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On the asymptotic expansion of oscillatory integrals
with smooth phases in two dimensions

By

Joe Kamimoto * and Toshihiro Nose**

§1. Introduction

The main purpose of this article is to announce a part of results in our forthcoming

paper [24]. In [24], the local zeta function will be mainly treated, while this article

focuses on the study of oscillatory integrals. To be more specific, we investigate the

behavior of oscillatory integrals in two dimensions:

(1.1) I(t; $\varphi$)=\displaystyle \int_{\mathbb{R}^{2}}e^{itf(x_{1},x_{2})} $\varphi$(x_{1}, x_{2})dx_{1}dx_{2} as t\rightarrow+\infty,

where f and  $\varphi$ are real‐valued (C^{\infty}) smooth functions defined on an open neighborhood
U of the origin in \mathbb{R}^{2} and the support of  $\varphi$ is contained in  U . Here, f and  $\varphi$ are called

the phase and the amplitude respectively. In this article, we always assume that

 f(0,0)=0 and \nabla f(0,0)=(0,0) .

The above first condition is only for the convenience. The second condition follows

from the principle of stationary phase, i.e., the main contribution in the behavior of

oscillatory integrals is given by local properties of the phase f around its critical point.
The investigations of the behavior of I(t; $\varphi$) as t \rightarrow +\infty are very important subjects

occurring in harmonic analysis, partial differential equations, several complex variables,
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probability theory, number theory, etc. We refer to the beginning of chapter 6 of [1]
and the end of chapter 8 of [31] for an overview of many of these applications.

In the real analytic phase case, precise results about asymptotic expansion of os‐

cillatory integrals have been obtained. By using a famous Hironaka�s resolution of

singularities [13], it is known (see [19], [25]) that if f is real analytic and the support of

 $\varphi$ is contained in a sufficiently small open neighborhood of the origin, then the integral

 I(t; $\varphi$) has an asymptotic expansion of the form

(1.2) I(t; $\varphi$)\displaystyle \sim\sum_{ $\alpha$}(C_{ $\alpha$}( $\varphi$)t^{ $\alpha$}\log t+C_{ $\alpha$}^{0}( $\varphi$)t^{ $\alpha$}) as t\rightarrow+\infty,

where  $\alpha$ runs through a finite number of arithmetic progressions, not depending on the

amplitude, which consist of negative rational numbers. (Recently, Greenblatt [11] gives
a new proof of the above result by using the elementary resolution of singularities con‐

structed in his paper [8].) Moreover, in an important work of Varchenko [32] (see also

[1]), the exponents of the terms, especially the leading terms, in the expansions (1.2) are

precisely expressed by using some geometrical data of Newton polyhedra of the phases.
Since the geometrical data of Newton polyhedra largely depends on chosen coordinates,
it is an important problem to look for good coordinates in the asymptotic analysis of

oscillatory integrals. Indeed, Varchenko showed that so called adapted coordinates (see
Section 2.4) always exist in the two‐dimensional case and he uses these coordinates to

express precise behavior of oscillatory integrals. More recently, the above investigation
of Varchenko has been developed in [28], [9], [14], [15], [16], [12], [5] from another point
of view, which is inspired by the work of Phong and Stein on oscillatory integral oper‐

ators in their seminal paper [27]. In particular, Greenblatt [9] introduces superadapted

coordinates, which is more refined version of the above adapted coordinates (see Section

2.4) and shows that these coordinates are very useful in the two‐dimensional case.

More generally, let us consider the case when the phase is \mathrm{a}(C^{\infty}) smooth function.

Since resolution of singularities by using rational transform may not exist in the smooth

case, it is difficult to investigate oscillatory integrals in the sense of asymptotic expan‐

sion like (1.2). Indeed, there are only a few results in this sense, which need strong

assumptions (see [30], [20]). On the other hand, there are interesting results about

the behavior of oscillatory integrals in the form of estimates or limits in [9], [14], [16],
which have been already referred as above. The existences of adapted coordinates or

superadapted coordinates are shown in the smooth case ([9], [15]) and the behavior of

oscillatory integrals is investigated by using these coordinates in the above papers (see
Remark 3 in Section 3). They treat with the case when the behaviors are similar to

those in the real analytic case. Here, it must be noticed that there exists an example of

non‐real analytic phase, in which the behavior of oscillatory integral is quite different

from that in the real analytic case, which is shown by Iosevich and Sawyer [18] (see
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Remark 5 in Section 3).
As is observed from the above example given by Iosevich and Sawyer, it seems

difficult to understand the asymptotic behavior of oscillatory integrals in the general
smooth case. In this article, we consider the case when oscillatory integrals have a

relatively good asymptotic behavior. To be more precise, we give a sufficient condition

on f for which oscillatory integrals can be asymptotically expanded similarly to the

form (1.2), but these expansions may have only finitely terms. This condition is natu‐

rally characterized by using the Newton polyhedron of f with respect to superadapted
coordinates.

In our analysis of oscillatory integrals, it is crucial to understand geometrical prop‐

erties of the singular variety

V_{f}=\{(x_{1}, x_{2}) \in U : f(x_{1}, x_{2})=0\},

where f, U are as in (1.1). Indeed, the most important part of Varchenko�s analysis in

[32] (see also [1], [20]) is to quantitatively express f in a normal crossing form by using
a toric resolution of singularities of f . Furthermore, these properties have been more

generally understood in the real analytic case ([27]). Unfortunately, it is impossible to

get complete resolution of singularities of f by using rational transform in the general
smooth case. But some weak condition implies that f can be expressed in an �almost�

normal crossing form by using a toric blowing‐up in [32]. Note that the result of Rychkov

[29] plays an important role in this construction. We apply a Van der Corput‐type
lemma in this form and can get necessary analytical information. Note that this kind

of lemma plays important roles in the analysis in [9], [14], [15], [16], [12].
It is known (c.f. [17], [1]) that the asymptotic analysis of oscillatory integral (1.1)

is closely related to an investigation of the poles of the local zeta function

(1.3) Z(s; $\varphi$)=\displaystyle \int_{\mathbb{R}^{2}}|f(x_{1}, x_{2})|^{s} $\varphi$(x_{1}, x_{2})dx_{1}dx_{2},
where f,  $\varphi$ are the same as in (1.1). Our substantial analysis is to investigate the

meromorphy and the properties of poles of the functions  z_{\pm}(s; $\varphi$) ,
which are similar to

the above local zeta function, under associated assumptions.
As was mentioned in the beginning, this article announces a part of results about

oscillatory integrals in [24]. Since actual proof of main results is too long, we only give
its sketch in this article. On the other hand, this article contains an original result in

Section 5, which can be easily obtained from an application of the main theorem.

Notation and symbols.

\bullet We denote by \mathbb{Z}_{+}, \mathbb{R}_{+} the subsets consisting of all nonnegative numbers in \mathbb{Z}, \mathbb{R},

respectively. For s\in \mathbb{C}, {\rm Re}(s) expresses the real part of s.
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\bullet Forx =(x_{1}, x_{2} y=(y_{1}, y_{2}) \in \mathbb{R}^{2},  $\alpha$=($\alpha$_{1}, $\alpha$_{2}) \in \mathbb{Z}_{+}^{2} ,
define x  $\alpha$=x_{1}^{$\alpha$_{1}}x_{2}^{$\alpha$_{2}}.

\bullet For  A, B\subset \mathbb{R}^{2} ,
we set A+B= { a+b\in \mathbb{R}^{2} : a\in A and b\in B }.

§2. Preliminaries

§2.1. Polyhedra

Let us explain fundamental notions in the theory of convex polyhedra in two di‐

mensions, which are necessary for our investigation. Refer to [33] for general theory of

convex polyhedra.
For (a, l) = ((a_{1}, a_{2}), l) \in \mathbb{R}^{2} \times \mathbb{R}

,
let H(a, l) and H^{+}(a, l) be a straight line and a

closed halfspace in \mathbb{R}^{2} defined by

H(a, l) :=\{(x_{1}, x_{2}) \in \mathbb{R}^{2} : a_{1}x_{1}+a_{2}x_{2}=l\},

H^{+}(a, l) :=\{(x_{1}, x_{2}) \in \mathbb{R}^{2} : a_{1}x_{1}+a_{2}x_{2} \geq l\},

respectively. \mathrm{A} (convex rational) polyhedron is an intersection of closed halfspaces: \mathrm{a}

set P \subset \mathbb{R}^{2} presented in the form P= \displaystyle \bigcap_{j=1}^{N}H^{+}(a^{j}, l_{j}) for some a^{1}
, :::,

a^{N} \in \mathbb{Z}^{2} and

l_{1} ,
. . .

, l_{N}\in \mathbb{Z}.

Let P be a polyhedron in \mathbb{R}^{2} . A pair (a, l) \in \mathbb{Z}^{2} \times \mathbb{Z} is said to be valid for P if

P is contained in H^{+}(a, l) . A face of P is any set of the form F=P\cap H(a, l) ,
where

(a, l) is valid for P . Since (0,0) is always valid, we consider P itself as a trivial face of

P ; the other faces are called proper faces. The dimension of a face F is the dimension

of its affine hull of F (i.e., the intersection of all affine flats that contain F). The

faces of dimensions 0 and 1 are called vertices and edges, respectively. In particular,
the noncompact edge of P which is contained in the line \{(c,  $\alpha$) \in \mathbb{R}^{2} :  $\alpha$ \in \mathbb{R}\} (resp.
\{( $\alpha$, c) \in \mathbb{R}^{2} :  $\alpha$\in \mathbb{R}\}) with some c\in \mathbb{R} is called the vertical edge (resp. the horizontal

edge).

§2.2. Newton polyhedra

Let f be a real‐valued smooth function defined on a neighborhood of the origin in

\mathbb{R}^{2}
,

which has the Taylor series at the origin:

(2.1) f(x_{1}, x_{2})\displaystyle \sim\sum_{ $\alpha$\in \mathbb{Z}_{+}^{2}}c_{ $\alpha$}x_{1}^{$\alpha$_{1}}x_{2}^{$\alpha$_{2}}.
The Newton polyhedron $\Gamma$_{+}(f) of f is defined by the convex hull of the \mathrm{s}\mathrm{e}\mathrm{t}\cup\{ $\alpha$+\mathbb{R}_{+}^{2};c_{ $\alpha$} \neq

 0\} . Of course, the Newton polyhedron is a polyhedron. We say that f is flat if $\Gamma$_{+}(f)=\emptyset
(i.e., all derivatives of  f vanish at the origin). The center of the boundary of the Newton

polyhedron $\Gamma$_{+}(f) is the point at which the bisectrix $\alpha$_{1} =$\alpha$_{2} intersects the boundary
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of $\Gamma$_{+}(f) . The Newton distance of f is given by the coordinate d of the center (d, d) ,

which is denoted by d(f) . Of course, this distance depends on the coordinates. In

order to make clear the chosen coordinate x
,

we sometimes write this distance as d_{x}(f) .

The principal face $\gamma$_{*} of the Newton polyhedron of f is the smallest face of $\Gamma$_{+}(f)
containing the center (d(f), d(f)) . The multiplicity of the Newton distance is given by
the codimension of $\gamma$_{*} ,

which is denoted by m(f) . That is to say,

(2.2) \left\{\begin{array}{ll}
m(f) =1 & \mathrm{i}\mathrm{f} $\gamma$_{*} \mathrm{i}\mathrm{s} \mathrm{a}\mathrm{n} \mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e} \mathrm{o}\mathrm{f} $\Gamma$_{+}(f) ,\\
m(f) =2 & \mathrm{i}\mathrm{f} $\gamma$_{*} \mathrm{i}\mathrm{s} \mathrm{a} \mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{x} \mathrm{o}\mathrm{f} $\Gamma$_{+}(f) .
\end{array}\right.
§2.3. The  $\gamma$‐part

Let  f be a nonflat real‐valued smooth function defined on an open neighborhood
V of the origin in \mathbb{R}^{2} with the Taylor series (2.1).

Definition 2.1. Let  $\gamma$ be a face of  $\Gamma$_{+}(f) . We say that f admits the  $\gamma$ ‐part on

an open neighborhood  U\subset V of the origin if for any x in U the limit:

(2.3) \displaystyle \lim_{t\rightarrow 0}\frac{f(t^{a_{1}}x_{1},t^{a_{2}}x_{2})}{t^{l}}
exists for all valid pairs (a, l) = ((a_{1}, a_{2}), l) \in \mathbb{Z}_{+}^{2} \times \mathbb{Z}_{+} defining  $\gamma$ . When  f admits the

 $\gamma$‐part, it is known in [20], Proposition 5.2 (iii), that the above limits take the same

value for any valid pair (a, l) \in \mathbb{Z}_{+}^{2} \times \mathbb{Z}_{+} defining  $\gamma$ ,
which is denoted by  f_{ $\gamma$}(x) . Let us

consider f_{ $\gamma$} as a function on U ,
which is called the  $\gamma$‐part of  f on U.

We summarize important properties of the  $\gamma$‐part. See [20] for the details.

1. The  $\gamma$‐part  f_{ $\gamma$} is a smooth function defined on U.

2. If f admits the  $\gamma$‐part  f_{ $\gamma$} on U ,
then f_{ $\gamma$} has the quasihomogeneous property:

f_{ $\gamma$}(t^{a_{1}}x_{1}, t^{a_{2}}x_{2})=t^{l}f_{ $\gamma$}(x_{1}, x_{2}) for  t\in (0,1) and (x_{1}, x_{2}) \in U,

where (a, l) =((a_{1}, a_{2}), l) \in \mathbb{Z}_{+}^{2} \times \mathbb{Z}_{+} is a valid pair defining  $\gamma$.

3. For a compact face  $\gamma$ of  $\Gamma$_{+}(f) , f always admits the  $\gamma$‐part near the origin. Then  f_{ $\gamma$}
is the same as the  $\gamma$‐part of  f defined in [32], [1], i.e., f_{ $\gamma$}(x_{1}, x_{2}) =\displaystyle \sum_{ $\alpha$\in $\gamma$\cap \mathbb{Z}_{+}^{2}}c_{ $\alpha$}x_{1}^{$\alpha$_{1}}x_{2}^{$\alpha$_{2}}.

4. If f is real analytic, then f always admits the  $\gamma$‐part on  U for any face  $\gamma$ of

 $\Gamma$_{+}(f) . Moreover, f_{ $\gamma$} is real analytic and is equal to a convergent power series

\displaystyle \sum_{ $\alpha$\in $\gamma$\cap \mathbb{Z}_{+}^{2}}c_{ $\alpha$}x_{1}^{$\alpha$_{1}}x_{2}^{$\alpha$_{2}} on some neighborhood of the origin.

5. Let f be a smooth function and  $\gamma$ a noncompact edge of  $\Gamma$_{+}(f) . Then, f does not

admit the  $\gamma$‐part in general. If  f admits the  $\gamma$‐part, then the Taylor series of  f_{ $\gamma$} at

the origin is \displaystyle \sum_{ $\alpha$\in $\gamma$\cap \mathbb{Z}_{+}^{2}}c_{ $\alpha$}x_{1}^{$\alpha$_{1}}x_{2}^{$\alpha$_{2}}.
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6. When a noncompact edge  $\gamma$ of  $\Gamma$_{+}(f) is contained in some coordinate axis, f always
admits the  $\gamma$‐part on  U . Indeed, for every valid pair (a, l) defining  $\gamma$ ,

we have  l=0

and so the limit (2.3) exists.

7. When f is smooth and  $\gamma$ is a noncompact edge, there are many examples in which

 f does not admit the  $\gamma$‐part. For example, consider the case when  f(x_{1}, x_{2}) =

x_{2}^{2}+e^{-1/|x_{1}|^{p}} withp > 0 and the face  $\gamma$ defined by \{($\alpha$_{1}, $\alpha$_{2}) : $\alpha$_{1} \geq 0, $\alpha$_{2} = 2, \}.
See also Remark 5 in Section 3 below.

§2.4. Adapted coordinates and superadapted coordinates

Let f be a nonflat real‐valued smooth function defined near the origin in \mathbb{R}^{2} with

f(0,0)=0 and \nabla f(0,0)=(0,0) . The height of real analytic (resp. smooth) function f
is defined by

h(f) :=\displaystyle \sup_{x}d_{x}(f) ,

where the supremum is taken over all local analytic (resp. smooth) coordinate systems
x at the origin and d_{x}(f) is the Newton distance of f in the coordinate x . We easily
see that h(f) \geq  1 since f(0,0)=0 and \nabla f(0,0) =(0,0) .

Definition 2.2. A coordinate x is adapted to f (or f is in an adapted coordinate

x) if h(f)=d_{x}(f) .

When f is real analytic, the existence of adapted coordinates is shown by Varchenko

[32] by means of two‐dimensional resolution of singularities and by Phong‐Stein‐Sturm

[28] by means of the Puiseux series expansion of roots of f . Moreover, Ikromov and

Müller [15] apply Varchenko�s algorithm for the construction of the coordinates to the

method of Phong‐Stein [27] and give stronger results for the existence and the criterion

for the adaptedness. Indeed, they shows the existence in the case when f is smooth.

We remark that in dimension higher than two, adapted coordinates may not exist, as

Varchenko shows in [32].
We gives some remarks on adapted coordinates. See [15] for the details.

1. When $\gamma$_{*} is a vertex or a noncompact edge of $\Gamma$_{+}(f) in a coordinate, this coordinate

is adapted to f.

2. A coordinate is adapted to f if and only if for any compact edge  $\gamma$ of  $\Gamma$_{+}(f) con‐

taining the center of the boundary of $\Gamma$_{+}(f) , any real zero of the functions f_{ $\gamma$}(\pm 1, \cdot)
or f_{ $\gamma$} \pm 1) has order less than or equal to d(f) .

3. When f is in adapted coordinates, if a compact face  $\gamma$ of  $\Gamma$_{+}(f) does not contain

the center of the boundary of $\Gamma$_{+}(f) ,
then any real zero of f_{ $\gamma$} \pm 1 ) and f_{ $\gamma$}(\pm 1, )

has order less than d(f) .
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4. The multiplicity m(f) of d(f) depends on taking adapted coordinates.

Greenblatt [9] introduces the following special adapted coordinates, called super‐

adapted coordinates. Though his coordinates are slightly different from the adapted

coordinates, they are much more useful for our analysis.

Definition 2.3. A coordinate x is superadapted to f (or f is said to be in a

superadapted coordinate x) if for any compact edge  $\gamma$ of  $\Gamma$_{+}(f) containing the center of

the boundary of $\Gamma$_{+}(f) , any real zero of the functions f_{ $\gamma$}(\pm 1, \cdot) or f_{ $\gamma$} \pm 1 ) has order

less than d_{x}(f) .

For any smooth function f ,
the existence of superadapted coordinates is shown by

Greenblatt [9].
We gives some remarks on superadapted coordinates. See [9] for the details.

1. Any superadapted coordinate system is adapted.

2. If the principal face of the Newton polyhedron $\Gamma$_{+}(f) is a noncompact edge, then

the function f is in superadapted coordinates.

3. For any superadapted coordinates, the multiplicity m(f) of d(f) is uniquely de‐

termined. (i.e., The multiplicity m(f) does not depend on taking superadapted

coordinates.)

§3. Main results

In this section, we always assume that f and  $\varphi$ satisfy the following: Let  U be an

open neighborhood of the origin in \mathbb{R}^{2}.

(A) f is a nonflat real‐valued (C^{\infty}) smooth function defined on U satisfying that

f(0,0)=0 and \nabla f(0,0)=(0,0)_{;}

(B)  $\varphi$ is a real‐valued (C^{\infty}) smooth function whose support is contained in U.

As was mentioned in the Introduction, when the phase is real analytic, there exists

an asymptotic expansion of the form (1.2). On the other hand, in the smooth case,

I(t; $\varphi$) does not always admit the asymptotic expansion (1.2) (see Remark 5, below).
But, as the following theorem shows, under some assumption, a similar expansion ex‐

ists but this expansion may not have infinitely many terms. In the theorem, the first

coefficient of this expansion is explicitly computed.

Theorem 3.1. Suppose that f is in a superadapted coordinate x . We denote

h:=h(f) and m:=m(f) for simplicity. We assume that h> 1 and that if a noncompact
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edge  $\gamma$ of  $\Gamma$_{+}(f) contains the center of the boundary of $\Gamma$_{+}(f) ,
then f(x_{1}, x_{2}) admits

the  $\gamma$ ‐part on U. If the support of  $\varphi$ is contained in a sufficiently small neighborhood

of the origin, the following holds. There exist a positive number  $\delta$
,

a subset  S_{ $\delta$} in \mathbb{Q},

depending only on f ,
such that

(3.1) |I(t; $\varphi$)-\displaystyle \sum_{ $\alpha$\in S_{ $\delta$}}(C_{ $\alpha$}( $\varphi$)t^{ $\alpha$}\log t+C_{ $\alpha$}^{0}( $\varphi$)t^{ $\alpha$})| <Ct^{-1/h- $\delta$- $\epsilon$},
where C_{ $\alpha$}( $\varphi$) are constants and C is a positive constant and  $\epsilon$ is any small positive
number. Moreover, the set  S_{ $\delta$} \subset \mathbb{Q} is the restriction of S to the region [-1/h- $\delta$, -1/h],
where S consists of a finite number of arithmetic progressions produced by some al‐

gorithm, which can be given by using the theory of toric varieties based on Newton

polyhedra concerning f.

Concerning the first term in the expansion (3.1), we have the limit:

(3.2) \displaystyle \lim_{t\rightarrow\infty}t^{1/h}(\log t)^{-m+1}\cdot I(t; $\varphi$)=C( $\varphi$) ,

where C( $\varphi$) is explicitly given as follows: For a negative number A
,

let A^{-1/h} :=

|A|^{-1/h}e^{- $\pi$ i/h} and  $\Gamma$ is the gamma function.

(a) Suppose that the principal face  $\gamma$_{*} of $\Gamma$_{+}(f) is a compact edge defined by a valid pair

(a, l)=((a_{1}, a_{2}), l) \in \mathbb{Z}_{+}^{2} \times \mathbb{Z}_{+} . Then

(3.3) C( $\varphi$)= \displaystyle \frac{ $\Gamma$(1/h)e^{ $\pi$ i/2h}}{h(a_{2}/a_{1}+1)} $\varphi$(0,0)\int_{-\infty}^{\infty} (f_{$\gamma$_{*}}(1, u)^{-1/h}+f_{$\gamma$_{*}}(-1, u)^{-1/h})du ;

(b) Suppose that the principal face $\gamma$_{*} is the vertical edge. Then

(3.4) C( $\varphi$)= \displaystyle \frac{ $\Gamma$(1/h)e^{ $\pi$ i/2h}}{h}\int_{-\infty}^{\infty} (f_{$\gamma$_{*}}(1, u)^{-1/h}+f_{$\gamma$_{*}}(-1, u)^{-1/h}) $\varphi$(0, u)du ;

(c) Suppose that the principal face $\gamma$_{*} is the horizontal edge. Then

(3.5) C( $\varphi$)= \displaystyle \frac{ $\Gamma$(1/h)e^{ $\pi$ i/2h}}{h}\int_{-\infty}^{\infty} (f_{$\gamma$_{*}}(u, 1)^{-1/h}+f_{$\gamma$_{*}}(u, -1)^{-1/h}) $\varphi$(u, 0)du ;

(d) Suppose that the principal face $\gamma$_{*} of $\Gamma$_{+}(f) is a vertex. Let ((a_{1}, a_{2}), l_{1}) and

((b_{1}, b_{2}), l_{2}) be valid pairs in \mathbb{Z}_{+}^{2}\times \mathbb{Z}_{+}for $\Gamma$_{+}(f) which define the two edges contain‐

ing $\gamma$_{*} and satisfy that 0\leq a_{2}/a_{1} \leq b_{2}/b_{1} \leq\infty . If  h is odd, then

(3.6) C( $\varphi$)= \displaystyle \frac{4 $\Gamma$(1/h)\cos( $\pi$/2h)}{h^{2}} $\varphi$(0,0)|f_{$\gamma$_{*}}(1,1)|^{-1/h} (\displaystyle \frac{1}{a_{2}/a_{1}+1}-\frac{1}{b_{2}/b_{1}+1}) :

If h is even, then

(3.7) C( $\varphi$)= \displaystyle \frac{4 $\Gamma$(1/h)e^{ $\pi$ i/2h}}{h^{2}} $\varphi$(0,0)|f_{$\gamma$_{*}}(1,1)|^{-1/h} (\displaystyle \frac{1}{a_{2}/a_{1}+1}-\frac{1}{b_{2}/b_{1}+1})
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In particular, C( $\varphi$) does not vanish if  $\varphi$(0,0) is positive (resp. negative) and  $\varphi$ is

nonnegative (resp. nonpositive) on  U.

Remarks

1. We see that the integrals in (3.3), (3.4), (3.5) are convergent since any real zero of

f_{$\gamma$_{*}}(\pm 1, \cdot) or f_{$\gamma$_{*}} \pm 1) has order less than the height h(f) . Indeed, in superadapted

coordinates, any real zero of f_{ $\gamma$}(\pm 1, \cdot) or f_{ $\gamma$} \pm 1 ) for each compact face  $\gamma$ has order

less than  h(f) . When the principal face is noncompact, careful computations gives
the same assertion under the assumption of the theorem.

2. It is shown in [9] that in a superadapted coordinate to f satisfying \nabla f(0,0) =(0,0) ,

the critical point of f at the origin is nondegenerate, i.e., \nabla^{2}f(0,0) is invertible,
if and only if h(f) = 1 . In general nondegenerate case, the asymptotic expansions
of oscillatory integrals are completely computed by using the Morse lemma and

Fresnel integrals (See Section 2.3, Chapter VIII in [31]).

3. Until now, there have been many studies concerning the limit (3.2) in [32],[6],[9],[16],
etc. In the general dimensional real analytic phase case, Varchenko [32] gives a

sufficient conditions for determining the leading terms of the asymptotic expansions
of oscillatory integrals under some nondegeneracy conditions. Moreover, the first

coefficient C( $\varphi$) is computed in many cases in [30], [6], [26], [20].

In the two‐dimensional case, there have been interesting investigation without the

above nondegeneracy condition. In order to show the strength of our result, let

us recall important known results. In [9], Greenblatt introduces superadapted co‐

ordinates and obtain similar results about the real analytic phase case to that in

[32], [6] by using the properties of superadapted coordinates. In the same paper,

furthermore, he also has the following weaker results with nonflat smooth phases:

Suppose that h(f) > 1 and that  $\varphi$(0,0) > 0 and  $\varphi$ is nonnegative on  U . If the

principal face is compact, then

\displaystyle \lim_{t\rightarrow}\sup_{\infty}|t^{1/h(f)}(\log t)^{-m(f)+1}\cdot I(t; $\varphi$)| >0 ;

If the principal face is noncompact, then for any  $\delta$>0,

\displaystyle \lim_{t\rightarrow}\sup_{\infty}|t^{1/h(f)+ $\delta$}\cdot I(t; $\varphi$)| =\infty.
In the smooth phase case, Ikromov and Müller [16] prove that if the principal face

is compact and h(f) > 1
,

then

\displaystyle \lim_{t\rightarrow\infty}t^{1/h(f)}(\log t)^{-m(f)+1}\cdot I(t; $\varphi$)=C $\varphi$(0,0) ,
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where C is a nonzero constant and depends only on the phase f (but they do not

give an explicit value).

4. In some special smooth phase cases, asymptotic expansions of I(t; $\varphi$) have been

computed in the form (1.2). In [30], Schulz obtains the asymptotic expansion of

I(t; $\varphi$) when the phase is convex and satisfies the finite line type condition. The

authors [20] introduce the class of smooth functions admitting the  $\gamma$‐parts for any

face  $\gamma$ of the Newton polyhedron of  f and naturally generalize the general dimen‐

sional results of Verchenko [32] in the case when f belongs to this class under some

nondegeneracy condition. We remark that the assumption of Theorem 3.1 is much

weaker than that of the corresponding two‐dimensional results in [20].

5. Without the assumption in the theorem, the limit (3.2) may not hold. In fact,
Iosevich and Sawyer [18] give an estimate from the above in the case when the

phase is f(x_{1}, x_{2})=x_{2}^{2}+e^{-1/|x_{1}|^{p}} with p>0 . More precisely, the following limit is

shown in [23]:

(3.8) \displaystyle \lim_{t\rightarrow\infty}t^{1/2}(\log t)^{1/p}\cdot I(t; $\varphi$)=2\sqrt{ $\pi$}e^{i $\pi$/4}\cdot $\varphi$(0,0) .

The above limit implies that I(t; $\varphi$) does not have the asymptotic expansion of

the form (1.2). In this example, the coordinate x is superadapted to f since the

principal face is a noncompact edge, and we see that h(f) =2 . (See also Remark 7

in Section 2.3.) When the case of smooth functions is treated, it must be noticed

that the geometrical information of the Newton polyhedra does not always give
sufficient analytical information. To be more specific, though flat functions do not

appear in the information of the Newton polyhedron, they may affect the behavior

of the oscillatory integrals. In particular, it must be careful to deal with the case

when the complement of their Newton polyhedra in \mathbb{R}_{+}^{n} is noncompact.

§4. Outline of a proof of Theorem 3.1

Let us overview our proof of Theorem 3.1. A detailed proof will appear in the paper

[24].

§4.1. Local zeta‐type functions z_{\pm}(s; $\varphi$)

In order to prove the theorem, we investigate local zeta‐type functions of the form

Z_{+}(s; $\varphi$)=\displaystyle \int_{\mathbb{R}^{2}}f(x_{1}, x_{2})_{+}^{s} $\varphi$(x_{1}, x_{2})dx_{1}dx_{2},
(4.1)

Z_{-}(s; $\varphi$)=\displaystyle \int_{\mathbb{R}^{2}}f(x_{1}, x_{2})_{-}^{s} $\varphi$(x_{1}, x_{2})dx_{1}dx_{2},
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where s\in \mathbb{C}, f and  $\varphi$ satisfy the conditions (A),(B) in Section 3 and

 f(x_{1}, x_{2})_{+}=\displaystyle \max\{f(x_{1}, x_{2}), 0\}, f(x_{1}, x_{2})_{-} =\max\{-f(x_{1}, x_{2}), 0\}.

Since the integrals in (4.1) converge locally uniformly on the region {\rm Re}(\mathrm{s}) >0 ,
which

implies that z_{\pm}  $\varphi$ ) can be regarded as holomorphic functions there. Moreover, in

the case when  f is real analytic, it is shown in [3], [2] (see also Section 4.3) that if

the support of  $\varphi$ is sufficiently small, then  z_{\pm}(s; $\varphi$) can be analytically continued as

meromorphic functions to the whole complex plane.

§4.2. Relationships between I(t; $\varphi$) and z_{\pm}(s; $\varphi$)

Let us overview the relationships between I(t; $\varphi$) and z_{\pm}(s; $\varphi$) (see [17], [1] for the

details).
Suppose that the support of  $\varphi$ is sufficiently small. Define the Gelfand‐Leray func‐

tion:  K:\mathbb{R}\rightarrow \mathbb{R} as

K(c)=\displaystyle \int_{W_{c}} $\varphi$(x_{1}, x_{2}) $\omega$,
where W_{c} = \{x \in \mathbb{R}^{2} : f(x_{1}, x_{2}) = c\} and  $\omega$ is the line element on  W_{c} which is

determined by df ∧  $\omega$=dx_{1}\wedge dx_{2} . Here, I(t; $\varphi$) and z_{\pm}(s; $\varphi$) can be expressed by using

K(c) : Changing the integral variables in (1.1) and (4.1), we have

(4.2) I(t; $\varphi$)=\displaystyle \int_{-\infty}^{\infty}e^{itc}K(c)dc=\int_{0}^{\infty}e^{itc}K(c)dc+\int_{0}^{\infty}e^{-itc}K(-c)dc,

(4.3) z_{\pm}(s; $\varphi$)=\displaystyle \int_{0}^{\infty}c^{s}K(\pm c)dc,
respectively. Applying the inverse formula of the Mellin transform to (4.3), we have

(4.4) K(\displaystyle \pm c)= \frac{1}{2 $\pi$ i}\int_{r-i\infty}^{r+i\infty}Z_{\pm}(s; $\varphi$)c^{-s-1}ds,
where r > 0 and the integral contour follows the line {\rm Re}(s) = r upwards. Let us

consider the case that z_{\pm}(s; $\varphi$) are meromorphic functions on \mathbb{C} and their poles exist

on the negative part of the real axis. By deforming the integral contour as r tends to

-\infty in (4.4), the residue formula gives the asymptotic expansions of  K(c) as  c\rightarrow \pm 0.

(Of course, it must be checked that this deformation can be done.) Substituting these

expansions of K(c) into (4.2), we can get an asymptotic expansion of I(t; $\varphi$) as t\rightarrow+\infty.

§4.3. Meromorphic continuation of z_{\pm}(s; $\varphi$)

The main theorem in [7] due to Greenblatt implies that z_{\pm}(s; $\varphi$) can be analytically
continued as holomorphic functions to the region {\rm Re}(s) > -1/h(f) ,

where h(f) is the
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height of f . In the same paper, Greenblatt gives an example in which z_{\pm}(s; $\varphi$) cannot

be meromorphically continued to a wider region {\rm Re}(s) > -1/h(f)- $\epsilon$ for any positive
number  $\epsilon$ . But we show that  z_{\pm}(s; $\varphi$) can be meromorphically continued in a wider

region under the assumption in Theorem 3.1 as follows.

Theorem 4.1. Let f,h,m be the same as in Theorem 3.1. If the support of  $\varphi$ is

contained in a sufficiently small neighborhood of the origin, then the following hold:

(i) There exists a positive number  $\delta$ independent of  $\varphi$ such that the functions  z_{\pm}(s; $\varphi$)
can be analytically continued as meromorphic functions to the region {\rm Re}(s) >

-1/h- $\delta$.

(ii) The poles of the functions z_{\pm}(s; $\varphi$) in the region {\rm Re}(s) > -1/h- $\delta$ belong to finitely

many arithmetic progressions which are precisely obtained by using the theory of
toric varieties based on the geometry of the Newton polyhedron concerning  f.

(iii) When z_{\pm}(s; $\varphi$) have poles at s = -1/h ,
their orders are at most m . Define the

coefficients of the poles of z_{\pm}(s; $\varphi$) at s=-1/h :

C_{\pm}( $\varphi$) :=\displaystyle \lim_{s\rightarrow-1/h}(s+1/h)^{m}Z_{\pm}(s; $\varphi$) .

If  $\varphi$(0,0) is positive (resp. negative) and  $\varphi$ is nonnegative (resp. nonpositive) on

 U ,
then c_{\pm}( $\varphi$) are nonnegative (resp. nonpositive) and, moreover, C_{+}( $\varphi$)+C_{-}( $\varphi$)

is positive (resp. negative). (The explicit formulae for C_{\pm}( $\varphi$) can be given, but we

omit them here (see [24]).

Through the relationship between I(t; $\varphi$) and z_{\pm}(s; $\varphi$) in the previous subsection,
we can obtain Theorem 3.1 by using the above theorem.

§4.4. Geometrical properties of the singular variety V_{f}

When f is a monomial, we can completely see the meromorphic continuation of

z_{\pm}(s; $\varphi$) on \mathbb{C} through an elementary method (see [1] etc.). By observing this typical

case, it is an essential issue to look for an appropriate map such that f can be locally

expressed in a normal crossing form. In the other words, this issue is to construct an

appropriate resolution of singularity of the variety

V_{f}=\{(x_{1}, x_{2}) \in U : f(x_{1}, x_{2})=0\}.

In the real analytic case, Hironaka�s theorem [13] implies an abstract existence of this

resolution. To be more specific, Varchenko [32] applies the theory of toric varieties based

on the geometry of the Newton polyhedron of f and obtains quantitative resolution of

singularities of V_{f} when f is real analytic and satisfies some nondegeneracy condition.
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As a result, he gives a precise result about the meromorphic continuation of z_{\pm}(s; $\varphi$) .

More recently, Phong and Stein [27] give another approach to understand the geometry
of the variety V_{f} . (They use Puiseux series expansion to express V_{f}. )

In the smooth case, there does not always exist resolution of singularity of V_{f} by

using rational transform. But Rychkov [29] improves the result of Phong and Stein

in the smooth case. Applying this Rychkov�s result to Varchenko�s analysis using toric

resolution, we show that (�almost� resolution of singularities of V_{f} can be obtained under

the assumption in Theorem 3.1: if a noncompact edge  $\gamma$ of  $\Gamma$_{+}(f) contains the center

of the boundary of $\Gamma$_{+}(f) ,
then f(x_{1}, x_{2}) admits the  $\gamma$‐part.

§4.5. Outline of a proof of Theorem 4.1

By using the above �almost� resolution of singularity of  V_{f} ,
we split up the integrals

z_{\pm}(s; $\varphi$) to many integrals with suitable cut‐off functions. Roughly speaking, there are

three kinds of integrals, which can be treated as follows.

1. In the integrals of the first type, f can be expressed in a normal crossing form.

These integrals can be meromorphically continued on the whole complex plane \mathbb{C}

and the properties of poles can be precisely seen.

2. In the integrals of the second type, f still has some kind of singularities. These

integrals can be represented in some weighted form. Applying the analysis in [4],
[22], we can see the situation of these meromorphic continuations.

3. In the integrals of the third type, flat functions exist in f . Applying a Van der

Corput‐type lemma, we show these integrals are negligible for our analysis. This

kind of lemma plays useful roles in the analysis in [9], [14], [15], [16], [12],

After careful analysis of each integrals, we can obtain the properties of z_{\pm}(s; $\varphi$) in the

theorem. In this analysis, properties of superadapted coordinates are deeply used.

§5. Applications to the higher‐dimensional case

Let U \subset \mathbb{R}^{n} be an open neighborhood of the origin and f,  $\varphi$ smooth functions

defined on  U and the support of  $\varphi$ is contained in  U . For a smooth function f ,
the

Newton polyhedron $\Gamma$_{+}(f) ,
the  $\gamma$‐part  f_{ $\gamma$} with a compact face  $\gamma$ ,

the Newton distance

 d(f) and its multiplicity m(f) can be naturally generalized in the higher‐dimensional
case (see [20] for their exact definitions . For x= (x1, :::, x_{n}) \in \mathbb{R}^{n} ,

we similarly define

the oscillatory integral:

I(t; $\varphi$)=\displaystyle \int_{\mathbb{R}^{n}}e^{itf(x)} $\varphi$(x)dx t>0,
In the general dimensional case, Varchenko [32] shows the following.
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Theorem 5.1 ([32]). Suppose that

1. f is real analytic on U ;

2. d(f) > 1 ;

3. f is nondegenerate with respect to $\Gamma$_{+}(f) ,
i. e., for every compact face  $\gamma$ of  $\Gamma$_{+}(f) ,

the polynomial f_{ $\gamma$}(x) satisfies

(5.1) \nabla f_{ $\gamma$}= (\displaystyle \frac{\partial f_{ $\gamma$}}{\partial x_{1}}, \ldots, \frac{\partial f_{ $\gamma$}}{\partial x_{n}}) \neq(0, \ldots, 0) on the set (\mathbb{R}\backslash \{0\})^{n}.

If the support of  $\varphi$ is sufficiently small, then

(5.2) \displaystyle \lim_{t\rightarrow\infty}t^{1/d(f)}(\log t)^{-m(f)+1}\cdot I(t; $\varphi$)=C( $\varphi$) ,

where C( $\varphi$) is a nonzero constant when  $\varphi$(0) >0 and  $\varphi$\geq 0 on U.

We remark that the equation (5.2) holds when the phase belongs to a certain class

of smooth functions satisfying the above nondegeneracy condition (5.1) (see [20]).
As an easy application of Theorem 3.1, we can see that the equation (5.2) holds in

the three‐dimensional case when the phase does not always belong to the above class of

smooth functions. (That is to say, this phase does not always satisfy the nondegeneracy
condition (5.1).) Hereafter, let f,  $\varphi$, h, m be the same as in Theorem 3.1 and let g,  $\psi$ be

smooth functions defined on \mathbb{R} satisfying that g(0) =g^{0}(0) =0 and the support of g is

contained in a small open interval of the origin. Let us define

F(x)=F(x_{1}, x_{2}, x3)=f(x_{1}, x_{2})+g(x_{3}) ,

 $\Phi$(x)= $\Phi$(x_{1}, x_{2}, x3)= $\varphi$(x_{1}, x_{2}) $\psi$(x_{3}) .

We consider the integral of the form:

I_{F}(t; $\Phi$)=\displaystyle \int_{\mathbb{R}^{3}}e^{itF(x)} $\Phi$(x)dx t>0.
As far as we know, the following theorem cannot be covered by the earlier investigations
of oscillatory integrals.

Theorem 5.2. Suppose that g(0) =g^{0}(0)=\cdots=g^{(k-1)}(0) =0 and g (k)(0) \neq 0.
If the support of  $\Phi$ is sufficiently small, then

\displaystyle \lim_{t\rightarrow\infty}t^{1/d(F)} ( log t)^{-m(F)+1}\cdot I_{F}(t; $\Phi$)=a(g)\cdot C( $\varphi$)\cdot $\psi$(0) ,

where C( $\varphi$) is as in Theorem 3.1 and a(g) is nonzero constant defined by

a(g)= \left\{\begin{array}{l}
2 $\Gamma$(1/k+1) (\frac{k!}{g^{(k)}(0)})^{1/k}\cdot e^{\frac{ $\pi$}{2k}i} (k is even);\\
2 $\Gamma$(1/k+1) (\frac{k!}{g^{(k)}(0)})^{1/k}\cdot\cos\frac{ $\pi$}{2k} (k is odd).
\end{array}\right.
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Remarks.

1. It is easy to see that 1/d(F)=1/h+1/k and m(F)=m(f) .

2. In [10], Greenblatt deals with more general cases when the phase is real analytic
but his results concern with the estimate.

On the other hand, the following theorem gives a three‐dimensional counterexample
to the equation (5.2) in the general smooth phase case.

Theorem 5.3. Suppose that g(x_{3})=e^{-1/|x_{3}|^{p}} where p is a positive real number.

If the support of  $\Phi$ is sufficiently small, then

\displaystyle \lim_{t\rightarrow\infty}t^{1/h}(\log t)^{-m+1+1/p}\cdot I_{F}(t; $\Phi$)=2C( $\varphi$)\cdot $\psi$(0) ,

where C( $\varphi$) is as in Theorem 3.1.

Proofs of Theorems 5.2 and 5.3. From Fubini�s theorem, we have

(5.3) I_{F}(t; $\Phi$)=\displaystyle \int_{\mathbb{R}^{2}}e^{itf(x_{1},x_{2})} $\varphi$(x_{1}, x_{2})dx_{1}dx_{2}\cdot\int_{\mathbb{R}}e^{itg(x_{3})} $\psi$(x_{3})dx_{3}.
When g satisfies the condition in Theorem 5.2, the computation in [31], Chapter VIII,

implies that

\displaystyle \lim_{t\rightarrow\infty}t^{1/k}\cdot\int_{\mathbb{R}}e^{itg(x)} $\psi$(x)dx=a(g)\cdot $\psi$(0) ,

where a(g) is as in Theorem 5.2. When g(x3) = e^{-1/|x_{3}|^{p}}
,

Lemma 2.1 in [23] implies
that

\displaystyle \lim_{t\rightarrow\infty}(\log t)^{1/p}\cdot\int_{\mathbb{R}}e^{ite^{-1/|x|^{p}}} $\psi$(x)dx=2 $\psi$(0) .

Applying the above limits and Theorem 3.1 to the equation (5.3), we can easily
obtain the assertions in Theorems 5.2 and 5.3. \square 

Remark. The assertions in the theorems can be easily generalized in the higher‐
dimensional case (n \geq 4) . For example, consider F(x) = f(x_{1}, x_{2}) +g(x_{3}, \ldots, x_{n})
where g is real analytic and satisfies the nondegeneracy condition (5.1) in the case of

Theorem 5.2 and consider F(x)=f(x_{1}, x_{2})+e^{-1/|x_{3}|^{p_{3}}} +\cdots+e^{-1/|x_{n}|^{p_{n}}} where p_{j} are

positive real numbers for j=3 , :::,
n in the case of Theorem 5.3.
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