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Abstract

Numerical approach for modeling
Steel Fiber Reinforced Concrete

Alba Pros Parés

One alternative to overcome the main drawbacks of plain concrete in tension (its

brittleness and weakness) is Steel Fiber Reinforced Concrete (SFRC), a technique

introduced in the 70’s, which consists of adding steel fibers into the concrete matrix.

Due to the presence of the steel fibers into the concrete matrix, the residual strength

and the energy dissipation of the material increase. Moreover, once a crack appears

in the concrete, the steel fibers sew this fissure. The shape, the length and the

slenderness of the fibers influence on the SFRC behavior. Moreover, the distribution

and the orientation of the fibers into the concrete domain must be taken into account

for characterizing the material.

In order to characterize the behavior of SFRC, a numerical tool is needed. The

aim is to simulate the most standard and common tests and more complex setups.

This thesis proposes a numerical tool for modeling SFRC avoiding homogenized

models (not accurate enough) and conformal meshes (too expensive). Therefore, the

numerical tool accounts for the actual geometry of the fibers, discretized as 1D bars

nonconformal with the concrete bulk mesh (2D or 3D domains). The two materials,

corresponding to the concrete bulk and the fiber cloud, are defined independently,

but coupled by imposing displacement compatibility. This compatibility is enforced

following the ideas of the Immersed Boundary methods.

Two different models are considered for modeling the concrete bulk (a continuous

one and a discontinuous one). The parametric study of each model is done for only

plain concrete, before the addition of the steel fibers.

A phenomenological mesomodel is defined for modeling steel fibers, on the basis

of the analytical expressions describing the pullout tests. This phenomenological

mesomodel not only describes the behavior of the steel fibers, but also accounts for
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the concrete-fiber interaction behavior. For each fiber, its constitutive equation is

defined depending on its shape (straight or hooked) and the angle between the fiber

and the normal direction of the failure pattern.

Both 2D and 3D examples are reproduced with the proposed numerical tool. The

obtained results illustrate the presence of the steel fibers into the concrete matrix. The

shape of the fiber influences of the SFRC behavior: the residual strength is higher

for hooked fibers than for straight ones. Moreover, increasing the quantity of fibers

means increasing the residual strength of the material.

The obtained numerical results are compared to the experimental ones (under the

same hypothesis). Therefore, the proposed numerical approach of SFRC is validated

experimentally.
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Chapter 1

Introduction

1.1 Motivation

Reinforced and prestressed concrete are the most common and used techniques for

overcoming the main drawbacks of plain concrete (its brittleness and weakness under

tension). Another alternative, presented in the 70’s, is Steel Fiber Reinforced Concrete

(SFRC), a technique which consists of adding steel fibers into the plain concrete

matrix, as another component of the concrete mixture.

Due to the presence of the steel fibers into the concrete matrix, the energy dis-

sipation and the residual strength of the material increase, particularly, in tension.

Moreover, once the concrete matrix fractures, the steel fibers bridge the cracks.

SFRC has a large range of applications in civil engineering: bridges, pipes, airport

runways, tunnel linings, pavements,... The use of SFRC significantly reduces the

handling labor of construction (compared to the conventional reinforced concrete).

Apart form the concrete matrix properties, for characterizing the behavior of

SFRC, the length, the shape and the slenderness of the steel fibers must be taken

into account. Moreover, the orientation and the distribution of the steel fibers in the

concrete matrix have strong influence on the response of the material.

The methods for characterizing SFRC and the quality control of the material

properties clearly deserve further development. There is a current need of improving

these methodologies in order to satisfy the individual request of further using of SFRC

1
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with increasing structural responsibilities.

A number of direct and indirect tests are used to determine the tensile behavior of

SFRC. Bending tests of prismatic beam specimens are the most used to characterize

the post-cracking response of SFRC. These can be either based on 3-point tests (EN-

14651 (2005), RILEM-TC162-TDF (2003e)) or 4-point tests (NBN-B-15-238 (1992)).

Other methods have also been used for the material characterization; some of them are

indirect tension tests -splitting test (Tschegg and Linsbauer (1986)) and Barcelona

test (Molins et al. (2009), UNE 83515 (2010))- and direct tension tests (RILEM-

TC162-TDF (2001)). Barcelona test is the extension of the double punch test (DPT)

(Molins et al. (2009)) to study the postcracking response of SFRC. In spite of being

the uniaxial tensile test the more direct approach to characterize SFRC in tension, it

presents difficulties inherent to their execution which hugely limit their use and current

application (Barragán (2002)) and the number of available results. It is mainly used

for research purposes.

For characterizing the response of SFRC considering the mentioned tests and in

more complex setups, a numerical approach for describing SFRC is necessary.

The initial main objective of this research was simulating numerically the Barcelona

test, namely, the Double Punch Test considering SFRC. Currently, the numerical tool

for simulating SFRC tests is already available. Simulating the Barcelona test is the

next application.

1.2 Objectives of the thesis

The main aim of this thesis is to develop a numerical approach for modeling SFRC

allowing to simulate efficiently the most common standard tests considering SFRC.

In this scenario, the following partial goals are considered:

• Simulate standard tests considering only plain concrete: before simu-

lating different standard tests with SFRC and based on the state of the knowl-

edge, the goal is to model plain concrete considering different material models.
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Namely, both a continuous model and a discontinuous model are considered for

characterizing plain concrete.

• Set the material parameters of the models for plain concrete: the

material parameters of the chosen models for plain concrete must be calibrated

for each different test. Thus, the obtained results for plain concrete can be

validated with experimental results.

• Develop the numerical tool for SFRC: the objective is to define a numerical

idea for coupling the two materials (concrete bulk and fiber cloud) accounting

for the actual distribution of the fibers into the concrete matrix. Moreover,

the aim is to define the mesh corresponding to the steel fibers nonconformal

(without geometrical matching) with the concrete matrix discretization.

• Reproduce the standard tests with SFRC: considering the proposed nu-

merical approach, the most common standardized tests aim to be reproduced

considering SFRC. The presented tool must be applied considering both two

and three dimensional meshes corresponding to the concrete bulk.

• Validate the numerical tool for SFRC: the results obtained simulating

standard tests considering SFRC must be compared to experimental results

available in different experimental campaigns. Therefore, the goal is to validate

the proposed numerical approach.

1.3 Outline

The thesis is divided into five main parts: the motivations, the numerical models

for plain concrete, the numerical approach for modeling SFRC, the three dimensional

extension of the tool with the numerical results and validation and the most important

concluding remarks and the future work.

Part I: Motivations. The introduction of the thesis (chapter 1) and the state

of the art (chaper 2) correspond to the first part of the thesis, playing the role of the
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motivations for the rest of the thesis.

Part II: Numerical modeling of plain concrete. The numerical approach

for modeling plain concrete accounts for considering two different material models for

modeling plain concrete (a continuous one and a discontinuous one). The material

parameters of each model must be calibrated for being able to reproduce standard

tests. Indeed chapter 3 refers to the numerical modeling of plain concrete simulating

the Double Punch Test and corresponds to the paper Numerical Modeling of Double

Punch Test for plain concrete by Pros et al. (2011b). The test chosen for calibrating

the material parameters in chapter 3 is the Double Punch Test, due to our first

objective of the thesis. However, the parameter calibration can be used for all the

tests.

Part III: The numerical approach for SFRC. Chapter 4 corresponds to

the formulation of the numerical tool for SFRC. Two dimensional examples are pre-

sented. The ideas and the results presented are indeed presented in the paper Model-

ing Steel Fiber Reinforced Concrete: numerical Immersed Boundary approach and a

phenomenological mesomodel for concrete-fiber interaction by Pros et al. (2011a).

Part IV: 3D extension of the numerical tool with experimental valida-

tion. The extension of the numerical tool for SFRC is presented in chapter 5 with

the reproduction of some standard tests (using 3D meshes and realistic distribution

of the fibers). Moreover, the obtained results are compared to experimental results

(from different campaigns) in order to validate the numerical tool.

Part V: Conclusions and future work. Finally, in Chapter 6 the most impor-

tant concluding remarks are summarized, followed by some open points which can be

developed in the future.

Finally, at the end of this thesis three appendices are included. The full details

of the deduction of the constitutive equations describing the behavior of the steel

fibers are described in Appendix A. The study of the stability of the proposed numer-

ical tool for modeling SFRC is explained in Appendix B. In Appendix C, the main

contributions related to this thesis are presented: the talks in congress and the papers.



Chapter 2

State of the art

2.1 Introduction

This chapter aims at reviewing available literature concerning all the aspects studied

during the thesis. Thus, the state of the art is focused in three different points: (1)

experimental tests for characterizing both plain concrete and SFRC, (2) alternatives

for modeling plain concrete and (3) numerical tools for modeling SFRC.

2.2 Experimental tests characterizing plain con-

crete and SFRC

Several experimental tests are commonly used for characterizing both plain concrete

and SFRC. The most standard tests are described in the following:

• Pullout tests (Laranjeira et al. (2010a),Laranjeira et al. (2010b)) consist of a

plain concrete specimen with only one steel fiber immersed on it which is pulled

out (figure 2.1).

Pullout tests describe all the phenomena of the SFRC not only for straight fibers

(fiber debonding, matrix spalling, frictional sliding and fiber removal), but also

for hooked fibers (which are the same for the case of straight fibers but, with

5
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Figure 2.1: Pullout test scheme (Laranjeira et al. (2010a))

plastic deformations, magnifying the matrix spalling effects).

Fiber pullout tests have been used to characterize and optimize the bond strength

on fiber reinforced concrete for decades because they allow evaluating the crack

bridging capacity provided by fibers in brittle cementitious matrices. Moreover,

the activation of toughening mechanisms in SFRC requires growing matrix crack

to be deflected at the fiber-concrete interface which is represented by pullout

tests. Therefore, the description of the pullout response covers the most signifi-

cant phenomena with which crack bridging of SFRC can be explained. However,

pullout and bond-slip relations are sensitive to fiber orientation. Thus, different

orientations of the fibers must be taken into account in order to capture the

whole interaction process.

• Splitting test is an indirect tension test (defined by Carneiro and Barcelos

(1953) for plain concrete (also known as Brazilian test) and by Tschegg and

Linsbauer (1986) considering SFRC) which consists of compressing a plain con-

crete cylinder placed horizontally by two steel plates (figure 2.2). The fracture

pattern is a diametral vertical plane located in the middle of the cylinder.

The tensile strength (ft) of plain concrete and SFRC is measured indirectly

through the obtained maximum vertical load. In chapter 3, the expression to

obtain ft is presented.
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Figure 2.2: Scheme of the splitting test (Carmona et al. (1998))

• Direct tension test (RILEM-TC162-TDF (2001); Barragán (2002)) consists of

a cylindrical specimen which is pulled axially (figure 2.3). Due to the brittleness

of plain concrete in tension, a notch is typically performed in the middle of

the specimen to enforce the crack always in the same place. Moreover, this

brittleness in tension makes the direct tension test experimentally difficult to

perform.

Figure 2.3: Scheme of the direct tension test (Laranjeira (2010))

In this case, an expression giving the relation between the obtained maximum

vertical load and the residual strength of the material also exists and it is ex-

plained in chapter 3 too.

• Three point bending test is a bending test (figure 2.4) using a prismatic
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beam specimen loaded at the mid span (EN-14651 (2005); RILEM-TC162-TDF

(2000)), which measures the flexural strength.

Figure 2.4: Scheme of the three point bending test (EN-14651 (2005))

• Four point bending test consists of a prismatic beam specimen placed hor-

izontally, similar to the three point bending test, but with two loads applied

each at one third of the span (figure 2.5). A Belgian standard (NBN-B-15-238

(1992)) and an American one (ASTMC-1018 (1992)) correspond to the four

point bending layout.

• Double punch test (DPT) (introduced by Chen (1970); Chen and Yuan

(1980); Chen and Tumbauer (1972)) consists in compressing axially a cylindrical

concrete specimen with two steel circular punches centered at the top and the

bottom of the specimen (figure 2.6). The geometry of the specimen is given by

the height (l = 15cm) and the diameter (d = 15cm). The ratio between the
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Figure 2.5: Scheme of the four point bending test (NBN-B-15-238 (1992))

diameters of the punches and the specimen is one fourth (d′ =
1

4
d = 3.75cm).

Occasionally, smaller specimens with identical geometrical proportions are used

to study the influence of size effect (Chen and Yuan (1980)), concluding that

the tensile strength interpreted from the DPT is relatively insensitive to the size

of the specimen.

Figure 2.6: Scheme of the double punch test (Guàrdia (2007))

The DPT is used to indirectly measure the tensile strength of plain concrete,

ft. Indirect measures of tensile strength (Brazilian test, DPT, 3 and 4 point

bending test,...) are often preferred to direct uniaxial tests because (1) they

show a reduced scattering of the results, (2) they are easier to perform and (3)

they do not suffer from the lack of uniformity of the stress distribution in the
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cross section of the specimen.

In the literature, the value of the tensile strength of plain concrete measured

through the DPT, has been object of study by Chen and Yuan (1980); Bortolotti

(1988); Marti (1989); Molins et al. (2007). These expressions are explained in

chapter 3.

The extension of the DPT to assess the after cracking capacity of SFRC, the so

called Barcelona Test, was introduced by Molins et al. (2007, 2009).

2.3 Models for plain concrete

For modeling plain concrete, several models can be chosen depending on the aims

and the problems to be studied. As presented by Oliver et al. (2002); Jirásek (1998);

Simone (2003), beyond a limited elastic range, macroscopical discontinuities appear in

plain concrete as a mechanical response to extreme loading conditions. This behavior

is called softening. The numerical approaches to model this nonlinear mechanical

behavior can be classified as follows:

• Cohesive crack model: admits the presence of strong discontinuities, that is,

jumps in the displacement field, and describes softening by a tension-separation

law, which relates the tension stresses transmitted by the crack to the crack

opening. A complete description of these models is presented by Planas et al.

(2003).

• Crack band model: represents the region of localized deformation by a band

of a small but finite thickness, separated from the remaining part of the body by

two weak discontinuities, that is, curves or surfaces across which certain strain

components have a jump, but the displacement field remains continuous. The

theory of the crack band model for concrete is defined by Bažant and Oh (1983).

• Continuum mechanics approach: leads to continuously differentiable dis-

placement field and the strain field remains continuous (as explained by Jirásek
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(1998)). However, strain localization is manifested and it is necessary to reg-

ularize the model. Different models available in the literature are continuum

mechanics approaches: damage models, plasticity, visco-elasticity, strong dis-

continuities,... In this thesis, a damage model is chosen as a continuous ap-

proach.

• Discontinuous mechanics: the discontinuous behavior of plain concrete is

considered to be in the domain discretization (Oliver et al. (2002)). One possi-

bility, for example, is to assume the failure pattern known a priori and discretize

the problem domain taking into account the cracks (defining joint elements in

this cracks). Another alternative, introduced by López et al. (1999), is based

on considering all possible fracture paths modeled using joint elements allowing

any possible failure direction.

Two alternatives are considered in the presented thesis: 1) a continuous model, the

nonlocal Mazars damage model and 2) a discontinuous model based on joint elements.

2.3.1 Continuous approach: Damage Model

In the damage model chosen in this thesis, the constitutive equation is σσσ = (1−D)Cεεε,
where D is a scalar parameter accounting for the damage and obeying 0 ≤ D ≤ 1. If

D = 0, the material is considered to be healthy and if D = 1, it is completely damaged.

In the above, σσσ and εεε stand for stress and strain tensor, respectively. Moreover, C is

the elastic forth tensor.

Then, the constitutive equations are:

εεε =
1

E (1−D)
[(1 + µ)σσσ − µTr (σσσ) I] (2.1)

σσσ =
E (1−D)

1 + ν

[
εεε+

ν

1− 2ν
Tr (εεε) I

]
(2.2)

where E stands for the Young modulus of the material, ν represents the Poisson
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coeficient and µ is the Lamé constant.

The damage parameter depends on y, D = D(y), which is called state variable

and depends on the strain field, y = y(ε). Commonly, the damage starts when the

state variable reaches a threshold Y0 and it always increases, that is,

D = 0 for y ≤ Y0 Ḋ ≥ 0 for y > Y0 (2.3)

Mazars Damage Model

The Mazars Damage Model, introduced by Mazars (1986), is characterized for consid-

ering the damage as a linear combination of the damage generated under tension, Dt,

and the damage under compression, Dc: D = αtDt + αcDc. Moreover, the damage

follows an exponential law. In this damage model, the state variable is defined as

y = ε.

The Mazars model can be written as

Dt = 1− Y0(1− At)
ε

− Ate−Bt(ε−Y0) αt =
∑
i

εti〈εi〉
ε2

(2.4)

Dc = 1− Y0(1− Ac)
ε

− Ace−Bc(ε−Y0) αc =
∑
i

εci〈εi〉
ε̂2

(2.5)

with αt and αc are defined satisfying

αt + αc = 1 (2.6)
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and

〈εi〉 =
εi + |εi|

2
(2.7)

ε̂ =

√√√√∑
i

(
εi+ | εi |

2

)2

(2.8)

where εi are the main strains.

εti and εci are calculated following the next scheme: given the stress field (σσσ), the

principal stress field (σσσprin) is calculated and divided into the positive part of the field

(σσσ+
prin) and the negative one (σσσ−prin). For each part (the positive and the negative),

the process for finding the principal field is applied in the inverse sense for getting

σσσ+ and σσσ−. Then, the corresponding strain fields are computed: εεε+ and εεε− and the

principal fields of these strain fields are calculated: εεε+
prin and εεε−prin. Finally, again, the

process for finding the principal field is applied in the inverse sense given εti and εci:

σσσ → σσσprin


σσσ+
prin → σσσ+ → εεε+ → εεε+

prin → εεεti

σσσ−prin → σσσ− → εεε− → εεε−prin → εεεci

(2.9)

with σσσ = σσσ+ + σσσ− and εεεi = εεεti + εεεci.

The parameters At, Bt, Ac, Bc and the threshold Y0 are fixed depending on the

actual material properties.

Nonlocal Mazars Damage Model

Up to this point, the damage has been calculated in each point depending on the

state variable y at the same point, but this localization brings to a pathological mesh

dependence and the results are not realistic. In order to solve this problem, a nonlocal

damage model is considered, as introduced by Pijaudier-Cabot and Huerta (1991);

Rodŕıguez-Ferran and Huerta (2000); Pijaudier-Cabot and Bažant (1991). The main

idea of a nonlocal damage model (regularized damage model) is that the damage
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depends on the state variable in a neighborhood (associated to a characteristic length)

of the current point, instead of depending on the state variable in the same point (as

in a local model). Therefore a nonlocal state variable Ŷ is considered which is defined

as an average of the state variable in a neighborhood of each point:

Ŷ =

∫
V

α(d)ydV∫
V

α(d)dV
α(d) = e−( 2d

lc
)
2

(2.10)

where the weight function α depends on the distance d to the current point and lc is

the characteristic length. This is another material parameter and its function is to

define the nonlocality. In general, the value of the characteristic length is such that

the neighborhood of each point involves two or three elements of any mesh discretizing

the problem. Therefore, the nonlocal damage is D = D(Ŷ ).

In the present work, the integral-type nonlocal formulation explained above is

taken into account for the model regularization. However, as introduced by Jirásek

(1998), there exist two other ways of nonlocalization. They are gradient formulations

and instead of dealing with integrals that represent spatial interactions, they can take

the microstructure into account by incorporating the influence of gradients of internal

variables into the constitutive relations. In the following, they are presented.

• Explicit gradient formulation: the damage is assumed to be driven not only

by the local state variable y, but also by its Laplacean, which represents the

”curvature” of the strain distribution:

Ŷ = y + l252 y (2.11)

where l is a material parameter with the dimension of length.

• Implicit gradient formulation: due to the presence of second derivates of the

state variable, the numerical implementation of the explicit gradient formulation
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is not easy. To overcome this problem, the implicit gradient formulation defines

the nonlocal variable indirectly as the solution of the differential equation:

Ŷ − l252 Ŷ = y (2.12)

with the homogeneous Neumann boundary condition nnn · 555Ŷ = 0 imposed on

the entire boundary.

2.3.2 Other continuous approaches

Apart form the damage models, other continuous models are available for modeling

plain concrete, as observed by Oliver et al. (2002); Simone (2003).

Plasticity

The theory of plasticity is used usually to describe the elastoplastic material behavior.

The basic assumption is the decomposition of the strain tensor into an elastic (εεεp)

and a plastic (εεεp) part:

εεε = εεεe + εεεp. (2.13)

Therefore, the stress tensor is defined as

σσσ = C(εεε− εεεp). (2.14)

The plastic strain rate ε̇εεp is postulated as

ε̇εεp = λ̇fσ, (2.15)

where the rate λ̇ of the plastic strain multiplier λ determines the magnitude of the

plastic flow and fσ =
∂f

∂σσσ
is a tensor which indicates the direction of the plastic

strain-rate.

The loading-unloading conditions are expressed using the Kuhn-Tucker relations:
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λ̇ ≥ 0, f ≤ 0, λ̇f = 0. (2.16)

In ideal plasticity, the yield function is defined as

f(σσσ) = σe(σσσ)− σ0, (2.17)

where σe is the effective stress and σ0 stands for the yield stress.

Softening and hardening behavior is introduced by making the yield stress a func-

tion of κ, a scalar measure of the plastic strain tensor: f(σσσ, κ).

Simone (2003) proposes to consider two different yield functions. On one hand,

the classical von Misses yield function:

f(σσσ, κ) =
√

3JJJσ2 − σ(κ), (2.18)

being σ(κ) the uniaxial yield stress and JJJσ2 =
1

2
σσσd : σσσd stands for the second invariant

of the deviatoric stress trensor σσσd.

On the other hand, the Rankine yield function, which is more used to describe the

cracking in quasi-brittle materials. It is a principal stress criterion characterized by a

vertex in the principal stress space.

Nonlinear hyperelastic models

The hyperelasticity models refer to the materials which can experience large elastic

strain that is recoverable.

Considering W as the strain energy density of the material, the constitutive equa-

tion of the nonlinear hyperelastic models, as studied by Oliver (2002), are defined

as:

σσσ =
∂W (εεε)

∂εεε
. (2.19)

Therefore,
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σ̇σσ =
∂2W (εεε)

∂εεε⊗ ∂εεε
: ε̇εε = ET (εεε) : ε̇εε, (2.20)

where ET (εεε) is positive definite.

2.3.3 Discontinuous approach: Joint model

Another way of describing discontinuities numerically, apart from the continuous ap-

proach, is defined in this section. As introduced by Dı́ez and Pegon (2002); Beer

(1985); Snyman et al. (1991), in the Finite Element analysis in solid mechanics, some

situations present a discontinuous behavior between finite elements which can be

modeled with joint elements. One example could be fractures in the material, like in

plain concrete. For example, López et al. (1999) propose to model any possible crack

path of the material with joint elements, taking into account the aggregates of the

concrete. In this thesis, the idea is to consider only the fracture pattern, known a

priori, modeled with joint elements, whereas the rest of the specimen is assumed to

be elastic.

The nodes in the interface zone must be defined twice in order to define the joint

elements, which will correspond to the duplicated geometry. Joint elements allow

interfaces sliding and separating. The constitutive equations must incorporate both

contact and noncontact conditions. When the interfaces are in contact, frictional

sliding is possible, with dilatant behavior. The joint model is already incorporated

into CAST3M, the standard nonlinear finite element code used in this thesis, and into

some other commercial codes. It is easy because joint elements use the same type of

nodal quantities as the continuous elements.

Any constitutive equation modeling a joint element in a three-dimensional problem

has three components. The first one corresponds to the joint plane normal direction

and the other two are the tangential directions of the plane. The normal one corre-

sponds to the contact or separation between the joint interfaces. Moreover, the ones

in the joint plane correspond to the slide directions.

The nonlinear behavior of joints is characterized by slide and separation taking
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place at the joint plane. For a joint with no tensile strength, separation of joint planes

will occur when the strain normal to the joint plane becomes positive. Alternatively, a

tensile strength can be given to the joint. If the shear strength of the joint is exceeded,

irreversible slide occurs.

The Mohr-Coulomb Joint model, for example, can be used to model the collapse

pattern of plain concrete. Therefore, the governing equations of the joint model are

written as

σ = kn1 · u if
−fc
kn1

≤ u ≤ u0 (2.21)

σ = (kn1 · u0 − kn2 · u0) + kn2 · u if u ≥ u0 (2.22)

τ = −τmax if
−τmax
ks

≤ v (2.23)

τ = ks · v if | v |≤| τmax
ks
| (2.24)

τ = τmax if v ≥ τmax
ks

(2.25)

where τmax = c+ σ tan(ϕ).

Table 2.1: Parameters of the model

Description Symbol

first normal stiffness kn1

second normal stiffness kn2

displacement threshold from kn1 to kn2 u0

shear stiffness ks
maximum compression strength fc

cohesion c
friction angle ϕ

In equations (2.21)-(2.25), stresses applied are divided into two components (nor-

mal, τ , and shear, σ), and the displacements are also divided into u and v, corre-

sponding to σ and τ , respectively. Moreover, in table 2.1, the relation between each
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parameter of the model and its meaning is presented.

Figure 2.7: Stresses applied to a joint model and its displacements

In figure 2.7, it is shown (a) the relationship between stresses and displacements

and (b) joint elements defined twice. There will be a normal component and two shear

components with the same behavior, but in an orthogonal direction. Moreover, figure

2.8 reflects this constitutive law using two graphics: the normal and shear stresses.

2.4 Numerical strategies to model SFRC

A number of authors have recently introduced new models for SFRC. For instance, a

numerical model considering an elasto-plastic material model for plain concrete with

an exponential softening law turning into a linear softening law once all the fibers are

activated is presented by Hofstetter et al. (2005). The crack propagation in SFRC

considering a fracture mechanics approach is simulated by Zhang and li (2004).

On the other hand, Schumacher (2006) adapted the Compressive Damage Zone

model (which is defined for plain concrete (Markeset and Hillerborg (1995))) for SFRC,

adding extra parameters corresponding to steel fibers. The same author studies the
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Figure 2.8: σ and τ evolution depending on the displacements

tensile behavior of SFRC considering a numerical model presented by Konig and

Kutzing (1999). The orientation of the fibers is also studied by Schumacher (2006),

considering a concrete specimen with a steel bar and a quantity of fibers. The dis-

cretization of the domain, as reproduced in figure 2.9, is done considering a conformal

mesh for both domains (concrete and steel bar). Moreover, Konig and Kutzing (1999)

use pullout tests to characterize fibers behavior keeping conformal the concrete and

fiber meshes, similar as presented by Schumacher (2006).

Figure 2.9: Mesh corresponding to the steel bar and the concrete concrete domain
(from Schumacher (2006)).
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Another approach is based on a numerical model for reinforced concrete, presented

by Oliver et al. (2008), in which concrete is modeled considering a cohesive model

based on a Continuum Strong Discontinuity Approach (CSDA). Moreover, fibers are

defined with an elasto-plastic model and the interface is modeled using contact-friction

elements. CSDA consists of a strong discontinuity kinematics projecting the continu-

ous model (accounting for the constitutive equation of the material) onto the interfaces

as a traction separation law.

The CSDA is applied to reinforced concrete considering the steel bars modeled with

a different material than the concrete, reflecting the interfacial interaction between

concrete and bars (bondslip and dowel action). In a mesoscopic scale, homogeneous

elements are considered for the concrete and the reinforcement is discretized with ap-

propriate interface elements between them to account for the concrete-reinforcement

interaction. However, this mesoscopic approach needs large computational capacity.

On the contrary, a macroscopic scale treatment allows considering the rebars em-

bedded into the solid finite elements and discretizing the domain with coarser meshes

(lower computational cost). Thus, Oliver et al. (2008) propose to model 2D reinforced

concrete considering the CSDA with the mixture theory modeling the reinforced con-

crete. Figure 2.10 shows a mesh considered by Oliver et al. (2008) for applying their

approach.

Figure 2.10: Domain considered by Oliver et al. (2008) for modeling reinforced con-
crete.

The CSDA can be applied also to SFRC. However, the CSDA idea brings to an

homogenized model which do not allow to take into account the distribution of the

fibers into the material.

Some analytical expressions providing constitutive equations for SFRC based on
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direct or inverse approaches giving macroscopic approximations are presented by

Laranjeira (2010). In such constitutive models, SFRC is supposed to be an homoge-

neous material, useful for macromodeling the material behavior. However, the main

drawbacks of this approach are that the homogenization process is not easy and the

homogenized models do not account for the actual distribution of the fibers.

Most of the numerical methods proposed in the past have a common characteristic:

concrete bulk and fiber cloud meshes are conformal (with geometrical matching),

as observed in figures 2.9 and 2.10, corresponding to the approaches proposed by

Schumacher (2006) and Oliver et al. (2008), respectively. Therefore, building up a

conformal mesh for the whole system is cumbersome and computationally expensive.

For pullout tests, considering only one fiber, conformal meshes are useful and relatively

easy to generate. However, if several fibers are considered, these models are severely

limited due to their computational cost.

There exist however previous attempts of using nonconformal meshes. These

strategies were first introduced for standard reinforced concrete and, recently, also

for SFRC.

For instance Phillips and Zienkiewicz (1976) and Balakrishnan and Murray (1986)

introduce the idea of embedded reinforcement approach to deal with structures in-

cluding curved walls with regular reinforcements. Phillips and Zienkiewicz (1976) con-

sider the reinforcements to be discretized as one dimensional truss or beam elements.

Moreover, perfect bond between steel and concrete is assumed. The finite element

mesh layout is controlled by the reinforcements locations. Moreover, Phillips and

Zienkiewicz (1976) and Elwi and Murray (1980) developed independent approaches

for reinforced concrete performing the virtual work integration along the reinforcing

layer and considering the reinforcement to be aligned with one of the local isoparamet-

ric element coordinate axes. Those approaches are useful for structures with curved

walls with constant thickness and regular reinforcement.

A similar idea is presented by Elwi and Hrudey (1989) for concrete structures

discretized with structured meshes and curved or draped reinforcements. In order to

achieve the advantages of a regular mesh and, at the same time, be able to model com-
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plicated reinforcing details, an embedded representation of reinforcements is chosen.

Curved reinforcements are difficult to discretize conformally to the concrete meshes,

thus, concrete meshes are assumed to be regular and independent to the geometry of

the reinforcements.

Referring to fiber reinforced concrete, Radtke et al. (2010b) introduce a nonconfor-

mal approach based on the partition-of-the-unity finite element method (PUFEMs).

This strategy allows to avoid meshing the fibers. The displacement field u is consid-

ered discontinuous at the fiber boundary. Therefore, u is enhanced by a discontinuous

enrichment, χũ, where χ stands for an enrichment function which is discontinuous at

the boundary of the fiber and constant otherwise. û is the regular part of the dis-

placement field. Thus, u = χũ+ û, being ũ and û continuous over the whole domain.

Apart form the strain tensor εεε, the displacement jump [[u]] over the fiber boundary

is another quantity of interest. The constitutive behavior is composed by the relation

of the bulk material and fiber behavior:

σσσmatrix = Dmatrix : εεε (2.26)

σσσfiber = Dfiber : εεε (2.27)

being Dmatrix and Dfiber the fourth-order elastic material tensor of the matrix material

and the fiber material, respectively.

Moreover, the constitutive relation for the fiber-matrix bond is defined as

τfiber = Db[[u]] (2.28)

where Db stands for the second-order elastic material tensor of the fiber-matrix bond.

The choice of the enrichment function is done depending on the thickness of the

fiber. That is, if the fiber is assumed to be 2D or 3D, the enrichment function is

defined as
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χ =


1 inside of the fiber

0 outside of the fiber

(2.29)

However, assuming that the fiber is one dimensional, χ is defined as

χ =


1 in the boundary of the fiber

0 in the rest of the domain

(2.30)

Radtke et al. (2011) present the same ideas introduced by Radtke et al. (2010b),

but considering a non-linear behavior of FRC. That is, instead of assuming a linear

behavior for the concrete matrix (as Radtke et al. (2010b)), an isotropic damage model

with exponential law is used. Thus, equation 2.26 turns to

σσσmatrix = (1− w)De
matrix : εεε (2.31)

being w the damage variable and De
matrix the elastic material stiffness tensor.

Moreover, for avoiding mesh dependence, Radtke et al. (2011) regularize the model

using an implicit gradient-enhanced damage model.

Radtke et al. (2010a) consider only a background mesh (corresponding to the

concrete matrix) and the fibers (not discretized explicitly to ensure computational

efficiency of the model) are represented by interaction forces. They consider the

same isotropic damage model with exponential law (equation 2.31) for modeling the

concrete matrix. On the contrary, fibers and fiber-matrix interfaces are represented

by the reaction forces from the fibers to the matrix, which are represented by the fiber

pullout forces:

∫
Ω+

fib

p+dΩ+
fib = P+ (2.32)

being p+ the reaction forces from the fibers to the matrix along the fiber surface (Ω+
fib)

and P+ the force vector of the pullout.
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The coupling between the fiber and the matrix models depends on the fiber pull-

out distance, that is, the opening of the crack bridged by a fiber at the fiber crack

intersection.





Chapter 3

Numerical modeling of plain
concrete

3.1 Introduction

The main focus of this chapter is proposing numerical models for the Double Punch

Test (DPT) in which the tensile strength (ft) is an input parameter. The idea is to

replace the naif linear elastic model by a more realistic one that has ft already as

one of material parameters and to identify the value of this material parameter that

better fits the experimental results. These models are validated using experimental

results and other analysis available in the open literature (Chen and Yuan (1980);

Bortolotti (1988); Marti (1989); Molins et al. (2007)).

The information extracted from the experimental tests is translated into the pa-

rameters characterizing the mechanical properties of the analyzed concrete. In this

case, the parameter to be assessed is precisely the tensile strength, ft. Essentially,

the data provided by the experimental setup is a force-displacement curve in which

the peak points corresponding to the collapse are easily identified. The force corre-

sponding to the peak point, P , is readily translated into the tensile strength value

using a theoretical model simulating the mechanical behavior of the test, ft = F(P ).

Currently, the underlying theoretical model used in this framework is an analytical

solution of the linear elastic problem (Chau and Wei (2000a,b)). These models are

a crude approximation of the actual behavior of the specimen close to the collapse

27
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regime but they still provide a good approach to the tensile strength by selecting a

characteristic tensile stress in the linear elastic solution for the peak force, P .

Two different approaches are considered in order to model the mechanical behavior

of the concrete in the DPT. Firstly (option A), a continuous model which has been

successfully used modeling the common Brazilian test (Rodŕıguez-Ferran and Huerta

(2000)), the nonlocal Mazars damage model (Mazars (1986); Bažant (2002); Jirásek

(1998); Pijaudier-Cabot and Huerta (1991); Rodŕıguez-Ferran and Huerta (2000)).

Secondly (option B), a model which introduces discontinuous fracture at the surfaces

corresponding to an a priori defined cracking pattern, based on the experimentally

observed fracture mechanisms (Dı́ez and Pegon (2002); Beer (1985); Snyman et al.

(1991)). On the fracture surfaces, joint elements with cohesive dilatant behavior are

used to model the interfaces. In the rest of the specimen, the mechanical behavior is

assumed to be linear elastic because the relevant deformation is concentrated in the

fracture surfaces. Here, 3D finite element approximations are used complemented (for

option B) with 2D joint elements. Both options A and B are solved using 3D finite

elements.

Both options A and B provide approximations of the pre-peak and the post-peak

behavior. Therefore, the information that may be extracted from the numerical tests

is very rich and, in addition, to identify the parameters it may allow gaining further

knowledge on the phenomenon.

The goal of this chapter is to analyze the features of the different models and their

capabilities to properly approximate the experimental tests by fitting the experimental

data available. An objective comparison is performed by setting a measure of the error

between the experimental data and the model, this is equivalent to define a fitting

criterion. Correspondingly, the parameter identification and the model validation are

carried out both based on the same criterion.

All the experimental results are from an experimental campaign which consisted of

the characterization of an specific concrete, including the double punch test. Hence,

experimental data is available not only from the double punch test, but also from two

different tests.
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Thus, sophisticated models are used to identify the tensile strength from the DPT,

instead of the linear elastic model. The advantage of using this approach is more

relevant when DPT is used to identify the tensile behavior of steel fiber reinforced

concrete. For fiber reinforced concrete (FRC), taking into account the post-peak

behavior (and not only the peak) is extremely relevant. The present work has to

be seen as a first step towards including steel fibers into these models in order to

simulate the extension by of the DPT to assess the after cracking capacity of FRC (a

test introduced in Molins et al. (2007, 2009), named as the Barcelona Test).

The remainder of this chapter is structured as follows. First, in section 3.2 the

double punch test is presented, the problem statement is defined and the analytical

expressions relating the tensile strength and the value of the maximum vertical load

(ft = F(P )) are introduced, as well as the experimental campaign. Section 3.3 presents

the numerical simulation: the continuous model and the discontinuous one. Then,

in section 3.4, the numerical results are presented and contrasted. Moreover, the

numerical results are validated with the experimental and analytical results available.

Finally, the most important conclusions are listed.

3.2 Double Punch test

3.2.1 Description of the Double Punch Test

Double punch test was introduced by Chen (1970); Chen and Yuan (1980); Chen and

Tumbauer (1972) as a tool to assess indirectly the tensile strength of plain concrete.

It was presented as an alternative to the Brazilian test, which was so far the most

common indirect tension test.

The test layout is illustrated in figure 3.1 and consists in compressing axially a

cylindrical concrete specimen with two steel circular punches centered at the top and

the bottom of the specimen. The geometry of the specimen is given by the height

(l = 15cm) and the diameter (d = 15cm). The ratio between the diameters of the

punches and the specimen is one fourth (d′ =
1

4
d = 3.75cm).
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Figure 3.1: Double Punch Test layout

A typical failure mechanism presents three radial fracture planes. However, in the

experimental results, the observed number of fracture planes ranges from two to four.

The geometry of the collapse pattern is completed with two fracture cones beneath

each punch. In figure 3.2 two different fracture patterns are illustrated.

Figure 3.2: Two possible collapse mechanisms with three and four radial fracture
planes
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The goal of the present simulations is to describe the collapse of the specimen, with

special interest in determining the peak load. Describing the chronological sequence

of the cracks appearance, as discussed by Lilliu and Mier (2003, 1999), is beyond the

scope of this thesis. In the models used here the fracture pattern is such that the

specimen is partitioned into blocks that behave as rigid- bodies. Thus, the kinematics

compatibility of the motion of these blocks undergoes a simultaneous development

of the two basic mechanisms, namely the cone penetration and the separation of the

crack planes.

The classical indirect tension test for plain concrete is the Brazilian test. DPT is

often preferred to the Brazilian test because it is easier to carry out and the tensile

strength is sampled in different cracked planes and, therefore, the quantity obtained

corresponds to an average. On the contrary, the Brazilian test confines failure to a

predetermined plane. Moreover, for Steel Fiber Reinforced concrete DPT captures

better fibers influence than Brazilian test, due to their fracture mechanisms.

The experimental set up is a displacement controlled compression at a velocity of

0.5mm/min.

3.2.2 Close-form expressions for tensile strength determina-

tion

Some analytical expressions of the tensile strength are available in the literature for

the DPT. The maximum compression load (P ) and the dimensions of the test (d, d′

and l) are the inputs in each analytical expression.

Chen and Yuan (1980) applied a limit analysis idealizing concrete as a linear

elastic-perfectly plastic material with very large ductility obtaining

ft =
P

π(1.2
d

2
l − (

d′

2
)2)

. (3.1)

Moreover, in order to be more accurate, they carried out a finite element analysis

considering concrete as an elastic plastic strain-hardening and fracture material and
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the final expression proposed is

ft =
0.75P

π(1.2
d

2
l − (

d′

2
)2)

. (3.2)

However, there are other analytical approximations of the tensile strength in the

DPT given by different authors as follows.

Based on a nonlinear fracture mechanics approach, Marti (1989) proposed

ft = 0.4
P

4(
d

2
)2

√
1 +

d

λda
(3.3)

where da is the maximum aggregate size and λ is an experimental parameter depending

on the material. This expression is given in order to analyze the size effect of the

specimen on the tensile strength value.

Bortolotti (1988) assumed a modified Coulomb-like failure criterion for concrete

getting

ft =
P

π(
d

2
l − (

d′

2
)2 cotα)

(3.4)

considering α =
π

2
− φ

2
with φ being the internal friction angle in the modified

Coulomb’s yield criterion.

Finally, Molins et al. (2007) presented another analytical expression based on limit

analysis,

ft =
P

9πl
d′

2

. (3.5)

In the following, these expressions are used for comparision purposes and we re-

strict ourselves to the expressions given in equations (3.1), (3.2) and (3.5).
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3.2.3 Experimental campaign

The DPT is contrasted with two standard tests (the uniaxial compression test and

the Brazilian test). The set up of these two tests is recalled bellow.

Uniaxial compression test

The uniaxial compression test, presented in figure 3.3, consists in a concrete cylinder

subjected to compression. The load is applied in the whole surface of the top and the

bottom of the specimen. The size of the specimen is set: l = 30 cm and d = 15 cm.

Figure 3.3: Description of the uniaxial compression test

This is a direct compression test which provides the compressive strength, fc. The

relationship between the compressive strength fc and the maximum vertical load Pu

is given by



34 Numerical modeling of plain concrete

fc =
4Pu
πd2

(3.6)

where d stands for the diameter of the specimen.

Experimentally, the value obtained is Pu = 8.9 · 105N, which is translated into fc

through equation (3.6): fc = 50.45MPa.

Brazilian Test

On the other hand, the Brazilian test is an indirect tension test consisting in com-

pressing a plain concrete cylinder placed horizontally by two steel plates (as shown in

figure 3.4).

Figure 3.4: Description of the Brazilian test

For the Brazilian test, the relation between the tensile strength with the maximum

vertical load is given by

ft =
2PB
πld

(3.7)

where l and d stand for the length and the diameter of the concrete specimen, respec-

tively.
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The given analytic expression is standard and there is agreement about its accu-

racy.

Experimentally, the average value obtained is PB = 8.6 · 105N, which is translated

to the tensile strength, ft, using the equation (3.7). Thus, the value of the tensile

strength is set: ft = 3.84MPa.

Experimental results

The data presented in table 3.1 is the result of an experimental campaign carried out

in the Departament d’Enginyeria de la Construcció of the Universitat Politècnica de

Catalunya (UPC). The uniaxial compression test, the Brazilian test and the DPT

are considered. The mean values are displayed and, in brackets, the coefficient of

variation (standard deviation divided by the mean value) is presented. The Poisson

ratio (ν) is assumed to be equal to 0.2.

Table 3.1: Experimental data

Description Symbol Value
Young’s modulus E 35.5GPa

Compressive strength
(from the uniaxial compression test) fc 50.45MPa (2.69%)

Tensile strength
(from the Brazilian test) ft 3.84MPa (8.36%)

Maximum load
(from the DPT) P 1.52 · 105N (4.10%)

The DPT campaign consists in six test, three of them showed three fracture radial

planes and the other three showed four fracture radial planes.

In this case, the uniaxial compression test (giving fc), the Brazilian test (giving ft

as far as the Brazilian test is considered to be reliable) and the output of the DPT (the

maximum vertical load P ) are available for the same material. Numerical models are

needed to find the expected value P of the DPT for a given ft. Although analytically

some expressions relating ft and P for the DPT are available, they present scattering.
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The relation ft = FB(PB) for the Brazilian test is reliable, therefore, the numerical

models are validated firstly for this test.

3.3 Numerical modeling

Two different techniques are considered to simulate numerically the double punch

test. On one hand, a continuous model, the nonlocal Mazars damage model (based

on Mazars (1986) and Bažant (2002)), which has already been used in previous simu-

lations of indirect tension tests (Rodŕıguez-Ferran and Huerta (2000)). On the other

hand, a discontinuous model is considered based on introducing joint elements along

the cracks. This model defines a priori the cracking pattern (known through the ex-

perimental tests and the analytical description of the DPT). Then, joint elements are

used to model the cracks. The rest of the specimen is modeled as an elastic material.

The behavior of the DPT is a fully 3D phenomenon and, therefore, 3D modeling

is required for both cases.

3.3.1 Nonlocal Mazars damage model

In the nonlocal Mazars damage model (presented in section 2.3.1), the parameters At,

Bt, Ac, Bc and the threshold Y0 are set depending on the material modeled, taking into

account the relationship between damage parameters and experimental parameters.

The constitutive equation under tension for a uniaxial test can be written as

σ =


E · ε, ε ≤ Y0

[
Y0(1− At)

ε
+ At · e−Bt(ε−Y0)

]
· E · ε, ε > Y0

(3.8)

and the constitutive equation under compression is deduced for a uniaxial test
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σ =


E · ε, ε ≤ Y0

[
Y0(1− Ac)

ε
+ Ac · e−Bc(ε−Y0)

]
· E · ε, ε > Y0

(3.9)

Now, the damage parameters deduction is presented based on (3.8) and (3.9).

• Imposing that if ε = Y0 ⇒ σ = ft in (3.8), it results

Y0 =
ft
E

(3.10)

• Under tension, lim
ε→∞

σ = σ∞, with σ∞ standing for the residual tensile strength,

is considered. Therefore, using (3.8),

E · Y0 · (1− At) = σ∞ ⇒ At = 1− σ∞
E · Y0

(3.11)

• Bt = 10000 · (1 + ξ), where ξ is a parameter measuring the material ductility.

• Under compression, σ′(εmax) = 0. Let us derivate (3.9), getting

Bc =
1

εmax
(3.12)

• Imposing σ(εmax) = fc under compression in (3.9) and using Bc =
1

εmax
, Ac is

obtained:

Ac =
fc − E · Y0

−E · Y0 + E · εmax · e
(−1+

Y0

εmax
)

(3.13)

• To ensure, under compression, that 0 ≤ D ≤ 1 it is necessary to impose that

0 ≤ Ac ≤ 1 (3.14)
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In figure 3.5, the plain concrete damage model is presented in two graphics, one

corresponding to the tension behavior (3.5(a)) and another to compression (3.5(b)).

(a) (b)

Figure 3.5: Uniaxial test. (a) Tension. (b) Compression.

Moreover, the characteristic length (lcar) is another material parameter to be set

for regularizing the model.

3.3.2 Heuristic crack model with joints

An alternative to the damage model is a discontinuous model which considers the

whole specimen as an elastic material and the cracking pattern defined using joint

elements, presented in section 2.3.3.

The parameter deduction of the joint model is presented as follows: The first

normal stiffness (N/m3) is defined as kn1 =
E

l
, where l stands for the specimen

height, as well as the shear stiffness, (N/m3), ks =
E

l
. Otherwise, the second normal

stiffness (N/m3) must satisfy that kn2 ≤ 0, because the negative branch is a modeling

artifact to account for the sudden loss of strenght associated with cracking, while

preserving the mathematical regularity of the model. The threshold from kn1 to kn2
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is defined as u0 =
ft
kn1

and the cohesion (N/m2) is c = fc. Finally, the friction angle

is fixed as ϕ = 54◦, as found in the literature (Bortolotti (1988)).

3.4 Numerical results and validation

All the results obtained considering both the continuous and the discontinuous model

are presented. Both the Brazilian test and the double punch test are simulated.

Moreover, the results are validated and compared with the analytical expressions and

with the experimental data.

3.4.1 Nonlocal Mazars damage model

For simulating numerically considering the nonlocal Mazars damage model, six ma-

terial parameters must be set: damage threshold (Y0), characteristic length (lcar),

tension parameters (At and Bt) and compression parameters (Ac and Bc).

From the experimental campaign, the value of the compressive strength obtained

through the uniaxial compression test is available, fc = 50.45MPa. Therefore, through

the uniaxial compression test, any parameter may be evaluated, but the relation

between the two compression parameters is set. Hence, when Ac and Bc satisfy the

given equation (3.13), the value of the compressive strength is set (fc).

The value given by the experimental campaign from the Brazilian test is the tensile

strength, ft = 3.84MPa. Therefore, through the equation (3.10), the value of Y0 is

set.

Hence, herein, some consideration must be taken into account:

• Y0 =
ft
E

=
3.84 · 106

35.5 · 109
= 1.08 · 10−4

• Considering any value of Ac satisfying 0 ≤ Ac ≤ 1 is enough to ensure that

0 ≤ D ≤ 1 and the chosen value does not influence on the results, therefore,

Ac = 1.
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• the relationship obtained from the uniaxial compression test between Ac and Bc

must be satisfied (equation (3.13)), considering fc = 50.45MPa. Thus, Bc = 266.

• At = 1 − σ∞
E

= 1, because the residual strength under tension is σ∞ = 0 for

plain concrete

• Bt = 10000 · (1 + ζ), with 0 < ζ < 1, depending on the material. Hence,

Bt = 2500.

• Observing the specimen size of the test and the expected fracture pattern, the

caracteristic length (lcar) is set.

Brazilian test

Considering the previous information for simulating numerically the Brazilian test,

the value of the tensile strength can be obtained (calculated through the value of the

maximum vertical load, considering the equation (3.7)). All the material parameters

are set previously, except lcar which is set observing the expected fracture pattern of

the test and its sizes. Hence, the optimal material parameters are presented in table

3.2.

Table 3.2: Optimal values of the material parameters of the nonlocal Mazars damage
model for the Brazilian test

Material
parameter Value

Y0 1.08 · 10−4

lcar 2 · 10−2m
At 1
Bt 2500
Ac 1
Bc 266

Vertical displacements are prescribed at the top of the specimen through one steel

plate, which is modeled as an elastic material. Moreover, both horizontal and vertical
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symmetric conditions are imposed, thus, only a quarter of the specimen is taken into

account during the whole simulation.

After the simulation, in figure 3.6, the value of the maximum vertical load depend-

ing on the vertical displacement is presented and, as expected, the maximum value is

PB = 8.8 · 105N, which corresponds to ft = 3.74MPa (considering the equation (3.7)).
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Figure 3.6: Brazilian test with the nonlocal Mazars damage model. uz(m) - PB(N).

In order to analyze the fracture pattern of the Brazilian test, the damage distri-

bution obtained numerically is presented in figure 3.7.
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Figure 3.7: Damage distribution at the load peak
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Double Punch Test

In this case, again, taking into account all the experimental information there is only

one degree of freedom when setting the material parameters, lcar, which depends on

the test size and the fracture pattern. lcar is set to adjust the numeric results with the

experimental ones. Hence, the same parameter combination suitable for the Brazilian

test is chosen, but with a different value of the characteristic length (as presented in

table 3.3).

Table 3.3: Optimal values of the material parameters of the nonlocal Mazars damage
model for the double punch test

Material
parameter Value

Y0 1.08 · 10−4

lcar 2.5 · 10−3m
At 1
Bt 2500
Ac 1
Bc 266

Displacements are imposed at the top punch which are modeled as an elastic

material. Symmetric conditions are imposed in order to work with half of the problem.

The vertical load versus the maximum vertical displacement is presented in figure

3.8. It is possible to observe that the maximum value (1.92 · 105N) is close to the one

obtained experimentally (1.52·105N) and the vertical displacement value (2.55·10−4m)

also is next to the experimental one. In addition, after the peak, it is possible to

capture the behavior.

Figure 3.9 shows different views of the specimen with the damage distribution to

be able to observe the whole cracking pattern. Looking at the damage distribution,

four radial vertical cracking planes are observed (figures 3.9(a) and 3.9(b)). Moreover,

the cone formation under the punch is presented, as expected, in the inside view of the

specimen (figure 3.9(c)). Although the cracking pattern is detected, it is not possible

to capture the whole pattern.
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Figure 3.8: Double punch test with the nonlocal Mazars damage model. uz(m) -
P (N).

Although different meshes (for the same geometry) have been used with the nu-

merical simulation of the double punch test considering the nonlocal Mazars damage

model, the fracture pattern is always the same, as expected, and placed as observed

in figure 3.9, as well as the value of the maximum vertical load.
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(a) (b)

(c)

Figure 3.9: Damage distribution at the end of the simulation. (a) Top view. (b)
Bottom view. (c) Inside view.



46 Numerical modeling of plain concrete

3.4.2 Heuristic model with joint elements in the cracking pat-

tern

Brazilian test

Observing the damage distribution (figure 3.7), the Brazilian test is simulated mod-

eling the cracking pattern with joint elements, meanwhile the rest of the specimen is

considered elastic. In figure 3.10, joint elements are in red, meanwhile, the linear ones

are in blue.

Figure 3.10: Brazilian test mesh for the discontinuous model

All the material parameters of the joint elements for the Brazilian test are set based

on the experimental data (ft = 3.84MPa and fc = 50.45MPa) and the specimen height

(l = 0.1m), as presented in table 3.4.

Vertical displacements are prescribed at the top and bottom sheets, modeled under

an elastic model, and the whole specimen is taken into account.

Figure 3.11 presents the maximum vertical load (PB) depending on the vertical

displacement (uz) and the maximum value of PB is PB = 8.8·105N, which corresponds

to ft = 3.72MPa, considering the equation 3.7.
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Table 3.4: Values of parameters for the Brazilian test

Symbol Value

kn1
35.5 · 109

0.1
N/m3

kn2
−35.5 · 109

0.1
N/m3

u0
3.84 · 106

35.5 · 109
m

ks
35.5 · 109

0.1
N/m3

ft 3.84MPa
c 50.45MPa
ϕ 54o

0 1 2 3 4 5 6 7
x 10

−5

0

2

4

6

8

10x 10
5

u
z
 (m)

P
B
 (

N
)

Figure 3.11: Brazilian test with the joint model. uz(m) - PB(N).
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Double punch test

In order to simulate the double punch test considering the heuristic crack model with

joint elements defined here, two different meshes are considered (as presented in figure

3.12): one with three radial planes and another with four radial planes.

(a) (b)

Figure 3.12: Double punch test including joint elements meshes. (a) three radial
cracking planes. (b) four radial cracking planes.

Although double punch test is modeled in 3D, all joint elements are two-dimensional

and triangular for the fracture planes and quadrilateral for the cone. The tip of the

cone is not included in the mesh because it would be a point defined too many times.

Besides, three auxiliary planes are defined corresponding to the specimen’s cracking

planes, but inside the cone. They are necessary to define properly the joint elements.

For the case of four radial planes, also four auxiliary planes are defined inside the cone

(corresponding to the intersection between the cone and the two diametral planes).

Firstly, three fracture radial planes are considered. All the material parameters

are set using the experimental data and they are the same than for the Brazilian test,

except the specimen height (herein, l = 0.075m) as presented in table 3.5. Moreover,

the material parameters in the auxiliar joint elements inside the cone are defined in

order to not influence on the results.
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Table 3.5: Values of parameters for the Double Punch Test

Symbol Value

kn1
35.5 · 109

0.075
N/m3

kn2
−35.5 · 109

0.075
N/m3

u0
3.84 · 106

35.5 · 109
m

ks
35.5 · 109

0.075
N/m3

ft 3.84MPa
c 50.45MPa
ϕ 54o

Vertical displacements are imposed at the top punch which is modeled as an elastic

material. Horizontal symmetric condition is taken into account, thus, only half of the

specimen is considered in the current simulation.

In figure 3.13, the maximum vertical load obtained is presented versus vertical

displacement. As observed, it is possible to capture the behavior after reaching the

peak load. The maximum vertical load (1.55 · 105N) is in the same rang of values

than the load obtained experimentally (1.52 · 105N). Moreover, the value of the

vertical displacements corresponding to the peak load (5.25 · 10−4m) is also close

to the corresponding experimental value.

It is also observed that both the horizontal displacement (∆h) and the vertical

displacement (∆v), corresponding to the peak load, keep the same ratio than the

relation between the two cathetus of the cone’s generator triangle. That is, if the

horizontal cathetus measures ch = 1.875 cm and the vertical one, cv = 3 cm,
ch
∆h

=
cv
∆v

is satisfied.

Figure 3.14 represents the deformed mesh after the simulation from different points

of views. The cone is penetrating the specimen, meanwhile the three cracking planes

are opening in their normal directions.
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Figure 3.13: Double punch test modeled using joint elements considering three crack-
ing planes. uz(m) - P (N).

Figure 3.14: Double punch test modeled using joint elements considering three crack-
ing planes. Deformed meshes amplified ×10.
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Once the results considering three cracking planes defined a priori are analyzed,

four radial cracking planes are considered with the same material parameters (pre-

sented in table 3.5) than in the previous case. However, herein, the fracture pattern is

different, so the same value of the maximum vertical load under the same conditions

is not expected.

In figure 3.15 the results are presented and it is observed that the behavior is the

same both with three and four radial cracking planes. Moreover, after the load peak, it

is possible to obtain further results. Besides, the maximum vertical load (1.56 · 105N)

is still the same as the experimental value, and very close to the value obtained with

three cracking planes. The value of the vertical displacement (5.25 · 10−4m) is also in

the expected range of values.

0 1 2 3 4 5 6
x 10

−4

0

0.5

1

1.5

2x 10
5

U
z
 (m)

P
 (

N
)

Figure 3.15: Double punch test modeled using joint elements considering four radial
cracking planes. uz(m) - P (N).

Once all the material parameters are set (for both cases, three and four radial

fracture planes), a geometric parameter is studied: the cone’s height. When defining a

priori the fracture pattern, cone’s height is an input. After considering different values

of the cone height, it has been found that the value providing results in agreement

with the experimental outcome is h = 3cm. Note that this is also coinciding with the

cone height observed in experiments.
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3.4.3 Validation

Considering fc = 50.45MPa and ft = 3.84MPa set, in table 3.6 all the numerical

results are presented and compared both with analytical expressions and experimental

results.

• Analytical expressions:

– P1 = ftπ(1.2l
d

2
− (

d′

2
)2), from Chen and Yuan (1980).

– P2 =
ftπ(1.2l

d

2
− (

d′

2
)2)

0.75
, from Chen and Yuan (1980).

– P3 = ft9πl
d′

2
, from Molins et al. (2007).

• Experimental value: Pexp = 1.52 · 105N

These values are compared to the numerical results considering the continuous

model, Pcont, and the discontinuous one with three fracture radial planes, Pdisc3, and

four fracture radial planes, Pdisc4.

The errors are computed considering Error(Pi) = |Pi − Pj
Pi

| · 100%, being Pi the

maximum vertical load obtained analytically or experimentally, and Pj the rest of the

values.

Table 3.6: Model Validation

Description P (N) Error(P1) Error(P2) Error(P3) Error(Pexp)
P1 1.51 · 105 0% 24.4% 4.1% 0.6%
P2 2.01 · 105 33.11% 0% 38.6% 32.2%
P3 1.45 · 105 3.4% 27.8% 0% 5%
Pexp 1.52 · 105 0.6% 24.4% 5% 0%
Pcont 1.92 · 105 27% 4.5% 32% 26.3%
Pdisc3 1.55 · 105 2.7% 22.9% 6.9% 2%
Pdisc4 1.56 · 105 3.3% 22.4% 7.6% 2.6%
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3.5 Concluding remarks

To sum up, all the important conclusions of this chapter are presented in the following.

The double punch test has been simulated using two different techniques: (a) the

nonlocal Mazars damage model and (b) an elastic model considering the cracking

pattern modeled with joint elements. In both cases, results are as expected, very

close to the experimental and analytical ones (i.e. in the same range of values, as

shown in table 3.6). These two numerical models are validated through the Brazilian

test, taking into account the experimental information from the uniaxial compression

test, the Brazilian test and the double punch test.

All the parameters (both the material and the geometrical ones) are set for both

numerical models for each test. However, it is not proved that these material pa-

rameter combinations are unique. Experimental results are necessary to set all the

parameters and, in general, the definition of the test.

After trying different material combinations for the nonlocal Mazars damage model,

always taking into account all the conditions found during the present work, the opti-

mal parameter combination is found. In this case, the only different parameter for the

two different indirect tension tests (the Brazilian test and the double punch test) with

the same concrete is the characteristic length which depends on the fracture pattern

and the test size.

For the joint model, it is again observed that with a different fracture pattern (three

or four planes), the same material parameters is used. Likewise, for the Brazilian test

and the double punch test, except for the specimen height.

Compared with the available experimental results and some of the analytical ex-

pressions, the most suitable model is the discontinuous one considering both, three

and four cracking radial planes because fits better the experimental results. How-

ever, using the joint model, it is necessary to know the fracture pattern before the

simulation. Meanwhile, with the nonlocal Mazars damage model, the failure pattern

is not set a priori. Moreover, the fracture pattern obtained considering the damage

model fits with the experimental one and the obtained peak value corresponds to

other analytical expressions.
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Time calculation and computational cost are shorter using the discontinuous model

than with the nonlocal Mazars damage model, due to the number of nonlinear elements

in each model.

Both the nonlocal Mazars damage model and the model including joint elements

in the cracking pattern are valid alternatives to simulate the double punch test, which

was designed for studying the tensile strength (ft) of concrete. Therefore, these nu-

merical simulations allow to control ft, for any material parameters considering both

models. In both cases, ft is an input of the problem and the maximum vertical load,

P , is the output of the problem.

Having at hard these two alternatives allows reproducing numerically the behavior

of the DPT described by different authors and also with experimental results available.

Up to now, the double punch test has been simulated numerically for plain con-

crete. Then the next step is including fibers into these models in order to simulate

the double punch test for steel fiber reinforced concrete (a test introduced by Molins

et al. (2007) and Molins et al. (2009), defined as the Barcelona Test).



Chapter 4

Numerical tool for modeling Steel
Fiber Reinforced Concrete

4.1 Introduction

In this chapter, an alternative for modeling numerically SFRC is presented, based on

the ideas introduced by Pros et al. (2008). The goal is to avoid conformal meshes

and homogenized models. In the current proposal, concrete and fiber meshes are

independent, nonconformal, and the actual geometry of all the fibers is defined inside

the concrete mesh. Moreover, although concrete and fiber models interact, they are

defined independently. The main idea considered herein for coupling the two models

is based on the Immersed Boundary (IB) methods (Boffi and Gastaldi (2003); Boffi

et al. (2007); Mittal and Iaccarino (2003)), which were introduced for a fluid with a

solid immersed in it (here, concrete is thought as the fluid and the fibers are like the

solid structure immersed in the fluid). Then, displacement compatibility between the

two models is imposed. In order to describe the whole debonding process between

the fibers and the plain concrete, a mesomodel for steel fibers is presented, which

is translated into the constitutive equations for fibers. These constitutive equations

depend on the angle between the fiber and the normal direction of the failure pattern.

They also depend on the shape of the fiber (straight or hooked). The model for plain

concrete is defined independently, being typically a nonlinear model.

The remainder of this chapter is structured as follows. First, in section 4.2, the

55
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problem statement of SFRC is presented. In section 4.3, the discrete approach of the

problem is described. Section 4.4 presents the models considered for each material:

(a) a nonlinear mesomodel for steel fibers accounting for the whole behavior between

plain concrete and steel fibers and (b) nonlinear models for plain concrete. Then, in

section 4.5, two numerical examples of the proposed model are presented: a pullout

test (considering different fiber orientations) and the direct tension test considering

both plain concrete and SFRC (with straight and hooked fibers). The chapter is

closed with some concluding remarks and perspective future work.

4.2 Problem statement

The problem to be solved is stated as follows. An open bounded domain is considered

Ω ⊂ Rd, with d = 2 or d = 3, as shown in figure 4.1, which is composed by two

different subdomains: Ω = ΩC ∪ ΩS, being ΩC and ΩS the volumes occupied by the

concrete and steel, respectively. Thus, the whole domain Ω represents the SFRC.

The boundary of the domain is divided into two parts referring to the boundary

conditions: ∂Ω = ΓN ∪ ΓD, with ΓN ∩ ΓD = ∅, being ΓN and ΓD associated with

the Neumann and Dirichlet boundary conditions, respectively. Moreover, the internal

boundary Γint, defining the interface between concrete and steel, is given by Γint =

ΩC ∩ ΩS.

The unknown function u, taking values in Ω, is the displacement field fulfilling

the following boundary value problem

−∇ · σ(u) = bC in ΩC (4.1a)

−∇ · σ(u) = bS in ΩS (4.1b)

u = uD on ΓD (4.1c)

σ(u) · n = gN on ΓN (4.1d)

σ(u) · n|ΩS
= σ(u) · n|ΩC

on Γint (4.1e)
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Figure 4.1: General domain

where bC and bS stand for the body loads in the concrete and steel and uD and gN

are the prescribed displacements and tractions on ΓD and ΓN .

For solving the current problem, different options could be considered. As pointed

out in the state of the art (chapter 2), one possibility is defining conformal meshes for

the two domains ΩC and ΩS with different material models. Another option consists

in considering an homogenized model for the complete domain. In this thesis, a third

option is presented avoiding conformal meshes (too expensive and not affordable for

large number of steel fibers) and homogenized models (not accounting for the actual

geometry of the fibers).

The proposed approach is based on the Immersed Boundary (IB) methods (Boffi

and Gastaldi (2003); Boffi et al. (2007); Mittal and Iaccarino (2003)) which were

introduced for solving problems considering a solid structure immersed in a fluid. The

main idea of these methods is to neglect the space occupied by the solid structure.

The fluid is considered to occupy the whole domain and the velocities of both solid

and fluid are made compatible in the coinciding points. Then, the effect of the solid

in the fluid is accounted for by adding an interaction force. The two systems (fluid

and solid structure) are considered separately and compatibility is enforced by adding

the corresponding interaction forces. The discretization of the problem is therefore
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Figure 4.2: Ideal domain

simplified because the mesh of the whole domain (the fluid) may be very simple

(eventually a cartesian mesh) and the mesh for the solid body does not require to be

conformal with it. The models corresponding to the fluid and the solid are defined

independently.

Here, the same approach is used, taking the plain concrete the role of the fluid,

and the fiber cloud the role of the solid structure. Therefore, the problem to be solved

is redefined. First, the geometrical conception is adapted to the new scheme. It is

assumed that the geometrical support of the fibers is a 1D manifold (with measure

zero in Rd). Thus, ΩS is replaced by an ideal version Ω̃S, see figure 4.2. The two

subdomains ΩC and ΩS are therefore replaced by Ω and Ω̃S, respectively. Note that

the fiber cloud domain, Ω̃S, is defined overlapping the new concrete domain, Ω, that

is, for each fiber point, there is another point in the concrete background with the

same coordinates.

Secondly, the problem statement is reformulated by adapting the equilibrium equa-

tions (4.1) to this new geometry. The unknown displacement field u takes values in

every point x ∈ Ω. The compatibility of displacements between the concrete bulk

and the fiber cloud is ensured by the fact that Ω̃S ⊂ Ω. The equilibrium equations in
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Figure 4.3: Fiber parametrization

the concrete bulk (4.1a), (4.1c) and (4.1d) read

−∇ · σ(u) = bC + f
S→C

in Ω (4.2a)

σ(u) · n = gN on ΓN (4.2b)

u = uD on ΓD (4.2c)

being f
S→C

the interaction force accounting for the effect of the fibers in the concrete

bulk described by equation (4.1e).

The interaction force f
S→C

is defined taking into account the equilibrium equation

in the fibers, (4.1b). An arc length s is introduced for each fiber using the parametriza-

tion X(s), as illustrated in figure 4.3. The displacement along the fiber is given by

the displacement field u taking values in the concrete bulk, the restriction of u to Ω̃S

is denoted by uS.

The expression for f
S→C

at a point x ∈ Ω̃S ⊂ Ω is given by

f
S→C

(x) =

∫
fΩS

f(s)δ0(x−X(s))ds. (4.3)

where δ0 is the Dirac delta and f(s) is a force density distributed along the fiber line
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and defined as

f(s) =
d σS(uS)

d s
t (4.4)

being σS a unidimensional stress defined in the fiber and t the unit vector in this

direction. Fibers are considered with no bending stiffness, therefore, f(s) is defined

as aligned with the longitudinal direction (normal to the cross section).

4.3 Discrete approach for coupling the model for

the concrete bulk and the fiber cloud

The problem is discretized defining independently one mesh for the concrete bulk

and one mesh for the fiber cloud. The mesh for the concrete bulk is kept simple

while preserving the geometrical features of the sample, for instance the notch, see

figure 4.4. The discretization of the fiber cloud is a series of straight bar elements

(in the examples included in this work each fiber is discretized with five elements).

No conformity or geometrical matching is enforced between the discretizations of

the concrete bulk and the fiber cloud. For a given discretization, the corresponding

unknowns of the discrete problem are the nodal values of the displacements in the

concrete bulk and in the steel fiber cloud. These nodal vectors are denoted by uc and

us respectively and they are a priori independent. The displacement compatibility

must be enforced specifically. The discrete form of the equilibrium equations (4.2)

(equilibrium in the concrete bulk), is expressed in terms of nodal force vectors and

reads

F int
c = F ext

c + Fs→c, (4.5)

where the nodal vector F ext
c is the discrete version of the external force vector and

accounts for the effect of bC and gN , Fs→c stands for the discrete form of f
S→C

and F int
c

corresponds to the internal forces, that is, the discrete vector version of −∇ · σ(u).
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Figure 4.4: Non conforming meshes for the concrete bulk and the fiber cloud

A similar expression holds for the equilibrium in the fiber cloud:

F int
s = F ext

s + Fc→s (4.6)

where the first terms are analogous to the previous equation and Fc→s is an interaction

force from the concrete bulk into the steel fibers.

4.3.1 Linear case

In the case the concrete bulk is assumed to be linear, the following relation holds:

F int
c = Kcuc, being Kc the stiffness matrix of the concrete bulk. In the same basis,

if the mechanical behavior of the fibers is linear, one has that F int
s = Ksus, being Ks

the stiffness matrix of the fiber cloud. The displacement compatibility between the

displacement fields in the concrete bulk and the fiber cloud, uc and us is expressed

in algebraic form via the projection operator Π: us = Πuc. This linear restriction is

enforced via the Lagrange multipliers method. When added to the discrete equilibrium
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equations (4.5) and (4.6), the following system yields


Kc 0 ΠT

0 Ks −Is
Π −Is 0



uc

us

λ̃

 =


F ext
c

F ext
s

0

 ,
Note that the number of rows of the matrix Π corresponds to the number of degrees of

freedom of the fibers and its number of columns is the number of degrees of freedom

of the concrete bulk.

In order to identify the discrete interaction forces, Fs→c and Fc→s, the previous

system is rewritten as


Kcuc = F ext

c − ΠTλ̃ concrete equilibrium

Ksus = F ext
s + λ̃ fiber cloud equilibrium

Πuc = us displacement compatibility

that is, the interaction force from the fibers to the concrete is Fs→c(us) = −ΠTλ̃

and the interaction force from the concrete to the fibers is precisely the Lagrange

Multiplier, Fc→s(uc) = λ̃.

In the remainder of the thesis, and according with the hypothesis of neglecting

the volume of the steel fibers, the external forces on the fibers are also assumed to be

zero, F ext
s = 0.

Remark 1. Essential boundary conditions in the concrete bulk. In SFRC, Dirichlet

boundary conditions are imposed only in the concrete bulk. The general form of a linear

restriction is Au∗c = u∗D, being A a rectangular matrix and u∗D the vector of prescribed

values. Considering Lagrange multipliers for imposing these boundary conditions, the

concrete stiffness (Kc), displacement (uc) and the external forces (F ext
c ) are defined
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as follows:

Kc =

 K∗c AT

A 0

 , uc =

 u∗c

λ∗

 and F ext
c =

 F ext∗
c

u∗D


being K∗c and u∗c the structural concrete stiffness and displacement, respectively, with-

out the Lagrange multipliers. Vector λ∗ is the Lagrange multiplier and F ext∗
c represents

the external load applied in the concrete bulk.

Therefore, the system to be solved for the problem considering the Lagrange Mul-

tipliers method without accounting for the fibers interaction would be

Kcuc = F ext
c .

Thus, this allows writing in a unified manner the loading term, both if displacements

or forces are prescribed.

4.3.2 Nonlinear case

In a realistic case, fibers and concrete are modeled as nonlinear materials. Thus, the

general form of the discrete nonlinear system to be solved reads:

F int
c (uc) = F ext

c + Fs→c(us)

F int
s (us) = Fc→s(uc)

Πuc = us

A classical incremental-iterative approach is used. The external load is split into

loading steps. The external load in the concrete at step k is denoted by F ext,k
c . The

generic load increment is denoted by ∆F ext
c , such that F ext,k+1

c = F ext,k
c + ∆F ext

c (for

the sake of simplicity, the notation omits the dependence on k of the increments).
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It is assumed that equilibrium is reached for step k (step k is converged), namely

ukc , u
k
s , F

k
c→s and F k

s→c are known and satisfy

F int
c (ukc ) = F ext,k

c + F k
c→s

F int
c (ukc ) = F k

s→c

Πukc = uks

Then, we seek the solution at the next step k + 1. The problem reads, given the

solution at step k and ∆F ext
c , find uk+1

c , uk+1
s , F k+1

c→s and F k+1
s→c satisfying

F int
c (uk+1

c ) = F ext,k+1
c + F k+1

c→s = F ext,k
c + ∆F ext

c + F k+1
c→s

F int
s (uk+1

s ) = F k+1
s→c

Πuk+1
c = uk+1

s

In order to solve the incremental nonlinear problem, an iterative method is used.

iterations are required for finding ∆uc and ∆us such as:

uk+1
c = ukc + ∆uc

uk+1
s = uks + ∆us

Therefore, assuming the approximation

F int
c (uk+1

c ) ≈ F int
c (ukc ) +Kc∆uc

F int
s (uk+1

c ) ≈ F int
s (uks) +Ks∆us

the initial trial increment (iteration i = 0) aims at determining the approximations

δuc,0 and δus,0 to ∆uc and ∆us. The first iteration is then computed by solving the

following system of equations:


Kc 0 ΠT

0 Ks −If
Π −If 0



δuc,0

δus,0

λ̃

 =


∆F ext

c

0

0

 .
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being λ̃ the corresponding Lagrange multiplier.

For the next iterations, i = 1, 2, 3 . . ., the displacement increments are assumed to

have the form ∆uc ≈
∑i

j=0 δuc,j and ∆us ≈
∑i

j=0 δus,j.

Since the approximation to uk+1
c and uk+1

s at iteration i−1 is available, the residual

is computed as

rc,i−1 = F ext,k+1
c − F int

c (uk+1
c )− ΠTλ̃

rs,i−1 = F int
s (uk+1

s )− λ̃

The next iteration i is obtained solving


Kc 0 ΠT

0 Ks −If
Π −If 0



δuc,i

δus,i

λ̃

 =


rc,i−1

rs,i−1

0

 .
For each loading step, the iteration loop is performed until convergence is reached.

The stopping criterion consists in fulfilling simultaneously the following conditions:

‖rc,i‖ < tolr , ‖rs,i‖ < tolr and ‖∆uc,i‖ < tolu, being tolr and tolu the prescribed

tolerances for the residual and the displacement, respectively.

4.4 Modeling the nonlinear behavior: a phenomeno-

logical mesomodel

The approach introduced above allows defining the constitutive models for the con-

crete bulk and the steel fiber cloud independently. This section is devoted to describe

the models used for both materials. A classical nonlocal damage model is proposed

for concrete. The steel fiber cloud is modeled using an elasto-plastic mesomodel ac-

counting for the interaction between plain concrete and steel fibers.
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4.4.1 Plain concrete

Concrete is a brittle material which can be modeled considering both continuous and

discontinuous models. Pros et al. (2011b) consider two different alternatives for plain

concrete. On one hand, a continuous model: Mazars damage model. In this case the

model is considered nonlocal in order to avoid mesh dependence. The failure pattern

is obtained and the value of the maximum vertical load (which is the variable chosen

for validate the numerical models) is satisfactory. On the other hand, a discontinuous

model is considered: the failure pattern is known a priori (through the experimental

results and the numerical results from considering the continuous model) and it is

modeled considering joint elements (allowing both sliding and separation), while the

rest of the specimen is elastic. Although it is necessary to know the fracture pattern

before the simulation, the results are also close to the experimental ones.

Therefore, these alternatives can be considered for modeling plain concrete, as well

as any other nonlinear model available and suitable for plain concrete.

Another useful damage model is the one presented by Oliver et al. (2008) with

less material parameters and easier to control than the Mazars damage model. For

the examples in the present work, this damage model is considered. The general

formulation of this damage model is introduced by Oliver et al. (2008) and Oliver

(2002). In the latter, the author shows that the model is regularized because it

involves an internal length parameter.

4.4.2 Steel fibers and concrete-fiber interaction

The model considered for steel fibers accounts for the whole process of slipping and

debonding of the fiber into plain concrete and, precisely, allows capturing the whole

behavior between the fibers and plain concrete bulk. Therefore, an elasto-plastic

angle dependent model with softening is adopted for the steel fibers. The interaction

is modeled with the monolithic model imposing displacement compatibility described

in the previous sections of this chapter (based in the IBM). The concept of monolithic

strategy is used here by opposition to the strategy devised by Pros et al. (2008) in
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which the linear system of equations is solved using a staggered scheme corresponding

to a block Gauss-Seidel method.

An alternative approach would be considering steel fibers being modeled with an

elasto-plastic model and the interaction between concrete and fibers defined describing

the whole process (slipping, folding, debonding,etc.). Although the steel fiber model

would be easy, the interaction is more complex to perform.

The mesomodel for the steel fibers is expected to account for the whole inter-

action process between concrete and fibers and to characterize the behavior of the

steel fibers. This aims at describing the effect of different phenomena, resulting in

a global behavior at the meso-scale. The mesomodel is assumed to include in a sin-

gle constitutive relation the effects of the nonlinear behavior of the steel, the slipping,

folding, debonding and also the sliding of the fiber with respect to the concrete. Thus,

the constitutive equations of steel fibers are deduced from experimental results and

analytical descriptions of pullout tests.

Pullout tests consist of a plain concrete specimen with only one steel fiber im-

mersed on it, which is pulled out. In figure 4.5, the scheme of a pullout test is

presented. Fortunately, there is a recent analytical phenomenological description of

pullout tests is available based on experimental results (Laranjeira et al. (2010a,b)).

These analytical expressions depend on the angle between the fiber and the load di-

rection (φ), represented in figure 4.5, and on the shape of the fiber, which can be

straight or hooked (as displayed in figure 4.6). The whole expressions are described

in Appendix A.

For the case of considering straight fibers, the pullout results presented by Laran-

jeira et al. (2010a) are reproduced in figure 4.7. Different results are presented con-

sidering different orientations of the fibers (with reference to the load direction).

In this thesis, the outputs from the pullout tests, crack width and pullout load (w,

P ) are translated into the constitutive equations for the steel fibers (ε, σ) following

the expressions for a given discretization of the steel fibers



68 Numerical tool for modeling Steel Fiber Reinforced Concrete

Figure 4.5: Pullout test scheme with the angle (φ) between the fiber and the loading
direction

(a) (b)

Figure 4.6: Different shape of the fiber: (a) straight and (b) hooked

P → σ =
P

Afiber · cosφ

w → ε =


w · cosφ

L
if w ≤ w1

w1 · cosφ

L
+

(w − w1) · cosφ

Lelem

if w ≥ w1

(4.7)

with Afiber and L standing for the area and the length of the fiber, respectively, and

Lelem being the element size of the fiber (for the given discretization). It is considered

that while the fiber has not plastified (w ≤ w1), the whole geometry of the fiber has

the same behavior. However, once the fiber has plastified (w ≥ w1), the deformation
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Figure 4.7: Pullout test results considering straight fibers for different values of φ,
image from Laranjeira et al. (2010a).

of the fiber is supposed to be concentred only in one element of the fiber.

(w, P ) are defined in the axis of the pullout test, as presented in figure 4.8, and

the constitutive equations of the fibers (ε, σ) must be defined in the axis of the

fiber. Therefore, it is necessary to project (w, P ) into the fiber: (wF , PF ), being

PF = P cosφ the tension of the fiber and wF =
w

cosφ
the fiber elongation associated

with the crack.

In general, the angle is computed between the fiber and the normal direction of the

fracture pattern. However, for the pullout tests, the load direction is perpendicular to

the failure pattern, therefore, the normal direction coincides with the load direction.

In the common situations the volumetric proportion of steel fibers into plain con-

crete is ≤ 1%. In this case, the behavior of the fiber inside concrete is the same as if it

was isolated, and it is not necessary taking into the account the fiber-fiber interaction.

However, if the volumetric proportion of fibers is larger than 1%, this assumption may

be unrealistic. Accounting for the fiber-fiber interaction is out of the scope of this

thesis.

Therefore, for each fiber immersed in the concrete bulk, a different constitutive

equation is considered depending on its shape (straight or hooked) and on the angle
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Figure 4.8: w and P before and after the cracking.

between the considered fiber and the normal direction of the failure pattern. In figure

4.9, different constitutive equations are presented for different angles and considering

both straight and hooked fibers. These equations are obtained through analytical

expressions of the pullout tests and defined in the fiber axis.

It is observed that the presented constitutive equations are angle dependent with

softening and at the final stages of the deformation, the stresses (σ) tend to zero.

4.5 Examples

After describing the numerical approach for modeling plain concrete, two numerical

examples are presented. On one hand, two pullout tests considering different ori-

entations of the fibers are showed and, on the other hand, a direct tension test is

simulated. Both cases are academic examples in two dimensions under the condition

of plane stress.

In all the examples presented in the present work, plain concrete is modeled with

the damage model explained by Oliver et al. (2008). For all cases: plain concrete and
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(a) (b)

Figure 4.9: Constitutive equations for steel fibers with different orientation considering
both straight (a) and hooked (b) shapes.

SFRC, the material parameters considered are the same (table 4.1).

Table 4.1: Material parameters for the damage model for plain concrete

Young Modulus E = 30 · 109Pa
Poisson coefficient µ = 0
Fracture energy σu = 10N

Element size le = 0.5mm
Tensile strength ft = 3.5 · 106Pa

4.5.1 Pullout test

Herein, two pullout tests are reproduced. The size of the fibers considered in both

cases is presented in table 4.2 and the concrete specimen size is 25mm× 12.5mm.

First, as represented in figure 4.10(a), a straight single fiber with no inclination

with respect to the load direction is considered immersed on the plain concrete. The

steel fiber is fixed (in the bottom part of the concrete specimen, which is not included
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Table 4.2: Fiber dimensions for the pullout tests

Length Embedded length Diameter
30mm 10mm 0.5mm

in the model) and the top part of the concrete bulk is pulled up considering prescribed

displacements at the top of the specimen. The nodes of the fiber embedded in the

lower part are blocked, assuming that all the deformation is concentrated in the rest of

the fiber. Plain concrete is simulated considering a damage model. The constitutive

equation of the steel fiber is taken from figure 4.9(a) and Appendix A for the case of

straight fibers and φ = 0o. Moreover, in figure 4.10(b), the results are displayed in a

load-displacement curve. Qualitatively, the behavior of the numerical model is in good

agreement with the corresponding results obtained experimentally (Laranjeira et al.

(2010a)) and to the curves presented in figure 4.7. In order to obtain a quantitative

matching of the model, the concrete model has to be further validated.

(a) (b)

Figure 4.10: Pullout test considering φ = 0o
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After considering a straight fiber with no inclination, another case is simulated:

the pullout test considering an inclined straight fiber with φ = 30o immersed in the

plain concrete. Again, displacements are prescribed at the top of the plain concrete

specimen and the fiber is fixed. Herein, the model for the plain concrete is the same

than in the previous case, the damage model, but the constitutive equation of the

fiber is different, based on the information from the figure 4.9(a) and Appendix A.

In figure 4.11(a), the scheme of the example is presented and in figure 4.11(b) the

obtained results are shown in a load-displacement curve which is the expected one

(Laranjeira et al. (2010a)).

(a) (b)

Figure 4.11: Pullout test considering φ = 30o

In both examples of pullout tests, it is observed that the obtained curve (w, P ) is in

good agreement with the results obtained experimentally and to the analytical curves

presented by Laranjeira et al. (2010a) corresponding to each case (depending on the

orientation of the fiber), as expected. That is due to the fact that the constitutive

equation of each fiber is deduced form pullout results depending on the angle.
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4.5.2 Direct tension test

The direct tension test is simulated considering three different cases: (a) only plain

concrete (figure 4.12(a)), (b) SFRC with straight fibers (figure 4.12(b)) and (c) SFRC

with hooked fibers (figure 4.12(c)). The direct tension test consists in a rectangular

specimen made of plain concrete or SFRC fixed at the bottom and under a direct

load pulling at the top (shown in figure 4.12), precisely, prescribed displacements are

considered at the top of the concrete specimen. The size of the specimen of plain

concrete is 75mm× 75mm in all the examples of the direct tension loading presented.

The simulation is carried out considering plane stress and the considered thickness of

the specimen is 75mm.

(a) (b) (c)

Figure 4.12: Direct tension test considering (a) plain concrete, (b) SFRC with straight
fibers and (c) SFRC with hooked fibers

In order to avoid damage dispersion and to ensure having the crack pattern placed

in the same place for all the cases, a notch is performed in the three meshes.

For the case of SFRC, the steel fibers are distributed and orientated randomly

into the plain concrete bulk. Both the location of one end-point, pi, and the angle

of the fiber with respect to the horizontal, α, are assumed to be random variables

with uniform probability distributions. That means that, for rectangular domains,

each coordinate of pi ranges in a real interval and α ranges in [0, π[ (three random

variables in 2D that would turn out to be five, three coordinates and two angles, in
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3D). Since the length of the fibers, L, is given as problem data, once pi and α are

generated, the other end-point of the fiber is readily computed by doing

pf = pi + L (cosα, sinα).

If the end-point pf lies outside of the concrete domain, the fiber generated is discarded.

In table 4.3 the dimensions of the fibers (based on the values presented by Laran-

jeira (2010)) for each case are displayed.

Table 4.3: Fiber dimensions

Shape Length Diameter Number of fibers
Straight 30mm 0.5mm 140
Hooked 50mm 0.5mm 84

For the two cases of SFRC, as the length of the fibers is not the same for straight

fibers than for hooked fibers, different quantities of fibers are considered into plain

concrete. In order to compare under the same conditions, the same volumetric sub-

stitution amount of steel fibers into plain concrete are considered: 0.23%.

For the steel fibers, the constitutive equations considered are based on figure 4.9

and Appendix A. The corresponding angle between the fiber and the load direction

(which is perpendicular to the failure zone and, thus, coincides with the normal di-

rection of the failure pattern) is computed and then, the corresponding constitutive

equation is defined considering the equations and the input data presented in Ap-

pendix A.

In figure 4.13, the obtained results from the simulation of the direct tension test are

presented: three load-displacement curves (one for each case: plain concrete, SFRC

with straight fibers and SFRC with hooked fibers) in which one can observe (a) the

increase of the fracture energy and (b) the appearance of the residual strength due

to the presence of the steel fibers into plain concrete. Moreover, it is observed that

the appeared residual strength is higher for the SFRC with hooked fibers than for

the SFRC with straight fibers. Therefore, the effects of the fibers are captured and,
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moreover, it is observed that hooked fibers influence more than straight fibres into

the plain concrete. For a better analysis of the results, a zoom near to the load peak

is done and presented in figure 4.14.

Figure 4.13: Direct tension test results considering plain concrete, SFRC with straight
fibers and SFRC with hooked fibers.

In order to study the behavior in all the cases, three sampling times (pseudo-time

in the quasistatic loading process) are selected, T1, T2 and T3, as represented in figure

4.13. The initial time step is represented by T0. On one hand, figures 4.15, 4.16 and

4.17 show the deformed mesh of plain concrete in this three different time steps and

in the initial step, for the three different materials: plain concrete, SFRC considering

straight fibers and SFRC with hooked fibers. The influence of the fibers is observed

in these deformed meshes.

Note that the deformed meshes for both straight and hooked fibers are practically

equal (figures 4.16 and 4.17). The differences between the two types of fibers appear
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Figure 4.14: Zoom of the direct tension test results considering plain concrete, SFRC
with straight fibers and SFRC with hooked fibers.

Figure 4.15: Deformed meshes for plain concrete (amplified ×10)

in the load-displacement curves (figures 4.13 and 4.14). The tests are displacement

driven and therefore the displacement fields (and hence the deformed meshes) are

similar.
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Figure 4.16: Deformed meshes for straight SFRC (amplified ×10)

Figure 4.17: Deformed meshes for hooked SFRC (amplified ×10)

On the other hand, figures 4.18 and 4.19 show the fibers that are not in the elastic

range (plastified) in the different time steps for the case of SFRC considering straight

fibers and hooked fibers, respectively. The number of the plastified fibers is presented

in brackets for each case. It is observed that the plastified fibers are the ones that

cross the fracture pattern and the number of plastified fibers increases with the time.

Moreover, there are more plastified hooked fibers than straight fibers due to the fact

that hooked fibers are longer and, therefore, more hooked fibers cross the fracture

pattern.

For the whole comprehension of the behavior, three straight and three hooked

fibers are studied in figures 4.20 and 4.21 considering the three time steps located into

the constitutive equation of each different fiber for both cases. All the studied fibers
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Figure 4.18: Straight fibers that have plastified in T1, T2 and T3 with the number of
plastified fibers in brackets.

Figure 4.19: Hooked fibers that have plastified in T1, T2 and T3 with the number of
plastified fibers in brackets.

cross the fracture pattern, therefore, they are not in the elastic range, as observed.

4.6 Concluding remarks

A new numerical strategy is presented to numerically simulate SFRC. The main fea-

tures of the proposed approach are the following:

• the mesh of the concrete bulk and the mesh of the fiber cloud are defined inde-
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Figure 4.20: Straight fibers: behavior of three straight fibers (f1, f2 and f3) crossing
the crack with the constitutive equation of each fiber

pendently (nonconformal)

• the material models of the concrete bulk and the fiber cloud (which accounts

also for the fiber-concrete interaction) are defined separately

• a phenomenological mesomodel is developed to characterize the constitutive

equations for the steel fibers, accounting for the interaction with the concrete

bulk

• coupling of the two systems (concrete and fibers) is based on the Immersed

Boundary (IB) methods, imposing displacement compatibility and equilibrium
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Figure 4.21: Hooked fibers: behavior of three hooked fibers (f1, f2 and f3) crossing
the crack with the constitutive equation of each fiber

The mesomodel is defined from the phenomenological analytical expressions de-

scribing the behavior of pullout tests. Thus, the constitutive equation for each steel

fiber depends on (a) the angle between the fiber and the normal direction of the failure

pattern (for the pullout test, the load direction coincides to the normal direction) and

(b) the shape of the fiber. Further research has to be carried out to properly define

the angle between each fiber and the crack pattern provided by the numerical model

of the plain concrete bulk (the damage distribution). This is especially relevant in 3D

cases.

The main advantage of this strategy is the possibility of using the actual number

of fibers, with their location and orientation. In the examples, randomly distributed
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fiber clouds have been used. In this context, the 3D extension is straightforward

and allows more realistic fiber distributions (in 2D, all the fibers are assumed to be

coplanar).

In the application examples (two pullout tests with different fiber orientation and

the direct tension test), the proposed strategy provides results in qualitative agreement

with the experiments and expectations. For instance, the results of the direct tension

test of SFRC show that both the energy dissipation and the residual strength increase

when fibers are added.



Chapter 5

3D extension of the numerical
approach for modeling SFRC.
Experimental validation.

5.1 Introduction

In this chapter a three-dimensional extension of the tool proposed in chapter 4 is

presented. The aim is to simulate the most used and common standard tests with

SFRC accounting for the influence of the fibers in a realistic way (using both 3D

meshes for the concrete matrix and 3D distributions and orientations of the fibers).

Working with 2D meshes for the concrete bulk, the whole behavior of the SFRC is

not captured, due to the randomly distribution and orientation of the steel fibers into

the plane (2D) corresponding to the concrete domain. Even under the hypotheses of

plane stresses and strains or considering axisymmetric problems, the results are not

realistic enough, because fibers are never oriented in a unique plane.

After describing the extension of the model to 3D, two tests are simulated in this

chapter: the direct tension test (figure 2.3) and the three point bending test (figure

2.4).

Different experimental campaigns are available in the literature. In this chapter, on

one hand, the campaign proposed by Laranjeira (2010), which consists of (1) the direct

tension test with plain concrete and different quantities of steel fibers for the SFRC

83
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and (2) pullout tests with different fiber shapes and orientations inside the concrete

specimen, is selected. On the other hand, an experimental campaign reproducing the

three point bending test presented by Guàrdia (2007) is chosen.

The numerical results obtained considering the proposed numerical tool are com-

pared to the results obtained experimentally. Therefore, the numerical approach is

validated through these experimental campaigns.

The remainder of this chapter is structured as follows. First, in section 5.2, the

numerical approach for modeling SFRC is presented. In section 5.3, the implemen-

tation of the numerical tool is described taking into account all the computational

aspects. The experimental data from the two different experimental campaigns (one

corresponding to the direct tension test and another one referring to the three point

bending test) is described in section 5.4. In section 5.5, the numerical results obtained

are presented and validated. All the computational problems are explained in section

5.6. Finally, in section 5.7, the most important conclusions are listed.

5.2 Numerical tool for modeling SFRC

For describing the numerical tool for modeling SFRC, firstly, the coupling between

the two materials (concrete bulk and fiber cloud) is presented. Secondly, the two

material models corresponding to the concrete bulk and the steel fibers are defined

independently.

5.2.1 Coupling the concrete bulk and the fiber cloud

The main idea for coupling the concrete bulk and the fiber cloud is to enforce dis-

placement compatibility between them. Following the ideas presented in chapter 4,

this coupling is based on the Immersed Boundary (IB) methods (Boffi and Gastaldi

(2003); Boffi et al. (2007); Mittal and Iaccarino (2003)), which were introduced for

modeling problems with a solid structure immersed in a fluid domain. For modeling

the SFRC, the concrete is playing the role of the fluid and the steel fibers account for
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Figure 5.1: Meshes corresponding to the concrete bulk, the fiber cloud and SFRC

the solid structure immersed in the concrete.

The meshes discretizing the concrete bulk and the fiber cloud are nonconformal

(without geometrical matching), as shown in figure 5.1.

The mesh corresponding to the fiber cloud is defined accounting for the actual ge-

ometry of each fiber (namely, steel fibers can be distributed and orientated randomly)

and overlapping the domain occupied by the concrete bulk. Moreover, the steel fibers

are assumed to be one dimensional bars. On the contrary, the concrete domain is

discretized considering 3 dimensional meshes (figure 5.1).

Once the two domains are discretized, the problem to be solved is the same as the

one described in chapter 4.
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5.2.2 Concrete bulk material

For modeling the concrete bulk, any nonlinear material adequate for describing the

brittle behavior of plain concrete in tension can be chosen. Both models presented in

chapter 3 are useful for modeling the concrete bulk in the presented numerical tool

for SFRC.

5.2.3 Fiber cloud model

The phenomenological mesomodel chosen for modeling the fiber cloud (introduced

in chapter 4) accounts not only for the steel fibers behavior, but also for the whole

concrete-fiber interaction behavior.

The proposed idea is to translate the analytical expressions describing the out-

puts of the pullout tests (defined by Laranjeira et al. (2010a,b)) into the constitutive

equations of each fiber of the fiber cloud. Namely, the crack width (w) and the ver-

tical load (P ) of the pullout tests are translated into the strains (ε) and stresses (σ)

corresponding to the constitutive equations of the fibers:

P → σ

w → ε
(5.1)

The translation of (w, P ) into (ε, σ) is done taking into account the area and the

length of the fibers. Note that the outputs of the pullout tests are in the axis of the

same test and the constitutive equations of the fibers (ε, σ) must be in the axis of the

fiber. Thus, it is necessary to change the reference axis of the system (see expressions

4.7). The whole description of the constitutive equations is presented in Appendix A.

The pullout response depends on the inclination of the fiber immersed in the

concrete matrix. Therefore, the analytical expressions of the pullout outputs depend

on the angle between the fiber and the vertical load. Thus, for each fiber in the

cloud, the angle between the fiber and the normal direction of the crack is computed

and, depending on this angle, the constitutive equation is calculated (through the

corresponding pullout response).
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The outputs of the pullouts are also different depending on the shape of the fiber

(in Appendix A both straight and hooked fibers are described). Therefore, the con-

stitutive equations of the fibers also depend on their shape. Thus, the shape of each

fiber is not defined geometrically, but inside its constitutive equation.

5.3 Implementation and computational aspects

In order to apply the numerical approach presented in the previous section, some

implementation and computational aspects must be taken into account.

The constitutive equation of each fiber in the fiber cloud depends on the angle

between the fiber and the normal direction of the failure pattern, as introduced in

the previous section. Therefore, before simulating a test considering SFRC, the same

test is simulated with only plain concrete (for example, modeling plain concrete with

the nonlocal Mazars damage model) for knowing the failure pattern. Once the failure

pattern is known, the normal direction is computed and, afterwards, the angle of all

the fibers in the fiber cloud. Figure 5.2 illustrates the angle computation (θ) between

the fiber and the normal direction of the failure pattern (n).

If the failure pattern is composed by multiple cracks, with the same normal di-

rection or not, for computing the angle of each fiber and the normal direction of the

failure pattern, the position of each fiber must be known. Given the position, the

angle is computed depending on the failure pattern in the current position of the

fiber.

For distributing and orienting the steel fibers randomly into the concrete bulk

domain, the uniform probability distribution function is used in order to calculate the

coordinates of initial points and angles.

For each initial point, pi, and two angles, ϕ and φ, given randomly, with a fixed

fiber length (L), the final point is defined following the equation (5.2).

pf = pi + (L · cosϕ · cosφ, L · sinϕ · cosφ, L · sinϕ · sinφ) (5.2)
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Figure 5.2: Computation of the angle between the fiber and the normal direction of
the crack.

Therefore, given the coordinates of the initial point (pi) and the final point (pf ),

the fiber is defined with its two end-points.

If the fiber location parameters are such that the fiber is not included in the

concrete bulk, then the values of ϕ and φ are iteratively modified to find a proper

configuration (for example, considering equations (5.3)). Experimentally, these fibers

are reoriented due to the wall effect.

ϕ = ϕ− 10o (5.3a)

φ = φ− 10o (5.3b)

All the numerical simulations of SFRC must be under the hypotheses of large dis-

placements and deformations in order to capture the residual strength of the material

due to the presence of the fibers. On the contrary, the effect of the fibers into the

material is not reproduced.

For each fiber, in order to compute its constitutive equation (on the basis of the

outputs of the pullout tests, see Appendix A), the corresponding embeded length,
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Figure 5.3: Computation of the embeded length.

Le, must be known. Therefore, given the fiber, the intersection point (pm) of the

fiber with the crack is calculated. The embeded length (Le) is defined as the shortest

distance between one end-point of the fiber (pi or pf ) and the intersection point (pm)

(equation (5.4)), as illustrated in figure 5.3.

Le = min(d(pi, pm), d(pf , pm)) (5.4)

5.4 Experimental data

In order to validate the numerical tool for modeling SFRC, two three dimensional

examples are simulated. The numerical results are compared with those obtained

experimentally.

One direct tension test is studied (defined on the basis of RILEM-TC162-TDF

(2001)) and, for analyzing the flexural behavior of SFRC, a flexural test is reproduced,

the three point bending test (EN-14651 (2005)). The experimental results are from

Laranjeira (2010) and Guàrdia (2007), respectively.

In both cases, the geometry and the material properties of the steel fibers are the
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Table 5.1: Steel fibers geometry and mechanical properties

Length (L) 60 mm
Diameter (d) 0.75 mm
Aspect ratio (L/d) 80
Tensile yield strength (fy) 2000 MPa

same, because they belong to the same experimental program. Moreover, the material

characteristics of plain concrete are common in both tests too.

Steel fibers are of Dramixr RC 80/60 BP with circular cross-section and hooked

ends. Fibers are made of high carbon steel and gathered into bundles by water-soluble

glue. The main properties of the steel fibers are summarized in table 5.1.

For the constitutive equations of the steel fibers, the outputs of the pullout tests

from Laranjeira et al. (2010b) (hooked fibers) are needed. However, the geometry of

the fibers used by Laranjeira et al. (2010b) (presented in table A.2) is not the same

that the geometry of the fibers used in the presented experimental campaigns (table

5.1). Therefore, the inputs used for the current fibers geometry are taken from the

results presented by Blàzquez (2009).

Blàzquez (2009) reproduced pullouts considering both straight and hooked fibers

with the same geometry as the fibers used in the experimental campaigns (presented

in table 5.1). The obtained results are sumarized in figure 5.4 and correspond to the

inputs used for the constitutive equations of the fibers. These inputs are used for

calculating the pullout outputs following the equations presented by Laranjeira et al.

(2010b) (see Appendix A).

Different fiber contents are considered: 20Kg/m3 and 40Kg/m3, which correspond

to 0.25% and 0.5% volumetric substitution amount of fibers, respectively.

The concrete used in both experimental campaigns is selfcompacting and its me-

chanical properties are shown in table 5.2.
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Figure 5.4: Inputs for the constitutive equations of the fibers.

Table 5.2: Concrete mechanical properties

Young modulus (E) 35.5 · 103 MPa
Poisson ratio (µ) 0.25
Compressive strength (fc) 48.5 MPa
Tensile strength (ft) 3.84 MPa
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Figure 5.5: Direct Tension Test scheme

5.5 Numerical Examples

Before simulating the tests with SFRC, they are simulated considering only plain con-

crete modeled through the nonlocal Mazars damage model. Then, the failure pattern

of the test is known for (a) computing the normal direction of the failure pattern

and, therefore, the angle of each fiber and the normal direction and (b) simulating

the same test, but with the discontinuous model for the concrete bulk.

In all the simulations, each fiber is discretized considering 5 straight bar elements

of 12mm length (all the fibers are 60mm length).

5.5.1 Direct Tension Test

The direct tension test, illustrated in figure 5.5, consists of a cylindric specimen (made

of plain concrete or SFRC) with a circumferential notch of 5mm width and 15mm

depth to localize the crack, axially loaded according to RILEM-TC162-TDF (2001,

2003c,d).

The mesh corresponding to the concrete specimen is composed by tetrahedral
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Table 5.3: Concrete material parameters of the nonlocal Mazars damage model for
the direct tension test

parameter value
Y0 1.08 · 10−4

lcar 10−3 m
At 1.2
Bt 2500
Ac 1
Bc 266

elements. The minimum value corresponding to the length of the edges is 6.5mm, the

maximum value is 28.5mm and the mean value is 15mm. Thus, each element of the

fibers corresponds almost to one element of the concrete mesh.

Without taking into account the steel fibers, the test is carried out considering

plain concrete modeled with the nonlocal Mazars damage model. The material pa-

rameters used in this simulation are presented in table 5.3, these parameters are chosen

on the basis of the model and according to the geometry of the test, as presented in

section 3.3.1 (see figure 3.5).

The damage distribution at the failure is presented in figure 5.6. Moreover, the

normal direction of the failure pattern is computed observing the damage distribution,

as also displayed in figure 5.6.

The distribution of the fibers into the concrete matrix of the direct tension test

is represented in figure 5.7. For this test, two different fiber contents are considered:

20Kg/m3 and 40Kg/m3.

Continuous model for plain concrete

As a first approach, the plain concrete is modeled considering the nonlocal Mazars

damage model and the material parameters are presented in table 5.3.

Figure 5.8 shows the obtained load-displacement curve of the direct tension test

considering hooked SFRC with different amount of fibers. The displacement displayed

in the load-displacement curve corresponds to the crack mouth opening displacement
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Figure 5.6: Fracture pattern and the normal direction for the direct tension test
(damage distribution)

Figure 5.7: Fiber distribution in the direct tension test specimen for the case with
20Kg/m3 in the concrete bulk.
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(CMOD). It its observed that after cracking (after reaching the peak load), the load

drops and then it increases again, corresponding to the residual strength due to the

fibers. Moreover, for a larger amount of fibers, the residual strength is higher.
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Figure 5.8: Direct Tension Test considering hooked SFRC with the nonlocal Mazars
damage model: (a) zoom and (b) whole load-displacement curve.

In the load-CMOD diagrams, some jumps appear in both cases (20Kg/m3 and

40Kg/m3). Such jumps correspond to the collapse of one element of the concrete mesh

(the element is completely damaged) which includes the end of one fiber bridging the

crack.

Discontinuous model for plain concrete

On the other hand, the discontinuous model for plain concrete is considered and

the chosen parameters are presented in table 5.4 on the basis of section 3.3.2. and

considering the direct tension test geometry.

The same fiber distribution and orientation as in the continuous model is consid-

ered, for both cases of fiber contents.

In figure 5.9 the obtained results are presented considering the direct tension test

with hooked fibers, considering different contents. As expected, hardening is observed

after the load drop produced when the specimen cracks.
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Table 5.4: Joint parameters for the concrete in the direct tension test

parameter value
E 30 · 109N/m2

kn1 E/0.001N/m3

kn2 −EN/m3

u0 (3.84 · 106)/(30 · 109)m
ks E/0.001N/m3

ft 6 · 106N/m2

c 50 · 106N/m2

ϕ 90o
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Figure 5.9: Direct Tension Test considering hooked SFRC with the joint model model:
(a) Zoom and (b) whole load-displacement curve.

Test validation

Figures 5.10 and 5.11 show the results obtained numerically (considering both the

continuous and the discontinuous model for the concrete bulk) compared to the ex-

perimental ones for 20 and 40 Kg/m3, respectively.

The overall response of the numerical results, considering both models for describ-

ing the concrete behavior, qualitatively fits with the experimental results.

Comparing the numerical results between them, it is observed that they are very

similar and they both capture the real behavior: after the load drop, a hardening
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Figure 5.10: Experimental and numerical results: direct tension test with 20Kg/m3:
(a) zoom and (b) whole load-displacement curve.
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Figure 5.11: Experimental and numerical results: direct tension test with 40Kg/m3:
(a) zoom and (b) whole load-displacement curve.

occurs due to the residual strength given by the fibers and, after reaching a CMOD

of 10−3m, the load stabilizes and becomes almost constant.

Referring the maximum value of the tensile stress, for the case with 20Kg/m3 of

fibers, the case corresponding to the joint model (1.8MPa) is closer to the experimen-

tal value (2.2MPa), than the nonlocal Mazars damage model (4.5MPa). The same

behavior is reproduced for the case with 20Kg/m3 of fibers: the maximum value of

the tensile stress obtained experimentally is 2.2MPa and the numerical values are
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5MPa and 1.1MPa, corresponding to the continuous model and the discontinuous

one, respectively.

Observing figure 5.10, the maximum value of the residual strength obtained numer-

ically is the same for both models: 1.3MPa, while the value obtained experimentally

is 0.9MPa. On the other hand, for the case with 40Kg/m3 of fibers, the experimen-

tal maximum value of the residual strength is 1.05MPa, while the maximum value

obtained with the nonlocal Mazars damage model is 2.05MPa. The maximum value

of the residual strength corresponding to the joint model for the plain concrete is

3.81MPa.

Moreover, considering the nonlocal Mazars damage model, the residual strength

obtained for the case with 40Kg/m3 of fibers is not twice the residual strength cor-

responding to the case of 20Kg/m3, as expected, because the model captures some

fibers interaction, when they are anchored in the same element.

Observing the area defined below each curve, the energy dissipation can be studied.

For the case with 40Kg/m3 of fibers, the energy dissipation is higher than the case

with 20Kg/m3 of fibers.

With the two amounts of fibers, the experimental drop takes place at the same

CMOD value of the numerical case considering with the nonlocal damage model.

Moreover, the lowest value of the tensile stress after the drop is also close to the

experimental one. However, the drop corresponding to the joint model occurs before

then in the experimental case and the corresponding tensile strength is lower.

Although the qualitative behavior is captured with the two numerical models, the

maximum value of the tensile strength obtained before the drop off is no captured

with the damage model. This particular behavior will deserve further research in

order to obtain a satisfactory explanation.

5.5.2 Three Point Bending Test

For studying the flexural behavior of the SFRC, the three point bending test is repro-

duced with the numerical tool proposed in this thesis.
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The three point bending test consists of a beam placed horizontally and fixed in

two points which is loaded in the middle of the top of the beam, as reproduced in

figure 5.12(a), according to RILEM-TC162-TDF (2000, 2003a,b).

The mesh corresponding to the concrete specimen of the three point bending test is

composed by prismatic elements (brick elements). The maximum value corresponding

to the edge length of the concrete mesh is 15mm and the minimum value is 12.4mm.

Thus, each element of the fibers (bars of 12mm length) corresponds to one element of

the concrete mesh.

First, the test is simulated considering only plain concrete with the nonlocal

Mazars damage model, considering the same material parameters than the direct

tension test (presented in 5.3), except the At. For this test, At is readjusted in order

to get a better description of the test. Thus, At = 1 (instead of At = 1.2). With the

damage distribution, the failure pattern is known and it is possible to calculate its

normal direction (as shown in figure 5.12(b)). Given the normal direction, the angle

of each fiber of the fiber cloud is computed.

(a) (b)

Figure 5.12: Three point bending test scheme and its failure pattern (damage distri-
bution) and the normal direction

Fibers are randomly distributed and oriented into the concrete bulk domain, as

represented in figure 5.14. For this test, only one quantitiy of fibers is considered:

20Kg/m3. Moreover, apart form the random distribution of the fibers, the same

quantity of fibers is considered with all the fibers oriented in the same direction: both
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Figure 5.13: Fiber distribution in the specimen for the 3 Point Bending Test with
20Kg/m3 of fibers randomly distributed and oriented

horizontal fibers (0o) and inclined fibers (30o) are considered.

Continuous model for plain concrete

The three point bending test is simulated modeling plain concrete with the nonlocal

Mazars damage model (with the material parameters presented in table 5.3).

The obtained load-displacement curves are presented in figure 5.14 considering

three different fiber orientation, but the same number of fibers. The displacement

plotted is the crack mouth opening displacement (CMOD).

In all the cases, a hardening is observed after the load drop due to the fibers.

Moreover, it is observed that the orientation of the fibers does influence on the response

of the SFRC. Although the maximum vertical load is the same, the residual strength

is higher for the horizontal fibers and with an inclination of 30o, than for the random

distribution. However, the qualitative behavior is the same in the three cases.

The energy dissipation (corresponding to the area behave the curve) is lower when

fibers are randomly distributed than for a fixed angle. Moreover, it is higher consid-

ering an inclination of 30o than with horizontal fibers.
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Figure 5.14: Numerical results of the 3 Point Bending Test considering plain concrete
and hooked SFRC with the nonlocal Mazars damage model: 20kg/m3 and 40kg/m3.

Moreover, figure 5.15 shows the deformed mesh of the test for the case with the

random distribution of the fibers.

Test validation

In figure 5.16, the experimental results of the three point bending test considering

SFRC with 20kg/m3 are presented with the numerical ones. For SFRC three cases

are considered: (1) the fibers are randomly oriented, (2) all the fibers have θ = 0o and

(3) all the fibers have θ = 30o.

It is observed that the presence of the steel fibers is more evident in the experi-

mental results than in the numerical ones. The hardening after the load drop is higher

in the experimental campaign than for the numerical results. This is due to the fact

that during the numerical simulations, the fiber cloud is generated randomly or with

all the fibers with the same orientation. However, experimentally, it has been proved

that the steel fibers have preferred orientations inside the concrete bulk. Thus, the
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Figure 5.15: Deformed mesh of the 3 Point Bending Test considering hooked SFRC
with the nonlocal Mazars damage model and 20kg/m3 of fibers (aplified x10)

0 0.5 1 1.5 2
x 10

−3

0

0.5

1

1.5

2

2.5x 10
4

CMOD (m)

V
er

tic
al

 L
oa

d 
(N

)

 

 

Experimental
Damage model (Random)
Damage model (0)
Damage model (30)

Figure 5.16: Experimental and numerical results: three point bending test with
hooked SFRC considering 20kg/m3 randomly oriented, considering all the fibers with
θ = 0o and considering all the fibers with θ = 30o.
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numerical results are quite different than the experimental ones.

Moreover, as happened with the direct tension test, the maximum value of the load

does not fit with the experimental one. Thus, the material parameters of the damage

model should be readjusted for obtaining numerical results closer to the experimental

ones.

5.6 Computational limits

Once the two 3D examples are reproduced numerically using the proposed numerical

tool, some computational limits appeared. For a large number of fibers, the matrix of

the system to be solved at each iteration of the incremental-iterative scheme is large.

Thus, the computational cost and time are high.

Each fiber is discretized into 5 elements. Increasing the number of fibers means

increasing almost proportionally the computational cost.

In the examples presented in this thesis, in order to reduce the computational cost,

only the fibers crossing the failure pattern are included into the system. Although the

computational cost is lower, it is not lower enough for large quantities of fibers.

Therefore, an alternative must be considered for being able to simulate larger and

more realistic structures with SFRC considering the presented numerical approach.

An alternative which has been devised is to consider the idea presented by Pros

et al. (2008) in which the system is solved following a block Gauss-Seidel strategy.

5.7 Concluding remarks

In this chapter, a numerical tool for simulating three dimensional SFRC tests which

allows accounting for the actual geometry of the fibers into the concrete specimen is

presented.

Both the concrete bulk and the fiber cloud are discretized nonconformally. The

two materials are coupled imposing displacement compatibility between them. The

concrete bulk can be modeled considering any nonlinear material. On the other hand,
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the mesomodel considered to be the constitutive model of the fiber cloud not only

describes the steel fibers behavior, but also accounts for the interaction behavior

between the fiber cloud and the concrete bulk.

Two realistic examples are reproduced using the proposed tool.

The tool is validated comparing the obtained results (numerically) with the ex-

perimental results from two different experimental campaigns.

The influence of the fibers is observed in the results of the 3D examples because: (1)

the energy dissipation and (2) the residual strength increase comparing to the results

obtained simulating the same tests with only plain concrete. For a higher number of

fibers into the plain concrete, the energy dissipation and the residual strength of the

SFRC is higher.

All the numerical results presented in this thesis are obtained generating the fiber

cloud randomly. However, preferred orientations are observed in the SFRC specimens

used in the experimental campaigns (for the direct tension test (Laranjeira et al.

(2008); Laranjeira (2010)) and the three point bending test (Molins et al. (2008))).

Therefore, the numerical results obtained taking into account these preferred orienta-

tions of the fibers should fit better with the experimental results.

The proposed tool for SFRC allows both to generate randomly the fiber cloud and

to define the fiber cloud with a preferred orientation and distribution of the fibers.

Fixing the constitutive equations before the simulation on the basis of the fracture

pattern known a priori, do not allow to take into account the change of the crack

pattern due to the presence of the fibers. An improvement would be recalculating the

angle between each fiber and the normal direction of the failure pattern at different

time steps. The normal direction could be calculated as the gradient of the damage

field.

However, for a large number of fibers, the computational cost is too high. There-

fore, we should seek an alternative to solve efficiently the system of the problem.

Up to now, the presented examples have a fracture pattern well defined and with

only one crack. The next step is to reproduce a test with SFRC with a fracture pattern

not so easy to describe, for example the Barcelona Test (described by Molins et al.



5.7 Concluding remarks 105

(2009)). The used technique is the same, but it is necessary to take into account the

position of each fiber and the corresponding normal direction to the failure pattern

in this current position.





Chapter 6

Summary

6.1 Concluding remarks

The main conclusions of this thesis are drawn at the end of each chapter (chapters 3,

4 and 5). However, the most salient results are summarized below.

• Two different material models are studied for modeling plain concrete: (1) the

nonlocal Mazars damage model and (2) a discontinuous model with the fracture

pattern (known a priori) modeled considering joint elements, while the rest of

the specimen is assumed to be elastic. Both the Brazilian test and the Double

Punch Test are simulated considering the two models. The numerical results

are validated through experimental results, after calibrating the material pa-

rameters. Although in chapter 3 only two tests are reproduced, the parametric

study is useful also for all the other tests. Therefore, two nonlinear alternatives

for modeling plain concrete are available with the corresponding parameter de-

scription.

• The main contribution of this thesis is the numerical approach for modeling

SFRC. It is characterized by accounting for the actual geometry of the fibers

inside the concrete matrix. It is possible to take into account the real position

of the fibers and the preferred orientations of the fibers, if they are available.

Moreover, the meshes corresponding to the concrete bulk and the fiber cloud

107
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are nonconformal (without geometrical matching). The material models corre-

sponding to the concrete bulk and the fiber cloud are defined independently,

but they are coupled enforcing displacement compatibility between them. A

phenomenological mesomodel is chosen for describing the constitutive equations

of the steel fibers accounting not only for the fibers behavior, but also for the

whole concrete-fiber interaction behavior. The proposed phenomenological me-

somodel for the fibers is defined on the basis of analytical expressions from the

outputs of pullout tests (defined by Laranjeira et al. (2010a,b)). Thus, these

constitutive equations depend on (1) the shape of the fiber, (2) the experimental

results of an aligned pullout test, and (3) the angle between the fiber and the

failure pattern of the concrete specimen. Therefore, each fiber of the fiber cloud

has a different constitutive equation. Both the two models studied in the first

part of the thesis for modeling plain concrete can be applied for modeling the

concrete bulk in the proposed tool for SFRC.

• The proposed numerical tool is extended to 3D meshes. Therefore, different

standard tests are reproduced numerically considering SFRC. For all the tests,

in order to define the constitutive model for each fiber, the angle between the

fiber and the failure pattern must be known before the simulation. Thus, before

considering SFRC, the test is reproduced considering only plain concrete in

order to know the failure pattern a priori. Precisely, plain concrete is modeled

with the nonlocal Mazars damage model. Once the angle of each fiber is know

and, consequently, the constitutive equations of the fibers are defined, the tests

are reproduced numerically considering SFRC.

• The presence of the steel fibers into the concrete matrix is evidenced with the

increase of the energy dissipation and the residual strength of the material (ob-

served in the load-displacement curves). Moreover, it has been proved that the

shape of the fibers influences on the effect of the SFRC: the residual strength

is higher for hooked fibers than for straight fibers. The quantity of fibers com-

posing the fiber cloud also influences on the behavior of SFRC: increasing the
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number of fibers means increasing the residual strength of the material.

• 3D examples are simulated considering SFRC under the same conditions than

in different experimental campaigns (namely, one for the direct tension test and

the other for the three point bending test). Then, the numerical results are

compared to the experimental ones. Therefore, the numerical tool is validated

experimentally.

6.2 Future work

The work carried out in this thesis leaves some open research lines that will be studied

in the near future. We suggest the following points:

• We find interesting to study the influence of the preferred angle orientations for

the three point bending test. Up to now, the numerical results are obtained

considering random distributions and orientations of the fibers into the concrete

matrix. However, experimentally, it has been proved that the orientations of

the fibers into the concrete specimen have preferred directions for this specific

example (due to the geometry of the specimen used for this test). Therefore, it

would be interesting to generate the fiber cloud following the ideas presented by

Molins et al. (2008); Laranjeira (2010) (instead of generate it randomly). The

obtained results should fit better with those obtained experimentally. Given

the results considering both randomly distributed and oriented fibers and real

distributions of the fibers, it would be necessary to analyze the influence of the

fiber orientation and distribution (apart from comparing the numerical results

with the experimental ones).

• The numerical results calculated considering the proposed numerical approach

should be compared to other numerical results obtained on the basis of different

numerical tools for modeling SFRC available in the literature. For example, it

would be interesting to define a test under the same conditions and carry out
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the simulation considering the ideas presented by Oliver et al. (2011); Radtke

et al. (2011, 2010a). Moreover, apart from comparing the outputs of the numeri-

cal simulations (deformed meshes, load-displacement curves, energy dissipation,

residual strength,etc. ), the computational costs (for the mesh generation and

for the whole simulation), the efficiency, the realism of the meshes,... should be

analyzed and compared too.

• All the examples presented in this thesis with SFRC (pullout tests, direct tension

test and three point bending test) have a common characteristic: its failure

pattern presents only one crack. Therefore, it would be interesting to simulated

standard tests with SFRC with more complex failure patterns or with multiple

cracks, such as the Barcelona Test (namely, the extension of the Double Punch

Test with SFRC). In the case of more complex failure patterns, the angle between

each fiber and the failure pattern depends on the position of the fiber. However,

once the angle of each fiber is defined, the rest of the process is the same.

• It would be interesting to study the changes of the failure pattern due to the

presence of the fibers into the plain concrete. Therefore, instate of defining the

constitutive equations of the fibers once before the simulation, these equations

could be recalculated at different time steps during the simulation. In this case,

the normal direction of the failure pattern at these time steps could be defined

as the gradient of the current damage field.

• The proposed tool for modeling SFRC has been validated through different

standard tests and their corresponding experimental campaigns. However, for

a large quantity of fibers in the concrete bulk, the matrix of the system to be

solved at each iteration of each incremental step of the incremental-iterative

scheme is large and, consequently, the computational cost is high. Each fiber

is discretized considering 5 elements, therefore, increasing the number of fibers

means increasing proportionally the number of degrees of freedom of the sys-

tem. Thus, an alternative for solving the system and, therefore, reducing the

computational cost is necessary. As a first measure to reduce the computational
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cost, applied in the 3D examples presented in this thesis, only the fibers crossing

the cracks are considered during the simulation. However, this measure is not

enough to reduce the costs for large quantities of fibers. An alternative would

be follow the strategy presented by Pros et al. (2008) in which, instead of con-

sider the monolithic idea, the system is solved considering a block Gauss-Seidel

method.





Appendix A

Parametrization of the constitutive
equations for steel fibers

For a given steel fiber, its constitutive equation is calculated without taking into

account the other fibers. The computation of the equations is based on the results

from the pullout tests, which are presented in Laranjeira (2010), Laranjeira et al.

(2010a) and Laranjeira et al. (2010b). The analytical expressions deduced from the

pullout tests are different for each fiber shape (straight or hooked), therefore, the two

different cases are presented independently.

Straight fibers

For a given steel fiber, once the angle between this fiber and the normal direction

of the failure pattern, φ, is computed the corresponding constitutive equation is cal-

culated. Based on Laranjeira et al. (2010a), the constitutive equations are defined

phenomenologically considering five points (εi, σi), as presented in figure A.1.

Input data for the phenomenological model include fibers properties as fiber di-

ameter (d), fiber length (L) and shorter fiber embedded length within the concrete

matrix (Le); concrete properties as the average tensile strength (fctm); experimental

results of the aligned fiber pullout test (wS01, PS01) and (wS02, PS02); numerical pa-

rameters as the element size of the fiber (Lelem) and the area of the fiber (Afiber); and,

finally, the friction coefficient (µ) and the number of sides of the cracked section at

113
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Figure A.1: Phenomenological constitutive equation of a straight fiber defined by five
points

which spalling of the matrix occurs sensitive to fiber orientation (N).

Considering all the input parameters, the five points are defined:

• ε1 =
wS01 cosφ

L

σ1 =
PS01

Afiber

• ε2 = ε1 +
(wS01 cosφ+ Ld

Le
(wS02 − wS01) cosφ+ ∆wSP1) cosφ

Lelem

− wS01 cosφ

Lelem

σ2 =
PS01 cosφLeff(Le−Ld

Le
+ PS02Ld

PS01Le
) + µDF1

Afiber cosφ

• ε3 = ε1 +
(wS02 cosφ+ ∆wSP1) cosφ

Lelem

− wS01 cosφ

Lelem

σ3 =
PS02 cosφLeff + µDF1

Afiber cosφ

• ε4 = ε1 +
(Le − (LSP1 + d)) cosφ

Lelem

− wS01 cosφ

Lelem

σ4 =
µDF1

Afiber cosφ
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• ε5 = ε1 +
(Le − LSP1) cosφ

Lelem

− wS01 cosφ

Lelem

σ5 = 0

• being

– LSP1 the matrix spalled length which satisfies aL2
SP1 + bLSP1 + c = 0 with

a =

√
2

sinφ
+

cosφ

sin2 φ
, b =

d

sinφ
and c = −PS01 sinφ

fctm

– Ld ≈ 6LSP1 if 6LSP1 ≤ Le. Otherwise, Ld = Le

– ∆wSP1 = NLSP1(1− cosφ)

– Leff =
Le − LSP1

Le

– DF1 = PS01 sinφ cos φ
2

For the examples studied in the present work, the input parameters used are

presented in table A.1, as introduced in Laranjeira et al. (2010a).

Table A.1: Input parameters for straight fibers

PS01(N) PS02(N) wS01(mm) wS02(mm) d(mm) Le(mm) fctm(MPa) µ N
44.9 12 0.05 0.4 0.5 10 2.8 0.6 1

Hooked fibers

As in the previous case, for hooked fibers, the constitutive equations are also defined

depending on the angle (φ) and considering different points. However, due to the

fiber shape, the interaction is more complex than for the straight fibers. Therefore,

eight points (εi, σi) are required for describing the constitutive equations, as shown

in figure A.2, as presented in Laranjeira et al. (2010b).

Input data for the phenomenological model include fibers properties as fiber diam-

eter (d), fiber length (L), shorter fiber embedded length within the concrete matrix
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Figure A.2: Phenomenological constitutive equation of a hooked fiber defined by eight
points

(Le) and the ultimate tensile strength of aligned steel fibers (σu); concrete properties

as the average tensile strength (fctm); experimental results of the aligned fiber pull-

out test (wS01, PS01) and (wS02, PS02); experimental information from pullout test

derived from the direction of the original embedded part of the fiber (wH01, PH01),

(wH02, PH02), (wH03, PH03) and (wH04, PH04); numerical parameters as the element

size of the fiber (Lelem) and the area of the fiber (Afiber); and, finally, the friction

coefficient (µ),the number of sides of the cracked section at which spalling of the ma-

trix occurs sensitive to fiber orientation (N) and a parameter taking into account the

pullout test configuration (κ).

Considering all the input parameters, the eight points are defined:

• ε1 =
wS01 cosφ

L

σ1 =
PS01

Afiber

• ε2 = ε1 +
(wS01 + ∆wH01 cosφLe−6·LSP1

Le
+ ∆wSP1) cosφ

Lelem

− wS01 cosφ

Lelem

σ2 =
(PS01Leff(H2) + ∆PH01

Le−6·LSP1

Le
) cosφ+ µDF1

Afiber cosφ

• ε3 = ε1 +
(wS01 + ∆wH01 cosφ+ ∆wSP1 + ∆wSP2) cosφ

Lelem

− wS01 cosφ

Lelem
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σ3 =
(PS01Leff(H3) + ∆PH01) cosφ+ µDF2

Afiber cosφ

• ε4 = ε1 + ε3 +
∆wH02 cos2 φ

Lelem

− wS01 cosφ

Lelem

σ4 =

(PS01Leff(H4) +
2∑
i=1

∆PH0i) cosφ+ µDF2

Afiber cosφ

• ε5 = ε1 + ε4 +
∆wH03 cos2 φ

Lelem

− wS01 cosφ

Lelem

σ5 =

(PS01Leff(H5) +
3∑
i=1

∆PH0i) cosφ+ µDF2

Afiber cosφ

• ε6 = ε1 + ε5 +
∆wH04 cos2 φ

Lelem

− wS01 cosφ

Lelem

σ6 =

(PS02Leff(H6) +
4∑
i=1

∆PH0i) cosφ+ µDF2

Afiber cosφ

• ε7 = ε1 +
(Le − (LSP1 + LSP2 + d)) cosφ

Lelem

− wS01 cosφ

Lelem

σ7 =

(
4∑
i=1

∆PH0i) cosφ+ µDF2

Afiber cosφ

• ε8 = ε1 +
(Le − (LSP1 + LSP2)) cosφ

Lelem

− wS01 cosφ

Lelem

σ8 = 0

• being

– LSP1 the matrix spalled length defined for straight fibers

– LSP2 the increment of spalled matrix along fiber axis which satisfies aL2
SP2+

bLSP2 + c = 0 with a =

√
2

sinφ
+

cosφ

sin2 φ
, b =

d

sinφ
+

2LSP1(cosφ+
√

2)

sinφ
and

c = (−PS01 sinφ

fctm
)
PH01

PS01

+
LSP1

sinφ
(d+ LSP1

cosφ

sinφ
)

– ∆PH01 = PH01 − PS01 and ∆wH01 = wH01 − wS01



118 Parametrization of the constitutive equations for steel fibers

– for i = 1, 2, 3, ∆PH0(i+1) = PH0(i+1)−PS0i and ∆wH0(i+1) = wH0(i+1)−wS0i

– The effective length factors at each key point Hi are defined as

Leff(H2) =
Le − LSP1

Le

Leff(H3) =
Le − (LSP1 + LSP2)

Le

Leff(H4) =
Le − (LSP1 + LSP2 + ∆wH02)

Le

Leff(H5) =

Le − (LSP1 + LSP2 +
3∑
i=2

∆wH0i)

Le

Leff(H6) =

Le − (LSP1 + LSP2 +
4∑
i=2

∆wH0i)

Le

– DF1 = PS01 sinφ cos φ
2

and DF2 = PH01 sinφ cos φ
2

– ∆wSP1 = NLSP1(1− cosφ) and ∆wSP2 = LSP2(1− cosφ)

For the examples studied in the present work, the input parameters used are

presented in table A.2, as introduced in Laranjeira et al. (2010b).

Table A.2: Input parameters for hooked fibers

PS01(N) PS02(N) wS01(mm) wS02(mm) d(mm) Le(mm) fctm(MPa)
25 12.5 0.035 0.3 0.5 20 4.46

σu(MPa) µ N κ PH01(N) wH01(mm)
1150 0.6 1 9 192 0.769

PH02(N) wH02(mm) PH03(N) wH03(mm) PH04(N) wH04(mm)
110 2.6 90 4.5 65 5



Appendix B

Stability of the Lagrange
multipliers

In this thesis, a numerical approach for modeling Steel Fiber Reinforced Concrete is

presented. Imposing the proposed coupling between the fiber cloud and the concrete

bulk means solving a discrete system:
Kc 0 ΠT

0 Ks −Is
Π −Is 0



uc

us

λ̃

 =


F ext
c

F ext
s

0

 , (B.1)

being λ̃ the Lagrange Multipliers.

The system B.1 corresponds to the unrealistic case where both the concrete bulk

and the fiber cloud are supposed to be elastic. However, it is enough for studying the

stability of the proposed approach.

This system (equation B.1) is the discrete version of a continuous system:

• Concrete equilibrium (uC ∈ Ω):

−∇ · σ(uC) = bC + f
S→C

in Ω

σ(uC) · n = gN on ΓN

uC = uD on ΓD

(B.2)

with the corresponding weak form:
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∫
Ω
∇vC : σ(uC)dΩ =

∫
Ω
vCbCdΩ +

∫fΩS
λvC |fΩS

dΩ̃S +
∫

ΓN
vCgNdΓN ∀vC ∈ H1(Ω)

(B.3)

• Fiber equilibrium (uS ∈ Ω̃S):

−∇ · σ(uS) = f
C→S

in Ω̃S (B.4)

with the corresponding weak form:

∫fΩS
∇vS : σ(uS)dΩ̃S =

∫fΩS
λvSdΩ̃S ∀vS ∈ H1(Ω̃S) (B.5)

• Displacement compatibility:

uC |fΩS
= uS in Ω̃S (B.6)

with the corresponding weak form:

∫fΩS
µ(uS − uC |fΩS

)dΩ̃S ∀µ ∈ H−1/2(Ω̃S) (B.7)

Therefore, considering u∗ = (uC ,uS) and v∗ = (vC ,vS), the weak form of the

system can be written as:

a(u∗,v∗) + b(v∗, λ) = l(v∗) ∀v∗ ∈ H1(Ω)×H1(Ω̃S)

b(u∗, µ) = 0 ∀µ ∈ H−1/2(Ω̃S)
(B.8)

with

a(u∗,v∗) =
∫

Ω
∇vC : σ(uC)dΩ +

∫fΩS
∇vS : σ(uS)dΩ̃S

b(u∗, µ) =
∫fΩS

µ(uS − uC |fΩS
)dΩ̃S

l(v∗) =
∫

Ω
vCbCdΩ +

∫
ΓN
vCgNdΓN

(B.9)
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Although during this thesis no instability problems occurred in the simulations

using the proposed approach, an study of the stability of the Lagrange Multipliers is

needed.

The inf-sup condition (already known as Ladyzhenskaya-Babuŝka-Brezzi (LBB)

condition (Brezzi (1974))) allows demonstrating the stability of the Lagrange Multi-

pliers (Bathe et al. (2000)).

In the following, a general problem is formulated with the inf-sup condition.

General form of the exact problem:

Given b : X ×M 7→ R bilinear form, a(., .) : X ×X 7→ R, g ∈M and Xg := {vvv ∈ X :

b(vvv, µ) = (g, µ), ∀µ}, find the solution (uuu, λ) ∈ X ×M of

{
a(uuu,vvv) + b(uuu, λ) = l(vvv)>,∀vvv ∈ X
b(uuu, µ) = (g, µ),∀µ ∈M

(B.10)

being f the imposed constrains and λ the corresponding Lagrange Multipliers.

Discrete approximation:

Find uH and λH such that

uuu ≈ uH ∈ XH ⊂ X

λ ≈ λH ∈MH ⊂M
(B.11)

are the solution of the discrete problem corresponding to B.10:

{
aH(uH , vH) + bH(uH , λH) = lH(uH)>,∀vH ∈ XH

bH(uH , µH) = (gH , µH), ∀µH ∈MH

(B.12)

Ladyzhenskaya-Babuŝka-Brezzi (LBB) theorem:

If ∃β∗ ≥ 0 such that
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inf
µ∈MH

sup
vvv∈XH

b(vvv, µ)

‖µ‖M‖vvv‖X
≥ β∗, (B.13)

then the solution of the problem is stable.

In the continuous problem proposed above, we can assume

X = H1(Ω)×H1(Ω̃S)

M = H−1/2(Ω̃S)
(B.14)

and

‖vvv∗‖2 = ‖vcvcvc‖2
H1(Ω) + ‖vsvsvs‖2

H1( fΩS)
. (B.15)

Therefore, if ∃β∗ ≥ 0 such that

inf
µ∈H−1/2( fΩS)

sup
vvv∗∈H1(Ω)×H1( fΩS)

b(vvv∗, µ)

‖µ‖H−1/2( fΩS)‖vvv∗‖H1(Ω)×H1( fΩS)

≥ β∗ (B.16)

the proposed coupling though the Lagrange multipliers is stable.

Numerical inf-sup test:

In some cases, it is difficult to identify whether the inf-sup condition is satisfied. Thus,

Bathe et al. (2000) propose some numerical tests, easier to perform, for studying

the stability of a problem. Although a numerical tool is no as encompassing as an

analytical proof, their experience is that when a numerical test is passed, the inf-sup

condition is satisfied.

In the same direction, Béchet et al. (2009) introduce an algorithm to define a

stable Lagrange multiplier space to impose stiff interface conditions in the context of

the eXtended Finite Element Method (XFEM).

Both Bathe et al. (2000) and Béchet et al. (2009) use a numerical inf-sup test

proposed by Chapelle and Bathe (1993) and detailed by Brezzi and Fortin (1991). This

test reduces to the computation of eigenvalues for a sequence of meshes of increasing

density and it is presented in the following.
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Given a discrete system

(
AAA BBBT

BBB 000

)(
uuu

λ

)
=

(
fff

0

)
, (B.17)

with AAA standing for the stiffness matrix associated with the Laplace operator and BBB

corresponding to the coupling matrix, the value of β∗ is the minimum of µ (non-zero

and positive) in the following generalized eigenvalue problem:

BBBTKMKMKM
−1BBBwww = µ2KXKXKXwww (B.18)

being www the eigenvector and µ the eigenvalue.

Moreover, KMKMKM and KXKXKX are the matrix associated to the norm of the spaces M

and X, respectively.

The stability of β∗ is checked on a sequence of meshes, with respect to h, which

corresponds to the element size of each concrete mesh.

In the proposed coupling, based on the system presented in B.1,

AAA =

(
Kc 000

000 Ks

)
BBB =

(
ΠT −Is

)
.

(B.19)

Moreover, KM is the matrix associated to the norm of the space H−1/2(Ω̃S), which

is similar to the L2 norm, and KX is the matrix associated to the metric of H1(Ω)×
H1(Ω̃S), corresponding to the energy norm. Thus,

KMKMKM = diag(
1

L
,

2

L
, ...,

2

L
,

1

L
)

KXKXKX = AAA
(B.20)

being L the length of the elements of the fibers.

For studying the stability of the problem, the inf-sup test is applied. Thus, it is

necessary to find the minimum eigenvalue µ (non zero and positive) such that
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Figure B.1: Concrete domain and fiber

(BBBT(diag(
1

L
,

2

L
, ...,

2

L
,

1

L
))−1BBB)λ = µ2AAAλ (B.21)

considering different meshes for both the concrete domain and the fibers.

Numerical test for the proposed tool

Considering a plain concrete domain with a fiber immersed on it, as presented in figure

B.1, the stability of the Lagrange multipliers is studied through the inf-sup test.

Four different nested meshes are considered in order to find the minimum eigen-

value of B.21 and the results are presented in figure B.2. It is possible to observe that

the values of log10(µ) converge to a number different from zero. Therefore, the inf-sup

test is passed.
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Figure B.2: Obtained values of log10(µ) for different nested meshes
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Most important related
contributions

C.1 Participations in congresses

Numerical modeling of a test assessing the tensile strength of Steel Fiber

Reinforced Concrete

Alba Pros, Pedro Dı́ez and Climent Molins

8th. World Congress on Computational Mechanics (WCCM8) 5th European Congress

on Computational Methods in Applied Sciences and Engineeering (ECCOMAS 2008)

June 30 - July 5, 2008

Venice, Italy

Simulación numérica del ensayo Barcelona para hormigón reforzado con

fibras de acero

Alba Pros, Pedro Dı́ez and Climent Molins

Congreso de métodos numéricos en ingenieŕıa 2009

June 29 - July 2, 2009

Barcelona, Spain

Model validation of the numerical simulation of the Double Punch Test

Alba Pros, Pedro Dı́ez and Climent Molins

IV European Conference on Computational Mechanics (ECCM 2010)
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May 16-21, 2010

Paris, France

Numerical Modeling for Steel Fiber Reinforced Concrete: Flexural Behav-

ior

Alba Pros, Pedro Dı́ez and Climent Molins

CFRAC 2011 - International Conference on Computational Modeling of Fracture and

Failure of Materials and Structures

June 6-8, 2011

Barcelona, Spain

Numerical simulation of steel fiber reinforced concrete: including fibers

into plain concrete

Alba Pros, Pedro Dı́ez and Climent Molins

CMNE 2011 - Congress on Numerical Methods in Engineering

June 14-17, 2011

Coimbra, Portugal

Discrete meso-modeling of Steel Fiber Reinforced Concrete: simulation of

flexural behavior

Alba Pros, Pedro Dı́ez and Climent Molins

COMPLAS XI - XI International Conference on Computational Plasticity Fundamen-

tals and Applications

September 7-9, 2011

Barcelona, Spain

Simulación numérica de hormigón reforzado con fibras de acero

Alba Pros, Climent Molins and Pedro Dı́ez

V Congreso de ACHE (Asociación Cientifico-Técnica del Hormigón Estructural)

October 25-27, 2011

Barcelona, Spain
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C.2 Publications

A. Pros, P. Dı́ez and C. Molins. Numerical modeling of double punch test for

plain concrete. International Journal of solids and structures (2011). Vol. 48

(7-8), 1229 - 1238.

A. Pros, P. Dı́ez and C. Molins. Modeling steel fiber reinforced concrete: nu-

merical immersed boundary approach and a phenomenological mesomodel

for concrete-fiber interaction. International Journal for Numerical Methods in

Engineering (2011). Accepted for publication.

A. Pros, C. Molins and P. Dı́ez. 3D numerical modeling of steel fiber reinforced

concrete with experimental validation. In preparation.
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Laranjeira, F., A. Aguado, and C. Molins (2008). Evaluating uniaxial tensile behavior
of steel fiber reinforced concrete using a meso-scale model. In Fibre reinforced
concrete: design and applications. Proceeding of the Seventh RILEM international
Symposium (BEFIB 2008), Chennai, India, pp. 1055–1064. Publications S. A. R.
L.

Laranjeira, F., A. Aguado, and C. Molins (2010a). Predicting the pullout response of
inclined straight steel fibers. Materials and structures 43, 875–895.

Laranjeira, F., C. Molins, and A. Aguado (2010b). Predicting the pullout response of
inclined hooked steel fibers. Cement and Concrete Research 40, 1471–1487.

Lilliu, G. and J. G. M. V. Mier (1999). Analysis of crack growth in the brazilian
test, in construction materials -theory and application. Eligehausen R. (Ed.) H.
W. Reinhardt 60th birthday commemorative volume, 123–138.



134 Bibliography

Lilliu, G. and J. G. M. V. Mier (2003). 3d lattice type fracture model for concrete.
Engineering Fracture Mechanics 70, 927–941.
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