l o c k I d x . x , t h r e a d I d x . y , t h r e a d I d x . x ) ;

12 f o r ( b l o c k I d x . y =0; b l o c k I d x . y< dimGrid . y ; b l o c k I d x . y ++)
13 f o r ( b l o c k I d x . x =0; b l o c k I d x . x< dimGrid . x ; b l o c k I d x . x ++)
14 f o r ( t h r e a d I d x . y =0; t h r e a d I d x . y< dimBlock . y ; t h r e a d I d x . y ++)
15 f o r ( t h r e a d I d x . x =0; t h r e a d I d x . x< dimBlock . x ; t h r e a d I d x . x ++) {

17 kernel name ( a d , b d , c d , i t e r ) ;

19 }� �
Figure 6.3: An example code insertion for the replacement of the target gpu kernel call
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6.3.1 S-S Translator

S-S Translator is a source to source translator. It takes in a CUDA program and applies

appropriate modifications and additions for two main reasons: (i) Program should be

compilable by a GNU g++ compiler (ii) The added code inside the source forces to

output necessary runtime information to support the next stages of the simulator. At

first, to make the CUDA code compilable with the GNU compiler, we provide the

simulator framework with a modified cuda header file (mcuda.h). Inside the CUDA

source code, the S-S Translator replaces normal cuda.h with mcuda.h. Some example

declarations & definitions in the modified cuda header file are shown in Figure 6.2.

As it can be seen in line 1 of Figure 6.2, SArcs uses CUDA identifier global to

avoid name mangling of the corresponding function names by the g++ compiler. This

helps the trace tool to recognize the calls to these functions by their names during the

execution of the program. However, SArcs forces CUDA identifier device to make

its related functions as inline. It is important to remember that global and device – both

types – of functions specifically execute on a GPU device and not on the host. Further,

the device functions can only be called from inside the global function. The lines 6 &

11 in the Figure-6.2 shows declarations of the structures representing the CUDA inter-

nal variables blockIdx and blockDim which are later instantiated as global variables in

lines 16 & 17. The dim3 structure of CUDA is replaced by the declaration of a dim3

class between the lines 19 & 29 in the modified header file. Further, CUDA APIs like

the cudaMalloc(..) is replaced with our own cudaMalloc which uses normal malloc(..)

as shown in lines 31 to 34 of Figure 6.2. The same way SArcs framework redefines

synchronise() CUDA API and the CUDA internal variable threadIdx structure. The

calls to synchronise() function are marked inside the trace at the time of trace gener-

ation. However, all kinds of synchronizations between the threads are taken care by

the GPU Simulation Core (GSCore) at the Device Simulation stage (Section 6.5). The

shared memory identifier ( shared ) is also redefined so that shared memory should

be treated as accesses from the stack. Currently, SArcs redefines all important struc-

tures of CUDA and as well most common CUDA APIs inside the modified header

file.

The S-S Translator also inserts additional code at predefined places in the CUDA

source file(s) as shown in Figure 6.3. This code insertion helps the simulator in two
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ways: (i) To get a detailed trace of target application kernel that needs to be run on the

GPU device. (ii) To extract certain information from the code at run-time. The code

between lines 2 and 19 – as shown in the Figure 6.3 – is an example replacement done

by the S-S Translator for the code in line 1. Line 1 shows a commented CUDA call

to a global function (kernel name) that originally has to run on the GPU device. How-

ever, the S-S Translator commented this call and inserts a code with some assignment

statements, printf instructions and nested loops. In this example piece of code (Fig-

ure 6.3), the lines 2 and 3 copies values of Block Dimensions to the global variables.

Next, the lines 4 to 10 show code inserted to extract some runtime information specific

to a code and also specific to a run. The examples of this runtime information are the

pointer addresses assigned to the global variables dimGrid, blockDim, blockIdx and

threadIdx. This information is used during the later steps of the simulation process.

The nested loops in the inserted code from lines 12 to 19 calls the target function (ker-

nel name) at the thread granularity (the most inner loop). These nested loops make it

possible to generate a complete trace for all the threads (originally CUDA Threads) in

a Block (originally CUDA Block) and for all the Blocks in a Grid. It is important to

remember that these nested loops work according to the dimensions of a block and the

grid dimensions. These dimensions are defined by the user before calling a gpu target

function in a CUDA program.

6.3.2 TTrace Tool

The modified source code from the S-S Translator is compiled with the g++ compiler

at the step-2 (Figure 6.1) of SArcs framework. The binary of the program is executed

with the thread aware trace (TTrace) tool. TTrace tool uses dynamic instrumentation

of the programs in the PIN [109] environment. The target kernel function name (orig-

inally the GPU device kernel) can either be given as an external argument or – by

default – it is identified by the S-S Translator and forwarded to TTrace tool. The name

of the kernel function allows the tool to only instrument this function.

The main parameters traced by this binary instrumentation tool include the Instruc-

tion Pointers, Instruction Ops, Memory Addresses, Memory Access Sizes and any calls

to the sub-functions from the kernel function e.g the calls to the thread synchronization

APIs. In a CPU ISA, the instruction set can be very large. Therefore TTrace Tool only
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1: 0 B 29

2: 0x8048760  R 4 0xb5acc008  

3: 0x8048763   R  128  0xb59eb008 0xb59eb00c 0xb59eb010 0xb59eb014 0xb59eb018 0xb59eb01c 0xb59eb020 0xb59eb024 0xb59eb028 0xb59eb02c 0xb59eb030 
0xb59eb034 0xb59eb038 0xb59eb03c 0xb59eb040 0xb59eb044 0xb59eb048 0xb59eb04c 0xb59eb050 0xb59eb054 0xb59eb058 0xb59eb05c 0xb59eb060 0xb59eb064 
0xb59eb068 0xb59eb06c 0xb59eb070 0xb59eb074 0xb59eb078 0xb59eb07c 0xb59eb080 0xb59eb084 

4:  0x8048766  W  64  0xb5999008 0xb599900c 0xb5999010 0xb5999014 0xb5999018 0xb599901c 0xb5999020 0xb5999024 0xb5999028 0xb599902c 0xb5999030 
0xb5999034 0xb5999038 0xb599903c 0xb5999040 0xb5999044 

5:  0x8048766  S 64  0xe5947008 0xe594700c 0xe5947010 0xe5947014 0xe5947018 0xe594701c 0xe5947020 0xe5947024 0xe5947028 0xe594702c 0xe5947030 
0xe5947034 0xe5947038 0xe594703c 0xe5947040 0xe5947044

6:  0x804879 R 128  0xb59b5f88 0xb59b5f8c 0xb59b5f90 0xb59b5f94 0xb59b5f98 0xb59b5f9c 0xb59b5fa0 0xb59b5fa4 0xb59b5fa8 0xb59b5fac 0xb59b5fb0 0xb59b5fb4 
0xb59b5fb8 0xb59b5fbc 0xb59b5fc0 0xb59b5fc4 0xb59b5fc8 0xb59b5fcc 0xb59b5fd0 0xb59b5fd4 0xb59b5fd8 0xb59b5fdc 0xb59b5fe0 0xb59b5fe4 0xb59b5fe8 
0xb59b5fec 0xb59b5ff0 0xb59b5ff4 0xb59b5ff8 0xb59b5ffc 0xb59b6000 0xb59b6004 

7: 0x804876b  M  32  

N:

Figure 6.4: An Example SIMT Trace (The left side numbering (1,2,3...) is added just to
describe the trace inside the text)

identifies common operations and rest of the operations are accommodated under the

same identification. The operations for addition, multiplication, devision and memory

accesses are identified separately. Further, separate identifications are also given to the

heap based memory accesses and the stack based memory accesses.

The TTrace tool arranges the instruction level trace information in separate thread

groups. SArcs framework helps in this thread level grouping of instruction level trace

by the insertion of nested loops with the S-S Translator as described in the previ-

ous section. The execution of the modified program’s binary also spit out different

types of information related to the program execution e.g. Address pointers for var-

ious variables, the size and the base address of the shared memory array, Block and

Grid Dimensions etc. This information is saved into a temporary file to be used in the

processing of the next stages.

6.4 Device Map

The Device Mapping stage provides an isolation between the user control over the

program and the micro-architectural level handling of the program execution by a GPU

generation. For example, In the trace generation stage, the user has a control over the

CUDA program to adjust the Block and Grid dimensions while the number of threads

in a WARP is a micro-architectural feature of a GPU device handled at the Device

Mapping stage. This stage of SArcs framework uses a SIMT tool to map a user program

trace (the output of TTrace tool) for a specific GPU device. The output of the the SIMT
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tool is a SIMT trace which is fed to a GPU Core Simulator in the next stage. The

SIMT tool passes the user program trace through multiple processing phases. Some

important phases are described below:

6.4.1 Garbage (Built-in) Removal

A real GPU uses some built-in variables represented in CUDA as dimGrid, blockDim,

blockIdx and threadIdx etc. These variables act as parts of the GPU micro-architecture.

However, in our trace generation methodology, these variables acts as global variables

with their accesses from the main memory. SArcs removes all accesses to these vari-

ables from the trace by identifying their address pointers obtained at the execution of

program with TTrace tool.

6.4.2 WARP Instructions Formation

The user program trace (the output of TTrace tool) only groups the instructions traces

at thread level granularity. The SIMT tool arranges these trace instructions as WARP

Instructions and group these WARP Instructions at the Block granularity. In a real

GPU a WARP consists of N number of consecutive threads. As we mentioned earlier

the user program trace consists of a set of trace instructions for each thread. A WARP

Instruction is formed by taking one trace instruction from each of the consecutive N

threads. The next WARP Instruction is formed by taking the next one trace instruction

from the instruction trace set for each of the consecutive N-Threads and by combin-

ing them all. The WARP Instruction formation process makes it sure that each trace

instruction added in a WARP Instruction should correspond to the same trace instruc-

tion pointer. If the instruction pointer changes for an expected trace instruction of a

thread for a WARP, it is taken as control divergence inside the WARP. The formation

of the current WARP Instruction completes at this point and a new WARP Instruction

formation is started until the end of the N th thread or it encounters another control di-

vergence. This Instruction formation process also allows the convergence of diverged

thread WARPs. The WARP Instruction formation process completes with the creation

of sets of WARP Instructions for all the WARPs inside a Block and for all the Blocks

inside a Grid.
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6.4.3 Coalescing Effects

The sets of WARP Instructions created in the previous step are further processed by

the SIMT tool to add the coalescing or un-coalesced effects for the memory access in-

structions. The SIMT tool runs an analysis on the data access pointers for the WARP

instructions. A WARP Instruction is split into multiple WARP Instructions if the mem-

ory accesses are not coalesced inside the original WARP Instruction. The new WARP

Instructions contains accesses which are coalesced. If the selected target is a GPU

Fermi device then the SIMT tool allows memory WARP Instructions to be formed for

fetching up-to a maximum 128 Bytes in one transaction otherwise (target GPU is not

a Fermi device), the coalesced memory access instructions are further split the WARP

Instruction to new WARP Instructions such that the maximum allowable coalesced

access from a WARP Instruction should not exceed 64 Bytes.

6.4.4 Registers and Shared Memory Handling

In a GPU kernel, the local variables are mapped to the SM (Streaming Multiproces-

sor) registers. Therefore, the scope of accesses to these local variables inside a GPU

remains inside a block allocated to a SM. SArcs categorize all stack based accesses in-

side a kernel either as registered accesses or the shared memory accesses. The shared

memory accesses are isolated from the registered accesses based on the base pointer of

the shared array and its allocation size. Currently SArcs does not handle corner cases

like dynamic allocation of shared memory. The shared memory is also organized as

WARP Instructions with identification ’s’ as shown in line 5 of Figure 6.4. The device

map tool runs an analysis on the shared memory accesses and arranges them as one or

more than one WARP Instructions based on the access pattern and GPU specifications.

6.4.5 Grouping Blocks

We call the new formatted trace generated by the SIMT tool as SIMT Trace. The SIMT

Trace is arranged in Blocks. In order to help the GPU Simulation Core (Section 6.5) to

efficiently access the SIMT Trace, SIMT tool arranges these blocks in multiple files (

called SIMT trace files) which are kept equal to the number of SMs in the target GPU

device. This means that if there are M number of SMs then the first SIMT file will
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contain 1st, M + 1th, 2 ∗M + 1th and so on SIMT trace Blocks. However, as we will
see in the explanations of GPU Simulation Core that this arrangement does not create
any binding on the choice of SIMT trace Blocks for any SM during the simulation
process.

The Figure 6.4 shows some example entries of a SIMT Trace. The left most mark-1
identifies the grid number and block number for a SIMT Trace. The mark-2 to 6 show
memory access WARP instructions each of which includes – from left – the instruction
pointer, Operation i.e memory read (R), memory write (W) or shared memory (S),
size of data (in Bytes) to be transact and the memory addresses. The last mark-7 in
the example SIMT trace represent Multiply(M) operation scheduled for all streaming
processors. In-case, two consecutive WARP Instructions are Multiply and ADD, the
SIMT Tool fuses them as one Multiply-ADD WARP Instruction.

6.5 Device Simulation

The Device Simulation stage models the dynamic effects for various micro-architectural
components of a target GPU device. This stage uses GSCore (GPU Simulation Core),
a cycle accurate simulator specifically developed in-house for simulating the GPU like
streaming devices. The functional layout of GSCore is shown in the Figure 6.5. This
simulator accepts SIMT Trace files generated by the SIMT tool. These SIMT trace files
contains Blocks of WARP Instructions as shown at the top of the Figure 6.5. These
Blocks corresponds to the Blocks defined in a Grid for the target application kernel.
However, now these Blocks do not contain threads but traces arranged in the form of
WARP Instructions. The GSCore implements a Block Scheduler which is responsi-
ble for delivering these Blocks to the SMs – initially – in a round-robin fashion and
later based on requests from a SM. SMs are represented as WIL Schedulers next to the
GSCore’s Block Scheduler in the Figure 6.5. The WIL Scheduler is named upon its
real function which is to schedule the WARPs Instructions & Latency (WIL).

The WIL Scheduler, schedules WARPs Instructions from one or more Blocks based
on the latencies corresponding to the operations these WARPs have to do. The latency
values for different operations are loaded by the GSCore corresponding to a target de-
vice from a GPU Constants File. This constant parameters file is provided with the
SArcs frame work. The GPU Constants file keep architectural and micro-architectural
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Figure 6.5: GPU Simulation Core (GSCore)

parameters for various GPU devices. The latencies due to the instruction level de-

pendencies are normally hidden or unknown in trace driven simulators. However, In

case of GSCore, the final performance as compared to a real GPU shows almost no

effect for these dependencies. This is because of the inherent nature of the real GPU

architecture which switches with almost zero-overhead between the WARPs to avoid

performance loss due to these dependencies.

The WARP Instructions corresponding to memory transactions are forwarded to

the Data transaction Level-1 (DTL-1) control. The memory WARP Instructions are

scheduled as first-come first-serve basis or in a round-robin way if multiple requests

are available in the same cycle from different WILs (SMs). These memory WARP

Instructions goes through the GScor’s modeled memory hierarchy corresponding to a

real GPU. This includes implementation of configurable L1 Cache and Local Scratch

Pad memory for each of the WIL Scheduler (i.e for each SM in a real GPU), L-2 Cache

and the Global Memory. All levels of GScor works in a synchronous way and simulate

latencies from going one level to another one. In-case, a memory WARP Instruction is

not fulfilled at (DTL-1), it is passed to the DTL-2 – for L2 cache test —. and if required

it is forwarded to the DTL-3 level which models a Global memory access. All WARP

Instructions which are memory writes are forwarded to the Global memory.
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Figure 6.6: Evaluations Methodology (SArcs Program Executions vs Real GPU Program
Executions)

6.6 Evaluations

The Figure 6.6 shows the methodology used in SArcs evaluations. In our evaluations of

SArcs, we target NVIDIA’s GPU Tesla C2050 from the Fermi generation. This device

has 14 Streaming Multiprocessors (SMs) each contains 32 scalar processors. The de-

vice is capable of performing 32 fp32 or int32 operations per clock cycle. Moreover, it

has 4 Special Function Units (SFUs) to execute transcendental instructions such as sin,

cosine, reciprocal, and square root. On the memory hierarchy side the device supports

48 KB / 16 KB Shared memory, 16KB / 48 KB L1 data cache and 768Kbytes of L2

memory.

The SArcs can be compiled for any host machine. The only constraint is that the

PIN environment used in TTrace tool should have support for that CPU. In our eval-

uations, we use IBM ”x3850 M2” machine. It has 48GBytes of main memory and 4

chips of Intel Xeon E7450, each one with 6 Cores running at 2.40GHz. This machine

only helps us to run multiple instances of the simulation in parallel, otherwise a single

core machine can be used for running single instance of the simulator. Further, in our

case, the host machine uses x86 64-suse-linux and gcc compiler version 4.3.4. The

target application kernels are compiled for optimization level 3 (switch -O3). On the

GPU side, we use nvcc compiler with cuda compilation tool release 4.0, V0.2.1221.

We compiled the the CUDA codes using optimization level 3. Further, we use com-

pilation switch -Xptxas along with -dlcm=ca or -dlcm=cg to enable and disable L1

cache accesses where ever needed.
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In our evaluations, we study two different cases. The first case is used for fine

detailed analysis of the simulator targeting memory while the second case shows per-

formance for three application kernels. Some details for the case studies are as follows:

6.6.1 Case 1: Memory Micro-Kernels

The memory micro-kernels are based on five different types of memory accesses during

single execution of a thread. We categorize these single thread accesses in the ratio

between consecutive reads (R) and writes (W). These ratios are R:W = 0:4 , 1:3, 2:2,

3:1 and 4:0. In order to avoid nvcc compiler from optimizing out the R:W=4:0 case,

we use an external flag passed from command prompt to implement the kernel for only

a conditional write. This flag always remain false.

The memory micro-kernels are used for two types of evaluations, the SM level

evaluations and multiple block evaluations as described in the next sections.

6.6.1.1 (a) SM Level Evaluations

The purpose of SM level evaluations is to test the simulator behavior at the individual

SM level. In this case we always keep thread blocks less than or equal to the maximum

number of SMs in the GPU device. In these evaluations SArcs assumes that the real

GPU scheduler will schedule each thread block to a different SM to maximize the

parallelism inside the device.

6.6.1.2 (b) Multiple Block Evaluations

The multiple block evaluations for memory micro-kernels always configure the CUDA

code to run number of thread blocks larger than the total number of SMs.

6.6.2 Case 2. Application Kernels

In the application kernels we use Matrix Matrix multiplication (MM), 2D-Convolution

(CV) and the Vector Reduction (RD). The MM kernel is evaluated for both compiled

with L1 and with-out L1. The other two kernels (CV and RD) uses configurations for

the shared memory usage in their implementations. For all of the three kernels, L2

cache is always kept enabled in SArcs and as well for the GPU. This is mainly because
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we did not find a proper way to shut-off L2 in the GPU device. The vector reduction

kernel uses multiple invocations of the the GPU device in reducing the whole vector

to a single value. This also validates the SArcs capability of handling multiple kernel

invocations by an application. However, only one global kernel can be invoked by

an application at one time for the GPU simulated execution.

6.7 Results and Discussion

The results for the SArcs evaluations are shown in Figures 6.7 to 6.9. It can be observed

that in all cases the SArcs simulated results closely follow the trends for the real GPU

(a) (b)

(c)

Figure 6.7: Case 1 (a): Memory micro-kernels for SM Level evaluations (a) GPU - Tesla
C2050 execution time (b) SArcs simulated execution time (c) Averaged Percentage per-
formance error for each micro-kernel

128



6.7 Results and Discussion

(a) (b)

(c)

Figure 6.8: Case 1 (b): Memory micro-kernels with multiple blocks evaluations (a) GPU
- Tesla C2050 execution time (b) SArcs simulated execution time (c) Averaged Percentage
performance error for each micro-kernel

based executions. In our evaluations – to remain fair – we are not taking any specific

part of execution for error computation between the simulated results and the real ex-

ecution times. In all cases we computed point to point error for all evaluated points in

a case and then averaged over the total number of points in that case. The results show

that the averaged error for SArcs simulated performance remains 20% of the real exe-

cutions on GPU. It is important to remember that the current version of SArcs is using

CPU code projections for the GPU and one source of this error comes from compiling

codes for different Instruction Set Architectures (ISA). The difference in compilation

platforms appears in the form of different size of the compiled code which ultimately

appears as a difference in the execution times. Other source of error include the choice

of selection from the huge set of CPU instructions at the simulation phase of trace gen-
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(a) (b)

(c) (d)

Figure 6.9: Case 2: (a) Matrix Matrix multiplication : Simulated and real execution time
using L1 and with-out L1 (b) 2D-Convolution : Simulated and Real execution time using
Tiling in the Shared Memory (c) Vector Reduction : Simulated and Real execution time
using shared memory and multiple invocations of the GPU-kernel from the CPU during
the reduction process (d) Percentage of the error of the simulated performance to that of
the real one on GPU for the kernels

eration. Moreover, a lack of the precise information regarding the micro-architectural

details of the target GPU device also contributes in the error between the simulated and

real performance. However, the overall behavior of simulator appeared in our results

shows that the usage of CPU ISA projections over GPU ISA has a potential to provide

researchers a platform-independent simulator to research GPU-like architectures.
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6.7.1 SArcs Limitations and the Future Work

• The trace generation process takes very long time as compared to that for the
GPU Simulation Core. Moreover, the traces can reach to sizes in 20’s of GBytes.
Generally, these issues are common for all trace based system. A lot of work
has already been done on the sampling techniques to reduce the trace sizes and
tracing time. In SArcs framework the traces of a program are required to be
generated only once in the step-3 (Figure 6.1). The later simulation steps are
pretty fast and these can be decoupled from the trace generation process for
rapid architecture level investigations.

• The CUDA application programmer needs to take care for the usage of target
device resources. SArcs team is enhancing the S-S Translator to provide the user
with a prediction of the expected resource usage by the target CUDA program.

• The users can use CUDA specific API’s inside the device kernel. However, it is
not allowed to call any application specific API’s for the current standalone ver-
sion of SArcs. We have a future plan to also use a modified GpuOcelot [107] en-
vironment at the SArcs front-end to increase the coverage to library based CUDA
codes. This will enable SArcs to be used either as a standalone framework or by
involving some components from the GPU environment.

• The error in the SArcs simulated results can vary depending upon the com-
piler and the instruction set of the host for which the target kernel is compiled.
However, generally the simulated performance should follow the real execution
trends.
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6.8 Summary

GPUs introduced just a decade back are now an effective part of many HPC plat-
forms. However, GPUs still lacks for the availability of simulation infrastructures as
compared to the simulation environments available for the general purpose proces-
sors. In this work, we show that the architectural model of GPU devices can be effec-
tively transformed to a simulator infrastructure under our proposed SArcs framework.
SArcs framework provides an automated interface to simulate application performance
on a target GPU. Moreover, the design of SArcs framework uses software compo-
nents which are well known to a vast majority of researchers in computer architecture.
Therefore, we consider SArcs as a potential step towards extending the research for
GPU like streaming architectures. We show detailed methodology of using CPU code
projections to simulate for a target GPU device. The overall behavior of the simulator
appeared in the results shows that the usage of CPU ISA projections over GPU ISA has
a potential to provide researchers a platform-independent simulator to research GPU-
like architectures. The results of the SArcs framework motivates for further research
and explorations in this direction. The next chapter of this document uses the SArcs

tool chain for the design space explorations of throughput orientd streaming accelera-
tors.
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7

Design Space Explorations for
Streaming Architectures using SArcs

In the recent years streaming accelerators like GPUs have been pop-up as an effective

step towards parallel computing. The wish-list for these devices span from having a

support for thousands of small cores to a nature very close to the general purpose com-

puting. This makes the design space very vast for the future accelerators containing

thousands of parallel streaming cores. This complicates to exercise a right choice of the

architectural configuration for the next generation devices. However, design space ex-

ploration tools specifically developed for the massively parallel architectures can ease

this task. This chapter presents two studies related to the design space explorations for

the streaming architectures i) Design space explorations for the GPU like Streaming

Architectures ii) Design space explrations for Blacksmith Streaming Architecture

The main objective of the first study is the design space explorations of a GPU like

streaming architecture using the trace driven simulator SArcs (Streaming Architectural

Simulator). Our design space explorations for different architectural aspects of a GPU

like device are with reference to a base line established for NVIDIA’s Fermi archi-

tecture (GPU Tesla C2050). The explored aspects include the performance effects

by the variations in the configurations of Streaming Multiprocessors, Global Memory

1
Chapter 7 is based on the followings:

(1) Design Space Explorations for Streaming Accelerators using Streaming Architectural Simulator; Muhammad Shafiq, Miquel Pericas, Nacho Navarro and Eduard
Ayguade; UPC research report: UPC-DAC-RR-2012-6.
(2) BSArc: Blacksmith Streaming Architecture for HPC Accelerators ; Muhammad Shafiq, Miquel Pericas, Nacho Navarro, Eduard Ayguade; Accepted in ACM International
Conference on Computing Frontiers, Cagliary Italy; May 15th, 2012.
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Bandwidth, Channels between SMs down to Memory Hierarchy and Cache Hierar-

chy. The explorations are performed using application kernels from Vector Reduction,

2D-Convolution, Matrix-Matrix Multiplication and 3D-Stencil. Results show that the

configurations of the computational resources for the current Fermi GPU device can

deliver higher performance with further improvement in the global memory bandwidth

for the same device.

The second study presents a conceptual computing architecture named BSArc (Black-

smith Streaming Architecture). BSArc introduces a forging front-end to efficiently dis-

tribute data to a large set of simple streaming processors in the back-end. We apply

this concept to a SIMT execution model and present design space explorations in the

context of a GPU-like streaming architecture with a reconfigurable application specific

front-end. These design space explorations are carried out on the streaming architec-

tural simulator that models BSArc. We evaluate the performance advantages for the

BSArc design against a standard L2 cache within a GPU-like device. In our evalu-

ations we use three application kernels: 2D-FFT, Matrix-Matrix Multiplication and

3D-Stencil. The results show that employing an application specific arrangement of

data on these kernels achieves an average speedup of 2.3× compared to a standard

cache in a GPU-like streaming device.

7.1 Design Space Explorations

In computer architecture research, design space explorations are a key step for propos-

ing new architectures or modifications in an existing architectural configuration. Dur-

ing the last decade, computer architecture research has witnessed a shift from a single

core to mulicore processors and expectedly the future of computer architecture re-

search will be revolving around the parallel architectures [6]. This has made the design

space explorations a great challenge for the computer architects. The designs of new

high performance computing (HPC) systems which are sharply converging towards the

idea of exploiting massively data-level parallelism on large number of compute cores

– like in a GPU – has further complicated this challenge. The one way to overcome

these challenges is the development of new architectural exploration tools by taking
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into account the new research trends in computer architecture. Our proposed simu-

lation infrastructure SArcs (Chapter 6) for GPU like stream devices is a step toward

meeting such challenges.

GPUs introduced just a decade back are now considered an effective part of many

HPC platforms [91]. GPUs are throughput-oriented devices. A single GPU device can

contain hundreds of small processing cores. These use multi-threading to keep a high

throughput and hide memory latency by switching between thousands of threads. In

general, the architecture of a GPU consists of dual level hierarchy. The first level is

made of vector processors, termed as streaming multiprocessors (SMs) for NVIDIA

GPUs and SIMD cores for AMD GPUs. Each of the vector processor contains an

array of simple processing cores, called streaming processors (SPs). All processing

cores inside one vector processor can communicate through an on-chip user-managed

memory, termed local memory for AMD GPUs and shared memory for NVIDIA. On

a single HPC platform, GPUs and CPUs can run in parallel but execute different types

of codes. Generally, the CPUs run the main program, sending compute intensive tasks

to the GPU in the form of kernel functions. Multiple kernel functions may be declared

in the program but as a common practice only one kernel is executed on one GPU

device at a time. Therefore, most of the HPC platforms uses configurations of single

CPU with multiple GPUs to run kernels independently and in parallel. However, the

performance driving factor remains the basic architecture of the device being used in

all the GPUs of the platform.

GPUs are still considered at an early stage of an era of their architectural growth

and innovations. As compared to the enormous amount of efforts devoted to appli-

cation development for GPUs, only a little has been done on the GPU performance

characterization and the architectural explorations. Only a few years back, GPUs were

only an effective choice for the fine-grained data-parallel programs with limited com-

munications. However, these were not so good for programs with irregular data ac-

cesses and a lot of communication [92; 95]. This is because the original architecture

of GPU was designed for graphics processing. In general, these graphical applications

perform computations that are embarrassingly parallel. Later, the GPU architecture

was improved [93] to be able to run general purpose programs under CUDA [13] and

OpenCL [94] like programming models. The general purpose programs with arbitrary
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data-sets may or may not perform well on the GPU like streaming devices. This mo-

tivates the newer generation of the GPUs like the NVIDIA’s Fermi architecture to in-

corporate both the level-1 and the level-2 caches in their memory hierarchy. However,

further architectural improvements in these devices can make them most interesting

choice for the efficient parallel computing.

The design choices for GPU like streaming architectures are so large and diverse

that these architectures are still finding, on one hand, a balance between the available

bandwidth and the on-chip computational resources and on the other hand, a balance

between generality and specialty of the underlying architecture. This imposes a need

to rapidly explore design spaces for the new GPU like proposals. We – in this work –

present: i) Design space explorations for the GPU like Streaming Architectures ii) De-

sign space explrations for Blacksmith Streaming Architecture containing configurable

front-end and GPU like back-end. These explorations are done using a locally devel-

oped environment of a trace driven simulator called SArcs (Streaming Architectural

Simulator). A brief introduction to the simulator is given next. However, the details on

the simulator design could be found in the chapter 6.

SArcs simulation framework uses GPU performance modeling based on runtime

CPU code explorations on a streaming simulator. This platform independent simula-

tion infrastructure, on the one hand, is very useful for the design space explorations

for the future GPU devices and on the other hand, it can be used for performance eval-

uation of different applications on the existing GPU generation with good accuracy.

The modules of SArcs are written in C and C++. These are enveloped inside a python

script to run in an automated way which starts by grabbing the application source file

and finalizes showing performance results. Some performance characterization results

of the SArcs are shown in Figure 7.1 and explained in the next section (section 7.2).

To the best of our knowledge SArcs tool is the first trace based GPU architectural sim-

ulator which can also be used independent of the requirements of having any kind of

GPU environment.

In this chapter, the first type of evaluations for the GPU like devices explore dif-

ferent architectural aspects against a base line established for NVIDIA’s Fermi archi-

tecture (GPU Tesla C2050). The explored aspects include the performance effects

by the variations in the configurations of Streaming Multiprocessors, Global Memory

Bandwidth, Channels between SMs down to Memory Hierarchy and Cache Hierarchy.
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7.2 Effectiveness of the Design Space Exploration Tool

The explorations are performed using application kernels from Vector Reduction, 2D-
Convolution, Matrix-Matrix Multiplication and 3D-Stencil computations. The results
show that the configurations of the computational resources for the current Fermi GPU
device can deliver higher performance with further improvement in the global memory
bandwidth for the same device.

In the second type of evaluations, we present design space explorations for the
streaming architectures with application specific configurable frond-end. These explo-
rations are based on a concept of Blacksmith Computing performed on a Blacksmith
Streaming Architecture (BSArc). The Blacksmith Computing uses a forging front-end
to efficiently manage data according to the application nature. A large set of simple
streaming processor in the back-end can fetch this arranged data to run computations
on it. This computing concept is generic and adoptable for different target platforms.
However, in this work we apply this concept to a SIMT execution model and present
it as a part of a modified GPU like device. Our design space explorations for the
BSArc suppose a configurable front-end in a GPU like device. The accuracy of the
base line simulator is established against the NVIDIA’s Fermi architecture (GPU Tesla
C2050). We evaluate the performance difference for the Blacksmith Compute model
based design approach against the standard L2 cache in the modified GPU like device.
In our evaluations we use three application kernels from 2D-FFT, Matrix-Matrix Mul-
tiplication and 3D-Stencil. The results show that employing an application specific
arrangement of data can achieve an average speedup of 2.3× as compared to the usage
of standard cache based design in a GPU like streaming architecture.

7.2 Effectiveness of the Design Space Exploration Tool

The simulator effectiveness is an important factor to be established before that one
proceed for design space exploration for a target architecture using that simulator. The
proposal on SArcs contributes in computer architecture research by providing an au-
tomated framework for simulations of streaming architectures like GPUs. SArcs can
be used either as a standalone system – completely independent of a streaming envi-
ronment – or it can be connected to other existing simulation related tools due to its
modular nature. SArcs as an independent simulation infrastructure for GPUs does not
require to have a physical GPU or any GPU related software tool-chain.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 7.1: Establishment of the effectiveness of the simulator (SArcs) by performance
characterization against the real GPU for the base line architecture (NVIDIA’s Tesla
C2050) (a) Memory Micro-Kernels (real GPU Executions) (b) Memory Micro-Kernels
(Simulated Executions) (c) Vector Reduction using shared Memory (d) 2D-Convolution
using shared memory (e) Matrix Multiplication with/without L1 (f) 3D-Stencil Kernel us-
ing shared memory (g) 2D-Fast Fourier Transform
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SArcs is a trace driven simulation framework and exploits the fact that an applica-

tion compiled for any architecture would require to transact the same amount of data

with the main memory in the absence of registers or cache hierarchy. Moreover, the

computations inside an application can be simulated by the target device latencies. The

instruction level dependencies in GPU like architectural philosophy pose least impact

on the performance because of zero-overhead switching between the stalled and large

number of available threads. However, there could be cases where these dependencies

can took longer time but the current version of SArcs is not accommodating these cor-

ner cases. SArcs creates an architectural correlation with the target device by passing

the source code through a source to source translator followed by a thread aware trace

generation. This trace is used by a device mapping process which transforms the trace

into a SIMT trace specific for a GPU architecture. The SIMT trace is passed through a

cycle accurate simulator to get the performance and related statistics.

The simulation results of SArcs and the reference results of real GPU (NVIDIA’s

Tesla C2050) based executions for the performance characterization of different ap-

plication kernels are shown in the Figure 7.1 (a) to (g). The Memory Micro-Kernels

shown in the Figure 7.1 (a) & (b) are used for the fine detailed analysis of the sim-

ulator targeting the evaluations of the simulator memory behavior. These memory

micro-kernels are based on five different types of memory accesses during single ex-

ecution of the kernel. We categorize these single kernel accesses in the ratio between

consecutive reads (R) and writes (W). These ratios are R:W = 0:4 , 1:3, 2:2, 3:1 and

4:0. In order to avoid nvcc compiler from optimizing out the R:W=4:0 case, we use

an external flag passed from command prompt to implement the kernel for only a con-

ditional write. This flag always remain false. The descriptions of application kernels

(Figure 7.1 (c) to (g)) are given in the sections 7.3.1 and 7.6. It can be observed that in

all cases, the SArcs simulated results follow the real GPU based executions. The results

for matrix-multiplication (MM) kernel also present the real and simulated behavior of

L1 cache. Other kernels use shared memory to exploit data locality thus makes only a

little use of L1 cache.

The simulation framework apply a large set of architectural optimizations as de-

scribed in the chapter 6. The original results of the corresponding test cases show that

the SArcs averaged error remains around 20% of the real executions on GPU. It is im-

portant to remember that the current version of SArcs is using CPU code projections
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for the GPU and one source of this error comes from compiling codes for different In-

struction Set Architectures (ISA). The difference in compilation platforms appears in

the form of different size of the compiled code which ultimately appears as a difference

in the execution times. Other source of error include the choice of instructions for the

trace from the huge set of CPU instructions at the trace generation phase. Moreover,

a lack of the precise information regarding the micro-architectural details of the target

GPU device also contributes in the error between the simulated and the real perfor-

mance. However, the results for the design space explorations could be extrapolated

with more accuracy. This is because our simulation results deviates from the real ones

with a constant factor for each kernel. In our design space explorations, we adjust the

baseline results – as in the Figure 7.1 (a) to (g) – with single constant factor for every

kernel to make the results matching the real executions with an error less than 5%. We

use the same constant factor for each kernel results during the design space exploration

process.

7.3 Design Space Explorations for GPU

In our explorations for GPU like streaming architectures, we use four application ker-

nels covering one dimensional (1D), 2D and 3D types of data accesses. A brief de-

scription of application kernels, the base line GPU configuration and the test platform

is given in the following:

7.3.1 Application Kernels

In our tests for the various architectural configurations of GPU like device, we use

Vector Reduction (VR), 2D-Convolution (CV), Matrix Matrix multiplication (MM),

and 3D-Stencil (ST) kernels. The implementations for the two kernels (RD and ST)

uses configurations for the shared memory usage. However, the MM and CV kernels

do not use shared memory and the performance benefits for these applications only

comes from the reuse of data in the standard L1 and L2 caches. The vector reduction

kernel uses shared memory along with multiple invocations of the the GPU device

during the reduction process of the whole vector to a single value. The convolution

kernel uses a constant filter of size 5×5 to be convolve with various sizes of 2D image
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data sets. The 3D-Stencil kernel implements an odd symmetric stencil of size 8×9×8.

The choice of a kernel implementation is to have diversity in data access patterns and

computations from the other kernel.

7.3.2 Base Line Architecture

In our design space explorations, SArcs simulation infrastructure uses a base line archi-

tecture for NVIDIA’s GPU of Tesla C2050. This device belongs to Fermi generation

[22] of GPUs which is the most recent architecture from NVIDIA. This device has 14

Streaming Multiprocessors (SMs) each contains 32 streaming (scalar) processors. The

device is capable of performing 32 fp32 or int32 operations per clock cycle. Moreover,

it has 4 Special Function Units (SFUs) to execute transcendental instructions such as

sin, cosine, reciprocal, and square root. On the memory hierarchy side the device sup-

ports 48 KB / 16 KB Shared memory, 16KB / 48 KB L1 data cache and 768Kbytes of

L2 memory.

7.3.3 Simulation Platform

The SArcs can be compiled for any host machine. The only constraint is that the PIN

environment used in TTrace tool should have support for that CPU. In our evaluations,

we use IBM ”x3850 M2” machine. It has 48GBytes of main memory and 4 chips of

Intel Xeon E7450, each one with 6 Cores running at 2.40GHz. This machine only

helps us to run multiple instances of the simulation in parallel, otherwise a single core

machine can be used for running single instance of the simulator. Further, in our case,

the host machine uses x86 64-suse-linux and gcc compiler version 4.3.4. The target

application kernels are compiled for optimization level 3 (switch -O3). On the GPU

side, we use nvcc compiler with cuda compilation tool release 4.0, V0.2.1221. We

compiled the CUDA codes using optimization level 3. Further, we use compilation

switch -Xptxas along with -dlcm=ca or -dlcm=cg to enable and disable L1 cache ac-

cesses where ever needed.
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7.3.4 Evaluated Architectural Configurations

Normally, the design space for a processor can be huge one based on the different

combinations of the architectural configurations. Therefore, in a realistic way and

to give a proof of concept along with some insight for the possible improvements in

the current GPU generation, we choose four main architectural components of a GPU

device for the experimentations and the explorations. The selection of various test

configurations for each component are just based on our intuition and a user of our

design space exploration tool can modify these according to one’s own requirements.

7.3.4.1 Global Memory Bandwidth

On our base line architecture for the Fermi device, the global memory accesses are

processed per warp bases. The maximum bandwidth achievable on the base line con-

figuration is 144 GBytes/second. The memory controllers of the GPU device operates

at a bit higher frequency as compared to the SMs operational frequency. This makes

it possible that the throughput of the Global memory – in an ideal case – can reach

to 128 Bytes/cycle (with respect to the the SM’s frequency). The DTL3 (Data Trans-

action Level 3) shown in the GPU Simulation Core (Figure 6.5) is responsible for the

bandwidth scaling. In our evaluations, we test the global memory configurations in the

ranges from×1 to×10 where the first-one is the base line bandwidth and the later-one

is the 10 times of the base bandwidth.

7.3.4.2 Data Channels Between Memory Hierarchy and SMs

The Streaming Multiprocessors at the back-end of a GPU device do data transactions

with the front-end memory hierarchy through multiple data channels. The DTL2-

Control shown in the Figure 6.5 of GSCore handles these channels for the data trans-

actions between the SMs and the memory hierarchy. In the base architecture, there are

six channels. In our evaluations we increase and decrease the number of these channels

to see their possible effect on the applications performance.
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7.3.4.3 Cache Memory

Our base line device uses both L1/L2 cache hierarchy to cache the local and the global

memory accesses. However, It is possible that both or anyone of these caches can be

turned-on or turned-off at any time. Both caches are fully configurable for any cache

size. However, the cache-line size is fixed. The cache line size for L1 cache is 128

bytes and it is 32 Bytes for the L2 cache. Moreover, these caches can be configured

for two types of replacement policies: LRU and FIFO.

7.3.4.4 Streaming Multiprocessors

Streaming Multiprocessors (SMs) work as the vector processing units. This is the same

as we model SMs in our simulation framework. The SM model in the GPU Simulation

Core (GSCore) of our SArcs framework consists of WARP Instruction and Latency

(WIL) Scheduler, Local memory, L1 cache and the Data Transaction Level-1 control.

Our simulator implements the L1 cache and Local memory separately. However, both

of these in their functionality exactly behaves like a real NVIDIA’s GPU. In order to

be concise, we did not go for testing of all the internals of the SM rather than we

simply vary the number of SMs in a GPU device to see how these changes effect the

execution of the WARP instructions and eventually effect the overall performance of

an application.

7.4 Results and Discussion

The results for the evaluated architectural configurations of a GPU like streaming de-

vice are shown in Figures 7.2 to 7.5. Here, before that we proceed to discuss the

results, we define two terms being used in the discussion. These are the SM WARP

Instructions and Global WARP Instructions. The general descriptions of the WARP

Instructions formation are given in section-6.4. The SM WARP Instructions are the

WARP Instructions which complete their execution phase inside an SM and the Global

WARP Instructions consume cycles inside an SM and as well these are forwarded to

the downside memory hierarchy. We are not calling the Global WARP Instructions as

Memory WARP Instructions because if local memory is used inside an SM or there

are read hits in the L1 cache then it is quite possible that a number of Global WARP
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Figure 7.2: Matrix multiplication Kernel (No shared memory)

Figure 7.3: 3D-Stencil Kernel using shared memory

Figure 7.4: 2D-Convolution Kernel

(a) Channel Config. (b) Number of SM (c) Memory BW (d) L2 Cache
Figure 7.5: Vector Reduction using shared memory and multiple Invocations of the device

Instructions becomes SM WARP Instructions. All writes to the global memory are

always categorized as part of Global WARP Instructions.
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The effects of various channel configurations on the application kernels are shown

in Figures 7.2(a), 7.3(a), 7.4(a) and the 7.5 (a). The usage of multiple channels from

SMs on the top of a GPU are beneficial in two ways: (i) To keep busy the memory sub-

system by forwarding data requests from various SMs (ii) To increase the Bandwidth

of the system at L2 cache level. The results show that vector reduction kernel (Fig-

ure 7.5(a)) does not show any significant performance effect due channel variations.

The basic reason for this behavior is that the reduction kernel uses local memory for

the reduction process. In this case the reduction result for two values is reused with

the next one and this process of reuse remain inside the shared memory. Ultimately

only a single value is written back to the main memory for a single call to the device.

Therefore the overall data required to transact with the global memory for this kernel is

also very small. This means that the application kernel dominates with the SM WARP

Instructions and does not show any effect with the channel variations. The same rea-

son is true for the behavior of the reduction kernel for the corresponding results of the

Memory Bandwidth and L2 cache shown respectively in the Figures 7.5(c) and (d).

However, the reduction kernel shows performance improvements for the increase in

the number of SMs as shown in Figure 7.5(b). This makes sense because the kernel is

dominated by the SM WARP Instructions and increasing the number of SMs increase

the parallelism in the execution. However, this performance due to parallelism with

more number of SMs is saturated for 16 SMs because of the fixed channel configura-

tion (6 in the base case) and the ultimate limit of the global memory bandwidth. On the

other extreme, it can be seen that the matrix multiplication kernel does not show any

effect for the Number of SMs as shown in the Figure 7.2(b). The MM kernel does not

use local memory therefore this kernel dominates with the Global WARP Instructions.

In this case the requests generated by a single SM saturates the memory sub-system

(L2 and L1 are disabled in the test). Therefor, increasing the number of SMs does not

show any significant variation in the results for the kernel.

The effects of various Global memory bandwidth configurations on the test kernels

are shown in Figures 7.2(c), 7.3(c), 7.4(c) and the 7.5 (c). All the kernels except the

reduction kernel respond to the increase in the memory bandwidth. The reason about

the behavior of reduction kernel is already explained in the last paragraph. The effect of

the bandwidth is saturated because of the limited number of channels used to transfer

memory requests. The Figures 7.2(d), 7.3(d), 7.4(d) and the 7.5(d) shows the effects
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of L2 cache configurations. The 2D-convolution kernel only show negligible effect

of L2 cache same as the reduction kernel. But here, the reason for this behavior of

convolution kernel is that it uses only a small filter matrix (5 × 5) which gives only a

little reuse as compared to the data set size.

The rest of the results follow almost the same or the similar reasoning for their

performance behavior as explained in the above two paragraphs. During our evalua-

tions, we also tested L1 cache and the replacement policies. However, only the usage

of L1 cache gives some performance benefits and in some cases shows even a little

degradation in the results.

7.5 Blacksmith Computing

The basic concept of the blacksmith computing can be understood more easily from

the working of a Blacksmith as shown in Figure 7.6(a). In this figure, one can see that

the Blacksmith takes raw iron and hammer it to give a required shape depending upon

the end-purpose of the produced item. Similarly, in blacksmith computing the raw

input data (unprocessed data) is laid out inside a specialized front-end memory so that

the algorithm running at the streaming multiprocessors in the back-end of the compute

device could use this arranged data in an efficient way.

Input: 
Raw Iron

Reshaping Process:
Usage Specific

Outcome:
New Shape

Usage:
Various

War, Surgery, 
Kitchen, etc

Decoration, Doors, 
Grills, etc

Horse Shoe, Bindings,
etc 

Forging Front-End Back-End

Streaming Multiprocessors 

Global Memory Interface

Application Specific Memory Layout  

Data Transactions with SMs

Data Transactions with Global Memory

(a) (b)

Figure 7.6: (a) An Analogy for the Blacksmith Computing (b) The simplified target plat-
form model

146



7.5 Blacksmith Computing

7.5.1 Target Platform Model

The mapping of application designs on a GPU device for performance is not an easy

task. Every application can require a different set of optimizations and fine tuning

to achieve an acceptable level of performance. Furthermore, the stringent hardware

restrictions do not allow the programmer to fetch data efficiently using different pattern

based approaches. This painful exercise of experimentation and restricted ways of

fetching data could be get rid off by facilitating a configurable front-end while using

the similar simple configurations of the SMs (streaming multiprocessors) in the back-

end. This configurable front-end is adjustable to layout data according to the nature of

the application running on a target device.

A simplified target platform model for the Blacksmith computing is shown in Fig-

ure 7.6(b). This model follows the basic concept given in a proposal on a template

based architecture for reconfigurable accelerators [8]. We embed the idea in a GPU

like SIMT architecture which results in a heterogeneous device that could be high

level programmable using a CUDA [13] like programing model while at the same time

partially configurable. This device essentially results as a modified GPU with a config-

urable forging front-end. However, the computing cores in the back-end of the target

platform model are kept similar to the existing GPU architecture with WARP as the

fundamental unit of dispatch within a single SM. The new data front-end can reshape

and unfold data-sets specific-to-an-application requirement by configuring and incor-

porating domain specific architectural templates developed by the domain experts. The

memory layouts for the forging front-end could even be common for various applica-

tion kernels [11]. This means that the programmer does not need to worry about the

hardware constraints and as well the difficult task of software tuning for the modified

GPU device.

In order to perform design space explorations for the proposed compute model we

develop a trace driven GPU simulator as explained in the Chapter 6. This simulation

framework uses CPU code projections for the GPU performance modeling on a stream-

ing simulator. We use this simulator to evaluate GPU with a configurable L2 cache in

the device’s front-end as shown in the Figure 7.7. This L2 cache can be configured

either as a standard cache or it can be modeled as an application specific memory. This

platform independent simulation infrastructure, on the one hand, is very useful for the
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Figure 7.7: GPU Simulation Core (GSCore) with configurable L2

design space explorations for the future GPU devices and on the other hand, it can be

used for performance evaluation of different applications on the existing GPU genera-

tion with a high accuracy. The modules of SArcs are written in C and C++. These are

enveloped inside a python script to run in an automated way which starts by grabbing

the application source file and finalizes showing performance results.

7.6 Application Specific Front-Ends

In order to explore the potential benefits of Blacksmith computing, we use three ex-

ample application kernels from 2D-FFT, Matrix-Matrix Multiplication and 3D-Stencil.

These kernels use either 2D or 3D data sets. In general, the efficient handling of data

in 2D and 3D create a complex problem as compared to dealing single dimensional

vectors. Moreover, each of these kernels use data in an arrangement very different

from the other one. We show specialized memory layouts selected for each kernel in

the Figures 7.8, 7.9 and 7.10. However, one can choose some other layout according

to ones own requirements.

It is very important to mention that many data dependent application kernels may

not get any benefit from the specialized memory layouts. In these cases, we consider

that the best application specific memory layout will be like a standard L2 cache to

utilize randomly available data locality. Furthermore, there also exist some strictly se-

quential algorithms. We consider these algorithms as not architected for the throughput
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Figure 7.8: 2D-FFT Memory Layout

oriented streaming architectures.

7.6.1 2D-FFT

The shaded area in the Figure 7.8 shows the specialized front-end memory design for

2D-FFT. The complete design is based on two main parts: the data management part

(shaded region) and the 1D-FFT computational part using streaming multiprocessors

(SMs). The data is processed for 2D-FFT in two phases shown as phase-1 and phase-2

in the Figure 7.8 . Both phases run 1D-FFT on the orthogonal dimensions of the frame.

These phases are executed in the same call to the device. However, their execution

occur in a sequential order. The data management part maintains internal 2D-Frames

for transposed accesses by the 1D-FFT executed in the phase-2. The internal 2D-

Frames are managed by toggling the writing (WR) and reading (RD) sides for the

horizontal and vertical order of the configurable memory on the alternative frames.

We show – as an example – the horizontal and vertical memory blocks which are dual

ported to help their accesses in two different orders. The size of individual memory

block and the number of independent memory blocks is generated according to the X

(Points) and Y dimensional parameters for the input frames. It is important that the

the size of the data frames needing 2D-FFT should fit inside the specialized memory

design.

During the phase-1, frame data is processed for 1D-FFT and written to the dual

ported memory blocks in H or V order while during the second execution phase for
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another 1D-FFT, this memory is read in the reverse order that is V or H. This way
the specialized memory design helps a faster 1D-FFT for the orthogonal dimension by
providing all data available in a fully ordered way at the level-2 of the memory hier-
archy. The hardware support for two dimensional accesses of memory also simplifies
the program and the programmer’s job.

7.6.2 Matrix Multiplication

The data accesses in Matrix-Matrix multiplication requires – in general – two basic
optimizations: transposed access to one of the matrices and retaining a vector data from
a matrix (row vector) for longer period of time to be computed with all the columns
of the other matrix. We opt for the similar specialized memory design as proposed
in the work for the template based systems [8]. This memory design is efficient for
large sized matrices processed by streaming processors similar as in our case. The
specialized memory design for our modified GPU is shown in the Figure-7.9. In this
implementation, the matrices are accessed in the same “row major order“ from the
external memory. The matrices A and B are fetched in the order of one row and
multiple columns. During the run, one row of matrix-A is fetched from the external
memory into a single circular buffer. It is used element by element while the fetched
row from matrix-B is scattered around the multiple circular buffers proportional to the
compute capability in the SMs of the GPU back-end. Therefore, the product of an
element from the row of Matrix-A is done with multiple columns of Matrix-B. Each
SM accumulates the results for the element wise product of allocated rows (Matrix-A)
and the columns (Matrix-B).
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Figure 7.9: Matrix-Matrix Multiplication (MM) Memory Layout
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7.6.3 3D-Stencil

A 3D-Stencil kernel operates on near neighboring points in three dimensions of a vol-

ume. We adopt a specialized memory architecture for the 8 × 9 × 8 3D-stencil from

a work done by Araya et al. on RTM [3]. However, we modify the design according

to the modified GPU needs as shown in Figure 7.10. The original specialized memory

design consists of a specialized 3D memory layout and 3D write and read control cor-

responding to the three dimensions of the input volume. In our design we use only two

dimensions with farthest points (Y-dim and X-dim receptively) while the consecutive

data from the Z-dimension is processed inside the registers of the SMs.

The application specific memory layout for 3D-Stencil (Figure 7.10) show the first

layer of memory labeled as Plane and corresponding to the Y-axis of the volume (there-

fore named Y-layer). This layer in the memory hierarchy consists of nine dual ported

memory blocks. All nine planes in the layer are sequentially writable but possible to

read in parallel. The second layer of memory is labeled as Column and corresponds

to X-axis of input volume (named X-Layer). This layer has exactly the same features

as that of Y-layer except that its size is equal to a column in a plane. The third memory

layer corresponds to Z-axis (Z-layer) – as we mentioned earlier – is being managed

inside the SMs. All these memory layers and their controls function in a way that SMs

can access data from all the three dimensions as near to perfect parallel streams.
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Figure 7.10: 3D-Stencil Memory Layout
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7.7 Design Space Exploration Environment

In our explorations for the Blacksmith Compute model, we use three application ker-

nels covering 2D and 3D types of data accesses. A brief description of application

kernels and their related application specific memory layouts are given in 7.6. In the

following we will introduce the base line GPU configuration and the test platform used

in our design space explorations.

7.7.1 Base Line Architecture

In our design space explorations, SArcs simulation infrastructure uses a base line archi-

tecture for NVIDIA’s GPU of Tesla C2050. This device belongs to Fermi generation

[22] of GPUs which is the most recent architecture from NVIDIA. This device has 14

Streaming Multiprocessors (SMs) each contains 32 streaming (scalar) processors. The

device is capable of performing 32 fp32 or int32 operations per clock cycle. Moreover,

it has 4 Special Function Units (SFUs) to execute transcendental instructions such as

sin, cosine, reciprocal, and square root. On the memory hierarchy side the device sup-

ports 48 KB / 16 KB Shared memory, 16KB / 48 KB L1 data cache and 768Kbytes

of L2 memory. The L2 cache module is replaceable with application specific memory

models. The size of L2 cache is configurable to keep it compatible with the memory

sizes used in the application specific memory layouts.

7.7.2 Simulation Platform

The SArcs can be compiled for any host machine. The only constraint is that the PIN

environment used in TTrace tool should have support for that CPU. In our evaluations,

we use Intel Xeon E7450 processor embed in IBM ”x3850 M2” machine. The host

machine uses x86 64-suse-linux and gcc compiler version 4.3.4. The target application

kernels are compiled for optimization level 3 (switch -O3). On the GPU side, we use

nvcc compiler with cuda compilation tool release 4.0, V0.2.1221. We compiled the the

CUDA codes using optimization level 3. Further, we use compilation switch -Xptxas

along with -dlcm=ca or -dlcm=cg to enable and disable L1 cache accesses where ever

needed.
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7.8 Results and Discussion

In our architectural explorations, we used three application kernels: 2D-FFT, Matrix-

Matrix (MM) Multiplication and 3D-Stencil. The program configurations and opti-

mizations for all these kernels use only registers inside an SM as the local memory

resource. In all cases, we keep the size of the memory used for the L2-cache config-

urations equal to the size of memory used in application specific memory layouts. As

compared to the original GPU configuration, the 3D-stencil uses same size of memory

and MM needs only half of that for the largest data set. Due to the nature of the FFT

algorithm, we use around 32MB of memory in simulation to retain a complete frame

of complex FFT data for the largest execution (2048 × 2048 points). However, we

consider it as a corner case. This is because, in general, contemporary algorithms for

signal processing almost never require more than 64 × 64 point FFTs. This further

indicates that the problem domains that could be decomposed into sub-domains are

better suited for the proposed architecture. However, this constraint applies generally

to all microprocessor architectures because of the upper limit on the size of processor’s

local storages and the cache memories.

The results for the evaluations of BSArc are shown in Figures 7.11 (a) to (d). All

results in the figure include the execution time of an application kernel for the three

configuration cases: (i) The base case: L2 cache off and no application specific mem-

ory (ii) L2 case: using only L2 cache (iii) Using only application specific (AS) memory.

It can be observed that in all cases (in the case of MM only for small matrix sizes) the

usage of L2 cache improves the performance for an application kernel as compared

to the base line executions but BSArc based executions take a significant edge on the

cache based performances. The basic reason for this performance impact is the in-

crease in the locality and the parallelism of data according to the requirement of the

application. However, this increase in the performance is not free as it comes at the

cost of an increased architectural complexity. In this work we consider that the design

of these specialized memory layouts is provided by the application domain experts in

the form of templates. These templates are adjustable according to a device and the

problem size at the device’s configuration time.

The Figure 7.11(d) shows the speedups achieved by using BSArc. These speedups

for the test kernels are achieved by using the Application Specific (AS) memory front-
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Figure 7.11: The application kernel’s execution times for the three configurations : (i)
Base Line (L2 Cache disabled and No Application Specific Memory) (ii) L2 Cache: Using
only L2 cache (iii) AS Mem: Using only Application Specific (AS) memory. (a) 2D-FFT
(b) Matrix Multiplication (c) 3D-Stencil (d) The speedups for the test kernels using Appli-
cation Specific (AS) memory with reference (Ref) to: The base line (Base) architectural
configuration and L2 Cache Based Executions

end with reference to the the base line execution and the L2 cache based executions.

These results show that employing an application specific arrangement of data for these

kernels achieves an average speedup of 3.6×with reference to the base case. However,

the impact of cache improves the performance of kernels therefore the relative speedup

for the BSArc based configuration achieves 2.3× compared to a GPU-like streaming

device equipped with a standard cache.
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7.9 Summary

The design and development of new computing architectures is not possible without
well-focused design space explorations. This chapter present example explorations
for the design of future GPU devices. Results show that the configurations of the
computational resources for the current Fermi GPU device would still be enough for
the newer designs. The current generation of GPUs can deliver higher performance
with further improvements in the design of GPU’s global memory for higher bandwidth
and efficiency.

This chapter also present design space explorations for a conceptual Blacksmith
Computing Architecture (BSArc). Blacksmith Computing using a Blacksmith Stream-
ing Architecture (BSArc) gives an opportunity to exploit maximum possible data local-
ity and the data level parallelism for an application. The results show significance of
the efficient data management strategies for high performance computing. The generic
methods like the standard cache hierarchies for improving the data locality may not
achieve the potential performance benefits for an application. Therefore, the perfor-
mance oriented devices might need to converge for a solution with more specialized
memory front-ends.

The physical availability of BSArch like accelerators may still take time. However,
development of precise architectural exploration tools like SArcs can be very useful
for giving an insight and the design space explorations for new architectural propos-
als. Moreover, the specialized front-end designs might be able to support all kinds of
applications. Further, these front-ends must communicate with the back-end across
a standard interface. The changes in the front-end of a GPU like device would also
require to extend the related programing models. These issues are further discussed as
a part of our future work in the next – last – chapter of the thesis document.
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8

Conclusions and Future Work

This chapter presents detailed conclusions of the research pursued during this thesis
work. Moreover, it also through some light on future research and potential future
targets.

8.1 Conclusions

—*— The current trend in high performance computing (HPC) systems focuses on
parallel computing using either general purpose multi-core processors or multi-core
streaming accelerators. However, the performance of these multi-cores is often con-
strained by the limited external bandwidth or by badly matching data access patterns.
The latter reduces the size of useful data during memory transactions. A change in
the application algorithm can improve the memory accesses but a hardware support
mechanism for an application specific data arrangement in the memory hierarchy can
significantly boost the performance for many application domains.

—*— The key to efficiency for many applications is to maximize the data-reuse
fetching input data only once. This is also true for the stencil computations from the
structured grid problem domain. We presented an application specific implementation
of the stencil algorithm which not only shows how such a design can be achieved, it
also demonstrates how this approach provides tremendous internal bandwidth to the
compute units. We expect that the performance for the problems from the unstructured
grids could also be boosted to a great extent by devising new memory ideas – for
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example Traversal Caches [110] – in these domains. Moreover, general purpose data

caches can take a large portion of the power of a chip. This consumption of power can

also be reduced by using more application specific memory layouts.

—*— The real life applications like RTM can get huge benefit from the streaming

accelerators. In general terms GPUs, Cell/B.E. and the FPGAs – for the correspond-

ing accelerator based implementations of RTM – outperform traditional multi-cores

by one order of magnitude. However, to achieve this, a great development effort is re-

quired for the accelerators specially the porting of the design on a configurable device.

This is because all operations need to be described in HDL. IP cores provided by Xil-

inx CoreGen were used to increase productivity. However, for the future, high-level

productivity tools will be critical to allow developers harness the potential of FPGA

technology. Moreover, application specific designs for specialized applications could

also out-perform programmable accelerators if ported as high frequency ASIC devices.

—*— The complete generalization or the domain based generalization of an archi-

tecture for the application specific memories is an interesting topic. The proposals like

FEM presented in this thesis show viability of such design ideas of a common mem-

ory layout. The idea of an application specific common memory layout also enables

the conditional selection of multiple kernels, using the same or a subset of the layout.

This configuration has the potential to result in a shared memory computational model

promising a possibility of a greater data reuse across the kernels.

—*— Little focus has been given in the past on mapping domain specific abstraction

onto the reconfigurable devices. Our presented DATE system is a step towards filling

of this gap. The study on the DATE system show that the domain abstractions are an

efficient way of handling complex applications. These enable high performance by

keeping the developers from handling low level system details. DATE system like ap-

proaches have the potential to support the scalability of the architectural designs by just

varying few input parameters. This also enables the portability of accelerator architec-

tures to various sizes of small and large reconfigurable devices. Further, the standard

output generated by the such systems makes it platform independent. DATE like sys-

tems use a library based approach to maintain the templates. This gives an opportunity
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to various related research groups to use the library for their own research tools and

also to participate in writing the template designs to rapidly populate a common library

from various application domains.

—*— The developments towards a unified reconfigurable accelerator design (like

TARCAD) that improves application design productivity and portability without con-

straining customization is very important. These unified accelerators use heteroge-

neous kind of programing that includes the low level coding (HDL) techniques, high

level synthesis tools and as well micro-codes in order to provide interoperability and

high customization for an application. Although, as we show in this thesis, TARCAD

is more efficient than GPUs, final performance is often worse due to the slower oper-

ational frequencies of reconfigurable devices. Designing a reconfigurable GPU based

on the TARCAD architecture is an interesting idea to improve the final performance as

well.

—*— The new architectural explorations are not possible without accurate design

space exploration tools. Therefore, the development of architectural exploration tools

like SArcs are very useful for giving an insight and the design space explorations for

new architectural proposals. These tools could also be very helpful for simulating the

conceptual architectures which are not possible to fabricate in the near future due to the

fabrication constraints. GPUs – being newer architectures – lacks for the availability

of simulation infrastructures as compared to the simulation environments available for

the general purpose processors. The simulation frameworks like SArcs are required

to extend the research for GPU like throughput oriented streaming architectures. The

findings presented in this thesis show that the idea of using CPU ISA projections over

GPU ISA has a potential to provide researchers a platform-independent simulator to

research GPU-like architectures.

—*— The simulation infrastructures play very important role in advancing computer

architecture research for proposing state of the art new architectures. Our architectural

explorations for GPU like device using the SArcs framework reveals that the configu-

rations of the computational resources for the current Fermi GPU device would still be

enough in the near future for the newer designs. The current generation of GPUs can

159



8. CONCLUSIONS AND FUTURE WORK

deliver higher performance with further improvements in the design of GPU’s global
memory for higher bandwidth and efficiency.

—*— GPU like throughput oriented streaming architectures can be improved for
their performance, efficiency and lesser pressure on the requirements of external band-
width by using a GPU front-end to accommodate more efficient data organizations
as compared to the standard cache hierarchy. This observation generates an idea of
Blacksmith Computing. The concept of Blacksmith Computing using a Blacksmith
Streaming Architecture (BSArc) gives an opportunity to exploit maximum possible
data locality and the data level parallelism for an application. The related results em-
phasize the significance of adopting the efficient data management strategies for high
performance computing. The generic methods like the standard cache hierarchies for
improving the data locality may not achieve the potential performance benefits for an
application. Therefore, the performance oriented devices might need to converge for a
solution with more specialized memory front-ends.

—*— During the development of this thesis work, we researched for the different
architectural aspects of the streaming accelerators with customized front-ends. The
results are promising and motivates for further research and explorations in this direc-
tion.

8.2 Future Work

In the previous chapter (Chapter 7) of this thesis, we propose a streaming architecture
which introduces a forging front-end to efficiently manage data. This front-end con-
nects to a large set of simple streaming cores in the back-end by using a streaming
programing model. The forging front-end is a configurable part. This data front-end
reshapes and unfold data sets specific-to-an-application requirement by incorporating
domain specific architectural templates. The computing cores in the back-end are the
multiple sets of simple fabricated cores similar to the streaming processors (SP) in
a GPU. We enclosed this proposal (chapter 7) with the name Blacksmith Streaming
Architecture (BSArc) for highly efficient data accesses and throughput oriented com-
putations.
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The future research opportunity related to the BSArc is to find-out ways of design-

ing a generic front-end memory with application specific support. This would further

need a supporting programing model. Therefore, the future research might be fo-

cused on two domains : (1) Design of a unified front-end memory for the Blacksmith

Streaming Architecture (BSArc) and (2) CUDAb programing model which will be an

extended CUDA programing model for supporting Blacksmith architecture containing

unified front-end memory.

8.2.1 Unified Front-End memory for BSArc

The main benefit of the Unified Front-End memory for the future BSArc is that the

same memory can be selected or configured in a coarse grained way for three different

configurations. The first configuration will support regular data applications in the

shape of application specific memory, the second configuration – being the standard

cache – can help applications with irregular data accesses and the last configuration

allows a user to play with application data by using the memory as scratch-pad. These

three configurations are given below:

(i) Application Specific Streaming Cache

(ii) Standard Cache

(iii) Scratch-Pad Memory

A top level view for one of the possible architectural proposal for the future re-

search of a unified front-end memory is shown in Figure 8.1. This architectural pro-

posal is only presented here for the motivational purpose and as well to highlight the

future lines of research. Some details on the figure are given by expanding the circled

components and a brief description is given in the following.

The basic concept behind this multi-memory level architecture for the application

specific streaming cache configuration is to provide arranged data sets (in the form of

streams) accessible by the 3D-indexing from the CUDAb programing model. The size

of memory in each level is in orders of magnitude smaller from one to another with

largest size allocated to the first level and the smallest size allocated to the last (low-

est) level. BSArc with unified memory scheme uses CUDAb program running on SMs

in the back-end while a firmware micro-coded program or a specialized configuration

works for handling data in the unified memory. This micro-code or the configured
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hardware is shown as FFE Ctrl (Firmware Front-End Control). In the case of ap-

plication specific streaming cache configuration, the pre-arrangement of data in the

unified front-end memory makes it unnecessary for these applications to hide memory

latencies by switching between the large number of threads in the current CUDA based

GPU device. Therefore, in order to keep busy all the streaming processors (SPs) inside

SMs with the application specific streaming cache configuration, one needs only the

number of threads equal to the number of SPs in a GPU. In the specialized memory

configuration, each level of the memory keeps the number of memory blocks equal

to number of threads. This means that a thread can access data from the three lev-

els. Moreover, the threads can perform parallel data accesses from the memory by

accessing different blocks.

In the standard cache configuration, the top level – with largest memory size –

keeps the real data as cache lines by combining memory blocks. The lower two levels

are configured to keep tags and other meta data. Moreover, the tags and data, both are

maintained in the form of multiple memory banks. In this standard cache configuration

for the modified GPU (BSArc), an application will use the usual CUDA programing

concepts by using large number of threads to hide the memory latencies.
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The Unified Front-End memory for BSArc when configured as scratch-pad mem-
ory, CUDAb programs will directly manage this with a software prefetching mech-
anism. This is similar to the usage of current local memory inside an SM but with
a difference that new scratch-pad memory is now shared by all SMs as a common
resource.

8.2.2 CUDAb

CUDA programing model with extensions to support Blacksmith Architecture is named
as CUDAb where b stands for the Blacksmith. This programing model will provide a
strong software support for the BSArc design that uses a unified memory front end
(section 8.2.1). The standard cache configuration and the scratch pad memory config-
uration will allow CUDAb to work just like CUDA model. However, in the case of
specialized memory configuration CUDAb use special concepts. In this concept, the
block and thread indexes are considered as members of different data objects main-
tained inside the specialized memory configuration. A data object will be represented
as a combination of one or more than one memory blocks. An object can have multiple
dimensions which could be in the range of 1 dimension to 3 dimensions for the three
memory levels of the current proposal of BSArc. It is also possible that different levels
of unified memory can act together as object(s). The data movement between these
objects and the global memory and the synchronization issues are handled by the FFE
controls of the unified memory. These memory operations on the data of an object
work like object’s methods in the object oriented terms.
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