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RIMS Kôkyûroku Bessatsu
B57 (2016), 069−078

Unique solvability of coupling equations
in holomorphic functions

By

Yasunori Okada� Reinhard SCHÄF
 $\tau$

KE
** and Hidetoshi TAHARA***

Abstract

The theory of coupling equations was introduced by the third author [4], as a theory of

a class of transformations between some nonlinear partial differential equations in complex
domains. There, he constructed, to the initial value problem of a coupling equation, a formal

power series solution of a special form in infinitely many variables, satisfying suitable estimates.

It would be desirable, from several aspects, to study the coupling equations and their solvability
as functional equations for �holomorphic functions�.

In this report, we consider coupling equations for partial differential equations of normal

form in the t variable. After preparing and recalling some notions of holomorphy on infinite

dimensional spaces, we announce our recent result on the unique solvability of the initial value

problem of a coupling equation, using the contraction mapping principle.

§1. Introduction

The coupling theory is a theory of a class of transformations between some nonlinear

partial differential equations in complex domains, due to the third author [4]. In this

paper, he introduced the notion of coupling equations for partial differential equations
of normal form in the t variable

\displaystyle \frac{\partial u}{\partial t} =F(t, x, u, \frac{\partial u}{\partial x}) ,

Received May 17, 2015. Revised July 31, 2015. Accepted September 30, 2015.

2010 Mathematics Subject Classification(s): Primary 35\mathrm{A}22 ; Secondary 35\mathrm{A}10, 46\mathrm{E}50.

Key Words: coupling equations.
The first author is supported by JSPS KAKENHI Grant Numbers 22540173, 23540186.

The work of the second author was supported in part by grants of the French National Research

Agency (ref. ANR‐10‐BLAN 0102 and ANR‐II‐BS01‐0009 .

The third author is supported by JSPS KAKENHI Grant Number 22540206.
* Graduate School of Science, Chiba University, Chiba, 263‐8522, Japan.

\mathrm{e}‐mail: okada@math. \mathrm{s} . chiba -\mathrm{u} . ac. jp
**

IRMA, University of Strasbourg, 7 rue René‐Descartes, 67084 Strasbourg Cedex, France.

\mathrm{e}‐mail: schaefke@math. unistra. fr
***

Faculty of Science and Technology, Sophia University, Tokyo, 102‐8554, Japan.
\mathrm{e}‐mail: h‐tahara@sophia.ac.jp

© 2016 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



70 Yasunori Okada, Reinhard SchÄFKE, and Hidetoshi Tahara

with holomorphic functions F in a neighborhood of 0 \in \mathbb{C}_{(t,x,u_{0},u_{1})}^{4} . Moreover, in his

subsequent papers [5] and [6], he introduced the notion of coupling equations for partial
differential equations of Briot‐Bouquet type

t\displaystyle \frac{\partial u}{\partial t} =F(t, x, u, \frac{\partial u}{\partial x}) ,

where F(t, x, u_{0}, u_{1}) is a holomorphic function in a neighborhood of 0 \in \mathbb{C}^{4} satisfying

F(0, x, 0,0)=0 and (\partial F/\partial u_{1})(0, x, 0,0)=0.
Let us recall the notion of coupling equations for partial differential equations of

normal form. Consider two equations

(1.1) \displaystyle \frac{\partial u}{\partial t} =F(t, x, u, \frac{\partial u}{\partial x}) , \frac{\partial w}{\partial t} =G(t, x, w, \frac{\partial w}{\partial x}) ,

with F(t, x, u_{0}, u_{1}) , G(t, x, w_{0}, w_{1}) \in \mathcal{O}_{\mathbb{C}^{4},0} ,
and correspondences between unknown

functions u(t, x) and w(t, x) :

 $\Phi$ :  u\mapsto w, w(t, x)= $\phi$(t, x, u(t, x), \displaystyle \frac{\partial u}{\partial x}(t, x), \frac{\partial^{2}u}{\partial x^{2}}(t, x), . . . ) ,

 $\Psi$ :  w\mapsto u, u(t, x)= $\psi$(t, x, w(t, x), \displaystyle \frac{\partial w}{\partial x}(t, x), \frac{\partial^{2}w}{\partial x^{2}}(t, x), . . . ) ,

given in terms of  $\phi$ (t, x, u_{0}, u1, :::) and  $\psi$ (  t, x, w_{0} , w1, :::). For such  $\Phi$ and  $\Psi$ to become

transformations between solution spaces of two equations in (1.1),  $\phi$ and  $\psi$ should

formally satisfy

(  $\Phi$ ) \displaystyle \frac{\partial $\phi$}{\partial t}+\sum_{m\geq 0}D^{m}[F](t, x, u_{0}, . . . , u_{m+1})\frac{\partial $\phi$}{\partial u_{m}} =G(t, x,  $\phi$, D[ $\phi$]) ,

(  $\Psi$ ) \displaystyle \frac{\partial $\psi$}{\partial t}+\sum_{m\geq 0}D^{m}[G](t, x, w_{0}, . . . , w_{m+1})\frac{\partial $\psi$}{\partial w_{m}} =F(t, x,  $\psi$, D[ $\psi$]) .

Here D is a formal vector field of infinitely many variables given by

D:= \displaystyle \frac{\partial}{\partial x}+\sum_{m\geq 0}u_{m+1\frac{\partial}{\partial u_{m}}} , (or D:= \displaystyle \frac{\partial}{\partial x}+\sum_{m\geq 0}w_{m+1}\frac{\partial}{\partial w_{m}} ).
The equations (  $\Phi$ ) and (  $\Psi$ ) are called the coupling equations, which we want to solve

under the additional initial value conditions:  $\phi$|_{t=0}=u_{0} and  $\psi$|_{t=0}=w_{0}.
In [4],  $\phi$ (t, x, u_{0}, u1, :::) was treated as a formal power series of form

 $\phi$=u_{0}+\displaystyle \sum_{k\geq 1}$\phi$_{k}(x, u_{0:::}, u_{k})t^{k} \in\sum_{k\geq 0}\mathcal{O}_{\mathbb{C}}(\{|x| \leq R\})[[u_{0}, :::, u_{k}]]t^{k},
and the author discussed in the case G \equiv  0 (i.e., coupling \partial u/\partial t = F \leftrightarrow \partial w/\partial t = 0 )
about
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\bullet the unique existence of a formal power series solution  $\phi$ to (  $\Phi$ ) .

\bullet the estimate of  $\phi$ so that  w= $\phi$(t, x, u, \partial u/\partial x, \ldots) makes sense as a transformation

between some classes of solutions.

\bullet similar statements for the solution  $\psi$ to (  $\Psi$ ) .

\bullet (�reversibility� of  $\phi$ and  $\psi$ , (i.e.,  $\Phi$ and  $\Psi$ are inverses each other).

For the purpose of further applicability, it seems better to consider coupling equa‐

tions as functional equations using a functional analytic method. For example, we want

their (

holomorphic solutions� rather than their power series solutions.

In this report, we announce our recent result on the unique solvability of the initial

value problem of a coupling equation (  $\Phi$ ) . We prepare notions of holomorphy and

chain rules on infinite dimensional spaces in the section 2, and give our main result

Theorem 3.3 in the section 3.

In what follows, we use  z=(z_{i})_{i\in \mathbb{N}}=(z_{0}, z1, :::) as independent variables instead

of (u_{0}, u1, :::) and ( w_{0} , w1, :::), and use \partial_{t}, \partial_{x}, \partial_{z_{i}} ,
instead of \partial/\partial t, \partial/\partial x, \partial/\partial z_{i} ,

and

so on. Therefore, F and G in (1.1) shall be considered as holomorphic functions in a

neighborhood of  0\in \mathbb{C}^{4} with variables (t, x, z_{0}, z_{1}) ,
and similarly,  $\phi$,  $\psi$ and  D shall be

written as  $\phi$(t, x, z) ,  $\psi$(t, x, z) and D=\displaystyle \partial_{x}+\sum_{i\in \mathbb{N}}z_{i+1}\partial_{z_{i}}.

§2. Holomorphy, admissibility, and chain rules in \mathbb{C}^{\mathbb{N}}

We regard  $\phi$(t, x, z) = $\phi$(t, x, z_{0}, z1, :::) as a function defined on a subset on \mathbb{C}_{t} \times

\mathbb{C}_{x} \times \mathbb{C}_{z}^{\mathbb{N}} . For the study of such functions, we recall some locally convex spaces X

continuously embedded as \mathbb{C}_{z}^{(\mathbb{N})} \mapsto X\mapsto \mathbb{C}_{z}^{\mathbb{N}} . Here, \mathbb{C}^{\mathbb{N}} and \mathbb{C}^{(\mathbb{N})} denote

\mathbb{C}^{\mathbb{N}}:=\{z=(z_{i})_{i\in \mathbb{N}}=(z_{0}, z1, :::) |z_{i} \in \mathbb{C}\},
\mathbb{C}^{(\mathbb{N})} := { z=(z_{i})_{i\in \mathbb{N}} |z_{i}=0 ,

for all but finitely many i },

endowed with the product topology and the inductive limit topology, respectively. (Both
are locally convex.)

Definition 2.1. A subspace X of \mathbb{C}^{\mathbb{N}} including \mathbb{C}^{(\mathbb{N})} endowed with a locally
convex topology is called a locally convex space between \mathbb{C}^{(\mathbb{N})} and \mathbb{C}^{\mathbb{N}} ,

if both inclusions

\mathbb{C}^{(\mathbb{N})} \mapsto X and X\mapsto \mathbb{C}^{\mathbb{N}} are continuous.

Note that for any subspace X of \mathbb{C}^{\mathbb{N}} including \mathbb{C}^{(\mathbb{N})} endowed with a locally convex

topology, \mathbb{C}^{(\mathbb{N})} \mapsto X is always continuous, while X\mapsto \mathbb{C}^{\mathbb{N}} is not necessarily continuous.

As examples, we \mathrm{i}ntroduce \ell^{1} and \ell\infty spaces with weights. Asequence  c=(c_{i})_{i\in \mathbb{N}}
of positive numbers is called a weight sequence.
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Example 2.2 (weighted \ell^{1} and \ell\infty spaces). The \ell^{1} space and the \ell\infty space with

weight  c is defined by

\displaystyle \ell^{1}(c) :=\{z=(z_{i})_{i\in \mathbb{N}}\in \mathbb{C}^{\mathbb{N}} | \Vert z\Vert_{\ell^{1}(c)} :=\sum_{i\in \mathbb{N}}c_{i}|z_{i}| <+\infty\},
\displaystyle \ell^{\infty}(c) :=\{z=(z_{i})_{i\in \mathbb{N}}\in \mathbb{C}^{\mathbb{N}} | \Vert z\Vert_{\ell^{1}(c)} :=\sup_{i\in \mathbb{N}}c_{i}|z_{i}| <+\infty\}.

They are Banach spaces, and locally convex spaces between \mathbb{C}^{(\mathbb{N})} and \mathbb{C}^{\mathbb{N}}.

We consider \ell^{1}( $\sigma$(r)) with the weight sequences  $\sigma$(r) := (r^{i}/i!)_{i\in \mathbb{N}} for r > 0 ,
and

take inductive limits with respect to r.

Example 2.3. We define the spaces X[ $\eta$] for  0\leq $\eta$<+\infty by

 X[ $\eta$] :=-\mathrm{m}\ell^{1}( $\sigma$(r))\vec{r> $\eta$}, (0\leq $\eta$<+\infty) ,

which are also locally convex spaces between \mathbb{C}^{(\mathbb{N})} and \mathbb{C}^{\mathbb{N}} . Under the correspondence

(z_{i})_{i\in \mathbb{N}}\displaystyle \mapsto\sum_{i\in \mathbb{N}}z_{i}x^{i}/i! , they are isomorphic to the spaces of convergent power series as

follows.

 X[ $\eta$] \rightarrow\sim \mathcal{O}_{\mathbb{C}}(\{|x| \leq $\eta$

We may replace \ell^{1}( $\sigma$(r)) in the definition by \ell\infty( $\sigma$(r)) ,
and we can also take a countable

inductive system consisting of Banach spaces and compact maps, which is cofinal to the

one given above. (Consider, for example, -\mathrm{m}\ell^{1}( $\sigma$( $\eta$+1/k)). ) Therefore, X[ $\eta$] are DFS

spaces. Refer to Komatsu [2] for DFS spaces and their properties.

Definition 2.4 (locally admissible functions). Let X be a locally convex space

between \mathbb{C}^{(\mathbb{N})} and \mathbb{C}^{\mathbb{N}}, W an open subset of X
,

and f\mathrm{a} \mathbb{C}‐valued function on W.

(1) f is said to be admissible on W ,
if f is a uniform limit on W of some sequence

of holomorphic functions of finitely many variables, i.e., there exist holomorphic
functions f_{k} (z_{0}, z1, :::, z_{n_{k}-1}) on a suitable domains in \mathbb{C}^{n_{k}} with some n_{k} \in \mathbb{N} for

k=0 , 1, 2, :::, such that

f(z) =\displaystyle \lim_{k\rightarrow\infty}f_{k}(z_{0}, z1, :::, z_{n_{k}-1}) , uniformly on W.

(2) f is said to be locally admissible on W ,
if for any point \dot{z} \in  W ,

there exists a

neighborhood U\subset W of \dot{z} such that f is admissible on U.

Note that a locally admissible function f(z) is separately holomorphic, that is, for

any i \in \mathbb{N} , the univariate function z_{i} \mapsto  f (: ::, zi, :::) is holomorphic when the other

variables (z_{j})_{j\neq i} are fixed.
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The notion of (local) admissibility is very close to the usual holomorphy in finitely

many variables, and we can expect that many formulas in calculus and in complex

analysis will be extended. For example, a composition of an admissible function and

holomorphic functions is holomorphic provided the substitution is well‐defined.

Lemma 2.5 (compositions . Let X and W be as above. Consider an admissible

function f : W \rightarrow \mathbb{C} , and holomorphic functions u_{i}(t) (i \in \mathbb{N}) on an open set  $\Omega$ \subset \mathbb{C}

such that u(t) := (u_{i}(t))_{i} \in W for any  t\in $\Omega$ . Then,

 g(t) :=f(u(t))=f(u_{0}(t), u_{1}(t), u_{2}(t), \ldots)

is holomorphic on  $\Omega$.

On the other hand, admissibility is not stable under partial differentiations, and

it seems not straightforward to define the notion of (local) admissibility for \mathbb{C}^{\mathbb{N}}‐valued

maps so that it is stable under compositions.
We recall the notion of holomorphy on locally convex spaces. See, for example,

Dineen [1].

Definition 2.6 (Gâteaux holomorphy and holomorphy). Let X and Y be l0‐

cally convex spaces, and W\subset X an open set.

(1) A map f : W\rightarrow Y is said to be Gâteaux holomorphic, or G‐holomorphic for short, if

for any x_{0} \in W, x_{1} \in X, g\in Y^{0} ,
a function t\mapsto g(f(x_{0}+x_{1}t)) \in \mathbb{C} is holomorphic

in a neighborhood of t=0.

(2) A map f : W\rightarrow Y is said to be holomorphic, if it is \mathrm{G}‐holomorphic and continuous.

We denote by \mathcal{O}_{X}(W) the space of \mathbb{C}‐valued holomorphic functions on W.

Holomorphy is stable under compositions, while Gâteaux holomorphy is not.

In general, local admissibility implies holomorphy. On the other hand, holomorphy
does not always imply local admissibility. In fact, there exist holomorphic functions on

\ell^{1} ( c) and on \ell\infty(c) ,
which are not locally admissible.

In X[ $\eta$] , however, both notions are equivalent.

Theorem 2.7. For a function defined on an open subset of X[ $\eta$] , holomorphy

implies local admissibility.

By virtue of this theorem, when we work on X[ $\eta$] ,
we can enjoy the merits of local

admissibility and those of holomorphy simultaneously.

Definition 2.8. We define a formal vector field D of infinitely many variables

(x, z)=(x, z_{0}, z1, :::) by

(2.1) D :=\displaystyle \partial_{x}+\sum_{i\in \mathbb{N}}z_{i+1}\partial_{z_{i}}.
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For a holomorphic function f(x, z) on U \subset \mathbb{C}_{x} \times  X with \mathbb{C}_{z}^{(\mathbb{N})} \subset  X \subset \mathbb{C}_{z}^{\mathbb{N}} ,
we

consider a formal sum

D[f](x, z)=\displaystyle \partial_{x}f(x, z)+\sum_{i\in \mathbb{N}}z_{i+1}\partial_{z_{i}}f(x, z) .

If it converges, we regard D[f] as a function on U.

Consider a holomorphic function f(x, z) of finitely many variables, i.e., a holomor‐

phic function f (x, z0, :::, z_{k}) defined on an open set U \subset \mathbb{C}_{x} \times \mathbb{C}^{k+1} for some k.
(z_{0},\ldots,z_{k})

Then, D[f] = (\displaystyle \partial_{x}+\sum_{i=0}^{k}z_{i+1}\partial_{z_{i}})f defines a holomorphic function of (x, z0, :::, z_{k+1})
on U \times \mathbb{C}_{z_{k+1}} \subset \mathbb{C}_{x} \times \mathbb{C}_{(z_{0},\ldots,z_{k+1})}^{k+2} . Consider also a holomorphic function u(x) on an

open set  $\Omega$\subset \mathbb{C}_{x} , satisfying

(x, u(x), \partial_{x}u(x), \ldots, \partial_{x}^{k}u(x)) \in U for x\in $\Omega$.

Then, the composition g(x) :=f(x, u(x), \partial_{x}u(x), \ldots, \partial_{x}^{k}u(x)) is holomorphic on  $\Omega$
,

and

satisfies

\partial_{x}g(x)=D[f](x, u(x), \partial_{x}u(x), \ldots, \partial_{x}^{k+1}u(x)) ,
for x\in $\Omega$,

and moreover,

\partial_{x}^{m}g(x)=D^{m}[f](x, u(x), \partial_{x}u(x), \ldots, \partial_{x}^{k+m}u(x)) ,
for m\in \mathbb{N}, x\in $\Omega$.

On \mathbb{C}_{x} \times X[ $\eta$] ,
the well‐definedness of D[f] and the chain rule for the composition

also hold.

Theorem 2.9 (chain rule on \mathbb{C}_{x} \times X[ $\eta$] , I). Let f(x, z) be a holomorphic func‐
tion on an open set U\subset \mathbb{C}_{x} \times X[ $\eta$].

(1) D[f](x, z) converges absolutely and defines a holomorphic function on U.

(2) Let u(x) be a holomorphic function on an open set  $\Omega$\subset \mathbb{C}_{x} . Assume that

(x, u(x), \partial_{x}u(x), \partial_{x}^{2}u(x), \ldots) \in U, for x\in $\Omega$.

Then, the composition

g(x) :=f(x, u(x), \partial_{x}u(x), \partial_{x}^{2}u(x), \ldots)

is holomorphic on  $\Omega$ and satisfies

\partial_{x}^{m}g(x)=D^{m}[f](x, u(x), \partial_{x}u(x), \partial_{x}^{2}u(x), \ldots) , for m\in \mathbb{N}, x\in $\Omega$.

Theorem 2.10 (chain rule on \mathbb{C}_{x} \times X[ $\eta$] , II). Let f(x, z) be a holomorphic func‐
tion on an open set U \subset \mathbb{C}_{x} \times  X[ $\eta$] ,

and  $\phi$(x, z) a holomorphic function on V \subset

\mathbb{C}_{x} \times X[$\eta$^{0}] . Assume that

\vec{ $\phi$}(x, z) :=(x,  $\phi$(x, z), D[ $\phi$](x, z), D^{2}[ $\phi$](x, z), \ldots) \in U, for any (x, z) \in V,



UniQue solvability of coupling eQuations in holomorphic functions 75

and that \vec{ $\phi$} is locally bounded as a map from V to \mathbb{C}_{x} \times X[ $\eta$] . Then, the composition

g(x, z) :=f\circ\vec{ $\phi$}(x, z)=f(x,  $\phi$(x, z), D[ $\phi$](x, z), D^{2}[ $\phi$](x, z), \ldots)
is holomorphic on V ,

and satisfies

D^{m}[g](x, z)=D^{m}[f]\circ\vec{ $\phi$}(x, z) , for m\in \mathbb{N}, (x, z) \in V.

§3. Unique solvability of coupling equation

In this section, we study the unique solvability of the initial value problem of the

coupling equation

(3.1) \left\{\begin{array}{l}
\partial_{t} $\phi$+\sum_{m\geq 0}D^{m}[F] (t, x, z_{0}, z\mathrm{l}, . . . , z_{m+1}) \partial_{z_{m}} $\phi$=G(t, x,  $\phi$, D[ $\phi$]) ,\\
 $\phi$(0, x, z)=z_{0},
\end{array}\right.
where D=\displaystyle \partial_{x}+\sum_{i\in \mathbb{N}}z_{i+1}\partial_{z_{i}} as in (2.1). This initial value problem is often written as

\left\{\begin{array}{l}
\partial_{t} $\phi$+\sum_{m\geq 0}D^{m}[F]\cdot\partial_{z_{m}} $\phi$=G\circ\vec{ $\phi$},\\
 $\phi$|_{t=0}=z_{0},
\end{array}\right.
for short, under the notation

\vec{ $\phi$}(t, x, z) :=(t, x, (D^{i}[ $\phi$](t, x, z))_{i\in \mathbb{N}})
=(t, x,  $\phi$(t, x, z), D[ $\phi$](t, x, z), D^{2}[ $\phi$](t, x, z), \ldots) .

Consider holomorphic functions F and G in a neighborhood of

\hat{K}_{0}^{\mathbb{C}} :=\{(t, x, z_{0}, z_{1}) \in \mathbb{C}^{4} | |t| \leq r_{0}, |x| \leq R_{0}, |z_{0}| \leq$\rho$_{0}, |z_{1}| \leq$\rho$_{0}\}.

We fix positive constants r and  $\rho$ ,
and a 1‐Lipschitz continuous function  d(x) on \mathbb{C}_{x},

satisfying

(3.2) 0<r<r_{0}, 0< $\rho$<$\rho$_{0}/2,

(3.3) 0<d_{\max}:=\displaystyle \sup_{x\in \mathbb{C}}d(x) \leq 1, d(x) >0\Rightarrow |x| <R_{0}.
These requirements assert

\emptyset\neq\{(t, x, z_{0}, z_{1}) | |t| <r, d(x) >0, |z_{0}| \leq 2 $\rho$, |z_{1}| \leq 2 $\rho$\}\subset\hat{K}_{0}^{\mathbb{C}}.

We also define functions $\xi$_{j}(z, y) (j\in \mathbb{N}) and  $\mu$(z,  $\eta$) by

(3.4) $\xi$_{j}(z, y) :=\displaystyle \sum_{i\in \mathbb{N}}z_{j+i\frac{y^{i}}{i!}},
(3.5)  $\mu$(z,  $\eta$) :=$\rho$^{-1}\{$\xi$_{0}(|z|,  $\eta$)+$\xi$_{1}(|z|,  $\eta$)+$\xi$_{2}(|z|,  $\eta$

for  $\eta$\geq 0, y\in \mathbb{C}, z\in \mathbb{C}^{\mathbb{N}} . We regard  $\mu$(z,  $\eta$) =+\infty when $\xi$_{2}(|z|,  $\eta$) is divergent.
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Definition 3.1 (weight functions and domains). We define the weight function

$\omega$_{d,c, $\epsilon$}(t, x, z) for  c\geq  1,  $\epsilon$\geq\text{∪}, t\geq 0, x\in \mathbb{C}, z\in \mathbb{C}^{\mathbb{N}} ,
and the domain $\Omega$_{d,c,+0}^{\mathbb{C}} by

$\omega$_{d,c, $\epsilon$}(t, x, z) :=d(x)-(ct/r+ $\epsilon$)- $\mu$(z, ct/r+ $\epsilon$) ,

$\Omega$_{d,c,+0}^{\mathbb{C}} :=\displaystyle \bigcup_{ $\epsilon$>0}\{(t, x, z) \in \mathbb{C}_{t} \times \mathbb{C}_{x} \times \mathbb{C}_{z}^{\mathbb{N}} |$\omega$_{d,c, $\epsilon$}(|t|, x, z) >0\}.
The set $\Omega$_{d,c,+0}^{\mathbb{C}} can∪e covered as

$\Omega$_{d,c,+0}^{\mathbb{C}}=\displaystyle \bigcup_{s>0}U_{s}, U_{s} :=$\Omega$_{d,c,+0}^{\mathbb{C}}\cap\{|t| <s\}\times \mathbb{C}_{x} \times X[cs/r]
and each U_{s} is an open subset in \mathbb{C}_{t}\times \mathbb{C}_{x}\times X[cs/r] . Using this covering, we can introduce

a notion of holomorphy for a function f on \mathscr{Z}_{d,c}^{\mathbb{C}} ,
as the holomorphy of f|_{U_{\mathrm{s}}} for any s.

Definition 3.2 (space \mathscr{Z}_{d,c}^{\mathbb{C}} ). We introduce the space \mathscr{Z}_{d,c}^{\mathbb{C}} of all holomorphic
functions  $\phi$(t, x, z) on $\Omega$_{d,c,+0}^{\mathbb{C}} satisfying the following inequalities with a suitable con‐

stant C :

(3.6a) | $\phi$(t, x, z)| \leq C $\rho$,

(3.6b) |D[ $\phi$](t, x, z)| \leq C $\rho$,

(3.6c) |D^{2}[ $\phi$](t, x, z)| \displaystyle \leq \frac{C $\rho$}{$\omega$_{d,c,0}(|t|,x,z)^{1/2}},
(3.6d) |\displaystyle \partial_{z_{m}} $\phi$(t, x, z)| \leq \frac{C}{$\omega$_{d,c,0}(|t|,x,z)^{1/2}} \frac{(ct/r)^{m}}{m!}, m\in \mathbb{N},
(3.6e) |\displaystyle \partial_{z_{m}}D[ $\phi$](t, x, z)| \leq \frac{C}{$\omega$_{d,c,0}(|t|,x,z)^{1/2}}\sum_{i=0}^{\min\{m,1\}}\frac{(ct/r)^{m-i}}{(m-i)!}, m\in \mathbb{N},
for any (t, x, z) \in$\Omega$_{d,c,+0}^{\mathbb{C}}.

For a holomorphic function  $\phi$ on  $\Omega$_{d,c,+0}^{\mathbb{C}} ,
we denote by \Vert $\phi$\Vert_{d,c,1} the minimum con‐

stant C\geq 0 such that the inequality (3.6a) holds. Similarly, we also denote by \Vert $\phi$\Vert_{d,c,2},
\Vert $\phi$\Vert_{d,c,3}, \Vert $\phi$\Vert_{d,c,4} ,

and \Vert $\phi$\Vert_{d,c,5} ,
the minimum constants C\geq 0 corresponding to (3.6b),

(3.6c), (3.6d) and (3.6e), respectively.

Note that we use Nagumo type estimates of derivatives for functions in \mathscr{Z}_{d,c}^{\mathbb{C}} ,
which

involve the factor $\omega$_{d,c,0}(|t|, x, z)^{-1/2} in (3.6c), (3.6d) and (3.6e). Refer for such estimates

to Nagumo [3] and Walter [7].
The space \mathscr{Z}_{d,c}^{\mathbb{C}} becomes a Banach space with the norm

\displaystyle \Vert $\phi$\Vert_{d,c,\mathrm{A}}:=\max\{\Vert $\phi$\Vert_{d,c,1}, \Vert $\phi$\Vert_{d,c,2}, \Vert $\phi$\Vert_{d,c,3}, \Vert $\phi$\Vert_{d,c,4}, \Vert $\phi$\Vert_{d,c,5}\}.

We also define the semi‐norms

\displaystyle \Vert $\phi$\Vert_{d,c,1-3} :=\max\{\Vert $\phi$\Vert_{d,c,1}, \Vert $\phi$\Vert_{d,c,2}, \Vert $\phi$\Vert_{d,c,3}\},

\displaystyle \Vert $\phi$\Vert_{d,c,45} :=\max\{\Vert $\phi$\Vert_{d,c,4}, \Vert $\phi$\Vert_{d,c,5}\}.



UniQue solvability of coupling eQuations in holomorphic functions 77

and a complete metric space

\mathscr{Z}_{d,c}^{\mathbb{C}}( $\alpha$,  $\beta$) :=\{ $\phi$\in \mathscr{Z}_{d,c}^{\mathbb{C}} | \Vert $\phi$\Vert_{d,c,1-3}\leq $\alpha$, \Vert $\phi$\Vert_{d,c,45} \leq $\beta$\},
for positive constants  $\alpha$ and  $\beta$.

We shall show that the initial value problem (3.1) has a unique solution in \mathscr{Z}_{d,c}^{\mathbb{C}}( $\alpha$,  $\beta$)
for a suitable choice of  $\alpha$ and  $\beta$ . In fact, for  $\phi$\in \mathscr{Z}_{d,c}^{\mathbb{C}}( $\alpha$,  $\beta$) with suitable  $\alpha$ and  $\beta$ , (3.1)
is equivalent to the integral equation

 $\phi$=T[ $\phi$] :=z_{0}-R_{F}[ $\phi$]+S_{G}[ $\phi$],

where

R_{F}[ $\phi$] :=\displaystyle \int_{0}^{t}\sum_{m\geq 0}D^{m}[F]\cdot\partial_{z_{m}} $\phi$|_{t= $\tau$}d $\tau$,
S_{G}[ $\phi$] :=\displaystyle \int_{0}^{t}G(t, x,  $\phi$, D[ $\phi$])|_{t= $\tau$}d $\tau$,

and we have the following result.

Theorem 3.3. Let r,  $\rho$, \hat{K}_{0}^{\mathbb{C}}, d(x) , d_{\max}, F, G be as above. Then there exists a

constant A depending on F, G, \hat{K}_{0}^{\mathbb{C}} , and  $\rho$ , satisfying the following property: We fix  $\alpha$

and  $\beta$ arbitrarily as

 d_{\max}< $\alpha$\leq 2,  $\beta$\geq 2,

and take c \geq  1 sufficiently large depending also on  $\alpha$ and  $\beta$ . Then,  T becomes a

contraction map from \mathscr{Z}_{d,c}^{\mathbb{C}}( $\alpha$,  $\beta$) to itself, with respect to the distance function ( $\phi,\ \phi$^{0})\mapsto
\Vert $\phi-\phi$^{0}\Vert_{d,c,\mathrm{A}} . As a conclusion, the initial value problem (3.1) has a unique solution in

\mathscr{Z}_{d,c}^{\mathbb{C}}( $\alpha$,  $\beta$) .

Let us give a sketch of the proof. We can show the estimates

\Vert z_{0}\Vert_{d,c,1-3}\leq d_{\max}, \Vert z_{0}\Vert_{d,c,45} \leq 1,

with arbitrary  c\geq  1
,

which in particular imply z_{0} \in \mathscr{Z}_{d,c}^{\mathbb{C}}( $\alpha$,  $\beta$) with  $\alpha$ and  $\beta$ as in the

theorem. Then, we use the three propositions below for  R_{F} and S_{G} ,
and by choosing c

large enough ,
we can show that T maps \mathscr{Z}_{d,c}^{\mathbb{C}}( $\alpha$,  $\beta$) into itself and that T is a contraction.

Note that the constants L_{j}, M_{j}, N_{j} below are independent of c.

Proposition 3.4. R_{F} is well‐defined as a linear operator on \mathscr{Z}_{d,c}^{\mathbb{C}} , and there

exist constants L_{0} and L_{1} such that

\displaystyle \Vert R_{F}[ $\phi$]\Vert_{d,c,1-3}\leq \frac{r}{c}\cdot L_{0}\max\{\Vert $\phi$\Vert_{d,c,1-3}, \Vert $\phi$\Vert_{d,c,45}\},
\displaystyle \Vert R_{F}[ $\phi$]\Vert_{d,c,45} \leq \frac{r}{c}\cdot L_{1}\Vert $\phi$\Vert_{d,c,45},

for  $\phi$\in \mathscr{Z}_{d,c}^{\mathbb{C}}.
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Proposition 3.5. Let us fix  $\alpha$ as  0< $\alpha$\leq 2 and take an arbitrary  $\beta$ . Then,  S_{G}
is well‐defined as a map from \mathscr{Z}_{d,c}^{\mathbb{C}}( $\alpha$,  $\beta$) to \mathscr{Z}_{d,c}^{\mathbb{C}} , and there exists constants M_{0} and M_{1}

such that

\displaystyle \Vert S_{G}[ $\phi$]\Vert_{d,c,1-3}\leq \frac{r}{c}\cdot M_{0}
\displaystyle \Vert S_{G}[ $\phi$]\Vert_{d,c,45} \leq \frac{r}{c}\cdot M_{1}\Vert $\phi$\Vert_{d,c,45},

for  $\phi$\in \mathscr{Z}_{d,c}^{\mathbb{C}}( $\alpha$,  $\beta$) .

Proposition 3.6. Let us fix  $\alpha$ as  0 <  $\alpha$ \leq  2 and take an arbitrary  $\beta$ . Then,
there exist  N_{0}, N_{1} and N_{2} such that

\displaystyle \Vert S_{G}[ $\phi$]-S_{G}[$\phi$^{0}]\Vert_{d,c,1-3} \leq \frac{r}{c}\cdot N_{0}\Vert $\phi-\phi$^{0}\Vert_{d,c,1-3},
\displaystyle \Vert S_{G}[ $\phi$]-S_{G}[$\phi$^{0}]\Vert_{d,c,45} \leq \frac{r}{c} (N_{1} $\beta$\Vert $\phi-\phi$^{0}\Vert_{d,c,1-3}+N_{2}\Vert $\phi-\phi$^{0}\Vert_{d,c,45}) ,

for  $\phi$, $\phi$^{0}\in \mathscr{Z}_{d,c}^{\mathbb{C}}( $\alpha$,  $\beta$) .

References

[1] Dineen, S. Complex analysis on infinite‐dimensional spaces. Springer Monographs in

Mathematics. Springer‐Verlag London Ltd., London, 1999.

[2] Komatsu, H. Projective and injective limits of weakly compact sequences of locally convex

spaces. J. Math. Soc. Japan 19 (1967), 366‐383.

[3] Nagumo, M. äber das Anfangswertproblem partieller Differentialgleichungen. Japan. J.

Math. 18 (1941), 41‐47.

[4] Tahara, H. Coupling of two partial differential equations and its application. Publ. Res.

Inst. Math. Sci. 43, 3 (2007), 535‐583.

[5] Tahara, H. Coupling of two partial differential equations and its application. II. The case

of Briot‐Bouquet type PDEs. Publ. Res. Inst. Math. Sci. 45, 2 (2009), 393‐449.

[6] Tahara, H. On a reduction of nonlinear partial differential equations of Briot‐Bouquet
type. Tokyo J. Math. 36, 2 (2013), 539‐570.

[7] Walter, W. An elementary proof of the Cauchy‐Kowalevsky theorem. Amer. Math.

Monthly 92, 2 (1985), 115‐126.


