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Singular controls for port‐Hamiltonian systems

By

Asahi Tsuchida *

Abstract

The port‐Hamiltonian system is a generalized Hamiltonian system and is regarded as an

especial input‐output control system. We see the port‐Hamiltonian systems from the viewpoint
of geometric control theory. Controllability and observability are basic concepts in control

theory and important for system design. Singular controls play an important role in a control

system, especially in the sense of optimal control problem. We see the following properties are

equivalent for linear port‐Hamiltonian systems: controllability, observability and nonexistence

of singular control.

§1. Introduction

Let (M,  $\omega$) be a symplectic manifold, that is,  $\omega$ is a nondegenerate closed differential

two‐form on  M . We may define a Hamiltonian vector field X_{f} associated to a function

f : M\rightarrow \mathbb{R} by the equation  $\omega$(X_{f}, \cdot)=-df.
The port‐Hamiltonian system with function f on a symplectic manifold M is given

by a family of differential equations with a parameter u\in \mathbb{R}^{r} and functions y_{1},
\cdots

,  y_{r} ;

(1.1) \left\{\begin{array}{l}
\dot{x}=X_{f}(x)+\sum_{i=1}^{r}u_{i}g_{i}(x) ,\\
y_{j} =g_{j}(x)f, (1 \leq j \leq r)
\end{array}\right.
where x is a point of M and g_{1},

\cdots

,  g_{r} are vector fields on M . We call the parameter u

and the functions y_{j} the control parameter and outputs respectively. The origin of this

notion is the bond graph which is a method of design in engineering science [6].
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The concept of the port‐Hamiltonian system is regarded as a generalized Hamil‐

tonian system. The meaning of \backslash \backslash 

generalized� is divided into two meanings: the one is

that the underlying structure which defining Hamiltonian vector fields is generalized,
the other is that differential equations defined by using Hamiltonian vector fields are

generalized.
On the former, we may give a definition of Hamiltonian vector fields by using

just a bi‐derivation. The way to define a Hamiltonian vector field is the same as the

way by using a Poisson tensor, formally (See Definition 3.1). We remark that the

formulation of a Hamiltonian system is given by a Poisson tensor usually. We may

consider, moreover, the notion of Dirac structures which is a generalization of both

symplectic structures and Poisson structures. The port‐Hamiltonian system can be

treated as an implicit Hamiltonian system on Dirac structures [9]. A Dirac structure on

a manifold M is a subbundle L of the bundle TM\oplus T^{*}M which is maximally isotropic
under the pairing \langle, \rangle_{+} ,

where \langle(X,  $\eta$) , (Y,  $\mu$)\rangle_{+} = \displaystyle \frac{1}{2}( $\eta$(Y)+ $\mu$(X)) . If L satisfies a certain

integrable condition, we call L an integrable Dirac structure. For example, integrable
Dirac structure induced by a symplectic structure  $\omega$ is a graph of an isotropic map

 $\omega$ ♯ :  TM \rightarrow  T^{*}M, X \mapsto  $\iota$ x $\omega$ ,
where  $\iota$ x $\omega$ is interior product; for more details, see [3].

In this paper, we concentrate on the port‐Hamiltonian systems which are defined on

pseudo‐Poisson manifolds (see Definition3.1).
On the latter, we may find out from the first equation of (1.1) that the Hamiltonian

vector field  X_{f} is affected by a curve u(t) ,
which is called a control, along the frame

fields g_{1},
\cdots

,  g_{r} . By considering the second equation of (1.1) as the result of the effect

of a control u(t) on the system, the port‐Hamiltonian system is regarded as one of

input‐output systems (see Definition 2.8).

Remark. If the vector fields g_{1},
\cdots

,  g_{r} are equal to zero, then the system (1.1) is

just a Hamiltonian system since each outputs y_{j} will be zero.

In control theory, the concept of controllability and observability are basic and

important. The system (1.1) is said to be controllable if a point on M reach to any

point along a curve x(t) defined by the first equation of (1.1) with a suitable control u(t) .

The system (1.1) is said to be observable if we can recognize the solution x(t) determined

by a control u(t) and an initial condition from the outputs y_{j} and the control u(t) . For

exact definitions, see Definitions 2.5 and Definition 2.9.

For a control system, we may consider singular controls which are defined by singu‐
lar points of an endpoint map (see Definition 2.3). Singular controls are interesting and

important objects, particularly in the optimal control problem. From the standpoint
of singularity theory, we consider a characterization of port‐Hamiltonian systems by

singular controls.

In Section 2, we obtain Proposition 2.7 which connects controllability to existence of
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singular controls on a linear input‐output system. In Section 3, we obtain Theorem 3.4

which relating controllability, observability and existence of singular controls each other

on a linear port‐Hamiltonian system. This is very simple observation, but interesting
because it relates the three important concepts together. In Section 4, we see some

physical examples of linear‐port‐Hamiltonian systems and a nonlinear port‐Hamiltonian

system.

§2. Control systems and singular controls

Let M be an n‐dimensional smooth manifold, \{E, M,  $\alpha$\} a fibre bundle with r‐

dimensional fibre on M, \{TM, M, $\pi$_{TM}\} a tangent bundle on M.

Definition 2.1. A control system on M is a pair ( $\alpha$, F) of the fibration  $\alpha$ :

 E\rightarrow M and a smooth map F:E\rightarrow TM such that  $\alpha$=$\pi$_{TM}\circ F.

Definition 2.2. For T > 0 ,
we say a map c : [0, T] \rightarrow  E is an admissible

control if the c is an L^{\infty} measurable bounded map such that x(t) := $\alpha$\circ c(t) satisfies

Lipschitz condition and the differential equation \dot{x}(t) =F(c(t)) .

We denote by \mathcal{U}_{x_{0},T} the set of admissible controls for which the initial value of the

differential equation \dot{x}(t) =F(c(t)) is x_{0} . The \mathcal{U}_{x_{0},T} is an open submanifold of Banach

manifold L^{\infty}([0, T], E) .

Definition 2.3. We define the endpoint map End_{x_{0}} : \mathcal{U}_{x_{0},T} \rightarrow  M which as‐

signs an admissible control c to the endpoint of the solution x(T) . A singular point of

the endpoint map is called a singular control, namely a singular control c(t) is a point
on which the differential map d_{c}(End_{x_{0}}) : T_{c}(\mathcal{U}_{x_{0},T})\rightarrow T_{x(T)}M is not surjective.

When the local trivialization $\alpha$^{-1}(V)\cong V\times U (where V\subset M ) of the fibre \{E, M,  $\alpha$\}
is given, the map F : E\rightarrow TM is parametrized by (x, u) \in  V\times  U as F(x, u) =f_{u}(x) .

We may regard f_{u}(x) as a family of vector fields with the parameter u which is called

a control parameter. The control system is called an affine control system if a

parametrization f_{u}(x) of the map F:E\rightarrow TM is written by f_{u}(x) =g_{0}(x)+\displaystyle \sum_{i=1}^{r}u_{i}g_{i}(x)
with vector fields g_{0},

\cdots

 g_{r} on M
, namely the control system is expressed by

\displaystyle \dot{x}=g_{0}(x)+\sum_{i=1}^{r}u_{i}g_{i}(x) .

The vector fields g_{1},
\cdots

,  g_{r} are called input vector fields.

Define a function H : T^{*}V \times  U \rightarrow \mathbb{R} for a parametrized control system by

H(x,p, u) = \langle p, g_{0}(x) +\displaystyle \sum_{i=1}^{r}u_{i}g_{i}(x)\rangle ,
where \langle, \rangle is a natural pairing of a covector
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and a vector. Singular controls of a parametrized control system are characterized by
the constrained Hamiltonian system as follows.

Proposition 2.4 ([1]). An admissible control  c(t) = (x(t), u(t)) is a singular
control if and only if there exists p(t) such that the curve (x(t), p(t), u(t)) on T^{*}V\backslash \{0\}\times U
satisfies followings

\left\{\begin{array}{l}
(t)= \frac{\partial H}{\partial p}(x(t) ,p(t) , u(t)) ,\\
p(t)=-\frac{\partial H}{\partial x}(x(t) ,p(t) , u(t)) ,\\
\frac{\partial H}{\partial u_{i}} (x(t) ,p(t) , u(t))= \langle p, g_{i}(x)\rangle=0 (1\leq i\leq r) .
\end{array}\right.
We find that singular controls are related to the optimal control problem because

Proposition 2.4 comes from Pontryagin maximum principle. In detail see [1].
We now introduce the important notions in control theory; controllability and

observability.

Definition 2.5. A control system is controllable if for any points x_{0} and x_{1}

of M
,

there exists T>0 and an admissible control c\in \mathcal{U}_{x_{0},T} such that End_{x_{0}}(c) =x_{1}.

We say a control system ( $\alpha$, F) is linear if M =\mathbb{R}^{n} and a parametrization f_{u}(x)
of F is written by f_{u}(x) =Ax+Bu with matrices A \in  M_{n\times n}(\mathbb{R}) and B \in  M_{n\times r}(\mathbb{R}) .

Let (A, B) denotes this linear control system x = Ax+Bu . There is a well known

condition which is equivalent to controllability on linear control systems. We define an

n\times nr matrix (B | AB | . . . |A^{n-1}B) called a controllability matrix for linear control

system (A, B) to explain the condition.

Proposition 2.6 ([7]). On a linear control system (A, B) ,
the following state‐

ments are equivalent.

The linear system (A, B) is controllable.

The controllability matrix (B | AB | . . . |A^{n-1}B) has rank n.

We shall state the following proposition which relates the controllability to existence

of singular controls on linear control systems.

Proposition 2.7. The following statements are equivalent on a linear control

system (A, B) .

i) . The linear system (A, B) is controllable.

ii). There are no singular controls for the linear system (A, B) .
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Proof. i) \Rightarrow ii) : Assume that there exists a singular control u^{*}(t) . We have

the constrained Hamiltonian system on T^{*}M for the control u^{*}(t) and the Hamiltonian

\hat{H}(x,p, u) defined by

\hat{H}(x,p, u)=\langle p, Ax+Bu\rangle_{:}
By Proposition 2.4, the constrained Hamiltonian system

\left\{\begin{array}{l}
\dot{x}= \frac{\partial\hat{H}}{\partial p} =Ax+Bu^{*},\\
p=-\frac{\partial\hat{H}}{\partial x} ={}^{t}Ap,\\
{}^{t}Bp=0,
\end{array}\right.
has a solution with p\neq 0 . Since B is a constant matrix, it follows from the constraint

{}^{t}Bp=0 that the equalities

{}^{t}B\dot{p}=0, {}^{t}Bp=0, {}^{t}Bp^{(3)} =0, \cdots , {}^{t}Bp^{(n-1)} =0,

where p^{(k)} := \displaystyle \frac{d^{k}p}{dt^{k}} . Furthermore, we get

p^{(k)} ={}^{t}A^{k}p

from the second equation of the Hamiltonian system. Then for the controllability matrix

we have

{}^{t}p (B | AB | . . . |A^{n-1}B) = \left(\begin{array}{l}
{}^{t}B\\
{}^{t}B^{t}A\\
{}^{t}B^{t}A^{2}\\
\vdots\\
{}^{t} B^{t}A^{n-1}
\end{array}\right)p= \left(\begin{array}{l}
{}^{t}Bp\\
{}^{t}B\dot{p}\\
{}^{t}B\ddot{p}\\
\vdots\\
{}^{t} Bp^{(n-1)}
\end{array}\right) =0.
Thus the condition p\neq 0 implies that

rank (B | AB | . . . |A^{n-1}B) <n.

By virtue of Proposition 2.6, the system is not controllable.

ii)\Rightarrow i) : Conversely, assume

rank (B | AB | . . . |A^{n-1}B) <n.

Then there exists p_{0}\neq 0 such that

\left(\begin{array}{l}
{}^{t}B\\
{}^{t}B^{t}A\\
{}^{t}B^{t}A^{2}\\
\vdots\\
{}^{t} B^{t}A^{n-1}
\end{array}\right)p_{0}=0.
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Put p(t) = \exp(t{}^{t}A)p_{0} and let us now see p(t) satisfies the constrained Hamiltonian

system. We see the second equation holds:

p={}^{t}A\exp(t{}^{t}A)p_{0}={}^{t}Ap(t) .

By using Cayley‐Hamilton theorem and by the assumption, we have

{}^{t}B^{t}A^{n}p_{0}={}^{t}B\displaystyle \sum_{i=0}^{n-1}$\alpha$_{i^{t}}A^{i}p_{0}=0.
As a consequence of the induction relative to n implies

{}^{t}Bp(t)={}^{t}B(E+t^{t}A+\displaystyle \frac{t^{2}}{2}{}^{t}A^{2}+\cdots)p_{0}
=0.

\square 

We remark that for nonlinear systems, Proposition 2.7 does not hold in general.
For example, if a control system is given by a contact structure then the control system
is controllable but does not have any singular controls [1].

We introduce input‐output systems in order to define the observability. Recall

that a control system ( $\alpha$, F) is given by a fibration  $\alpha$ :  E \rightarrow  M and a smooth map

F:E\rightarrow TM.

Definition 2.8. An input‐output system on M is a triple ( $\alpha$, F, h) of a control

system ( $\alpha$, F) and a function h:E\rightarrow \mathbb{R}^{r} called an output. An input‐output system is

expressed by

\left\{\begin{array}{l}
\dot{x}=f_{u}(x) ,\\
y=h(x, u) ,
\end{array}\right.
with a local trivialization.

Consider the case that an input‐output system is trivialized, that is, admissible

controls c are parametrized; c(t) = (x(t), u(t)) . Let x(u, x_{i}, t) denotes the solution of

the differential equation \dot{x}=f_{u}(x) with initial values x_{i} and the control u.

Definition 2.9. Two points x_{1} and x_{2} of M are said to be indistinguishable,
which is denoted by x_{1}Ix_{2} ,

if for arbitrary T > 0 and a control u : [0, T] \rightarrow  U ,
the

outputs h(x(u, x_{1}, t), u) and h(x(u, x_{2}, t), u) along the solutions x(u, x_{1}, t) and x(u, x_{2}, t)
respectively coincide together on the closed interval [0, T] . We say an input‐output

system is observable if x_{1}Ix_{2} implies x_{1} =x_{2}.
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We say an input‐output system ( $\alpha$, F, h) is linear if the control system ( $\alpha$, F) is

linear and h : E\rightarrow \mathbb{R}^{r} is given by linear map h(x, u)=Cx+Du with a parametrization

(x, u) ,
where C\in M_{r\times n}(\mathbb{R}) and D\in M_{r\times r}(\mathbb{R}) . That is, the linear input‐output system

is given by

\left\{\begin{array}{l}
\dot{x}=Ax+Bu,\\
h(x, u)=Cx+Du.
\end{array}\right.
Let (A, B, C, D) denotes the linear input‐output system above.

Observability on a linear input‐output system is characterized by the following

proposition.

Proposition 2.10 ([7]). The following statements are equivalent on linear‐input

output systems.

A linear input‐output system (A, B, C, D) is observable.

The rn\times n matrix \left(\begin{array}{l}
C\\
CA\\
CA^{2}\\
\vdots\\
 CA^{n-1}
\end{array}\right) has rank n.

The matrix appeared above is called the observability matrix. We remark that

there is the duality on Proposition 2.6 and Proposition 2.10 at least for linear system.

§3. Port‐Hamiltonian systems

We introduce pseudo‐Poisson structures which port‐Hamiltonian systems are de‐

fined on.

Remark. More generally, port‐Hamiltonian systems may be treated as implicit
Hamiltonian system defined on Dirac manifolds. In details, see [9].

Definition 3.1. A pseudo‐Poisson structure or a pseudo‐Poisson tensor

on a smooth manifold M is a bivector field  $\Pi$\in\wedge^{2}(TM) where \wedge^{2}(TM) denotes the set

of alternative ( 2, 0) ‐tensor fields on M . We call (M,  $\Pi$) a pseudo‐Poisson manifold.

A bi‐vector field  $\Pi$ on  M induces a pseudo‐Poisson bracket \{, \}_{ $\Pi$} : C^{\infty}(M) \times

 C^{\infty}(M)\rightarrow C^{\infty}(M) by

\displaystyle \{f, g\}_{ $\Pi$} :=\langle $\Pi$, df\wedge dg\rangle=\sum_{i,j}$\Pi$_{ij}\frac{\partial f}{\partial x_{i}}\frac{\partial g}{\partial x_{j}},
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where (x_{1}, \cdots , x_{n}) is a local coordinate on M and $\Pi$_{ij} is the local expression of  $\Pi$ . The

bracket is said to be a Poisson bracket, if the bracket satisfies the Jacobian identity

\{\{f, g\}, h\}+\{\{g, h\}, f\}+\{\{h, f\}, g\}=0.

Remark. If the local expression of the pseudo‐Poisson tensor $\Pi$_{ij} is a constant

matrix, then the bracket induced by the pseudo‐Poisson tensor \{, \}_{ $\Pi$} satisfies the Jaco‐

bian identity, that is, the bracket will be a Poisson bracket.

Definition 3.2. Let (M,  $\Pi$) be a pseudo‐Poisson manifold. A Hamiltonian

vector field X_{f} on M associated to f : M\rightarrow \mathbb{R} is defined by the equation

X_{f}g=\{f, g\}_{ $\Pi$}.

We consider an input‐output affine control system which its first term is a Hamil‐

tonian vector field.

Definition 3.3. A port‐Hamiltonian system on a pseudo‐Poisson manifold

(M,  $\Pi$) is defined by an input‐output system

\left\{\begin{array}{l}
\dot{x}=X_{f}(x)+\sum_{i=1}^{r}u_{i}g_{i}(x) ,\\
y_{j} =g_{j}(x)f, (j=1, \cdots r)
\end{array}\right.
with vector fields g_{1},

\cdots

,  g_{r} and a C^{\infty} function f.

Remark.

Consider the case that the port‐Hamiltonian system is a linear input‐output system.
That is, a local expression of the pseudo‐Poisson structure $\Pi$_{ij} is a constant matrix J,
the function f is quadratic form given by t_{xFx} with an n \times  n matrix F and input
vector fields g_{i} are constant vectors. In this way the linear port‐Hamiltonian system
has a representation of an input‐output system (JF, G,{}^{t}GF, O) with G= (g_{1}, \cdots , g_{r}) ,

namely the port‐Hamiltonian system is expressed by

\left\{\begin{array}{l}
\dot{x}=JFx+Gu,\\
y={}^{t}GFx.
\end{array}\right.
Thus the controllability matrix and observability matrix which appeare0 in Propositio1
2.6 and Proposition 2.10 are now

(B | AB | . . . |A^{n-1}B) = (G | JFG | . . . | (JF)^{n-1}G) , (CA^{2}c^{C}A = \left(\begin{array}{l}
{}^{t}GF\\
{}^{t}GFJF\\
\vdots\\
{}^{t} GF(JF)^{n-1}
\end{array}\right) ,
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for linear port‐1amiltonian system, respectively. Hence we have the relation between

the observability matrix and controllability matrix;

(c^{C}A^{2}c_{A}(_{\mathrm{C}}c_{$\Delta$^{n-1}}c_{A^{2}}^{\mathrm{c}_{A}} = \left(\begin{array}{l}
{}^{t}GF\\
({}^{t}GF)JF\\
({}^{t}GF)(JF)^{n-1}
\end{array}\right) = ({}^{t}FG |{}^{t}(JF)^{t}FG | | {}^{t}(JF)^{n-1t}FG)
=F(G| −JFG | . . . | (-1)^{n-1}(JF)^{n-1}G)
=F (B | -AB | . . . | (-1)^{n-1}A^{n-1}B) :

Thus we have the following theorem from Proposition 2.7.

Theorem 3.4. Consider a linear port‐Hamiltonian system $\Sigma$_{lp}=(JF, G,{}^{t}GF, O) .

If \det F\neq 0 ,
then the following statements are equivalent:

i) . $\Sigma$_{lp} is not controllable.

ii). $\Sigma$_{lp} is not observable.

iii). $\Sigma$_{lp} has a singular control.

The interesting point of Theorem 3.4 is the relation between the observability and

the existence of singular controls. This motivates us to study relations between observ‐

ability and singular controls on a nonlinear port‐Hamiltonian system.

§4. Examples

We shall give several examples related to Theorem 3.4.

Example 4.1 ([5][10]). Consider the LC‐circuit given in the Figure 1 and we

shall give an its port‐Hamiltonian expression.
For the components in an electrical circuit, the following basic laws hold: the mag‐

netic flux $\varphi$_{L} and the current I_{L} across a capacitor with inductance L and capacitance
C is related via

$\varphi$_{L}(t)=L\displaystyle \frac{I_{L}}{C}
whereas the electric charge Q_{C} and the voltage V_{C} of the capacitor with capacitance C

are related via

L_{C}(t)=C\displaystyle \frac{dV_{C}}{dt}(t) .

The conservation of charge and energy in electrical circuits are described by Kirchhoff�s

circuit laws. Kirchhoff�s first law states that at any node in an electrical circuit, the
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Figure 1. LC‐circuit

sum of currents flowing into the node is equal to the sum of currents flowing out of

the node. Moreover, Kirchhoff�s second law says that the directed sum of the electrical

potential differences around any closed circuit must be zero.

Applying these laws to the example, we obtain the following differential equations:

\displaystyle \frac{dQ}{dt}(t) = I_{C}
Kirchh\mathring{=}\mathrm{f}\mathrm{f} �s 1st

I_{L_{1}} (t) - I_{L_{2}} (t) = \displaystyle \frac{$\varphi$_{L_{1}}}{L_{1}} - \displaystyle \frac{$\varphi$_{L_{2}}}{L_{2}},
\displaystyle \frac{d$\varphi$_{L_{1}}}{dt}(t) = -V_{L_{1}} (t)

Kirchh =\mathrm{o}\mathrm{f}\mathrm{f} �s 2nd

-V_{C}(t) + V(t) = -\displaystyle \frac{Q}{C}(t) + V(t) ,

\displaystyle \frac{d$\varphi$_{L_{2}}}{dt}(t) = -V_{L_{2}} (t)
Kirchh =\mathrm{o}\mathrm{f}\mathrm{f} �s 2nd

\displaystyle \frac{Q}{C}(t) .

We assume that we can only measure the current I_{L_{1}} ,
that is, we define the output as

y(t) =I_{L_{1}}(t) .

We may regard the system as a port‐Hamiltonian system in conformity with the pre‐

ceding. Replace the variables (Q, $\varphi$_{L_{1}}, $\varphi$_{L_{2}}) to (x_{1}, x_{2}, x3) as a coordinate of the Poisson

manifold (M,  $\pi$) with structure represented by

 $\pi$= \left(\begin{array}{lll}
0 & 1 & -1\\
-10 &  & 0\\
10 &  & 0
\end{array}\right)
Take the function f on M as the energy function

f (x_{1}, x_{2}, x3) = \displaystyle \frac{1}{2C}x_{1}^{2}+\frac{1}{2L_{1}}x_{2}^{2}+\frac{1}{2L_{2}}x_{3}^{2}
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of the system and we Bet the port‐Hamiltonian expression of the above system:

\left\{\begin{array}{l}
[Matrix] = [Matrix] [Matrix] +V [Matrix] ,\\
y=g(x)f= \frac{\partial f}{\partial x_{2}}(x)=I_{L_{1}},
\end{array}\right.
where the input vector field g is {}^{t}(0,1,0 ). The control parameter V is voltage source

here.

Since this is a linear port‐Hamiltonian 0ystem, we can apply Theorem 3.4 to the

system. Since the controllability mBtrix cs wBitten by

(B | AB |A^{2}B | . . . |A^{n-1}B)= (\left(\begin{array}{l}
0\\
1\\
0
\end{array}\right) | \left(\begin{array}{l}
1\\
0\\
0
\end{array}\right) | \left(\begin{array}{l}
0\\
-1\\
1
\end{array}\right) | 2 \left(\begin{array}{l}
0\\
1\\
0
\end{array}\right) |2 \left(\begin{array}{l}
0\\
-1\\
1
\end{array}\right) | ) ,

the controllability matrix has full rank and the system is controllable. Hence from

Theorem 3.4, the system is observable and has no singular controls.

The following example is very alike but contrasting.

Example 4.2. Consider the LC‐circuit given in the Figure 2 which is very alike

Figure 2. LC‐circuit 2

to Example 4.1. The same way as Example 4.1, we get the following port‐Hamiltonian

expression;

\left\{\begin{array}{l}
[Matrix] = [Matrix] [Matrix] +V [Matrix] ,\\
y=g(x)f= \frac{\partial f}{\partial x_{2}}(x)=I_{L_{1}}+I_{L_{2}},
\end{array}\right.
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where the input vector field g is {}^{t}(0,1,1 ). SiBce th \mathrm{e} Bontrollability matrix cf the system
is

(B | AB |A^{2}B | . . . |A^{n-1}B)= (\left(\begin{array}{l}
0\\
1\\
1
\end{array}\right) | \left(\begin{array}{l}
0\\
0\\
0
\end{array}\right) | \left(\begin{array}{l}
0\\
0\\
0
\end{array}\right) | . . . | \left(\begin{array}{l}
0\\
0\\
0
\end{array}\right)) ,

the rank of the matrix is 1. Thus the system is not controllable. From Theorem 3.4,
the system is not observable and there exists singular controls for the system.

The port‐Hamiltonian system provides a way to study nonholonomic systems. We

present an important example of a nonlinear port‐Hamiltonian system which modeling
the motion with nonholonomic constraint.

Example 4.3. [4] We introduce a port‐Hamiltonian system which models a mo‐

tion of a rolling coin. Let (M,  $\Pi$) be a five dimensional pseudo‐Poisson manifold and

x = (q_{1}, q_{2}, q_{3},p_{1},p_{2}) a local coordinate of pseudo‐Poisson manifold M . The physical

meanings of the coordinate is as follows; q_{1} is the angle between the direction of coin

and x‐axis
, (q_{2}, q_{3}) is a point on a plain, p_{1} is a inertia momentum of rolling and p_{2} is

a inertia momentum of spinning.
Let H be a smooth function on M representing energy of the system;

H(q_{1}, q_{2}, q_{3},p_{1},p_{2})= \displaystyle \frac{1}{2}(p_{1}^{2}+p_{2}^{2})
With the input vector fields t_{g_{1}} = (0,0,0,1,0) and t_{g_{2}} = (0,0,0,0,1) ,

we have a port‐

Hamiltonian system;

\left\{\begin{array}{l}
[Matrix] = [Matrix] [Matrix] +u_{1} [Matrix] +u_{2} [Matrix] ,\\
y_{j} =g_{j}(x)H=p_{j} (j=1,2) .
\end{array}\right.
Remark. The structure  $\Pi$ is a genuine pseudo‐Poisson, that is, the pseudo‐

Poisson tensor  $\Pi$ is not a Poisson tensor. Moreover, since the dimension of the manifold

is five, the  $\Pi$ will be degenerate.

For this port‐Hamiltonian system, we cannot apply Theorem 3.4 because this sys‐

tem is nonlinear. But we can find a singular control by Proposition 2.4 as following.
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 P1

Figure 3. A rolling coin

The Hamiltonian \hat{H} of the port‐Hamiltonian system is given by

\hat{H}(x,  $\Psi$, u)=\langle $\Psi$, X_{f}+ug\rangle,

where  $\Psi$ = ($\psi$_{1}, $\psi$_{2}, $\psi$_{3}, $\pi$_{1}, $\pi$_{2}) is the local coordinate of T_{x}^{*}M . For a singular control,
we get a constrained Hamiltonian system of \hat{H} as follows;

\left\{\begin{array}{ll}
q_{1}(t)=p_{1}, & \dot{ $\psi$}_{1}(t)=p_{2}\sin q_{1}$\psi$_{2}-p_{2}\cos q_{1}$\psi$_{3},\\
q_{2}(t)=p_{2}\cos q_{1}, & \dot{ $\psi$}_{2}(t)=0,\\
q_{3}(t)=p_{2}\sin q_{1}, & \dot{ $\psi$}_{3}(t)=0,\\
\dot{p}_{1}(t)=u_{1}(t) , & \dot{ $\pi$}_{1}(t)=$\psi$_{1},\\
p_{2}(t)=u_{2}(t) , & \dot{ $\pi$}_{2}(t)=-$\psi$_{2}\cos q_{1}-$\psi$_{3}\sin q_{1},\\
\langle $\Psi$(t) , g_{i}\rangle =$\pi$_{i}=0 (i=1,2) , &  $\Psi$(t)\neq 0.
\end{array}\right.
From the equations of \dot{ $\psi$}_{1} and \dot{ $\pi$}_{2} ,

we have

\left(\begin{array}{ll}
\mathrm{s}\mathrm{i}\mathrm{n}q_{1^{-p_{2}}} & \mathrm{c}p_{2}\mathrm{o}\mathrm{s}q_{1}\\
\mathrm{c}\mathrm{o}\mathrm{s}q_{1} & \mathrm{s}\mathrm{i}\mathrm{n}q_{1}
\end{array}\right) \left(\begin{array}{l}
$\psi$_{2}\\
$\psi$_{3}
\end{array}\right) =0.
Because the existence of singular controls implies the simultaneous equations have a

nontrivial solution, we have

\det \left(\begin{array}{ll}
\mathrm{s}\mathrm{i}\mathrm{n}q_{1^{-p_{2}}} & \mathrm{c}p_{2}\mathrm{o}\mathrm{s}q_{1}\\
\mathrm{c}\mathrm{o}\mathrm{s}q_{1} & \mathrm{s}\mathrm{i}\mathrm{n}q_{1}
\end{array}\right) =0.
Since this is equal to -p_{2} (sin2 q_{1}+\cos^{2}q_{1} ) =0 ,

we get p_{2} =0 . Consequently, we have

the forms of singular controls on this system;

\left\{\begin{array}{l}
u_{1}(t) : \mathrm{a}\mathrm{n}\mathrm{y} \mathrm{a}\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{y} \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n},\\
u_{2}(t)=0.
\end{array}\right.
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We get the solution corresponds to a singular control with an initial condition;

q_{1}(t)=\displaystyle \int p_{1}(t)dt,
q_{2}(t) =Q_{2} : const,

q_{3}(t) =Q3 : const,

p_{1}(t)=\displaystyle \int u_{1}(t)dt,
p_{2}(t)=0,

$\psi$_{1}(t)=0,

$\psi$_{2}(t)=C_{2} : const,

$\psi$_{3}(t)=c_{3} : const,

$\pi$_{1}(t)=0,

$\pi$_{2}(t)=0.

The meaning of the singular trajectory of the example is that singular controls do not

control rolling component and the coin spins on a fixed point in \mathbb{R}^{2} under the singular
controls.

In this example, there exists a singular control and we found out the physical

meaning of singular controls. But it is not well known about the existence of singular
controls of port‐Hamiltonian systems and its meanings. Theorem 3.4 does not holds on

nonlinear systems, but it is interesting to study its generalization to nonlinear systems
under some conditions.
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